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Abstract. The prevalence of cloud computing environments and the ever in-
creasing reliance of large organisations on computational resources has meant
that service providers must operate at unprecedented scales and levels of effi-
ciency. Dynamic resource allocation (DRA) policies have been shown to allow
service providers to improve resource utilisation and operational efficiency in
presence of unpredictable demands, hence maximising profitability. However,
practical considerations, such as power and space, have led service providers to
adopt rack based approaches to application servicing. This co-location of compu-
tation resources, and the associated common provision of utilities it encourages,
has immediate implications for system dependability. Specifically, in the pres-
ence of rack crash failures which can lead to all the servers within a rack becom-
ing unavailable, resource allocation policies need to be cognisant of failures. In
this paper, we address this issue and make the following specific contributions:
(i) we present a modular architecture for failure-aware resource allocation, where
a performance- oriented DRA policy is composed with a failure-aware resource
allocator, (ii) we propose a metric, called Capacity Loss, to capture the exposure
of an application to a rack failure, (iii) we develop an algorithm for reducing the
proposed metric across all applications in a system operating under a DRA policy,
and (iv) we evaluate the effectiveness of the proposed architecture on a large-scale
DRA policy in context of rack failures, ultimately concluding that our approach
reduces the number of failed requests as compared to a single random alloca-
tion. The main benefit of our approach is that we have developed a failure-aware
resource allocation framework that can work in tandem with any DRA policy.

1 Introduction

The emergence of cloud computing promises to the revolutionise the way that organi-
sations manage their use of computational resources. Under traditional models, organ-
isations must take responsibility for the procurement, installation and maintenance of
costly and inflexible systems that must be periodically reconsidered. However, under a
cloud-based model this is not the case. Instead organisations can consume resources as
and when they are required, with cloud providers ensuring that the capacity of supplied
resources can expand to meet the individual needs of any organisation.

Dynamic resource allocation (DRA) policies allow resource allocation to be matched
with application workload, thus improving resource utilisation and operational effi-
ciency in situations where workloads are volatile. The potential for DRA policies to im-
prove utilisation and efficiency in this way is established and potentially profitable [3].



Further, the characteristics of DRA policies and the multiplicity of concerns they ac-
count for make them particularly applicable at large-scale, such as in the context of
cloud computing.

In order to realise effective and economic models for cloud computing, service
providers are turning to data centers and high speed networks, as well as DRA. In order
to maximise resource utilisation and operational efficiency, hence profitability, a cloud
provider must also make many practical considerations in the design of a data center,
including those relating to physical space, connectivity, power and cooling. These con-
siderations typically make it practical for computational resources to be arranged in
collections, hence the necessity of rack based application servicing. However, this ar-
rangement typically leaves collections of resource dependent on common utilities, such
as power and network connections, as well as exposing them to a host of co-location
issues, such as physical impact and disconnection.

The described environment is particularly consistent with the notion of a cloud
provider offering Infrastructure as a Service [14], where an elastic computational re-
source is leased to a organisation, who must then configure the resource for use. Under
this model an organisation would typically be billed for the resource utilised, this pro-
viding flexibility in situations where workloads are volatile.

Given the scale at which physical resources exist in such environments, failures
will be the norm rather than the exception [6]. However, when problems such as power
outage or network switches failures occur, a whole rack can fail, leading to multiple
servers being unavailable. Failures at such a scale are very likely to significantly reduce
the efficiency, hence profitability, of a system. Thus, two possible ways of addressing
this problem of multiple serves being unresponsive are: (i) design DRA policies that
are failure-aware or (ii) execute a DRA when a failure is encountered. In this paper, we
adopt the first of these approaches, and reserve the second option for future work.

For the design of failure-aware DRA policies, it is unrealistic to expect organisa-
tions to modify their policies to capture failure awareness. Rather, it would be better
if a failure-aware module can be designed that can work with any DRA currently in
use. In this paper, we propose a modular architecture for failure-aware DRA, whereby
a failure-aware allocator module works in tandem with a DRA module. The failure-
aware allocator module ensures that resource allocation are made in such a way so as
to minimise the impact of rack failures on running applications. The novel property of
our approach is that the failure-aware allocator only performs “robustness” balancing
across applications.

1.1 Contributions

In this context, we make the following specific contributions:

– We develop a modular architecture for failure-aware resource allocation.
– We propose a metric, called CapacityLoss, which captures the exposure of an ap-

plication to a rack failure
– We develop an algorithm for reducing the CapacityLoss for each application in a

system, given the resource requirements of each application.



– We evaluate the effectiveness of our framework on a large-scale DRA policy in
context of rack failures, and show the efficiency of our approach.

The overarching contribution of this paper is the development of a modular failure-
aware architecture for resource allocation. The novel aspect of this is that the failure-
aware resource allocator can work well in tandem with any DRA policy that is being
used by the organisation.

1.2 Paper Structure

The remainder of this paper is structured as follows: In Section 2 we provide a survey
of related work. In Section 3 we set out the system and fault models adopted in this
paper. In Section 4 we define and illustrate a machine placement metric for improving
the dependability of existing DRA policies. In Section 5 we detail our experimental
setup, before presenting the results of our experimentation in Section 6. In Section 7 we
discuss the implications of the results presented. Finally, in Section 8 we conclude this
paper with a summary and a discussion of future work.

2 Related Work

The properties of DRA policies have been throughly considered in the context of per-
formance evaluation and measurement. In this context, the use of dynamic resource
allocation has been shown to improve application performance and the utilisation of
resources [3] [10]. Other work relating to the performance of DRA policies had led to
the development, augmentation and evaluation of policies with a view to further en-
hancing DRA system performance [1] [17]. For example, in [4] the authors developed
an algorithm for profit maximisation of multi-class requests through dynamic resource
allocation, whilst work in [2] proposed an approach for the dynamic allocation of re-
sources from a common pool. The issue of resource allocation is also addressed in
research such as [12], where periodic balanced server provisioning was investigated. In
contrast to experimental research, analytical approaches to dynamic resource allocation
have also been explored in work such as [7], [13] and [18], where application modelling
and queuing theory were applied respectively.

Resource failures in the context of data centers is well addressed by existing lit-
erature[8] [15] [16]. The coverage of resource failures has mostly concerned failures
affecting a single hardware resource, excluding the possibility of large scale failures.
The authors of [15] give an insight into the failure rates of servers in a large datacenter,
and attempt to classify them using a range of criteria. Work in [6] develops a cloud
ready platform for testing a range of failure scenarios, including rack based failures.
This demonstrates the need for systems which are able to mitigate against large-scale
failures. The issue of resource failures in cloud computing is addressed in [11], where
the authors develop a policy to partition a resource between high-performance comput-
ing application and web service applications in the context of single resource failures.
The work in this paper increases the scale of the resource failure and in doing so in-
creases the number of applications affected by the failure.



The issues of rack-awareness has been considered to some extent by [9], part of
which is a file system, known as HDFS, that can account for rack distribution when
storing data. Our work differs from [9] as our algorithm works in conjunction with a
DRA system at the level of Infrastructure as a Service while Hadoop operates at the
level of Platform as a Service.

3 Models

In this section, we present the system and fault models adopted in this paper as well as
enunciating our assumptions.

3.1 System Model

We consider an environment where a set of applications A = {a1, a2, ..., an} are de-
ployed across a set of racks R = {r1, r2, ..., rm}. A rack ri consists of a set of servers
Si = {si,1, si,2, ..., si,k}. A server si,j may service requests from only one application
at any time. We assume that (i) all servers si,j are homogeneous in that they provide
identical resources, and (ii) each server has all the resources required by an application,
i.e., no communication between servers is required for application servicing. Such a
system model is typical in cloud computing environment or large scale datacenters.

3.2 Fault Model

Given the described system model, failures are expected to be the norm rather than the
exception [6] due to the very large number of computing hardware present. We consider
crash failures to occur at a rack level, where this type of failure may be caused due to,
for example, power outages or network switch failures. When such a rack ri fails, all
the servers si,j ∈ Si become unavailable. We assume a failure mode where at most a
single rack can fail at any one time.

4 A Failure-Aware Allocation Algorithm

4.1 Metric for Failure-Awareness

Well designed enterprise systems can allow for increased throughput via horizontal
scaling of resources with minimal overhead [5]. The system may scale linearly with the
addition of resources which do not overload any of the other tiers. In a homogeneous
server environment of n servers, each server contributes 1

n of the total system capacity.
A rack failure will impact on multiple applications depending on the composition

of the rack which is affected. To meet performance requirements, resource allocation
will have to take place. However, the resource allocation needs to be cognisant of the
failures. For example, in the Hadoop distributed file systems [9], an application will be
located on at least two different racks, so that failure of one rack does not cause the
application to become unavailable. To assess the impact of the failure of rack ri ∈ R on
a given application aj ∈ A, we use the proportion of servers hosting application aj that
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will be lost due to the failure of the rack ri to measure the loss of application capacity
for aj , and base reallocation decisions on that proportion.

The metric we propose, called capacity loss, is shown as equation 1, where ri is the
rack, aj is an application and sj

i is the number of servers in rack ri hosting application
aj , and Saj is the number of servers hosting application across all racks, is used to
capture the impact the failure of rack ri will have on the application aj in terms of
capacity.

CapacityLossri,aj
=

sj
i

Saj

(1)

It is clear for Equation 1 that a Capacity Loss of 1 is undesirable, as it would means
that all servers hosting application aj are located in rack ri. In an ideal situation, the
Capacity Loss value would be 0. Thus, an objective is to minimise Capacity Loss for
all applications across all racks.

4.2 A Modular Architecture for Failure-Aware Resource Allocation

In this section, we present a modular architecture, in Figure 1, for failure-aware resource
allocation in the presence of rack failures.
In Figure 1, the DRA component represents the dynamic resource allocation algorithm
that is used by the cloud computing environment. The DRA component takes the fore-
casted application workload as input, and outputs a set of resource allocation transfor-



mation for performance reasons. For example, such an output will be of the following
type:

– Take 4 servers from application 4 to host application 2.
– Take 2 servers from application 1 to host application 3.

However, such DRAs are not rack-aware. Specifically, DRA outputs do not specify the
racks where the resource transformation is to take place. In this paper, one of our con-
tributions is to develop a component, namely the Allocator (see Figure 1), that performs
the rack-aware resource transformation in that it augments the resource transformation
needed with rack information, i.e., it specified the racks where the transformations are
to occur. For example, with an allocator module, our previous example would be like:

– Take 4 servers from application 4 to host application 2 (2 servers from rack 1 and
2 servers from rack 3).

– Take 2 servers from application 1 to host application 3 (1 server from rack 2 and 1
server from rack 2).

However, with the non-zero probability of rack failures, the allocator needs to be failure-
aware in that it needs to perform these resource transformation in such a way to min-
imise the Capacity Loss (see Equation 1) for each application. The algorithm for the
failure-aware allocator is shown in Algorithm 1. In a nutshell, Algorithm 1 searches for
all racks where application af is being hosted. Then, the failure-aware allocator chooses
the a set of racks, denoted Rt

f , where the capacity loss for application af on a rack ri,
where ri ∈ Rt

f is maximum, and capacity loss for application at on ri is minimum.
Practically, this implies that it is better to remove servers for application af from a rack
riwhere the capacity loss for af is already high. Further, it also means that it is better
to allocate servers to host application at on rack ri where application at already has
minimum capacity loss. Once these racks Rt

f are identified, one of them is picked at
random.

In the next sections, we describe and present the results of experiments designed to
evaluated the efficiency of our architecture and failure-aware allocator algorithm.

5 Experimental Setup

In this section we detail the experimental approach used to derive the results presented
in Section 6.

5.1 Failure Scenario

In our experimentation, we considered a DRA policy that executes periodically. Figure
2 describes a typical series of events in our experimental environment. At ti, the DRA
policy makes a decision based on the application workloads and returns a set of resource
transformations (see example in Section 4) to meet the performance requirements. This
set of transformations is taken as the input to the failure-aware allocator component,
which then decides on which racks to enable these transformations. Specifically, the



Algorithm 1 Balanced migration algorithm
Input: at The application to be migrated to
Input: af The application to be migrated from
Input: R the set of all racks
Output: The optimal rack for migration
1: Let c1 = ∅
2: Let c2 = ∅
3: Let c3 = ∅
4: Let o be an optimal rack
5: Let mt represent the best value for at

6: Let mf represent the best value for af

7: Initialise mt = +∞
8: Initialise mf = −∞
9: for all r ∈ R do

10: if r contains af then
11: c1 ← r
12: end if
13: end for
14: for all r ∈ c1 do
15: vt = CapacityLossr,at

16: if vt ≤ mt then
17: if vt < mt then
18: c2 = ∅
19: end if
20: c2 ← r
21: mt = vt

22: end if
23: end for
24: for all r ∈ c2 do
25: vf = CapacityLossr,af

26: if vf ≥ mf then
27: if vf > mf then
28: c3 = ∅
29: end if
30: c3 ← r
31: mf = vf

32: end if
33: end for
34: return Random member of c3

failure-aware resource allocator module augments the resource transformations with
rack location information. A rack failure tf occurs such that ti < tf < ti+1, where
ti+1 is the period for the next DRA decision.

Thus, with the proposed modular failure-aware DRA framework, we expect the sys-
tem to better handle rack failures. To do this, we measure the number of failed requests
between tf and ti+1. It is the aim of the research presented in this paper to minimise



the system performance loss incurred in the period between tf and ti+1 through rack-
awareness in the resource allocation mechanism.

Fig. 2. Timeline depicting a typical event ordering

5.2 Resource Allocation

Much current research in DRA policies does not explicitly consider resource failure.
In such works, each application is viewed as a logical collection of servers which are
equal. In this case, servers may be migrated between applications arbitrarily. We use this
naı̈ve approach as our benchmark, selecting servers to be migrated as required with no
regard for their location. We refer to this allocation mechanism as the random allocator.

Under the balanced resource allocator, which uses the Capacity Loss metric shown
in Equation 1 to assign applications, we attempted to minimise the potential capacity
loss in the event of a rack failure. In Section 4, we decoupled the failure-aware allo-
cation mechanism, in the allocator, from an abstract DRA policy. For our experiments
we employed this approach and used the resource allocation algorithm shown in Algo-
rithm 2. The algorithm uses workload prediction and applications which are ranked by
criticality (this may be governed by SLA or a business metric) to partition resources.

To reduce experimental uncertainty we used 10 identical applications. Each appli-
cation processes a single type of request with a fixed service duration of 100ms.

The simulated datacenter is comprised of 400 homogeneous servers that are housed
in racks. Each rack contained 40 servers, giving a total of 10 racks. Initially the servers
were allocated evenly between applications, i.e., 40 servers per application, with 4
servers per application per rack. The initial allocation of servers to racks was done
such that the minimum capacity loss for each application, i.e., maximum robustness for
each application, was achieved. When a server was reallocated, it first had to complete
the servicing of current and queued requests, before migrating to the newly assigned
application. The process of server migration was fixed at 30 seconds.

As the number of applications is high, we use synthetic sine-based workloads of var-
ious frequencies and amplitudes. In all cases the total workload of the system is greater
than 75% of total system capacity. The individual workloads are shown in Figure 3.

In this paper, we use a predictive resource allocation algorithm that uses an ex-
ponential moving average to forecast the workload for the next interval and allocates
resources accordingly. The algorithm ranks applications in accordance with their impor-
tance (this may be governed by SLAs or a business metric) and greedily allocates re-
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Fig. 3. Experiment workloads

sources to applications in order of priority. This algorithm allocates all server resources
to applications. The complete allocation algorithm can be seen in Algorithm 2.

We selected five timings for rack failures. Each rack was then failed at each of the
timings in a separate simulation. The times selected for the failures are 645, 1245,1845,
2445, 3045 seconds. The total simulation time was 3600 seconds.

5.3 Expected Results

Based on our proposed framework, we expect the following result from our experi-
ments, which we will verify in the results section (Section 6):

- We generally expect the balanced resource allocator (Algorithm 1) to have less
failed requests due to the fact that it creates allocation which minimises the capacity
loss for each application across each rack.

- We anticipate that the random allocator may yield better performance in rare situ-
ations, where a rack is lightly leaded with respect to a single application, though
this is expected to be offset by a higher application exposure, i.e, a high value of
CapacityLoss, for an application on the same rack.



Algorithm 2 Improved scalability algorithm
1: Let N be the number of applications
2: Let a1, ..., an be ranked applications
3: Let m1, ..., mn be minimum resource of ai

4: Let ta be the throughout of a server of a
5: Let na be number of servers allocated to a
6: Let I be idle servers
7: for i = 1; i < N ; i + + do
8: p = predictedDemand(ai)
9: S′

i = p
ta

10: if S′
i < Si then

11: Append Si − S′
i servers to I ′

12: S′
i → Si

13: end if
14: end for
15: for i = 1; i < N ; i + + do
16: if Si 6= S′

i then
17: if I ′ > 0 then
18: if I ′ > S′

i − Si then
19: Move S′

i − Si from I ′ to Si

20: break
21: else
22: Move all servers in I ′ to Si

23: end if
24: end if
25: for j = N ; j > i + 1; j −− do
26: if S′

i − Si ≤ Sj −mj then
27: Move (S′

i − Si) from Sj to Si

28: Break
29: else
30: Move (Sj −mj) from Sj to Si

31: end if
32: end for
33: end if
34: end for
35: Let I = I ′

6 Results

In this section, we present the results of our experimentation. The results presented
give (i) details of the overall system impact, (ii) analysis for each failure timing and
(iii) discussion of the effect of failures on each application. Any difference is between
the balanced and the random allocator, where a positive difference represents better
performance for the balanced allocator.



Table 1. Maximum total request failure percentage for each failure

Allocator Failure 1 Failure 2 Failure 3 Failure 4 Failure 5
Random 3.20 2.83 2.42 1.87 1.60
Balanced 3.16 2.75 2.27 1.85 1.60
% Imp. 1.12 2.87 5.95 1.09 0.02

Table 2. Standard deviation of failures across all racks

Allocator Failure 1 Failure 2 Failure 3 Failure 4 Failure 5
Random 0.0588 0.0373 0.0710 0.0433 0.0105
Balanced 0.0475 0.0309 0.0358 0.0237 0.0096
% Imp. 19.1851 17.1305 49.4922 45.2765 7.9847

6.1 Overall Results

We now present the overall impact of a rack failure on the total failure rate over the
duration of the experiment. Firstly, we consider the impact of the allocation technique
on the maximum percentage of failed requests for each failure. Each value shown in
Table 1 reflects the percentage of failed requests over the duration of a simulation.
The results demonstrate that the balanced allocator reduced the maximum impact of
a rack failure on the overall failure rate, as compared with the random allocator, as it
consistency yields an improvements in the percentage of failed requests. The maximum
observed improvement is nearly 6%. This is a considerable improvement, given that it
was measured over the full duration of a simulation.

The standard deviation of the overall failure percentage for each rack and failure is
shown in Table 2. The nature of the balanced allocator caused a consistent reduction
in the standard deviation of the failure rates. This can be explained by the fact that
the balanced allocator algorithm (Algorithm 1) attempts to reduce each application’s
Capacity Loss, thereby reducing the deviation in terms of failed requests. The most
significant improvement can be seen in Failure3, though it should be noted that the
lowest percentage improvement is nearly 8%.

6.2 Failure Results

Failure 1 in our experimentation occurs at 645 seconds, after two migration intervals.
Table 3 contains the failures observed for each application, under both the random and
balanced allocators. As mentioned before, we crashed all 10 racks at the 645 seconds
marks. The minimum/maximum columns represent the minimum/maximum number
of failed requests across all the 10 failures. The rightmost column of Table 3 presents
the percentage improvement in standard deviation of the balanced allocator over the
random allocator.

We make the following two observations: For all applications, (i) the minimum
number of failed requests under the random allocator is equal to or better than the bal-
anced allocator, and (ii) in terms of maximum values, the balanced allocator performs
better than the random allocator. The first observation is due to the fact that the random



Table 3. Application results for Failure 1

Random Balanced
App. Min Max Average Std.Dev. Min Max Average Std.Dev. Improvement (%)

1 1995 2494 2145 240.83 1995 2494 2145 240.83 0.00
2 2015 3526 2770.5 593.26 2518 3023 2770.5 265.53 55.24
3 2244 43213 19794 15027.35 12248 22572 17410 5440.17 63.80
4 794 1589 1350 277.62 1191 1589 1350 205.05 26.14
5 1034 1379 1275 166.08 1033 1379 1275 166.77 -0.42
6 1223 2446 1875 438.36 1630 2039 1875 210.65 51.95
7 507 14749 2083.5 4456.62 507 1015 811.5 262.07 94.12
8 531 21216 4987 8563.51 1062 1594 1275 274.12 96.80
9 78896 120352 95478.4 13990.33 89260 99624 95478.4 5351.95 61.75

10 0 20332 6293.6 8381.72 564 10008 4341.6 4876.86 41.82
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allocator can place fewer instances of an application on a rack, i.e., an application can
have a capacity of 0 on a rack, which never happens in the balanced algorithm (unless
an application has a 0 workload), than the balanced allocator. On the other hand, for the
maximum values, the random allocator may allocate servers in a rack to applications in
such a way that the Capacity Loss is very high, resulting in very high number of failed
requests.

Table 3 shows the difference in standard deviation between the two allocators. The
result for Application 5 is due to a minor difference in the round robin scheduling of
requests across servers. Application 1 has an identical failure rate under both allocators.
The best and worst rack configurations for each application under both allocators are
shown in Figure 4. The maximum difference in allocations for the random policy is
6, while the balanced policy achieves a maximum difference of 1, which shows that
Algorithm 1 of the balanced allocator achieves better “robustness” balancing than the
random allocator.

This pattern of results is corroborated by the results from failures 2-5, which are
given in Tables 4-7. This supports the first of our expected results, as proposed at the
end of Section 5



Table 4. Application results for Failure 2

Random Balanced
App. Min Max Average Std.Dev. Min Max Average Std.Dev. Improvement (%)

1 2086 2609 2347.5 275.22 2086 2609 2347.5 275.22 0.00
2 2012 4025 2817 679.31 2515 3018 2817 259.49 61.80
3 2026 5062 3900 894.12 3545 4053 3900 244.74 72.63
4 703 1407 1090.5 259.53 1055 1408 1090.5 111.56 57.02
5 904 1809 1537.5 316.39 1356 1809 1537.5 233.24 26.28
6 22848 64304 46685.2 10979.10 43576 53940 46685.2 5006.29 54.40
7 523 17533 2433.5 5311.79 523 1047 889.5 252.91 95.24
8 0 9060 1856 2590.29 1000 1500 1200 258.20 90.03
9 41822 83278 61513.4 11405.61 52186 62550 61513.4 3277.31 71.27

10 0 1046 732 441.01 522 1046 732 270.25 38.72

Table 5. Application results for Failure 3

Random Balanced
App. Min Max Average Std.Dev. Min Max Average Std.Dev. Improvement (%)

1 2095 3143 2514 331.34 2095 2619 2514 220.83 33.35
2 2044 4088 2862 689.52 2555 3067 2862 264.01 61.71
3 1784 4459 3300 703.31 2675 3568 3300 311.94 55.65
4 1073 5906 2361.5 1880.91 1073 5907 1985.5 1388.15 26.20
5 31948 52676 45421.2 8532.40 42312 52676 45421.2 5006.29 41.33
6 852 2556 1875 500.00 1704 2131 1875 219.90 56.02
7 494 17911 2433.5 5443.78 494 989 889.5 208.45 96.17
8 437 1751 1050 422.90 874 1313 1050 226.35 46.48
9 2064 3615 3045 513.64 2580 3098 3045 163.39 68.19

10 0 1326 619.5 427.38 442 885 619.5 228.51 46.53

6.3 Application Results

Table 8 gives the range of improvement provided by the balanced allocator across all
failures and across all racks. The benefit of the balanced allocator varies between -
0.42% and 96.80% across each application.

In two cases Application 1 gains no benefit form the allocator, due to identical
allocations from both policies. The balanced allocator improves the deviation of Appli-
cation 1 by an average of 29.27%.

When using the balanced allocator Application 5 has a marginally worse variance (-
0.42% and -0.25%) than the random allocator. This is due to the round-robin scheduling
of requests to servers causing a slightly higher load at the point of failure.

7 Discussion

The results presented have demonstrated the need for failure awareness to be incorpo-
rated into system which operate under DRA policies. The most desirable approach for
achieving this would be one that requires no modification to the DRA policies already



Table 6. Application results for Failure 4

Random Balanced
App. Min Max Average Std.Dev. Min Max Average Std.Dev. Improvement (%)

1 2064 3611 2631 451.50 2579 3095 2631 163.03 63.89
2 2037 4075 2904 681.62 2547 3058 2904 246.12 63.89
3 1688 4226 3000 703.48 2535 3381 3000 240.17 65.86
4 843 2110 1350 387.89 1265 1688 1350 177.88 54.14
5 32968 64060 51623.2 8175.23 43332 53696 51623.2 4369.85 46.55
6 11282 52721 36145.6 12160.21 32001 42362 36145.6 5349.79 56.01
7 427 2135 811.5 549.43 427 855 811.5 135.10 75.41
8 443 1773 975 407.36 886 1329 975 186.57 54.20
9 1308 3055 2355 512.30 2180 2617 2355 225.28 56.03

10 0 3567 778.5 1028.41 468 938 562.5 197.64 80.78

Table 7. Application results for Failure 5

Random Balanced
App. Min Max Average Std.Dev. Min Max Average Std.Dev. Improvement (%)

1 2032 3556 2692.5 481.90 2540 3048 2692.5 245.32 49.09
2 2030 4063 2944.5 710.41 2537 3047 2944.5 214.51 69.80
3 1860 4647 3300 772.55 2788 3718 3300 263.86 65.85
4 681 1704 1090.5 313.16 1022 1364 1090.5 144.15 53.97
5 1964 2455 2062.5 206.87 1964 2456 2062.5 207.39 -0.25
6 852 2557 1875 500.19 1704 2131 1875 220.12 55.99
7 357 1784 678 458.89 357 714 678 112.79 75.42
8 500 1500 1050 437.80 1000 1500 1050 158.11 63.88
9 1168 2337 1869 402.15 1557 1947 1869 164.44 59.11
10 0 2553 1075.5 1031.49 516 2554 923.5 858.82 16.74

in use, i.e., the most desirable approach would be composing the DRA policy itself
with a failure-aware allocator component. The modular architecture proposed in this
paper has shown that, by decoupling the allocation mechanism from for DRA policy,
the performance-oriented goals of the DRA can be separated from the conflicting aim
of improving application robustness.

Once the decoupling of the DRA policy and allocation mechanism has been achieved,
the focus turns to the function of the allocation mechanism itself. The metric proposed
in this paper, capacityLoss, serves to quantify the exposure of an application, e.g.,
where capacityLoss = 1 for a given application, that application is completely ex-
posed to a failure of the rack on which it is hosted. This focus on application exposure
is motivated by the fact that, while it is reasonable to balance applications across racks
in the context of static allocation, this is not possible under existing DRA policies,
which assume the existence of a common, un-partitioned resource pool.

The proposed modular architecture and balanced allocation mechanism have been
shown to reduce the impact of failures on applications being serviced across racks. In-
terestingly, the random allocation mechanism was shown to provide the lowest absolute



Table 8. Application Results Across Failures and Racks (% Improvment In Standard Deviation)

App. Min (%) Max (%) Average (%)
1 0% 63.89% 29.27
2 55.24 69.80 62.49
3 55.65 72.63 64.76
4 26.14 57.02 43.49
5 -0.42 46.55 22.70
6 51.95 56.02 54.87
7 75.41 96.17 87.27
8 46.48 96.80 70.28
9 56.03 71.27 63.27

10 16.74 80.78 44.92

impact for any single application; when the failed rack was lightly loaded with respect
to the application, i.e., when the capacity loss of that application on a rack was mini-
mal. However, this is not necessarily positive, as for this light loading to occur, another
rack may be heavily loaded. Results averaged across all racks demonstrate significant
improvements in the mean number of failed requests for the balanced allocator. In ad-
dition to the average case, the balanced allocator exhibited lower deviations than the
random allocator. Since rack failures are inherently unpredictable, minimising the aver-
age case is clearly of great benefit when operating at large-scale. In turn, this represents
lesser exposure to loss of income due to unforeseen unavailability of applications.

As the magnitude of the systems operating under DRA policies increases, the scale
and frequency of the problems addressed in this paper will similarly increase. Hence,
as failures become the expectation rather than the exception for large-scale systems,
effective resource allocation and modular architectures that facilitate a separation of
concerns will become increasingly important for cloud providers offering Infrastructure
as a Service.

8 Conclusion and Further Work

In this section, we provide a contribution summary and discussion of future work relat-
ing to the results presented.

8.1 Summary

In this paper, we have made the following novel contributions: (i) we have presented
a modular architecture for failure-aware resource allocation, where a performance-
oriented DRA policy is composed with a failure-aware resource allocator, (ii) we have
proposed a metric, called CapacityLoss, to capture the exposure of an application to a
rack failure, (iii) developed an algorithm for reducing the proposed metric across all ap-
plications in a system, and (iv) evaluated the effectiveness of the proposed architecture
on a large-scale DRA policy in context of rack failures in order to show the efficiency
of our approach.



The results presented demonstrate the effectiveness of our architecture and mech-
anisms, with consistent improvement being observed in almost all situations. Indeed,
when the average case is considered, the proposed approach exhibits a minimum im-
provement of more than 22% and a maximum of more than 87% across all failure
situations.

The novelty of our modular, failure-aware architecture for resource allocation is
that it is applicable to, and will work in tandem with, any DRA policy. Practically,
this implies that organisations need not modify their DRA policy, rather they can just
integrate the failure-aware resource allocator to reduce the exposure of applications to
rack failures.

8.2 Future Work

As virtualisation technologies continue to improve and service providers look to con-
solidate their servers, it is inevitable that application densities will increase. In future
work we intend to consider the effects that such consolidation will have on the issues
explored in this paper. For example, as application densities and further complexity is
incorporated in to the software of resources, it may be necessary to reconsider how
application exposure can be measured.

Additionally, in this paper we have demonstrated the ability of a modular archi-
tecture and a balanced allocator to reduce the average number of failed requests in a
large-scale system. This exploration could be expanded through the development of a,
still decoupled, allocation mechanism that can account for rack failures in an active
manner, thus reducing the need to reallocate.
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