THE UNIVERSITY OF

WARWICK

Original citation:

Perks, O. F. J., Hammond, Simon D., Pennycook, Simon J. and Jarvis, Stephen A..
(2011) Should we worry about memory loss? ACM SIGMETRICS Performance
Evaluation Review, Vol.38 (No.4). pp. 69-74. ISSN 0163-5999

Permanent WRAP url:
http://wrap.warwick.ac.uk/45684

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:

"© ACM,2011. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
: ACM SIGMETRICS Performance Evaluation Review, Volume 38 (Number 4). pp. 69-74
(2011) http://dx.doi.org/10.1145/1964218.1964230”

A note on versions:

The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your research

http://wrap.warwick.ac.uk



http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/45684
http://dx.doi.org/10.1145/1964218.1964230
mailto:publications@warwick.ac.uk

Should We Worry About Memory Loss?

O. Perks, S.D. Hammond, S.J. Pennycook and S.A. Jarvis
Department of Computer Science
University of Warwick, UK

{ofjp, sdh, sjp, saji@dcs.warwick.ac.uk

ABSTRACT

In recent years the High Performance Computing (HPC) in-
dustry has benefited from the development of higher density
multi-core processors. With recent chips capable of execut-
ing up to 32 tasks in parallel, this rate of growth also shows
no sign of slowing. Alongside the development of denser
micro-processors has been the considerably more modest
rate of improvement in random access memory (RAM) ca-
pacities. The effect has been that the available memory-per-
core has reduced and current projections suggest that this
is still set to reduce further.

In this paper we present three studies into the use and
measurement of memory in parallel applications; our aim is
to capture, understand and, if possible, reduce the memory-
per-core needed by complete, multi-component applications.
First, we present benchmarked memory usage and runtimes
of a six scientific benchmarks, which represent algorithms
that are common to a host of production-grade codes. Mem-
ory usage of each benchmark is measured and reported for a
variety of compiler toolkits, and we show >30% variation in
memory high-water mark requirements between compilers.
Second, we utilise this benchmark data combined with run-
time data, to simulate, via the Maui scheduler simulator,
the effect on a multi-science workflow if memory-per-core
is reduced from 1.5GB-per-core to only 256 MB. Finally, we
present initial results from a new memory profiling tool cur-
rently in development at the University of Warwick. This
tool is applied to a finite-element benchmark and is able
to map high-water-mark memory allocations to individual
program functions. This demonstrates a lightweight and ac-
curate method of identifying potential memory problems,
a technique we expect to become commonplace as memory
capacities decrease.

Keywords

Memory, Multi-core, Tracing, Workflow, Simulation

1. INTRODUCTION

In recent years the High Performance Computing (HPC) in-
dustry has benefited from the development of higher density
multi-core processors. Where only a decade ago multiple
processors would have been required to execute programs
concurrently, today a single processor chip is able to execute
32 or more processes in parallel. Alongside this substantial
growth in compute resource has been a much more modest
rate of improvement in memory speeds and DRAM-chip ca-
pacities. The effect has therefore been not only a growing

disparity between processor performance and memory, but
also a sharp decrease in the amount of memory available
to each individual processor core. Although this disparity
has been well documented, in particular following Wulf and
McKee’s coining of the term “memory-wall” paper [16], re-
search investigating the impact of declining memory capac-
ity per processing element is still very rare.

An investigation into the runtime changes resulting from
a reduced amount of memory per core may also have fur-
ther benefits than just being able to quantify any increase in
execution time. System memory represents a significant up-
front cost in the procurement of high-performance comput-
ing systems. Depending on the type, capacity and quality of
memory required for a system, prices may vary between $20
and 375 per GB. When installed in every node of a typical
HPC cluster the cost can be significant. Techniques which
enable the memory requirement to be reduced may therefore
have direct influence on the level of capital expenditure.

Another concern is the power required by memory chips to
remain active. Despite recent initiatives to reduce the power
consumption of memory subsystems - DDR3 chips provide
a reduction in power consumption of 30% compared with
equivalent speed and capactiy DDR2 [8] - memory is still
responsible for a large proportion of system power. The total
power consumption needed for one TFLOP of processing
power currently lies at between 320 and 1600 Watts [6].

Such evidence provides a compelling case as to why HPC
practitioners should be concerned with memory. In this pa-
per we present a systematic course of action with which
to investigate memory use and the impact on runtime of
changing memory configurations. Our aim is to be able
to measure, understand and experiment with the memory
requirements of mixed-science workloads, with a particular
interest in the trade-off between increased or reduced mem-
ory capacity and its impact on scientific delivery; we would
like, if possible, to reduce memory costs, but in order to do
this there is a need to understand the associated cost.

We begin the paper by documenting a series of compiler-
memory studies, employing compiler toolkits from PGI, GNU,
Intel and Sun (now Oracle) and the memP profiling tool - a
lightweight memory usage analysis tool specifically targeted
for the heap profiling of parallel (MPI) applications [2]. We
analyse the difference in reported memory high water mark
(HWM) between codes built with different compilers; in
some cases the HWM exhibited by differently compiled code
is potentially significant.

Using memory-usage data obtained from executions of a
variety of scientific benchmarks and applications on a large



cluster, we present a study which investigates the impact
of a reduction in available memory-per-core. In order to
cope with a reduction in per-core-memory a distributed code
must be run over more processor cores in order to obtain the
same amount of memory. Whilst this is possible for codes
with a good problem decomposition, some program compo-
nents such as lookup tables and MPI overheads are fixed,
or worse, increase with more processor cores. By artificially
fixing the maximum amount of memory-per-core, and com-
bining this with runtime data for different core counts, we
are able to assess the impact on runtime for a mixed-science
workflow when per-core memory capacity is reduced. In or-
der to ensure that this replicates the behaviour of genuine
clusters we employ the Maui scheduler simulator [1] to gen-
erate completion times and workflow information.

In the final part of this paper we analyse a single scientific
code using new memory tracing tools being developed at the
University of Warwick. Our tools allow the memory usage
of individual functions to be tracked throughout execution,
giving an insight into how the HWM of this specific code
is generated. Analysis such as this is likely to become com-
monplace as memory capacities become smaller and memory
accesses become proportionally more expensive when com-
pared to processing costs.

The specific contributions of this work are:

e We present a comparison of the memory requirements
of six established scientific benchmarks and applications
when compiled with common high performance toolkits.
This analysis provides a potential first step in lowering
the memory requirements of a code by switching to an
alternative compiler toolkit. In our experience this is rare
in many HPC sites as users have long-held preferences
for particular compiler frameworks and therefore very few
have evaluated the performance or memory usage of al-
ternatives. Studies such as this are of significant use in
identifying the likely benefits associated with new tools
and educating users in these benefits;

o We utilise workflow simulations of benchmarked memory
usage and runtime data from a variety of scientific codes
to examine the likely impact on workflow completion time
when the available memory-per-core is artificially limited.
Given that the HPC industry expects to see significant
growth in the number of processor cores, but only mod-
est improvement in memory capacity, this study provides
insight into the potential effect on HPC workflows in the
future;

e We employ a new memory profiling toolkit currently un-
der development to analyse the allocation of memory in-
side a finite-element benchmark. Our tool is able to record
the breakdown of memory to program functions and to
map these temporally over the course of execution. If
HWM memory requirements are to become problematic,
as a number of HPC experts believe, analysis of this kind
will become commonplace.

The remainder of this paper is organized as follows: Sec-
tion 2 describes related work, including general issues of
power consumption, programming for memory optimization
and a discussion of memory profiling tools; in Section 3 we
present a compiler study in which the HWM for a num-
ber of applications is investigated under different compiler

builds; Section 4 presents a series of studies using the Maui
scheduler simulator that show the impact on scientific de-
livery of a reduction in memory per core; Section 5 presents
the memory tracing of a finite element benchmark using a
new memory profiling tool currently in development at the
University of Warwick. Section 6 concludes the paper and
documents further work.

2. RELATED WORK

In most programs, 20-40% of the instructions reference mem-
ory [7]. Memory has therefore been subject to much scrutiny
over the past 30-40 years. Wulf and McKee’s classic work on
the “Memory Wall” [16] describes the problems associated
with dynamic random access memory (DRAM): the rate of
improvement in microprocessor speed exceeds the rate of im-
provement of DRAM memory speed; resulting in a point at
which system performance is totally determined by memory
speeds (the so-called Memory Wall). Since the mid 1990s,
when this landmark paper was written, several attempts at
innovation have been made. These include coupling mem-
ory with the processor [13], aggressive on-chip cache hier-
archies [9] (such as that seen in the IBM BlueGene series)
and 3-D DRAM [12], where memory stacks are situated in
close proximity to the microprocessor in order to reduce wire
delay between the two.

Generations of architectural innovation have led to lower
memory latencies and increased memory bandwidth. De-
spite this, the power consumption of synchronous DRAM
continues to be of concern, particularly in large server- and
HPC-environments. Recent DARPA commissioned stud-
ies [11] on the challenges for ExaFLOP computing report
that the power needed for memory grows linearly with the
number of chips (but that the power for the interconnect
stays constant) and that memory power grows in relation to
the peak FLOP /s per chip. There is clearly benefit therefore
in adopting smaller amounts of higher speed memory, and
finding ways in which we can trade computation for stor-
age [14]. Previous approaches have been documented using
external memory algorithms [15]; such approaches are likely
to increase with the general adoption of GPGPUs. Content-
aware memory management has also been shown to deliver
up to 22% reductions in memory consumption without code
modification [5].

Several supporting tools exist to assess memory use. The
Performance API (PAPI) allows hardware counters on most
modern microprocessors to be accessed; this in turn allows
dynamic memory usage information to be collected. Low-
level architectural measurements are then correlated with
the source/object code through events. A number of high-
level tools have been built on top of PAPI, including the
HPCToolkit, OpenSpeedShop, PerfSuite, Scalasca, Vampir
and TAU. An alternative to PAPI is Valgrind, an instru-
mentation framework on which dynamic performance anal-
ysis tools can be built. The current Valgrind distribution
contains a number of production tools, including a mem-
ory error detector, a heap profiler and a cache and branch
prediction profiler. Valgrind also contains a second heap
profiler that examines how heap blocks are used.

In this work we use the tool memP [2], a lightweight mem-
ory analysis tool specifically targeted at heap profiling MPI
applications. We use memP because it can be dynamically
loaded with very little runtime overhead, and as such it
scales well. memP provides both heap and stack usage for



From Description
POP LANL
miniFE SNL
Sweep3D | LANL
phdMesh SNL
MG NASA
LAMMPS | SNL

Ocean modelling
Unstructured finite element
3D particle transport wavefront
Unstructured mesh contact search
Algebraic multigrid solver
Classic molecular dynamics

Table 1: Application Benchmarks

‘ [ GNU | Intel [ PGI [ Sun | Var. |
POP 33.62 33.67 35.32 - 5.07%
miniFE 180.35 | 180.34 | 237.21 | 180.52 | 31.53%
Sweep3D | 158.34 | 158.38 | 158.37 | 158.34 | 0.03%
phdMesh 73.64 73.64 91.05 - 23.64%
MG 254.76 | 255.13 | 255.01 | 255.45 | 0.27%
LAMMPS | 58.73 59.23 60.08 58.69 2.37%

Table 2: Memory HWM (MB) for application
benchmarks using four different compilers

each process in the execution and returns aggregated statis-
tics for later analysis.

3. MEMORY AND COMPILER CHOICE

In typical HPC environments the choice of a compiler toolkit
is dictated largely by those purchased for the system (since
not all toolkits provide the backends necessary for code gen-
eration) historical preference and, commonly, code runtime
performance. We however approach compiler choice from
an alternative angle - that of memory usage. At the outset
this might seem an odd choice, in that the memory require-
ments of codes are largely dictated by the programmer’s
use of program data objects, however, some variation can
be identified. Our experience with other full science appli-
cations studied with our industry partners is that bench-
marked HWM figures vary considerably when more com-
plex codes and problem data sets are assessed. In one re-
cent study of an application a variation of over 225% was
reported in HWM between using one compiler and another.

Table 1 presents six mixed-science benchmarks and appli-
cations, which cover algorithms and activities common to
large computing installations. Memory and runtime bench-
marking of each code is performed on an IBM cluster housed
at the Centre for Scientific Computing (CSC) at the Univer-
sity of Warwick. The cluster comprises 240 dual-Intel Xeon
5160 dual-core nodes each sharing 8 GB of memory (giv-
ing 1.92 TB in total). Nodes are connected via a QLogic
InfiniPath 4X, SDR (raw 10 Gb/s, 8 Gb/s data) QLE7140
host channel adapters (HCAs) connected to a single 288-
port Voltair ISR 9288 switch, with a core-to-HCA ratio of
4:1. Each compute node runs the SUSE Linux Enterprise
Server 10 operating system and has access to the IBM GPFS
parallel file system. For our study we use the Oracle So-
laris Studio 12.2 tool suite (formerly Sun Studio), the Intel
C/Fortran 11.1 compiler suite, GNU 4.1.2 and PGI 10.6, in
conjunction with OpenMPI 1.4.2 and the PBS Pro sched-
uler.

Table 2 shows the effect of compiler choice on memory
consumption (HWM) for the benchmarks in question. All
benchmarks were compiled using the -03 optimisation flag
to replicate the behaviour of many HPC users. In each case
seen in Table 2, the application benchmarks are run at a
fixed core count; 16-cores executed as a 4-node, 4-cores-per-
node run. In some cases the difference in HWM is small,
0.03% for Sweep3D. In other cases, phdMesh and miniFE,
for example, the difference is significant - 23.64% and 31.53%

800 T T

. POP ——
700 T MiniFE ----x--- | ]
Sweep3D oo
600 oo phdMesh 8 i
S MG -
~ 500 LAMMPS ---o--- |4
“ N N N,
2400 f B
= R
g >
& 300 f- S e —
200 B
100
0

16 32 64 128 256 512 1024 2048
Number of processor cores ( P )

Figure 1: Runtime for the six applications on LLNL Hera

1600 r :
\ POP ———
1400 F >~ MiniFE - |
—~ L Sweep3D oo
2 1200 phdMesh & J
o Y (cqu—
g 1000 f- LAMMPS ---o.-- |]
‘é_ . N\
5 800 .
= \,
S 6w 3
z w
=]
5 400
s . .
200 e T
0 - -
16 32 64 128 256 512 1024 2048

Number of processor cores ( P )
Figure 2: Memory high water mark (HWM) for the six
applications on LLNL Hera

respectively. No one compiler consistently outperforms the
others in terms of memory HWM. There is also no dis-
cernible trend that might inform compiler choice in general.

While this might seem inconclusive, it does suggest one
conclusion - application developers must investigate com-
piler choice.

4. MEMORY AND WORKFLOW

The growth in the number of processing cores per processor
chip and slower growth in memory capacities makes it likely
that future clusters will exhibit similar architecture layouts
to today but will do so with higher core counts and lower
amounts of memory per processor-core. In this environment,
the scaling of memory will be achieved through the execution
of codes at larger core counts, yielding potentially slower
runtime but enabling the code to actually be executed. The
effects of higher-core count jobs may be lower machine effi-
ciency and the potential lengthening of workflow execution
time. With this in mind we are interested in whether it
is: (a) possible to continue to run scientific workflows with
lower amounts of memory and (b) what the impact of this
is on the completion time of a multi-application workflow.

In order to provide a more realistic base on which to con-
duct experiments we make two assumptions: First, that
the workload is mixed science, motivating the use of all six
benchmarking codes seen in the previous section, and sec-
ond, we utilise the Maui scheduler simulation to ensure that
the resulting job schedule is representative of how a genuine
cluster would execute its workflow.

Experimental data to prime each workflow simulation is
taken from executions on the commodity AMD /InfiniBand
system called Hera, located at the Lawrence Livermore Na-
tional Laboratory. Hera uses densely packed nodes consist-



Application | WF-1 | WF-2 | WF-3
POP 40% 20% 15%
miniFE 10% 30% 10%
Sweep3D 15% 5% 35%
phdMesh 15% 10% 0%

MG 10% | 20% | 25%
LAMMPS | 10% | 15% | 15%
[ Total | 100% | 100% | 100% |

Table 3: The three workflows used in this study
(Workflows 1 to 3) and their composition of jobs

ing of high-performance multi-core CPUs — four-way AMD
2.3GHz Opteron quad-core CPUs (16 cores per node), 32
GB memory per node (2 GB per core). An InfiniBand DDR
high-speed interconnect is used for communication between
nodes and exemplifies a typical large capacity HPC resource
(127 TFlop/s peak).

The runtime and memory requirements for our six applica-
tions on Hera can be found in Figures 1 and 2 respectively.
As found earlier in this paper, the memory scalability of
these codes (as they strong scale) varies considerably. In
most cases, the memory consumption decreases as the core
count (for an application) increases; it is also true that in
most cases the parallel efficiency of the application decreases
as the number of cores increases. Thus high core-count jobs
decrease run time and parallel efficiency and, when this is
coupled with other jobs in the system, the number of avail-
able runtime configurations decreases; this will typically in-
crease the overall runtime of a workflow. It is also the case
that requests for a higher number of cores typically spend
a longer time queueing; this effect we are able to expose
directly using the Maui scheduler.

To assess the impact on scientific delivery we combine,
through simulation, the benchmarked data into three ex-
ample workflows (Table 3) in which the mix of jobs is var-
ied. Note that phdMesh is excluded from Workflow 3 (WF-
3) as this permits analysis of memory configurations below
650MB per core. During the simulation each job is submit-
ted in such a way that its runtime requirements satisfy an
artificially imposed limit on the amount of memory available
per core. We initially set our memory-per-core at 1.5GB, as
this corresponds to the maximum usage seen in Figure 2,
and then reduce this to 1280 MB, 1024 MB, 768 MB, 682
MB, 512 MB and 256 MB per core. Many of these cases may
seem unlikely, but the choice of 682MB is representative of
a hex-core processor with 4GB of memory, for example.

4.1 Using the Maui Scheduler Simulator

To ensure that we replicate as realistic a test environment
as possible we use the Maui [1] scheduler (Version 3.3.0) in
simulation mode. The scheduler simulator is is designed to
allow users to safely evaluate arbitrary configurations, but
in this case it allows us to simulate a production environ-
ment with various different memory restrictions. We use
2048 cores of Hera as a basis for our simulated machine (de-
fined using a Maui resource trace file), and our simulated
workflows consist of 1000 jobs in the proportions defined in
Table 3 (defined by a Maui workload trace file). We main-
tain the existing polling system in Maui, replicate normal
use by specifying wall-times in excess of known execution
time, and allow the scheduler to backfill jobs where possi-
ble. Since the simulator does not allow us to submit extra
jobs while the simulation is running, we must include the
complete job list at the start and rely on polling to ensure a
stream of jobs to the system. This imposes two constraints

Flag Value
RPOLLINTERVAL 00:00:30
BACKFILLPOLICY BESTFIT
RESERVATIONPOLICY CURRENTHIGHEST
NODEALLOCATIONPOLICY MINRESOURCE
JOBNODEMATCHPOLICY EXACTNODE

SIMINITIALQUEUEDEPTH 16
SIMJOBSUBMISSIONPOLICY | CONSTANTJOBDEPTH

Table 4: Maui simulator configuration variables

Skew 0.25 | Skew 0.5 | Skew 0.75
‘Workflow 1 17.94% 13.21% 9.78%
‘Workflow 2 27.76% 18.32% 12.67%
‘Workflow 3 12.36% 8.09% 4.19%

Table 5: Percentage Runtime Increase When Moving
from 1536MB to 682MB Per-Core

on our experiments: (i) that the jobs must be submitted
in a specified order — we therefore repeat the experiments a
number of times with different job orderings to reduce exper-
imental bias; (ii) jobs must be allocated a specific core count
when staged — we discuss this further in the next section.
Additional Maui configuration values are found in Table 4.

Even when applications are memory constrained they can
still be run on various core counts. Typical users will often
not select core counts for their jobs optimally. We therefore
base the selection of application core count in our workflows
on a partitioned Gaussian distribution. The distribution
determines how probable it is to select a particular core
count; a skew factor is introduced to adjust this distribution
— a skew of 0.25 will ensure that the distribution has a bias
towards core counts that are closer to the minimum, a skew
of 0.75 will ensure that there is a more even distribution
between possible configurations. As we see from the results,
the trends are similar no matter what skew factor is used,
but this does allow us to consider how users behave (using
more cores or fewer cores, usage policies restricting job size,
charging models etc.) and therefore what effect this may
have on the interpretation of the results.

4.2 Results

We compare the time-to-completion for three different mixed-
science workflows as the available memory per core is re-
duced. Results are shown with three different core-count
selection skew factors (0.25, 0.5 and 0.75) with an identi-
cal Maui scheduler simulator configuration used throughout.
Each experiment is averaged over ten runs (with randomly
generated job ordering in each case) to reduce the effect of
any one specific job ordering.

The results for the three different workflows can be found
in Figures 3a, 3b and 3c respectively. For each, the av-
erage workflow completion time is plotted as a trend line
with maximum and minimum times reported as range-bars.
Several observations can be made regarding these results:

e In general, decreasing the available memory per core in-
creases the overall runtime. However, this is not a mono-
tonically increasing function, see Figure 3c, for example
- in this case the changing core-counts of jobs submitted
can create significant decreases in machine efficiencys;

e The impact of skew (reflecting usage profile), highlights
that the percentage increase in runtime will be more marked
the less constrained users are in their choice of core counts.
That is, the more users are used to requesting fewer cores,
the less absolute difference they will experience in runtime
when memory/core is constrained;



10000 10000

10000

SkewFactor 0.25
SkewFactor 0.50

9000 0.75 - |4

9000

SkewFactor 0.25
SkewFactor 0.50
075 e |

8000 8000

9000

[ orewra

7000 7000

Workflow Runtime (s )
Workflow Runtime ( s)

6000 6000

Workflow Runtime ( s )

SkewFactor 0.25

5000 5000 || SkewFactor 0.50

SkewFactor 0.75 -

512 1024

Memory Per Core ( MB)

(a) Workflow 1

2048 512

1024
Memory Per Core ( MB)

(b) Workflow 2

2048 256 512

Memory Per Core ( MB)

(c) Workflow 3

Figure 3: Impact on Simulated Runtime of Reduced Memory-per-Core

o
=]
(=]

800

VmISize

T
driver

700 VmHWM - d 700 generate_matrix_structure U
. VmbData ------------ . Other EG—
Q Q
= 600 i = 600
£ 500 B £ 500 .
£ £
5 400 5 400 s
= =
o o
< 300 < 300 1
8 8
§ 200 g 200 .
100 /ﬁr ‘}\ 100 1
0 0
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Time ( s) Time ( s)

(a) System Breakdown of Memory for miniFE

(b) Memory Trace of miniFE

Figure 4: Analysis of Memory for the miniFE Benchmark

The rate of increase (in runtime as the memory per core
drops) is not constant. This suggests that there may exist
opportunities for decreasing memory per core with little
impact on scientific delivery, if the workflow mix and sys-
tem usage profiles allow. Table 5 shows that the impact
of moving from 1536 MB/core to 682 MB/core may be a
little as 4.19%;

Workflow mix makes a difference. Table 5 shows that
the impact of moving from 1536 MB per core to 682 MB
per core (skew 0.25) can be between 12.36% and 27.76%
depending on the workflow mix;

Table 5 also demonstrates that the user’s usage patterns
are also important. In workflow 2 the percentage increase
in runtime can vary by as much as 15.09% depending on
how users select core counts.

S. MEMORY USAGE ANALYSIS

The use of analyses such as those described in Sections 3
and 4 highlight that (i) compiler choice may impact the
HWM for individual applications, and (ii) that it is pos-
sible to calculate in the context of scientific applications
the impact of reducing memory-per-core. In this section
we present a new tool which is allowing us to determine
why an application has such a memory HWM. Our aim is
that by understanding and capturing memory usage in this
way we can improve the future memory requirements of our
applications.

Typically, low-level tools such as PAPT and Valgrind might
be used to perform cache analysis or to identify memory-
performance related problems (e.g. cache thrashing or TLB-
page misses) with a tool such as memP being used at a much

higher level. In this section we analyse the memory be-
haviour of the miniFE finite element benchmark using a pro-
totype tool currently being developed at the University of
Warwick. The purpose of this analysis is to identify which
functions within the code contribute the most to memory
usage without requiring significant instrumentation or com-
plex tool configuration, as is the case with many system
debuggers or profilers. We note that memP claims to have
some support for this level of analysis, but our experience
has been that this is difficult to obtain. Our tool intercepts
each change in memory state through the catching of mem-
ory allocation and deallocation calls, recording the operating
system reported memory state as well as the program stack.
Post-execution analysis of the trace allows us to track each
individual allocation and deallocation within the program,
attributing the memory requested to each program func-
tion. Thus we are able to assess memory allocations at a
finer level of granularity (than the whole program) without
creating significant overhead in the runtime of the applica-
tion. Since we also only activate our tracer on changes in the
memory state, the tool creates very little overhead during
compute-intensive regions of code execution.

Figures 4a and 4b present a breakdown of miniFE’s mem-
ory from both system and function perspectives. In terms of
the system view, the memory requested by the application
for data (VmData) shows good correlation with the function
breakdown in Figure 4b. Note that we only show the two
most significant contributors to memory usage in Figure 4b
for reasons of brevity - our tool is able to track memory re-
quests from a much higher number of calls within miniFE,
the OpenMPI library and several runtime library functions.

Our memory trace of miniFE (Figure 4b) demonstrates
that for the main part of the benchmark less than 300MB

2048



of memory are required with peaks of nearly 600MB shortly
after the start and in the driver block at towards the end.
In our experience many applications demonstrate memory
spikes and peaks during specific functions in which data is
copied and manipulated, raising the prospect of being able
to optimise their memory usage through the generation and
processing of data inline (as opposed to explicit allocation,
copying and processing). We are currently engaged in fur-
ther work investigating the potential use of our tool is diag-
nosing such memory optimisation opportunities within sev-
eral industry codes.

6. CONCLUSIONS

The declining amounts of memory-per-core arising from the
increasing density of multi-core processors and more modest
improve in memory capacities has the potential to radically
change the way in which HPC applications may need to be
constructed. Currently programmers may enjoy as much as
4GB or more of memory per processing core, but future sys-
tems may reduce this to 1GB or less. Combined with the
high up-front cost of memory during procurement and the
additional running costs due to powering large amounts of
memory, there is a compelling case for analysing and im-
proving current memory usage.

In this paper we present three separate studies into the use
of memory for distributed MPI codes. Our first study inves-
tigates the impact that compiler choice can make on memory
usage. We demonstrate memory HWM differences of up to
32% for simple benchmarks. In some industry codes we have
studied, compiler choice can increase memory HWM by as
much as 225%. Where the memory required can be made
available within machine resources, users will no doubt pri-
oritise the fastest compiler toolkits. Therefore, we demon-
strate that a memory study is also an important aspect of
understanding code performance - all to often this is over-
looked by users who assume that memory use is identical
across all compilers. As memory resources become more
constrained this will no doubt need to change.

In our second study we use benchmarked runtime perfor-
mance and HWM memory data to assess the impact on sci-
entific delivery of a decrease in memory-per-core. We show
that there is a relationship between decreased memory per
core and an increase in runtime but that, in some cases
at least, this is not necessarily a monotonically increasing
function. The rate of increase is also not constant and the
composition of the workflow as well as usage profile will have
an impact on the results. The issues we expose here help
to demonstrate that with appropriate data (scheduler logs,
scaling graphs for individual applications and HWM data)
it is possible to calculate the likely impact on a reduction in
memory per core for large supercomputing resources.

The final study in this paper utilises a new memory pro-
filing and tracing tool currently in development at the Uni-
versity of Warwick. This tool is able to intercept memory-
state changing events such as allocations and deallocations
to record memory usage at a per-function level. We have
demonstrated excellent levels of correlation with the HWM
and VmData statistics obtained from the Linux kernel giv-
ing confidence in our tools’ ability to provide high levels of
code coverage. The purpose of presenting this tool is to show
that where individual applications show potential problems
(perhaps using techniques such as those seen in studies 1
or 2), tools are becoming available that can help map these

problems to specific entities in the application itself. Al-
though declining memory-per-core will no doubt cause dif-
ficulties for some applications, we are becoming well placed
to identify these difficulties in advance and to change the
development of applications before such problems become
significant.

Our appeal to Programme Managers is simple: Applica-
tion scientists may demand 4 GB/core. Measure current
usage with tools such as memP; investigate different compiler
options if possible. Then investigate the potential impact of
reducing memory; clearly this will have some overhead, but
the trade-off between more CPU hours and lower total cost
of ownership may be a price worth paying.

Acknowledgements

We are grateful to Scott Futral, Jan Nunes and the Liver-
more Computing Team for access to, and help in using, the
Hera machine located at the Lawrence Livermore National
Laboratory. We also acknowledge support of the Centre for
Scientic Computing at the University of Warwick and the
UK Science Research Investment Fund.

7. REFERENCES

[1] Maui Cluster Scheduler, 2010.
http://www.clusterresources.com/products/
maui-cluster-scheduler.php.

[2] memP, 2010.
http://sourceforge.net/projects/memp/.

[3] S. Biswas et al. PSMalloc: Content Based Memory
Management for MPI Application. In Proceedings of
the 10th MEDEA workshop on MEmory performance:
DEaling with Applications, systems and architecture,
pages 43-48, New York, NY, USA, 2009. ACM.

[4] D. Dunning, R. Mooney, P. Stolt, and B. Casper.
Tera-Scale Memory Challenges and Solutions. Intel
Technology Journal, 13(4):80-101, 2009.

[5] J. Hennessy and D. Patterson. Computer Architecture
- A Quantitative Approach. Morgan Kaufmann, 2003.

[6] Hewlett-Packard. DDR3 Memory Technology, 4 2010.

[7] S. Iyer et al. Embedded DRAM: Technology Platform
for the Blue Gene/L Chip. IBM J. Res. Dev.,
49:333-350, March 2005.

[8] P. Kogge et al. ExaScale Computing Study:
Technology Challenges in Achieving Exascale Systems.
Technical report, DARPA, September 2008.

[9] G. H. Loh. 3D-Stacked Memory Architectures for
Multi-Core Processors. SIGARCH Comput. Archit.
News, 36:453-464, June 2008.

[10] D. Patterson et al. A Case for Intelligent RAM.
Micro, IEEE, 17(2):34 —44, 1997.

[11] H. D. Simon. The Greening of HPC - Will Power
Consumption Become the Limiting Factor for Future
Growth in HPC? HPC User Forum, October 2008.

[12] J. S. Vitter. External Memory Algorithms and Data
Structures: Dealing with Massive Data. ACM
Comput. Surv., 33(2):209-271, 2001.

[13] W. A. Wulf and S. A. Mckee. Hitting the Memory
Wall: Implications of the Obvious. Computer
Architecture News, 23(1):20-24, 1995.



