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Abstract. The diverging gap between processor and memory perfor-
mance has been a well discussed aspect of computer architecture litera-
ture for some years. The use of multi-core processor designs has, however,
brought new problems to the design of memory architectures - increased
core density without matched improvement in memory capacity is reduc-
ing the available memory per parallel process. Multiple cores accessing
memory simultaneously degrades performance as a result of resource con-
tention for memory channels and physical DIMMs. These issues combine
to ensure that memory remains an on-going challenge in the design of
parallel algorithms which scale.

In this paper we present WMTrace, a lightweight tool to trace and anal-
yse memory allocation events in parallel applications. This tool is able to
dynamically link to pre-existing application binaries requiring no source
code modification or recompilation. A post-execution analysis stage en-
ables in-depth analysis of traces to be performed allowing memory allo-
cations to be analysed by time, size or function.

The second half of this paper features a case study in which we apply
WDMTrace to five parallel scientific applications and benchmarks, demon-
strating its effectiveness at recording high-water mark memory consump-
tion as well as memory use per-function over time. An in-depth analysis
is provided for an unstructured mesh benchmark which reveals significant
memory allocation imbalance across its participating processes.

Keywords: Memory, Multi-core, Tracing, Analysis

1 Introduction

In the five decades since Gordon Moore famously predicted the rate at which
transistor counts would increase, the performance offered by the individual pro-
cessors found in large supercomputers has grown by over four orders of magni-
tude. Coupled with this growth in per-processor performance, supercomputers
have also become more powerful through increased processor counts. The combi-
nation of these approaches, augmented with development in parallel algorithms,



has created opportunities to significantly advance the potential complexity and
size of experiments which can be performed, if sufficient Random Access Memory
(RAM) can be found to house the required datasets.

The divergence between processor performance and memory access time,
highlighted by Wulf and McKee’s term ‘memory wall’ [12] (the point at which
poor memory access times become the limiting factor in processing rates), has
traditionally been thought of as one of the greatest concerns in computer archi-
tecture. However, the use of multi-core processors presents several other memory-
related challenges. The sharpest of these to be felt by users is the decrease in
per-core memory, which is a result of rapid growth in the number of cores per pro-
cessor without matched improvements in memory capacity. Perhaps more subtle,
but nonetheless important, is the rising level of contention for main memory — a
direct implication of increasing the number of cores per-processor without sig-
nificant improvement in the number, or performance, of the memory channels
for data transfer. This issue looks set to be more problematic in the future; pro-
cessors seem likely to increase in core-density and the use of graphics-processing
units (GPUs) will make understanding memory placement and capacity, per
processing element, more important than ever.

Scaling an application, via increased core counts, to spread data over a larger
set of processors may also bring difficulties. Traditionally, applications written
using the Message Passing Interface (MPI) have had dedicated buffers per MPI-
process, as well as private copies of routing information and MPI rank-to-address
lookup tables [8, 9]. As the number of MPI ranks increases, a product of increased
machine scale, so too has the memory required to house this low-level middleware
information. Communication buffers which scale with core count can prevent
strong scaling from being the solution to the problem of limited per-core memory.
Recent research has shown promise in alleviating some of these issues [7], but the
inclusion of such solutions in production software stacks is not yet widespread.

Memory therefore continues to pose a challenge in the design and optimisa-
tion of parallel algorithms which must scale. Understanding memory — or more
precisely how an application requests, utilises and then frees memory during
execution — remains a key activity associated with reducing application runtime
and thereby improving scientific delivery. If memory requirements across an ap-
plication workflow are sufficiently understood, opportunities may be created to
reduce the memory configuration of a machine during procurement, reducing
initial capital expenditure.

In this paper we introduce WMTrace, a lightweight profiling tool which has
been developed to trace the memory allocation events of parallel applications.
This tool is a dynamic shared library which requires no source code modifica-
tions or binary instrumentation and yet is able to intercept memory activity
and record temporal and stack information. A later, post-processing, stage can
then accurately calculate high-water mark (maximum memory consumption),
memory usage per function over time, as well as memory usage per function, at
peak.



The intended use of our tool is to provide sufficient information to developers
to enable the diagnosis of memory allocation issues. It also permits an analysis
of behaviour over time, and thus the identification of optimisation opportunities.
Understanding the behaviour of memory requirements throughout application
execution and on multiple-core configurations is the first step in assessing or
predicting memory usage at scale and a vital precursor to identifying potential
memory scaling issues. Our tool presents this opportunity within a framework
which is lightweight, accurate and simple to use.

The specific contributions of this work are as follows:

— We present WMTrace, a new lightweight memory tracing tool and analysis
framework for parallel codes. The distinguishing features of this tool are
the ability to record memory allocation traces combined with temporal and
stack information without the introduction of significant overhead. This data
is sufficient to identify peak memory usage and analyse memory usage over
time, on a per function basis, for a set of parallel tasks - a pre-requisite in
understanding how individual sections of an application utilise memorys;

— We present the application of WMTrace to five established scientific applica-
tions and benchmark codes representing a variety of programming languages
and scientific domains. The output of WMTrace illustrates how the memory
allocation traces of these codes scale both with increased problem size and
core count;

— Using information collected via WMTrace we perform an in-depth analysis of
an unstructured mesh engineering benchmark, phdMesh. We show the maxi-
mum and minimum high-water marks, indicating a load imbalance; memory
use over time, showing high memory use during initialisation but crucially
not during the main body of execution; and finally a breakdown of memory
use by function at minimal and maximal high-water marks as the number
of processor cores is scaled. This demonstrates the tools ability to capture
and analyse both functional and temporal memory consumption.

The remainder of this paper is structured as follows: in Section 2 we catalogue
a short list of previously reported memory analysis tools and summarise tech-
niques which are relevant to this work; Section 3 contains the presentation of our
tracing tool, WMTrace; a case study applying our tool to analysing the memory
allocation behaviour of several industry standard applications and benchmarks
is described in Section 4; in Section 5 we present a more in-depth investigation
into a single code, via information obtained with WMTrace; finally, we conclude
the paper with a summary of our findings in Section 6 and identify areas for
further work.

2 Related Work

Memory represents a significant bottleneck within high performance computing
(HPC) centres, with regards to both performance and capacity. Due to this, a col-
lection of tools already exist to assist developers in analysing memory usage and



management within their code. Understanding an application’s memory man-
agement enables code redesign, with the aim of reducing the runtime memory
footprint. Due to the specifics of each particular bottleneck these existing tools
each serve a different purpose, ranging from leak detection to cache alignment.

The main distinction between memory tracing tools is the level of analysis
performed and the granularity of the data collected. We broadly classify mem-
ory analysis tools into two classes, lightweight and heavyweight depending on
their overheads and level of analysis. The tools which provide the most detailed
level of data collection have an inherent overhead in either additional memory
consumption or runtime — and often both. The large volumes of data also re-
quire extensive post-processing to derive any meaningful interpretation from the
results. This class of tools often collects data at the hardware counter level, and
may require code instrumentation.

The alternative class of tools attempt to avoid this overhead and are thus
limited in the data they can collect. As lightweight tools, they are often loaded
dynamically at run time and therefore do not require code instrumentation.

The closest tool to WMTrace is the memP library from Lawrence Livermore
National Laboratory (LLNL) [1]. memP is a lightweight library designed for
collecting basic memory consumption information. The primary aim of memP is
to collect high-water mark usage data from all of the processes in an MPI job,
which it achieves by re-implementing the memory management functions as ones
which allow tracing. All of this data is collected and stored within in-memory
data structures, eliminating the need for a post-processing stage. Maintaining
these in-memory data structures introduces some performance overhead and
additional memory consumption. The resulting data set is minimal, providing
maximal heap and stack usage across the processes together with aggregated
statistics over this data (e.g. standard deviation and coefficient of variation).

Where WMTrace differs from memP is that it does not store the complete
data-set in memory, but instead streams it to file, thus minimising overheads and
having as little influence on the execution of the program as possible. As statistics
are not generated upon job completion WMTrace utilises a post-processing phase
to extract memory usage statistics. WMTrace is also intended to provide the
user with a more in-depth analysis of the system during times of peak memory
consumption.

Another tool, mprof, already provides a lightweight framework for memory
analysis with greater granularity than memP. mprof was written when memory
constraints prevented the tool from consuming much system resource, with the
authors claiming to require only 50KB of additional memory and at worst in-
curring a 10x slowdown [13]. This tool also favours in-memory data structures,
at the time of writing the authors considered the storage of all collected infor-
mation prohibitive. One of the main limitations of mprof is that it only provides
a stack traversal to a fixed maximal depth (currently five). In codes which make
use of external libraries, a stack depth of five is often insufficient to reach user
code. WMTrace removes any arbitrary limit on stack depth, allowing for greater



accuracy in analysis. It is also worth noting that mprof was not designed to
profile parallel codes, and so has limited use within HPC, without modification.

Whilst we understand the performance implication of recording the full call
stack, we consider it necessary to obtain a complete understanding of the system
state to support a full analysis of memory usage in an application. We also
provide a lossless data collection tool, where all temporal information is retained,
allowing a complete playback of application execution. This generates far more
data than tools which focus on just high-water mark analysis, but enables a more
thorough analysis of memory to be performed. As our tool does no analysis
of memory management during program execution, it is unable to determine
whether specific information should be deemed important or irrelevant and thus
all data is retained.

The volume of data generated by stack tracing tools has been a topic of
detailed research, with a number of methods to reduce or compress stack data
being proposed [3, 4]. Many of the techniques developed employ knowledge about
the data structures and repetition of the data within the trace. The data man-
agement in WMTrace is more naive, relying on existing compression algorithms
to reduce the output trace file size and reduce execution overheads. The specific
aim of WMTrace is to bridge the gap between lightweight and heavyweight pro-
filing tools, by providing more detailed information than a typical lightweight
tool, but without the overheads of a heavyweight tool.

Many modern heavyweight analysis tools are built upon dynamic binary in-
strumentation (DBI) frameworks, such as Valgrind [11] and Pin [6]. These DBI
frameworks facilitate the use of shadow memory, where either meta data re-
garding access frequency or even value representation is stored for every byte of
application allocated memory. This is exploited by many different shadow mem-
ory tools to detect accesses to un-addressable memory, perform type checking
and identify data races amongst others. The overheads of such tools are widely
acknowledged to be large; the authors of Memcheck document a mean slowdown
of 22.2x [10]. Tools like Memcheck introduce overheads by monitoring memory
allocations and accesses, and while this is partially the case with WMTrace we
face the additional overheads of data generation and storage. Differences in the
functionality of the two tools mean that WMTrace does not incur the same
mid-execution processing costs as Memcheck, reducing the overall runtime over-
heads.

3 The WMTrace Library and Analysis Framework

Memory allocation analysis using WMTrace is conducted via a two-stage process
(shown in Figure 1). In the first stage, a parallel application is executed with the
WDMTrace library linked at runtime by the operating system linker. Immediately
prior to execution, calls to the standard POSIX memory handling functions
(malloc, calloc, realloc and free) are dynamically linked to those exported
by WMTrace. Each function is implemented within WMTrace by recording the
memory allocation/free event in the tool’s internal buffer and passing the call
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Fig.1: WMTrace and Analysis Workflow

through to the operating system libraries. The interposition of functions using
this approach results in the tracing tool being application and implementation
language agnostic and therefore applicable to any application using conventional
POSIX memory management. Recorded events are periodically written to a
compressed per-process trace file for the second stage of the framework — post-
execution analysis.

In this post-execution stage (described in Section 3.2), events in the trace file
are read serially and each allocation event attributed to the top level function
from the call stack. The returned pointer address from the allocation is stored
with each event (at runtime) so that subsequent deallocations can be correctly
mapped, allowing the correct calculation of freed memory.

Each aspect of WMTrace’s behaviour is configurable at runtime through the
specification of environmental variables. This permits flexible levels of runtime
tracing, including the ability to disable stack recording or alter trace compression
behaviour.

3.1 Stage 1: Memory Event Tracing

As illustrated in Figure 1, memory events are traced in WMTrace through the use
of dynamic function interposition, in which POSIX memory handling functions
are intercepted and recorded prior to being passed to the operating system for
execution. WMTrace utilises an internal, compile-time configurable buffer to
temporarily store event traces in memory during execution. When full, this buffer
is passed to a lossless compression routine (currently Z-Lib’s compress [5]) prior
to being written to the trace file. Each MPI process maintains a unique buffer
and operates on a dedicated trace file ensuring that the overhead associated with
recording trace information is as low as possible.

Memory events recorded by WMTrace are stored as a series of ‘frames’ which
permit rapid movement through the trace file during post-execution analysis.

Currently four types of events are stored, which map to the four main POSIX
memory handling functions: malloc, which allocates a single memory block;
calloc, which allocates a contiguous block of memory for a set of items; realloc,



which frees a previously defined block of memory and allocates a second block;
and free, which frees previously defined memory blocks and returns the memory
to the unallocated system pool. The layout of frames is recorded as follows — note
that stack information is only recorded for new allocation events:

— Malloc: ‘M’['S’/*A’|(Pointer) (Size) (ElapsedTime) (StackDepth) (Stack)
— Calloc: ‘C’['S’/‘A’](Pointer) (Size) (ElapsedTime) (StackDepth) (Stack)
Realloc: ‘R’['S’/*A’|(OldPointer) (NewPointer) (Size) (ElapsedTime)

— Free: ‘F'['S’/‘A’|(Pointer) (ElapsedTime)

The first byte of data in a frame represents the function type recorded (M, C, R
or F) and indicates whether the memory event occurred within the application
(A) or the WMTrace tool itself (8). This enables the post-execution analysis
tools to separate the memory events of WMTrace, providing an estimate of tool
overhead.

(Stack) is a variable length field which represents a list of stack pointer ad-
dresses associated with the event, the number of which is specified by (StackDepth).
The tool records this stack information during execution by performing call-stack
walking, recording the pointer address for each caller.

The potential volume of data generated by stack tracing tools maybe very
large if the application being traced makes frequent calls to memory handling
functions, has a deep call hierarchy or runs for a considerable amount of time.
With sufficient knowledge of the call structure the space requirements for storing
stack traces can be significantly reduced [3]. However, we have constructed our
tool to be as application agnostic as possible and, as such, assumptions about the
stack structure are not easily generalisable beforehand, preventing the creation of
an optimised compression dictionary. To prevent overload of the machine’s 1/0
sub-system, however, we utilise a general compression library, Z-Lib, to ensure
that the trace output is compressed where possible. We note that whilst other
compression libraries may achieve higher compression ratios, during our empiri-
cal testing we found Z-Lib to strike an acceptable balance between compression
rate and processor overhead.

The compression strategy of WMTrace is to utilise the internal buffer as
a block for compression. When the internal buffer becomes full, the data is
drained to the compression library and then subsequently written to file. The
repetitive nature of parallel applications, and the frequent repetition of stack
entries allows us to achieve a compression ratio of approximately 13x with only
a small degree of overhead. Compression is configurable through environmental
parameters permitting users to alter their tracing strategy in favour of lower
overhead or small trace files as required.

3.2 Stage 2: Post-Execution Trace Analysis

Following the tracing of a parallel application, the second stage of our framework
conducts analysis over the compressed trace files — one for each MPI process. In
this stage, the events of each trace file are read serially and a map of allocations



Language Description
miniFE C++ Unstructured finite element solver
phdMesh| C++ Unstructured mesh contact search
DLPoly |Fortran 90 Molecular dynamics simulator
Lare3D |Fortran 90 |Non-linear molecular hydrodynamics
AMG C Parallel algebraic multigrid solver
Table 1: Applications and Benchmarks used for Tracing

to size of requested memory is created on a per-function basis. The stack data
associated with each event is used to decode the requesting function. A record of
the allocation and the address attributed to it is then added to the function’s list.
When a free-event is encountered, the address associated with the event can
then be searched for in memory and the appropriate block of memory removed
from the function’s list. Therefore, at any point during the analysis we have a
complete record of the memory requested by each function in the application.
The time-stamp associated with every event enables temporal analysis. A high-
water mark can be obtained for the current event by checking the outstanding
memory allocated and comparing this to the previously established maximum.

High-water mark and memory usage per-process is compared as the last stage
in our analysis framework. This enables statistics such as mean, maximum and
minimum per-core high-water marks to be assessed, with standard deviation
being used as an estimate of potential memory load imbalance. We are also
able to utilise memory requests performed by each function to estimate the
memory requirements of each library utilised by the application — a factor often
overlooked by application developers who treat libraries as black-box entities.

The runtime requirements of such analysis can indeed be lengthy, particularly
for codes which make frequent memory requests. This necessitates conducting
our analysis after execution, to prevent significant overhead from being induced
to the tracing process and reducing the memory overheads associated with our
tool. Part of the motivation for moving the processing phase out of the code exe-
cution is to prevent interference with the running application. Processing within
WDMTrace causes involuntary context switches within the code, slowing down ap-
plication execution. Any memory stored by the tool will also be considered for
storage in cache, thus disrupting cache level optimisations. By post-processing
files, a parallel operation as trace files have no dependencies, we enable analy-
sis at any time or place, be it in parallel on a supercomputer or on a desktop
machine.

4 Case Study

In the following section we illustrate the usage of WMTrace with five different
scientific applications and benchmarks, identified in Table 1. Either indepen-
dently or as part of a larger workflow/application, the routines represented by
these codes use significant proportions of the compute time at supercomputing
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sites ranging from universities to national laboratories such as Daresbury and
EPCC in the UK or Lawrence Livermore and Sandia National Laboratories in
the United States. These codes are also interesting from a technical perspective
because they represent the three principle implementation languages — C, C++
and Fortran 90 — which are used to write modern parallel scientific applica-
tions. The ability to successfully trace each of these languages is critical if our
tool is to be generally applicable to HPC codes.

For each of these codes we have selected an appropriate sized problem and
used the WMTrace library to record memory behaviour over a variety of core con-
figurations. To illustrate how the memory consumed alters as scale is increased,
the problem has been strong scaled over 16, 32, 64 and 128-core executions.
The application runs have been performed on the Francesca machine, located
at the Centre for Scientific Computing (CSC) at the University of Warwick.
The machine comprises 240 dual-socket, dual-core Intel Xeon 5160 nodes with
8GB of system memory (2GB per processor-core), providing a total of 1.92TB of
memory. Nodes are connected via QLogic InfiniPath 4X SDR HCAs backed by
a single 288 port Voltaire ISR 9288 switch. For the runs reported in this paper
the GNU 4.1.2 compiler toolkit was used with OpenMPI 1.4.2 as the MPI mid-
dleware. All codes are compiled using the -03 optimisation flag and debugging
symbols to locate function addresses.

This case study illustrates the ability of WMTrace to calculate memory high-
water marks and analyse memory consumption over time. We illustrate how this
is achieved with minimal overheads, whilst still producing an accurate result,
when compared with the alternative tool memP.

4.1 High Water Mark

Figure 2 presents the peak high-water mark, the maximum high-water mark of
all processes within a job, of the selected codes. Note that the scaling of memory
allocations is not consistent for all codes. Whilst the memory utilised by miniFE
scales well with increasing core count, the memory usage of phdMesh actually
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increases when moving from 64 to 128 cores. The usage of memory in DLPoly
remains fairly static (around 7MB) despite an increase in the number of cores.

4.2 Memory Usage over Time

In Figures 3a and 3b we present the memory utilisation of the miniFE benchmark
over the course of runs on 8 and 16 cores for a 180% and 250 problem size
respectively. The application runtime has been made relative to permit direct
comparison of the shape of memory utilisation between the runs (hence the x-
axis represents percentage of runtime). miniFE’s behaviour is characterised by a
startup phase in which the application creates and fills a mesh before assembling
the Finite Element data (prior to solving). On our graphs this is represented by
the initial spike - in which matrices are created. This is followed by a period of
population in which no additional memory is allocated, and then an increase in
memory as the data is copied into matrices for solving using the CG-method.



WMTrace memP

Cores|Runtime|Runtime|Slowdown |Runtime|Slowdown

(Secs) | (Secs) (x) (Secs) (x)

16 36.77 35.80 1.00 38.00 1.03

CiniFE |22 16.40 33.40 2.04 21.30 1.30

64 8.90 14.80 1.66 29.60 3.33

128 5.10 13.40 2.63 28.30 5.55

16 49.05 | 710.94 14.49 | 3824.80 | 77.98

32 35.31 | 619.16 1753 | 1294.31 36.66

phdMeshi—c/——a 55— 510.25 23.40 634.03 29.63

128 | 16.07 | 542.97 33.70 202.51 18.20

16 8220 | 175.07 2.13 86.06 1.05

32 77.33 | 130.95 1.60 79.99 1.03

DLPoly —o——7967 | 217.38 1.82 123.77 1.03

128 | 171.62 | 366.98 2.14 178.37 1.04

16 | 1847.79 | 1854.91 1.00 1855.10 1.00

LoaresD |32 | 100036 | 996.81 1.00 993.64 1.00

64 | 594.19 | 615.16 1.04 608.91 1.02

128 | 313.79 | 332.49 1.06 314.25 1.00

16 | 396.59 | 450.11 1.13 N -

AMG |32 | 16430 | 19172 117 3834.90 | 23.34

64 79.50 | 112.92 1.42 1098.00 13.81

128 | 43.40 68.75 1.58 266.99 6.15

Table 2: Runtime slowdown comparison: WMTrace and memP

4.3 Tool Overhead and Comparison

To measure the overheads of WMTrace we time the execution of the code both
with and without the profiler loaded. We also time code execution with the
memP profiler loaded, to give a comparison of tool performance.

Table 2 illustrates the overheads introduced by WMTrace. It is clear to see
that the tool performs much better on some codes than others; the mean slow-
down ranges from 1.02x for Lare3D to 22.3x for phdMesh. Table 2 also shows
our runtime overheads are in line with those of memP, if not slightly lower. Our
post-processing overheads are presented in Table 3. The overly high overheads
introduced into phdMesh are attributed to the number of memory functions in-
tercepted. This is in part due to the nature of the code, as it performs multiple
allocations (in the form of C++ object initiation) in each iteration, and then
destroys them at the end of that iteration.

A trend to note in these results is that as the number of processors is scaled
the slowdown factor worsens. This is due to the compression and I/O times for
the trace files. In Section 4.4 we discuss the size of these output files but from
Table 2 it is clear that the number of intercepted calls scales with the core count,
whilst the depth of the call stack has low variance. What we experience as we
scale the number of cores is the size of each memory allocation decreasing, but
the frequency and pattern remaining similar. This means the tool must compress



Cores Calls Max Depth|{Mean Depth|Post-Processing

Cores|(x1,000,000) Time (s)

16 5.50 22.00 715 7.50

iiFE |32 10.14 22.00 718 14.07

64 35.06 22.00 712 39.74

128 63.98 25.00 714 81.33

16 1139.91 26.00 12.91 759.80

32 1474.54 26.00 13.10 956.01
phdMesh/—a 1860.22 34.00 13.16 1221.11
128 2292.48 35.00 13.16 1522.21

16 150.98 24.00 10.48 83.43

32 139.01 24.00 11.05 82.89

DLPoly ' —cr 277.97 24.00 11.05 167.00
128 556.10 24.00 11.05 327.54

16 1.22 26.00 11.83 8.28

32 8.49 25.00 11.83 16.36

Lare3D —x 16.93 25.00 11.53 32.75

128 34.06 27.00 11.56 64.93

16 217.61 27.00 8.76 204.06

32 347.05 27.00 8.64 231.28

AMG  —e 340.44 27.00 8.67 235.20
128 176.82 27.00 8.62 415.05

Table 3: Post-processing results from WMTrace

and store the same volume of data, but during an execution which takes less time,
thus increasing the slowdown factor.

We note that there is no result for a 16 core run of AMG profiled with memP
because we were unable to obtain these results within a six and a half hour wall
time. However, it is evident that even then it would have represented an almost
60x slowdown.

Table 3 illustrates the results of the post-processing phase. This was per-
formed in parallel on a quad core Intel Nahalem (X5550 2.67GHz) desktop com-
puter. The post-processing times represent the time to process all of the files for
that job, sufficient to produce all of the discussed analysis. The number of calls
also represents the cumulative calls across all of the processes, as this gives a
clear indication of the scaling of the memory management. We see that for most
applications doubling the core count results in a doubling of the calls caught,
representing the same number of calls per process.

It is clear from these results that an obvious relationship exists between the
number of calls intercepted and post-processing time, partly due to the number
of events which need to be processed and partly due to the size of the file which
must be decompressed.

For validation we present a high-water mark comparison between WMTrace
and memP in Table 4. This illustrates how the tools present very similar results
in most cases. WMTrace consistently reports about 6.6MB more than memP;



Cores|WMTrace (MB) memP (MB)|Difference (%)
16 631.12 674.51 0.97
P 347.58 340.93 1.1
64 185.00 178.28 3.63
128 102.35 95.49 6.70
16 254.18 247 54 2.61
32 163.87 157.22 1.05
phdMesh—cr 157.36 150.65 127
128 169.12 162.27 1.05
16 7.45 1.02 86.24
32 7.49 1.02 86.32
DLPoly —¢ 7.56 1.02 86.44
128 7.69 1.02 86.67
16 125.59 118.98 5.27
32 63.35 61.70 9.73
Lare3D | —¢ 15.83 39.53 13.74
128 35.32 28.72 1871
16 1816.38 - -
32 1034.01 1027.51 0.63
AMG  —e 664.50 657.86 1.00
128 403.89 396.94 172

Table 4: Recorded high-water mark comparison between WMTrace and memP

in some situations this represents a very small percentage difference (0.63% for
a 32 core run of AMG) and a significant percentage in others (86.67% for a
128 core run of DLPoly). We believe that our pessimistic result is preferable to
the optimistic memP result, as it guarantees execution when close to a memory
limit.

As a comparison to a heavyweight tool we compare WMTrace to two memory
tools from the Valgrind suite: Massif, a heap profiler, and Memcheck, a memory
error detector. Massif is designed to provide a similar level of analysis to both
WDMTrace and memP but incurs the overhead of the Valgrind framework whilst
Memcheck provides different functionality, focusing on leak detection and invalid
accesses, but illustrates the cost of the shadow memory method of memory
tracking.

We compare the overheads of the three tools for the execution of a single
benchmark code, miniFE, during a serial execution. Valgrind is compiled with
default optimisations and is run without the additional MPI wrappers to provide
a clear comparison. We experienced around a 5x slowdown with Massif and a 20x
slowdown with Memcheck, for WMTrace we did not experience any observable
slowdown, beyond standard fluctuations of one to two seconds per execution.
The performance overheads of the Valgrind tools are in-line with those discussed
on the Valgrind website [2], between 5x and 100x, and Nethercote’s study of
Memcheck [10], 22.2x.



During execution, WMTrace records memory allocations which occur from
within the library. This enables us to monitor the memory overheads of the tool.
The memory consumption comes from the use of buffers, to stage data out to
file. The larger these buffers the fewer compression and I/O stages need to be
performed. The user can opt to use a smaller buffer which may be desirable
if the application being profiled sits near a memory limit, but this will incur
more I/O operations. We found the memory consumption of WMTrace to be
constant throughout our experiments, consisting of: a 32MB output buffer, a
80KB compression buffer, and an 800B stack buffer. These buffer sizes provide
good levels of performance and minimize the number of I/O operations.

4.4 Compression

An important feature of WMTrace is the ability to compress trace data on the fly.
Through the use of Z-Lib, WMTrace is able to obtain around 13x compression
on each output trace file. Table 5 illustrates the volume of output generated for
our five benchmark codes at different core counts.

It is clear that the volume of data increases as the number of cores is scaled.
Each process within a job generates a trace file unique to that process, recording
every memory management call from the codes execution. As the number of
cores is scaled these trace files do not tend to shrink in size. The same number of
memory management calls are made (per process) but there are more processes,
thus the total volume of data increases. The values presented in Table 5 represent
the combined total of each file generated.

5 Analysis

In Section 4 we identified a problem with the memory scaling of phdMesh. Using
information collected via WMTrace we conduct an in-depth analysis into why
the memory requirements increase as the core count is scaled. Figure 2 illustrates
that phdMesh requires more memory to run on 128 cores than it does for 32 or 64
cores, this is based on the maximal high-water mark across all of the processes.

Firstly we study the variance between the high-water marks of all processes
within a job, to identify if this memory increase is endemic to all processes or if
there is variation.

An increase in high-water mark for all process may indicate the storage of per
process information (e.g. communication buffers), whereas an increase within a
minority of processes may be indicative of a memory imbalance as a result of
data set decomposition.

Table 6 shows how the high-water mark values vary for each process in a
run of phdMesh as we scale the number of cores. Increasing the core count
reduces both the minimum and mean high-water marks, whilst the maximal
high-water mark increases for 128 cores. The standard deviation between the
high-water mark values identifies large discrepancies between memory consump-
tion on different processes, particularly in the case of 128 cores. This is indicative
of problems in the data decomposition.



Cores|Total Size (MB)|Compressed Size (MB)|Compression Ratio
16 278.41 19.42 14.33
MiniFE 32 515.13 35.07 14.69
64 1766.19 125.76 14.04
128 3483.92 241.56 14.42
16 82217.21 5632.21 14.60
32 107427.61 7691.69 13.97
phdMesh/—g7 136011.83 10052.24 13.53
128 158330.59 8217.73 19.27
16 9496.37 664.33 14.29
32 9047.63 788.58 11.47
DLPoly 57 18094.02 1598.55 11.32
128 36206.51 3197.27 11.32
16 289.56 37.95 7.63
32 582.48 75.17 7.75
Lare3D | —¢ 1141.15 151.79 7.52
128 2304.70 298.87 7.71
16 12251.19 772.44 15.86
32 12141.99 768.09 15.81
AMG 64 11990.45 760.14 15.77
128 12215.10 790.33 15.46
Table 5: WMTrace file size with and without Z-Lib compression
Cores|Min (MB)|Max (MB)|Mean (MB)|Standard Deviation (MB)
16 238.39 254.18 250.47 4.34
32 148.23 163.86 160.66 3.56
64 121.31 157.36 153.77 5.14
128 91.11 169.11 138.41 18.14

Table 6: Per process memory HWM comparison for phdMesh

By studying the temporal high-water mark analysis of phdMesh on 128 cores
(see Figure 4) we can analyse the differences in memory consumption between the
maximal and minimal high-water mark processes. Figure 4a shows the maximal
high-water mark thread, with the memory consumption of 169MB; Figure 4b
the minimal high water mark process, at 91MB.

It is clear that both processes have a very similar temporal memory trace,
despite the difference in peak memory consumption. We see a start up phase
with significantly increased memory consumption, until around 15% of their
execution, than the sustained consumption after this point. Despite the large
variation in high-water mark values (an 85% increase from the minimal high-
water mark) the sustained memory consumption is very similar, at around 20MB.

At the end of the start up phase in phdMesh a re-balance is performed — to
ensure a consistent decomposition — which coincides with the decrease in memory
from our temporal analysis. This is suggestive of the application preloading data
which can then be discarded for the actual computation phase. It is highly
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Fig. 4: Temporal memory trace for phdMesh on two different cores during a
128 core run, showing the maximal and minimal HWM

likely that this operation could be arranged in a more efficient configuration
which would massively reduce the application’s high-water mark, and the initial
variation between processes.

To aid in the start of redesign, we analyse the functional breakdown of the
high-water mark for both the maximal and minimal processes for each run of
phdMesh (see Figure 5). From this breakdown, we see that — despite the varia-
tions in memory consumption — the proportions of each function remain similar
between the maximal and minimal high-water mark threads and between runs
of different size. The only exception to this is the main function which has a
consistent memory consumption, at around 6.7MB.

This indicates that the memory consumption is distributed across all of the
primary functions, rather than just being limited to a single function involved
in the start up. Although this suggests it would be difficult to uncouple the data
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cores

causing the high-water mark from the algorithm, it does suggest that the initial
problem set distribution is the root cause of the high-water mark.

Whilst performing this analysis we discovered a one-to-one mapping between
some functions and allocation wrapper functions, namely a local_alloc func-
tion. To exclude these functions and provide clarity we have drilled down until
the functions diverge.

6 Conclusions

The diverging gap between compute-processor and memory-chip performance
has been a well documented feature of computer architecture literature for some
time. As processor designers have utilised multi-core chip design to improve
compute performance still further, a series of additional concerns in architecture
design have arisen. First, that the slow rate of improvement in memory capac-
ity has resulted in a reduction in the memory available per-core, and, second,
that the increase in core density has resulted in higher levels of contention for
memory channels. When combined with the increasing scale of contemporary su-
percomputers, which is placing pressure on the implementation of middleware,
the efficient utilisation of memory at runtime is rapidly becoming a concern for
the design of applications which must scale.

In this paper we present WMTrace, a lightweight memory-allocation tracker
and analysis framework. This tool enables users to trace calls to POSIX memory
handling functions in distributed MPI codes without modification to application
source or recompilation being necessary. The second half of this paper describes
a case study in which we apply WMTrace to tracing the memory allocation
behaviour of five applications and scientific benchmarks. The results of this study
demonstrates the use of WMTrace in:



— Analysing the allocation and freeing of memory during application execution.
The ability to track memory use over time represents a clear advantage over
existing tools which report only aggregated statistics such as high-water
mark and, more importantly in the context of diminishing memory per-
core, the opportunity to investigate isolated points during execution where
memory usage spikes. In our study we utilised this technique to show the
memory usage of the miniFE benchmark as the problem size and core count
is varied;

— Comparing the high-water mark memory usage between codes and processor
core-counts. The direct comparison between different applications which are
present in a workflow is vital during procurement when memory capacities
per-core must be specified. Machine designers may choose to trade memory
capacity and runtime for reduced cost - high-water marks are vital if this is
to be achieved accurately;

— Conducting in-depth analysis of memory consumption per-function. By record-
ing the call stack leading to each allocation request, WMTrace offers the
ability to relate memory requests to each function and to do so over time.
This is a pre-requisite activity associated with the optimisation of memory
use as the functions which contribute most to the high-water mark can be
addressed in turn. In our study we demonstrated how such an activity may
be performed on phdMesh - an unstructured mesh Engineering benchmark.
This code makes large requests at the initialisation stage before an efficient
decomposition can be found. Further investigations of the memory utilisa-
tion of each function across the parallel execution were able to demonstrate
potential load imbalance leading to an increased high water mark on some
nodes.

As we continue to develop WMTrace and apply it to larger and more sophisti-
cated production applications we expect to extend the framework described to
conduct further types of analysis - in particular, the matching of allocations and
memory-free requests will enable memory leaks to be diagnosed. We are also
actively investigating the potential use of WMTrace and memory shadowing to
investigate the relationship between memory allocation requests and use by ei-
ther the function or its child-calls since memory optimisation opportunities may
exist at later points in execution.

WDMTrace is a memory tracing framework which supports the tracing of
POSIX memory allocation requests. The tool is able to dynamically attach to
existing application binaries and perform tracing with low levels of overhead -
in many cases overheads are comparable or lower than equivalent tools. The use
of a post-execution analysis step which utilises traces recorded during execution
allows for considerably deeper levels of analysis to be conducted. In this paper
we have demonstrated how memory allocation over time and by-function can
be generated to support the study and, potentially, optimisation of memory use
- an activity we expect to become commonplace in the future development of
parallel applications at scale.
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