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Abstract. One of the most important metrics of machine efficiency in
HPC is job turnaround time, which is the time taken for a user to sub-
mit a job and recieve their results. This time consists of two primary
components; run-time, which depends on the resources allocated to the
job, and queue wait time, which is dependent on the resources requested
and the present level of machine usage.

This paper investigates the effect of applying application performance
modelling techniques to producing run-time estimates for jobs to be
scheduled on parallel High Performance Computing systems. Our aim
through the development of such tools is to improve turnaround time
for jobs across the system. This investigation is performed from the per-
spective of a community of HPC users who would make use of a tool to
assist in job submission.

We implement and validate a higher performance implementation of the
scheduling algorithm used by the Maui scheduler and demonstrate that
it matches the behaviour of an existing Maui configuration. We formu-
late a method for generating potential performance model results and
use it to to modify three workloads from production supercomputers to
include generated performance model wall-time estimates. We then ap-
ply the scheduling simulator to the workloads in order to simulate the
effect of using of such a tool for the three real workloads.

Examining the results from the simulation, we show a randomly selected
sample set of tool users obtaining and improvement of upto 23% in aver-
age queuing time, and conclude that a tool that uses performance models
to generate improved wall-time estimates would be beneficial to users of
HPC systems.

Keywords. Performance Modelling, Scheduling, Tool, High Performance
Computing, Workload, Runtime Prediction.



1 Introduction

Traditionally, High Performance Computing (HPC) has been the preserve of spe-
cialists running proprietary, purpose-designed systems. However, the low initial
cost and attractive price/performance ratio of clusters built from commodity
off-the-shelf (COTS) components has led to wide adoption of HPC in industry
and academia, driven by the economic and capability benefits of conducting re-
search and experimentation computationally. The result is that HPC is now to
be found outside of the supercomputing centre, in server rooms and offices, and
even on-demand from cloud services such as Amazon’s EC2. The consequence of
such widespread availability, is that a modern HPC system can be expected to
be used by a broad spectrum of users, of greatly varying computing experience
and expertise.
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Fig. 1. Present workflow (left) against Tool workflow (right)

Unfortunately, this increased participation has not been met by improvements
in cluster management software. At present, many HPC stacks do not match
the needs of this broader HPC userbase. The present job workflow shown in
Figure 1 has remained almost unchanged. Users are expected to prepare their
application’s configuration and input data, specify the application’s requirements
and use the job submission system to observe the job’s progress.

This requires the HPC user to be able to specify their job requirements,
and potentially requires the user to learn how to specify job requirements to



multiple queuing systems. This error-prone process is an artifact of the design
of the queuing system, and serves as a hurdle to users attempting to get useful
work done on HPC machines.

Significantly, although users are often very confident about their predictions
for the resources their jobs require, they are not equipped to be able to accurately
specify job requirements [7]. This combination inevitably means that job requests
are poorly specified, leading to poor and unfair scheduling performance, and the
user experience being lengthy job turnaround times.

The need for accurate resource requirements is a problem that can be ad-
dressed by applying application performance modelling tools and techniques [5,
6,9]. These techniques permit the modelling of application behaviour in a math-
ematical or simulation setting, providing a framework for predicting job require-
ments.

Our first-hand experience of these problems on Francesca, a commodity 11.5
TFLOP /s 960-core Intel/Infiniband cluster at the University of Warwick, moti-
vates our work in developing a job management tool to provide the benefits of
application performance modelling to users in modern HPC environments. The
proposed tool workflow is shown in Figure 1. This workflow follows the same
pattern, but automates the difficult step of reserving sufficient resources and the
error-prone step of defining a batch job.

This work concerns simulating the effects of the use of such a tool on HPC
systems, where it can be expected that some users are using the tool to improve
their estimates, whilst others are not.

This simulation is performed on three representative workloads: Blue Hori-
zon, a smaller machine at San Diego Supercomputing Center installed in 2000;
Intrepid, a production-class BlueGene/P at Argonne National Laboratory and
Francesca, an research cluster for the University of Warwick. We develop a
method for producing estimates of performance model predictions for an ex-
isting workload. and use this technique with our representative workloads to
simulate the effects of user uptake and model accuracy.

The contributions of this work are:

— The presentation of a stand-alone specialised implementation of the schedul-
ing algorithm used by Maui — an open source scheduler related to MOAB
— demonstrating the similarily of its behaviour under a real workload. This
scheduler is faster and more reliable than using Maui in simulation mode and
the implementation provides a validated scheduler for inclusion in workload-
aware predictive submission tools.

— We formulate a method for generating potential performance model predic-
tions using a categorisation and binning technique. This method allows us
to modify a workload to add performance model runtime estimates, in or-
der to simulate the effect of using an application performance modelling tool.



— We apply our method for generating runtime estimates to three workloads
from production machines to simulate the use of application performance
models by the tool to accurately predict runtime length. The results of this
simulation demonstrate that the use of application performance models at
submit time has the potential to reduce average and maximum queue times.

The remainder of this paper is organised as follows: Section 2 contains details of
our workloads; we cover our method for generating potential performance model
predictions in Section 3; Section 4 describes our experimental setup; we present
our results in Section 5; Section 6 covers our conclusions; and we present our
planned further work in Section 7.

2 Experimental Workloads

We utilise workload data from three sources: (1) Francesca, a 960-core Xeon/Inf-
iniband cluster at the University of Warwick; (2) Intrepid, a 163,840 core Blue-
Gene/P located at the Argonne National Laboratory; and (3) Blue Horizon, a
1,152 core RS/6000 SP from the San Diego Supercomputer Center.

The Blue Horizon workload is from the Parallel Workloads Archive [1], and
covers 223,810 jobs submitted between April 2000 and January 2003. This job
mix contains submissions from the initial installation and covers almost 2 years
of production use.

The Intrepid workload is also from the Parallel Workloads Archive. This
covers jobs submitted from January 2009 to September 2009 and contains 68,936
production jobs. This workload represents a modern, proprietary supercomputer
of significant size.

Our Francesca workload is the result of sampling Francesca’s Torque/Maui
queue at 5 minute intervals between 14th June and 27th December 2010 and
post-processing this data into a trace of 32,016 jobs. This trace ignores jobs that
end in periods for which we do not have sample data (ie., those jobs for which
we can not establish a runtime) and jobs that did not run, or were sufficiently
short to not to be sampled whilst running.

The log from Francesca is unusual in that it records a workload from a
diverse, multi-discipline research community and includes users from complex-

‘Workload Total Power-of-two Serial

Blue Horizon (SDSC) 223810 92.13%  0.0004%
Intrepid (ANL) Requested 68,936 99.89% 0.001%
Francesca (Warwick) 32,016  95.88%  72.30%

Table 1. Proportion of jobs using power-of-two-based and serial processor core requests



physics domains, mathematics and chemistry through to code developers and
users from social sciences.

We compare our workload from Francesca with expected properties based
on existing literature. Most relevantly, comparing the required walltime with
the user-specified walltime estimates, we find little coherence between the two,
only 30% of jobs use more than 75% of their walltime estimates. User walltime
estimates are comparable, although, slightly better than that reported by Lee,
Schwartzman, Hardy and Snavely [7], with 45%, rather than a majority of jobs
using less than 20% of their requested time.
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Fig. 2. Requested wall time against used wall time (Francesca)

We also find that 53% of the jobs within our Francesca trace are submitted
requesting the maximum available wall-time. As expected from Lee, Schwartz-
man, Hardy and Snavely, in Figure 2 we observe user estimates that are highly
modal, with prominent peaks on ‘round’ times, notably including a working day
(8 hours), half a day, a day, and two days.

Job sizing compares favourably to that reported by Cirne and Berman [3].
Whilst the proportion of power-of-two jobs (jobs that request a power-of-two
number of processor cores) is greater in Francesca’s workload; 85% of non-serial
jobs are power-of-two compared to between 69.87% to 83.95%, it does follow the
expected behaviour that the workload is dominated by power-of-two jobs, and
the overall figure of 95.88% of all jobs are serial is in line with the same metric
from Blue Horizon and Intrepid.

From Table 1 we observe that a feature of Francesca’s academic workload is
the large proportion of serial jobs, where 72.30% of all jobs are serial. This is



significantly different to both Blue Horizon and Intrepid. We assume this effect
is due to Francesca being the most significant computing resource at Warwick
during the period we gathered our workload data. We also note that the mini-
mum partition size for production jobs on Intrepid is 2048 cores, which is likely
to discourage serial tasks.

Workload Square Even Multiple-of-4 Multiple-of-10
Blue Horizon (SDSC) 1.45% 99.99%  99.99% 31.59%
Intrepid (ANL) 1.26% 98.73%  98.73% 93.67%
Francesca (Warwick) 5.30% 68.27%  40.32% 30.20%

Table 2. Breakdown of processor usage for non-power-of-2 processor-core requests

3 Prediction Estimate Model

Previous models of supercomputer workloads have used two principle techniques:
the first [3,4] generates workloads from observed queue behaviour such as ar-
rival rates, runtime distributions and job sizing. The second auguments queue
observations with additional knowledge of user behaviour [11] to produce more
realistic and, therefore accurate, user estimates.

Our model, applies to performance prediction estimates of application run-
time rather than user estimates of application runtime. Performance prediction
estimates differ in that they do not cluster at ‘round’” numbers, and in that we
expect their inaccuracy to be both low and bounded.

We assume that: (1) performance models are workload-oblivious; their pa-
rameterisation is independent of the current machine utilisation and historical
workload of the user; (2) the predictions of the tool are such that all jobs com-
plete; (3) the error of the performance model is limited; and, finally (4) the jobs
can be split into non-overlapping classes.

We model performance models being workload-oblivious by producing modal
results. This captures indentically parameterized runs producing differing run-
times. Tsafrir and Feitelson [10] claim that modality helps to reduce the effects
of a ‘heel-toe’ dynamic , where overestimated runtimes tend to push the system
towards a ‘smallest job first’ execution strategy, as smaller jobs backfill in before
a later job; delaying the start time of the longer job.

For compatibility with existing performance models, which specify a maxi-
mum error under a given set of conditions, we limit error by allowing up to a
specified maximum error in estimates we provide.

Runtimes are clustered into n discrete runtime classes where n is dependent
on the spread of the data, and is selected to satisfy our maximum error criterion.



Workload 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Blue Horizon (SDSC) 4.22 8.82 12.94 17.40 21.68 26.18 29.90 34.06 37.61 41.07
Intrepid (ANL) 4.40 8.56 13.70 20.64 24.14 25.07 25.07 34.66 35.11 39.71
Francesca (Warwick) 3.71 7.35 10.37 13.85 17.49 19.12 23.75 24.78 27.58 30.76

Table 3. Average estimate error (%) with increasing maximum error

The average error in runtime for maximum error criterons between 0% and 100%
are shown in Table 3. We note that the average error is a little under half of the
available error range which reflects the expected naturally occurring clustering
of runtimes in the workloads.

To ensure that all jobs run to completion, the estimate used for each class is
conservative; it is the maximum runtime within this class, and hence will always
be greater than or equal to the runtime of any job within its class.

4 Experimental Setup

The Maui scheduler allows administrators of High Performance Computing sys-
tems to define policies that control the allocation of resources to jobs. These
policies are defined as a set of rules — the Maui configuration.

Conceptually, Maui divides time into an infinite series of sequential fixed
length scheduling iterations. From a simulation perspective, the basic Maui it-
eration contains 9 stages:

Start new iteration

Read in new jobs for iteration

Determine set of ready jobs

Update job progress

Handle the termination of all completed jobs
Calculate priority for all jobs

Create job schedule, considering jobs in priority order.
Determine executable jobs from schedule

Begin job execution

© 0N W

Scheduler policies are applied in two stages. Firstly, when determining the set
of ready jobs, jobs can be prevented from being considered for execution, when
they breach a set of administrator defined rules. Secondly, scheduler policies
are applied to the calculation of job priorities. The job priorities are calculated
individually for each job by summing the weighted contributions for each sub-
component — the weightings used are defined by the scheduler policies:

Priority = Z Component ,c; nt (Z SubcomponentweightSubcomponentwlue)



Scheduler priorities are therefore adjusted by the job configuration and workload
metrics available within Maui. Priority adjustments can be a simple as adjusting
the priority of jobs for an individual user, to limiting the number of jobs that
can be backfilled in before a job, to integrating historical data for priority based
‘fairshare’ policies.

Maui’s ‘fairshare’ system stores n windows of length [ for each metric of
interest — the total period over which Maui accounts for historical usage is,
simply Period = nl. Maui calculates the historical activity as:

Usage = Z window(i) - decay’

i=1

Maui uses the difference between the proportion of used machine time used
against a target proportion as a usage subcomponent value.

Our scheduling policies are a duplicate of the Maui configuration on Francesca.
This configuration defines backfilling parameterised by favouring: (1) jobs that
that have spent longer queuing; (2) larger numbers of processors (‘preference for
scale’) (3) jobs that have been bypassed by jobs being backfilled and, finally (4)
users who have used a small proportion of machine time during the previous 30
days (‘fairshare’). It also defines a scheduling iteration size of 30 seconds.

User specified wall-times are considered hard; jobs which do not complete
within their estimate are terminated, and do not successfully complete. As ob-
served in [8], this encourages users to over-request resources at the cost of a
longer wait, rather than risk non-completion.

This scheduling configuration is applied to all three workloads, adjusting the
number of available processing cores to match the number available in the source
machine, in order to ensure that all jobs in the workload are runnable.

We use our scheduler to simulate the effect of a user population using a tool
to apply performance models to their job requests. We consider the effect of
increasing uptake amongst a user community, simulating 0% to 100% of users
submitting jobs using tool assistance.

We also simulate inaccuracy of performance predictions from 0% to 100%
maximum prediction error. This covers a larger range than we would expect
from a performance model. Mudalige, Vernon and Jarvis [9] claim “less than 5%
error for LU and less than 10% error for all high performance configurations of
the particle transport benchmarks” for their analytical model of wavefront com-
putations. Similarily, Hammond, Mudalige, Smith and Jarvis [5] claim “greater
than 90% accuracy for runtime prediction” for their toolkit for simulating high-
performance parallel scientific codes.



5 Results

Comparing the output of our scheduler with the original schedule (see Figure 3)
indicates that it provides a very acceptable simulacrum of the behaviour of
Francesca’s own Maui scheduler, especially considering that the workload does
not contain all the jobs that were submitted to Francesca and that it needs to
extract fair share data from the tracefile during the first month.
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Fig. 3. Comparison of scheduler job completion (with cancellation)

We used a specially prepared 46,287 job trace from Francesca containing
both completed and cancelled jobs to perform our comparision; otherwise a sig-
nificant deviation occurred during the second month, which corrected itself as
the queue emptied and machine utilization dropped towards the end of August.
This coincides with a large number of job cancellations which are visible as a
vertical line. We note that the reason for the large numbers of submitted and
cancelled jobs is due to users getting their jobs ready for August when much of
user base is on vacation.

For each workload, we selected 20% of our user base at random (24 users
for Francesca, 47 users for Intrepid and 93 users for Blue Horizon) as our initial
‘seed’ group of tool users; we then considered the effects of prediction accuracy
and the proportion of the user base using the tool on the experience of our initial
group.

For Francesca’s 24 sample users (Figure 4), on average, using our proposed
tool is beneficial. We find that for all simulated model prediction accuracies
and user-base proportions, the queuing time experienced by our sample users
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is lower than the 125 seconds average queue time without tool assistance. The
improvement is between 6% and 23%, depending on the proportion of the user-
base that are tool users and the accuracy of the performance models used.

The 47 sample users in the Intrepid workload (Figure 5) also found our tool to
be beneficial to their average queuing time. Again, this holds across our simulated
ranges of tool uptake and prediction model accuracies. Tool users improve on
their average, non-tool use average queue time of 12,476 seconds by between 6%
and 15%.

The Blue Horizon workload (Figure 6), also shows tool use to be beneficial to
average queuing times. The 93 sample users, see a 1% to 20% improvement
through tool use on a 13,614 seconds average queue time.

We note that, for both the Intrepid and Blue Horizon workloads, the queuing
time of jobs decreases with increasing user base; a result that agrees with the
findings of Chiang, Arpaci-Dusseau and Vernon [2] who found that improving
the accuracy of estimates benefits all users, regardless of whether those users
were personally using more accurate estimates.

Increased estimate accuracy does not appear to directly correlate with de-
creases in queuing time. This effect is noted by Tsafrir, Etsion and Feitelson [12]
in the context of user estimates, where they note that, when backfilling sched-
ulers are used, doubling accurate user estimates leads to increases in through-
put. These increases in throughput occur at the expense of fairness, due to the
‘heel-toe’ effect. We expect this to be a feature of estimates from application
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performance models because they produce accurate estimates that do not clus-
ter about ‘round’ times, and we hypothesise that tool use causing an increase
in the maximum queuing time for the Intrepid and Blue Horizon workloads is
related to this ‘heel-toe’ effect.

6 Conclusions

We have presented a stand-alone implementation of the scheduling algorithm
used by Maui, which in our experience is faster and more reliable than using the
Maui scheduler in simulation mode. This scheduler implementation has been
compared against the original behaviour of Francesca’s scheduler.

— We have shown our specialised implementation of the scheduling algorithm
used by Maui to validate against the behaviour we observe from Francesca’s
queue data. This implementation provides a validated scheduler suitable for
inclusion in workload-aware predictive submission tools.

— We have applied our method for generating potential performance model
predictions to three workloads from production high performance comput-
ing systems, and shown that the average error reflects the expected clustering
of runtimes in the workloads.

— We have demonstrated using our scheduler implementation in conjunction
with our modified workloads to investigate the effect of an assistive tool that
applies application performance modelling to producing wall-time estimates
for the purpose of reducing the queuetime component of turnaround time.

Our simulations of modified workloads have been analysed from the perspective
of the tool’s user community, concentrating on a group of 24 randomly selected
initial ‘seed’ users.

Our observations of our group of tool users, suggest that HPC users would
benefit from our proposed tool; our sample userbase saw up to a 23% improve-
ment in average queuing time. Hence, the development of a tool that uses per-
formance models to generate improved estimates for requested wall times would
be beneficial to users of HPC systems.

7 Further Work

This work has been entirely concerned with rigid jobs; we have only considered
the tool producing improved runtime estimates. We expect to extend this work to
moldable jobs; where the job configuration, primarily the number of processors
used by the job is changed, to try to take better advantage of free processors
that result from gaps in the schedule.



We plan to examine the effect of underpredicting job runtime. This extension
to the work would include investigating submission strategies in the context
of potential job failure and resubmission strategies for jobs that exceed their
reserved time.

Lastly, we plan to investigate the effects of continuous model refinement,
where we improve the parameterisation of the model over repeated application
executions, and strategies for mitigating the high one-off cost of running an
application where we are do not have characterisation data for that application’s
execution.
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