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Abstract

Senescence is a highly regulated developmental process in plants in which nutrients are
remobilised from organs which are no longer required or are stressed so that they may be
used by organs which are only just developing. Whilst much is known about the causes
of and the resulting outcomes of this process, very little is known about the genetic
machinery which link them. Some genes have been identified as having a regulatory
role in the senescence process, but many of these have been determined by a forward
genetics approach whereby mutants are randomly screened for phenotypical e↵ects. A
much better approach, where possible, is the reverse genetics approach whereby mutants
are sought for testing as they are suspected to demonstrate a phenotypical e↵ect.

It was the purpose of this study to find novel ways of identifying those genes
which may be highly regulatory of the senescence process and to determine how they are
able to lead from several di↵erent known causes of senescence through to the senescence
response itself. It was hypothesised that, using measurements of the expression levels of
a very large number of genes throughout the senescence process, theoretical models of
regulation between those genes could be determined and that these theoretical models
would allow specific interactions to be identified and explained using biological validation
techniques.

A large microarray experiment, performed prior to the start of this project,
measured the expression of over 30,000 genes in the Arabidopsis thaliana genome over
a period of 21 days during natural senescence. By cleaning this data and fitting an
ANOVA driven model to the resulting intensity measurements, it has been possible
to separate e↵ects leading to observed expression changes. The levels of each of these
e↵ects were tested by F-tests and this has allowed the identification of 8,878 genes which
are significantly di↵erentially expressed during senescence.

By first using theoretical models to find genes amongst the set of 8,878 which
demonstrate highly robust regulatory behaviour on other genes in the set, 118 genes were
able to be isolated for further study. A senescence phenotype screen was developed to
assess reduced-expression mutants of many of those 118 genes and 8 were shown to
have a significantly altered timing of senescence when compared with wild-type plants.
The surrounding networks of each of those 8 genes were formed by applying theoretical
regulatory network modelling in another novel manner similar to a Metropolis-Hastings
approach which identified a set of 75 genes providing a testable regulatory network
model.

The resulting network model has been tested biologically to establish the ac-
curacy of the predictions. Whilst many of the predictions were not confirmed, a vast
network has been identified surrounding two of the highly regulatory genes indicating a
junction of two separate pathways leading to the senescence response and providing a
network structure which could be used in another round of theory and validation. Ad-
ditionally, these results introduce new interesting questions about how the senescence
network may have evolved to respond to so many inputs.
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Chapter 1

Introduction

Senescence is a process familiar to most as the onset of old age. The etymology of the

word senescence is from the Latin for old man, senex, which is also the source of the

word senile in modern English. In the animal kingdom, senescence is often thought of

as a↵ecting the whole organism and associated with deterioration of strength, wrinkling

of the skin and eventually death. In contrast, senescence in the plant kingdom is a

highly important developmental process in which nutrients are remobilised from organs

which are no longer needed or are stressed and transferred to those organs which are

just developing.

The study of plant senescence is not only an interesting area of research from a

biological perspective, but also one of important social impact given the need for food

security in a future of ever increasing populations. Those crops which su↵er wastage

either because of unavoidably poor growing conditions, undefended pathogenic attack

and/or poor handling of processed food crops severely impact the food industry. If the

mechanisms which lead to senescence were better understood, it could be possible to

delay its onset and improve yield from harvests.

This project has used a system-wide approach to identifying a key set of genes

thought to be associated with the senescence processes of Arabidopsis thaliana. By

identifying these, the topology of small areas of the associated transcriptional networks

have then been established.

1.1 The model organism: Arabidopsis thaliana

Arabidopsis thaliana is a spring annual plant found in areas of Asia, Europe and North-

West Africa. It is a dicotyledon and a member of the Brassicaceae family. Arabidopsis

is widely used as the model organism in areas of genomic research of plants and, in some

cases, other eukaryotic organisms. A number of reasons exist for this and are discussed:

Small genome Arabidopsis has one of the smallest genomes in its kingdom with

only 115.4 Mbp over 5 chromosomes (Arabidopsis Genome Initiative, 2000). The entire
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Figure 1.1 – Phenotypical Stages in the Development of Arabidopsis
thaliana in 16 hour long day conditions
The phenotypical stages in the development of Arabidopsis subjected to 16 hours of
daylight each day were measured by Boyes et al. (2001). It can be seen that during the
first 4 weeks after sowing, the plants undergo di↵erentiation, growth and expansion.
After this, the plants are fully matured and begin to flower and fill their siliques. The
point of completed silique ripening and complete senescence were not determined in
the study because plants were removed before seeds were dispersed to prevent cross
contamination.

genome was sequenced and analysed simultaneously in all 5 chromosomes by mem-

bers of the Arabidopsis Genome Initiative (AGI) (Theologis et al., 2000; Lin et al.,

1999; Salanoubat et al., 2000; Mayer et al., 1999; Tabata et al., 2000). This extensive

knowledge about the sequence of Arabidopsis led to the construction of The Arabidop-

sis Information Resource (TAIR) (Rhee et al., 2003), which has allowed researchers to

collaborate by providing annotations and other information about identified genes. All

these collaborative resources have given geneticists a head start when using Arabidopsis

as a model organism in their research.

Little ‘Junk’ DNA During analysis of the Arabidopsis genome, soon after it was

fully sequenced, it was estimated that 25,498 genes exist in the genome (Arabidopsis

Genome Initiative, 2000). When compared with other species such as maize, which is

also used as a model organism in genetics, it can be seen that the maize genome is made

up of 2.3 Gbp over 10 chromosomes and contains only 32,540 protein encoding genes

(Schnable et al., 2009). This indicates that gene density is more than 15 times higher in

Arabidopsis , making random mutations much more likely to be part of a gene sequence.

Since the initial estimates of genes in the Arabidopsis genome, further genes

have been identified and the current number of genes identified is 27,406, meaning

even less of the genome is made up of ‘junk’ DNA (http://www.ebi.ac.uk/integr8/

OrganismStatsAction.do?orgProteomeId=3&currentclicked=GENOME_STATISTICS).

Rapid Development Arabidopsis is able to complete a whole generation, from seed-

to-seed, in around 5 to 7 weeks in optimum conditions. This fast development allows

many generations to be observed in a relatively short period of time so that mutations

can be easily established, including double and triple mutations. The developmental

timeline of Col-0 Arabidopsis , treated with 16 hours of daylight each day, has been
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quantified by Boyes et al. (2001) from initial sowing through to silique ripening and

senescence. An adaptation of their timeline can be found in Figure 1.1. This was

determined to be accurate because the coe�cient of variation between replicates is less

than 15%.

Plants are Small Arabidopsis is a relatively small plant and can be grown in large

quantities with only limited available space. Col-0 rosettes, at their largest, only mea-

sure 82.3 ⇥ 73.1 mm (Boyes et al., 2001) and can be grown adjacent to one another.

Furthermore, seed stocks need only be stored in small tubes or packets in a cool room,

thousands of seeds for many thousands of genotypes taking up only a modestly sized

box.

High Seed Yields On average, each mature Arabidopsis plant will shed 29.9 seeds

from each of 160.4 siliques, resulting in an average of 4,796 seeds per plant (Boyes et al.,

2001). Due to variations between individuals, a small minority can produce in excess

of 10,000 seeds. This high yield of seeds allows a single genotype to be maintained over

many experiments and therefore for studies to remain consistent.

Simple to Mutate There are many methods for generating Arabidopsis mutants in-

cluding transformation by transfer DNA (T-DNA) inserted using Agrobacterium tume-

faciens to introduce new genes or over-express existing genes (Lloyd et al., 1986) and

random disruption of Arabidopsis genes by the insertion of large sequences of ‘junk’

T-DNA (Feldmann, 1991). Because it is simple to generate mutants, it is easy to per-

turb the system in Arabidopsis and therefore to identify the role of specific genes by

disrupting or enhancing their expression.

Self Pollination Most members of the Brassicaceae family actively prevent self-

pollination by action of S -locus receptor kinases (SRK) which mediate recognition of

self-pollen on the female side (Takasaki et al., 2000) and S -locus cysteine-rich (SCR)

proteins which are located on the coat of the pollen and bind directly to SRK to cause

its phosphorylation and prevent pollination (Stephenson et al., 1997; Schopfer et al.,

1999). Arabidopsis , however, has a mutation of those genes which means that it is able

to self-pollinate. This allows recessive mutations to quickly become homozygous and

therefore be expressed.

Despite its use as a model organism, it is unlikely that Arabidopsis will provide

a perfect model for researching processes in other plants with economic and cultural

importance as processes do vary between species. However, because of the reasons

shown above, it does provide an excellent system to gain a good grasp of the most

important aspects of those processes which are largely transferrable to the target plant

systems, giving Arabidopsis the title of “model organism”.
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1.2 Leaf Senescence in Arabidopsis

Senescence in plants is an age-dependent, highly co-ordinated and regulated develop-

mental process during which nutrients are recovered from organs which are soon to be

discarded so as to recycle them rather than wastefully discard them along with the

organ. Senescence can have many causes, both biotic and abiotic, but natural senes-

cence in plants is as a result of maturation and reproduction in monocarpic plants such

as Arabidopsis or in response to changing environmental conditions in the case of the

Autumnal senescence observed in deciduous species. In the latter case, scenes of trees

with leaves changing from green to yellow, orange and red are those typically recog-

nised by many as a change in the season as the summer draws to a close and autumn

begins. However, behind those phenotypical changes seen during leaf senescence, a

complex co-ordination of thousands of genes and many signalling pathways is occurring

(Buchanan-Wollaston et al., 2005; van der Graa↵ et al., 2006). The highly co-ordinated

nature of the senescence response is most obvious in a study of Nicotiana rustica in

which senescent leaves were seen to regain structural features of chloroplasts, cease pro-

tease activity, re-green and continue to photosynthesise when the plant was decapitated

above the single senescent leaf (Zavaleta-Mancera et al., 1999; Zavatela-Mancera et al.,

1999). This indicates that the process is reversible and that the plant is in full control

of the senescence process throughout.

Leaf senescence in Arabidopsis broadly falls into two main categories: devel-

opmental and stress-related. In the case of developmental senescence, silique filling

is accompanied by the re-mobilisation of nutrients such as nitrogen, phosphorus, and

some metal ions from the leaves so that they may be relocated into the developing

seeds (Lim et al., 2007, Reviewed). Once seed has been produced, the leaves serve no

further purpose and so the relocation of these nutrients is beneficial to the plant as a

whole. During stress-induced senescence, the phenotype is similar, but the gene ex-

pression levels may be di↵erent from those observed during developmental senescence.

One example of this showed that only half the number of genes were altered in ex-

pression during dark-induced senescence, during which Arabidopsis plants are made to

senesce by being subjected to constant and complete darkness, compared with those

of developmental senescence (van der Graa↵ et al., 2006). Further di↵erences between

developmental senescence and stress-induced senescence are that, during the latter, the

senescence response can be seen to a↵ect only the part of the plant or leaf a↵ected by

the stress. This is very noticeable in dark-induced senescence where symptoms such as

chlorophyll degradation can be seen to act almost uniformly across the leaf, whereas

senescing leaves usually demonstrate a loss of chlorophyll at the distal areas of the leaf

first, the cells around the veins of the leaf remaining active the longest to promote

transport out of the leaf (Buchanan-Wollaston et al., 2005).
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1.2.1 Causes of Senescence

Many of the factors which alter the onset or rate of leaf senescence are known and

have been researched extensively to try to identify the mechanism by which they are

able to a↵ect the senescence process. However, despite these e↵orts, those mechanisms

remain poorly defined. Each of the known causes of senescence can be categorised as

either internal or externals factors (Lim et al., 2007). Internal factors are those signals

generated by the plant, in response to both developmental age and forms of stress,

which can cause a senescence response. External factors are those stresses exerted on

the plant which result in a senescence response.

Although the exact mechanisms by which senescence is caused are not known,

a number of developmental triggers have been identified. For example, the metabolic

rate of cells was suspected to be a trigger when oresara 4-1 (ore4-1 ) mutants, which

are partially defective in chloroplast function, showed a delayed senescence response in

developmental senescence, but not in dark-induced or hormone senescence (Woo et al.,

2002). Another example is that the lowered activity of processes such as photosynthesis

appear to act as a trigger for senescence. This is supported by the observation that

increased concentrations of sugars lower photosynthetic activity and that under these

circumstances, senescence is induced (Dai et al., 1999; Quirino et al., 2000).

1.2.1.1 Phytohormones

Phytohormones are plant hormones which occur in extremely low concentrations and

a↵ect the growth and development of the plant. A number of these have been linked with

senescence and their exogenous application and/or the disruption of their associated

pathways have been found to alter both the timing and progression of senescence at all

stages:

Cytokinins have functions in cell proliferation, shoot formation and shoot branching.

The first of these, Kinetin, was discovered by Miller et al. (1955) who found that its

application caused cells to enlarge and gain weight. This discovery was closely followed

up by observations that senescence was delayed by its application to detached leaf

samples (Richmond & Lang, 1957).

The most interesting demonstration of the ability of cytokinins to prevent senes-

cence was demonstrated by Gan & Amasino (1995) where the promoter of SAG12, a

gene known to be highly up-regulated during senescence, was fused with the IPT gene

which catalyses the rate-limiting step in cytokinin biosynthesis. When senescence began

in these plants, cytokinins were synthesised and senescence was halted. Recent studies

of genome-wide changes in gene expression have identified that, during senescence, cy-

tokinin synthesis genes (AtIPT3 ) are down-regulated and cytokinin degradation genes

such as cytokinin oxidase are up-regulated (Buchanan-Wollaston et al., 2005) further

strengthening the association of cytokinin pathways as playing a part in the trigger of

senescence.
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The precise mechanisms of cytokinins in altering leaf senescence are unknown,

but through the observation of a gain-of-function mutant caused by a missense mutation

of AHK3 and also a loss-of-function mutant in AHK3, it has been found that AHK3

plays a major role in the phosphorylation of ARR2, an Arabidopsis response regulator,

which in turn leads to delayed leaf senescence (Kim et al., 2006).

Auxin is well established as playing a central role in the formation of plant organs,

found in concentration gradients at the tips of emerging primordia (Benková et al., 2003)

and also found to be responsible for sculpting intricate shapes in flowers by promoting

cell division and expansion in an ordered manner (Aloni et al., 2006). Indole-3-acetic

acid (IAA), the compound described as auxin in plants, is found to repress the transcrip-

tion of SAGs such as TAPG1 (Hong et al., 2000) and SAG12 (Noh & Amasino, 1999)

but at the same time, IAA levels are increased during the senescence process (Quirino

et al., 1999). This appears to demonstrate that IAA is a controlling factor causing a

negative feedback loop during the senescence process.

In the study by van der Graa↵ et al. (2006), six of the thirteen transport pro-

teins suspected to be involved in auxin transport were massively down-regulated during

senescence and this is suspected to play a part in the theory of auxin gradients across the

leaf causing the senescence response (Addicott et al., 1955). It was found that, where

the auxin levels in a leaf fall in comparison to the stalk’s auxin levels, abscission of the

leaf occurs in beans and cotton. If this also applies to Arabidopsis , then a reduction in

transport of auxins may help to maintain auxin gradients.

Ethylene was first identified in 1917 as being the biologically active component of

illuminating gas which caused trees and plants to shed their foliage upon exposure

(Burg, 1968). Ethylene gas is a simple molecule, but exposure to it can be a cause of

seed germination, seedling growth, fruit ripening, flower senescence and abscission as

well as leaf senescence (Grbić & Bleecker, 1995). However, ethylene has been seen to

be incapable of causing senescence in young leaves and can only catalyse the senescence

process once it has begun (Jing et al., 2005). However, its role is not insignificant since

a mutation of the ethylene-insensitive 2 (ein2 ) gene which renders the plant deficient in

ethylene signal transduction resulted in delayed leaf senescence indicating that ethylene

does play a part in the developmental senescence response (Alonso et al., 1999).

The mechanism by which ethylene causes enhanced rates of senescence appears

to be closely linked to the function of onset of leaf death (OLD) genes since a mutation

of old1 allows senescence to begin sooner and be yet further accelerated by ethylene

exposure. This suggests that the presence of OLD1 is inhibiting the integration of

ethylene. These conclusions, amongst others, have been used to produce a proposed

model for the actions of ethylene in the onset of senescence (Jing et al., 2002).

Jasmonic acid (JA) is the precursor of methyl jasmonate (MeJA), both of which

were linked with the promotion of leaf senescence (Ueda & Kato, 1980). Other plant
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defence responses associated with JA and its related compounds include microbial

pathogens (Vijayan et al., 1998; Xie et al., 1998), herbivores and damage by UV-B

and UV-C (Schaller, 2001; Berger, 2002). MeJA applied exogenously to Arabidop-

sis leaves has been shown to result in the rapid loss of chlorophyll and a decrease in

photosynthesis-related activities (Jung, 2004), giving a senescence-like response. Fur-

thermore, treatment with JA or MeJA leads to the induced expression of a number of

SAG genes including SEN1, SEN4, SEN5, rVPE, SAG12, SAG14 and SAG15 (Park

et al., 1998; Kinoshita et al., 1999; Schenk et al., 2000).

An interesting study of a nuclear-localised CCCH-type zinc finger, OsDOS,

demonstrates an interesting role for the protein as an integrator of the JA and MeJA

pathways in the onset of senescence (Kong et al., 2006). When OsDOS is over-expressed,

senescence is repressed and when it is reduced in expression, senescence is enhanced, but

genome-wide expression analysis demonstrated that the JA signalling genes are those

which are most a↵ected by the altered expression. This implies that OsDOS is not only

a negative regulator of senescence, but also possibly an integrator of the JA pathway as

a developmental cue to senescence.

Abscisic acid (ABA) has functions which have been closely linked with drought

tolerance (Zhang et al., 1987) as well as being shown to cause abscission of leaves in

some species. Additionally, increased levels of ABA have been identified during the

onset of senescence (Gepstein & Thimann, 1980). It is thought that ABA is key to

the senescence response of a number of plant stresses. This is demonstrated by the

exogenous application of ABA which induces several known senescence associated genes

(SAGs), including SAG12, SAG13, SAG17, ERD1 and RD21 (Weaver et al., 1998).

Drought, high salt and low temperature stresses are all seen to be concurrent with

increased levels of ABA which may indicate that ABA is the cause of the senescence

response during those stresses.

ABA biosynthesis gene, 9-cis-Epoxycarotenoid dioxygenase (NECD) has been

shown to be increased in expression during leaf senescence alongside aldehyde oxidase

genes AAO1, AAO3 and AAO4 which are also involved in the biosynthesis of ABA (Seo

et al., 2000; Buchanan-Wollaston et al., 2005; van der Graa↵ et al., 2006). Additionally,

increased expression of ABI1 and ABI2 can be seen during senescence which have been

identified as forming a negative feedback loop of the signalling pathways of ABA (Merlot

et al., 2001). These results demonstrate the highly complex relationship between ABA

and senescence.

Interestingly ABA has been linked with both the generation of reactive oxygen

species such as hydrogen peroxide (Hung & Kao, 2004) and the protection against

them through increased expression of superoxide dismutase (SOD), ascorbate peroxidase

(APOD) and catalase (CAT) (Hung & Kao, 2003). The imbalance between these two

processes is presumably the eventual cause of the onset of ABA-induced senescence

and is likely to be driven by other age-related factors since ABA is unable to induce a
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senescence response in younger leaves (Lee et al., 2011).

Salicylic acid (SA) has been identified as a key signalling pathway in the response of

plants to pathogen invasion (Ga↵ney et al., 1993), UV-B oxidation (Surplus et al., 1998)

and exposure to ozone (Rao & Davis, 1999). However, Morris et al. (2000) have also

established a number of important characteristics of SA in developmental senescence.

Whilst observing mutants defective in the biosynthesis of SA (NahG transgenic plants

(Ga↵ney et al., 1993)) and those with lesions in the SA signalling pathway (npr1 (Cao

et al., 1994) and pad4 (Glazebrook et al., 1997)), it was noted that the expression of

a number of SAGs, including chitinase and SAG12 are considerably reduced and that

the expression of these therefore relies on the SA pathway. Additional findings were

that the NahG transgenic plants showed delayed developmental senescence, but that

artificially-induced senescence timings were una↵ected by the mutations, implying that

SA pathways are developmental senescence specific.

1.2.2 The Senescence Response

Although the response of specific genes has been shown to be di↵erent depending on

the induction method of senescence (e.g. developmental senescence, biotic stress, abiotic

stress) (Buchanan-Wollaston et al., 2005), the processes which constitute the senescence

response are similar and well established.

Chlorophyll degradation. Chlorophyll catabolism is the primary cause of yellow-

ing in senescing leaves as pigments are degraded into their amino acids for transport

out of the leaf. A review of the pathways of chlorophyll degradation during senescence

was produced by Hörtensteiner & Feller (2002). During the catabolism of chlorophyll,

pheophorbide a is cleaved by pheophorbide a oxygenase (PaO) to produce red chloro-

phyll catabolite (RCC) (Hörtensteiner et al., 1998). This step appears to be rate control-

ling during senescence as the activity of PaO is dramatically increased at this time whilst

the expression of other genes in the chlorophyll catabolism pathway remain constant be-

fore and during senescence (Takamiya et al., 2000, Reviewed). RCC is reduced by RCC

reductase (RCCR) (Rodoni et al., 1997), leading to the production of non-fluorescent

chlorophyll catabolites (NCCs) which are disposed of in the tonoplast without first re-

cycling their nitrogen content (Hinder et al., 1996; Tommasini et al., 1998). The energy

expensive process of chlorophyll catabolism is therefore not a method of recovery of

nutrients from chlorophyll, but instead a method of disposal for the toxic chlorophyll,

which is otherwise highly reactive, to maintain viability of leaf cells during senescence.

This is demonstrated by a defective accelerated cell death 2 (acd2 ) gene, whose product

is RCCR and results in the accumulation of RCC causing rapid cell death (Mach et al.,

2001).
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Protein degradation. Leaf protein, up to 75% of which can be found in the chloro-

plasts, is degraded and remobilised during senescence. However, the action by which

this occurs is still only theoretical and based around a number of observations about

protease accumulation and localisation during senescence. Although a number of pro-

tease genes are seen to be induced during senescence, these appear to be mostly localised

to the tonoplast and therefore cannot act on the proteins of the chloroplasts until mem-

branes are later disrupted (Buchanan-Wollaston et al., 2003, Reviewed). One thylakoid

protein, LHCP II, appears to be stabilised in the acd2 mutant which constitutes a lesion

to the chlorophyll degradation pathways, despite other proteins being degraded simi-

larly to the wild type (Gay et al., 2008). This indicates that LHCP II, which forms a

complex with chlorophyll, is protected from degradation until it is separated from the

protein complex, after which it can be degraded by chloroplast proteases. This may,

then, indicate that it is prior processes of senescence that control the timing of protein

degradation rather than the enhanced expression of proteases in the chloroplasts.

Yamada et al. (2001) describe findings of a cysteine protease (RD21) with a

granulin domain which is found to accumulate in the tonoplast of cells prior to and

during senescence. At the onset of senescence, the granulin domain is slowly degraded

until the protease becomes soluble and is then able to disperse throughout the cell.

Ubiquitin-mediated degradation of specific proteins has been linked to senescence by the

findings of Woo et al. (2001) in which an ore9 mutant of Arabidopsis was found to exhibit

delayed senescence. Their analysis of ORE9 (since renamed MAX2) revealed that it

contains an F-box domain which are known to interact in SCF complexes (Skowyra

et al., 1997) resulting in selective ubiquitination of proteins destined for proteolysis.

Lipid degradation. Membrane lipids provide a plentiful source of energy in the latter

stages of senescence. A number of genes encoding enzymes involved in lipid decompo-

sition are enhanced during senescence including phospholipase D (Ryu & Wang, 1995;

Thompson et al., 1998), phosphatic acid phosphatase (Ryu & Wang, 1995), lytic acyl

hydrolase (He & Gan, 2002) and lipoxygenase (Thompson et al., 1998). Acetyl CoA

produced during fatty acid breakdown can either be used for respiration by the plant or

otherwise used to generate sugars via the glyoxylate pathway for export from the leaf.

SFP1, a monosaccharide transporter, is up-regulated during senescence (Quirino et al.,

2001), demonstrating that the latter is probably occurring.

Mobilisation of Nutrients. Nutrients are remobilised and removed from senescing

leaves for relocation to developing sinks in the plant. A study of nutrient remobilization

in senescing Arabidopsis leaves (Himelblau & Amasino, 2001) found that compounds

such as zinc, iron, copper, sulphur, chromium and molybdenum were reduced in senes-

cent leaves by over 50% when compared with green leaves. Even more valuable nu-

trients, nitrogen, potassium and phosphorus were reduced by over 80%. A valuable

source of phosphorus comes from the degradation of RNA and DNA by nucleases en-
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hanced in expression during senescence such as RNS2 (Taylor et al., 1993) and BFN1

(Pérez-Amador et al., 2000). Kamachi et al. (1992) reported increased levels of cytoso-

lic glutamine synthetase (GS1 ) during senescence of Oriza sativa plants which was also

observed by Finnemann & Schjoerring (2000) in Brassica napus leaves and phloem. It is

thought that this plays a role in the conversion of amino acids to glutamine to enhance

nitrogen transport out of the leaves.

1.3 A Systems Biology Approach to Finding a Senescence

Transcriptional Network

It is the similarities between developmental and stress-related senescence and the large-

scale gene regulation involved in both these cases that make senescence an interesting

area of scientific research. However, the economic benefits that could be gained by

controlling senescence in commercially valuable crops mean that senescence is also of

public interest. However, the likely scale and complexity of transcriptional networks

involved in senescence means that they will only be truly understood when the whole

biological system is considered at once.

One complication arising from the study of developmental senescence is that

it is a natural process rather than a response to an imposed stimulus and so no true

mock response can exist. This means that expression of genes which are thought to

cause senescence can only be compared with the expression of the same gene at a time

before senescence is thought to have occurred. However, with so many genes having

pleiotropic e↵ects throughout plant development and senescence having many stages

of progress, this may not be a reliable comparison unless it is made at a number of

points thoughout plant development. Additionally, He et al. (2001) have demonstrated

that the cross-talk between various forms of stress applied to Arabidopsis resulting in

leaf senescence is extensive. The confounding e↵ects of so many potential pathways to

senescence means that it is nearly impossible to completely isolate individual networks

of genes and that only by considering the interconnected networks of all the pathways

will the whole system be fully understood.

Past studies have focussed on finding genes with key influence over the senescence

response by using either a ‘forward genetic approach’ in which mutants are randomly

screened to identify those with altered phenotypes or by using a ‘reverse genetic ap-

proach’ in which mutants are produced for genes with known altered expression during

senescence to find out whether they demonstrate an altered phenotype. Mutants demon-

strating altered leaf senescence are, in the majority of cases, identified by the ‘forward

genetic approach’ with some examples being the discoveries that:

• Ethylene insensitive mutant etr1-1 exhibits delayed leaf senescence (Grbić &

Bleecker, 1995).

• Cytokinin insensitive mutant ahk3 exhibits advanced leaf senescence (Kim et al.,
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2006).

• Reduced expression mutant of ore9/max2 exhibits delayed leaf senescence by fail-

ing to degrade a repressor of senescence (Woo et al., 2001); and

• ore4 mutant also delays senescence by reducing photosynthetic activity (Woo

et al., 2002).

Far fewer examples can be identified for the ‘reverse genetic approach’ though

notable examples include the study of WRKY53, a zinc-finger-type transcription fac-

tor, which was thought to play a regulatory role in several senescence associated genes

and was then demonstrated to accelerate senescence when over-expressed and delay it

when knocked-out (Miao et al., 2004). Study of WRKY53 has since shown it may be a

crosstalk element between the response of JA and SA (Miao & Zentgraf, 2007). Further

application of the ‘reverse genetic approach’ has lead to the discovery of stress-related

transcription factors which can influence the expression of WRKY53, including GATA4

which is induced by darkness (Zentgraf et al., 2010). AtNAP is another transcription

factor for which mutants were produced because of its enhanced expression during the

senescence response (Guo & Gan, 2006) and it was found that knockout mutants ex-

hibit delayed senescence. Breeze et al. (2008) used a GeneChip experiment to identify

over 800 genes with significantly increased expression during leaf senescence and iso-

lated 2 transcription factors, HSFB1 and SAP12, to study knockout mutants and find

downstream e↵ects. The results of this analysis were inconclusive since the downstream

e↵ects were vast and no direct interactions could be inferred. The authors describe a

systems biology approach to identifying gene networks.

By observing the expression levels of all genes in senescing leaves over the entire

mature developmental process using microarrays, a high-resolution temporal dataset

would be collected which may be used to produce theoretical models of gene regulation

during senescence. By considering the expression of many genes changing in expression

during senescence, pleiotropic e↵ects may be separated from one another and cross talk

between di↵erent stress pathways may be defined. The results of such putative models

would then be able to guide the biological research to the most likely solutions, instead

of blanket screening without cause and trying to identify singular interactions between

genes as in the non-systems biology approach. Biologically validated interactions could

then be used to refine the prior assumptions of the theoretical model and predict further

interactions on a system-wide scale.

1.4 Gene Expression Data during Natural Senescence

Prior to this PhD project, a microarray experiment was performed to provide high-

resolution temporal gene expression data from leaf samples undergoing natural senes-

cence with no imposed external stresses. The data obtained by scanning the microarrays
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Figure 1.2 – The harvesting schedule of the natural senescence microarray
experiment
The schedule for harvesting samples is shown as a timeline. The white areas of the
timeline are 16 hour periods of daylight whilst the black areas are 8 hour periods of
darkness. Numbers shown within the timeline represent the number of days since
sowing. Whilst sowing occurred on day 1, the sample labelled as Day 1 AM was
harvested 7 hours into the light cycle 19 days after sowing. The second sample,
labelled Day 1 PM was then collected on the same day, 14 hours into the light cycle.
The 20th day after sowing was skipped, as was every day that came after a harvesting
day. On the 21st day after sowing, samples 3 and 4, labelled Day 2 AM and Day 2
PM respectively, were harvested and this regular schedule was finally completed on
the 39th day after sowing when samples 21 and 22 were collected on the morning and
afternoon of that day.

of this experiment were normalised and analysed during this PhD and then used to in-

fer possible transcriptional networks between selected genes. A full description of the

experiment and associated analysis methods, parts of which were performed by me and

therefore also shown in this thesis, can be found in Breeze et al. (2011). Specific details

about the experiment which are important to the interpretation of results in this thesis

are also shown in this section.

Columbia (Col-0) Arabidopsis plants were stratified to ensure synchronised and

successful germination after sowing. The plants were grown under controlled conditions

with a 16 hour photoperiod until 19 days after sowing (DAS) when leaf 7, the 7th

full leaf to emerge, had reached approximately half of its maximum size. From day 19

onwards, leaf 7 samples were harvested from randomly selected individuals and immedi-

ately frozen in liquid nitrogen so as to avoid wounding response gene expression changes

which can be detectably induced in as few as 2 minutes after detachment (Glauser et al.,

2008). The choice to harvest leaf 7 was based on the senescence and remobilisation of

nutrients from this leaf occurring at the same time as flowering and silique filling. The

schedule for harvesting involved collecting samples every other day at 7 and 14 hours

(hereafter referred to as morning and afternoon respectively) into the light cycle until a

total of 22 sampling occasions had occurred. A visual representation of this harvesting

schedule can be found in Figure 1.2.

RNA isolation was performed on four biological replicates collected from inde-

pendent plants at each time point, providing 88 samples. Those four biological replicates

were arbitrarily labelled A, B, C and D, although this does not insinuate association
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between similarly labelled replicates at alternative time points. These were amplified

using an Ambion MessageAmp II kit. The resulting aRNA was then used as a template

to synthesise cDNA labelled with cytosine bound Cy3 and Cy5 fluorescent dyes be-

fore being hybridised to 176 2-channel CATMA microarrays in an experimental design

intended to minimise experimental biases.

1.4.1 CATMA Microarrays

Microarrays were first introduced by Schena et al. (1995), closely followed by two-colour

hybridisations (Shalon et al., 1996) so that two samples could be compared directly on

the same microarray. By providing a genome-scale quantification of specific mRNA

abundance in a sample at an a↵ordable cost, microarrays have revolutionised the field

of genomics and are still widely used 16 years later.

Two microarray production methods exist today, robotic spotting and in-situ

synthesis (Stekel, 2003). Companies such as A↵ymetrix have commercialised the pro-

duction of microarrays by using in-situ synthesis to produce highly reproducible single-

channel microarrays based on oligonucleotides synthesised in-situ on a suitable surface

using a sequence of light masks that allow the customisation of each feature of the

array. Microarray experiments performed prior to and during this PhD, however, use

robotically spotted microarrays. In this case, a library of gene-specific sequence tags

were synthesised by highly parallel PCR methods. These tags are based on the CATMA

(Complete Arabidopsis Transcriptome MicroArray) library (Crowe et al., 2003; Hilson

et al., 2004; Sclep et al., 2007).

CATMA version 3 microarrays, which were used to analyse the 88 samples in

the natural senescence experiment, consist of 31,144 PCR amplicons spotted and im-

mobilised onto the surface of glass slides using a robotic bank of 48 pins arranged as 12

rows and 4 columns. Each pin is responsible for placing a grid of 26 ⇥ 26 probes onto

the slide, resulting in 48 pin-tip groups consisting of 676 probes each. Each probe has a

sequence length of between 150 and 500 bp and has been designed to provide no more

than 70% identity to any other part of the Arabidopsis genome (Crowe et al., 2003).

In comparisons using biological samples spiked with calibrated quantities of in

vitro synthesised poly(A) RNAs, it was found that CATMAmicroarrays perform equally

as well as Agilent or A↵ymetrix microarrays in measurements of sensitivity, specificity

and the prevention of detecting false positives, but also superseded them in reducing

signal saturation for high target concentrations (Allemeersch et al., 2005). This, as well

as the much lower expense of CATMA microarrays, makes them an excellent choice for

such a high-resolution time course experiment.

1.4.2 Experimental Design

In order to make best use of the microarrays, it was essential to produce an experi-

mental design based around specific principles which avoid bias and ensure connectivity

throughout the samples (Mead, in preparation). Those principles were:
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• Each sample should be labelled equally often with both dyes.

• Each sample should be present an equal number of times throughout the experi-

ment (technical replicates).

• Each day sample should be co-hybridised in a consistent manner to prevent in-

consistent variation between microarrays (e.g. with the day before and the day

after).

• Each time of day within each day should be compared equally frequently with all

times of day (i.e. AM ! AM = AM ! PM = PM ! AM = PM ! PM)

• Each biological replicate should be compared equally frequently with all biological

replicates to improve the consideration of between biological replicate variability.

(i.e. A ! A = A ! B = A ! C = A ! D = B ! A = . . . D ! D)

The design of the experiment was complicated given the vast number of time

points and provides a high degree of connectivity between samples. Whilst one half of

the microarrays form eight separate loops within arbitrary biological replicate labels, the

other half form a single loop of all samples, connecting across biological replicates. This

allows a good consideration of the between biological replicate variability whilst also

maintaining smaller loops which add strength to comparisons between pairs of samples.

The design is best described in two diagrams because this allows the connectivity

of the design to be more easily interpreted. Figure 1.3 illustrates the co-hybridisation of

‘same time of day’ samples. The direction of the arrows indicates the dye used to label

each sample with Cy3 dyes at the tail and Cy5 at the head of each arrow. Morning

samples are represented by green lozenges, whilst afternoon samples are represented in

yellow. As each row represents the days on which harvesting was performed, it can

be seen that comparisons only exist between adjacent days with the loops completed

by the co-hybridisation of samples from days 11 and 1. In total, eight loops of eleven

comparisons exist within this diagram, four in each of morning and afternoon samples.

These smaller loops within the design provide short pathways between samples collected

at the same time of day.

The other half of the experimental design is illustrated in Figure 1.4 where the

co-hybridisation of ‘between time of day’ samples can be seen. Whilst each row of the

figure represents the biological replicates of a particular time point, adjacent rows are

of alternate times of day. A consistent comparison pattern exists in the design, for

example morning samples of biological replicate A are always hybridised to afternoon

samples of biological replicate B. This does not allow every replicate comparison (i.e.

A ! B, B ! C) to be made directly but does ensure that a single loop exists through

all 88 samples, providing a connected design. This large loop combined with that of the

eight separate loops in Figure 1.3 provides connectivity between all samples to shorten

the comparisons between pairs of samples.
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Figure 1.3 – The loop design for microarrays hybridised with samples of
the same time of day
The first of two loop designs which form the experimental design compares samples
collected on subsequent days but at the same time of day only. Samples bound by Cy3
(Cy5) dyes lie at the tail (head) of each arrow. For clarity, morning samples are shown
in green whilst evening samples are shown in yellow. The two digits shown at the
beginning of each lozenge indicates the day on which the collection was made (from
1 to 11). A total of eight loops exist containing eleven comparisons each, accounting
for half of the total microarrays in the experiment. These smaller loops within the
experiment provide short comparisons between morning or afternoon samples.

1.4.3 Microarray Scanning

After hybridisation, the microarrays were scanned using an A↵ymetrix 428 Array Scan-

ner. Cy3 labelled samples were scanned with a laser of wavelength 532nm whilst Cy5

labelled samples were scanned independently with a laser of wavelength 635nm. Each

microarray was scanned at a gain to ensure that the brightness of the spots was max-

imised whilst minimising saturation as much as possible. Scans were saved as two 16-bit

TIFF images per microarray providing 216 = 65, 536 levels of intensity for each channel.

1.4.4 Scan Analysis

In order to analyse the microarray scans and convert them to numeric data describing

the intensity of the channels and their background noise, BioDiscovery ImaGene version

7.0 (BioDiscovery) was used. By providing a grid template to identify the probes by

Gene ID and location, ImaGene is capable of outputting a table of values in the range

of 1 to 65,536 describing, amongst other measurements, the mean signal, mean back-

ground, median signal, median background and flag of each channel of each probe of

the microarray. Where the probe fails quality measures imposed by ImaGene, usually

due to a low signal, the flag is returned as an integer greater than zero to assist in their
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Figure 1.4 – The loop de-
sign for microarrays hy-
bridised with samples of
di↵erent times of day
The second of two loop de-
signs, forming half of the over-
all experimental design, com-
pares samples collected on sub-
sequent days but at di↵erent
times of day only. Samples
bound by Cy3 (Cy5) dyes lie
at the tail (head) of each ar-
row. For clarity, morning sam-
ples are shown in green whilst
evening samples are shown
in yellow. The two digits
shown at the beginning of each
lozenge indicates the day on
which the collection was made
(from 1 to 11). A single loop
of 88 comparisons exists, ac-
counting for half of the total
microarrays in the experiment.
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identification.

Background subtraction was performed on the data to reduce the impact of back-

ground signal on the intensity of features on the microarray (Stekel, 2003). This enables

the natural fluorescence of the glass and any non-specific hybridisation of labelled DNA

to the microarray to be removed. This was performed by subtracting the background

median from the signal median for each probe. A typical treatment of microarray data

is to log transform the signal, which is mathematically intangible if the signal is less

than or equal to zero. For this reason, during background subtraction, those probes

where the background median is greater than the signal median were given a value of

1, the lowest possible intensity above 0.

1.5 Microarray Data Analysis Software (MAANOVA)

MicroArray ANalysis Of VAriance (MAANOVA) (Wu et al., 2003) is a free and open

source package for the analysis of microarray experiments developed by the Churchill

group at the Jackson Laboratory, Maine, USA. The package provides functionality for

performing data quality control, data transformation, mixed model fitting, F-test based

identification of significantly di↵erentially expressed genes and extraction of estimated

gene expression data. The version focussed on in this thesis is that written to operate

under the R project (R Development Core Team, 2010). However, MAANOVA was

originally written for MATLAB (MATLAB, 2010) but this has been deprecated. A Java

graphical user interface is also available to complement the R version of MAANOVA

which otherwise requires users to enter text commands to operate the software.

1.5.1 Purpose and Justification

Traditionally, two-channel spotted microarrays are considered to be of a lower qual-

ity and reproducibility than some other microarray types such as in-situ synthesised

oligonucleotide A↵ymetrix GeneChips (Park et al., 2004). This is thought to be in part

due to the spotting process providing microarrays with di↵erently sized spots (Brody

et al., 2002; Jenssen et al., 2002; Tran et al., 2002). However, correct processing of the

raw data will result in artefacts being minimised by quality control and repetition of

unreliable data. Systematic artefacts of two-channel spotted microarrays can be min-

imised by transformation of the data to avoid issues such as the incorrect identification

of di↵erentially expressed genes at lower intensities because of high ratios caused by

background noise (Park et al., 2004).

Although CATMA microarrays specifically have been shown to be of a high

quality when compared to technologies like the aforementioned A↵ymetrix GeneChips

(Allemeersch et al., 2005), they are still not without flaw and su↵er from problems such

as dye-biassed hybridisation, spot size variability, non-specific binding and occasionally

high background-fluorescence. These problems are typical of two-channel spotted mi-

croarrays and inherent to the process of manufacture, labelling e�ciency of samples
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with di↵erent dyes and handling of the microarrays during and after hybridisation. One

method of normalising for these sources of variability is to balance their e↵ects across

the experiment using a well designed hybridisation strategy. Several di↵erent exper-

imental designs have previously been proposed such as the reference design and loop

design (Kerr & Churchill, 2001) although each of these are not easily scalable to the 88

samples of the senescence experiment being analysed and so the design in Section 1.4.2

was developed by Andrew Mead of Warwick HRI to satisfy these requirements. The

di�culty comes in providing an analysis for these comparisons in which some pairs of

samples are not directly compared on the same microarray. Additionally and specifi-

cally with the senescence dataset, samples were collected at two times of day, allowing

diurnal expression patterns of some genes to be identified when comparing adjacent

time points, despite the primary objective being to find genes which are di↵erentially

expressed as a cause of or in response to senescence.

MAANOVA provides a solution to these problems. It not only incorporates

quality analysis and data transformation steps prior to analysing the data, but it also

fits a model to the data to identify which sources of variation exist and provides a

decomposition of those such that the significance of their e↵ect upon the expression of

each gene can be independently tested. This modelling stage is actually two models

with di↵erent scopes. The first, a fixed model, identifies the e↵ects of dye and array

across the entire experiment. By estimating these and retaining only the residuals,

the resulting data is e↵ectively normalised for these e↵ects, discarding overall intensity

di↵erences between each dye and across all arrays. The second, a mixed model, further

decomposes the residual variability of the first model into gene-specific e↵ects for dye

and array, but also for treatment terms which are defined by the experimental design,

allowing the separation of the e↵ects of the day and the time of day the sample was

collected at as well as identifying variability due to an interaction of those terms and

due to the variability between biological replicates.

The second model is labelled as mixed because it contains some terms which are

fixed and some which are random. Fixed terms can be defined as those which, upon a

repetition of the experiment, would have a predictable e↵ect on the expression of the

genes, such as the time point of the sample. Random terms can be defined as those

which, upon a repetition of the experiment, would have an unpredictable e↵ect on the

expression of the genes, such as the microarrays used for hybridisation (Churchill, 2004).

E↵ectively, the underlying trend of the gene expression is entirely explainable if all the

fixed terms were identified, whilst the random terms provide a level of noise to that

trend.

1.5.2 Original MAANOVA Implementation

The original implementation of the MAANOVA package provides the functionality de-

scribed above. These functions include three microarray quality control visualisations,

data transformation via a number of user selectable methods, fitting of models to the

18



microarray data and identification of di↵erentially expressed genes. So that the improve-

ments made to MAANOVA during the course of this PhD can be more easily identified,

and to give an overview of the whole package, this section presents the purpose of each

original function and, where appropriate, an example of the output it would produce.

1.5.2.1 Loading Data

Data from the scan-analysis is loaded into MAANOVA as a single matrix stored in a tab-

delimited text file. This file, with each probe occupying one line, contains information

regarding the name of the probe, its position on the microarrays, the intensity of the

fluorescence for each of the channels on each microarray and whether it was flagged

during the scan-analysis. For each of the microarrays in the senescence experiment,

three columns of information describe the fluorescence of Cy5, the fluorescence of Cy3

and the flag status. Fluorescence is measured from 1 to 65536 and the flag status is

greater than zero where a problem was identified.

MAANOVA, by default, transforms all the expression data to a log2 scale on

loading it. The purpose of this transformation is to provide a reasonable spread of

features across the intensity range, to provide a constant variability at all intensity

levels, to transform experimental errors into a normal distribution and to transform

the intensity distribution to be approximately bell-shaped (Stekel, 2003). The added

benefit of using a log2 scale is that a single unit of change on the log2 scale represents an

example doubling or halving of the absolute gene expression which is easily comparable

between genes. An example of the transformation achieved by applying a log2 of the

expression data can be found in Figure 1.5.

1.5.2.2 GridCheck

GridCheck provides a method of comparing log2 intensity levels between the two chan-

nels of each pin-tip group of each microarray by plotting them against each other in a

scatterplot. For each CATMA microarray, 48 sub-plots are produced in the same 12

row and 4 column arrangement which is present in the sub-grids of the microarrays.

These plots use colours to indicate the status of each probe as defined by the flag of

each probe when analysed using ImaGene (BioDiscovery). Where the probe was not

flagged, the point is plotted in blue, but where the probe is flagged for any reason, the

point is plotted in red. This gives a visual indication of the quality of the pin-tip group,

as those with high levels of background or large numbers of poorly printed spots will

also have high numbers of flagged probe data.

The plots which are output from GridCheck are presented as a separate plotting

window per microarray, displayed directly on the screen. In the case of the example

microarray data provided with MAANOVA, this results in 16 sub-plots per window

in a 4 ⇥ 4 arrangement. However, with 48 sub-plots required to display the CATMA

microarray data, these are very cramped and an example of 4 of these sub-plots can

be found in Figure 1.6(a). Additionally, no permanent storage of the plots is made
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(a) Cy5 vs Cy3 Intensities before log2 Transformation

(b) Cy5 vs Cy3 Intensities after log2 Transformation

Figure 1.5 – Log2 transformation of microarray data allows the data to
meet a number of expectations
Transforming raw microarray data (a) by taking a log (base 2) of the intensities in
both channels (b), allows the data to meet a number of expectations that will be
required to allow further transformation to remove systematic bias introduced from
experimental sources. The transformed data provides a reasonable spread of features
across the intensity range and a reasonably constant variability at all intensity levels.
It can be seen, from the trend line, that a small amount of bias still exists towards
Cy5 at higher intensities, but this can usually be removed by further transformation
steps.
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available without laboriously saving the contents of each plotting window, still resulting

in low resolution plots.

1.5.2.3 RIPlot

RIPlot is a method for producing scatterplots of the log2 ratio of the two channels for

each probe of each microarray against the sum log2 intensity. This type of visualisation

for two-channel microarrays allows for biases imposed by experimental factors to be

more easily identified. This plot is essentially identical to those of GridCheck but with

a 45° rotation in a clockwise direction providing the added visual benefit that the ratio

is now one of the axes (Cui et al., 2003). Where a bias causes a linear regression of the

data to have a gradient other than zero, the human eye and brain can better determine

this since they are better at processing horizontal lines than they are the diagonal lines

of GridCheck (Stekel, 2003). Another characteristic of RIPlot scatterplots is that they

include the probes of the entire microarray rather than those of specific pin-tip groups,

allowing the identification of intensity specific dye biases. Colours are used within the

plots to indicate the flag status of the probes being plotted. Where a probe has not

been flagged by ImaGene (BioDiscovery), its point is plotted in blue. If a probe has

been annotated with a flag, it is plotted using a red point.

The plots output by RIPlot are presented as a separate plotting window per

microarray, displayed directly on the screen. This provides a lot of room for the plots,

unlike the plots of GridCheck, but still results in many overlapping windows which can

only be permanently stored by saving each plotting window by hand. An example of a

plot produced by RIPlot can be found in Figure 1.6(b).

1.5.2.4 ArrayView

When analysing datasets such as those of microarray experiments, it can be frustrat-

ing to biologists to have converted optical images of microarray scans into numerical

data, removing the visual aspect of the data. Yet, before normalisation and annotation

provided by the analysis process, there is little information to be gained from the obser-

vation of the microarray scans directly. For this purpose, ArrayView produces grid-like

false-colour heat maps of the ratios for each probe, maintaining their context by plotting

them in the same positions as the probes of the original microarray. This provides a

very intuitive interpretation of the ratios and can help to visualise the causes of spe-

cific artefacts seen in both GridCheck and RIPlot, before and after data transformation

techniques have been used. This can help to identify the e�ciency of transformations

being applied and complements the plots produced by other functions of MAANOVA.

Probes which are higher intensity in one channel are displayed as either a red or green

dot dependent on the more intense channel. The colours used to indicate these ratios

between the channels form a gradient from red through black and then green in a linear

scale with black exactly half way between maximum red and maximum green.
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Heat-maps produced by ArrayView are displayed in a separate plotting window

per microarray, directly on the screen. This poses a problem for CATMA microarrays

because they contain 312 rows of probes which means each probe has only 4 pixels of

height on even a very good resolution screen. Additionally, the default dimensions of an

R plotting window are approximately square despite the microarray having a 1:3 aspect

ratio, resulting in each probe being represented by thin bars rather than more aptly

shaped squares. Once correctly dimensioned, each window for each microarray requires

saving by hand to permanently capture the heat-maps.

The brightest colours used to plot the heat-map of ArrayView are defined by

the greatest ratio between the channels, which, on most occasions, can be found in the

probes used to align the microarray grid, resulting in gene-specific probe ratios being

plotted as artificially low as seen in Figure 1.6(d), making it impossible to identify out-

liers. Additionally, because the ratio being plotted as bright red is not the mathematical

inverse of the ratio being plotted as bright green, black does not necessarily represent

a ratio of one. As such, the plot can appear to demonstrate a dye-bias on those occa-

sions when a ratio of one is represented by a shade of green or red, as can be seen in

Figure 1.6(e).

1.5.2.5 Data Transformation

TransformMAData is a function provided for the purpose of normalising within-arrays.

This is necessary to avoid biases from experimental sources introduced at the time of

scanning (Stekel, 2003):

• Cy3 and Cy5 labels may be incorporated into the same DNA sequences in di↵erent

abundances.

• Cy3 and Cy5 dyes may emit di↵erent response wavelengths dependent on their

abundance.

• Cy3 and Cy5 emissions may be inconsistently measured by the scanner at di↵erent

abundances.

• Cy3 and Cy5 may be inconsistently focussed if the microarray is not perfectly

horizontal during scanning.

To remove these biases, TransformMAData uses regressions of the data to iden-

tify non-conformity with expected ideals and then transforms the data to coerce the

data to conform with those ideals. In a perfect microarray dataset in which none of

the sources of variance above can be found, a linear regression of ratio against intensity

would provide an intercept of zero, a gradient of zero and the data would lie along a

straight regression. A number of alternate methods are available to choose from and

are presented by Cui et al. (2003) where the theory of each method and the intended

application is explained:
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• Shift - is a transformation applied to the raw intensity data prior to being log2

transformed so as to e↵ectively move the origin of the RIPlot along the vertical

(log2 ratio) axis and minimise the deviation of the mean log2 ratio from zero across

all intensities. This is done by the simple addition of a constant to one channel

whilst subtracting the same constant from the other channel:

8
<

:
Z

rk

= log2(Yrk + C)

Z

gk

= log2(Ygk � C)
(1.1)

where C is the constant, Y
rk

and Y

gk

are the raw intensity values in the red and

green channels of probe k, respectively. Z
rk

and Z

gk

are therefore the transformed

intensity values for each of the channels of probe k.

This is appropriate where one channel has a higher intensity across all probes than

the other channel, causing the linear regression of Y
r

versus Y
g

to have a slope ⇡ 1,

but an intercept 6= 0.

• Linear Log - is a transformation in which the data is separated into a lower

proportion of intensities which are to be transformed by an additive linear func-

tion and an upper proportion of intensities which are to be transformed by a

multiplicative log function. This type of transformation is appropriate for data

where the low intensity probes are not a↵ected by an intensity dependent e↵ect,

but higher intensity ratios become biassed towards one dye due to multiplicative

e↵ects that may be introduced by the first three experimental sources of varia-

tion shown at the beginning of this section. The transformation is defined by the

following functions:

Z

ik

=

8
<

:
log2(di)� 1

ln 2 + Yik
di⇥ln 2 Y

ik

< d

i

log2(Yik) Y

ik

� d

i

(1.2)

where the index i refers to either channel of the microarray, d
i

is the threshold

between the linear and the log transformation functions, Y

ik

refers to the raw

intensity of probe k in channel i and hence Z

ik

is the transformed intensity value

for probe k in channel i. Whilst d

i

is calculated from the distribution of the

intensity data, it often lies at a value which places 25-30% of the data below the

threshold.

• Linear Log Shift - as its name suggests, is a combination of both the linear

log method and the shift method above. The data is first processed by the shift

method to minimise the deviation of the mean log2 ratio from zero, and then

transformed by the linear log method.

• Global LOWESS (glowess) - is a curve fitting transformation which fits a local

regression line to the log2 ratio of the probes via a locally weighted least squares
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estimate which represents genes not di↵erentially expressed. Locality used in

the regression is based upon the log2 intensity of the probes across the entire

microarray and therefore the regression is an estimate of the log2 ratio for all

probes of similar log2 intensity. The LOWESS regression is, e↵ectively, the fit of

many linear regressions to the data over small subsets within that data which are

then smoothed into a single curve. Locality defines the window of data over which

the linear regressions should be performed and is defined by a span parameter,

↵. Increasing this parameter to 1 e↵ectively provides a single linear regression fit

to the data, whilst all values below 1 use subsets of the data to fit the curve for

each data point and, as ↵ tends to zero, the curve becomes an exact fit for the

data and all ratios would tend towards zero in a LOWESS transformation. The

span value provides a tricubic weighting for the adjacent log2 intensities and can

be defined, for ↵ < 1, as:

weighting /
 
1�

✓
dist

↵⇥maxdist

◆3
!3

(1.3)

where dist and maxdist refer to the numeric di↵erence in the predictor variable

(log2 intensity) and the range of that variable respectively. The fitted values are

then used as a spot-specific constant to transform the channels of the microarray

using the following functions:

8
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:
Z

rk

= log2(Yrk) +
Ck
2

Z

gk

= log2(Ygk)� Ck
2

(1.4)

where C
k

is the spot-specific constant obtained from the LOWESS regression, Y
rk

and Y

gk

are the raw intensity values of probe k in the red and green channels,

respectively, and hence Z

rk

and Z

gk

are the transformed intensity of probe k in

each channel.

This type of transformation is particularly well suited to microarray data because

it is rarely obvious what types of variability exist in the data in order to choose

from other transformations, whereas the LOWESS curve fit is driven by the data,

causing greater fit where the data is most a↵ected by variability. One criticism

is that it is a very strong fitting method and can easily over-fit the curve and

substantially reduce the significance of some spot ratios if the span parameter is

set too low. As a conservative estimate, 0.1 is the default value for span and

should only be decreased if it is the opinion of the user that the data has not been

su�ciently transformed to meet the expectations given earlier in this section.

• Joint or Regional LOWESS (rlowess) - is also a curve fitting transformation

based around the same theory as shown for the intensity-based LOWESS, except

that locality is defined by the combined predictor variables intensity, spot-row
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and spot-column rather than just the intensity. This has the e↵ect of putting

constraints on the LOWESS to give priority to spots in the same, or nearby,

rows and columns of the microarray when establishing the curve fit and hence

providing spatial awareness to the regression. This type of transformation isolates

and rectifies the problem caused by the fourth experimental source of variation

described at the beginning of this section.

An example of the plots produced by the Joint LOWESS method can be seen

in Figure 1.6(c) and these are typical of all the transformation methods. For

each microarray, a separate plotting window is presented on screen containing an

RIPlot before transformation above, and an RIPlot after transformation below.

The red line in the upper plot of Figure 1.6(c) is specific to the LOWESS curve

fitting methods and represents the fitted curve. The curve crosses over any probes

which are then transformed to a log ratio of zero, e↵ectively defining those genes

which are to be considered non-di↵erentially expressed. Once the transformation

has occurred, this red line would lie along the length of the horizontal axis at a

log ratio of zero.

1.5.2.6 Fitting a Model to the Data

MAANOVA provides a function, fitmaanova, which fits a model of gene expression to the

microarray data which have just been quality controlled and transformed to minimise

systematic artefacts of the microarrays. This function accepts the transformed data

object as an input along with a formula describing the model to fit. The formula

is composed of experimental terms specified in the design as factors contributing to

gene expression. In other words, the most simple formula is “⇠ Array+ Dye+ Sample”

which would indicate that expression of a particular probe on a particular array for a

specified sample labelled with a particular dye can be directly identified by the e↵ect

contributed by the Array used for hybridisation, the e↵ect contributed by the Dye used

for labelling and the e↵ects contributed by the Sample hybridised to that array and

labelled with that dye. The result returned from this is an object which shows all the

fitted parameters of the model describing the transformed data for each gene probe on

the microarrays. Any additional variability not captured by the model terms is assigned

to an error term, which might account for unobserved factors such as small di↵erences

in laboratory technique.

Whilst Array and Dye are essential components of the formula, Sample can be

further partitioned into characteristics of each sample, such as the time at which it was

collected and/or the treatment it received. In this case, the model returned provides

the e↵ects of each characteristic on gene expression as model parameters, allowing the

separation of otherwise complex interactions of the model terms. A typical example

formula in this case may be “⇠ Array+ Dye+ Time ⇤ Treatment” whereby it might be

anticipated that the Time of sample collection will have an e↵ect on gene expression,
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(a) GridCheck

(b) RIPlot

(c) Joint LOWESS Transformation

(d) Dark ArrayView

(e) Dye-Biased Array-
View

Figure 1.6 – Examples of graphical output produced by functions of
MAANOVA
GridCheck, shown in (a), produces scatterplots of log2 intensities between the two-
channels of the microarrays. Where each microarray has a large number of sub-grids,
the plots are almost too small to read, as shown. RIPlot, shown in (b), produces a
scatterplot of ratio vs. sum intensity of the channels of the probes of each microarray.
All probes are plotted in blue whilst flagged probes are overlaid in red. ArrayView,
shown in (d) and (e), plots the ratio of the probes as a heat-map representing the
layout of the probes on the microarray. The most extreme ratios define extent of the
colour range, resulting in some dark plots as seen in (d) and some plots where neutral
ratios are not plotted as black as seen in (e). TransformMAData, shown in (c), plots
the RIPlot before and after transformation. The red line in the upper plot defines
the transformation to be applied and helps to identify the level of influence applied
by the transformation.
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as may the Treatment of the sample. By also specifying that there is an interaction

between them, this defines a third term which can capture di↵erent e↵ects of one factor

at di↵erent levels of another. For example, if there were three treatments and two time

points and expression of a gene was consistent in the first time point of all treatments,

but up-regulated at the second time point of only one treatment, this change in expres-

sion would be captured by the interaction term because it is specific to only one Time

and Treatment combination.

The description of the fitmaanova function explains that, whilst interactions

are supported, they cannot be more complex than two-way interactions such as that

shown above. This proves to be a constraint for typical experimental practices, such as

including biological replicates, because these would then be nested within the interaction

term and are therefore a three-way interaction term.

Where some terms can be considered as random, as defined in Section 1.5.1, it is

possible to provide this information to fitmaanova so that a mixed model analysis can

be applied. This information is passed to the function as another formula describing

the random terms. If it is assumed that Array and Dye are random, an appropriate

random term formula would then be “⇠ Array+ Dye”. This complements the formula

describing all the terms of the model.

Although Dye has been interpreted in this study as a random e↵ect, it is also often

treated as a fixed e↵ect. The choice does not, however, make an enormous di↵erence

to the outcome of this study. The full dataset was analysed twice: once with Dye

as a random e↵ect and once with it as a fixed e↵ect. The outcome of this analysis

was that, although changes associated with each e↵ect at each time on each gene were

altered, they were consistent between the e↵ects of the model and so the F-test scores

for di↵erential expression were unaltered and gene expression profiles were not altered

when exporting to mean normalised expression data. The choice of how to interpret the

Dye e↵ects would be entirely down to user preference in this case.

1.5.2.7 Identifying Di↵erentially Expressed Genes

MATest is a function of MAANOVA for performing F-tests on e↵ects of the model

returned by fitmaanova. The function requires that the microarray data used for mod-

elling and the fitted model are passed to it. The user must also define the term they wish

to test which will be one of the terms used to generate the fitted model. MATest uses

the information provided to generate F-statistics for each gene indicating the variation

of that term, across all levels, on the gene. Where a contrast matrix is also supplied to

MATest, defining which levels of the term should be considered by independent t-tests,

it is able to perform the test for specific comparisons rather than testing across all levels

with an F-test. This can be appropriate when the levels are independent rather than

part of a series because it allows the identification of genes altered in expression between

specific levels.

The F-statistic is a calculation of the variance associated with the term divided
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by the variance associated with technical replicates (or the error term) as shown:

F =
explained (term) variance

unexplained (error) variance
(1.5)

and hence the p-value associated with the F-statistic is obtained from the F-distribution

with the degrees of freedom associated with those two variances. Where the p-value is

below a selected significance threshold, this indicates that those genes are statistically

significantly di↵erentially expressed as a direct consequence of that term of the model.

Two alternative calculations of the F-statistic are returned by MATest: the F1

statistic which is calculated as shown above and could be considered the ‘usual’ F-

statistic; and the Fs statistic which is based on the James-Stein shrinkage estimate of

the error variance (James & Stein, 1961).

A second function, adjPval, is presented as part of the MAANOVA package

for the consideration of multiple-testing corrections. The p-values from the F-tests

are indicative of the statistical significance of di↵erential expression across the levels

of the chosen terms for each gene probe considered separately, but su↵er from the

inflation of multiple testing Type I family-wise error-rate (FWER) which manifests

itself when performing many separate tests such as those performed for each of the

genes of the microarrays (Dudoit et al., 2002). Type I errors are a rejection of the null

hypothesis when it should have been accepted. It is probable that many Type I errors

have occurred where many genes are declared as di↵erentially expressed when they are,

in fact, not. adjPval applies a false discovery rate (FDR) correction to the p-values,

e↵ectively manipulating the scale of the p-values, without changing the rank order of

the genes (Cui & Churchill, 2003). This approach is an alternative to adjusting the

significance threshold by controlling the FWER and provides more power (Benjamini

& Hochberg, 1995) because the change in the scale of the p-values is driven by the

data, rather than simply by the number of tests. In e↵ect, control of the FWER is to

decide the significance threshold to use in advance of looking at the data, whilst FDR

is an adjustment made to the p-values because of observations made in the data. The

result is to reduce the number of Type I errors by increasing the stringency of the test

su�ciently to push all false positives past the significance threshold such that they are

no longer designated as significant.

Four alternative FDR methods are implemented and one must be selected by

the user, depending on their requirements. The StepUp procedure was proposed by

Benjamini & Hochberg (1995) as an alternative to FWER, increasing the power of

Type I error avoidance by basing the adjustment on the distribution of the p-values

rather than the number of tests performed which can be too stringent for large numbers

of tests. As the name of the procedure suggests, the p-values are stepped through in

rank order from the largest p-value to the smallest p-value Each is compared with the

corresponding critical constant (q i

m

) where q is a constant derived from the distribution

of the p-values, i is the index of the p-value and m is the total number of tests, until a

28



p-value is found where p(i) 6 q

i

m

, after which all tests are denoted significant.

The StepDown procedure was later proposed by Benjamini & Liu (1999) as an

alternative to the StepUp procedure and is clearly defined as neither dominating or

being dominated by that procedure, instead being more appropriate when the number

of tests is small and/or a large number of the hypotheses are false. In this case, the

p-values are stepped through in rank order, but from the smallest p-value through to

the largest p-value. So long as the p-value satisfies p(i) 6 �(i) where

�(i) ⌘ 1�

1�min

✓
1,

m

m� i+ 1
q

◆� 1
m�i+1

, 1 6 i 6 m (1.6)

all hypotheses are rejected, until a point where p(i) > �(i), after which all hypotheses

are accepted.

The Adaptive procedure (Benjamini & Hochberg, 2000) is a StepUp like pro-

cedure, but the critical constant is calculated using a prior step in which the slope of

the p-values are assessed to find a change in the rate of their increase when placed in

order. This allows the estimation of the number of true null hypotheses in the tests and

therefore a more accurate FDR adjustment by optimising the expectation of the data.

The jsFDR procedure was proposed by Storey (2002) and attempts to fix the

rejection region of the p-values and estimate the corresponding error rate rather than

do as the stepwise methods above do, which is to fix the error rate and estimate the

rejection region. By doing this, Storey claims a potential eight-fold increase in power

by the jsFDR procedure when compared with the StepUp procedure.

1.6 Analysis of Gene Expression Data

A number of methods were chosen for use in analysing gene expression data obtained

from microarray experiments. Reasons for choosing them to analyse the data in this

thesis and explanations of the way in which they process the data are shown in this

section.

1.6.1 Clustering

A number of alternative clustering methods exist, but they usually fall into two main

classes: hierarchical clustering and partitional clustering. For simplicity of explanation,

the term ‘cluster’ is used here as a noun describing sets of similar genes, even if that

set only contains a single gene. Both types of clustering use a distance metric in their

process and it is this measure which allows the similarity of clusters to be determined.

Partitional clustering algorithms determine all the clusters at once and then it-

eratively refine the membership of the clusters until no further change occurs. The

algorithm best known for this approach to clustering is k-means clustering (Steinhaus,

1957; MacQueen, 1967).
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Hierarchical clustering algorithms act by joining or dividing clusters that were

established in the previous step. In agglomerative, bottom-up algorithms, (Eisen et al.,

1998) each element to be clustered is assigned to a cluster of size one, and, at each

step, the most similar pair of clusters are merged. The opposite approach to this

process is divisive, top-down algorithms, in which all elements initially exist as a single

cluster which is then subsequently divided into smaller clusters by splitting least similar

members of an existing cluster into two new clusters.

1.6.1.1 The k-means Algorithm

When performing k-means clustering, initially, a set of cluster centres are defined, either

by random or by using a prior heuristic assignment of the genes to be clustered. The

algorithm then continues by alternating between two steps, referred to as the assignment

step and the update step. In the assignment step, each gene is assigned to the cluster

whose centre it is closest to. Once this step is completed, the update step then redefines

the cluster centre as the mean of its members. This process of alternating between the

two steps causes gradual changes in the membership of the clusters until no change is

made to the assignments of the genes to the clusters. Usually, this is a quick process,

and can be repeated a number of times to avoid local maxima caused by poor selection

of the initial condition. However, when clustering very large populations, the k-means

algorithm becomes exponentially slower (Vattani, 2009). Another artefact of k-means

is that it tends to produce equal sized clusters which may not be appropriate to the

data being observed.

1.6.1.2 SplineCluster

SplineCluster (Heard et al., 2006) provides a Bayesian modelling approach to clustering

gene expression, allowing a time-dependent curve fitting process for each of the clusters

to aid in the identification of the most-beneficial merger at each stage of an agglomerative

hierarchical process. It provides a number of desirable features suitable to large scale,

high-dimensional, time-dependent data sets similar to the senescence experiment. This

is in contrast to recently developed approaches to time-series clustering such as the

full Markov chain Monte Carlo (MCMC) Bayesian approach of Wakefield et al. (2003)

which uses basis function coe�cients to approximate the marginal likelihood at each

stage of the hierarchy, which is not computationally feasible for large datasets. Another

example is MCLUST (Fraley & Raftery, 1998) which is a generic Bayesian clustering

tool implemented by Yeung et al. (2001) to cluster gene expression profiles. MCLUST

is insensitive to the order of the time-series and will give the same clustering results no

matter which order the time points are presented. SplineCluster, due to the use of a

model to define a parametric form of the covariance function for each gene, will provide

alternative results if the time-series were to be reordered, as should be expected given

the time-dependency of the gene expression data from the senescence experiment.
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Each gene, assigned to separate clusters, is defined by a curve fit produced using

a truncated power spline basis in which each unobserved region of the time series, the

time which passes between sampling periods, is represented by a series of functions with

varying order to best describe the continuous nature of the changes in gene expression.

Each merger at each level of the hierarchy is then identified by a maximisation of a

similarity measure based on similarity of covariance terms, preserving the importance

of time ordering. At each level, the newly formed cluster is assigned a curve fit for

future comparisons of similarity between clusters. Once only one cluster remains, the

most likely number of clusters is defined by a maximisation of the marginal likelihood

calculated at each step of the hierarchy.

SplineCluster is used as the primary clustering tool in a number of recently

published studies of gene expression data (Monnier et al., 2010; Mutarelli et al., 2008;

Edwards et al., 2006) and is also cited regularly by reviews of Bayesian approaches

to time-series clustering. Its application to the senescence experiment data is highly

appropriate given its speed and time-dependent interpretation of gene expression.

1.6.1.3 Qian Similarity Scores

Clustering algorithms often use a distance metric comparing the relative di↵erences

between observations of the same time point, which results in clusters only having

members with near identical expression profiles. Whilst this allows the identification of

genes which may be co-regulated or co-expressed, this approach is unlikely to identify

genes which may have a regulatory e↵ect on each other. Neither does it identify genes

which may be co-regulated but with opposite expression profiles where some genes are

positively regulated whilst others are negatively regulated.

Qian et al. (2001) provide a method for scoring genes in a pairwise fashion such

that genes can be identified as similar even when their profiles are:

• only matched over a window of time,

• inversely matched; and/or

• best matched after being time shifted.

Examples of these types of match can be found in Figure 1.7. The method achieves

these matches by producing a scoring matrix which compares the observation of gene x

at each time point with all the observations of gene y. The same process is repeated in a

second matrix with one gene profile inverted. By considering the scores of the diagonals

in the matrices, each representing a time shift with the diagonal that passes through

the centre of the matrix represents no time shift, the best fitting comparison is regarded

as the most appropriate match between the genes.

The Qian similarity score provides an alternative, more biologically relevant,

approach to finding genes which form clusters, or functional modules, and is the metric

used in the implementation of some methods for clustering by a�nity propagation (Frey

& Dueck, 2007; Kiddle et al., 2010).
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(a) Genes with transient correla-
tion

(b) Genes with inverse expres-
sion

(c) Genes with a correlation after
a time-shift

Figure 1.7 – Types of gene profile similarity which are ranked highly by
the Qian similarity score
Three examples of similarity between genes which can be highly ranked by the Qian
similarity score are shown. In each plot, the horizontal axis represents time whilst the
vertical axis represents gene expression. In (a), the green gene is only correlated with
the blue gene in time points 1 through to 6. This may indicate that these two genes
are co-regulated, but that the green gene has a second component to this regulation
which is missing after time point 6. In (b), the green gene is a perfect match to
the blue gene, but only if one profile is first inverted. This may indicate that both
genes are regulated by a common transcription factor, but that the e↵ect is positive
regulation for one gene and negative regulation for the other. In (c), the green gene
is again a perfect match to the blue gene, but only if it is shifted back one time point.
This may indicate that the blue gene is a regulator of the green gene, and hence why
the green gene is later to respond than the blue gene.

1.6.2 Identifying Over-represented Gene Ontologies

Gene Ontology (GO) annotations were a part of the Gene Ontology project (The Gene

Ontology Consortium, 2000) as a way of describing gene products as a series of at-

tributes across all species. These attributes, referred to as GO terms, may describe the

cellular component, biological process or molecular function of the gene product and

may only be submitted with evidence such as experimental results, literature sources or

computational analysis. Each gene is tagged with any number of terms and these terms

form a hierarchical tree, such that some terms are parents or children of other terms.

During statistical analysis of GO terms, performed by packages such as GOstats

(Falcon & Gentleman, 2007), hypergeometric tests are used to identify whether clusters,

or modules, of genes contain a larger proportion of members assigned with specific GO

terms than the expected number, given the abundance of that GO term throughout the

genome. A p-value is produced which identifies the probability of finding x

c

number of

genes assigned with a GO term in a cluster of size N when x

g

genes are assigned that

GO term in the entire genome of Arabidopsis thaliana. Where this p-value is below a

threshold, typically (p < 0.05), the GO term is considered over-represented.

1.6.2.1 BiNGO

BiNGO (Maere et al., 2005) is the method used throughout this thesis for finding over-

represented GO terms within clusters of genes. It is Java-based and written as a plugin
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to Cytoscape (Shannon et al., 2003) which is typically used for the graphical represen-

tation of networks and hierarchical trees such as those provided by GO terms. BiNGO

provides functionality for entering the gene lists by simply pasting them into an input

dialog box and also provides alternative multiple testing corrections. One of the out-

puts is a graphical representation of the over-represented GO terms using a hierarchy

of circles with varying sizes to represent the significance of the over-representation. The

over-represented GO terms are also output as tabular data so that they can be processed

and it this data which is used throughout the thesis.

1.6.3 Identifying Network Topology Using Variational Bayesian State

Space Modelling (VBSSM)

Reverse engineering the underlying topology of the regulatory network of a set of genes

is not a trivial task. Many published methods make the assumption that all the possible

interacting elements have been observed and that they have been included in the gene

set (Beal et al., 2005). In reality, microarrays do not provide complete information

about the regulatory network because they:

• may be missing probes for some genes,

• provide noisy data for some probes,

• do not make observations of metabolites and hormones which may form part of

the network; and,

• do not make observations of RNA and protein degradation which can result in

altered response times.

This is confounded by the gene set selected for modelling often being identified by

clustering methods which are unlikely to associate every element of a given network.

A proposed solution to this problem might be to include all observed genes to identify

the overall network, but this approach has its own problems since the number of gene

pair permutations grow exponentially with the number of genes being modelled. This

leads to an unidentifiable model because the information about each gene is finite and

restricted to the number of time points and replicates. As the number of genes to be

modelled increases, so do the number of parameters to be estimated by the model.

Since the number of data points about each gene remains fixed, a number of alternative

models become equally likely and it becomes impossible to identify which represents the

most likely relationship between genes.

Beal et al. (2005) have developed VBSSM which is a State Space Modelling

approach to the reverse engineering of the regulatory network for a small set of genes.

Linear Gaussian state space models (SSMs) have been known by several previous names

in the past, including Linear Dynamical Systems (Roweis & Ghahramani, 1999) and

Kalman filter models (Brown & Hwang, 1997). All are a subclass of dynamic Bayesian
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networks which are suited to the modelling of time series data. SSMs are particularly

suited to the modelling of data collected from gene expression microarrays since they

assume the existence of a number of hidden states which evolve with Markovian dy-

namics and can be used to model the e↵ects of unmeasured variables such as missing

gene expression data or protein degradation rates.

By providing a variational Bayesian treatment of SSMs, a novel approach has

been provided to ensure that the dimensionality of the state space can be correctly

identified without holding out data from that used to train the model, as in Beal (2003).

This approach therefore leaves more data available for training the model and can more

accurately infer the gene interactions as a consequence.

Beal et al. (2005) states that a sequence of p-dimensional real-valued observation

vectors (y1, . . . ,yT

) are modelled by assuming that at each time step t, y
t

was generated

from a k-dimensional real-valued hidden state vector x
t

.

By focussing on models in which the dynamics and the output functions are linear

and time-invariant whilst the distributions of the state evolution and noise variables are

Gaussian, the following linear-Gaussian SSM equations can be used:

x
t

= Ax
t�1 +w

t

, w
t

⇠ N(0, Q) (1.7)

y
t

= Cx
t

+ v
t

, v
t

⇠ N(0, R) (1.8)

where A is the (k ⇥ k) state dynamics matrix and C is the (p⇥ k) observation matrix.

These matrices e↵ectively capture the interaction between hidden states at adjacent

time steps and influences caused by hidden states upon observations of the same time

step, respectively. Q and R are covariance matrices for the state and output noise

variables w
t

and v
t

.

By allowing the model to include driving inputs u1:D which allow the control of

the model by an external influence, much in the way that a remote controlled car can

be influenced by telling it to move forward, backward or to steer, the model equations

become:

x
t

= Ax
t�1 +Bu

t

+w
t

(1.9)

y
t

= Cx
t

+Du
t

+ v
t

(1.10)

where B is a (k⇥d) input-to-state matrix and D is a (p⇥d) input-to-observation matrix.

The driving inputs can be replaced by feedback from gene expression measurements at

the previous time step in an attempt to discover the gene–gene interactions across time

steps. This allows Equations 1.9 and 1.10 to be rewritten as:

x
t

= Ax
t�1 +By

t�1 +w
t

(1.11)

y
t

= Cx
t

+Dy
t�1 + v

t

(1.12)
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Figure 1.8 – Probabilistic graphical Bayesian network model representation
of VBSSM
The VBSSM model can be summarised by plotting a network of matrices (edges)
which define the transition between states (nodes). xt and yt represent the hidden
state and observed genes, respectively, at time t. U is an input to the model and
can be used to define known interactions as priors of the model. Green arrows (A)
are the state dynamics matrix which captures the transition of the hidden states
between time points. Yellow arrows (B) are the matrix which models the influence
of observed genes on hidden states of the next time point. Blue arrows (C) are the
matrix modelling the influence of the hidden states on the observed genes at each time
point. Red arrows (D) are the matrix which captures the observed gene expression
level influences on other observed genes at adjacent time points. A combination of
the yellow, blue and red matrices can be used to directly describe the expression of
each observed gene as a function of only the observed gene expressions at the previous
time point (CB+D), therefore inferring the influence of each gene on each other gene
in the network.

and in turn, since the driving input vector is now p-dimensional, the dimensions of

matrix B become (k⇥p) and the dimensions of matrix D become (p⇥p). The graphical

representation of this model can be seen in Figure 1.8 which illustrates these state space

vectors as circles connected by arrows which correspond to the four matrices in the

model, A,B,C and D.

Under this model, y
t

denotes the gene expression levels at time step t whilst

x
t

represents the unobserved hidden factors. D is the matrix which captures gene–

gene influences at adjacent time points, C is the matrix which captures the influence of

hidden factors on gene expression at the same time point, B is the matrix capturing the

influence of gene expression on hidden factors of the following time point and A is the

matrix which captures the state dynamics between hidden states. In order to identify

the level of influence which exists between genes, the two equations can be rewritten so

that y
t

is a function of only gene expression at the previous time step, y
t�1:

y
t

= (CB +D)y
t�1 + r

t

(1.13)

where r
t

= v
t

+ Cw
t

+ CAx
t�1 and includes all the contributions from noise and

previous hidden states. This leads to the ability to characterise the interaction between

gene j and gene i by observing element ij of the matrix [CB+D] which is describing the
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influence of gene expression observations at the previous time step upon gene expression

observations at the following time step whilst also accounting for all the hidden factors.

Once a model has been inferred, the ability of the model to explain the experi-

mental data is returned as a log marginal likelihood. This score will be maximised when

a model is a good fit for the data used to train it. This score can therefore be used to

compare two models and identify which is the best explanation of the data provided.

1.6.3.1 Limitations

Whilst VBSSM demonstrates a huge step forward in the elucidation of regulatory net-

works and has been proven to work successfully on artificially simulated data and data

collected in a longitudinal manner, it is unfortunate that it was not possible to gather

the senescence experiment samples in the same way. In order to obtain RNA from the

leaves of the Arabidopsis plants being studied, it was necessary that they were destroyed

and biological replicates, despite being labelled similarly at di↵erent time points, were

in fact collected from separate individuals in a cross-sectional manner.

The models produced by VBSSM use the biological replicates in a longitudinal

manner, associating the observations of each replicate label as providing a discrete

observation of the entire time series. E↵orts were made to determine the importance

of this mis-interpretation by randomly reassigning the biological replicate labels within

time points to see what e↵ect it may have on the resulting model. It was concluded that

although the resulting models demonstrated some di↵erences, the variance between the

replicates will still remain constant and as such, the underlying network should still be

identifiable.

Another limitation of VBSSM is that its models are linear and assume time-

invariant interactions between the genes. It is known that not all gene interactions

are a linear relationship and that, on some occasions, unmeasured variables such as

phosphorylation can alter the downstream regulatory e↵ects of some genes. However,

these are computationally intensive areas for improvement in VBSSM, and could not

feasibly be added at this time. No alternative better suited method of modelling could

be identified and as such, VBSSM was the sole software used for the reverse engineering

of regulatory networks. A recent review provides benchmarking comparisons of VBSSM

and other methods (Penfold & Wild, 2011, in print). In this review, four alternative

algorithms were compared:

• A time-series networks identification (TSNI) algorithm (Bansal et al., 2006).

• A granger causality analysis (GCA) method (Seth, 2010).

• The G1DBN dynamic Bayesian network (DBN) package (Lèbre, 2009).

• The VBSSM DBN with hidden states, as shown here.
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• A non-parametric non-linear dynamical system (NDS) found in the Matlab pack-

age GP4GRN (Äijö & Lähdesmäki, 2009).

• An implementation of algorithms proposed by Klemm (2008) to provide a causal

structure identification (CSI) method.

Of the comparisons made, it was found that the VBSSM was slightly better than the

TSNI and GCA methods at identifying the underlying network topology, it was similarly

accurate to the other DBN method tested, but was not as accurate as the NDS and CSI

methods shown. However, the latter methods are far more computationally intensive,

taking 48 times as long to produce a result when compared with VBSSM and were not

available when they were required for this PhD project.

1.7 Biological Validation

1.7.1 Altered-Expression Mutants

Where theoretical approaches had suggested that a particular gene was an important

regulator of either senescence or a particular group of genes, altered-expression mutants

were used to observe the e↵ects of reducing or enhancing the expression of that gene.

Altered-expression mutants are plant lines which have been genetically modified to alter

the expression behaviour of a single gene and these may also be pyramided to provide

mutations in multiple genes. Mutants can then be observed for phenotypical changes,

verifying the importance of a gene in a particular process, or analysis of expression in

genes suspected to be regulated by the mutated gene can verify whether an interaction

exists. Those mutant types used during the project are shown in this section.

1.7.1.1 Reduced Expression

The Salk Institute Genome Analysis Laboratory (SIGnaL) produced a series of Ara-

bidopsis thaliana mutagenesis lines (Alonso et al., 2003), hereafter referred to as SALK

lines. SALK lines are Col-0 wild-type Arabidopsis lines which have had a large piece

of T-DNA inserted into their genome by Agrobacterium tumefaciens which, when lo-

cated within critical transcriptional machinery of a gene such as the upstream region

containing the transcription factor binding sites or within the exons of the gene, can

disrupt the expression of that gene to a lower level than normal. These mutants are

often referred to as knockout mutants, although their expression may only be reduced

rather than entirely quenched. SALK lines are listed in a database maintained by SIG-

naL (http://signal.salk.edu/cgi-bin/tdnaexpress) and can be ordered as seed

stock which can then be sown and used in experiments. The actual expression level of

the mutated gene must be verified experimentally since the insertions made by SIGnaL

were at random and many of the seed stock either have a non-homozygous insertion of

T-DNA or are still able to produce a partial protein which maintains some function.
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1.7.1.2 Enhanced Expression

Jesper Grønlund and Sanjeev Kumar of The University of Warwick have produced

a number of over-expression mutants in which the expression of the mutated gene is

either constitutively induced or induced by application of an exogenous influence such

as ethanol. Constitutive over-expression mutants have been generated by fusing the

open reading frame (ORF) of a target gene to the 35S promoter of the cauliflower

mosaic virus (CaMV35S) and then inserting this into the genome of Col-0 plants using

T-DNA of Agrobacterium tumefaciens. Induced over-expression mutants have also been

generated using a promoter for a gene known to be up-regulated in response to a specific

trigger such as ethanol.

Although it is convenient to be able to enhance the expression of a selected

gene at any selected point in the experiment, any results determined from an inducible

over-expressor may be confounded by other responses to the trigger not specific to

natural senescence. Equally important, constitutive over-expressors are expressed from

very early on in the life of the plant and often cause major physiological changes in

the immature stages of plant development. Because of this, many other development

related processes have already been altered by the time senescent samples are taken

from these lines and they are therefore harder to compare with the wild type.

1.7.2 Yeast-1-Hybrid

Where theoretical methods have proposed that a transcription factor may regulate the

expression of a target gene, one method of testing this for validity is by the yeast-

1-hybrid system. This system was developed almost 20 years ago to answer a specific

question about the role of ORC6 in the process of yeast cell replication (Li & Herskowitz,

1993). In its simplest form, yeast-1-hybrid consists of a library of Saccharomyces cere-

visiae transformed with cDNAs fused to an N-terminal activation domain: the prey.

The suspected promoter region of the target gene is inserted into the promoter region

of a reporter gene vector which is used to transform further yeast cells: the bait. After

co-transforming or mating the cDNA library with the bait transformed yeast cells, if

the reporter gene is transcribed, this indicates that the transcription factor was able to

bind to the target gene promoter and therefore has the potential to play a regulatory

role as predicted.

The use of cDNA fragments as a screening library is not an optimisation of

the screening process since the only proteins which should have a regulatory role for

gene expression are transcription factors. For this reason, the use of a transcription

factor cDNA library might be preferential, otherwise transcription factors are not well

represented by libraries of cDNA fragments.

One benefit of this system is that it is high-throughput and therefore will identify

all transcription factors in the library that are able to bind the designated promoter

sequence, rather than only verifying a single prediction. One disadvantage of the system
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is that it only verifies that the screened promoter can be bound by elements of the cDNA

library and not that it would constitute a regulatory interaction in Arabidopsis , nor that

the interaction would not be blocked by other factors such as bound micro-RNAs.

1.8 Aims of the Project

The research associated with this project is divided into three chapters of results. The

aims of each are as follows.

Chapter 3 - Microarray Data Analysis: To further develop and customise the

MAANOVA microarray analysis package so that the design of the senescence microarray

experiment described above can be used in an optimal manner as well as providing

new quality control and normalisation techniques to maximise the benefit of technical

replication. To perform statistical tests of temporal di↵erential expression and identify

those genes altered in expression during the senescence period. To obtain temporal gene

expression data representing biological changes in gene expression, removing e↵ects of

experimental and technical variation.

Chapter 4 - Analysis of Gene Expression Data: To analyse the gene expression

data of those genes altered in expression during senescence and identify functional groups

of genes. To develop a standard method of quantifying the senescence response for

the quantification of altered phenotypes in mutant lines. To use theoretical modelling

of transcriptional networks for subsets of genes and identify those which regulate the

transcription of many downstream genes before building theoretical networks of likely

direct interactions with those strong regulators.

Chapter 5 - Biological Validation of Theoretical Models: To experimentally

test predicted interactions of theoretical network models using established laboratory

techniques. To use the results of such tests to produce a new theoretical network model

which could be used in further research to find the true transcriptional networks of

senescence.
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Chapter 2

Materials and Methods

2.1 Chapter Summary

This chapter introduces the methods used throughout this thesis. Amongst those meth-

ods used is a microarray experiment analysis package MAANOVA. This was used to

find inadequecies throughout microarray experiments using dual-channel microarrays

and to identify the expression changes in genes throughout those experiments. Where

gene expression data was obtained, that data was clustered using SplineCluster and

then analysed for over-represented gene ontologies by BiNGO.

Theoretical models of regulation between genes were produced using Variational

Bayesian State-Space Modelling (VBSSM) which uses hidden states to account for un-

measurable regulatory aspects and missing gene expression data. Novel approaches to

the use of VBSSM includes multi-modelling where many small sets of genes are produced

from a larger set in an attempt to identify those genes which are highly regulatory of

others. Another approach is Metropolis-like VBSSM in which the surrounding network

of a given gene is identified by replacing small numbers of genes around the central gene

until a model with maximum likelihood of explaining the gene expression data has been

found.

A novel senescence phenotype screen has been developed, using digital photog-

raphy and quantitative methods to assess the yellowing of leaves over a period of time.

This has allowed the identification of altered senescence phenotypes in mutant lines.

Yeast-1-hybrid has provided a method for identifying which transcription factors are

able to bind to the upstream region of gene sequences and potentially alter their ex-

pression. Additionally, further microarrays have provided a method for identifying the

downstream e↵ect of reducing the expression of genes key to senescence.

2.2 Microarray Analysis

Analysis of the microarrays which were produced during the senescence experiment was

performed using the MAANOVA software package. The original implementation of this

software has been described in Chapter 1 but the software was heavily modified to
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better suit the requirements of this experiment and hence its further development and

application is described in detail within Chapter 3 rather than here.

2.3 Gene Expression Data Analysis

2.3.1 SplineCluster

To cluster selected genes into putative functional groups based on similar expression

profiles, SplineCluster (Heard et al., 2005) was used as this provides a hybrid between

Bayesian hierarchical clustering and k-means clustering by o↵ering a sweep mergers

function as described in Heard (2011). To make the implementation of SplineCluster

more simple, an R script was developed which automated the transformation of in-

put data into a format suitable for SplineCluster, called the command line version of

SplineCluster and then automatically processed the output data into a spreadsheet once

SplineCluster was complete. This script is included as a function in the whrimaanova

package developed in Chapter 3. A definition of the inputs necessary for this function

can be found in Procedure 2.1. Vectors and matrices required by the function must be

R objects which can be loaded from tab-delimited text files using the read.table()

function.

Not all of the inputs shown are necessary for the processing of the senescence

dataset and are included only for completeness. Many of the inputs have defaults, as

defined, and, in most cases, can be accepted without need to specify a value for those

inputs. For all SplineCluster analyses performed on the senescence experiment data:

• genefilter provided a list of genes which were determined to be di↵erentially

expressed.

• fullgenelist provided a list of all the observed genes of the CATMAmicroarrays.

• expression provided a matrix of expression data for all observed genes across 11

time points.

• priorprecision was allowed to remain as the default of 10�4.

• annotation provided annotations for all the observed genes.

The priorprecision value defines the precision to which the genes must fit the cluster

profile to be considered a member of that cluster. As the prior precision is reduced,

the fit needs to be less precise and hence fewer clusters are identified. If the prior

precision is increased, the fit of the gene expression to the cluster must be more precise

to be considered a member of that cluster and hence the number of clusters identified

is increased.

Following communications with Nicholas Heard, the developer of SplineCluster,

it became apparent that he had recently implemented a method of sweeping the clusters

at each merger to identify outliers and reallocate them to more appropriate clusters,
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Procedure 2.1 Function definition for the SplineCluster wrapper

splinecluster(genefilter, fullgenelist, expression, priorprecision = 1e-04,
annotation = NULL, datasplit = NULL, gramschmidt = FALSE,
sweepmergers=0, xvalues=NULL, errorcovariances=TRUE)

genefilter A vector of gene IDs which are to be clustered.
fullgenelist A vector of gene IDs for all the rows of expression.
expression A matrix of expression data in which the rows correspond to the

gene IDs in fullgenelist and the columns correspond to the
time series.

priorprecision A floating point value defining the prior precision to use for
defining the number of clusters.

annotation A matrix of annotations in which the first column contains gene
IDs and other columns contain annotation information to be
included in the SplineCluster output.

datasplit Where multiple experiments are simultaneously clustered, a vec-
tor of number of columns associated to each experiment. If the
expression matrix contained 30 columns, the first 19 from one
experiment and the last 11 from another experiment, this vector
would be c(19,11).

gramschmidt A logical value defining whether to use Gramschmidt orthogo-
nalisation of the design matrix to increase the speed of cluster-
ing.

sweepmergers An integer representing the maximum number of times to sweep
at each merger and reallocate outlying members. 0 represents
no sweeping at each merger.

xvalues A vector of integers equal in length to the number of columns in
expression specifying a true metric of the time at each obser-
vation. Only to be specified where observations were not made
at equal intervals.

errorcovariances A logical value specifying whether to plot heat-maps of error
covariances when datasplit has been specified.

now published in Heard (2011). Under normal circumstance in bottom-up hierarchical

clustering, the merger between two existing clusters can lead to some members of the

resulting cluster straying significantly from the new cluster profile. Rather than contin-

uing to completion, as would normally be the case, SplineCluster can be instructed to

sweep the current memberships at each merger and reallocate outliers to more appro-

priate clusters. This process dramatically increases the time taken to reach completion

and therefore the user can limit the number of iterations of this reallocation at each

merger by specifying an integer for the sweepmergers parameter of the SplineCluster

wrapper.

Once it was established that sweepmergers could be used to reallocated genes

which had become an outlier for their cluster due to the nature of the hierarchical

process, this was always set a value of 10000 and gramschmidt was set to TRUE to help

speed the process up because merger sweeping increased the processing time to several
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days compared with an equivalent number of genes taking approximately 30 minutes

without it.

2.3.2 BiNGO

To find over-represented gene ontology (GO) annotations in selected groups of genes,

the software package BiNGO (Maere et al., 2005), a java-based plug-in for Cytoscape

(Shannon et al., 2003), was used. In order to identify these over-represented genes, a

text file was prepared which listed the AGI numbers of the genes in each cluster following

the format suggested by the BiNGO User Guide (Flanders Interuniversitary Institute

for Biotechnology, 2010):

Cluster 001

At1g10101

At1g10102

batch

Cluster 002

At2g20202

At2g20203

batch

Cluster 003
...

At5g50505

BiNGO was instructed to perform hypergeometric tests to identify the existence

of over-represented GO terms from the Biological Process annotations of di↵erentially

expressed genes in Arabidopsis thaliana. A reference set containing only the genes which

were identified as di↵erentially expressed ensures that the significance of over represented

GO terms are relative to the abundance of those terms in the genes which were clustered.

Only those GO terms which were significantly over-represented at (p 6 0.05) after the

Bonferroni family-wise error rate (FWER) correction were returned.

The output of BiNGO was a folder of BGO files which each contained information

about the over-represented GO terms of a specific cluster. These were processed using

a custom script, written in R, which can be found in Appendix D. The script identifies

the GO terms and then plots how significantly over-represented they are as a histogram

of the negative log of their p-value whereby more significant results have taller bars. In

addition to this, the percentage of genes in a cluster which are annotated with a specific

GO term is shown. And example of these plots is shown in Figure 2.1. This allows the

rapid interpretation of over-represented terms in each cluster, whilst comma-separated

value (CSV) files are also returned to provide a full statistical report of those terms in

each cluster.
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Figure 2.1 – An example of histograms returned by the script which inter-
prets BiNGO’s output
The plot shows significantly over-represented terms of a cluster presented to BiNGO
for GO analysis. The height of the bars indicate the negative log of the likelihood
of finding those many similarly annotated genes in a cluster of size 109 given the
abundance of that annotation throughout the Arabidopsis thaliana genome. Where
the bar is tall, this indicates a highly unlikely occurrence and hence a significantly
over-represented GO term. The percentages indicate the number of genes within the
cluster annotated with this term and the names of the terms are identifiable by the
key shown to the right of the plot.

2.3.3 Qian Similarity Score

In order to obtain the similarity score provided by the methods of Qian et al. (2001), the

implementation of the method by clustering software TCAP (Kiddle et al., 2010) was

used. This required that the TCAP package was installed into MATLAB® (MATLAB,

2010) after which the function tcap score() was used to identify the similarity score

between every pair of a given set of genes. Data presented for scoring was a series of

expression values, one per time point, for each gene to be scored. Each gene had a mean

expression of zero and standard deviation normalised to 1. This expression data was

loaded into MATLAB as a matrix with each row representing a gene and each column

representing a time point and then passed to the tcap score() function which produced

three vectors: psi star vector, inverts vector and delays vector. These vectors
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CATMA ID Rank Qian Score Delay Inverted

CATMA2a26240 1 -0.11014 0 True
CATMA1b41990 2 -0.12828 0 False
CATMA1a10030 3 -0.15335 0 True
CATMA4a20290 4 -0.16211 0 True
CATMA5a18270 5 -0.17747 0 True
CATMA4a40195 6 -0.19882 0 True
CATMA2a15100 7 -0.20294 0 True
CATMA5a37600 8 -0.20469 0 True
CATMA1a45880 9 -0.20506 0 True
CATMA2a34420 10 -0.21401 0 False
CATMA1a51570 11 -0.22007 0 False
CATMA5a24170 12 -0.22333 0 False
CATMA4a24686 13 -0.22440 0 True
CATMA5a20375 14 -0.23283 0 True
CATMA1a56690 15 -0.23513 0 False
CATMA1a25320 16 -0.24302 0 False
CATMA3a25675 17 -0.24343 0 True
CATMA3a53450 18 -0.24453 0 True
CATMA3a44120 19 -0.24498 0 False
CATMA4a06050 20 -0.24543 0 False

Table 2.1 – An example of Qian similarity scores output by TCAP
Once exported, the Qian similarity scores were presented in a table, as shown, with the
highest ranking genes o↵ering the greatest similarity to the target gene. The first row
of this table states that the gene associated with CATMA probe ‘CATMA2a26240’
was the closest match to the target gene, ‘CATMA1c71331’. This match was direct
without the need for time-shifts as indicated by the 0 in the Delay column, but the
genes are only correlated when an inversion is made in one of their profiles.

referred to each pairwise comparison between the provided gene expression data.

• psi star vector contained the optimum similarity scores.

• inverts vector contained 0 where the similarity was without the need for an

inversion and 1 where the greatest similarity was only obtained with an inversion

of the profile of one gene.

• delays vector indicated the number of time points gene x must be shifted by to

obtain maximum similarity with gene y.

These vectors were then converted into three matrices of N⇥N genes, each intersection

representing a pairwise comparison between genes.

Another function then used the three matrices above to return only the compar-

isons of a specified gene with all other genes in the data set. These were sorted so that

genes with greatest similarity to the specified gene are listed first. An example of the

list output can be found in Table 2.1.
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2.4 Theoretical Network Modelling

Where gene expression data was used to produce putative network models of the un-

derlying transcriptional relationships between them, the methods applied were those

shown in this section.

2.4.1 Variational Bayesian State-Space Modelling

Putative transcriptional network modelling was performed using VBSSM (Beal et al.,

2005) which required MATLAB® (MATLAB, 2010) as it is a series of MATLAB scripts

which process the gene expression data. The data provided to VBSSM was in the form

of three files:

• data.txt which contained the expression data for the genes to be modelled. Each

row contained the expression data for one gene with all the observations from one

replicate adjacent to one another and in the correct order whilst further replicates

followed in adjacent blocks.

• names.txt which listed the identifiers for each gene to be modelled, one per row.

• description.txt which listed the annotations for each gene to be modelled, one

annotation per row.

These were then processed with a script which locates the VBSSM toolbox, loads

the data into MATLAB, informs VBSSM of the data parameters whilst normalising the

expression data, instructs VBSSM to start multiple modelling seeds across nodes of a

cluster, plots log marginal likelihood (F) versus the dimensionality of the hidden states

(k) of the seeds and then deletes model files of non-optimal seeds. The source code

of this script is shown in Appendix A and a description of the process is shown in

Procedure 2.2:

Procedure 2.2 Pseudo-code of the VBSSM control script presented in Appendix A.

Line(s) Description

1–3 Produce three new folders for VBSSM output in the current directory.
4 Loads in the expression data from data.txt.

5–7 Normalises 11 time point expression data to a mean of 0 and a standard devia-
tion of 1 before saving two .mat files containing the data in the correct format
for modelling.

8–9 Uses the dfeval command of the MATLAB Distributed Toolbox to request
that 10 MATLAB workers process 1 of 10 modelling seeds each.

10–13 Produce a plot of F vs k across the 10 seeds at each k-value and then saves the
maximum mean F to a .txt file and the plot to an .eps file.

14 Converts the 10 seeds for the k-value with maximum mean F into three Cy-
toscape model files per significance level. The levels of significance which are
automatically returned are 90.0%, 92.5%, 95.0%, 97.5%, 99.0% and 99.9%.

15–23 Iterates through the .mat files in the vbnet folder and removes all files which
do not relate to the seeds with maximum mean F.

47



The files generated for Cytoscape consist of a .sif file which contains information

about which genes interact with which others, a .noa file which contains annotations for

the nodes of the network, i.e. the gene identities and/or functional annotations, and an

.eda file which contains annotations for the edges of the network, i.e. the frequency of

that interaction. Interaction frequency was calculated as a percentage of modelling seeds

exceeding the significance level set for the model for a given interaction whilst negative

numbers were used where an interaction was a negative regulation or inhibition.

2.4.2 Cytoscape

The three Cytoscape model files returned by VBSSM in Section 2.4.1 were used to

produce a graphical interpretation of the interactions that exist between genes. For

this, the .sif file was used to generate a new model via the “File > Import > Network

(multiple file types) ...” menu option. The given model was then populated with

annotations by loading the appropriate .eda and .noa files into the model.

The defaults of Cytoscape only provide a very basic overview of the network and

so the VizMapper™ settings were adjusted such that:

• Edge Color was set to a continuous mapper based upon the interaction frequency

whereby those values less than zero are plotted in red whilst those greater than

zero are plotted in green.

• Make Arrow Color Match Edge Color was checked to ensure the colour was

carried through to the arrow head.

• Edge Target Arrow Shape was set to a continuous mapper based upon the

interaction frequency whereby those values less than zero are plotted with a T-

shaped head whilst those greater than zero are plotted with a delta shaped head.

• Lock Node Width/Height was unchecked to allow non-square/non-circular

nodes.

• Node Shape was set to either ellipse or rounded-rectangle.

• Node Width was set to 120.

All other settings were left as defaults. In order to filter the edges of the network to

leave only those which were significant in at least 60% of the seeds, the filter tool was

used in Cytoscape to highlight those edges with an interaction frequency between -60

and 60. These edges were then hidden from the network view using the “Select > Edges

> Hide Edge Selection” menu option. The nodes were then sorted into three areas of

the screen. Those which have lots of connections, those with less than 5 connections

and those with no remaining connections. The nodes with no connections were then

highlighted and hidden from view using the “Select > Nodes > Hide Node Selection”

menu option.
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The remaining nodes after this process were laid out, by hand, so that the

nodes with many connections (typically the hub genes), were assembled around the

centre of the network, whilst those with one connection back to the hubs were clustered

around the outside of them and those nodes connected to multiple hubs were placed in

a position where all their connections could be easily identified. The final network was

then exported from Cytoscape as a .png file using the “File > Export > Network View

as Graphic...” menu option.

2.4.3 Multi-modelling

To analyse larger sets of genes and try to pick out those which appear to be highly

regulatory, a process hereafter referred to as multi-modelling was used. In this process,

a large set of genes, typically between 500 and 1000 genes, is selected by hand or by

some qualifying criteria because they are thought to show relevance to the biological

process being studied and are thought to form a large proportion of the regulatory

network being discovered. This process attempts to find those genes in the large set

which demonstrate robust regulatory activity on other genes in the set. To do this,

subsets are made from the larger set, so that models of a size which are known to

converge upon a single solution can be produced. The only information harvested from

each model is the number of and the consistency of interactions from the upstream gene

of the interaction.

In order to optimise this approach, the selection method of the genes must ensure

that each possible pair between the large set is fairly represented by the completed

models. To do this, rather than selecting the genes for modelling as individuals, the

possible pairs between them were selected instead, focussing more on those pairs which

had been represented the least by the models so far. Each new model, then, was

produced by analysing the frequency of pairs throughout the models already processed

and then by randomly selecting from those with the minimum frequencies. As will be

explained in Section 4.3, it is desirable to select 88 genes for each model, and so 44

pairs were selected at random in this way. The genes which exist in those pairs make up

the set for the next model. Where some of the selected pairs contained genes already

selected in other pairs, the set may not consist of exactly 88 genes, and in this case,

further pairs are selected at random and genes added to the set until the threshold of

88 has been met.

Once every pair had been presented at least five times, although this number

could be changed if more time were available, the process was stopped and the models

were collated to identify the outcome of regulatory interactions between all genes. Once

again, the genes were considered in pairs and thresholds were set that signify whether the

interactions between those pairs are significant or not. Each pair was given a posterior

probability for demonstrating an interaction and the threshold used here was that the

posterior probability must be more than 95% in at least one modelling seed on at least

50% of the occasions when that pair was presented in a modelling set. The upstream
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member of the pair was then classified as a hub gene if it met this criteria with more

than one downstream gene.

It is impossible to make inferences about the regulatory behaviour of specific

pairs of genes through this process because each model produced can be anywhere from

a very good to a very poor fit depending on the exact genes in the set. Where a gene

set contains genes that are a poor fit with each other, regulations will still be inferred,

many of which are very tentative. Only regulations in the same model can be directly

compared for likelihood and only whole models can be compared with each other for fit

to the expression data provided, and so these results can only identify that a gene may

be highly regulatory of others, and not that it has better regulatory behaviour on any

one given gene.

To assist in the automation of this process so that the time taken to reach the

given threshold could be minimised, an R script, shown in Appendix F, was produced

which managed the selection of genes, compilation of expression data for those genes,

initiation of the VBSSM toolbox and then compilation of the final results.

2.4.4 Metropolis-like VBSSM

Whilst multi-modelling was able to identify hub genes in a large pool of genes, it was

not able to identify robust interactions in networks surrounding those genes because the

F score for each model was not being considered. By applying a stochastic optimisation

approach inspired by the Metropolis algorithm (Metropolis et al., 1953) (Metropolis-like

VBSSM) to the selection of genes from a large pool, it is possible to converge on a set

of genes whose expression levels are accurately described by a VBSSM model, possibly

indicating that the putative network has much similarity to the real network. This

approach requires that models are run sequentially and that only small updates are

made to the list of genes on each occasion, finding combinations of genes which result

in better fitting models.

Unlike multi-modelling it was essential to run models sequentially as the fit of

each model must be known before the following set of genes could be selected. For this

reason, it was desirable that each model be performed quickly without a substantial loss

of accuracy. Two modifications to the VBSSM procedures were made to enable models

to be produced in substantially shorter times:

• The number of seeds for each VBSSM model were reduced to 5. As can be seen in

the typical F vs k plot shown in Figure 2.2, 10 seeds for models of 88 genes from

the senescence experiment were always so similar for any given k value that it was

unnecessary to produce so many in order to establish an accurate interpretation

of the best fitting model for the provided expression data.

• The number of hidden states were reduced by initially only training the model

at a hidden state dimensionality of 8 and 9 and then identifying which has the

maximum mean F. The dimensionality was then progressively incremented or
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Figure 2.2 – An example of a typical F vs k plot produced by VBSSM for
the senescence experiment data
The negative log marginal likelihood (F) is plotted in the vertical axis against the
dimensionality of the hidden states (k) plotted in the horizontal axis. The plot shown
is based on 88 genes with 11 observations in each of 8 biological replicates for each
gene. Each of 20 alternative k-dimensional states were seeded 10 times, requiring
400 total models. The blue points represent the F score of each individual seed
whilst the red line plots across the means at each k-dimensional state. The optimum
dimensionality of hidden states, in this case 8, can be identified by the peak of the
red line. Typically, the red line peaks at a single point.

decremented towards the higher mean F until a lower mean F was encountered

indicating that the maximum mean F had been identified. This was possible

because of the monotonic convergence on the maximum F.

These two modifications allowed as much as 26-fold reduction in processing time for each

model, allowing Metropolis-like VBSSM to progress rapidly through many models in a

sequential manner. However, to achieve the selective k sampling, the VBSSM process

had to be split into several sections and some modifications made to the plotting script

of the F vs k plot. The VBSSM processing script, as shown in Appendix A, was divided

into four sections as described in Table 2.2.

To initiate the Metropolis-like VBSSM process, a template folder was produced

which contained the VBSSM scripts as described above. A .txt file containing the

identifier of the gene which was to remain central to the network was supplied along

with a second .txt file containing a list of identifiers, one per line, for all the genes

which are chosen for their similar expression to the central gene. These files are loaded
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Script Name Description

VBSSMPart1.m Loads the expression data for the genes to be modelled before
exiting. The functionality of this script is identical to lines 1–7 in
Appendix A.

VBSSMPart2.m Initiates the production of 5 modelling seeds between two k values
as specified by the Metropolis-like VBSSM script. The function-
ality of this script is similar to lines 8–9 in Appendix A.

VBSSMPart3.m Plots the F vs k plot for the numbers of hidden states already
tested. If the maximum mean F is still ambiguous, further k

values will be evaluated in the previous script. The functionality
of this script is similar to lines 10–13 in Appendix A.

VBSSMPart4.m Produces the Cytoscape files for the seeds with the maximum
mean F. The functionality of this script is identical to lines 14–23
in Appendix A.

Table 2.2 – The four sections of the Metropolis-like VBSSM processing
script
Because of the requirement to sample an indefinite number of k values, the VBSSM
processing script could not be defined prior to modelling, and hence it was divided
into four sections as detailed above. The source code of these scripts can be found in
Appendix G.

by the coordinating script, written in R and found in Appendix G, which ensures that

the genes being selected for modelling are chosen by following a set of rules to converge

upon that set which maximises the fit of the VBSSM model. This script is very similar

to that of multi-modelling with variations in the way that the genes are selected for

each model.

The first model of the run consists of the central gene and 87 randomly selected

from the pool of similar expression genes. The model is implemented in the four stages

of VBSSM as shown above and the script waits for completion of the VBSSM model

before continuing with another. The F score associated with this model is accepted

as the best yet discovered and hence the score sets the benchmark and this model is

labelled “gold”. The remaining models are then always based upon the last known gold

model using the following logic:

• A number of genes, referred to as the swap number, are removed from the genes

present in the set selected for the last gold model and these are returned to the

pool of genes.

• The same number of genes are randomly selected from the pool of genes and placed

into the set selected for the last gold model, providing a new set of genes for the

next model.

• Once the new model is completed, it is accepted as the new “gold” model if its F

score (F 0) satisfies the condition:

↵ < exp
�
�
��
F

0 � F

��� (2.1)
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where F is the F score of the most recent gold model and ↵ is a random number

drawn from the uniform distribution U(0, 1).

• The swap number controls the granularity of the search through parameter space

and is adapted according to the proportion of acceptance for recently conducted

models:

– Where the most recent model was accepted, the swap number is increased

by a factor of 1.053 to promote wider searches around the new gold model.

– Where fewer than 20% of the most recent 8 models were accepted, the swap

number is reduced by a factor of 1.05 to increase the similarity between

subsequent models.

– Where greater than 30% of the most recent 8 models were accepted, the swap

number is increased by a factor of 1.05 to decrease the similarity between

subsequent models.

• Once the value of the swap number reaches zero, the search is halted as no further

improvements for the model could be found.

It should be noted that this process is not a Markov chain because each new step

takes into account more than one previous step’s outcomes. Instead, this uses similar

logic to, but is not equivalent to, the Metropolis algorithm.

The swap number controlled the likelihood of finding a new model with a better

fit than the previous gold model. By increasing this number, the similarity between

models was reduced but the likelihood of getting trapped in a local maxima was also

reduced. However, after some time had passed and models with better fit were becoming

more sparse, searching with large changes between gene sets was ine�cient and it is

for this reason that the swap number was reduced. By reducing the swap number,

the similarity between models was increased and the parameter space was investigated

more slowly, allowing fine control over the gene selection to find similar, but improved,

models.

The target value of acceptance rate is a compromise between speed and accuracy

whereby larger values cause the steps between models to be small and a maximum log

marginal likelihood to be found more quickly but at the risk of reducing the breadth of

the parameter space search and finding a local maximum as a consequence. Similarly,

a smaller target value allows a long time to be spent searching the parameter space by

continually making big changes between steps of the process before eventually moving

onto smaller steps and finding the true global maximum. However, because of the

long time taken for each VBSSM model to complete, it would be impossible to find an

optimum value within a reasonable time frame and so the target value of 25% acceptance

over the most recent 8 models (represented by a lower and upper bound of 20% and 30%

respectively) was chosen as this acceptance rate was optimised by Christopher Penfold
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of The University of Warwick in other applications of the Metropolis approach to faster

algorithms.

After halting the search, the last gold model was considered to be a good indi-

cation of the most likely interactions between the central gene and those genes which

were part of the large pool provided. However, most gold models towards the end of the

process would have very similar F scores and would, hence, provide interactions that

may also be of interest if substantially di↵erent from the final gold model.

2.5 Plant Preparation and Phenotype Screening

2.5.1 Plant Growth

Where Arabidopsis thaliana plants, either Col-0 wild-type or altered-expression lines,

were required for experimental purposes, 100 ⇠ 150 seeds were placed into labelled

1.5 mL micro-centrifuge tubes and suspended in 1 mL of 0.1% agarose gel solution

before being stored at 4 � for between 48 and 72 hours to stratify the seeds. On

the day of sowing, a su�cient number of P24 PlantPak trays were filled with lightly

compacted Arabidopsis mix compost (Levingtons F2 compost:sand:vermiculite 6:1:1).

These trays were soaked by immersion in tap water so as to draw up water through the

base of the pots. Once the compost was visibly damp at the surface of the pot, the P24

trays were transferred to solid based trays able to accommodate five P24 trays each. To

maintain humidity during germination, a further 2 cm depth of water was added to the

large trays. To each pot, five individual seeds were placed with a glass pipette tip; four

as the corners of a square with the fifth marking the centre. Labelling sticks pushed

into the pots were used to identify the sown seeds and also as a support structure for a

single sheet of polythene placed above the pots to increase humidity levels. The trays

were then located in a climate controlled environment where the following parameters

were maintained:

• 70% relative humidity

• 20 � ambient temperature

• 350 ppm CO2 concentration

• 120 µmol.m2.s-1 daytime light intensity

• 16 hour daylight / 8 hour darkness cycles

One week after sowing, the polythene was removed and discarded and the water

topped up to a 2 cm depth once more to prevent dehydration. Two weeks after sowing,

where more than one plant existed in a pot, the excess plants were removed using

pointed tweezers to ensure that no plants were given a competitive advantage. Three

weeks after sowing, the plants had developed up to 12 leaves but not yet begun to bolt

and were ready to harvest.
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Figure 2.3 – Alignment marks used as a background during phenotype
screenings
A piece of paper with markings similar to those shown was used as a background for
the plates being photographed. The corners of the viewfinder are aligned with the
crosses in each corner of the diagram. The plate with the rosettes was placed in the
area marked ‘Main Plate Position’ using a mark on the edge of the plate to align
with the ‘Plate Alignment Mark’. The base of the Petri dish is placed in the area
designated ‘Labelled Base’ with the label inside the photographed area. The coloured
circles in the top right are present to provide variety of colour for the camera to
perform more accurate image normalisation.

2.5.2 Phenotype Screening

Plants were grown using the same methods, as shown in Section 2.5.1. Observation

plates were produced by placing 9 cm filter paper discs into single-vented 9 cm Petri

dish lids and saturating them with 3 mL of autoclaved water. The Petri dish bases

were labelled in one quadrant of the underside with an identifier for the plant line to

be observed on the plate. Three healthy plants from each line, prepared using the

methods shown in Section 2.5.1, were separated from the compost media by snipping

immediately below the attachment point of the petioles so that no root material remains.

The three plants were quickly arranged in a triangle formation on the observation plate

and transferred to a light-proof box which was subsequently stored in a constant 20 �
environment. Three plates were prepared per line providing nine biological replicates.

At the same time each day, a photography lab was prepared by suspending a

Nikon D50 digital SLR camera with an AF-S DX Zoom-Nikkor 18-55mm f/3.5-5.6 ED

lens above a work surface illuminated only by 4 ⇥ 100 W tungsten bulbs arranged

in pairs either side. Each of the observation plates were consecutively placed on the

work surface and photographed without adjusting or moving the camera. The plates

were then stored again in complete darkness at 20 � until the following day. Once all
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lines had demonstrated leaf yellowing, the samples were discarded and the photographs

collated for analysis.

In order to ensure that all the plates were treated similarly during photography

a place marker was used as a background to ensure consistency both between plates and

between days. During the first day of photography, plates were marked on the edge so

as to provide a reference point for the orientation of the plate on subsequent days. The

background markings are shown in Figure 2.3, where it can be seen that:

• Crosses defined the corners of the photographed area to ensure that the same lens

zoom was used each day.

• A consistent white background provided a sample area to normalise images where

colour biases existed.

• Plate areas defined the position that the plates and lids should be placed as well

as the orientation to maintain consistency between days; and

• A series of coloured dots provided a reference for the camera to help reduce colour

biases during the camera’s automatic white-balancing.

In an attempt to further normalise the photography at the experimental stage

and reduce the need for post-experimental normalisation, the camera was set to manual

settings to capture the plate’s appearance consistently between photographs rather than

allowing the camera to optimise the settings for each plate and introduce inconsistencies.

The chosen settings were:

Mode: Manual (M)

ISO sensitivity: 200

Lens aperture: f/7.1

Shutter timing: 1/200th of a second

Flash mode: O↵

White balance: Tungsten lighting

Focussing: Manual - set to the distance of the leaves on the

first photograph then left unchanged

Images were captured using an infra-red remote shutter release to prevent camera

shake, and all the plates were photographed daily until yellowing had occurred for all

lines in the experiment. The photographs were then ready for computational analysis.

The photographs were imported into the photo-cataloging/editing software Aper-

ture (Apple) where they were processed to normalise for white balance and brightness,

using the tool ‘Auto Levels (Separate RGB)’. These were then exported into folders,

each folder containing all photographs taken of an individual line across all time points,

ensuring that the file names allow the time points to be alphanumerically sorted into

the correct order. Images were analysed using ImageJ64 (Abramo↵ et al., 2004) which

allowed the selection of a white reference point in the photograph and the area of leaf

56



(a) Measurement of background white (b) RGB Histogram

(c) Leaf measurement before senescence (d) RGB Histogram

(e) Leaf measurement after senescence (f) RGB Histogram

Figure 2.4 – Illustration of colour histogram analysis performed in ImageJ
before and after dark-induced senescence
After masking an area of the image in ImageJ, a colour histogram can be obtained
describing the red, green and blue components of the pixels in the area. In (a), the
measurement of the white background is being made and the lasso area can be seen
within the red highlighted area. The consequential histogram for this lasso can be seen
in (b) and shows that each of the red, green and blue components are approximately
equal as is expected for a white area. (c) shows a leaf prior to senescence being
lassoed to obtain the colour histogram shown in (d) whilst (e) shows the same leaf
after senescence which gives the colour histogram shown in (f). A brief comparison of
the red and green components in both (d) and (f) shows that the ratio between them
can be used as a quantification of the progress of senescence
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4 as shown in Figure 2.4. Once an area was lassoed, a colour histogram was produced

by using the menu option Analyse > Tools > Color Histogram. This allowed the pixel

counts in the lassoed area for each intensity (0–255) of red, green and blue to be ex-

ported as a text-based contingency table. These tables were collated into text files with

one file containing all the time points for a single observation point.

By sourcing the R script shown in Appendix H and using the command:

gatherData("path ")

the data collected in ImageJ64 was normalised using the observed white reference point

to calculate the transformation to apply across the whole image. As the paper in the

white reference area was not absolute white but averaged 200 for each of red, green and

blue over many images, each image was adjusted to bring the mean of each component

in the white reference area to 200 by using the procedure shown in Procedure 2.3.

Procedure 2.3 Transformation of photographs to obtain white balance
If the intensity of the components of any given pixel of the image are defined by
{R,G,B}, the mean intensity of the components of all the pixels in a white area of
the image are defined by {R̄
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} and the expected RGB values for the white area
are all 200, the white balance normalised transformation of the pixel can be described
as: 2
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If the mean intensity of the components of the observed white balance normalised leaf
area of the image are then defined as {R̄0
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}, the level of senescence for the
observed area can be calculated by:

sen =
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0
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Ḡ

0
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Once normalisation had been applied to the image, the level of senescence was

estimated using the second equation in Procedure 2.3, whereby the ratio between the

mean red and the mean green observations of a leaf was used to provide a value which

could be used to make a direct comparison of relative senescence between any two

rosettes across the experiment. This ratio is typically around a value of 0.5 to 0.7 prior

to the onset of yellowing and progresses quickly to a value of around 1.2 after complete

yellowing has occurred. At a point where half the leaf has yellowed, the value is almost

exactly 1.0.

The senescence ratios were used to plot curves of the onset of senescence against

time. Where a visible di↵erence could be identified between the curves of an altered ex-

pression line and those of the Col-0 wild type, this indicated that an altered phenotypical

response was occurring and justified the continued study of those lines.

A more refined analysis of these di↵erences was obtained by fitting a logistic

curve to the level of senescence of each observed rosette over time using the R function,
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Figure 2.5 – An example of a logistic curve with model parameters shown
This plot shown demonstrates the typical shape of a logistic curve with various pa-
rameter adjustments. The four parameters and a representation of their e↵ect on
the curve are shown in brown. Using the blue curve as a baseline, the green curve
demonstrates a halving of the m parameter which results in half the original ampli-
tude. The orange curve demonstrates a doubling of the n parameter which results in
a curve with greater maximum gradient. Reducing the a parameter causes the curve
to shift left along the horizontal axis as shown in the red curve, whilst increasing the
b parameter causes the curve to shift up the vertical axis as shown in the grey curve.

nls to find a non-linear curve for the provided model:

y ⇠ m⇥
✓

1

1 + exp(n(a� x))

◆
+ b (2.2)

Where m is the amplitude of the response, n is a parameter of the maximum gradient

of the curve, a is the value of x at the point of maximum gradient and b is the value of

y at the start point of the curve. The e↵ects of each of these parameters on the shape

of the curve are shown in Figure 2.5.

When applied to the senescence screen data, y refers to the level of senescence

whilst x refers to time. The models were fitted to the yellowing data of plant lines using

an adaptation of the script shown in Appendix I. In this script, the yellowing data of the

biological replicates for each plant line, including the wild type, are loaded as matrices.

A custom function, plotLogistic(), finds the parameters of a logistic curve which fits

the profile of the wild type yellowing data across all replicates. These parameters lead
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to the calculation of the time and level of yellowing at the point of maximum rate of

change in the wild type curve. For each plant line, including the wild type, a logistic

curve was fitted to the yellowing data of each biological replicate and the parameters of

the curve used to identify key values which compare its shape to that of the mean wild

type curve. The values used for this comparisons are:

• The level of yellowing in the altered expression mutant at the time when the mean

wild type curve is undergoing maximum rate of change.

• The time at which the altered expression mutant reaches the same level of yellow-

ing as the mean wild type curve during its maximum rate of change.

The two values were then independently processed using an analysis of variance across all

lines using the aov() function of R. By assuming that the between-replicate variability is

common across all lines, the test is therefore more powerful than individual comparisons

with the wild type for each line. p-values indicating whether the mean value of each

line was di↵erent from the wild type were then returned, indicating the significance

of the di↵erence observed in a comparison with the wild type. Where (p 6 0.05) in

both comparisons this indicates a significant di↵erence between the logistic curves of

the two plant lines and therefore a significant di↵erence in their phenotypical response

to dark-induced senescence.

Where a logistic curve could not be fitted because insu�cient data existed, plant

yellowing was graded by eye as an alternative.

2.6 Plant Transcriptomics

This section describes the methods associated with the extraction and consequential

analysis of DNA and RNA samples from plant tissue which was harvested, frozen in

liquid nitrogen and stored at -80 �.

2.6.1 DNA Extraction

DNA extraction was achieved by using the REDExtract-N-Amp (Sigma) kit. This

involved bringing a heating block to 95 � before removing a paper punch-hole sized

section of leaf tissue and placing it in a 2 mL micro-centrifuge tube. 100 µL of extraction

solution from the REDExtract-N-Amp kit was used to submerge the leaf tissue before

the tube was sealed and placed into the pre-heated heating block. Once exactly 10

minutes had passed, the tube was removed from the block and 100 µL of dilution

solution was added to the contents before resealing the tube and mixing the contents

with a desktop vortexer to halt the reaction. The solution, now containing extracted

DNA, was then stored at between 2–8 �.
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Figure 2.6 – An illustration of the location of primers used in testing for
homozygous T-DNA insertion
Three primers are used for testing whether the T-DNA insertion is homozygous. Two
pairs are made between these primers. If the left and right primers can produce an
amplicon, the T-DNA is missing as its presence would provide too much distance
between the primers. If the LBb1.3 and right primer can produce an amplicon, the
T-DNA is present as the LBb1.3 primer can only bind if the T-DNA sequence exists.
After both pairs have been amplified, the line being tested only has a homozygous
insertion if the only pair which can produce an amplicon are the LBb1.3 primer and
the right primer.

2.6.2 T-DNA Insertion Screening

To test the location and homozygosity of the T-DNA insert in SALK reduced-expression

mutants (Alonso et al., 2003), primers are required for simple PCR reactions. For each

SALK line, two gene-specific primers are required alongside one primer specific to the

inserted T-DNA sequence. The sequences of all three primers are available directly from

SALK (http://signal.salk.edu/tdnaprimers.2.html) and their relative binding lo-

cations are shown in Figure 2.6.

Three PCR reactions per plant line were used to determine the presence and

homozygosity of the T-DNA insert. The reactions were prepared in the following com-

binations of primers and template:

Reaction Index Template Forward Primer Reverse Primer

1 Genomic DNA Left Gene-specific Right Gene-specific

2 Plant Line DNA Left Gene-specific Right Gene-specific

3 Plant Line DNA T-DNA Specific Right Gene-specific

For each reaction, PCR ReadyMix from the REDExtract-N-Amp kit (Sigma)

was used as this accounts for the components of the extraction and dilution solutions

used in Section 2.6.1. The protocol for the PCR ReadyMix demands that the reaction

components be mixed in a 250 µL PCR tube to a total volume of 20 µL in the following

ratios, so that x+ 2y = 6 µL:

Reagent Volume

Nuclease-free H2O x µL

REDExtract-N-Amp PCR Readymix 10 µL

Forward primer y µL

Reverse primer y µL

Leaf disk extract 4 µL

Total volume 20 µL
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The prepared tubes were placed in a PCR thermo-cycler using a programme of

the following parameters in which the annealing temperature has been optimised for

the specific primer pairs:

Step Temperature Time Cycles

Initial denaturation 94 � 3 minutes 1

Denaturation 94 � 30 seconds

30–35Annealing 45–68 � 30 seconds

Extension 72 � 1 minute

Final extension 72 � 10 minutes 1

Hold 4 � 1

The products were then separated in a 1.5% electrophoresis gel alongside 1Kb

Plus DNA Ladder (Invitrogen) to identify whether the region between the primers had

been amplified by the reaction. Only reaction 1 and reaction 3 should be able to

produce a product where the T-DNA insert exists and is homozygous. Where reaction

2 produces a product, this indicates that the insert does not exist in at least one strand.

The conclusions to be drawn from the results are shown here:

Conclusions
Reaction

1 2 3

Check PCR programme and primers 7 7 7

Retry reaction 1 and optimise primers 7 7 X
Retry reaction 1 and optimise primers 7 X 7

Retry reaction 1 and optimise primers 7 X X
Check extracted DNA X 7 7

T-DNA insert is present and homozygous X 7 X
T-DNA insert is not present X X 7

T-DNA insert is present but heterozygous X X X

In the case of the final conclusion shown, it may be possible to obtain a homozy-

gous line by screening the next generation in which 1 in 4 individuals should have a

homozygous T-DNA insert.

2.6.3 RNA Extraction

Two di↵erent methods of RNA extraction were used. Where the tissue to be extracted

from was of a mixed sample and was to be used for RT-PCR expression analysis, the

Trizol method was used as it is less expensive. Where the tissue was small in volume

from a single leaf and the RNA was to be used for microarray analysis, the mirVana

method was used as this led to better yields from small samples.
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2.6.3.1 Trizol Method

So as to create a mixed sample which could be easily aliquoted, a pestle and mortar were

used to grind leaves of the same plant line together. Liquid nitrogen was added to the

ceramic mortar so as to reduce its temperature to below -80 � whilst the pestle was also

submerged in further liquid nitrogen. Once the liquid nitrogen had stopped evaporating

violently, a mixed sample of leaves were transferred from their foil pouch into the mortar

where they remained in suspension as the liquid nitrogen continued to evaporate. As

soon as the liquid nitrogen was completely evaporated, the pre-chilled pestle was used

to grind the leaves into a fine powder before they were quickly transferred with a chilled

metal spatula into a chilled and labelled 15 mL falcon tube which was then sealed and

stored in liquid nitrogen. Approximately 250 µL of the leaf tissue was later transferred

from the falcon tube to a chilled 2 mL micro-centrifuge tube for RNA extraction whilst

any remaining tissue was stored at -80 �.

Using a fume hood, 1 mL of Trizol reagent was added to each micro-centrifuge

tube containing leaf tissue and the leaf tissue was homogenised by inversion of the sealed

tubes. The tubes were then kept at room temperature for 5 minutes before 200 µL of

chloroform were added and the sealed tubes shaken vigorously for 15 seconds, resulting

in an orange solution which was allowed to stand for 3 minutes at room temperature.

The tubes were then centrifuged at 8,800 ⇥ g for 15 minutes at 2–8 �. This separated

the liquid into three layers: a lower phenol-chloroform layer, a layer of cell tissue and

an upper aqueous layer of approximately 600 µL containing RNA and DNA from the

cells. The upper layer was carefully removed without disturbing the other layers and

transferred to clean 1.5 mL micro-centrifuge tubes before adding 500 µL of isopropanol

to each. This solution was incubated at -20 � for between 1 and 2 hours to allow the

DNA and RNA to precipitate.

After incubation, the tubes were centrifuged at 8,800 ⇥ g for 20 minutes at

2–8 � so as to pellet the RNA and DNA at the base of the tubes. The supernatant

from each tube was carefully removed and discarded before being replaced with 1 mL

of 75% ethanol to clean the pellet. The pellet was resuspended into the ethanol using

a vortexer and/or physical agitation of the pellet with a pipette tip. Once suspended,

the tubes were centrifuged at 8,800 ⇥ g for 10 minutes at 2–8 �. The supernatant was

once again carefully discarded and the pellet was allowed to air dry for 5 minutes before

being resuspended in 100 µL of RNase free water.

To purify the total RNA samples, they were then treated with the RNA cleanup

procedure of the RNeasy mini kit (Qiagen). These steps were performed quickly, but

at room temperature as described in the kit manual. 2⇥ 40 µL aliquots of RNase free

water was then used to elute RNA from the column membrane. Purified RNA samples

were stored at -80 �.
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2.6.3.2 mirVana Method

Where the extraction of higher quality total RNA samples was required, the mirVana

miRNA isolation kit (Ambion) was used as an alternative to the Trizol method shown

above. This kit enabled the extraction of higher yields of total RNA, including a high

yield of microRNA fragments, at room temperature, in less time than the Trizol method

and with substantially less degradation, making it an excellent choice for microarray

samples and samples where a lower yield of total RNA was expected such as those

obtained during late stages of senescence.

Where extractions were for a single leaf, samples were ground directly in a 2 mL

micro-centrifuge tube using a specially shaped drill bit attached to a high-torque drill.

The drill bit was frozen in liquid nitrogen so as to prevent the frozen leaf tissue from

defrosting during drilling and the tube was only drilled long enough, for around 45

seconds, to disrupt the cells of the leaf. To lyse the cells, 500 µL of Lysis/Binding

Bu↵er and 50 µL of miRNA Homogenate Additive from the mirVana kit were added

to the tubes and they were mixed with the samples by inversion to homogenise the

contents. The tubes were then placed on ice.

After 10 minutes, the tubes were moved to a fume hood and 500 µL of Acid-

Phenol:Chloroform (Ambion) were added to each before vortexing the samples for be-

tween 30 and 60 seconds. The samples were then immediately centrifuged at 8,000 ⇥ g

for 10 minutes at room temperature. The upper aqueous phase was then removed by

careful pipetting and transferred to a fresh 1.5 mL micro-centrifuge tube.

600 µL of 100% ethanol were added to each of the tubes and mixed by pipet-

ting. The sample was pipetted onto a supplied filter cartridge in 700 µL aliquots and

centrifuged at 8,000 ⇥ g for 15 seconds and the flow through discarded. Once all the

sample had passed through the filter, 700 µL of miRNA Wash solution 1 were added

to each filter column before centrifuging at 8,000 ⇥ g for 10 seconds and discarding

the flow through. 500 µL of Wash solution 2/3 were added to the columns before they

were centrifuged at 8,000 ⇥ g for a further 10 seconds, discarding the flow through. A

further 500 µL of Wash solution 2/3 were then added to the column before centrifuging

again at 8,000 ⇥ g for 10 seconds and discarding the flow through once more. The filter

cartridges were centrifuged a final time at 8,000 ⇥ g for 1 minute to remove all traces

of ethanol from the filter.

To elute the RNA from the filter cartridges, they were placed in fresh collection

tubes, as supplied, and the RNA was eluted from them by placing 50 µL of nuclease-free

water pre-heated to 60 � on the centre of the filter and then centrifuging at 10,400 ⇥ g

for 30 seconds. To increase the concentration of the RNA, the flow through was returned

to the filter a second time a centrifuged at 10,400 ⇥ g for a further 30 seconds. RNA

samples were stored at -80 �.
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2.6.4 RNA Concentration Measurement with a NanoDrop

The NanoDrop ND-1000 (Thermo Scientific) o↵ered a cuvette-free method of performing

a spectrophotometer analysis of very small RNA samples. For this, 1.5 µL of elution

bu↵er was placed onto the fibre-optic receiver of the NanoDrop and the reading arm

lowered to make contact with the drop and cause it to bridge the 1mm gap. The software

operating the NanoDrop was then instructed to configure for the RNA-40 settings and

to take a blank measurement to calibrate for the background absorbance of the elution

bu↵er. The droplet was removed with absorbent tissue and the pedestals cleaned with

70% ethanol to remove any residues and complete the calibration process.

To make measurements of the RNA samples 1.5 µL of the first sample was

placed on the pedestal and the reading arm lowered to make contact with the droplet.

The software was instructed to take a measurement and this returned a plot of the

absorbances between wavelengths of 220–350 nm. Additionally, the concentration of

RNA in the sample was returned as units of ng/µL as well as a ratio of the absorbance

at 260 nm and 280 nm. This ratio signifies the purity of the sample and should be around

2.0 in very pure samples. Once the measurement was taken, the pedestals were cleaned

with ethanol once more and the next sample loaded until all samples were analysed.

2.6.5 Bioanalysis of total RNA Samples

To verify the integrity of total RNA samples, they were analysed using the Bioanalyzer

2100 Expert (Agilent) which o↵ers highly reproducible analysis of fragment sizes in very

small samples of total RNA over short periods of time using an RNA 6000 Nano Kit

(Agilent). In preparation for this analysis, each of the reagents included in the kit were

brought to room temperature for 30 minutes. 550 µL of RNA 6000 Nano gel matrix

were transferred to a filter column and this was then centrifuged at 3,200 ⇥ g for 10

minutes to pass the gel through the filter. Once this was completed, the RNA 6000

Nano dye concentrate was vortexed and then centrifuged for 10 seconds to collect the

dye concentrate at the bottom of the tube. 1 µL of the dye concentrate was added to

at 65 µL aliquot of the filtered gel matrix and then vortexed to thoroughly mix. This

mix was centrifuged at 10,400 ⇥ g to complete the preparation of the reagents.

1.5 µL aliquots in 200 µL PCR tubes were taken of each of up to 12 RNA samples

to be analysed and of the RNA 6000 Nano ladder. These were then linearised by heating

to 70 � for 2 minutes before promptly cooling on ice. A new RNA Nano chip was placed

on the chip priming station and 9 µL of pre-prepared gel-dye mix were pipetted into the

well marked lG. The plunger of the chip priming station was pushed down until held by

the clip to pressurise the gel-dye mix and released exactly 30 seconds later. A further

9 µL of gel was added to each of the two wells marked G�. 5 µL of RNA 6000 Nano

marker was pipetted into each of the 12 sample wells as well as the well marked with a

ladder symbol. 1 µL of RNA ladder was added to the well marked with a ladder system,

whilst 1 µL of each RNA sample was added to one of the 12 sample wells. A further
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1 µL of RNA 6000 Nano marker was added to unused sample wells.

Once the chip was prepared, it was horizontally mounted and vortexed in a vortex

mixer at 1,920 ⇥ g for 60 seconds. In order to ensure that the pins of the bioanalyzer

were not contaminated, they were bathed in RNAzap (Ambion) for 60 seconds and then

in nuclease free water for a further 60 seconds, using the specially designed cleaning chips

provided as part of the RNA 6000 Nano Kit. Once the pins were clean, the vortexed

chip was loaded into the receptacle and the bioanalyzer was left for 20 minutes to run all

the samples. The output provides a plot per sample of frequency of di↵erent fragment

sizes and then produces the equivalent data in the form of a pseudo-electrophoresis gel

for comparison between samples. Where the highest frequency peaks are the largest

fragments, the RNA has not been substantially degraded, whilst high frequencies of

small fragments, or a lack of peaks, indicate that the RNA has been degraded and is

not suitable for further analysis.

2.6.6 DNAse Treatment

DNase treatment of RNA samples requiring no DNA be present was performed using

TURBO DNAse (Ambion) by the following methods. Aliquots of up to 44 µL of purified

RNA samples were transferred to PCR tubes so as to provide approximately 2 µg of

RNA per sample. Where this volume was less than 44 µL, the appropriate volume of

nuclease free water was also added to bring the total volume to 44 µL. 5 µL of TURBO

DNase 10⇥ bu↵er was added to each of the samples as well as 1 µL (2U) of TURBO

DNase enzyme. These tubes, once sealed, were allowed to incubate at 37 � for 30

minutes, after which time a further 1 µL (2U) of TURBO DNase enzyme was added

and the tube allowed to incubate for a further 30 minutes at 37 �.

To halt the reaction, DNase inactivation reagent was resuspended by vortexing

and flicking its tube and 10 µL of the reagent were then added to each reaction. The

reactions were allowed to incubate at room temperature for 2 minutes with occasional

mixing. The reaction tubes were then centrifuged at 10,400 ⇥ g for 90 seconds to carry

the DNase bound to the inactivation agent to the bottom of the tubes. The supernatant,

containing only the RNA and no DNA, was carefully removed and transferred to a

new tube. The DNA free samples were then measured for RNA concentration on the

NanoDrop as described in Section 2.6.4.

2.6.7 RT-PCR Expression Analysis

Two alternative methods were used to perform RT-PCR expression analysis. illustra

Ready-To-Go RT-PCR beads (GE Healthcare) provide both reverse transcriptase and

Taq to allow a single-step reaction from mRNA to PCR product whilst the use of

SuperScript™ II Reverse Transcriptase (Invitrogen) allows the initial transcription of

mRNA back into DNA before a standard PCR is used to detect the concentration of

specific fragments.

66



Using either method, primers were designed to amplify a region of the gene

being observed. In genes where introns exist, these primers were located either side of

an intron as this allowed reverse transcribed mRNA to be di↵erentiated from genomic

DNA in the sample. Primers were typically 20 bases long with a CG/AT ratio very close

to 1:1. Where a gene had a T-DNA insert approximately in the centre of its coding

region, two pairs of primers were designed: one before the T-DNA and one after so that

abundance of partially transcribed mRNA fragments could be assessed.

2.6.7.1 Using illustra Ready-To-Go RT-PCR Beads

illustra Ready-To-Go RT-PCR Beads (GE HealthCare) were used as a fast method

of providing RT-PCR results for RNA samples. The supplied first strand primer

(pd(T)12�18) was pre-prepared to a concentration of 0.5 µg/µL before being stored

at -20 �. For each reaction, 200 ng of total RNA were used as a template. RNA sam-

ples for each altered-expression line were compared with those of the Col-0 wild-type

and each sample was tested by RT-PCR twice to provide two replicate observations of

the expression.

The tubes for the reactions each held a bead containing desiccated Moloney

Murine Leukemia Virus (M-MuLV) reverse transcriptase and Taq DNA polymerase.

In order to calculate the volume of DEPC-treated water to dissolve the beads in, the

following table was used to identify the volumes of each component in the individual

reactions:

Component Volume

First-strand primer pd(T)12�18 1 µL

PCR primer 1 2 µL

PCR primer 2 2 µL

200 ng of template RNA y µL

DEPC-treated water z µL

Total volume: 50 µL

y was calculated from the RNA concentration obtained with the NanoDrop using the

methods of Section 2.6.4. Once this volume was known, z was easily calculated using

the equation z = 45 � y. The bead was dissolved in the appropriate volume of water

by gentle flicking of the tube and incubation on ice for 5 minutes. Template RNA was

added to each tube, followed by the addition of each of the primers. The tubes were

then transferred to a PCR thermo-cycler and setup with the following programme:

Step Temperature Time Cycles

Reverse Transcriptase Activity 42 � 30 minutes 1

Reverse Transcriptase Inactivation 95 � 5 minutes 1

PCR Denaturation 95 � 30 seconds

50Primer Annealing 55 � 30 seconds

PCR Extension 72 � 1 minute
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As the programme reached the 20th, 26th, 32nd, 38th and 44th cycle, the reaction

was paused so that a 5 µL sample taken from each of the tubes. Samples were sepa-

rated on a 2.0% agarose electrophoresis gel to identify the size and abundance of PCR

products. A comparison between the brightness of product bands in the Col-0 wild-type

samples versus those of the same time points for the altered-expression line allowed the

relative transcription levels of the genes to be identified.

2.6.7.2 Using SuperScript™ II Reverse Transcriptase

SuperScript™ II Reverse Transcriptase (Invitrogen) was used to provide cDNA as a

separate reaction from the PCR in the RT-PCR process. This allowed less RNA to be

consumed by the RT-PCR process when it was to be used for a further purpose such

as a microarray experiment. The first-strand cDNA synthesis was performed following

the Invitrogen instructions whereby 100 ng of total RNA were used as a template in the

following reaction mix:

Component Volume

Oligo(dT)12�18 (500 µg/ml) 1 µL

dNTP Mix (10 mM each) 1 µL

100 ng of total RNA y µL

Sterile, distilled water z µL

Total volume: 12 µL

y was calculated using the total RNA concentration obtained from NanoDrop analysis

as described in Section 2.6.4. Once this was known, volume z could be calculated by the

formula z = 10 � y. This mixture was allowed to incubate at 65 � for 5 minutes and

was then quickly chilled on ice, centrifuged briefly to collect the contents of the tubes

and then the following components were added to each:

Component Volume

5⇥ First-Strand Bu↵er 4 µL

0.1 M DTT 2 µL

RNaseOUT™ (40 units/µL) 1 µL

Accumulative volume: 19 µL

The contents of the tubes were mixed by gentle flicking before incubating at 42 � for

2 minutes. After this time, 1 µL (200 units) of SuperScript™ II reverse transcriptase

was added to each reaction and mixed by pipetting. The tubes were incubated at 42 �
for 50 minutes before being the reverse transcriptase was inactivated by incubation at

70 � for 15 minutes.

Once cDNA had been synthesised in the above manner, expression levels of

specific transcripts could be compared between lines by using PCR reactions with gene-

specific primer pairs as described at the beginning of this Section 2.6.7. Each altered-

expression line was compared with expression of the altered gene in the Col-0 wild-type
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in two replicate PCR reactions. The reaction mix used for each replicate PCR was as

shown:

Component Volume

10⇥ PCR Bu↵er 5 µL

50 mM MgCl2 1.5 µL

10 mM dNTP Mix 1 µL

Forward primer (10 µM) 1 µL

Reverse primer (10 µM) 1 µL

Taq DNA polymerase (5 U/µL) 0.4 µL

cDNA from first-strand reaction 2 µL

Autoclaved, distilled water 38.1 µL

Total volume: 50 µL

The tubes were then placed into a PCR thermo-cycler and a programme used with the

following settings:

Step Temperature Time Cycles

Initial denaturation 94 � 2 minutes 1

Denaturation 94 � 30 seconds

50Annealing 55 � 30 seconds

Extension 72 � 1 minute

5 µL samples were taken from each tube immediately after the 20th, 25th, 30th, 40th and

50th cycles and these samples were separated on a 2.0% agarose electrophoresis gel to

compare the brightness of bands, and hence the abundance of transcripts, between the

altered-expression line and the Col-0 wild-type. Where a delay existed in the accumu-

lation of product for the altered-expression line, this was considered an indication that

expression was reduced for that line. Where the altered-expression line accumulated

product more quickly than the Col-0 wild-type, this was considered an indication that

the expression was enhanced for that line.

2.7 Cycle Sequencing of DNA using BigDye®

In order to provide sequencing of DNA sequences, BigDye® (Applied Biosystems) was

used by preparing the following mixture of components for each sequencing reaction in

a 200 µL PCR tube:

Component Volume

Ready Reaction Premix 1 µL

BigDye Sequencing Bu↵er 2.5 µL

Sequencing Primer (10 µM) 0.5 µL

Template x µL

Nuclease-free Water y µL

Total Volume 10 µL
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Where x can be calculated from the concentration of the DNA template. The total

template to be added must be between 150 – 300 ng. The volume of water is therefore

calculated as y = 6�x. After brief mixing, the tubes were placed in a PCR thermocycler

set up with the following programme:

Step Temperature Time Cycles

Initial denaturation 96 � 1 minutes 1

Denaturation 96 � 10 seconds

25Annealing 50 � 5 seconds

Extension 60 � 4 minutes

Cooling 4 � 1 1

The resulting product was stored at -20 � until sequenced using a chromatography

system.

2.8 Yeast-1-Hybrid

Yeast-1-hybrid was performed using a standard Clontech Matchmaker kit with some

modifications made by Claire Hill of The University of Warwick.

2.8.1 Growth Media Preparation

2.8.1.1 Lysogeny broth (LB) Liquid Media with Antibiotic

LB liquid media was prepared by dissolving the appropriate quantity of LB granules in

deionized water in a bottle 25% larger than the volume of water. This was performed

using an autoclave to sterilise the solution. During cooling, once the solution had

reached 60 �, a 1
/1000th volume of an appropriate antibiotic was added to the solution.

2.8.1.2 LB Agar Plates with Antibiotic

Media for LB agar plates were prepared in the same way as shown in Section 2.8.1.1,

with the exception that a 2% w/v of agar powder was also added before autoclaving.

Once the solution had cooled su�ciently to hold the bottle, plates were poured in a

laminar flow cabinet and allowed to set for one hour before being stored upside down

in a sterile bag.

2.8.1.3 YPDA Liquid Media

YPDA liquid media was prepared in a similar manner to LB liquid media as described in

Section 2.8.1.1 with the exceptions that desiccated YPDA powder was used in substitute

of LB granules and no antibiotic was added during cooling.
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2.8.1.4 YPDA Agar Plates

For simplicity of preparation, pre-mixed powders (ClonTech) were used in the prepara-

tion of YPDA agar plates. For this, a sachet of powder was dissolved in 500 mL of water

which was then sterilised using an autoclave. Once cool enough to touch, plates were

poured in a laminar flow cabinet and allowed to set for one hour before being stored

upside down in a sterile bag.

2.8.1.5 SD Liquid Media

SD liquid media was prepared by dissolving powdered SD base into a su�cient volume

of water. This was then supplemented with powdered nutrients lacking one or more

essential amino acids. The nutrients and SD base were dissolved and the solution

sterilised by autoclaving.

2.8.1.6 SD Selection Agar Plates

In a similar manner as shown in Section 2.8.1.4, pre-mixed powders (ClonTech) were

used in the preparation of SD selection plates. Selected drop-out nutrients were either

SD-Leu-Trp (catalogue number 630317) or SD-Leu-Trp-His (catalogue number 630319).

Where the addition of 3-Amino-1,2,4-triazole (3AT) was desirable this was performed

by adding powdered 3AT once the temperature of the solution had reached 60 � in a

WaySafe cabinet to the desired concentration.

2.8.2 Amplifying Upstream Fragments of the Target Gene

To generate the plasmid for Y1H, the insert for the specific bait construct had to be

amplified from genomic DNA. For this PCR reaction, primers were designed to amplify

the upstream region of the target gene. Amplification of the inserts was prepared by

adding the following components to a 200 µL PCR tube per insert:

Component Volume

KOD Bu↵er #1 5 µL

25 mM MgCl2 3 µL

10 mM dNTP Mix 5 µL

Forward primer (100 µM) 1 µL

Reverse primer (100 µM) 1 µL

Col-4 genomic DNA 1 µL

Dimethyl sulfoxide (DMSO) 0.5 µL

KOD enzyme 1 µL

Autoclaved, distilled water 32.5 µL

Total volume: 50 µL

Once prepared, the PCR reaction was run using the following programme:
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(a) pHisLeu2 (b) pDEST22

Figure 2.7 – Features of vectors used in yeast-1-hybrid screens
The features of both the bait vector (a) and the prey vector (b), can be seen. The
leucine synthesis gene in pHisLeu2 allows transformed cells to survive on media lacking
leucine, whilst the tryptophan synthesis gene in pDEST22 allows transformed cells to
survive on media lacking tryptophan. Where a transcription factor fused at the N-
terminus to the GAL4 activation domain in pDEST22 is able to bind to the sequence
in the promoter of the HIS3 gene in pHisLeu2, the activation domain then causes
transcription of HIS3 and the yeast cell is able to survive on media additionally
lacking histidine.

Step Temperature Time Cycles

Initial denaturation 94 � 2 minutes 1

Denaturation 94 � 10 seconds

30Annealing 60 � 20 seconds

Extension 72 � 30 seconds

Final extension 72 � 7 minutes 1

Cooling 4 � 10 minutes 1

Hold 20 � 1

To ensure that proper amplification of the desired products had occurred, 5 µL of each

PCR product was run on a 1.5% electrophoresis gel. Where the desired product size

existed, the remaining PCR product was separated by being run on a 2.0% electrophore-

sis gel. The appropriate product was cut from the gel using a clean scalpel blade on

a preparatory UV transilluminator and then placed into a clean 2 mL micro-centrifuge

tube. DNA was extracted from the gel fragments by following the manufacturers pro-

tocols of the QIAquick Gel Extraction kit (Qiagen) to provide 15 µL of clean DNA

fragment.

2.8.3 Inserting Fragments into Plasmid Vectors

Inserts were confirmed to be of high enough concentration by running 10 µL of a 1 in

10 dilution on a 1.5% agarose electrophoresis gel to ensure the band was still visible.

Adequate inserts were digested in preparation of ligation with an appropriate vector.

In the case of the pHisLeu2 vector (see Figure 2.7(a)), restriction sites were EcoRI
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and MluI, whilst pBlueScript KS+ vector (Agilent) required either SacI and HindIII or

SacI and SpeI depending on which combination of restriction sites were absent in the

insert. Fermentas FastDigest enzymes were used, as these provide e�cient digestion of

the sequence without significant star activity within a short time frame. The digestion

reactions were assembled in 200 µL PCR tubes and contained the following components:

Component Vector Digestion Insert Digestion

Nuclease-free Water 14 µL 11 µL

Fermentas 10⇥ FastDigest Bu↵er 2 µL 3 µL

Vector/Fragment DNA 2 µL 14 µL

Restriction Enzyme 1 1 µL 1 µL

Restriction Enzyme 2 1 µL 1 µL

Total Volume: 20 µL 30 µL

These were incubated at 37 � in a PCR thermocycler to allow digestion of the DNA,

after which they were heated to 80 � to inactivate the enzymes and prevent star activity.

In order to perform the reactions simultaneously the addition of the second enzyme was

staggered from the first due to the di↵ering e�ciencies. The timings of each pair of

enzymes are shown here:

Vector Digestion Insert Digestion

Enzyme 1: EcoRI SacI SacI EcoRI SacI SacI

Enzyme 2: MluI HindIII SpeI MluI HindIII SpeI

Minutes @ 37 � after Enzyme 1 0 10 10 15 10 25

Minutes @ 37 � after Enzyme 2 5 5 5 5 20 5

Minutes @ 80 � to Inactivate 5 5 5 5 5 5

Total time (minutes) 10 20 20 25 35 35

In the case of digested vectors, the whole digested product was run on a 0.8% agarose

electrophoresis gel to separate the linear and un-cut vector. The linear vector was cut

from the gel and extracted using the manufacturer’s protocol for the QIAquick Gel

Extraction kit (Qiagen). Similarly, the digested inserts were cleaned using the same

protocol. A 1 in 10 dilution of both vectors and inserts were run on a 1% agarose

electrophoresis gel to compare concentrations. Ligations were prepared at room tem-

perature in 200 µL PCR tubes by mixing the following:

Component Volume

5⇥ T4 DNA Ligase Bu↵er 2 µL

T4 DNA Ligase Enzyme 1 µL

Digested Vector x µL

Digested Insert y µL

Nuclease-free Water z µL

Total Volume: 10 µL

Typically, x and y would be between 0.5 and 3 and would ensure that both vector and

inserts were present in equal quantities. z could be calculated as 7 � (x + y). Once
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the ligation was prepared, it was placed in an insulated vessel which was subsequently

placed at 2 – 8 � overnight.

2.8.4 Bacterial Transformation

To clone the plasmids, competent E. coli cells were transformed. For this, agar plates

with LB and antibiotics were prepared using the preparation described in Section 2.8.1.2.

The antibiotic used for selection was kanamycin (50 µg/mL) for cells transformed with

pHisLeu2 and carbenicillin (100 µg/mL) for cells transformed with pBlueScript KS+.

To perform the transformation, pre-prepared aliquots of competent E. coli cells

were defrosted on ice for 10 minutes. The ligation mix from the previous day was added

to the cells and mixed gently. The cells were left on ice for a further 30 minutes after

which they were heat shocked at 42 � for 30 seconds before being snapped back on ice

for 2 minutes. 500 µL of SOC media (Super Optimal broth with Catabolite repression)

was added and the solution incubated at 37 � for 90 minutes to allow cells to recover.

The cultures were centrifuged at 3,200 ⇥ g for 2 minutes to pellet the cells at

the bottom of the tube. 300 µL of the media were removed and discarded. The cells

were then resuspended in the remaining media by gentle repeat pipetting. All 200 µL

were spread over the pre-prepared agar plates. Plates were allowed to dry and were

then sealed with Parafilm and stored upside-down overnight at 37 � so that individual

colonies could form.

2.8.5 Confirming the Presence of the Insert

To distinguish between colonies containing uncut vector and those containing a plasmid

with an insert, a colony PCR was prepared to examine the size of any insert in the

MCS of the vector. Colonies were picked from the LB plate and suspended in 100 µL

of sterile water. A master mix was produced which was su�cient for up to 20 PCR

reactions and is shown here:

Component Volume

10⇥ PCR Bu↵er (Invitrogen) 20 µL

Orange G loading dye 20 µL

10 mM dNTPs 4 µL

50 mM MgCl2 6 µL

SABR18 Forward Primer (100mM) 1 µL

SABR19 Reverse Primer (100mM) 1 µL

Taq Polymerase (Invitrogen) 1 µL

Nuclease-free Water 167 µL

Total volume 220 µL

SABR18 and SABR19 primers were designed to bind either side of the MCS and there-

fore amplify any insert that has successfully ligated into that region. 1 µL of each colony

solution was added to 9 µL of the master mix and was set to run on the following PCR

programme:
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Step Temperature Time Cycles

Initial denaturation 94 � 2 minutes 1

Denaturation 94 � 30 seconds

25Annealing 50 � 30 seconds

Extension 72 � 2 minutes

Final extension 72 � 7 minutes 1

Cooling 4 � 10 minutes 1

Hold 20 � 1

The PCR product was made to run on a 1.5% agarose electrophoresis gel to identify the

size of the amplified region. Where an insert was present, the band would be equivalent

to 800 bp plus the size of the insert.

2.8.6 Plasmid Cloning

Colonies demonstrating an insert were cultured overnight in 10 mL of LB liquid media,

prepared according to Section 2.8.1.1 and containing an appropriate antibiotic as before.

Cultures were incubated overnight at 37 � whilst shaking at 220 RPM.

The following morning, plasmids were extracted from the bulked up colonies

by following the manufacturer’s protocols for the QIAprep Spin Miniprep (Qiagen).

2 µL of the resulting plasmid solution was then digested using the restriction enzymes

appropriate to the vector and insert and following the same protocol as that for vector

digestion shown in Section 2.8.3. 5 µL of the digested plasmids were made to run on a

1.5% agarose electrophoresis gel to identify that the insert was present in the plasmids

and was of the correct size.

To identify the concentration of the extracted plasmids, the NanoDrop was used

as shown in Section 2.6.4, but with the exception that the setting for analysing DNA

samples was used instead of RNA. This allowed the identification of DNA concentrations

in ng/µL.

2.8.7 Sequencing the Insert

To check that the insert is of the correct sequence without any polymorphisms, the

extracted plasmid was sequenced using insert specific primers to provide sequencing

results from both ends of the insert. The protocol shown in Section 2.7 was used and

the resulting sequences were combined as a consensus sequence in Geneious (Drummond

et al., 2010) to compare with the expected sequence of the Arabidopsis genome. Where

no polymorphism was found, the plasmid was used to transform yeast cells ready for

screening.

2.8.8 Yeast Transformation

During transformation with the bait construct, Y187 strain Saccharomyces cerevisiae

cells (Clontech) were used. The genotype of this strain is shown:
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MAT↵, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4�, met,

gal80�, URA3 :: GAL1UAS-GAL1TATA-lacZ (Harper et al., 1993)

which indicates that the Y187 strain is an ‘↵’ mating type and can therefore mate with

‘a’-type cells. It is also deficient in the leu2, trp1 and his3 genes and therefore cannot

survive on media lacking any of these essential amino acids (leucine, tryptophan and

histidine) unless complemented by a plasmid containing these genes. The bait plasmids

contain the LEU2 gene and, therefore, successfully transformed cells can then survive

on leucine deficient media.

In order to transform yeast cells, a culture of the Y187 cells was grown overnight

in YPDA solution (yeast peptone dextrose adenine) prepared according to Section 2.8.1.3.

Yeast cells were cultured in a 10 mL aliquot of YPDA liquid media in a 50 mL falcon

tube. The culture was grown by incubating at 30 � and shaking at 200 RPM overnight.

The following morning, yeast cultures were divided into 1 mL aliquots in 1.5 mL micro-

centrifuge tubes before being gently pelleted in a centrifuge at 1,600 ⇥ g for 5 minutes.

Once pelleted, the supernatant was removed and the yeast cells resuspended

in 1 mL of 0.1 M lithium acetate. The cells were once again pelleted at 1,600 ⇥ g

for 5 minutes before removing the supernatant and resuspending the yeast cells in a

further 1 mL of 0.1 M lithium acetate. The tubes containing the suspended cells were

incubated in a 30 � water bath for between 1 and 2 hours. Whilst incubating, a solution

containing the plasmid for transformation was prepared by mixing 290 µL PEG, 4 µL

of carrier DNA (denatured herring testes DNA) and 3 µL of plasmid DNA in a 1.5 mL

microcentrifuge tube. This was also incubated in the same water bath to allow the

solution to reach 30 �.

Once 1 – 2 hours had passed, the cells were resuspended in the lithium acetate

by gentle pipetting and 100 µL of the cell suspension was mixed into the PEG/DNA

solution in a swirling motion. The mixes were incubated at 30 � for a further 50

minutes and then transferred to a 42 � water bath to heat shock the cells for 15

– 30 minutes. Immediately after removal from this water bath, the yeast cells were

centrifuged at 2,400 ⇥ g for 3 minutes. The supernatant was removed and the cells

were resuspended in 200 µL of sterile water. The resuspended cells were spread over an

SD-Leu selection plate. Once dry, the plates were sealed and incubated upside down at

30 � until su�cient growth had occurred.

Once individual yeast colonies could be identified on the selection plates, four

colonies were selected for restreaking onto fresh SD-Leu plates divided into four quad-

rants. These plates were sealed in the same manner as before and incubated upside

down at 30 � until su�cient growth had occurred. After this time, the plates were

stored at between 2 – 8 � to prevent further growth of cells.
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2.8.9 Screening Against a Transcription Factor cDNA Library

The library used in these screens was a transcription factor (TF) cDNA library trans-

formed into AH109 strain cells (Clontech) of Saccharomyces cerevisiae via the pDEST22

gateway vector (see Figure 2.7(b)) supplied with an Invitrogen ProQuest yeast-2-hybrid

system. The genotype of the AH109 cells was:

MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4�, gal80�, LYS2

:: GAL1UAS-GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2, URA3 ::

MEL1UAS-MEL1TATA-lacZ (James et al., 1996)

indicating that the AH109 strain is an ‘a’-mating type and will therefore mate with

Y187 strain cells as have been transformed above with the bait construct. Disruption

to the trp1, leu2 and his3 genes means that the cells cannot grow on media lacking

any of the essential amino acids, tryptophan, leucine or histidine, unless complemented

by a plasmid containing those genes. When transformed with the prey construct, the

TRP1 gene found in the pDEST22 vector allows the cells to survive on media lacking

tryptophan. If the cells mate with Y187 cells transformed with the bait construct,

the pHisLeu2 vector complements the o↵spring with the LEU2 gene which then allows

survival on media deficient in both leucine and tryptophan. If the transcription factor

is able to bind to the promoter region in the bait construct, activation of the HIS3 gene

in the pHisLeu2 vector results in the ability to survive on media lacking each of leucine,

tryptophan and histidine.

The TF library consists of approximately 1,400 transformed cultures of Saccha-

romyces cerevisiae and are grouped into wells containing 12 transformants each. Two

96-well plates are used to hold the entire library and a duplicate copy of the library

is present in a second pair of plates. The positions of individual transformants vary

between copies of the library so that positive results might be interpretable without the

need for sequencing the transcription factor found in the pDEST22 vector.

2.8.9.1 Culturing Yeast Colonies

500 µL of SD-Trp liquid media was added to each of the wells of 4⇥ deep 96-well plates.

A 96-well colony picker was then used to transfer a droplet of cells from the stock TF

library plates into the respective deep well plates. The deep well plates were sealed with

a gas permeable membrane and incubated at 30 �.

Several days later, transformants carrying the promoter ‘bait’ fragments were

cultured by placing a scoop of cells into 10 mL of SD-Leu in a 50 mL falcon tube. These

were incubated at 30 � with shaking at 220 RPM.

2.8.9.2 Preparing Yeast Cell Mating

Each of four YPDA plates were prepared for mating by placing 96 ⇥ 3 µL of the

cultured transformant suspension onto their surfaces in the arrangement of a 96-well
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plate. Once dried, 3 µL of each of the wells of the corresponding TF library plate

were added directly on top of the dried spots. After drying, the plates were sealed and

returned, upside down, to a 30 � incubator.

2.8.9.3 Transfer of Yeast Cells to Selection Plates

Each YPDA plate, covered in spots of yeast cell growth, was replica plated onto four

alternative selection plates using velvet squares. The order of replication was from

highest selective pressure to lowest: SD-LTH + 100 mM 3AT, SD-LTH + 50 mM 3AT,

SD-LTH, SD-LT. Selection plates were sealed with Parafilm and incubated at 30 �.

Although no longer needed, YPDA plates were stored at between 2 – 8 � as a precaution

in case the screen were to be repeated.

The following day, once the replica selection plates had had enough time to allow

yeast cell growth, excess number of cells were removed from the plates by pressing each

plate into three fresh sheets of velvet. After this, the plates were resealed and returned

to the 30 � incubator.

2.8.9.4 Restreaking of Growing Colonies

After a number of days of growth, some of the spots had colonies growing upon them.

The SD-LT plates were able to support any diploid yeast cells which had been formed

by the mating of a-type and ↵-type cells. In the case of SD-LTH plates, only those

cells where the gene product of pDEST22 was able to bind to the DNA inserted into

pHisLeu2 were able to grow. If excessive growth was found on the plate with no added

3AT, attention was drawn to increasing levels of 3AT which inhibits the action of the

HIS3 gene and therefore allows less cell growth. The plate with highest selective pressure

that still maintained cell growth was selected for observation.

The plates were photographed using a gel doc imaging system with upper light-

ing. After this, 9 cm SD-LT plates were used to restreak colonies which were able to

grow into small patches, 50 per plate. Colonies that had grown on the 15 cm selection

plates were transferred to a patch on the smaller plate using the tip of a 20 µL pipette.

A record was made of the location from which the colony was picked from the selection

plate and of the patch number to which it was restreaked. Once all growing colonies had

been transferred, the patch plate was sealed with Parafilm and transferred to a 30 �
incubator.

2.8.9.5 Identification of Interacting Transcription Factors

Since as many as 12 library transformants were present per spot, and to ensure that the

one responsible for the transcription of the HIS3 gene in each colony has been reliably

identified, the transcription factor was re-amplified and sequenced. Re-amplification

was performed by colony PCR, in which 10 µL of 20 mM NaOH was added to each

well of a 96-well PCR plate. For each of the colonies restreaked the previous day, a
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colony sized scoop of cells were removed from the patch plate using a pipette tip and

placed into one of the wells of the 96-well plate. These colonies were incubated in a

PCR thermocycler for 10 minutes at 99 � to lyse the cells. During this time, a master

mix for 96 PCR reactions was prepared consisting of the following components:

Component Volume

Nuclease-free water 1.45 mL

10⇥ PCR bu↵er (Invitrogen) 200 µL

Orange G dye 200 µL

10 mM dNTPs (Invitrogen) 40 µL

50 mM MgCl2 (Invitrogen) 60 µL

100 mM Forward primer (SABR447) 5 µL

100 mM Reverse primer (SABR448) 5 µL

Taq polymerase (Invitrogen) 10 µL

Total volume 1,970 µL

A fresh 96-well PCR plate was prepared by transferring 19 µL of the above mix to each

well. Once the yeast cells had been lysed in NaOH, 1.2 µL from each well were added

to the corresponding wells of the PCR mix plate. The plate was run on the following

PCR programme:

Step Temperature Time Cycles

Initial denaturation 94 � 2 minutes 1

Denaturation 94 � 30 seconds

40Annealing 55 � 30 seconds

Extension 72 � 3 minutes

Final extension 72 � 7 minutes 1

Cooling 4 � 10 minutes 1

Hold 20 � 1

Once the reaction was completed, 3 µL of the product were run on a 0.75⇥ TAE pre-

cast agarose gel for 10 minutes to identify whether a fragment had been amplified before

sequencing.

A 96-well MultiScreen HTS plate (Fisher) was pre-wet by the addition of 50 µL

of 0.1 mM Tris (tris(hydroxymethyl)aminomethane) pH 8 solution. All remaining PCR

product for positive colonies was transferred into the corresponding well of the HTS

plate and the plate was placed on a vacuum manifold to draw the liquid through the

filter. Once fully drawn, a foil seal was used to prevent the escape of liquid from the

bottom of the filter and 35 µL of 0.1 mM Tris pH 8 solution was added to each well and a

shaker used to aid the re-suspension of DNA fragments from the filter. The suspensions

were then transferred to a final plate for NanoDrop analysis of their concentrations.

A representative sample of the wells were used to identify the mean concentration

of DNA in each and an appropriate volume calculated to provide 20 – 50 ng for sequenc-

ing. Sequencing was performed using the methods of Section 2.7 where SABR447 was
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used as a primer. The results of this were processed in Geneious and MegaBLAST

(Altschul et al., 1990) to identify the transcription factors which were able to bind to

the DNA of the target gene.

2.9 Microarray Analysis of Reduced-Expression Mutants

Whilst validating the transcriptional network found by theoretical modelling, microar-

rays were used to identify downstream e↵ects of reduced-expression in key genes of the

network.

2.9.1 Preparing and Harvesting Samples

Selected reduced-expression mutants were sown and grown using the methods described

in Section 2.5.1, 24 plants per line. Three weeks after sowing, plants were transferred

to petri-dish observation plates following the same preparation as that of Section 2.5.2.

Observation plates were stored at 20 � in absolute darkness, but photographed each

day between 12:00 and 14:00 following the same procedures as Section 2.5.2.

During the software analysis of the colour of leaf 4 of each rosette, a score was

produced indicating the level of senescence. Four randomly selected rosettes of each line

were each pre-allocated one of five target senescence scores of either 0.7, 0.8, 0.9, 1.0 or

1.1, leaving four spare plants in each line. Each day, any rosettes which were near to

reaching or had only just passed their senescence score were harvested. Harvesting took

place at between 17:00 and 19:00 each day. Leaves 3, 4 and 5 were individually detached

using clean scissors and placed into screw cap 2 mL tubes before being submerged in

liquid nitrogen and later stored at -80 �.

2.9.2 aRNA Synthesis and Purification

Once selected samples had been isolated and pure total RNA had been extracted from

those samples, these were used to produce high concentrations of aRNA using the Mes-

sageAmp II kit (Ambion) according to the manufacturers instructions. This consisted

of five stages of amplification.

During the first stage, first strand cDNA synthesis was performed by incubating

the following mixture at 42 � for 2 hours:
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Component Volume

RNA sample 11 µL

T7 Oligo (dT) Primer (Ambion) 1 µL

Pre-incubate the above at 70 � for 10 minutes.

10⇥ First Strand Bu↵er (Ambion) 2 µL

10 mM dNTP Mix (Ambion) 4 µL

RNase Inhibitor (Ambion) 1 µL

ArrayScript Enzyme (Ambion) 1 µL

Total volume: 20 µL

In the second stage, first strand cDNA was used to synthesise the second strand cDNA

by adding the following to the reaction and incubating at 16 � for 2 hours:

Component Volume

First strand cDNA from above 20 µL

10⇥ Second Strand Bu↵er (Ambion) 10 µL

Nuclease-free water 63 µL

10 mM dNTP Mix (Ambion) 4 µL

DNA Polymerase (Ambion) 2 µL

RNase H (Ambion) 1 µL

Total volume: 100 µL

The third stage purified the resulting cDNA by binding the DNA to a spin column and

washing away contaminants with ethanol solutions before eluting purified cDNA with

20 µL of nuclease-free water pre-heated to between 50–55 �.

The fourth stage synthesised aRNA from the cDNA by use of transcription en-

zymes. The following components were mixed and then incubated at 37 � for 14 hours:

Component Volume

Purified cDNA from above 20 µL

75mM T7 ATP Solution (Ambion) 4 µL

75mM T7 CTP Solution (Ambion) 4 µL

75mM T7 GTP Solution (Ambion) 4 µL

75mM T7 UTP Solution (Ambion) 4 µL

10⇥ T7 Reaction Bu↵er (Ambion) 4 µL

T7 Enzyme Mix (Ambion) 4 µL

Total volume: 44 µL

After 14 hours, the reaction was quenched by the addition of 60 µL of nuclease-

free water. The final stage purified the synthesised aRNA by binding the aRNA to a

spin column and washing away contaminants with ethanol based solutions before eluting

the purified aRNA with 50 µL of nuclease-free water pre-heated to between 50-55 �.
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2.9.3 Labelling with Fluorescent Dyes

Each sample was required to be labelled by Cy3 and Cy5 dyes. Therefore, for 15 sam-

ples, 30 labelling reactions were prepared as shown. The NanoDrop spectrophotometer

was used, as described in Section 2.6.4, to determine the concentration of aRNA for each

sample so that 5 µg or more could be used in a labelling reaction. This was combined

with 0.5 µL of random nonomers (3 µg/µL) and 0.5 µL of RNase out (Invitrogen),

bringing the total volume to 10.5 µL using nuclease-free water. This mixture was incu-

bated for 10 minutes at 70 �. After this incubation, a labelling reaction was prepared

as follows:

Component Volume

Reaction mix from above 10.5 µL

5⇥ SuperScript II First Strand Bu↵er (Invitrogen) 4 µL

0.1 M DTT (Invitrogen) 2 µL

10 mM dATP, dGTP, dTTP, 2 mM dCTP mix (Invitrogen) 1 µL

SuperScript II reverse transcriptase (Invitrogen) 1 µL

Cy3 or Cy5 labelled dCTP (GE Healthcare) 1.5 µL

Total volume: 20 µL

The reaction was incubated in the dark at 42 � for 2.5 hours before adding

2 µL of 2.5M NaOH and incubating for a further 15 minutes at 37 �. 10 µL of MOPS

bu↵er (3-(N-morpholino)propanesulfonic acid) was then added and the reactions placed

on ice. cDNA from the reaction was purified using QIAQuick PCR Purification spin

columns and eluting with two aliquots of 30 µL of bu↵er EB. Concentrations of the

labelled samples were obtained by using the NanoDrop spectrophotometer as described

in Section 2.6.4, but by measuring absorbance and fluorescence of the dye rather than

cDNA.

2.9.4 Preparation of a Balanced Experimental Design

An experimental design which was as balanced as possible was developed by first finding

designs in which the comparisons between di↵erent biological replicates, di↵erently dyes

and di↵erent lines were equally abundant. This was achieved using the two scripts

shown in Appendix M. The first of these scripts used a sample skeleton file as a pre-

defined pattern which had already been optimised to ensure that each of the 5 lines

was co-hybridised with each other line exactly 3 times and to ensure that each line was

represented equally by both Cy3 and Cy5 labelling. After fitting all permutations of the

15 samples to this skeleton, each was tested to fit two more criteria: each sample must

be equally labelled by Cy3 and Cy5 and each sample must be directly co-hybridised

with every other sample. All designs which fit this criteria were returned by the first

script as a series of tab-delimited text files.

Each design must also demonstrate balance in the co-hybridisation of the bio-

logical replicates to be truly unbiassed, and this was optimised by the second script. In
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this script, a sample of the balanced sample designs obtained by the first script were

selected for testing permutations of biological replicates. Each line was represented by

3 biological replicates, but the allocation of these to the sample numbers, optimised

above, was not yet defined. Each possible allocation of the biological replicates to the

sample numbers were considered by the script and, after each allocation, two metrics

were applied to test the distribution of comparisons between biological replicates: the

variance of a contingency table listing frequencies of comparisons between replicates and

the variance of the rows of a contingency table listing the frequency of replicate labels

co-hybridised with specific samples. Those designs which were able to minimise these

two metrics were considered optimally balanced.

A custom computer algorithm was used to identify those experimental designs

which would minimise the biases. This was performed in two stages in which the initial

stage paired sample numbers in such a way that each sample number was labelled

with each dye exactly twice to provide four dye-swapped technical replicates across the

experiment. The samples from each line also had to be compared exactly once with

every other sample in the experiment (i.e. any of samples 1, 2 and 3, representing

IM137, must be compared only once to each of 4 through to 15).

Once the first stage was complete and many possible arrangements had been

discovered, many of those arrangements were permutation tested for biological replicates

in the second stage. Within each line, the three biological replicate labels, A, B and

C would be allocated to the three sample numbers representing that line. Since three

elements can be orientated in eight di↵erent ways, the size of the problem was 85 =

32, 768 possible combinations of biological replicate. After each permutation, the design

was tested by comparing the frequency of biological replicate hybridisations with each

sample as shown in Table 2.3(b) where it can be seen, for example, that sample 1 was

hybridised with 2 replicates of other samples labelled A, 1 replicates labelled B and

1 replicate labelled C. The variances of these frequencies for each sample are summed

and a minimisation of this sum indicates a better distribution of between replicate

comparisons. The sum of 5.000, as shown, is the minimum achievable for 15 samples, 3

biological replicates and 4 technical replicates. A second metric of the optimisation of

the design is the variance of sums across frequencies of co-hybridised biological replicate

labels as shown in Table 2.3(c). In this case, if an imbalance of comparisons between

similarly labelled replicates existed, the variance would be greater than zero.

The design which was implemented whilst hybridising the microarrays is shown in

Table 2.3(a). Wash solutions were pre-prepared as shown in Section 2.9.5 and CATMAv4

microarrays were hybridised according to the methods shown in Section 2.9.6.

2.9.5 Microarray Solution Preparations

In preparation of hybridising labelled samples to microarrays, two hybridisation bu↵ers

and three wash solutions were required. These were made to the following specifications.

Volumes shown are su�cient for eight hybridisations.
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Array Labelled with Cy3 Labelled with Cy5
Number Sample Line BioRep Sample Line BioRep

1 1 IM137 C 4 IM188 C
2 2 IM137 B 6 IM188 A
3 3 IM137 A 9 IM244 C
4 1 IM137 C 12 IM330 A
5 2 IM137 B 11 IM330 B
6 3 IM137 A 13 Col-0 A
7 7 IM244 A 1 IM137 C
8 8 IM244 B 2 IM137 B
9 5 IM188 B 3 IM137 A
10 15 Col-0 B 1 IM137 C
11 14 Col-0 C 2 IM137 B
12 10 IM330 C 3 IM137 A
13 6 IM188 A 7 IM244 A
14 4 IM188 C 8 IM244 B
15 4 IM188 C 13 Col-0 A
16 6 IM188 A 14 Col-0 C
17 5 IM188 B 11 IM330 B
18 9 IM244 C 5 IM188 B
19 10 IM330 C 4 IM188 C
20 12 IM330 A 6 IM188 A
21 15 Col-0 B 5 IM188 B
22 9 IM244 C 12 IM330 A
23 8 IM244 B 10 IM330 C
24 7 IM244 A 15 Col-0 B
25 14 Col-0 C 9 IM244 C
26 13 Col-0 A 8 IM244 B
27 11 IM330 B 7 IM244 A
28 11 IM330 B 14 Col-0 C
29 12 IM330 A 15 Col-0 B
30 13 Col-0 A 10 IM330 C

(a) Hybridisation Design

Sample
Hybridise

VarianceLine Alongside
& Rep A B C

1 IM137 C 2 1 1 0.333
2 IM137 B 1 2 1 0.333
3 IM137 A 1 1 2 0.333
4 IM188 C 1 1 2 0.333
5 IM188 B 1 2 1 0.333
6 IM188 A 2 1 1 0.333
7 IM244 A 1 2 1 0.333
8 IM244 B 1 1 2 0.333
9 IM244 C 2 1 1 0.333
10 IM330 C 2 1 1 0.333
11 IM330 B 1 2 1 0.333
12 IM330 A 1 1 2 0.333
13 Col-0 A 1 1 2 0.333
14 Col-0 C 1 2 1 0.333
15 Col-0 B 2 1 1 0.333

Sum: 5.000

(b) Sample Comparisons

A B C Sum

A 3 3 4 10
B 3 4 3 10
C 4 3 3 10

Sum 10 10 10

Variance of “sums”: 0.000

(c) BioRep Comparisons

Table 2.3 – An optimised experimental design for microarray hybridisa-
tions
The experimental design shown in (a) was produced using a computer algorithm de-
signed to meet the pre-determined criteria of the experiment. The design is shown
to be optimised by noticing that each sample is labelled by each dye exactly twice;
by considering the frequency of each biological replicate label co-hybridised with each
sample, shown in (b), where it can be seen that each sample has a minimised variance
across those frequencies and; by minimising variance across the sum of replicate-to-
replicate comparisons shown in (c).
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2.9.5.1 Pre-hybridisation Bu↵er

Component Volume

or Mass

Bovine Serum Albumin (Sigma-Aldrich) 1.2 g

20⇥ SSC 30 mL

14% SDS 860 µL

Sterile deionised water 90 mL

Total volume: ⇠120 mL

2.9.5.2 Hybridisation Bu↵er

Component Volume

or Mass

Formamide 112.5 µL

20⇥ SSC 112.5 µL

14% SDS 3.15 µL

4 µg/µL Yeast tRNA (Invitrogen) 56.25 µL

Sterile deionised water 165.6 µL

Total volume: 450 µL

2.9.5.3 Wash Solution 1

Component Volume

or Mass

20⇥ SSC 25 mL

14% SDS 1.8 mL

Sterile deionised water 223 mL

Total volume: ⇠250 mL

2.9.5.4 Wash Solution 2

Component Volume

or Mass

20⇥ SSC 1.25 mL

14% SDS 1.8 mL

Sterile deionised water 247 mL

Total volume: ⇠250 mL
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2.9.5.5 Wash Solution 3

Component Volume

or Mass

20⇥ SSC 5 mL

Sterile deionised water 995 mL

Total volume: 1 L

2.9.6 Microarray Hybridisation

Microarray hybridisations were performed according to the procedures used by the

PRESTA group at The University of Warwick. For this, the pre-hybridisation bu↵er,

prepared according to Section 2.9.5.1, was pre-heated to 42 �. Once warmed, a Coplin

jar was filled with the bu↵er and eight CATMA microarrays submerged in it. The jar

was maintained at 42 � by placing in an air incubator for 1 hour.

40 pmol of labelled samples to be co-hybridised to each microarray were combined

in PCR tubes and freeze dried in complete darkness for between 60 and 90 minutes.

Incubated microarrays were washed by shaking in a hybridisation rack in 5 fresh baths

of deionised water. The slides were then briefly washed in isopropanol before being

transferred to 50 mL falcon tubes and centrifuged for 1 minute at 1,600 ⇥ g, taking care

that the glue of the barcode would not spread onto the spotted area.

A hybridisation container consisting of a platform raised above water in a sealable

box was used to support hybridisation chambers which protected the microarrays. The

freeze-dried labelled samples were resuspended in 50 µL of hybridisation bu↵er, prepared

according to Section 2.9.5.2, and incubated at 95 � for 5 minutes. The samples were

then spotted along the length of a microarray which had been placed in a hybridisation

chamber before being sealed by a microarray coverslip and encased by the chamber.

Once eight chambers had been filled, damp tissue was placed over the chambers to

ensure high humidity in the container and the container was incubated at 42 � for

between 16–20 hours. Wash Solution 1, prepared according to Section 2.9.5.3, was

incubated at 42 � at the same time.

After incubation, the microarrays were submerged in Wash Solution 1 and the

coverslip removed. The arrays were then washed in Wash Solution 1 by placing in a

hybridisation rack and shaking vigorously for 5 minutes on an orbital shaker. After this

time, the rack was transferred to a bath of Wash Solution 2 which was used to wash

the microarrays vigorously for 10 minutes on an orbital shaker. Following this, four

successive washes were completed whilst submerged in Wash Solution 3 for 1 minute

per wash whilst being vigorously shaken on an orbital shaker. The microarrays were

then briefly immersed in isopropanol before being placed into 50 mL falcon tubes and

centrifuged for 1 minute at 1,600 ⇥ g. Microarrays were then stored in the dark until

scanned.
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2.9.7 Microarray Scanning and Data Extraction

After hybridisation, the microarrays were scanned using an A↵ymetrix 428 Array Scan-

ner. Cy3 labelled samples were scanned with a laser of wavelength 532nm whilst Cy5

labelled samples were scanned independently with a laser of wavelength 635nm. Each

microarray was scanned at a gain to ensure that the brightness of the spots was max-

imised whilst minimising saturation as much as possible. Scans were saved as two 16-bit

TIFF images per microarray providing 216 = 65, 536 levels of intensity for each channel.

In order to analyse the microarray scans and convert them to numeric data de-

scribing the intensity of the channels and their background noise, BioDiscovery ImaGene

version 7.0 (BioDiscovery) was used. By providing a grid template to identify the probes

by Gene ID and location, ImaGene was capable of outputting a table of values in the

range of 1 to 65,536 describing, amongst other measurements, the mean signal, mean

background, median signal, median background and flag of each channel of each probe

of the microarray. Where the probe fails quality measures imposed by ImaGene, usually

due to a low signal, the flag was returned as an integer greater than zero to assist in

their identification.
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Chapter 3

Microarray Data Analysis

3.1 Chapter Summary

This chapter discusses the development of the MAANOVA package to enhance its ability

to identify inadequacies amongst the microarrays in an microarray experiment. Further

development to GridCheck, RIPlot and ArrayView have led to a more statistical anal-

ysis of their outputs using a principal component analysis which leads to a major axis

regression and the identification of genes which are distant from the mean of the regres-

sion. This has allowed specific microarrays to be isolated for investigation and corrected.

Additional to the developments above, TechRepCheck has been introduced which makes

pairwise comparisons between the probe intensities of same-sample replicates. A major

axis regression of these pairwise comparisons has allowed the identification of inconsis-

tent replicates at the probe level and therefore to identify which areas of the microarrays

require attention.

The developments above have resulted in the identification of 35 microarrays

out of 176 which exhibit inadequacies. Of those, 18 were su�ciently corrected by re-

analysing the microarray scans whilst a further 4 were re-hybridised to new microarrays.

The remaining 13 were a↵ected in only small areas of the microarrays which did not

justify any further action to be taken.

Once the microarrays were up to a su�ciently high standard, the intensities

were analysed by an ANOVA driven model fit which successfully separated the four

e↵ects known to exist amongst the samples: day of harvest, time of day of harvest, the

interaction between those main e↵ects and the e↵ects between biological replicates. The

levels of each of these e↵ects were analysed by false discovery rate corrected F-tests and

those genes which were significantly di↵erentially expressed for each term were analysed.

Those genes which were significantly di↵erentially expressed for the day e↵ect totalled

8,878 and the expression data for those genes were extracted so that it may be used

as described in further chapters for the identification of theoretical regulatory network

models.
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3.2 Introduction

In this chapter, the data obtained from the senescence microarray experiment, intro-

duced in Section 1.4, is analysed using a customised version of MAANOVA. The de-

velopment of this customised version of MAANOVA is described here, followed by its

application to the senescence microarray experiment data. The overall aim of this anal-

ysis was to provide high-resolution normalised temporal expression data for every gene

on the microarrays so that it may be used to model transcriptional networks as de-

scribed in Chapter 4. Therefore the development of MAANOVA focussed on providing

more rigorous quality control tests and a novel form of analysis which allows information

about the technical replicates to be used to provide inconsistent replicates with more

consistent intensity measurements.

Although the customised version of MAANOVA has been adapted in response

to the need to analyse the senescence microarray dataset, these adaptations could be

applied to any microarray dataset and this is discussed further in Section 3.5.1. The

installation of the WHRIMAANOVA package is essential for this purpose and this is

therefore made available on a data CD accompanying this thesis.

3.3 Development of MAANOVA

The features of MAANOVA form a good building block towards the analysis of the

senescence experiment, but a number of improvements have been made in order to

increase the usefulness of the package, particularly in the area of providing a stronger

statistical basis for the initial data quality control. These new implementations are

described below and are complemented by a definition of the function parameters listed

in Appendix B.

Some of the adaptations described here were presented for the degree of MSc

Systems Biology as part of a mini-project of twelve weeks. Further adaptations, building

on those produced during the MSc, are also described here and the distinction between

these has been clearly identified in the text.

3.3.1 Quality Control

Three functions were provided for the purpose of quality control in the original MAANOVA

package and these theoretically form a robust set of tools for identifying flaws which are

typical in two-channel microarrays. Some of the typical flaws which may be identified

are:

• Non-specific binding, in which large numbers of probes are showing high intensity

hybridisation in one or both channels for some, often adjacent, probes.

• High background levels resulting in over correction by background-subtraction

normalisation.
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• Spatial biases in the channels whereby mean intensity of one channel may exceed

the other channel at some point around the edge of the microarray, whilst the

opposite edge is the inverse.

• Physical damage to the microarray which fluoresces and artificially amplifies the

observed signal in a↵ected probes.

• Under and over-gained scanning of the microarrays, resulting in saturated or dull

intensity and a consequential loss of distinction between probes.

However, there was much room for improvement in the presentation of the re-

sults, the long term storage of those results and the type of output presented to the

user. In particular, substantial statistical information is potentially available about the

distribution of intensities and ratios across the array but is neither being generated nor

provided to the user in a way which they can use to make judgements on the quality of

the data, currently having to rely on a subjective and qualitative assessment of the plots

provided. The improvements presented here ensure that the user can make informed

decisions about the quality of the experiment before attempting to extract gene expres-

sion data and identify di↵erentially expressed genes. This semi-automated approach is

explained further in the results shown in Section 3.4 and discussed briefly in Section 3.5.

3.3.1.1 GridCheck

Initial modifications to the GridCheck function ensured that the plots could be stored

for the long term as a PDF file. This not only allowed referral back to the original

output when desired, but also stored the plots as a single multi-page file in a vector

format, enabling very high zoom levels to show increasingly high levels of detail. So

that this file may be printed to A4 paper with an aspect ratio of approximately 2:3,

and in consideration of the 1:3 layout of the CATMA microarray sub-grid, the sub-plots

are, by default, spread across two pages per microarray with the top half and bottom

half of each microarray providing a full page of sub-plots each. The default number

of pages used to present each microarray can be defined by the user in the event that

microarrays with di↵erent sub-grid layouts were analysed.

Minor changes to the output include using orange as an alternative plotting

colour for flagged probes and ensuring that the axes of each plot cover the range from

zero to the maximum intensity observed throughout the experiment. By doing this, the

plots are much more comparable throughout the experiment and do not give a false

impression about the anticipated 1-to-1 relationship between the channels.

A desirable improvement to GridCheck was to allow the extraction of statistics

which would describe the data in the plots so that high-throughput analysis could

be achieved and quality issues identified whilst removing errors inherent with analysis

by eye such as fatigue. In order to extract useful statistics about the data plotted

in GridCheck sub-plots, an analysis of the relationship between the two channels was

91



performed, alongside a review of the distribution of probes which deviate from from the

regression of the plot.

An assumption made about the samples of each microarray could be that the

number of genes which increase in expression between samples A and B should be

equalled by a similar number of genes which decrease in expression, providing no overall

bias towards either channel. Therefore, the probes outlying the regression between

samples, representing those genes with altered expression, would not, collectively, be

found to lie as a cluster of points in any region of the plot.

Biases in the channels can lead to regressions other than Y

g

= Y

r

and hence a

test of conformity to this relationship would not be unbiased. Therefore, in order to

identify those points which do not conform to the expected relationship, a major axis

regression (MAR) was used through a principal component analysis (PCA).

A 2-dimensional PCA allows the identification of the major and minor axes

through the data based on the eigenvalue decomposition of the variance-covariance

matrix. The major axis lies in the direction of maximum variance in the data whilst

the minor axis lies 90° to this with the origin between the two being at the mean of the

original horizontal and vertical axes. The units of each axis are the number of standard

deviations from their origin. Given that the direction of maximum variance defines the

major axis regression line, the deviation from that regression could be quantified using

the minor axis which is orthogonal to the regression. Those points of each plot which are

greater than 1.96 or lesser than -1.96, which define the boundaries for 95% of normally

distributed data (p 6 0.05), in the minor axis are considered potential outliers and are

therefore highlighted by a small red circle. This provides a highly visual interpretation

of the distribution of those points when the plots are viewed, and an example of this

can be seen in Figure 3.1(a).

In order that the statistical information collected during the analyses described

above could be used to identify GridCheck sub-plots with unusual distributions, without

the need to manually check every plot, a series of values summarising each sub-plot are

output in the form of a tab-delimited text file which can be opened by spreadsheet soft-

ware such as Microsoft Excel. An example of the first few lines from the table describing

the senescence experiment microarrays can be found in Table 3.1. Clarification on how

these statistics may be used to help identify GridCheck sub-plots with underlying issues

can be found in Section 3.4.1 and their application to other datasets is discussed in

Section 3.5.1.

All of the improvements to GridCheck listed above were devised and implemented

during the course of the aforementioned MSc project and were submitted as a partial

contribution toward that degree, though bugs and ine�ciencies were removed after that

submission.
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3.3.1.2 RIPlot

To improve the clarity of graphical output and provide permanent storage of this, RI-

Plot now generates two vector-based PDF format documents. By being vector-based,

increasingly higher levels of detail are available under any enlargement of the plots.

The first PDF file provides exactly the same plots, without modification as shown in

Figure 3.1(b), as were originally available from the MAANOVA package. The second

PDF contains sub-plots, similar to GridCheck and in the same layout, which present

the RIPlot for each sub-grid of each microarray.

No statistics are calculated for these plots because they would be essentially

equivalent to those produced by the statistical analysis in GridCheck. The sub-plots

of the second PDF are essentially identical to GridCheck, but with a 45° clockwise

rotation. The plots of the first PDF are unique because they present the data of an entire

microarray on one plot, but there are consequently fewer plots to observe. The purpose

of using statistics to analyse the plots would be to identify those which show unusual

characteristics without manually needing to check each plot. Those plots identified by

the statistics would still require human intervention to verify the exact cause of the

problem and, in the case of the senescence experiment, only 176 plots are produced and

can be easily scanned by eye in a few minutes.

All of the changes made to RIPlot were devised and implemented during the

course of the MSc project mentioned on page 90.

3.3.1.3 ArrayView

As with the other quality control functions, one of the first modifications made to

ArrayView was to export the heat-maps to a vector-based PDF file as this provides

long term storage of the plots as well as the ability to focus on small areas of the array

whilst retaining good resolution. To aid in printing the PDF on A4 paper, given the 1:3

aspect ratio of CATMA microarrays, the user can choose to either place 2 microarray

side-by-side on each page, as is default, 4 microarrays side-by-side in landscape or 8

microarrays in a layout of 2 rows by 4 columns in portrait.

Where heat-maps were previously often dominated by the intensity of control

probes, masking the intensity of gene-specific probes as can be seen in Figure 1.6(d),

those control probes are now identified during loading of the microarray data into

MAANOVA as those which do not have unique gene identifiers. Where replicate spots

for a probe are included on the microarray, they must therefore be named uniquely. This

does not prevent replicates from being interpreted correctly by MAANOVA so long as

they are specified when the data is loaded. Those probes identified as control probes are

now interpreted by ArrayView as having a log2 ratio of zero, allowing the identification

of ratio data from the gene-specific probes as seen in the new heat-map of the same

microarray shown in Figure 3.2(b). Additionally, to aid in the identification of control

probe locations, those probes are now marked with a white ⇥ symbol overlaying their

position on the heat-map.
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(a) Plotted with
bias towards control
probes

(b) Removal of con-
trol probe bias

(c) Plotted with bias
towards the green
channel

(d) Removal of chan-
nel bias

Figure 3.2 – Examples of improved graphical output produced by Array-
view
Once improvements had been made to ArrayView, the graphical output is now pre-
sented as shown above. The heat-maps shown can be directly compared to the same
heat-maps produced with the original MAANOVA implementation, shown in Fig-
ures 1.6(d) and 1.6(e). It can be seen that, by removing the previously dominating
control spot ratio information from the plot and replacing them with white ⇥ sym-
bols, ratios in the probes specific to the genome become more pronounced as shown
in (b). By controlling the scale of the colour-map so that a zero log2 ratio is always
displayed in black, as shown in (d), the bias towards one channel is removed. This
would make it much easier to see if there is a spatial bias towards either channel.

It was noticed, once the control probe locations were identified, that the rows of

probes plotted by ArrayView were inverted in relation to the expected order in which

row 1 column 1 exists at the top left of the microarray. The new heat-maps are now

plotted to satisfy that expectation.

The issue of channel bias in the colour map used to plot the heat-maps, as

demonstrated in Figure 1.6(e), has been corrected so that a log2 ratio of zero is always

plotted in black. This is achieved by identifying the maximum absolute log2 ratio of

each microarray and using that value as the maximum for both green and red of the

associated heat-map rather than having independent maximum values for each colour.

The improvements can be seen in the new heat-map of the same microarray shown in

Figure 3.2(d) where a green bias no longer exists.

Additional to the ratio heat-maps already available from ArrayView, an obvious
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extension of the graphical output provided by ArrayView is intensity heat-maps, in

which the colours of the plot indicate the sum log2 intensity of each probe. A second

PDF is now produced which is identical in format and layout to the PDF described

above, but a new colour map ranging from black for minimum intensity to white for

maximum intensity is used to plot the sum log2 intensity of both channels instead. An

example of this type of plot is presented in Figure 3.3 where the intensity heat-maps of

the same microarrays as are displayed in Figure 3.2 can be seen. Since the colour white

is used as part of the colour map, the ⇥ symbols used to identify the location of control

probes are plotted in red.

The alterations made to ArrayView, as described to this point, were submitted

for the MSc project described on page 90, but the additions described throughout the

rest of this section about the methods of ArrayView were devised and developed during

the course of this PhD.

One of the primary objectives in the improvement of ArrayView was to provide

statistical analysis of the distribution of data for both the log2 ratio and the sum log2
intensity. This is initially provided in the form of histograms which show the distri-

butions of ratios and intensities, independently. The log2 ratio histograms, shown in

Figure 3.4(a), should indicate an un-biased distribution of ratios centred around zero,

as shown. The colours used to plot the bars are representative of the colours used in the

heat-map. The sum log2 intensity histograms, shown in Figure 3.4(b), should indicate

that the majority of probes are represented by a sum log2 intensity of approximately

40% of the maximum or greater, indicating that expression was above the background

noise of the microarray, with only a small number below this threshold and very few

reaching maximum intensity where saturation has occurred.

These plots are presented as two separate PDF files, one each for the log2 ratio

and sum log2 intensity. Each PDF displays one histogram per page, each representing

one microarray. Two further PDF files are also produced, displaying equivalent his-

tograms for each sub-grid of each microarray, mimicking the layout used by GridCheck.

Each PDF is accompanied by a table of data, describing the distribution of the data

within the histograms, and examples of these can be found in Table 3.2. These statis-

tics could potentially be used to identify arrays with unusual distributions, as will be

discussed in Section 3.4.1.3.

3.3.2 Data Transformation

Whilst quality control functions aim to inform the user when the raw data is inadequate

for analysis without applying any transformation to the data, the data transformation

functions are designed to identify systematic errors of microarray data and remove or

reduce them by coercing the data to fit an expectation. This is not to suggest that trans-

forming data is an acceptable strategy to ensure that the data appears adequate because

no transformation comes without compromise nor the risk that useful information is be-

ing lost. Where costs permit, it is always a better option to re-hybridise samples to new
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(a) Previously plotted with bias to-
wards the control probes

(b) Previously plotted with bias to-
wards the green channel

Figure 3.3 – Examples of additional graphical output produced by Array-
view
Additional functionality provided to ArrayView allows the presentation of the sum
log2 intensity of the two channels of the microarray. This is presented in the form of
a heat-map with black representing zero intensity and white representing maximum
intensity. As the colour white is already used, the ⇥ symbols representing the control
spots are plotted in red as an alternative. The plots shown are of the same microarrays
as in Figure 3.2. If a problem existed in which a range of co-located probes exhibited
no abnormality in the log2 ratio, but their sum log2 intensity was abnormal, this type
of plot would help to identify the issue.
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(a) Histogram of probe ratios

(b) Histogram of probe intensities

Figure 3.4 – Histogram plots produced by ArrayView
Histograms of the ratios, (a), and intensities, (b), in which the vertical axis represents
frequency and the horizontal axis represents ratio or intensity, respectively, are plotted
as part of the output of ArrayView. Typically, the majority of ratios are close to zero,
with only a very small percentage of di↵erentially expressed genes. Also typically,
the majority of probes have an intensity of at least 40% with a diminishing number
reaching maximum intensity, though the peak of probes at maximum intensity indicate
that a number have been saturated. A statistical summary of both types of plots are
returned as a table of values.
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Array Standard
# Min. 1st Qu. Median Mean 3rd Qu. Max Deviation

1 -3.560 -0.175 -0.008 0.000 0.161 3.243 0.410
2 -3.329 -0.159 0.000 0.000 0.160 3.675 0.387
3 -6.466 -0.302 -0.012 0.000 0.293 4.197 0.634
4 -3.282 -0.157 0.025 0.000 0.166 3.362 0.375
5 -3.297 -0.244 0.036 0.000 0.264 3.863 0.479
6 -4.326 -0.169 0.023 0.000 0.183 3.266 0.382
7 -3.687 -0.263 -0.017 0.000 0.235 3.123 0.555
8 -3.279 -0.132 -0.011 0.000 0.117 3.182 0.335
9 -3.736 -0.213 -0.014 0.000 0.195 3.481 0.467
10 -4.168 -0.160 -0.004 0.000 0.150 3.122 0.373

(a) Summary statistics for log2 ratio distribution

Array Standard
# Min. 1st Qu. Median Mean 3rd Qu. Max Deviation

1 0 119.5 139.7 146.0 171.6 255 37.7570
2 0 123.3 142.4 148.6 174.0 255 36.9281
3 0 121.6 141.4 145.9 170.1 255 36.0596
4 0 124.4 144.9 150.7 177.4 255 38.2576
5 0 118.8 136.4 141.8 163.4 255 35.0551
6 0 125.9 144.0 149.2 172.2 255 35.1632
7 0 126.2 143.3 148.4 170.8 255 34.2313
8 0 125.6 143.3 150.0 174.8 255 36.4579
9 0 116.1 132.0 138.9 160.6 255 35.2351
10 0 125.4 144.3 150.7 176.2 255 36.9117

(b) Summary statistics for sum log2 intensity distribution

Table 3.2 – Summary statistics for distributions of log2 ratio and sum log2
intensity data produced by ArrayView
For each histogram produced by ArrayView, a series of statistics are produced as
shown. For histograms displaying ratios, the table shown in (a) is produced, which
presents the minimum, 1st quartile, median, mean, 3rd quartile, maximum and stan-
dard deviation of the ratios for each array. For histograms displaying intensities, an
identical set of statistics are produced as shown in table (b).

microarrays that are worst impacted by inevitable errors and flaws. However, subtle

inadequacies can be corrected at a much lower cost by using the methods described and

implemented here.

3.3.2.1 TechRepCheck

TechRepCheck is a new function devised for comparing the technical replicates for each

independent sample throughout the experiment to ensure that they are providing con-

sistent levels of hybridisation for each probe, as should be expected. Whilst it would

be anticipated that samples hybridised to the same microarray should show some dif-

ferential expression throughout the probes, because the two samples are not the same,

when a sample is hybridised on more than one microarray throughout the experiment,

the resulting intensities should be close to identical. Using a process similar to Grid-

Check, the technical replicates are compared and individual probes can be identified as

inconsistent between replicate pairs. Complex rules are then applied to identify which

of the technical replicates are outliers on a probe-by-probe basis and a more consistent
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value of the outlying probe(s) is estimated based on the data provided by the remaining

technical replicates.

Comparisons between technical replicates are made on a pairwise basis, in which,

for any given sample, N⇥(N�1)
2 pairwise comparisons can be made, where N is the num-

ber of technical replicates. The senescence experiment, with four technical replicates,

is therefore assessed by making six pairwise comparisons. These comparisons are made

by plotting log2 intensity values in a similar manner to the way in which GridCheck

compares samples bound to the same microarray. An example of these plots and their

layout can be found in Figure 3.5. Since dye balancing forms an important principle of

the experimental design, it should usually be true that each sample is bound to Cy3 and

Cy5 equally often. For four technical replicates, this then provides two same-dye com-

parisons and four di↵erent-dye comparisons. Given that the dye used in labelling can

a↵ect the binding e�ciency of specific genes (Gresham et al., 2008; Rosenzweig et al.,

2004), same-dye comparisons are more likely to provide identical expression levels. By

sorting to ensure that replicates A and B are bound to Cy3 and replicates C and D are

bound to Cy5, Figures 3.5(a) and 3.5(f) represent same-dye comparisons. Each of the

other plots compare a Cy3-bound replicate with a Cy5-bound replicate.

In each plot, four colours are used to plot the points, indicating the flag status of

the probe they represent. In GridCheck, the points were either flagged or not flagged by

ImaGene (BioDiscovery), since the two samples were hybridised to the same microarray,

and so there was only a need for two plotting colours to indicate the flag status. However,

TechRepCheck compares observations from two microarrays, and hence the flags can

be one of four di↵erent permutations. Points plotted using blue represent those which

are not flagged in either replicate. Green points are flagged in the replicate plotted on

the horizontal axis only whilst orange points are flagged in the replicates plotted on the

vertical axis only. If the point was flagged in both replicates, it is plotted using purple.

Similarly to GridCheck, a PCA is implemented to fit a MAR to assist in the

identification of probes which are outliers from the expected relationship. Those probes

which deviate from the major axis regression line by more than 1.96 standard deviations

(p < 0.05) in the minor axis are then plotted within a red circle to highlight them. This

type of analysis is particularly appropriate since it is based upon the MAR regression of

the replicates rather than their conformity to any particular relationship, which allows

the replicates to exhibit dissimilar absolute expression values whilst retaining, more

relevant, similar expression relative to the rest of the probes. This allows the comparison

of replicates without the e↵ects of Array and Dye causing misinterpretation.

Figure 3.5 presents the output produced by TechRepCheck for a single sample

with four technical replicates. Without applying computational analysis to individual

probes, it is still possible to identify replicates which are contributing less to the analysis

by containing many probes with characteristics not found in the other replicates. For

example, Figures 3.5(b) and 3.5(c) exhibit a greater than usual number of orange points,

as circled, whilst Figure 3.5(f) exhibits a similar number of green probes, also circled.
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(a) Replicates A and B

(b) Replicates A and C (c) Replicates B and C

(d) Replicates A and D (e) Replicates B and D (f) Replicates C and D

Figure 3.5 – TechRepCheck output demonstrating an obvious outlying
replicate
The output of TechRepCheck visualises the relationship between all the probes of
technical replicates, regardless of the arrays and channels they are associated with
in the experiment. Despite being hybridised to di↵erent microarrays, it is possible
to make comparisons between technical replicates and learn about inconsistencies
between them. Assuming two replicates are hybridised to each channel, six plots are
produced as shown. (a) and (f) always compare replicates of the same channel whilst
(b) through (e) compare only replicates of opposite channels. Blue points represent
normal probes, whilst those plotted in orange or green were flagged in one channel
and those plotted in purple were flagged in both channels. If probes lie more than
1.96 standard deviations from the mean of the minor axis of a major axis regression,
they are identified as outliers with a small red circle around their point. In the case
shown, large clusters of probes have been circled in red in (b), (c) and (f). These
demonstrate a dissimilarity in the flagged probes of replicates on those plots. Since
the only replicate common to all these plots is Replicate C, it is very likely that
this replicate has a problem associated with it which, without this analysis, could go
unnoticed.
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All three of these plots also demonstrate a non-linear relationship between the replicates,

indicating that something is influencing the data within them when compared with the

other three plots of the same replicate set. The replicate which is common among the

three plots is replicate C, and this is consistent with the highly flagged probes too since

replicate C is on the vertical axis of Figures 3.5(b) and 3.5(c) and on the horizontal axis

of Figure 3.5(f).

This information may inspire the user to investigate the microarray upon which

replicate C is hybridised, but a more thorough investigation can be performed by using

a similar approach to that shown above but for individual probes of the microarrays. In

this case, the processing power of the computer allows the fast and e�cient identification

of outlying replicates on a probe-by-probe basis. This can be undertaken by analysing

the points which were identified as outliers from the MAR analysis. For each probe

identified in at least one of the six plots, a summary is produced, identifying which

plots present the probe as an outlier.

Table 3.3 o↵ers a visual way of interpreting the otherwise complex output pro-

duced by this frequency analysis:

• Where no plot indicates that a probe is outlying, no outlying replicates exist and

there is no need to apply any flags.

• Where a single plot identifies a probe as outlying, the two most extreme replicates

are inconsistent with one another, but this does not provide evidence to identify

which is the actual outlier, so no replicates are flagged.

• Where there are two plots indicating an outlier for a probe, one replicate will still

remain similar to all the other replicates, with two replicates on one side of its

expression and one replicate the other side. The outlying replicate(s) in this case

are identified by considering the distance between this common replicate and both

the mean of the paired replicates and the intensity of the isolated replicate. If one

distance is three times greater than the other, the replicate(s) with the greater

distance are flagged as outlying. Three was chosen as an arbitrary threshold after

comparing examples of this situation by hand.

• Where three plots indicate an outlying probe, either one replicate is significantly

di↵erent from all the others and is flagged as the outlier, or else two replicates will

show significant di↵erence from all but one other and these are flagged as outliers.

• Where four plots indicate an outlying probe, if one replicate is identified as being

inconsistent to the others, this replicate is flagged as the outlier, otherwise two

pairs of replicates exist and the pair with lower expression is flagged as the outlier

if its log expression is below 8 which is safely within the background noise of the

microarray.

• Where five plots indicate an outlying probe, only two replicates are similar to each

other and the remaining two are flagged as outliers.
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• Where six plots indicate an outlying probe, no replicate is similar to any other

and therefore no individual probe can be identified as an outlier. This scenario

suggests that a higher level of residual variability exists for this probe.

Limitation: TechRepCheck can, currently, only automatically analyse and identify

outlying replicates on a probe-by-probe basis where four technical replicates exist. Three

or fewer technical replicates would, in the majority of cases, not provide enough proof

to identify the inconsistent replicate, whilst five or more technical replicates would have

many more possible outcomes per probe than those shown in Table 3.3, providing a

more complicated coding problem. If any number of technical replicates except four are

found for a biological sample, the plots of TechRepCheck are still produced, but the

identification of outlying replicates is skipped.

This limitation could be lifted by generating a generalised rule set associated

with the identification of technical replicates which are outliers. This was beyond the

scope of the analysis of the senescence data, and hence its lack of implementation, but

theoretically, with the correct rule set, any larger number of technical replicates could

be analysed in this manner.

Once a list of flagged replicates for each probe has been produced, TechRepCheck

then attempts to estimate the expression levels of those replicates by using data from the

other replicates for that probe. This type of inference could be fraught with inaccuracies

due to the nature of the technical replicate data, since the mean expression of each

microarray may be di↵erent due to scanner gain inconsistencies or alternate handling of

the microarrays causing binding a�nity di↵erences, but by using a mean rank method

of estimation, these inconsistencies are accounted for.

Appropriate estimated intensity values for inconsistent replicates are calculated

using a mean rank strategy in which the rank intensity of the a↵ected probe is deter-

mined across all gene-specific probes for each of the consistent replicates. The mean of

these ranks determines an appropriate rank for the inconsistent replicates. The intensity

of the probe in each of the inconsistent replicates is adjusted so as to give the a↵ected

probe the calculated rank.

The identification of probes as outliers in particular replicates and then conse-

quential estimation of a more appropriately consistent intensity may provide a method

for avoiding poor data by using information from other microarrays, but is still a loss

of data because the intensity of some probes in some samples are now based on fewer

real observations and a number of estimates. These estimates are based on the real

observations of other technical replicates used in collaboration with real observations of

other probes on the same microarray, but are still only estimates.

In order to identify whether a large number of estimates are being generated

in specific regions of the microarrays, which indicates that they might be a physical

artefact and therefore avoidable, ArrayView has been adapted to plot the positions of

estimated probes after TechRepCheck has been performed so that these areas of the
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microarrays are easily identified. Figure 3.6 shows a region of the ArrayView ratio

heat-map for the same microarray both before and after TechRepCheck has been used

for probe estimation. Gold cross symbols indicate the probes which have been estimated

in one or both channels. A + symbol is plotted where the estimate was made in the first

channel, whilst a ⇥ symbol is plotted where the estimate was in the second channel.

If both channels were estimated, a combination of the two symbols, +⇥, is plotted over

the probe. Generally, local clusters composed mainly of either the + or the ⇥ symbol

indicate that a problem has occurred with a specific channel of the microarray, but

clusters of the +⇥ symbol indicate that the probes experienced a problem, either because

of damage to the microarray, or because of poor analysis of the microarray scans.

An additional output produced by TechRepCheck is a table showing how many

technical replicate sets each probes requires estimation for. This could help to improve

probes of the microarrays in future versions as those with the greatest number of esti-

mations are providing inaccurate information about the expression of their specific gene.

This information could also be considered during overall model fitting to the data, but

the approach by which this could be done is not entirely clear.

The plotting functions of TechRepCheck, including the application of a PCA,

were integrated into the MAANOVA package during the time of the MSc project, but

all other aspects of TechRepCheck, including the identification of outlying technical

replicates for individual probes and the consequential estimation of a more consistent

intensity were developed during the time of the PhD.

3.3.2.2 Transform MAData

Additional to the transformation methods already implemented in the TransformMA-

Data function as described in Section 1.5.2.5, it was noticed that no method exists to

bias the weight of the LOWESS transformation towards probes of the same pin-tip

group. This type of weighting makes logical sense because the probes printed by the

same pin-tip are assumed to be influenced by a blocking e↵ect provided by that pin.

This has been observed in real data as an obvious distinction in the ratio between sub-

grids of the microarray. By applying a LOWESS within these sub-grids it is possible to

ensure that localised artefacts are reduced in significance before considering normalising

across the entire microarray.

By numbering each sub-grid of the microarray and providing both intensity and

the sub-grid number of the probes as predictor variables for the LOWESS model, a series

of fitted values are obtained which can be used to correct the ratio of those probes using

the equation: 8
<

:
Z

rk

= log2(Yrk) +
Ck
2

Z

gk

= log2(Ygk)� Ck
2

(3.1)

where C

k

is the spot-specific constant obtained from the LOWESS regression, Y
rk

and

Y

gk

are the raw intensity values of probe k in the red and green channels, respectively,
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(a) Before TechRepCheck has been performed (b) After TechRepCheck has been performed

Figure 3.6 – ArrayView ratio heat-maps before and after TechRepCheck
probe estimation
Once TechRepCheck has provided estimated intensities for probes identified as tech-
nical replicate outliers on a microarray, ArrayView uses gold crosses to identify their
location on the microarray. (a) presents the original ArrayView output before in-
tensity estimation whilst (b) shows the same output after TechRepCheck has been
applied. Note that the crosses applied to the plot are + shaped where an inconsistency
is found in one channel and ⇥ shaped when found in the other channel. Therefore, the
combined shape +⇥ is shown when both channels are inconsistent. In a large number
of cases, the estimates show a log2 ratio closer to zero than the original values, which
is the expected log2 ratio of most probes on the microarray. A small artefact covering
a number of probes is clearly identifiable in the middle-right region of the heat-map
after the estimation crosses have been plotted, but is less visible, and certainly not
prominent, before this.
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and hence Z

rk

and Z

gk

are the transformed intensity of probe k in each channel.

3.3.3 Model Fitting

In order to fit a mixed model to the senescence microarray data, the terms of that model

must be defined. Dye and Array are terms which must always be included as these are

always a source of variation in a two-colour microarray experiment. Alongside these are

the terms defined in the experimental design: Day, Time of Day (ToD) and Biological

Replicates (BioRep). Day and ToD form an interaction as they are both measures of

the same variable, time, and it is within the interaction term of those two that BioRep

exists. BioReps were arbitrarily labelled within sampling times and are only comparable

with BioReps of the same sampling time, but the BioRep labels (A, B, C and D) are

consistent across the whole experiment and so must be separated by nesting.

Of the five top level terms listed above, some are fixed and some are random.

Those which contribute a random e↵ect to the experiment must be treated as such,

and include Array, because no two microarrays would ever hybridise identically and

therefore could not be repeated without a random contribution to the expression data.

Dye is often defined as fixed because it may be expected that each dye will always inhibit

or enhance the hybridisation of specific probes by the same degree, but there is some

evidence to suggest that the labelling process itself has a contribution to the observed

expression levels even when labelling with the same dye (Klevebring et al., 2009) and

on this occasion Dye has been defined as random.

Samples collected on the same Day or Time of Day would be expected to provide

a consistent response and so these are both defined as fixed terms. The interaction

between Day and Time of Day is also therefore defined as fixed. Biological replicates

were treated as fixed in the model because it was desirable to consider their variability

whilst determining other experimental e↵ects of the model.

The correct definition of the model formula is therefore:

⇠Dye+ Array+ (Day ⇤ ToD)/BioRep

where terms written in italics are defined as random. ‘⇤’ indicates that two terms

are to be modelled separately but also as the interaction between them. ‘/’ indicates

that the proceeding term is nested within the preceding term; in other words biological

replicates are only comparable with those at the same time point. The interpretation of

this formula is that the expression of each gene can be decomposed into the expression

contributed by the dye the sample is labelled with, the array the sample is hybridised to,

the Day which the sample was collected on, the Time of Day the sample was collected

at, e↵ects specific to the Day and Time of Day combination the sample was collected

at (the interaction term) and the biological replicate that the sample represents. When
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this is written out in full, it could be written as:

Y = µ+ ⇠Array + ⇠Dye + Day + ToD

+Day:ToD + Day:ToD:BioRep + ✏

(3.2)

where ⇠ represents random terms and : indicates an interaction between terms. ✏ is a

measurement of error and is a random term by definition, capturing the e↵ects which

cannot be associated with any other term. By including the interaction terms, e↵ects

which are dependent upon day and time of day can be captured, as they would otherwise

be lost to the measurement error term.

3.3.4 Identifying Di↵erentially Expressed Genes

MATest provides F-tests for individual terms of the model to identify the genes which

are di↵erentially expressed over the levels of the term. The F-statistics which are output

from the test are determined by the calculation shown in Equation 1.5. This can be used

to determine the significance of the variance across the levels of the term by means of a

comparison to the variance of the error term of the model, which describes the technical

variability of the experiment. This is a typical calculation of F-statistics and ensures

that genes are only defined as significantly di↵erentially expressed if their variance due

to the selected term is significantly greater than that of the noisy background. However,

an alternative analysis can be performed by comparing the variance due to one of the

terms of the model to the pooled between biological replicate variability as this allows the

more meaningful biological variability to correct the calculated F-statistic rather than

the measurement variability which should be consistent throughout the experiment.

In order to make a comparison between the variability of each term of the model

and the variability due to the biological replicates, an F-test must first be performed on

all the fixed terms of the model, including the biological replicate interaction term. For

the senescence dataset, this requires that MATest be used to get F-statistic values for

Day, Time of Day, the Day ⇥ Time of Day interaction and the Day ⇥ Time of Day ⇥
Biological Replicate interaction. The F-statistics can then be used to recalculate new

F-statistics so as to change the denominator in the calculation to the variance of the

biological replicates as shown:

F =
F

term

F

bioreps

(3.3)

=

✓
term variance

error variance

◆✓
error variance

biorep variance

◆
(3.4)

=
term variance

biorep variance
(3.5)

where F is the new F-statistic from which p-values can be inferred by using the degrees

of freedom for both the chosen term and the biological replicate interaction term.

MATest produces two di↵erent F-statistics, as described on page 28, and both
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can be modified in the same way. A function has been produced, ConvertMATest,

to make this conversion with minimal input from the user. Once the conversion has

been made to both F-statistics, the corresponding p-values are also identified so that

the newly converted F-test object can be used in exactly the same way as unconverted

F-test objects, including applying FDR adjustments, where desired.

To accompany the ConvertMATest function, another function, AnalyseMATest,

has been produced with the intention of making the production of lists of di↵erentially

expressed genes easier. Up to three converted F-test results can be passed to this

function and it will output lists of genes corresponding to those which are identified as

di↵erentially expressed for each of the terms. The type of F-statistic to use and the

choice of whether to use the FDR adjusted p-values or not are all parameters which can

be provided. Where three tests are passed to AnalyseMATest, seven lists are produced

and exported as text files. These correspond to di↵erential expression in:

• Term 1 only

• Term 2 only

• Term 3 only

• Term 1 and 2 only

• Term 1 and 3 only

• Term 2 and 3 only

• All three terms

AnalyseMATest then uses the produced lists to plot a Venn diagram presenting

the size of each of the lists, as well as the number of genes which are not di↵erentially

expressed for any of the terms provided. These lists and the Venn diagram are then

used to identify the number of genes for further analysis.

3.3.5 Extracting Predicted Gene Expression Data

Once a mixed model has been fitted to the data and a list of genes showing di↵erential

expression identified, it is possible to obtain predicted expression data for those genes

based on the fitted model terms. For each of the terms of the model, a matrix of values

is returned with dimensions of the number of spots on the microarrays by the number

of levels for the term. These values indicate the deviation from the mean log expression

of that gene for each of the levels of each term. These deviations are additive, meaning

that if it is desirable to recombine the Day term (11 levels) with the Time of Day term

(2 levels), each of the 11 levels for Day can be summed with each of the 2 levels for

Time of Day to provide 22 gene expression values, corresponding to the sampling times

at which the plants were harvested.
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By selectively adding back the e↵ects that are to be further analysed, di↵erent

forms of the data can be established. Figure 3.7 presents three possible extractions

of the expression data for a particular gene with error bars indicating the variation

between biological replicates for any given time point. In Figure 3.7(a), the data which

have been extracted demonstrate the relative levels of expression for the gene during

the harvesting period. The values shown are as they would be observed at those points

in time without any experimental factors such as di↵erences caused by arrays or dyes

as these are terms which were not included during reconstruction of the expression

data. This format of the data is typical of the sort you might receive from conventional

methods of microarray analysis which are unable to separate the e↵ects introduced into

the experiment.

By excluding the Time of Day e↵ects when reconstructing the expression data,

this no longer becomes a contributing factor to the profile of the gene, as can be seen

in Figure 3.7(b). In this case, the diurnal e↵ects of this gene have been removed, to

reveal the underlying change in expression with the onset of senescence. Whilst this

may be achieved by simply averaging the morning and evening samples for each day, this

approach would not take account of the confounding e↵ect of the interaction between day

and time of day. The model, however, does take this into account and provides a more

appropriate method of removing time of day e↵ects. The removal of time of day e↵ects

leaves a profile which can be better used to compare the di↵erential expression due to

senescence of several genes without identifying genes as highly di↵erentially expressed

simply because they have a strong diurnal e↵ect.

Whilst removing the diurnal e↵ect alone produces a useful profile, another al-

ternative method of reconstructing the expression data is to completely remove the

di↵erences between samples from the same day by also omitting the interaction term

between day and time of day. This plot can be seen in Figure 3.7(c) and only has

11 time points, but because the morning and evening samples are identical under this

structure, the biological replicates of each can be treated as a single set, providing eight

biological replicates per time point instead of the usual four. This not only reduces the

size of the error bars since a greater number of observations increases the confidence in

the data but also helps to evenly spread the time points. Under the previous model of

22 time points, the samples from the same day are 7 hours apart, whilst the time dif-

ference between samples on adjacent sampling days is 41 hours, providing a near 6-fold

di↵erence in the time scale between adjacent time points.

One of the powers of this analysis is that gene expression data can be extracted

to suit various forms of analysis. Where senescence is the main focus of the study, the

diurnal e↵ects may mask the underlying changes throughout the longer senescence time

course and so can be omitted. Where putative transcriptional network modelling will be

performed, it is beneficial to only consider observations which were taken at regular time

intervals and so morning and evening samples can be treated as being from the same

day by omitting the changes which have occurred between those observations. Where
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(a) 22 time points including diurnal e↵ects.

(b) 22 time points excluding diurnal e↵ects. (c) 11 time points.

Figure 3.7 – Gene expression profile plots demonstrating inclusion of ex-
perimental terms of the model
The inclusion or exclusion of terms of the model controls the sources of variation
contributing to the expression profile of individual genes. All three plots show the
expression profile of the same gene and error bars represent one standard error for
the biological replicates. In (a) all 22 time points are displayed and diurnal e↵ects of
the gene can be seen throughout the time course. This output is typical of microar-
ray analysis as it includes all the measured variables of the experiment. The diurnal
e↵ects can be excluded from the profile by simply choosing not to include the time of
day term from the model, leading to the plot shown in (b). This plot still contains 22
time points, but only the changes in gene expression due to ageing are present. By
pooling the morning and afternoon samples by removing the interaction term from
the model, the profile in (c) is obtained and has the equivalent of eight biological
replicates but with the advantage that the time points are regularly spaced.
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clustering analysis is desirable, it may be appropriate to only provide one observation

per time point. In this case, the biological replicate term can be omitted to exclude

those e↵ects from the expression data.

Even after the expression data is extracted, further forms of normalisation can

be performed on the data in order to suit the analysis method. In the case of tran-

scriptional network modelling, the computational identification of similarity between

gene expression profiles can be simplified by subtracting the mean expression and then

dividing by the standard deviation across the time course. This ensures that even if

the magnitude of the expression changes and the absolute expression of two genes are

di↵erent, their expression profiles will be identical after normalisation if they are simi-

lar in response. This type of normalisation is also well suited to clustering algorithms,

which also make comparisons between genes.

Figure 3.8 provides an example of the ways in which the gene profiles can be

predicted using the fitted mixed model e↵ects, each providing alternative levels of sim-

ilarity or di↵erentiation between the expression profiles. In most cases, it is desirable

to ensure that all genes lie along a mean expression of zero so as to ensure that if their

expression profiles exhibit the same kinetics, their expression values are also equal. In

order to do this, the reconstruction of the gene expression must include only the exper-

imental terms. When this is the case, the mean expression of each gene will be zero as

shown in Figure 3.8(a).

An alternative to this is to introduce the relative mean expression of each gene

causing the profiles of the genes to separate, indicating which genes have the highest

overall expression during the senescence period and also providing information about the

fold di↵erence between the expression of the profiles. This can be seen in Figure 3.8(b)

which also demonstrates that, in this form, the experiment mean is still zero and so the

absolute expression of the genes cannot be identified. The actual expression profiles of

the genes do not transform, but are merely translated to new gene means.

The final mean which can be introduced into the data is the experiment mean

which represents the mean expression of all observed genes. By adding this, the relative

distance between the expression profiles of the genes are maintained, but the expression

values of each gene are now back to the original scale of the experiment. The resulting

plots after the addition of the experiment mean are shown in Figure 3.8(c) which is

identical in appearance to Figure 3.8(b) with the exception of the scale of the vertical

axis which now indicates an overall mean of 8.7. After this transformation, every gene’s

profile will be represented by positive values.

Where comparisons must be made between gene profiles without consideration

for their relative or absolute expression, the gene expression used should be derived from

a similar extraction to that shown in Figure 3.8(a) where genes are centred about a mean

of zero. A further transformation can then be applied to ensure that the magnitude

of expression changes are uniform throughout all the genes. This transformation was
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(a) Zero-mean centered

(b) After inclusion of gene means (c) After inclusion of experiment mean

Figure 3.8 – Examples of normalisation applied by inclusion of mean terms
of the model
The inclusion of terms related to the relative expression of genes allows data to be
extracted in formats suitable for specific purposes. When only the terms of the model
related to the input variables of the experiment are summed, the output for the three
genes shown above are as the plot (a) in which each profile is centred about a log2
expression of zero. By including the gene means for each gene, shown in (b), the
shape of the profiles is una↵ected, but the relative expression levels between genes
are restored, indicating that the gene plotted in green has a higher overall expression
than the blue or yellow profiles. In this case, each gene is still centred around a mean
of zero over the whole experiment. By opting to also include the experiment mean,
shown in (c) the profiles are once again una↵ected, as is the relative di↵erence in
expression between them. However, all expression values are now greater than zero
and have been returned to the same scale as they were measured on the microarrays.

performed by applying the equation:

y =
ys

1
T�1

TP
t=1

(y
t

� ȳ)2

(3.6)

where y is the log2 expression of a gene across all time points, T is the number of

observations and y

t

is the log2 expression of the gene at time t. This ensures that even

a small change in the expression of a gene can be correlated with a large change in the

expression of another gene. This is especially useful when clustering genes based on the

shape of their profile rather than their magnitude.
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3.4 Application of MAANOVA to Microarray Data

Until this point, a number of functions and processes have been introduced with minimal

demonstration of their application with the senescence dataset. This section describes

the application of those functions and the consequential results.

3.4.1 Quality Control

3.4.1.1 GridCheck

The initial quality control of the data is provided by GridCheck which compares the

intensity of both channels of each microarray. Given the improvements made to the

GridCheck function, it is now possible to identify patterns of probes which lie outside

the expected regression of the plot through the implementation of a PCA and by cir-

cling probes which stray from the mean of the minor axis by more than 1.96 standard

deviations (p < 0.05) in red.

The presence of red circles in the sub-plots should be expected since the pur-

pose of the microarrays is to identify di↵erential expression, but the presence of exces-

sive numbers of red circles or an unusual distribution of these points, amongst other

anomalies in the GridCheck sub-plots might indicate a problem with the collected data.

Figure 3.9 demonstrates and explains three common anomalies seen in GridCheck sub-

plots.

However, the identification of these plots is a labour intensive task which is

heavily subjective, and as such the statistics table output by GridCheck to summarise

each sub-plot has also been used to help rank those sub-plots so that the worst artefacts

can be quickly identified without the need to scan through all 8,448 sub-plots produced

during the analysis of the senescence dataset.

Two alternative statistics were used to rank the GridCheck sub-plots. These

were:

(a) The p-value generated by a one-sample t-test against a mean of zero of the major

axis values for probes which lie more than 1.96 standard deviations (p 6 0.05) above

zero in the minor axis (i.e. above the regression).

(b) The p-value generated by a one-sample t-test against a mean of zero of the major

axis values for probes which lie more than 1.96 standard deviations (p 6 0.05) below

zero in the minor axis (i.e. below the regression).

The reason for choosing these statistics is that, when the p-value is below a

selected confidence threshold, it identifies a non-standard distribution of di↵erentially

expressed probes along the major axis and therefore a likely bias amongst those probes.

This is true for all of Figures 3.9(b), (c) and (d).

Figure 3.10 illustrates the e↵ectiveness of the two statistics in the identification of

problematic pin-tip groups. All 8,448 GridCheck plots were assessed by eye to identify
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(a) Microarray 11, Sub grid (3,3) demon-
strates no noticeable artefacts.

(b) Microarray 171, Sub grid (3,4) demon-
strates a number of probes with zero intensity
in either channel.

(c) Microarray 44, Sub grid (3,3) demon-
strates many probes with zero intensity in ei-
ther channel.

(d) Microarray 33, Sub grid (3,1) demon-
strates an isolated cluster of probes with bias
towards one dye.

Figure 3.9 – GridCheck sub-plots indicating typical artefacts of CATMA
microarrays
Blue points represent the intensities of probes which are not flagged by ImaGene
during microarray scan analysis whilst orange points are those probes which have
been flagged. Red circles outline those probes which stray from the mean of the
second major axis in a PCA by more than 1.96 standard deviations (p < 0.05). The
expectation of a GridCheck plot with no noticeable artefacts, (a), is that most probes
will be expressed to a similar level in both channels. Those probes which stray from
this relationship should not be great in numbers, nor should they be biased to one side
of the regression or be grouped into clusters. (b) shows a large number of probes with
zero intensity in one or the other channels. This can be a sign of high-background
in the array accompanied by background subtraction. (c) shows only two un-flagged
probes, indicating a serious problem with the data of that sub-grid, either caused
by low hybridisation due to low yield probes during printing, or incorrectly aligned
grids during ImaGene analysis. (d) demonstrates a number of probes (as highlighted)
which show higher ratios than expected from the remaining data and therefore form a
cluster of outlying probes. This is caused by non-specific binding of the Cy3 channel.
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(a) p-value for t-test above the regression. (b) p-value for t-test below the regression.

Figure 3.10 – ROC curves demonstrating the power of ranking sub-plots
using statistics
A number of sub-grids throughout the senescence experiment were identified by a
human expert as being of insu�cient quality, based on the visual output of GridCheck.
Simultaneously, sub grids were ranked by using statistical analysis of the GridCheck
sub-plots. By comparing these ranks against the hand identified sub-grids, ROC
curves were produced. The criteria for high ranking sub-grids were (a) the p-value
from a t-test of deviation from a mean of zero on the major axis for outlying probes
above the regression and (b) the p-value from a t-test of those below the regression.

common artefacts like the ones shown in Figure 3.9. This list was used as the gold-

standard to which the automated ranking must aspire. In order to test the automated

ranking against the gold-standard, ROC plots were produced in which true positives

are plotted against false positives. True and false positives are both sub-plots identified

by the automated ranking as having an artefact, but the distinguishing characteristic is

that true positive were also identified as having an artefact when assessed by eye, whilst

false positives were not.

Starting at the origin of the ROC plot, a list of GridCheck sub-plots ranked by

the selected statistic is traversed. If the entry in the list was also identified by eye, the

ROC plot curve moves one unit vertically. If it was not identified by eye, the ROC

plot curve moves one unit horizontally. The greater the area under the curve, the more

e↵ective the strategy is. A dotted line is plotted diagonally across the plot because this

defines the path of the curve in the case that random selections are being made. In both

cases it can be seen that more than 80% of the true positives can be identified before

even 20% of the false positives have been incorrectly ranked highly.

The top 45 worst GridCheck plots for each statistic, are shown in Table 3.4.

These have been ranked by the p-value of the t-test to put the lowest p-value at the

top of the table. It can be seen that arrays 23, 25, 27, 130 and 172 dominate the

top ranks under both statistics and a closer inspection of those sub-plots of GridCheck
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shows that they demonstrate a similar arrangement of outlying probes to those shown in

Figure 3.9(b). Interpretation of these results is made later in this thesis in Section 3.4.2

where the actions taken to rectify any defects are described.

Although this proves that these ranked statistics can be used to accurately iden-

tify the majority of GridCheck sub-plots with a visible artefact, it does not demon-

strate how this information may be used when processing alternative datasets, since

the GridCheck plots, on this occasion, have already been categorised by eye. However,

the p-value threshold which identifies approximately 80% of the true positives in this

dataset is (p 6 2.0⇥ 10�4) for both statistics. It would not be feasible to correct every

issue identified in this way, but it does provide a semi-automated approach to finding

the worst areas of the microarray experiment in very little time.

3.4.1.2 RIPlot

RIPlot applied to the senescence dataset identified a few artefacts that are common

amongst microarrays of the experiment. One of these artefacts is also identified by

GridCheck, whilst the others are very large artefacts a↵ecting only a small number of

probes in each of a large number of sub-grids. The analysis of whole microarrays allows

RIPlot to identify these deviations from the ideal whilst the small impact they make on

individual sub-grids makes them invisible to GridCheck.

Figure 3.11 presents an archetypal plot (Figure 3.11(a)) as would be expected

from a microarray with no major flaws. In this case, the ratio is zero mean-centred

throughout the entire intensity range with only a small increase in the variance of the

ratio at lower intensities. Few probes exist to the far right where probes which are

saturated in one or both channels reside and the majority of blue probes exist between

combined log intensities of 12 and 30.

A microarray which has been scanned at too high gain would provide data as

shown in Figure 3.11(b), where many probes exist in a > shape to the right of the

plot at the highest combined intensities. This shape is characteristic of probes which

are saturated in one or both channels because saturation in both channels is the only

situation that allows a combined log2 intensity of 32. At this intensity, the log2 ratio

must be zero as both channels are the same. As the combined intensity is decreased

because the channels are no longer both saturated, the most extreme ratio achievable

is when one channel remains saturated. The ratio is therefore always restricted. The

same concept is true of the left edge of the plot where a shape resembling < can be

found. Having many saturated probes is not good for the data because the distinction

between the probes is lost if all have the same intensities.

When a number of probes are substantially distant from a ratio of zero, it is

possible for them to form a cluster of points in the RIPlot as shown in Figure 3.11(c).

This cluster is also identifiable in the GridCheck sub-plot shown in Figure 3.9(d). The

reason for this is often non-specific binding of large numbers of probes as the problem

only exists in one channel.
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Meta Meta
Array Row Column p-value

130 10 4 3.28 ⇥10�44

27 2 3 5.42 ⇥10�43

130 1 3 5.14 ⇥10�42

130 9 1 7.87 ⇥10�42

25 3 3 2.51 ⇥10�41

25 8 1 1.94 ⇥10�40

25 10 3 9.61 ⇥10�40

130 8 1 2.45 ⇥10�39

25 2 2 2.77 ⇥10�37

25 9 3 3.08 ⇥10�37

25 9 2 8.19 ⇥10�37

130 11 3 1.11 ⇥10�36

27 2 2 1.18 ⇥10�36

130 4 2 1.76 ⇥10�36

25 5 2 1.65 ⇥10�35

23 9 1 2.00 ⇥10�35

27 7 2 3.37 ⇥10�35

130 7 2 4.02 ⇥10�35

25 10 1 1.99 ⇥10�34

130 10 3 2.98 ⇥10�34

23 9 3 5.77 ⇥10�34

172 2 2 6.54 ⇥10�34

23 1 2 8.85 ⇥10�34

130 7 1 9.18 ⇥10�34

130 12 3 3.70 ⇥10�33

27 6 3 4.98 ⇥10�33

27 12 3 1.00 ⇥10�32

130 7 4 1.34 ⇥10�32

130 4 4 1.38 ⇥10�32

172 5 4 2.34 ⇥10�32

130 10 2 2.61 ⇥10�32

27 4 1 2.99 ⇥10�32

25 10 2 5.02 ⇥10�32

130 11 2 7.69 ⇥10�32

130 8 4 9.54 ⇥10�32

27 4 2 1.08 ⇥10�31

27 1 3 1.41 ⇥10�31

130 1 1 3.66 ⇥10�31

25 7 1 3.90 ⇥10�31

23 10 4 5.01 ⇥10�31

25 9 1 1.21 ⇥10�30

23 4 2 1.30 ⇥10�30

130 10 1 1.74 ⇥10�30

25 7 4 2.52 ⇥10�30

25 1 1 3.66 ⇥10�30

(a) Sub-grids demonstrating abnormally dis-
tributed probes above the regression

Meta Meta
Array Row Column p-value

25 4 3 1.71 ⇥10�43

25 11 2 2.14 ⇥10�42

24 1 3 6.38 ⇥10�42

130 9 2 1.36 ⇥10�41

130 6 4 1.02 ⇥10�38

25 11 4 1.92 ⇥10�38

27 5 3 7.76 ⇥10�38

130 12 2 7.87 ⇥10�38

27 3 2 3.75 ⇥10�37

25 11 1 4.65 ⇥10�37

23 9 2 6.59 ⇥10�37

25 8 4 8.41 ⇥10�37

130 2 2 4.07 ⇥10�36

25 3 2 4.86 ⇥10�36

27 9 2 6.26 ⇥10�36

25 2 3 7.38 ⇥10�36

130 1 2 4.69 ⇥10�35

172 3 2 1.15 ⇥10�34

25 2 1 1.47 ⇥10�34

25 7 2 2.30 ⇥10�34

130 3 2 2.72 ⇥10�34

25 9 4 1.69 ⇥10�33

130 2 1 8.46 ⇥10�33

172 1 3 1.24 ⇥10�32

130 12 4 1.51 ⇥10�32

26 6 3 3.64 ⇥10�32

130 2 4 1.62 ⇥10�30

130 1 4 1.95 ⇥10�30

27 2 2 2.28 ⇥10�30

130 8 2 2.66 ⇥10�30

17 6 3 3.83 ⇥10�30

130 11 4 5.26 ⇥10�30

25 8 2 5.67 ⇥10�30

25 1 2 6.06 ⇥10�30

25 1 3 1.00 ⇥10�29

25 11 3 1.08 ⇥10�29

59 7 3 2.49 ⇥10�29

23 2 1 3.13 ⇥10�29

56 4 2 3.46 ⇥10�29

25 2 4 7.02 ⇥10�29

25 5 4 3.17 ⇥10�28

25 12 2 3.40 ⇥10�28

26 3 2 3.55 ⇥10�28

23 10 2 5.26 ⇥10�28

172 3 3 6.69 ⇥10�28

(b) Sub-grids demonstrating abnormally dis-
tributed probes below the regression

Table 3.4 – Top 45 worst GridCheck sub-plots ranked by t-tests of the
major axis for outlying probes above or below the regression
One-sample t-tests performed on the major axis values of outlying probes in Grid-
Check sub-plots were performed independently for those probes above, (a), and those
below, (b), the regression of the plot. Lower p-values from these tests determine that
the sub-plot should be checked for artefacts. It can be seen that microarrays num-
bered 23, 25, 27, 130 and 172 dominate the lowest observed p-values in both cases, and
these were found to have many outlying probes in a similar pattern to the GridCheck
sub-plot shown in Figure 3.9(b); the most frequently observed issue with GridCheck
sub-plots in the senescence experiment.
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Some microarrays show a high variance in the ratio throughout the entire inten-

sity range, as shown in Figure 3.11(d). This could be an indication that one or both

of the channels are noisy and as such should be visually verified, but can, in this case,

also be caused by two samples being hybridised to the same microarray despite being

temporally distant. Some microarrays in the senescence design are hybridised by a day

11 and day 1 sample to complete the loops and, since a lot of gene expression changes

have occurred during that time, the resulting RIPlot can show a high level of variance

in the ratio.

Given that RIPlot does not generate statistics about the plots and that there

are so few plots when compared with the sub-plots of GridCheck, these plots were

visually assessed and compared with the output of ArrayView to try to explain observed

artefacts.

3.4.1.3 ArrayView

As was described in Section 3.3.1.3, ArrayView allows the visualisation of the spatial dis-

tribution of ratios and intensities throughout the probes of the microarrays in the form

of a heat-map. This type of visualisation is especially informative where transforma-

tions have been applied to the data as a comparison before and after the transformation

demonstrates its e↵ectiveness. ArrayView has also been used to provide a visual de-

termination of the cause of artefacts identified by GridCheck and RIPlot, as has been

described above. In this way, it is possible to determine the course of action to take to

avoid these artefacts during the analysis.

Figure 3.12 presents the ratio and intensity heat-maps for those pin-tip groups

which were highlighted by GridCheck in Figure 3.9. Figures 3.12(a) and 3.12(d) are

the ratio and intensity heat-maps, respectively, for the pin-tip group exhibiting a large

number of probes with zero intensity in one or both channels in Figure 3.9(b). The

probes a↵ected cause the intensity heat-map to display an exceptional number of dark

spots on the intensity heat-map when compared with those of other microarrays. Those

probes are also seen to present large ratios, plotted as bright red and bright green

in the ratio heat-map. These large ratios are an artefact of one channel having zero

intensity. These artefacts are most likely caused by the background level exceeding that

of the signal on the microarray and the consequential background subtraction causing

the signal to be reduced to zero.

The pin-tip group with almost entirely zero expression probes identified by Grid-

Check in Figure 3.9(c) has been plotted as a ratio and an intensity heat-map in Fig-

ures 3.12(b) and 3.12(e) respectively. On this occasion, it is obvious that the overall

intensity of this pin-tip group is significantly lower than the rest of the microarray, but

again this is less obvious in the ratio heat-map. This is a serious issue since the expres-

sion data for over 600 probes in these two samples are e↵ectively missing and will most

likely cause disruption in the analysis of the whole experiment.

Figure 3.9(d) identified a pin-tip group with an outlying cluster of probes which
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(a) Microarray 32 is an example of the expected
appearance of an RIPlot.

(b) Microarray 59 demonstrates a large number
of saturated probes.

(c) Microarray 31 indicates that a cluster of
probes show bias towards one dye by straying
from the regression of the plot.

(d) Microarray 42 illustrates the e↵ect of dissim-
ilar samples giving a wide range of ratios extend-
ing into high intensities.

Figure 3.11 – RIPlot output indicating typical artefacts of CATMA mi-
croarrays
An archetypal plot, as in (a), exhibits characteristics such as the majority of blue
points existing between a combined log2 intensity of 12 and 30, no groups of points
straying from the main regression of the plot and a tight, uniform range of ratios
along the blue points. (b) shows an example plot in which many probes are saturated
in one or both channels (highlighted) providing no distinction between them. In (c),
a number of probes form a cluster (highlighted) which strays from the main regres-
sion, indicating a possible artefact of the microarray. The wide range of ratios in (d)
demonstrates that the channels of this microarray have less similarity than on other
arrays, requiring that any possible reason for this be investigated as it may be caused
by a problem with the microarray itself.
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(a) Ratio heat-map for mi-
croarray 171, sub grid (3,3)

(b) Ratio heat-map for mi-
croarray 44, sub grid (3,3)

(c) Ratio heat-map for mi-
croarray 33, sub grid (3,1)

(d) Intensity heat-map for
microarray 171, sub grid
(3,3)

(e) Intensity heat-map for
microarray 44, sub grid
(3,3)

(f) Intensity heat-map for
microarray 33, sub grid
(3,1)

Figure 3.12 – Cropped ArrayView heat-maps for sub-grids flagged by Grid-
Check
The sub-figures show cropped areas of ArrayView heat-maps designed to illustrate
some of the sub-grids flagged by GridCheck. For clarity, the margins between the
pin-tip groups have been defined by orange lines, though these do not appear as
boldly on the ArrayView output. In each case, the flagged sub-grid is the one dis-
played in full, whilst the edges of other sub-grids are shown only as a comparison. (a)
and (d) illustrate the ratio and intensity plots respectively for the sub-grid presented
by GridCheck in Figure 3.9(b) where many of the outlying probes were zero inten-
sity in at least one channel. It can be seen that this results in more low intensities
appearing in the intensity heat-map when compared with that of (f) where the in-
tensities are normal. Where the lower intensities exist, these are often represented by
maximum ratio in the ratio heat-map since one channel is demonstrating zero expres-
sion. (b) and (e) are the corresponding ratio and intensity heat-maps for the sub-grid
flagged by GridCheck in Figure 3.9(c). In this case, the intensity heat-map highlights
the severity of the low intensities throughout the sub-grid and this is also identifi-
able by the increased ratios of the probes in the sub-grid. As has been stated, (f)
demonstrates the appearance of an intensity heat-map with no unusual characteris-
tics, despite representing the same sub-grid shown by GridCheck to contain a cluster
of outlying probes towards one channel in Figure 3.9(d). (c) is the corresponding
ratio heat-map which clearly shows a range of probes which are biased towards the
red channel. The thin, long shape of this artefact identifies it as a scratch on the
microarray rather than a probe hybridisation problem.
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strayed from the main regression, giving rise to the conclusion that some probes have

been dye-biased. Figures 3.12(c) and 3.12(f) are the ratio and intensity heat-maps,

respectively, for the pin-tip group and it is clear that the probes causing the cluster of

points are those plotted in red to the left of the ratio heat-map. Although these are

obvious in the ratio heat-map, it appears that they show no identifiable abnormality in

the intensity heat-map. This type of artefact can be seen on many di↵erent microarrays

in the experiment, although it usually only a↵ects a minor number of probes as can

be seen here. The fact that the overall intensity is una↵ected may indicate that it is

coincidence, but it can often be attributed to marks on the scan images which cause

high background for those probes.

Three microarrays with concerning characteristics were identified by RIPlot in

Figures 3.11(b), 3.11(c) and 3.11(d). The ratio and intensity heat-maps for these mi-

croarrays are presented in Figure 3.13 and are compared.

The first concern, shown in Figure 3.11(b), is an example of a microarray in

which many of the probes have reached saturation in at least one channel. The ratio

and intensity heat-maps for this microarray are presented in Figures 3.13(a) and 3.13(d)

respectively. The saturated probes do not appear to have an e↵ect on the overall

appearance of the ratio heat-map, but the intensity heat-map does demonstrate a large

number of maximum intensity probes, leading to some probes appearing almost white

and giving the impression of high contrast across the plot. These heat-maps do not

indicate a localisation of the over-saturated probes and hence it should be a case of

simply re-scanning the microarray at a lower gain to prevent the observed saturation.

Figure 3.11(c) highlights a number of probes which form a cluster of points

which stray from the main regression of the data on that microarray. Figures 3.13(b)

and 3.13(e) present the ratio and intensity heat-maps, respectively, for this microarray

and the cause is clearly visible in both heat-maps. As has been noticed on CATMA

microarrays, sometimes localised groups of probes will exhibit non-specific binding. This

results in highly fluorescent groups of probes and consequential loss of gene expression

data. The cause is unknown, but the identification is simple with the tools provided

by MAANOVA and the most e↵ective solution is to re-hybridise the samples to a new

microarray. A discussion of actions taken because of observations made through this

analysis is shown in Section 3.4.2 alongside actions taken for other reasons throughout

the experiment.

The final concern identified from the plots of RIPlot, was that of a plot with a

wide range of ratios extending throughout all intensities, displayed in Figure 3.11(d).

The ratio and intensity heat-maps for this microarray are presented in Figures 3.13(c)

and 3.13(f) respectively. The only indication of this unusually wide range of ratios is a

high number of bright green and bright red probes on the ratio heat-map. As these are

not localised to any one area of the microarray, this is most likely caused by the samples

themselves being distinctly di↵erent. This could be an indication of a poor quality

sample, but an investigation of the experimental design shown in Figures 1.3 and 1.4
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indicates that this microarray has a sample from the first time point and the last time

point hybridised to it. As these are the most distant time points of the experiment, a

higher degree of di↵erentiation should be expected.

It has been shown that, GridCheck and RIPlot are able to identify certain arte-

facts each, and that neither is capable of identifying all artefacts. Yet it has also been

shown that ArrayView always presents an identifiable pattern when an artefact exists,

though some are more obvious when looking at GridCheck or RIPlot, such as saturated

probes. In most cases, ArrayView is an adequate visualisation of the data for identi-

fying where improvements could be made to the experiment. However, the analysis is

qualitative rather than quantitative, since minor defects such as subtle dye-bias would

most likely go unnoticed. Therefore, it would be desirable to provide a statistical anal-

ysis of the ArrayView output which can show the user where artefacts are most likely

to exist and draw their attention to underlying problems. This was the inspiration for

developing the histogram output for the heat-maps so that the distribution of ratios

and intensities throughout the microarray can be observed.

Intensity histograms, such as the one shown in Figure 3.4(b), is accompanied by

statistics about their distribution such as those shown in Table 3.2(b). The distribution

of the intensity data is more complicated and would require further consideration before

statistical tests could be applied to decide whether any abnormal intensities are present.

A test implemented with the intention of automating the identification of artefact

locations was that of an Analysis of Variance (ANOVA) in which the meta-rows and

meta-columns of the sub-grids were used to group the probes. The ANOVA returns two

p-values per microarray defining whether the probes in the meta-rows are significantly

di↵erent and whether the probes in the meta-columns are significantly di↵erent. Where

an artefact exists and an unusual localisation is present, these tests would therefore

identify this by resulting in a significantly low p-value.

The results of the ANOVA tests did appear to provide useful information about

the meta-columns, since the comparison is between only four columns with a quarter

of the total probes in each, whilst for the meta-rows, the tests were almost always

highly significant, most likely due to a small deviation in only one or two rows of the

twelve present on each microarray. The test is too sensitive to be of any real use but

time constraints limited the time which could be spent on providing an alternative.

Instead, the graphical output of ArrayView was enhanced by the new analysis provided

by TechRepCheck to ensure it could be interpreted in a semi-quantitative manner.

The graphical output produced by ArrayView, to this point, has been shown as

an extension only of the ArrayView function itself. However, the usefulness of Array-

View can be greatly extended by combining it with information obtained from TechRep-

Check. Gold crosses, introduced in Section 3.3.2.1, are plotted over probes identified

as replicate outliers and consequently estimated in intensity for one or both channels.

These are thoroughly discussed and applied throughout Section 3.4.2.
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3.4.2 Application of TechRepCheck and Correction of Poor Microar-

rays

Using TechRepCheck improves the resulting data in two ways. Firstly, the output of

ArrayView, already deemed a comprehensive way of visualising the data, is improved

by the addition of gold crosses over the probes that are identified as significant outliers

in their respective technical replicate sets. These gold crosses draw the attention of

the individual looking for artefacts on the microarrays and ensures that those artefacts

do not go unnoticed. Where the individual chooses to take no action to correct the

artefacts because of time or money constraints, they can then choose to take advantage

of the intensity estimation features for the identified probes in which the remaining

non-outlying replicates can be used to provide a more consistent intensity value for the

outlier, if they wish.

During the analysis of the senescence dataset, TechRepCheck was used, initially

to identify artefacts in a semi-quantitative, semi-automated manner. The position of

the gold crosses assisted in the identification of outlying intensities when compared with

their respective technical replicates. This lead to the discovery of artefacts which had,

until now, not been identified, and their removal after corrective steps, shown below,

had been taken was then verified by TechRepCheck.

With the powerful visualisation provided by TechRepCheck, it was possible to

identify which microarrays in the senescence dataset required attention. It was found

that, in most cases, either the analysis of the scans had been performed inappropriately

for some microarrays or an artefact of the microarray itself had caused a bias in the

data which could not be corrected through a process of transformation. The plots

presented by ArrayView after TechRepCheck were carefully reviewed to identify where

significant improvements could be made for the senescence dataset without introducing

excessive financial expenses. Figure 3.14 shows the appearance of regions of ArrayView

plots before TechRepCheck, after TechRepCheck and then after a correction has been

applied.

Figure 3.14(a) shows the ArrayView output of microarray 44 before the applica-

tion of TechRepCheck. This microarray was identified by GridCheck as having almost

every probe of zero intensity in at least one channel. Once TechRepCheck had been

applied to the microarray, the gold crosses were placed as can be seen in Figure 3.14(b).

This is very typical of a problem existing in those probes since the majority of the gold

crosses indicate a problem in both channels. Upon close inspection, the microarray

scan itself was not well represented by the numerical data, leading to the conclusion

that a mistake was probably introduced at the stage in which the microarray scans were

analysed by ImaGene. After re-analysing the original scan, new data was obtained and

the resulting TechRepCheck crosses shown in Figure 3.14(c) indicate that the problem

was eradicated.

Figure 3.14(d) is another example of ArrayView output from microarray 164.

This microarray has not been identified by any of the previous analyses. Once Tech-
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(a) Microarray 44 Before
TechRepCheck

(b) Microarray 44 After
TechRepCheck

(c) Microarray 44 After Fixes

(d) Microarray 164 Before
TechRepCheck

(e) Microarray 164 After
TechRepCheck

(f) Microarray 164 After
Fixes

(g) Microarray 31 Before
TechRepCheck

(h) Microarray 31 After
TechRepCheck

(i) Microarray 31 After Fixes

Figure 3.14 – ArrayView with TechRepCheck estimate indicators
In the first example, an artefact can be seen in the ratio plot of ArrayView as an area
of brighter colours (a) and this is confirmed by the gold crosses produced by Tech-
RepCheck (b). After reanalysing the array scan using ImaGene, the new data does
not contain the same defect (c). In the second example, the artefact is less obvious to
the eye (d) but TechRepCheck is able to identify outlying probes throughout a sub
grid of the array (e). Reanalysing the array scan using ImaGene once again removes
the issue resulting in far fewer probes identified by TechRepCheck (f). In a third
example, the artefacts a↵ect only specific probes of the array (g) and TechRepCheck
successfully identified a number of these outlying probes (h). Further investigation
found that this artefact was also present on the array scan and therefore the samples
were hybridised to a new array and the artefact was removed (i).
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RepCheck was applied, the crosses were placed as shown in Figure 3.14(e), indicating

an almost identical issue to that shown in Figure 3.14(b). The same approach was taken

to correct the issue and the output from ArrayView after re-analysing the microarray

scan (Figure 3.14(f)) indicates that this was equally as successful.

Figure 3.14(g) is the final example of ArrayView output before TechRepCheck

was applied to microarray 31. This microarray was identified by RIPlot as having a

cluster of probes biased towards one dye. Figure 3.14(h) shows that the gold cross

locations were subtle on this occasion, but a number of crosses are localised to the

artefact. The crosses are all the same orientation, indicating that only one channel is

a↵ected. By returning to the scan for this microarray, it was clear that the channel in

question does show high intensity for these probes which cannot be seen on the other

channel and a decision was made to re-hybridise the samples to a new microarray. The

data resulting from this new hybridisation can be seen in Figure 3.14(i) where there are

no localised clusters.

By mainly observing the ratio heat-map of ArrayView over which TechRepCheck

estimates had been plotted, 35 of the 176 microarrays were identified as having artefacts

in either the ratios themselves, or, in most cases, having localised groups of probes

which have been marked as an outlying replicate in TechRepCheck. Each of these 34

microarrays were then compared with the scans analysed by ImaGene (BioDiscovery)

to ensure that the problem lies with the microarray itself before opting to re-hybridise

the samples to a new microarray. Each microarray was then placed into one of four

classifications:

• The problem does not exist in the scans and the scans should be re-analysed.

• The problem exists in the scans and a↵ects a large proportion of the microarray

requiring re-hybridisation of the samples; or

• The problem exists in the scans but only a↵ects a small proportion of the microar-

ray and should be disregarded.

• The problem was identified using GridCheck or RIPlot, but does not have a large

impact on the microarray overall.

Although it would be favourable to re-hybridise all the microarrays which fall

into the latter three categories, the highly replicated experiment can cope with a small

number of poor data points without the final model being influenced significantly, rather

than expending resources to perfect the data with very little gain.

The classification of the low quality microarrays and hence the course of action

for each is displayed in Table 3.5. As can be seen, eighteen of the microarrays exhibited

artefacts in the MAANOVA output which could not be identified on the microarray

scans, demanding that those scans be re-analysed. By including the re-analysed data

back into the experiment, these eighteen microarrays were corrected without the need

to repeat any microarrays. Of the remaining sixteen microarrays with artefacts which
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Microarrays Classification Action Taken

Microarray scan presents
no obvious defect

As the artefact only exists in the
MAANOVA output and must therefore
lie in the transition from microarray
scan to input data, these microarray
scans were re-analysed with ImaGene
(BioDiscovery).

27 34 38
39 40 44
47 49 55
82 90 91

101 102 112
164 165 174

Microarray scan presents a
major defect which a↵ects
a large number of spots

The loss of data from these microarrays
will be strongly influential in the
analysis and so the samples were
re-hybridised to a new microarray.

20 31
62 63

Microarray scan presents a
minor defect which a↵ects
a small number of spots

As these microarrays mostly contain
good data, repeating will be both too
costly and without great gain so these
artefacts will be overlooked.

19 28 29
97 126 158
161 166

Microarray flagged by
GridCheck or RIPlot but
not by TechRepCheck

The artefacts are relatively small in
magnitude compared to others that
have been identified and will be
overlooked.

23 25 59
130 172

Table 3.5 – Classification of low quality microarrays after analysis by
MAANOVA
After the analysis of MAANOVA, 35 of the 176 microarrays in the senescence experi-
ment were identified as containing artefacts which would be influential on the analysis
of the experiment. Each was placed into one of four classifications as shown, based
on the appearance of the microarray scan. Depending on which classification each
microarray received, the action taken to resolve the problem is shown.

could be seen in both the MAANOVA output and on the scans, only four were so bad

that they would require re-hybridisation to a new microarray. The remaining thirteen

were considered to be poor, but acceptable since the a↵ected probes were only a very

small minority of the entire microarray.

Table 3.6 shows the samples hybridised to each of those microarrays shown in

Table 3.5, so that the a↵ect of the defects can be associated with samples of the experi-

ment. It should be noted from this that only the thirteen arrays shown at the bottom of

the table were left as they were. The overruling reason for this is that those microarrays

only demonstrated minor artefacts. However it is also important to note that, amongst

those thirteen, five relate to a comparison between days 1 and 2. This was deemed

acceptable since it was unlikely that any important changes in expression would happen

this early on in the time course.

In almost all cases, the artefacts revealed themselves by o↵setting many probes in

a localised area which were then highlighted by TechRepCheck. The inclusion of Tech-

RepCheck in the MAANOVA analysis has allowed the identification of scan analysis

problems which have otherwise remained invisible. Some pin-tip groups were over-

whelmed by estimated spots but without any indication of a problem from any of the

current quality control methods because the log2 ratios and the log intensities were not
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Array Labelled with Cy3 Labelled with Cy5
Num. Day Time of Day BioRep Day Time of Day BioRep

27 6 PM A 7 PM A
34 8 AM A 9 AM B
38 4 PM C 5 AM A
39 8 PM C 9 AM B
40 11 PM D 1 PM D
44 4 AM D 5 PM A
47 2 PM A 3 AM A
49 11 AM B 1 PM C
55 2 PM A 3 PM A
82 9 PM A 10 PM A
90 9 PM C 10 PM B
91 4 AM C 5 AM C
101 9 AM A 10 PM B
102 3 PM A 4 AM C
112 4 PM B 5 PM B
164 5 PM D 6 PM D
165 7 PM B 8 AM A
174 8 AM C 9 AM C

20 8 AM C 9 PM D
31 3 AM D 4 AM D
62 6 PM B 7 AM D
63 7 AM C 8 PM A

19 8 PM C 9 PM C
28 5 AM B 6 AM B
29 1 AM B 2 AM C
97 11 AM C 1 PM D
126 1 PM B 2 AM D
158 7 AM B 8 PM D
161 2 PM B 3 AM D
166 7 AM D 8 AM A

23 1 AM D 2 PM A
25 1 AM A 2 PM B
59 8 PM B 9 PM A
130 1 AM C 2 AM B
172 4 AM C 5 PM D

Table 3.6 – Sample allocations for low quality microarrays
An extraction of the experimental design is shown to identify the samples which
are most a↵ected by the microarrays deemed lower quality by MAANOVA analysis.
Those in the top section were re-analysed, leading to correction of the identified flaws.
Those in the second section section were re-hybridised to new microarrays to correct
the identified flaws. The third section consists of microarrays which only demonstrate
very minor defects whilst the final section shows those microarrays which were iden-
tified at the sub grid level by GridCheck, but that only showed minor artefacts in
TechRepCheck.
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unusual. In the majority of cases, these problems were caused by mis-alignment of the

grid in ImaGene, which is why the log2 ratios and log intensities did not appear abnor-

mal, their values being obtained from neighbouring spots. TechRepCheck allowed not

only the identification but the localisation of this problem so that it may be resolved.

Before the actions shown in Table 3.5 had been applied, 64,734 of the 5,440,512

probes (1.19%) were identified as outliers amongst their respective technical replicates.

However, after taking the actions shown, 10,771 probes were restored to an expression

level which was no longer outlying amongst the technical replicates. However, a further

6,360 new probes were now identified as an outlier, resulting in a total of 60,296 of

the 5,440,512 probes (1.11%) being classed as an outlier. This net improvement of

4,438 probes may only contribute a small percentage of the probes across the entire

experiment, but it is very obvious from the resulting ArrayView heat-maps that the

most major problems have been removed from the experiment. Although new probes

have now been identified as outliers, this is because those probes were previously masked

by the extremity of the problems which have now been corrected. These remaining

outliers can either be left unmodified and remain an outlier during the model fitting

process, or otherwise have a more consistent intensity estimated.

Another alternative strategy to dealing with poor quality replicates could be to

exclude those microarrays from the model fitting process. However, since no major flaws

could be identified in the microarrays once all repetitions were completed, estimates were

produced for the remaining outliers during the analysis of the senescence dataset. The

design of the experiment is such that removal of microarrays should minimally impact

the results of the overall analysis, but this has not been attempted here.

3.4.3 LOWESS Transformation

Once the data was quality controlled, repetitions completed at the experimental stages

and technical replicate outliers estimated, the data was ready for transformation. This

step is used as a method of neutralising dye biases across the microarrays and reducing

the e↵ects of damage to the microarrays. Whilst attempting to fit each of the transfor-

mation functions provided by MAANOVA and comparing the results by observing the

changes to the ArrayView plot, it was noted that the joint-LOWESS (rlowess) was the

only existing function to successfully remove dye biases which vary in severity across

the microarrays. However, this often left identifiable di↵erences between the ratios of

adjacent sub-grids, particularly where microarrays appeared to exhibit biased hybridi-

sation in selected probes prior to the transformation. Not wishing to over-fit the whole

experiment by using a smaller span value for the LOWESS fitted curve, the method

presented in Section 3.3.2.2 was developed as an alternative. This allowed sub-grids to

be used as a variable for the LOWESS model and therefore bias normalisation to occur

within sub-grids. When used alone, this new method did not provide an e↵ective fit

for the data, either, but when used before and in conjunction with the joint-LOWESS,

they provided normalisation which appears to eradicate most spatial artefacts typically

131



seen throughout the experiment.

Figure 3.15 shows the transition of the probes of microarray number 5 in the

experiment as the two LOWESS methods described above are consecutively used to

transform it. Each of the sub-plots shows an RIPlot of the data as it is transformed.

Figure 3.15(a) shows the RIPlot of the untransformed data where it can be seen that

the intensities are well distributed with few below 40% intensity or above 90%. The

ratio, however, is biased across all intensities, towards the lower channel. Figure 3.15(b)

presents the same data, but with a red line indicating the fitted curve of the sub-grid

weighted LOWESS. This red line represents those log2 ratios throughout the intensity

scale which should be zero and therefore no di↵erential expression. Once this fitted

curve has been used as an adjustment to the ratios, the transformed data is presented

as shown in Figure 3.15(c). Here, the data is more centralised around a mean log2 ratio

of zero, but has a very slight gradient indicating an unwanted relationship between

intensity and ratio. The same data is shown in Figure 3.15(d) with the LOWESS fitted

curve based on the joint-LOWESS transformation plotted in red. After transforming

the data this second time, the result can be found in Figure 3.15(e). This final form of

the data still shows the majority of the variation in the ratio as was seen in the original

data, but is also zero mean-centred throughout the intensity range.

The result of such a double transformation can be illustrated more clearly in

an ArrayView plot before transformation, after sub-grid LOWESS transformation and

after joint-LOWESS transformation. These can be found in Figure 3.16 where the same

microarray better exhibits its dye-biases and the removal process is easier to understand.

Figure 3.16(a) illustrates the appearance of ArrayView for the biased array before any

transformation is applied. The application of the sub-grid weighted LOWESS tends to

remove the bias within individual sub-grids, which goes a long way towards removing

the obvious spatial bias, as shown in Figure 3.16(b). However, it is obvious that there

is a level of bias still present along the length of the microarray, manifesting itself as a

patch of red in the top-right area of the microarray. The subsequent application of the

joint-LOWESS transformation then results in the data shown in Figure 3.16(c), where

no visual bias can be seen, but the ratios have not been overall noticeably reduced. This

data would then be ready for mixed model fitting.

Given the reassuring results of applying two LOWESS transformations to the

data, it was decided that this would prove the best strategy for transforming the senes-

cence dataset and so the transformation applied was as shown in Figures 3.15 and 3.16

where the sub-grid weight LOWESS was implemented first, with a span of 0.1, and the

joint-LOWESS was implemented subsequently, also with a span of 0.1.

3.4.4 Generating a Mixed Model of Gene Expression Data

The mixed model for the senescence dataset was produced using the process shown in

Section 3.3.3 whereby the resulting fixed terms were:

• Day – The day upon which the sample was collected (11 levels)
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(a) Before Transformation (b) Sub-grid LOWESS (c) Joint-LOWESS

Figure 3.16 – ArrayView heat-maps of a microarray with spatial bias be-
fore, during and after Transform MAData
Arrays with spatial bias are most easily identified by the ArrayView ratio heat-map
as shown in (a) where the green channel dominates the lower portion whilst the red
channel dominates the upper portion. By applying sub-grid LOWESS in (b), the pin-
tip groups are normalised which does reduce the bias, but some remains, particularly
in the upper-right region. Joint-LOWESS is then successively applied in (c), which
indicates that the bias is completely removed.
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• ToD – The time of day, AM or PM, at which the sample was collected (2 levels)

• Day:ToD – The additional changes in gene expression specific to individual har-

vesting periods (22 levels)

• Day:ToD:BioRep – The variation in expression between individual biological

replicates within individual harvesting periods (88 levels)

For each of these a matrix of 32,448 rows (the number of spots on the microarray) by

x columns was returned, where x is the number of levels for that term, containing the

e↵ects at each level. The values of these matrices indicate changes in expression, both

positive and negative, of each probe in response to the e↵ects at each level of the term

which they describe. This model was then used to identify di↵erentially expressed genes

and provide predicted gene expression data for further analysis methods.

3.4.5 Selection of Di↵erentially Expressed Genes

F-tests provided by the MATest function were used to identify di↵erentially expressed

genes. These test results were modified to account for biological replicate variability

as described in Section 3.3.4, by using the ConvertMATest function. This resulted in

32,448 p-values for each of the three terms: Day, ToD and Day:ToD.

To account for the discovery of false positives, each of three false discovery rate

(FDR) p-value adjustments were considered. The e↵ect of these adjustments on the

distribution of p-values for the term Day can be seen in Figure 3.17 where the genes have

been placed into rank order by their p-value, and this p-value is plotted along the vertical

axis. It is possible to identify that the un-adjusted data, plotted in black, indicates

approximately 21,000 genes with di↵erential expression at a significance level of 5% for

the Day term. Applying the StepUp adjustment, plotted in blue, shows that the number

of genes identified as di↵erentially expressed at a 5% significance is now approximately

20,000; a small reduction. The Adaptive method, plotted in green, actually increases the

number of di↵erentially expressed genes to approximately 22,500 whilst the StepDown

method, plotted in red, reduces the number of significantly di↵erentially expressed genes

to 8,878.

The rank order of the genes does not change when alternative FDR methods are

used, and as such the most significant genes will always be significant, no matter which

method is chosen. Given that it seemed unlikely that as many as 20,000 genes were

changing in expression significantly throughout the time series, backed up by observa-

tions of the gene expression data for non-significant genes, a decision was made to use

the StepDown false discovery rate adjustment for the p-values.

Application of the AnalyseMATest function allowed the extraction of lists of

di↵erentially expressed genes at a significance threshold of 5% for each of the three

terms and an analysis of the overlaps between those lists. This also resulted in the

presentation of a Venn diagram as shown in Figure 3.18, where plots have also been

135



Figure 3.17 – A comparison of the p-value transformation produced by
family-wise error-rate controls of MAANOVA applied to the term Day
A plot of p-value against genes ranked by their p-value gives an indication of the
distribution of p-values within the microarray. It can be seen that the number of genes
declared as di↵erentially expressed at a significance level of 5% is approximately 21,000
in the raw p-value assignments, plotted in black. However, by using one of three FDR
controls, this number can be altered by transforming the p-values to include fewer
Type I errors in which a gene is declared di↵erentially expressed when it is, in fact,
not. The stepup function, plotted in blue, reduces the number of declared di↵erentially
expressed genes by approximately 1,000, whilst the adaptive method, plotted in green,
increases the number of di↵erentially expressed genes, rather than decreasing them.
The stepdown method, plotted in red, is the most stringent, reducing the number of
di↵erentially expressed genes by more than half.
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overlaid to help demonstrate the type of gene expression profile that may be found

under each of the terms and their overlaps.

Genes which are significantly di↵erentially expressed for the term Day show a

change in expression across the entire time series, as seen in the top four plots. Those

genes which are significantly di↵erentially expressed for the term ToD show a consistent

change in expression between morning and afternoon samples, as seen in the lower-left

four plots. Where gene are significantly di↵erentially expressed for the term Day:ToD

they show one pattern of morning and afternoon samples in one region of the time series

and an alternate pattern in another region, as shown in the bottom-right four plots. This

altered pattern can only be captured by harvesting-period specific variations because

they don’t remain consistent over the whole time series. Where a gene is significantly

di↵erentially expressed for more than one term, the expression pattern is a combination

of the above e↵ects.

3.4.6 Extraction of Predicted Gene Expression Data

A prediction of the expression profiles of every gene on the microarrays can be extracted

from the mixed model output using the methods outlined in Section 3.3.5. The choice

of which format to use for this data depends almost entirely on the purpose of the data

later on. For this reason, two formats were chosen as they best suit the intended further

analysis.

For that data which would be used for clustering, the following criteria was

required:

• That an average of the biological replicates for each gene be supplied.

• That the magnitude of the expression changes must be similar between genes.

• That, where similar shaped profiles exist, the absolute expression values be similar.

• That changes due to Time of Day be ignored since it is the baseline change in

expression over a number of days which defines the gene under senescence.

and so for those reasons, the data for the purpose of clustering was produced by including

only variation due to the Day term and normalising the standard deviation of each

gene’s expression to a value of 1 by using Equation 3.6. Each gene will therefore be zero

mean-centred and, where the shape of the profile is similar, will have similar magnitude,

making the absolute expression values almost identical for matching pairs of genes. Each

gene is described by 11 expression values.

For data which would be used for theoretical network modelling, the criteria was:

• That each biological replicate be separately exported.

• That the magnitude of the expression changes be similar.

• That the time steps be equally spaced so that association between adjacent time

steps are not stronger in some regions of the time series than others.
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Figure 3.18 – Venn diagram summarising numbers of genes showing sig-
nificant di↵erential expression for each combination of treatment terms in
the MAANOVA fixed model
For each fixed term of the MAANOVA model Day, Time of Day, and the Interaction
between these factors, each gene was assessed for di↵erential expression relative to the
biological (between-plant) variability using an F-test. After applying a false discovery
rate multiple testing correction, the numbers of genes with significant test statistics
for each combination of the terms (individual terms only, pairs of terms, all three
terms) are shown. The expression profile for an exemplar gene has been plotted for
each combination of significant terms. Those with just a significant e↵ect of Day show
a smooth pattern within each Day, but either a general trend across the complete time
course or a strong change in expression levels at some point during the time course.
Those with just a significant e↵ect of Time of Day show a strong diurnal pattern,
but no change in expression between days. Those with just a significant Interaction
e↵ect have a diurnal pattern for some period during the time course which is not
present at other times. Genes with multiple significant terms show the appropriate
combinations of these patterns. It should be noted that it is usual in statistics to
consider significance in the interaction term to also indicate significance in all main
e↵ects and so, whilst they have been plotted separately here, those sections of the
diagram with numbers of genes 11, 19 and 5 all fall within the section with 29 genes.

138



• That changes due to Time of Day would be beneficial where they are appropriate,

but due to the harvesting schedule, their inclusion would ensure that time steps

are not equally spaced.

and so the data for the purpose of theoretical modelling was produced by including

the variation due to the Day term and the Biological Replicates term to provide 88

expression values consisting of 11 time points with 8 biological replicates each (the

morning and afternoon samples brought together as a single set of observations for the

day). Each gene was normalised to a standard deviation of 1 by using Equation 3.6,

ensuring that each gene’s profile would be zero mean-centred and of a similar magnitude

regardless of actual expression levels.

3.5 Conclusions

3.5.1 Application to Other Datasets

Whilst the methods shown have been optimised to provide useful information relating

to the quality, transformation and modelling of the senescence dataset, these methods

are very capable of handling a wide range of microarrays and o↵er both high-throughput

analysis of the quality of microarray systems and avoidance of artefacts typically asso-

ciated with two-channel systems. The quality checking functions are orientated towards

two-channel microarrays, but the mixed model approach of decomposing sources of

variation in the experiment design is cross compatible with one-channel systems as well.

When analysing other datasets, it is important to note the appropriate path to

take during the analysis. Line numbers referred to here relate to those found in the

analysis script shown in Appendix C:

• On lines 8–10, the data is loaded into MAANOVA. If the microarray has repli-

cated probes, not only must these be named uniquely, such as Gene0001a and

Gene0001b, but MAANOVA must be informed by specifying n.rep as a parameter

of the function, giving the number of replicates on the microarray.

• If the microarrays are one channel, this must also be defined when loading the

data.

• If flag data does not exist, this must be defined when loading the data.

• Once GridCheck, RIPlot, TechRepCheck and ArrayView have been performed,

before reaching line 38 where the mixed model is applied, it is essential to ensure

that your data is of a quality you are happy with by looking through the output

which has been produced. Only once all repetition and re-analysis of scans has

occurred, should the mixed model be produced as the model can take several days

to produce.
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• When the model is fitted, it is important to ensure the model describes your

sources of variation correctly. Specification of the terms of the model can be

confusing, and it may be beneficial to use the makeModel function provided by

MAANOVA to check the terms which will be fitted before taking the time to

complete line 38.

• F-tests should be performed on each of the terms of the model which are of rel-

evance for di↵erentially expressed genes. Though it is optional, it is beneficial

to produce the F-test associated with the biological replicates first, because this

allows the conversion of further tests, such as shown on lines 50, 55 and 60, and

then the removal of the unconverted F-test such as shown on lines 51, 56 and 61,

to save memory.

• When applying an FDR, it is worth checking to find out how many p-values are

still significant after the adjustment, because some adjustments are more stringent

than others.

• When plotting the Venn diagram and exporting the di↵erentially expressed lists,

as on line 69, it is important to specify whether to use the F1 or the Fs statistic

in the analysis. These are described further in the MAANOVA help files. If a

significance threshold of 5% is inappropriate, this can be defined whilst calling the

analysematest function.

3.5.2 Future Development

Although the functionality of MAANOVA has been su�cient for the comprehensive

analysis of the senescence dataset, there are also a number of areas for improvement,

that with further time, would benefit the analysis.

GridCheck currently provides statistics to the user but leaves it to them to use

those statistics in a meaningful way. It would be sensible for GridCheck to use the

statistics in an automated way to provide the plots to the user in the order which their

attention should be focussed. This would require the user to define which statistics they

wish to use for this purpose, but would aid in the observation of the worst microarrays

with little e↵ort.

ArrayView was extensively tested with di↵erent types of statistic to try to iden-

tify flaws, but none were appropriate for finding the flaws accurately. With more time,

these could be provided to o↵er a similar functionality to that used in GridCheck.

Given that TechRepCheck has, generally, superseded the need for further statistics

within ArrayView itself, it might be beneficial for the position of the gold crosses to

be analysed automatically as part of the ArrayView function to help identify potential

problems, rather than leave this task to the user.

TechRepCheck is still only able to provide information about outlying replicates

on a probe-by-probe basis where four technical replicates exist. This is mostly a result
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of the rules behind the identification of replicate outliers being defined so specifically

for four technical replicates. If the rules could be generalised, any number of technical

replicates could be analysed. This would greatly benefit the analysis, especially where

a mix of numbers of technical replicates exist.

The CPU time and memory required to fit a mixed model to the data is sub-

stantial with the senescence dataset of 176 microarrays taking approximately 12 hours

to complete whilst another similar experiment of 288 microarrays took over 48 hours

to completely fit. This indicates that the complexity of the experiment exponentially

increases the time to fit the mixed model. Unfortunately, in the event of a failure, the

process would have to be restarted as there is no method of recovery currently imple-

mented. Initially, it would be beneficial to provide a restore function to the model fitting

process, so that, in the event of a crash, the process could be continued from the restore

point. It was noted, whilst reverse engineering the source code of MAANOVA, that

a lot of data is made redundant during the process, owing to an excessive amount of

memory usage and, occasionally, crashes as a consequence. The structures used during

this process could be minimised to prevent this, as well as better handling of memory

for variables no longer needed, rather than relying on the garbage collector of R.

3.5.3 Chapter Synopsis

This chapter has focussed specifically on the process of obtaining gene expression data

from the CATMA microarrays of the senescence experiment. The methods developed

have allowed the identification of artefacts previously unknown to exist amongst the

microarrays of the experiment and the subsequent correction of those errors. A new esti-

mation method has been used to ensure that outlying technical replicates are reassigned

a more consistent intensity value whilst a new transformation technique has allowed the

normalisation of ratios within pin-tip groups of the microarray before then removing

spatial dye-biases using the joint-LOWESS function already o↵ered by MAANOVA.

The fit of a mixed model and subsequent analysis of the terms of that model have

allowed the identification of 8,878 genes as significantly di↵erentially expressed during

the observed period of senescence and then provide predicted gene expression data for

those genes.

The following chapter takes the expression data extracted from the CATMA

microarrays of the senescence experiment and applies it to methods capable of analysing

gene expression data collected from any source so that a theoretical gene network can

be identified.
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Chapter 4

Analysis of Gene Expression Data

4.1 Chapter Summary

In this chapter, the aims were to identify robust regulatory networks amongst genes

which appear to have a large influence on the senescence process. In order to do this,

the 8,878 genes which were found to be significantly di↵erentially expressed with re-

spect to the day e↵ect of the natural senescence microarray experiment were clustered

using SplineCluster. This led to the discovery of 77 unique cluster profiles amongst

the genes, many of which demonstrated an over-representation of specific gene ontology

annotations that could be related to senescence. Though interesting, there were too

many relevant annotations to help reduce the number of genes for modelling.

Initial models were produced using 88 genes as this represents the number of

expression data known about each gene and it was found that when larger numbers

of genes were simultaneously modelled, the models did not always converge. In order

to analyse large sets of genes and identify which of those genes were important to the

senescence process, multi-modelling was developed. Under this approach, sets of 88

genes were chosen at random from a hand selected set of 580 genes and those smaller

sets were modelled. Once 454 sets had been modelled, 118 genes had demonstrated

that they often regulate other genes they are modelled alongside and were selected for

further analysis.

Of those 118 genes, 53 were obtainable as T-DNA insertion reduced expression

mutants, which were all screened alongside wild-type plants to identify any altered

phenotype with respect to senescence. Plants were stored in permanent darkness and

photographed daily to obtain a record of their rate of senescence. Custom developed

software was then used to analyse the rate of yellowing as a function of the red and

green components captured by the digital photographs. The rate of change in the leaf

colour was used to fit a sigmoid curve and the parameters of those curves compared

between mutants and wild-type to find statistical di↵erences. 8 genes (ap2, stz, tcp15,

hap3a, hat3, anac092, bft and MYB59 ) were found to demonstrate an altered senescence

phenotype when altered in expression.

For each of those 8 genes, a set of around 150 similar genes were identified, based
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on the Qian similarity score. Those genes were used in a Metropolis-like VBSSM process

in which genes were substituted in and out of successive models, keeping those which

demonstrated a better fit to the data provided. This led to the hypothesis of many

upstream and downstream regulations for 3 genes analysed in this way. By combining

those genes into a set of 75 and modelling that set, a final model is hypothesised which

provides a series of interactions which are then biologically validated as described in the

following chapter.

4.2 Initial Analysis of Gene Expression Data

Before developing a strategy for identifying refined network models, a number of stan-

dard procedures were used to process the gene expression data and gain an understand-

ing of the range of expression profiles of genes during the senescence process. Once this

analysis had been performed, the approach for producing theoretical network models

was trialled with a number of gene combinations in order to establish an understanding

for the approach and to determine methods of selecting gene modules which form highly

likely models of regulation.

4.2.1 Gene Expression Clustering

A typical analysis of gene expression data is that of clustering genes, where those genes

with similar expression profiles are assigned to the same cluster. The purpose of this, in

the case of the analysis of the senescence data set, is to provide an overview of typical

changes in gene expression observed throughout the senescence process which can lead

to the identification of regulatory modules of genes. SplineCluster (Heard et al., 2006)

was the method used to perform the clustering. In an initial attempt to cluster the

genes, merger sweeping, described in Section 2.3.1, was not yet implemented and the

result was 93 clusters which can be presented as a heat-map as shown in Figure 4.1(a).

Here it can be seen that, with genes of the same cluster lying horizontally adjacent

and the time-series lying in the vertical axis, blocks of genes with similar expression

are formed in the horizontal axis, indicating that the genes have mostly been assigned

appropriately.

However, by implementing merger sweeping, a reduced set of 77 clusters were

formed using the same input data and the heat-map representation of those clusters

can be found in Figure 4.1(b). Although there is little visual di↵erence between the

two heat-maps, with the exception of the final order of the clusters, it can be seen, by

observing part of the dendrogram, that many of the smaller clusters from the centre

of the plot before merger sweeping were integrated with other clusters when merger

sweeping was used. This indicates that fewer genes have been misallocated by the

hierarchical process because of the reallocation of genes when they become outliers for

their cluster. Therefore the clusters generated whilst using merger sweeping were used

during further analyses.
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(a) Before merger sweeping (93 clusters)

(b) After merger sweeping (77 clusters)

Figure 4.1 – Heatmaps providing evidence of improvement after merger
sweeping in SplineCluster
Heatmaps produced by SplineCluster illustrate the membership of genes to clusters
such that those of the same cluster are plotted adjacently along the horizontal axis.
For each gene, the expression at each time point, plotted along the vertical axis, is
presented as bright green for low expression, black for mid expression and bright red
for high expression. A part of the dendrogram has been left on top of each of the
heat maps to indicate the centre of each cluster. It is visible that, in (a), a number of
very small clusters exist in the centre of the heatmap, whereas clusters of this size are
fewer in (b), hence fewer clusters consist of merely outliers and the merger sweeping
has optimised their integration into other clusters.
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Plots of the profiles for the 77 clusters can be found in Figure 4.2 which demon-

strates that very few genes show more than one sudden change in expression, with the

exception of clusters 37 to 44 which show these characteristics. This might form the

theory that most genes change expression gradually with the onset of senescence, though

these seemingly gradual changes are also likely to be an artefact of the whole-leaf mixed-

cell samples which, due to the changes across the leaf being asynchronous, reduces the

significance of large changes in expression at specific points across the leaf. The fact

that some clusters show sudden changes in expression could indicate that those genes

are involved in processes which synchronously a↵ect the whole leaf, such as flowering.

Despite the observations made about the gradual changes in expression, it can

be seen that most clusters demonstrate a switching point at which the gradient of the

profile is exaggerated in comparison to the rest of the profile. The identification of

significant changes in expression was performed and is reported in Breeze et al. (2011)

which can be found attached to the end of this thesis. This found that the start of

significant change for important senescence associated genes such as SAG12 is after

the 6th observation. It is clear from the results of the GO analysis (figure 6 of the

publication) that the largest functional changes of the leaf occur after this time.

As can be expected of a transcriptional network, in which some genes are regula-

tors of others, some of the clusters appear to be time-shifted variants of each other. One

example of this can be found in cluster 23 and 24 where the major rise in expression

is one time point earlier in 23 than it is in 24. However, the identification of these by

eye is challenging unless they are adjacent as in this example. A similar trait is that of

inverse correlation where the expression profile of one cluster may be the inversion of

another which would be typical of a negative regulation in the transcriptional network.

An example of this is found by comparison of clusters 32 and 54.

The numbers of genes in each cluster can be found in Table 4.1, where it can

be seen that the genes are reasonably evenly spread throughout the clusters with the

exception of clusters 38 through to 44 where changes in expression are more distinct

than the smooth transition of the majority of clusters. These may contain few mem-

bers because the rapid changes in expression between adjacent observations are more

distinctive, resulting in a lower likelihood that they may be merged with similar but

functionally di↵erent genes.

Cluster 43 has a similar profile to that seen in cluster 36, with the exception

of the first two time points which distinguish them from one another. One possible

explanation for this might have been that the first two observations of members of

cluster 43 were merely background noise if the expression levels at these times were

particularly low. However, by referring to the unnormalised raw data (unpublished),

this does not appear to be the case. It was noticed, however, that whilst performing

this check, 11 of the 23 members of cluster 43 are without name nor annotation which

is a high proportion compared with other clusters. Although this does not a↵ect their

expression levels, it may suggest that the members of cluster 43 belong to a small and
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Figure 4.2 – Plots of gene profiles for each cluster output by SplineCluster
Each cluster identified by SplineCluster for the 11 time point dataset for senescence
is defined by a plot demonstrating the profile of the genes within the cluster. In each
plot, the horizontal axis represents harvest days whilst the vertical axis represents
relative log2 expression levels. Individual genes of the cluster are plotted as dotted
lines, whilst the consensus profile is plotted atop of these in blue. All the plots have
the same scales with 11 harvest days along the horizontal axis and log2 expression
levels between -3 and 3 on the vertical axis. The horizontal line represents the centre
of the change in expression at 0 on the vertical axis.
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Cluster Size Cluster Size Cluster Size Cluster Size Cluster Size
1 150 17 79 33 73 49 69 65 67
2 114 18 57 34 89 50 98 66 163
3 77 19 82 35 71 51 141 67 169
4 108 20 158 36 81 52 216 68 117
5 128 21 91 37 98 53 210 69 176
6 96 22 138 38 27 54 169 70 160
7 210 23 193 39 36 55 104 71 106
8 130 24 153 40 53 56 109 72 118
9 79 25 162 41 55 57 93 73 138
10 73 26 95 42 40 58 72 74 125
11 100 27 223 43 23 59 50 75 179
12 63 28 163 44 26 60 109 76 101
13 157 29 79 45 69 61 160 77 196
14 189 30 96 46 69 62 130
15 116 31 180 47 86 63 82
16 151 32 228 48 107 64 130

Table 4.1 – Table of cluster sizes returned by SplineCluster
Each cluster is representative of a number of genes from the data provided to
SplineCluster. The number of genes being represented by each of the 77 clusters
are shown in the table. It can be seen that, in the majority of cases, the size of the
cluster is in the range of 70 – 200 genes and that there are few cases where the cluster
is unusually large or small.

poorly studied process of plant development.

The number of genes transitioning from low to high expression and vice versa

are approximately equally split with a slight bias towards those genes which increase in

expression. Those genes which rise in expression appear to begin doing so earlier than

those which fall in expression, indicating that senescence is likely to be actively switched

on by positive regulation, rather than being allowed to progress due to the removal of

repressive regulation.

In a review by Buchanan-Wollaston (1997) describing the molecular biology of

leaf senescence, a number of senescence associated genes, identified from samples of

Brassica, are categorised in 10 classes of expression. Although it cannot be certain what

proportion of genes are senescence specific in the plots of Figure 4.2, it is revealed by the

increased number of time points studied that even more profiles than those described

by the 10 classes exist within the microarray data. A more recent review (Buchanan-

Wollaston et al., 2003) describes some of the processes known to occur during leaf

senescence such as chlorophyll degradation, protein degradation, lipid degradation and

nuclease action for which some of the clusters identified here may be enriched with

genes associated with these processes. This led to the next stage of the analysis: gene

ontology analysis.

4.2.2 Gene Ontology Analysis

One method of finding enriched modules of genes specific to biological processes is

the analysis of GO annotations. The tool used for this process was BiNGO (Maere
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Cluster GO Term Abundance Abundance Corrected
Number Description of Term in Cluster p-value

1 cell wall organization 0.83% 7.21% 1.17 ⇥10�3

5 response to jasmonic acid stimulus 0.74% 5.88% 3.11 ⇥10�2

6 cellular respiration 0.35% 5.71% 3.41 ⇥10�2

10 defense response 3.08% 15.09% 4.17 ⇥10�2

12 response to starvation 0.52% 9.52% 1.82 ⇥10�2

19 response to water 1.43% 14.49% 1.06 ⇥10�5

25 transport 8.72% 20.66% 1.57 ⇥10�2

29 pyrimidine nucleotide biosynthetic pro-
cess

0.06% 5.00% 7.65 ⇥10�4

37 cellular process 37.68% 59.74% 3.92 ⇥10�2

39 post-translational protein modification 5.38% 28.57% 2.37 ⇥10�2

44 response to wounding 0.86% 22.73% 1.67 ⇥10�4

45 response to ozone 0.14% 5.88% 1.33 ⇥10�2

46 regulation of vegetative phase change 0.03% 3.77% 1.85 ⇥10�2

50 translation 2.74% 11.90% 2.65 ⇥10�2

51 DNA metabolic process 1.48% 11.58% 5.83 ⇥10�5

55 translation 2.74% 39.74% 1.16 ⇥10�26

58 photosynthesis 1.51% 15.00% 5.71 ⇥10�5

60 anatomical structure development 6.92% 20.48% 1.82 ⇥10�2

66 cellular nitrogen compound metabolic
process

8.32% 22.58% 4.29 ⇥10�4

67 photosynthesis 1.51% 9.38% 1.54 ⇥10�4

68 photosynthesis 1.51% 8.42% 3.65 ⇥10�2

73 photosynthesis 1.51% 20.75% 3.06 ⇥10�17

74 small molecule catabolic process 1.34% 8.25% 1.98 ⇥10�2

75 embryonic development 2.54% 9.40% 1.23 ⇥10�2

76 photosynthesis 1.51% 15.29% 1.04 ⇥10�7

77 pigment biosynthetic process 0.71% 5.41% 4.50 ⇥10�3

Table 4.2 – Highest Significance Over-represented Biological Process GO
Terms in Senescence Clusters
The highest significance Biological Process GO Term for each cluster is shown. Clus-
ters 1 to 29, in the top section, are generally up-regulated during senescence; clusters
50 to 77, in the bottom section, are down regulated; whilst those in the middle section
have expression changes which are more complex. It can be seen that those which are
down-regulated show higher levels of significance. This is likely to be because more
genes, particularly those relating to photosynthesis, are correctly annotated in the
down-regulated category, leading to the discovery of more of them in these clusters.

et al., 2005) which was able to determine those GO terms which are statistically over-

represented in a given sets of genes. The sets of genes to be tested were the members

of the 77 clusters identified by SplineCluster and these were processed following the

methods of Section 2.3.2. Those biological process GO terms which were identified

as over-represented within each cluster were processed using a custom script written

to output a table of results. For each cluster that returned any over-represented GO

terms, the term with highest significance can be found in Table 4.2 whilst the complete

list of all returned terms can be found in Appendix E.

As can be seen, by a comparison to the cluster profiles of Figure 4.2, those genes

which monotonically increase in expression during senescence are featured in the top

region of Table 4.2, whilst those which monotonically decrease in expression during

senescence are featured in the bottom region of Table 4.2. A number of clusters are not
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so easily defined and tend to both increase and decrease in expression at various stages

of senescence. These are featured in the centre of Table 4.2.

The review of leaf senescence by Buchanan-Wollaston (1997) identifies a num-

ber of processes known to be up-regulated by the onset of senescence in leaves, such

as increased protein degradation, increased nucleic acid breakdown by RNases (Green,

1994), increased lipid remobilisation (Wanner et al., 1991), increased chlorophyll break-

down and increased nitrogen remobilisation, so it is of little surprise that some of the

biological processes which are over-represented in the up-regulated clusters relate to

the breakdown and transport of cellular components. The highest levels of significance,

however, are found in those clusters which are down-regulated during senescence with

some o↵ering p-values 1021-fold smaller than those of up-regulated clusters. This would

appear to be because processes such as photosynthesis and translation are so heavily

researched that a much higher proportion of genes associated with those processes are

known and annotated, resulting in greater numbers of associated genes in those clusters

and therefore higher levels of significance.

This concept would be best explained by example, and as such, a theoretical

cluster of 100 genes may contain 10 genes associated with a given GO term x, 50 genes

associated with other GO terms and 40 unknown genes. This then indicates that GO

term x is associated with 10% of genes throughout the cluster, but it might also be

known that GO term x is only associated with 5% of all genes throughout the genome.

This would probably result in GO term x being identified as over-represented in the

theoretical cluster. If, at a later date, 10 more of the remaining unknown genes in the

cluster were also identified as being associated with GO term x, the percentage of the

cluster representing GO term x would then be 20% whilst the abundance of GO term

x throughout the genome would only rise very slightly, increasing the significance of

the over-representation of GO term x in the cluster. Therefore, a higher proportion of

correct annotations for a GO term can positively a↵ect the significance of clusters which

are already over-representative of that term.

It is widely accepted that senescence is caused by a combination of environmental

stimulus and the synthesis/response to plant hormones such as jasmonic acid (JA),

ethylene, cytokinins and abscisic acid (ABA). These hormones are typically also the

cause of early senescence during stresses imposed upon the plant and this makes their

identification as a non-stress response di�cult. Many of the GO terms are annotated as

being related specifically to biotic and abiotic stresses, but this is probably due to the

greater level of research which has been performed in these areas. Whilst it is simpler

to deduce the response of a stress which can be compared with plants in the unstressed

state, the study of natural senescence has no mock response to compare with and so

annotations specifically associated with natural senescence are limited. However, many

of the genes associated with stress related hormones can be thought to also be related

to natural senescence and these are the GO terms which have been focussed on here.

Cluster 44 contains a high proportion of genes relating to wound and stress re-
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(a) Jasmonic Acid

(b) Salicylic Acid (c) Abscisic Acid

Figure 4.3 – Hormone Levels During Leaf Development
Levels of Jasmonic Acid ((a)), Salicylic Acid ((b)) and Abscisic Acid ((c)) were mea-
sured in leaf 7 harvested throughout the course of the senescence experiment. LSD
(5%, 41 df) for comparisons between pairs of means are shown for each hormone cal-
culated from the ANOVA of log10-transformed data. Values represent the means of
five independent biological replicates per time point. DW, dry weight.

sponse, particularly the synthesis of jasmonic acid (JA), a known inducer of senescence.

JA is released as a hormonal response to wounding and other stresses (Turner et al.,

2002; Wasternack et al., 2006; Wasternack, 2007) which can lead to senescence as a

defence mechanism of the plant. The profile of cluster 44 indicates a peak at the fourth

observation which coincides with a peak in the levels of JA in the leaves, as shown in

Figure 4.3(a) which is taken from figure 2 of Breeze et al. (2011), levels of JA resemble

the profile of cluster 44 relatively closely. Another cluster with a similar profile is cluster

5 which has a less prominent, but still distinctive, peak at the fourth observation. The

over-represented GO Terms for this cluster are also JA biosynthesis related. All JA

biosynthesis genes are positively regulated by JA (Pauwels et al., 2008; Sasaki et al.,

2001) but it is unclear whether some of the genes in these clusters are purely respon-

sive to JA and not responsible for its synthesis. However, although these interactions

are interesting and seemingly connect the profiles of the clusters, interactions involving

hormonal regulations would not be easily biologically tested and so this information is

not useful to the aims of this PhD.

Cluster 19 is shown to exhibit over-represented GO terms for response to water

and also to abscisic acid (ABA) stimulus, a hormone known to be involved in the

induction of senescence. The exact role of ABA in senescence is unclear since the
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responses to ABA are diverse and the hormone is also known to cause the abscission of

leaves and to cause the rapid closure of stomata to limit respiration and consequential

transpiration (Munné-Bosch & Alegre, 2004; Leung & Giraudat, 1998). It has been

shown that genes induced by ABA, such as RPK1, can also cause early onset of leaf

senescence when their expression is artificially increased (Lee et al., 2011), supporting

the theory that ABA does play a role in causing senescence. Cluster 19 appears to rise

in expression quite early in the time course, between observations 2 and 4, and perhaps

even before senescence is thought to truly begin, possibly indicating that some of the

genes in cluster 19 are involved in actually causing the senescence response to begin.

Amongst the genes representing ABA response GO terms in cluster 19 are

three drought response genes: ERD10 (At1g20450), ERD14 (At1g76180) and RD26

(At4g27410) and two cold response genes: COR47 (At1g20440) and LTI30 (At3g50970).

These are two stress responses which are typically associated with ABA and can cause

the early onset of leaf senescence. However, genes are often later associated with more

than one type of stress, such as ERD10 which is also seen to be up-regulated in response

to cold, and their annotations, and hence name, can be skewed by the first study they

were identified in. It may be that these genes, associated here by their response to ABA,

have more generic functions in senescence.

Cluster 55 has a very large number of genes associated with the process of trans-

lation. In particular, most of these genes are ribosomal proteins which form part of

the machinery required for translation to occur. A reduction in their abundance early

in the time course may be entirely due to the machinery associated with early plant

development being halted but a small peak is also present at the sixth and seventh time

point, perhaps associated with the rise in expression of late clusters such as cluster 24

which is thought to relate to the senescence response. The continued degradation of

the expression of this cluster at the end of the time course is a clear indication of the

final subsidence in further gene expression at the end of leaf senescence, supported by

the expression level of almost every cluster remaining unchanged or reducing between

the penultimate and final observation.

Eight of the remaining down regulated clusters (58, 66, 67, 68, 73, 74, 76 and 77)

have over-represented GO terms for genes involved in photosynthesis and the associated

organelles. Cluster 66 contains eight genes involved in the synthesis of chloroplasts.

Two of these genes, CDP1 (At3g19180) and ARC5 (At3g19720), are involved in the

restriction and division of chloroplasts. Mutation in the ARC5 gene causes the number

of chloroplasts per cell to be reduced from a mean of 121 in wild-type leaves to only

13 enlarged and dumb-bell shaped chloroplasts in the mutant (Pyke & Leech, 1994;

Robertson et al., 1996). This signifies importance in the photosynthetic process which

is being degraded over the period of senescence in the leaf. Observation of the profile

of this cluster appears to indicate that there is a declining expression leading up to the

fourth time point, after which a plateau in expression exists followed by further decline

in the expression of the cluster. This may indicate that those genes are subsiding to
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a normal level of expression after the initial growth of the leaf but are then degraded

further after senescence begins from the sixth time point onwards.

Cluster 77, with an over-represented GO term for pigment biosynthesis, is the

only other cluster of these eight which has an over-represented GO term more specific

than simply “photosynthesis”. The majority of genes representing this term are directly

responsible for the biosynthesis of chlorophyll and hence involved in the same processes

as cluster 66, explaining the highly similar profiles of these two clusters. The progres-

sive loss of chlorophyll biosynthesis after the sixth observation during leaf senescence

coincides with an observed reduction in chlorophyll content of the leaves as reported in

Breeze et al. (2011). These key indicators strengthen the belief that senescence becomes

the dominant developmental process somewhere between observations 6 and 7.

The remaining six clusters are all related to the function of photosynthesis it-

self and, together, these over-represented GO terms account for 72 genes. The most

interesting aspect of these genes is that they are all from the same GO term and yet

they have six separately identifiable expression profiles. This is one of the only GO

terms showing such diversity throughout the experiment, most likely to be because of

the enormous amount of research which goes into photosynthesis and hence the large

number of correctly annotated genes associated with this process. In all cases, the ex-

pression of the clusters reduces with time and the most significant drop is at the sixth

observation after which the expression is rapidly reduced until the end of senescence.

This is obviously well correlated with the yellowing of the leaf, as might be expected.

One peculiarity, however, is shown in cluster 58 where it can be seen that the expression

drops quickly after the second observation before briefly recovering and then following

the same pattern as the other clusters after the sixth observation. There is no obvious

cause for this temporary reduction in expression, but an investigation into why these

genes show alternative expression to those of the same processes would possibly identify

transcriptional networks surrounding photosynthesis.

Cluster 6 is found to contain an over-representation of genes involved in cellular

respiration, a process relying on the products of photosynthesis. The profile for this

cluster indicates that these genes are only activated very late in the time course, possibly

later than most other processes in senescence. Amongst those genes representing the

GO term for cellular respiration is AOX1a (At3g22370) which has been shown to be

up-regulated in response to low nitrogen levels and to be responsible for the negative

regulation of cellular respiration (Watanabe et al., 2010). As the energy rich chlorophyll

is degraded and amino acids broken down and transported from the leaves of Arabidopsis

(Munné-Bosch & Alegre, 2004), nitrogen levels will fall as a consequence and it is likely

that this causes the late increases seen in this and similar genes. It would seem that

these genes may be the response to reduced photosynthesis in the leaves and therefore

the need to reduce respiration.

Although a number of senescence related biological processes have been identi-

fied by BiNGO analysis, it is apparent, having observed the result of extensive study
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in processes such as photosynthesis and translation and comparing these results with

those of lesser studied processes, that unless the genes of a given GO term are well

annotated, it is di�cult to identify that the GO term is over-represented in a cluster.

This is detrimental to this study of senescence related transcriptional networks since

the intention is to find novel interactions which are likely to be between genes which

have not yet been well studied. When combined with the logic that natural senescence

processes are harder to study because of the lack of a mock response, a systems biology

approach is required in which the expression profiles of the genes are used rather than

prior knowledge as is required by BiNGO. The results of tools like BiNGO should only

be used as a guide to understanding the range of biological functions which are being

a↵ected by the senescence process and their relative timings.

4.2.3 Preliminary Network Modelling

Before continuing the analysis of the gene expression data, it was important to gain

an understanding for the way in which the theoretical regulatory network modelling

tool worked, what the output meant and how the features of a biological network were

structured. In order to do this, subsets of genes had to be selected so as to use their

expression data to try to form a network. Initially, selections of genes for modelling

were made by either trying to find groups of genes with similarly shaped expression

profile or genes which characterised all the observed profiles shown by SplineCluster.

Genes assigned to the same cluster could be thought to represent large proportions of a

functional network as they are all being expressed at a similar time and therefore may

be regulated by a similar upstream entity. For this reason, selections of 50–100 genes

within the same cluster were presented together for regulatory network modelling. The

data for these models was processed as described in Section 2.4.1.

Although a convincing model could be produced in this way, it was soon identified

that small alterations to sets of genes resulted in vastly di↵erent network structures.

Even the removal or addition of genes which appeared to be peripheral to the network

resulted in a new network with relatively little similarity to the original. To demonstrate

this, a list of 88 randomly selected genes was produced to give a network model as shown

in Figure 4.4(a). The structure of this network appears to indicate four genes which

have a large number of downstream interactions. 22 of the original set were then chosen

at random, removed and replaced with 22 randomly selected genes from the genome to

generate a second set. The new set still, by chance, included the four highly influential

genes seen in the model. When a network model was produced from this second set,

shown in Figure 4.4(b), only three genes had at least four downstream interactions and,

of those, only one (highlighted in yellow) showed highly influential behaviour in both

models, despite the other two hub genes existing in the original model’s gene set as well.

The outcome shown here could have been a coincidence, however, to ensure this

was not the case, four other sets of 88 genes were produced from the original set by

randomly substituting 22 genes and this lead to further models with very low structural
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(a) VBSSM Putative Regulatory Network Model for Gene Set 1
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(b) VBSSM Putative Regulatory Network Model for Gene Set 2

Figure 4.4 – VBSSM network models of similar sets of genes demonstrate
drastic di↵erences in individual relationships
Both of the models above were generated from lists of 88 genes with an overlap of 66
genes. Network edges are only shown where at least half the model seeds indicated a
confidence level of 95% for its existence. Four genes appear to be key to the structure
of the network in (a) by linking with many other genes, whilst only three genes are key
to the structure of the network in (b). Only one of those genes is common between
the two networks (highlighted in yellow) despite all the key genes being present in
both gene sets. This indicates that the selection of periphery genes in the network
are very influential on the identified interactions and that no individual model can be
trusted to have identified truly likely interactions.
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similarity despite each being produced from 75% identical data to the original.

It was thought, knowing that the network models could be so heavily influenced

by seemingly unimportant network elements such as peripheral genes, that selecting lots

of genes with similar expression profiles from the same cluster would only increase the

risk of finding local maxima rather than the true network. For this reason, an initial

attempt was made to identify the underlying network structure of the clusters. The

mean profile of each cluster was submitted to VBSSM as if it were the expression data

of a single gene. The disadvantage with this was that there were obviously no biological

replicates and, although an approximation of a cluster’s members, the mean profile of

the cluster is only a loose definition of all its members and so any interaction discovered

between clusters may not be directly transposable for any pair of genes they contain.

The network with the highest mean log marginal likelihood across seeds was

that with a hidden state dimensionality of 19 as indicated by the F vs k plot shown in

Figure 4.5(b) where k is the dimensionality of the hidden states. However, it can also be

seen that the seeds, plotted as blue points, exist at three alternative levels, indicating

that at least three possible models are consistent with the data. This is indicative of the

quantity of data being an inadequate definition for the number of inferable connections

being fitted by VBSSM since there are no biological replicates and only 11 observations

made about each of the 77 profiles. The red line, indicating the mean log marginal

likelihood across the seeds for each k value, does not demonstrate an obvious maximum

with monotonic degradation of the F score either side, making it impossible to be certain

of the chosen k value since the log marginal likelihood for all k values above 2 are very

similar.

The peculiarities of the F vs k plot in Figure 4.5(b) are mirrored in the resulting

network model, which, at the same confidence threshold as the models shown in Fig-

ure 4.4, indicate no interactions at all with a k value of 19. This is due to a high level

of diversity between the seeds, so that no more than 50% of the seeds are in agreement

over the existence of each interaction. A more typical example of an F vs k plot can

be found in Figure 4.5(a) which is the one produced for the model shown in Figure 4.4.

Here it can be seen that the maximum k value at k = 8 is well defined and that all the

seeds at that maximum are very similar.

An alternative approach to obtaining the profile of each cluster is to use a sin-

gular value decomposition method to identify the profile of an eigengene (Wall et al.,

2003). This method was employed by Emma Cooke of The University of Warwick when

modelling data of a similar microarray dataset. During Emma’s use of this method, she

found that, for her data, the eigengene profiles were so similar to that of the mean of

the cluster that the resulting model was identical and so this method was not attempted

on the senescence data set.

Despite failure to find a method to accurately determine the underlying network

structure of such a large number of genes, observation of the types of interactions that

exist within networks, such as those found in Figure 4.4, allowed the categorisation of
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(a) 88 gene profiles of 11 observations in 8 biological replicates.

(b) 77 gene profiles of 11 observations each with no biological replicates.

Figure 4.5 – A comparison of F vs k plots for data with and without bio-
logical replicates
The F vs k plots shown indicate to the user which k value, representing the dimen-
sionality of the hidden states, provides the maximum mean log marginal likelihood
(F score) across the seeds. A normal result is shown in (a) where a maximum F score
at k = 8 is identified using su�cient data to describe the interactions between the
chosen number of genes. However, it is also possible to obtain results such as those
shown in (b) where the quantity of data about each node of the network is insu�-
cient to identify the interactions between them without finding local maxima. In this
example, at least two local maxima have been identified, as indicated by the three
alternative F score levels shown in the blue points for each seed.
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Figure 4.6 – An artificial network demonstrating types of node present in
a typical regulatory network
Three major types of node exist in a typical regulatory network. Hubs, represented
in orange, have many downstream interactions and few or no upstream interactions.
Intermediate nodes, represented in green, have roughly equal numbers of upstream
and downstream interactions. Response nodes, represented in blue, have one or more
upstream interactions and often no downstream interactions.

genes into three main classifications, as demonstrated in Figure 4.6. There are those

genes which form the control of the network and, whilst having many downstream

interactions with other genes, are influenced by very few genes, as plotted in orange

and hereafter referred to as “hubs”. Those genes which are influenced by upstream

genes but also have an influence on downstream genes are plotted in green and are

“intermediate” genes. Those genes which have no downstream interactions, but are

influenced by upstream genes are plotted in blue and are the “response” genes.

By implementing a systems biology approach to network modelling, it was possi-

ble to find a way to identify the hub genes through a series of modelling iterations which

allowed the identification of robust network interactions, as described in the following

section.

4.3 Identification of Module Centres

By focussing on identifying the module centres, or hub genes, in the networks associated

with senescence, it was possible to substantially reduce the number of genes thought

to provide strong evidence for being a regulator for senescence related processes. The

method used to find those genes was multi-modelling which is described in Section 2.4.3

and involves the consideration of all pairwise associations between a large set of genes.

Many smaller models of equally sized gene sets sampled from the larger set were used to

provide information about the likely number of interactions each gene has with others

in the set. In an ideal situation, it would be informative to produce a network model for

every possible combination from the large set, but this is an impractical solution due to
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the number of subsets possible.

When comparing the outcome of many smaller VBSSM models in an attempt to

understand the regulation between genes of a larger set, it is important to understand

the combinatorial problem that rapidly diminishes the e↵ectiveness of the approach.

In order to correctly analyse a set of 500 genes by modelling subsets of 88 genes (see

below for justification of this number), every possible selection of 88 genes should be

considered. The total number of models that would be required for this would therefore

be:

500C88 =
500!

88!(500� 88)!
= 5.04⇥ 1099 models (4.1)

This number of models is clearly impossible to produce even if many millions

of models could be produced every second. Instead, a number of models su�cient to

determine which genes in the large set are highly regulatory of others in the set were

produced: 454 models for a set of 580 genes and 668 models for a set of 722 genes. This

allows each gene to be classified by monitoring the number of times pairs containing the

gene were present in a set against the number of times those pairs showed a significant

interaction. The classifications defined in Figure 4.6 could then be allocated on a per-

gene basis.

It was not possible at this stage to infer the interaction of specific pairs of genes,

because, although that pair may have been directly presented for modelling on a number

of occasions, the likelihood of individual interactions is influenced by other genes in the

model resulting in varying log marginal likelihood for each model. Where log marginal

likelihoods are not equal, the significance of specific interactions may be biassed and

can therefore not be compared between models.

The size of small gene sets during multi-modelling was optimised by making

observations about the networks which had been selected by hand during preliminary

network modelling as described in Section 4.2.3. Those models produced from the

expression data of more than 100 genes were, occasionally, unable to converge upon a

single solution, producing a plot similar to that of one with too few biological replicates

as shown in 4.5(b). In these cases, the quantity of data about the genes was insu�cient

to identify the network structure. For this reason, the number of genes per model was

limited to 88 as this is the number of observations made for each gene (11 time points

⇥ 8 replicates = 88 observations). Where p could represent the number of possible

network connections for each gene, including hidden-state relationships, this prevents

the number of variables per-gene, p, from exceeding the number of observations per-

gene, n: a situation that can result in several equally likely explanations for the given

data and the inability to identify which model is correctly describing the interactions

between genes.

Although it would be possible to produce models of fewer than 88 genes, it was

known that a model of this size could converge on the same solution in several seeds

and so the same level of confidence in a combined model could be obtained from this

159



number of genes. Where genes in the set were not su�ciently likely to form a part of

the network structure, they were excluded from the outcome of the modelling and so

their presence did not cause harm to the analysis. However, their inclusion made the

likelihood of finding non-binary interactions much greater, providing extra relevance to

the underlying biological system. Larger network models also make more e�cient use

of the available computing power since smaller models were observed to take almost as

much time as larger models.

In order to select a large gene set from which small sets should be selected, a

target size was required. This could be calculated given the amount of time available

for the whole multi-modelling process and also the intended goal to reach within that

time. Multi-modelling required the use of a shared cluster resource which was capable

of 4 concurrent VBSSM models in approximately 1 hour. Initially, an estimate of one

week was allowed as it was not certain that useful results would be identified and other

methods would have needed to be sought if multi-modelling had failed. A maximum

number of models that could be produced in 1 week was therefore 4 ⇥ 168 = 672. A

sensible goal for the process was to present each pair of the large set for modelling a

specified number of times. This threshold was set at 5 because fewer than this would

leave uncertainty in cases where half the observations were positive whilst the other

half were negative, but greater than 5 would reduce the number of genes that could be

managed in a week.

It can be calculated that, for a given set of N genes, the number of pairs between

them is N

2�N

2 . Therefore, for each set of 88 genes, 882�88
2 = 3, 828 pairs would be

considered by each model. With these parameters, the size of the large gene set, x, can

be calculated as shown:

Total models required < Possible models per week (4.2)

5
⇣
x

2�x

2

⌘

3, 828
< 672 (4.3)

x

2 � x < 2

✓
672⇥ 3, 828

5

◆
= 1, 028, 966.4 (4.4)

x < 1, 014 genes (4.5)

This leads to the conclusion that all large sets of genes must be fewer than 1,014 genes.

An overview of the most important genes amongst all 8,878 di↵erentially expressed

was intended and so the first set to be selected was intended to capture all 77 cluster

profiles in the large set. A limit of 10 genes per cluster was set and a collaborative e↵ort

alongside Vicky Buchanan-Wollaston and Emily Breeze was made to choose those genes

from each cluster that showed annotations related to senescence or other potentially

interesting pathways. This resulted in a final set of 580 genes which formed the first of

two pools of genes for multi-modelling.
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A second pool of genes was produced by including only those di↵erentially ex-

pressed genes which were annotated by the TAIRv7 (Swarbreck et al., 2008) database

as a transcription factor in the Arabidopsis thaliana genome. This list was introduced

because transcription factors are known to bind directly to the upstream regions of

DNA and cause changes to levels of transcription. This type of regulation is more easily

confirmed during laboratory tests than other types of interaction between genes, making

any discovered networks easier to test. The list produced by this method contained 722

genes which was still manageable. 123 genes existed in both lists, indicating that 457

of the genes in the first list were not transcription factors.

Making selections of genes based on their annotations would most likely provide

a bias to the interactions that were observed but, whilst it would have been exciting to

identify strong hub-like behaviour from unknown genes, it would also produce di�cult

dilemmas when attempting to biologically verify any interactions that were identified.

It is easier to perform tests for true interactions for genes with known binding sites

and/or domains so that a transcriptional network can be established in the biological

samples as well as in theory.

During multi-modelling of the first list of genes, the selection of 88 genes for

modelling was entirely at random from the larger pool which, initially, provided a wide

selection of pairs of genes. However, despite some pairs being selected many times, it

was also noticed that other pairs had not yet been selected at all and that a histogram

of the pair selection frequency formed a bell curve. As the aim was to select each pair at

least 5 times before the multi-modelling was completed, a new strategy for gene selection

was implemented part way through to reduce the number of total models required. The

new strategy, as explained in Section 2.4.3 selects genes in pairs rather than individually,

ensuring that those pairs which have been selected least frequently are more likely to be

selected next than those which have been selected a greater number of times already.

The outcome of this altered approach is easily apparent when comparing the

distributions of the pair selection frequencies between the two modelling runs. The

latter run, with the pool of transcription factors, used the pairwise selection of genes

for models throughout, whilst the former run with the pool of genes selected by cluster

assignment was a hybrid of the two selection processes as has been described above.

The distributions can be found in the histograms of Figure 4.7.

In the first multi-modelling run, shown in Figure 4.7(a), 454 models were required

to exceed the threshold of 5 selections for all 167,910 pairs. Each pair was selected an

average of 10.38 times with a maximum of 26 times for 3 pairs. The standard deviation

of the number of models the pairs were allocated to was 2.84.

In the second multi-modelling run, shown in Figure 4.7(b), 668 models were

required to exceed the threshold of 5 selection for all 521,284 pairs. Each pair was

selected an average of 9.93 times with a maximum of 23 times for 1 pair. The standard

deviation of the number of models the pairs were allocated to was 2.68.

As well as the statistics above regarding the frequency of pair selection, the
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(a) SplineCluster selected gene pool

(b) Transcription Factor selected gene pool

Figure 4.7 – Histograms showing the frequency of pairs being presented
for multi-modelling
Although the threshold that must be exceeded in order to end multi-modelling was
that each pair must be presented at least 5 times, a large number of pairs were
presented many more times than this. The histograms demonstrate the distribution
of the numbers of times each pair was presented for modelling. It can be seen that
the spread of these distributions is smaller in (b) than they are in (a) because the
selection process for pairs had been improved to reduce the total number of models
required to exceed a threshold of 5 times each.
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number of times each gene was selected also shows similar results. In the first multi-

modelling run, each gene had been selected in an average of 15.20% of the total models

(69.00 models each), with a minimum of 63 selections, a maximum of 80 selections

and a standard deviation of 2.620. In the second multi-modelling run, each gene had

been selected in an average of 12.25% of the total models (81.83 models each), with a

minimum of 76, a maximum of 89 and a standard deviation of 2.190.

These statistics demonstrate that the new selection method is reducing the num-

ber of required models by reducing the number of times each pair must be presented to

exceed the desired threshold. They also demonstrate that the range of frequencies for

the genes and pairs are reduced using the new selection method, allowing the pairwise

interactions to be more fairly represented during the analysis of these results.

The results of the multi-modelling are presented in the form of a table showing

each pair of genes from the pool alongside the following information:

• The number of times that pair had been selected for a model (No. Times Mod-

elled).

• The number of models with at least one model seed demonstrating an interaction

for the pair at the pre-defined significance threshold (No. Times Interacting).

• A percentage indicating the likelihood of an interaction for that gene pair, based

on the previous two columns (Interaction Percentage).

• The regulation type, either positive or negative indicating the e↵ect of the up-

stream gene on the downstream gene (Regulation Type).

• A percentage indicating the number of seeds demonstrating this interaction amongst

all those from models where the genes were identified as interacting (Interaction

Frequency).

The final percentage is calculated as a mean of the interaction frequencies of all the

models demonstrating this interaction. If 5 models demonstrated an interaction and

the interaction frequencies of each were: 70%, 80%, 80%, 90% and 70%, the interaction

frequency output by multi-modelling would be 70+80+80+90+70
5 = 78%. An example of

the top entries in this table can be found in Table 4.3. All of these entries demonstrate

robust interactions at a high significance threshold and the upstream element of these

interactions is therefore classified as a putative hub.

Only the putative hubs resulting from the first gene pool are shown in this thesis

because these were su�cient for finding small regulatory modules. The definition of a

hub, in this case, was a gene which is identified, with greater than 95% confidence, as

regulating at least two other genes on more than 50% of the occasions in which the pairs

were presented for modelling. This provides a list of 118 genes thought to be regulatory

of the others in the gene pool. A list of the 20 genes most likely to regulate others in the

pool is shown in Table 4.4 whilst a further 98 also exist and can be found in Appendix J.
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# Times # Times Interaction Regulation Interaction
Upstream Downstream Modelled Interacting Percentage Type Frequency

At1g68990 At4g04890 12 12 100.00% Negative 81.67%

At1g68990 At5g04340 10 10 100.00% Positive 81.00%

At1g27730 At1g50420 10 10 100.00% Positive 88.00%

At1g68990 At3g50260 9 9 100.00% Positive 74.44%

At1g68990 At4g18810 9 9 100.00% Negative 63.33%

At5g26630 At1g77000 8 8 100.00% Negative 48.75%

At1g68990 At5g60890 8 8 100.00% Negative 85.00%

At5g39610 At1g49850 6 6 100.00% Positive 68.33%

At1g68990 At5g16540 5 5 100.00% Negative 82.00%

At3g05690 At1g23750 5 5 100.00% Negative 64.00%

At5g26630 At5g56950 13 12 92.31% Positive 85.00%

At4g00270 At1g75080 12 11 91.67% Positive 63.64%

At1g68990 At1g28360 12 11 91.67% Positive 86.36%

At5g03220 At3g62090 11 10 90.91% Positive 69.00%

At4g00270 At1g26800 10 9 90.00% Positive 76.67%

At5g26630 At1g18470 10 9 90.00% Negative 70.00%

At5g03220 At5g26210 10 9 90.00% Positive 64.44%

At1g27730 At4g26500 9 8 88.89% Negative 81.25%

At1g68990 At5g14000 9 8 88.89% Positive 81.25%

At1g28310 At1g74660 9 8 88.89% Positive 78.75%

At1g27730 At5g08190 9 8 88.89% Positive 65.00%

At1g68990 At3g57040 9 8 88.89% Negative 75.00%

At5g26630 At3g02160 8 7 87.50% Negative 37.14%

At4g00270 At2g18670 8 7 87.50% Positive 80.00%

At4g00270 At1g44900 8 7 87.50% Negative 60.00%

Table 4.3 – A sample of raw results returned by multi-modelling
In the first 25 rows of the table output by multi-modelling, the most robust inter-
actions within the large pool of genes are presented. This data is based on a 99.9%
confidence threshold, meaning that the last interaction in this table was identified
in 87.5% of the models where the gene co-exist, and for those models 60.00% of the
seeds were more than 99.9% confident that this negative regulation was real. The
choice of a 99.9% threshold is more stringent than the threshold of 95% which was
eventually used to define a hub for the purposes of selecting genes to continue study-
ing. It is immediately obvious that the same five genes (highlighted for clarity) are
presented upstream in the majority of these interactions, and it is these genes with
many downstream interactions which form the hubs being sought by this analysis.

It is important to note that, although these results appear to infer interactions

between pairs of genes, that would be an invalid interpretation of these results. It is

true that if an interaction is found to be consistent across many models, then it is more

likely to appear again in future models, but it is impossible to accurately combine the

predictions of a series of models and isolate individual interactions. Interactions in the

model are as a result of the whole selection of genes being used to fit the model and

those which appear less regularly may simply be more complicated requiring a series

of specific genes to be included before they can be given a great enough probability to

exceed the applied thresholds.

Instead, the correct interpretation, and the one that is taken here, is to decide

that a number of genes in the pool have a higher probability of having many downstream

164



Hub Number of
AGI Genes Description

Number Downstream

At5g05410 366 DRE-binding protein 2A (DREB2A)
At3g05690 292 nuclear factor Y, subunit A2 (NF-YA2)
At1g27730 266 STZ - Related to Cys2/His2-type zinc-finger proteins
At1g68990 262 male gametophyte defective 3 (MGP3)
At2g47040 249 VANGUARD1 (VGD1)
At2g38880 238 nuclear factor Y, subunit B1 (NF-YB1)
At4g25490 192 C-repeat/DRE binding factor 1 (CBF1)
At2g25900 151 ATCTH
At5g06510 140 nuclear factor Y, subunit A10 (NF-YA10)
At3g15210 136 ethylene responsive element binding factor 4 (ERF4)
At5g62040 135 PEBP (phosphatidylethanolamine-binding protein) family protein
At3g14020 132 nuclear factor Y, subunit A6 (NF-YA6)
At2g34710 117 PHABULOSA (PHB)
At5g18140 101 Chaperone DnaJ-domain superfamily protein
At1g63850 96 BTB/POZ domain-containing protein
At3g25540 95 LONGEVITY ASSURANCE GENE 1 (LAG1)
At5g39610 95 ANAC092 - A NAC-domain transcription factor
At5g13750 87 zinc induced facilitator-like 1 (ZIFL1)
At5g57565 82 Protein kinase superfamily protein
At2g40340 79 DREB2C

Table 4.4 – A sample of hub genes found by multi-modelling
Shown are the 20 most likely hub genes of the 118 which met the threshold of demon-
strating an interaction with at least two other genes at more than 95.0% confidence on
more than half the occasions where those genes were present in the same model. The
other 98 genes also considered a hub but not shown here can be found in Appendix J.
The number of genes downstream represents how many other genes of the set of 580
were found to be regularly regulated by the hub gene shown. As was previously
stated, this does not infer direct interactions, but instead simply ranks the genes by
their regulatory potential so that those which do not regularly regulate others in a
putative network model are not studied further.

e↵ects and can therefore be classed as hubs. The list of 118 genes shown in Table 4.4

and continued in Appendix J are those which appear to have a regulatory e↵ect on

the largest numbers of genes, qualifying them for further study. Therefore it is those

118 genes which were next tested in a biological context to identify their e↵ect on the

senescence phenotype.

4.4 Biological Validation of Module Centres

In order to biologically validate the e↵ect of putative hubs on the senescence process,

reduced expression lines were obtained from SALK, as described in Section 1.7.1.1. It

was assumed that if a gene were truly central to a senescence related process they

would, when artificially reduced in expression, have a large e↵ect on the phenotype

of a leaf undergoing senescence. There are situations, such as secondary pathways, in

which the reduced expression could be compensated for by other genes, providing little

phenotypical change. There should, however, be no circumstances that would lead to a

false positive under this assumption.

71 homozygous SALK lines were listed for the 118 putative hub genes, though
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some of these were for the same gene, allowing 53 of the putative hub genes to be

tested with some replication. Of those ordered, only 64 were delivered due to stock

shortages and these are listed in Table 4.5 along with the identifiers used to describe

them throughout the remainder of this thesis.

4.4.1 Phenotype Screening

Although senescence is a slow process, often taking more than two months to complete,

it can also be induced by a number of di↵erent stresses including pathogen attack,

hormone response, high and low temperature climates, drought and/or darkness. These

can greatly increase the rate of senescence at the risk of also inducing responses in

genes specifically associated with those conditions rather than senescence itself. There

have been some studies which have found di↵erences between the levels of expression

for some genes during stress-induced senescence versus natural senescence (Buchanan-

Wollaston, 1997; Becker & Apel, 1993; Gong et al., 2001), but, although this should not

be disregarded, time constraints demanded that stress-induced senescence, specifically

reduced-light stress, should be used for screening. This was a decision that could also

be justified by the fact that the lines being screened were already theoretically central

to natural senescence processes, based on observations made during the microarray

experiment. The choice of reduced-light stress was in part because it is more easily

standardised than any of the other stresses.

The phenotype screen, described in Section 2.5.2, was used to assess whether the

plant lines showed an altered phenotypical response to dark-senescence when compared

with Col-0 wild-type plants under the same conditions. As well as the 64 ordered from

SALK, 11 other reduced expression lines were included which were suspected to be

involved in the senescence process from previous studies within the Buchanan-Wollaston

group and 19 enhanced expression mutants which were supplied by Jesper Grønlund and

Sanjeev Kumar as described in Section 1.7.1.2.

The profiles returned from this screening process describe the level of senescence

throughout the observation period. The senescence profiles of each plant line were

compared with the profile of the Col-0 wild-type by eye. 8 of the lines which were

screened, including 7 of those identified by multi-modelling and 1 enhanced expression

mutant (MYB59 - At5g59780), gave the most altered phenotypical response with some

lines demonstrating as much as a 2.5 day delay in the onset of senescence. A plot of

the senescence profiles of these mutants alongside the profile of the Col-0 wild-type can

be found in Figure 4.8. Descriptions and gene identifiers for all 8 lines which have been

associated with senescence during the screening process are listed in Table 4.6.

The method of analysis was later developed further to remove the element of

subjectivity typical of analysis by eye. This method, involving the fit of a logistic

curve to the yellowing data followed by two ANOVAs comparing characteristics of those

curves to determine significantly altered phenotypical response, is described at the end

of Section 2.5.2 and allowed plots such as those shown in Figure 4.9 to be produced. All
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Identifier SALK ID AGI Code Short Description

IM131 SALK 065697c At1g04250 AUX/IAA transcriptional regulator family protein
IM132 SALK 011820c At1g04250 AUX/IAA transcriptional regulator family protein
IM133 SALK 062147c At1g06390 GSK3/SHAGGY-like protein kinase 1
IM134 SALK 043420c At1g06390 GSK3/SHAGGY-like protein kinase 1
IM135 SALK 081927c At1g09530 Phytochrome interacting factor 3
IM136 SALK 110897c At1g22190 AP2 domain containing transcription factor
IM137 SALK 054092c At1g27730 STZ - Related to Cys2/His2-type zinc-finger proteins
IM138 SALK 050247c At1g29280 WRKY DNA-binding protein 65
IM139 SALK 099094c At1g48480 Receptor-like kinase 1
IM140 SALK 142042c At1g51660 Mitogen-activated protein kinase kinase 4
IM142 SALK 006559c At1g54160 Nuclear factor Y, subunit A5
IM143 SALK 111422c At1g56170 Nuclear factor Y, subunit C2
IM144 SALK 052790c At1g62310 Jumonji (JMJ-C) domain-containing protein
IM145 SALK 093731c At1g66390 MYB domain protein 90
IM146 SALK 019747c At1g69490 NAC-like, activated by AP3/PI
IM147 SALK 011491c At1g69690 TCP15 - TCP transcription factor
IM148 SALK 124755c At1g76720 Eukaryotic translation initiation factor 2 family protein
IM149 SALK 143304c At1g76720 Eukaryotic translation initiation factor 2 family protein
IM150 SALK 141481c At1g77570 Winged helix-turn-helix transcription repressor
IM151 SALK 059705c At2g03340 WRKY DNA-binding protein 3
IM152 SALK 000828c At2g20050 cAMP-dependent protein kinase regulator
IM153 SALK 026551c At2g22540 K-box region and MADS-box TF family protein
IM154 SALK 072930c At2g22540 K-box region and MADS-box TF family protein
IM155 SALK 143721c At2g25900 Zinc finger C-x8-C-x5-C-x3-H type family protein
IM156 SALK 112158c At2g25900 Zinc finger C-x8-C-x5-C-x3-H type family protein
IM157 SALK 118231c At2g30360 SOS3-interacting protein 4
IM158 SALK 008924c At2g34710 Homeobox-leucine zipper family protein
IM159 SALK 003337c At2g34720 Nuclear factor Y, subunit A4
IM160 SALK 038840c At2g38880 HAP3A - AtNF-YB1 - Confers drought tolerance
IM161 SALK 036317c At2g42880 MAP kinase 20
IM162 SALK 123216c At3g01470 Homeobox 1
IM163 SALK 110045c At3g04260 Plastid transcriptionally active 3
IM164 SALK 108852c At3g04260 Plastid transcriptionally active 3
IM165 SALK 129820c At3g11650 NDR1/HIN1-like 2
IM166 SALK 134653c At3g12977 NAC (No Apical Meristem) domain transcription factor
IM167 SALK 028169c At3g14020 Nuclear factor Y, subunit A6
IM168 SALK 143369c At3g14020 Nuclear factor Y, subunit A6
IM169 SALK 002235c At3g20910 Nuclear factor Y, subunit A9
IM170 SALK 039707c At3g25540 TRAM, LAG1 and CLN8 (TLC) lipid-sensing protein
IM171 SALK 057546c At3g25540 TRAM, LAG1 and CLN8 (TLC) lipid-sensing protein
IM172 SALK 147540c At3g58040 Seven in absentia of Arabidopsis 2
IM173 SALK 016395c At3g59400 Enzyme binding; tetrapyrrole binding
IM174 SALK 011461c At3g59400 Enzyme binding; tetrapyrrole binding
IM175 SALK 056541c At3g60390 HAT3 - Encodes homeobox protein HAT3
IM176 SALK 014055c At3g60390 HAT3 - Encodes homeobox protein HAT3
IM177 SALK 016764c At4g13100 RING/U-box superfamily protein
IM178 SALK 056165c At4g13100 RING/U-box superfamily protein
IM179 SALK 096411c At4g13670 Plastid transcriptionally active 5
IM180 SALK 034157c At4g23810 WRKY family transcription factor
IM181 SALK 095007c At4g24540 AGAMOUS-like 24
IM182 SALK 091933c At4g32280 Indole-3-acetic acid inducible 29
IM184 SALK 059819c At5g11510 Myb domain protein 3r-4
IM185 SALK 064538c At5g24470 Pseudo-response regulator 5
IM186 SALK 053198c At5g24470 Pseudo-response regulator 5
IM187 SALK 111899c At5g24800 Basic leucine zipper 9
IM188 SALK 090154c At5g39610 ANAC092 - A NAC-domain transcription factor
IM189 SALK 017961c At5g42190 E3 ubiquitin ligase SCF complex subunit protein
IM190 SALK 030781c At5g43310 COP1-interacting protein-related
IM191 SALK 059254c At5g57390 AINTEGUMENTA-like 5
IM192 SALK 151934c At5g57565 Protein kinase superfamily protein
IM193 SALK 013022c At5g62040 Brother of FT and TFL1 - PEBP family
IM194 SALK 107954c At5g64340 Sequence-specific DNA binding transcription factors
IM195 SALK 021930c At5g64340 Sequence-specific DNA binding transcription factors
IM196 SALK 102383c At2g38880 Nuclear factor Y, subunit B1
IM197 SALK 116974c At5g11510 MYB domain protein 3r-4
IM198 SALK 042760c At1g54160 Nuclear factor Y, subunit A5

Table 4.5 – SALK lines which were biologically tested as putative hubs
Although 118 genes were identified as putative hubs, only 53 of these were available for
biological testing. Some genes had more than one reduced-expression line available,
and all were ordered and shown above.
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Identifier AGI Name/Description

IM136 At1g22190 AP2 domain containing transcription factor
IM137 At1g27730 STZ - Related to Cys2/His2-type zinc-finger proteins
IM147 At1g69690 TCP15 - TCP transcription factor
IM160 At2g38880 HAP3A - AtNF-YB1 - Confers drought tolerance
IM175 At3g60390 HAT3 - Encodes homeobox protein HAT3
IM188 At5g39610 ANAC092 - A NAC-domain transcription factor
IM193 At5g62040 Brother of FT and TFL1 - PEBP family
TP017 At5g59780 MYB59 - Encodes putative transcription factor MYB59

Table 4.6 – Genes demonstrating an altered phenotype after quantification
of the rate of dark-induced senescence
After the introduction of a quantification of the rate of dark-induced senescence, eight
genes were shown to have an identifiable di↵erence from the Col-0 wild-type plants.

50 plant lines were re-assessed using this more refined method to verify that the decisions

made in selecting the 8 lines for further analysis were correct. Unfortunately, the method

relies on being able to fit a logistic curve to the data, and this was not possible for all the

plant lines as insu�cient observations had been made for the parameters to converge

and so only 41 of the lines could be tested in this way. Six of the lines tested gave p-

values where p 6 0.05 in both comparisons, indicating significantly altered phenotypical

response, and these are shown in Appendix K where they can be reproduced large

enough to view properly. Of the 8 lines selected by eye, 3 (IM136, IM188 and TP017)

did not allow the fit of a logistic curve, presumably because their delay in senescence

was so great that the point of inflection in the curve was not reached within the first

9 days, whilst the other 5 were all identified as significant by the ANOVA tests. The

remaining significant plant line, TP010 (At4g05100 - MYB74 ), was the only other line

showing altered phenotypical response to dark-induced senescence. TP010 has not been

studied further as this analysis was performed some time after the selection of the 8

lines by eye.

4.4.2 Homozygous T-DNA Insertion Screening

In order to verify the insertion of T-DNA into the intended gene of the 7 SALK plant

lines shown to have an altered phenotypical response to dark-induced senescence, DNA

was extracted from leaf tissue collected from each of the plant lines using the methods

shown in Section 2.6.1. This was then used as a template in PCR reactions designed

to verify the presence of T-DNA in the correct region of the genome, as described in

Section 2.6.2.

The enhanced-expression line, TP017, was already known to be homozygous

since this was screened by Jesper Grønlund and Sanjeev Kumar when it was produced.

The enhanced expression of this line was also confirmed at the time the line was produced

which was performed by semi-qPCR which determined that, under the assumption that

a cycle in PCR results in a doubling of the concentration of the amplified DNA, the

expression of MYB59 in TP017 is 19-fold that of the expression of MYB59 in Col-4, the
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(a) IM160 - At2g38880 - HAP3A/AtNF-YB1 - Significant di↵erence in phenotypical
response

(b) IM28 - At1g27730 - MYB90 - Non-significant di↵erence in phenotypical response

Figure 4.9 – Analysis of logistic curve models reveal the significance of
altered phenotypical responses during dark-induced senescence
Fitting logistic curve models to the yellowing data collected from both wild-type
(green) and altered expression mutants (red) allows for comparisons to be made be-
tween their profiles. The green crosshair is plotted to intersect at the point of max-
imum change in the wild-type. The horizontal arm of the red crosshair is plotted to
identify the level of yellowing in the altered expression mutant at the time of maxi-
mum change in the wild type. The vertical arm of the red crosshair plots the time
at which the altered expression mutant reaches the same level of yellowing as the
wild type at the point of maximum change. The di↵erences between the crosshairs in
both axes are individually considered using two ANOVAs and the p-values shown are
derived from these. Where p 6 0.05 in both tests, the altered phenotypical response
is considered significant as shown in (a), whilst neither p-value meets this criteria in
(b) where it is obvious that the response is almost identical. Error bars represent one
standard error across biological replicates.
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Figure 4.10 – Electrophoresis gel demonstrating the presence of homozy-
gous T-DNA inserts for reduced-expression mutants
For each reduced-expression line, three PCRs were performed. The first lane in each
triplet represents gene-specific primers with a genomic DNA template. The second
lane represents the same primers with DNA extracted from leaves of the mutant as
a template. The last lane represents the right gene-specific primer with a T-DNA
specific primer using DNA extracted from leaves of the mutant as a template. Where
a product exists in the first and last lane, but not the middle lane, the T-DNA insert
is homozygous. The ladders, marked ‘L’, are 1kb Plus (Invitrogen).

genotype used to produce TP017.

All 7 of the reduced-expression lines were confirmed to have a homozygous T-

DNA insert at the expected location in the genome as is demonstrated by the elec-

trophoresis gel shown in Figure 4.10. A product in the last lane of each triplet indicates

a T-DNA insert is present in at least one strand whilst a product in the middle lane

would indicate at least one strand without the insert. Therefore, the absence of a

product in the middle lane indicates that all the mutants are homozygous.

It should be noted, however, that these tests do not confirm that no other T-

DNA insertion exists in another part of the genome. This should be considered when

interpreting any results.

4.4.3 Gene Expression Level Testing

Reverse Transcriptase PCR (RT-PCR) was used to verify that the reduced-expression

lines were reduced in expression when compared with Col-0 wild-type at the same point

in the senescence process. This was done by preparing a number of plants and allowing

them to grow naturally before harvesting leaves from both the reduced-expression line

and Col-0 wild-type plants at a time when the leaves are fully expanded and green.

Trizol (Invitrogen) was used in the extraction of total RNA from the leaves, following

the methods shown in Section 2.6.3.1, before performing RT-PCR on the samples using

the methods shown in Section 2.6.7. The enhanced-expression line, TP017, had been

confirmed to show higher levels of expression than that of wild-type plants when it was

produced.

After extraction of total RNA for the 7 reduced-expression lines, the nanodrop

was able to determine the concentration and purity of the extracted RNA, as shown in

Table 4.7. Here, it can be seen that although the total RNA concentrations vary between

samples, all have returned a concentration comparable with that of Col-0 and all have

a 260/280nm absorbance ratio of more than 2.00, indicating minimal contamination of
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Identifier total RNA Conc. Absorbance Ratio
(ng/µL) 260/280nm

Col-0 57.4 2.01
IM136 22.8 2.03
IM137 53.2 2.12
IM147 134.7 2.10
IM160 60.8 2.03
IM175 99.3 2.06
IM188 123.6 2.11
IM193 188.6 2.10

Table 4.7 – Nanodrop results for total RNA extracted from mature leaves
of reduced-expression lines
After extraction of total RNA from mature leaf samples, the RNA concentrations
were measured on a nanodrop. Each of the extractions returned an acceptable con-
centration comparable with that of Col-0 and all have a 260/280nm absorbance ratio
of more than 2.00, indicating that little contamination exists in the solution.

the samples.

An Agilent 2100 bioanalyser was used to identify the quality and degradation

levels of the total RNA obtained from the leaf samples above. The results of this analysis

can be found in Figure 4.11. The plots show that each of the samples are of su�cient

quality with little degradation with the possible exception of IM136, which does show

signs of partial degradation as identified by the taller peaks to the left of the graph.

This is also identifiable in the virtual electrophoresis gel which shows a strong band in

the smaller sized fragments of lane 2. Despite this degradation, the sample for IM136

was still considered good enough quality for RT-PCR.

Although the total RNA samples were shown to be su�ciently high quality for

RT-PCR, the samples also contained vast quantities of genomic DNA. It was essential

that the RT-PCR primers were able to amplify a region of cDNA for the specific gene

such that it can be distinguished from an amplification of the equivalent genomic DNA.

This is possible where introns exist in the sequence as these are spliced from RNA

immediately following transcription and therefore shorten the amplified region if the

primers lie either side of an intron. Three of the reduced-expression lines, IM136, IM137

and IM147, had a T-DNA insert in genes which feature no introns and therefore the

PCR products of both genomic DNA and cDNA would be identical in size. To ensure

that any product generated by the RT-PCR would be representative of the abundance

of cDNA and therefore the levels of expression for the gene, those three samples were

DNAse treated to ensure the removal of all traces of genomic DNA.

Three reduced-expression lines were analysed by RT-PCR and the results of

this can be found in Figure 4.12. Here it can be seen that whilst IM160 and IM188

both show a reduced level of expression when compared to the Col-0 wild-type, the

conclusions to be made from IM193 are less obvious, showing no change in expression

due to the T-DNA insert. IM193’s T-DNA insert is in the upstream region of the gene

rather than the gene sequence itself and, if the transcription factor binding sites have
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(a) Lane 1 - Col-0 wild-type (b) Lane 2 - IM136 - At1g22190

(c) Lane 3 - IM137 - At1g27730 (d) Lane 4 - IM147 - At1g69690

(e) Lane 5 - IM160 - At2g38880 (f) Lane 6 - IM175 - At3g60390

(g) Lane 7 - IM188 - At5g39610 (h) Lane 8 - IM193 - At5g62040

(i) Virtual electrophoresis gel

Figure 4.11 – Agilent 2100 bioanalyser results for total RNA samples from
leaves of reduced-expression lines
Figures (a) to (h) illustrate the bioanalyser plots of total RNA fragments extracted
from mature leaves of Col-0 wild-type and the seven reduced-expression lines. High
quality samples with low-levels of degradation demonstrate a high final (right-most)
peak on the plot whilst left-most peaks are minimised. All the samples shown are of
su�ciently low degradation with the possible exception of IM136 which shows some
degradation towards the left of the plot. The virtual electrophoresis gel, shown in (i),
is a simulation of how an electrophoresis gel may appear if the samples were separated
in this way. In this plot, a grey smear with few distinct bands in the lower area would
be an indication of RNA degradation.
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(a) IM160 - At2g38880 (b) IM188 - At5g39610 (c) IM193 - At5g62040

Figure 4.12 – RT-PCR results demonstrating expression levels of three
reduced-expression lines
In each image, the RT-PCR product of the Col-0 wild-type (WT) and the product of
the reduced-expression line (RE) at the same reaction cycle can be seen. IM160, (a),
demonstrates that the expression of this gene is substantially lowered by the insertion
of T-DNA. This is also demonstrated by the RT-PCR of IM188 as shown in (b). The
results are less conclusive for IM193, shown in (c), where expression is approximately
equal during the entire reaction. Of these three reduced-expression lines shown, IM193
is the only one to have the T-DNA insert in the upstream region rather than in the
gene sequence and as such may be the reason for no obvious change in expression.
Another explanation could be that the altered senescence response phenotype shown
in IM193 may be caused by another unknown T-DNA insertion in the genome. Given
that it is shown here that the expression of IM193 upstream of the insert is seemingly
identical to wild-type, this alternative hypothesis could be the cause of the altered
phenotype.

not been distanced from the gene sequence by the insert, may explain the unaltered

response. It is also quite possible that IM193 also contains a second T-DNA insert at

another position in the genome which has caused the senescence response to be altered.

Whilst each of IM136, IM137 and IM147 were successfully treated with DNAse

to remove traces of genomic DNA and new primers were ordered for IM175, the remain-

ing illustra ready-to-go RT-PCR beads were consumed by individuals of a concurrent

project. The suppliers of the beads, GE Healthcare, were also without stock for 3 months

making it impossible to complete the analysis of gene expression in the remaining lines.

Given that the phenotypes show altered response to dark-induced senescence and that

the lines had been confirmed to be homozygous, a decision was made to move forward by

predicting the local networks surrounding the a↵ected genes of the 7 reduced-expression

lines and the single enhanced-expression line which had been biologically validated.

4.4.4 Known Gene Functions

Research in relevant literature allowed a better understanding of the known functions,

if any, of the eight genes identified by phenotype screening and shown in Table 4.6. AP2

(At1g22190 - IM136) is a dehydration responsive element binding (DREB) transcription

factor, the family of which has been shown to be involved in several types of stress,

particularly that of dehydration but also as part of the pathway responding to altered

levels of plant hormones such as abscisic acid (ABA) (Zhou et al., 2010). The levels of

ABA are seen to change during senescence as is shown in Figure 4.3 and a comparison

of the gene expression for AP2 (see Figure 4.13(a)) with that of the levels of ABA
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identifies a strong correlation perhaps justifying its role in dehydration response. It has

been shown that DREB genes are responsible for the control of stress response genes

involved in ABA-dependent pathways (Egawa et al., 2006; Wang et al., 2010; Zhou

et al., 2010).

STZ or ZAT10 (At1g27730 - IM137) is similar to AP2 in that it is strongly in-

duced by dehydration, high-salt levels, cold stresses and the presence of ABA (Sakamoto

et al., 2004). The profile of STZ, shown in Figure 4.13(b), can be seen to be very similar

to that of AP2 if not slightly delayed. The biggest rise in expression of STZ appears

to be between observations 5 and 7 (27 and 31 days after sowing) which is the time

at which the senescence process is thought to commence. The level of STZ is known

to increase rapidly within only 10 minutes of ABA treatment (Sakamoto et al., 2004),

though it was then seen to decrease after the first response, perhaps indicating that it

is early in the order of events leading to an ABA response and that a later component

of the network leads to its inhibition.

TCP15 (At1g69690 - IM147) encodes a class I TCP protein which has been

shown to have similar binding a�nities to TCP11 (At5g08330) which is a regulator

of growth in leaves (Viola et al., 2011) and so its reduction in expression throughout

the experiment, shown in Figure 4.13(c), may be associated with the halting of leaf

growth during the onset of senescence. This would explain the slimmer leaves found

on IM147 mutants during the phenotype screening. Further known functions of TCP15

can be found in Giraud et al. (2010) in which it was shown to induce the expression

of PRR5, a circadian clock gene, which was confirmed by both yeast-2-hybrid analysis

and observed reduction in expression of PRR5 when studying the same SALK institute

reduced-expression mutant as was used in this PhD. Some genes of the circadian clock

are seen to become disrupted towards the end of senescence whilst others persist their

usual circadian rhythms. It could then be conceived that TCP15 may be a cause for

disruption in the rhythm of some circadian genes.

HAP3A (At2g38880 - IM160) encodes a protein which is able to form a three

protein complex of HAP2, HAP3 and HAP5 that binds to CCAAT-box motifs (Edwards

et al., 1998; Wenkel et al., 2006). Together, this complex, when over-expressed, is

able to reduce the expression of Flowering locus T (FT) (Wenkel et al., 2006), but no

CCAAT-box motif can be found in the promoter region of BFT (At5g39610 - IM193)

so this would not appear to be the cause of any regulatory relationship identified here.

Increased expression of HAP3A also shows increased drought tolerance (Nelson et al.,

2007) perhaps indicating that the increase in expression is because of other drought

responsive genes which are being activated in response to ABA.

HAT3 (At3g60390 - IM175) is a homeobox-leucine zipper II gene and is part of

a family with 9 other HD-Zip genes, though little is known about HAT3 specifically.

This family is unique to plants and has members known to respond to light (Carabelli

et al., 1993, 1996; Steindler et al., 1997) and auxin (Sawa et al., 2002) levels, thought

therefore to be involved in shade avoidance (Ciarbelli et al., 2008). Most members
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(a) AP2 - At1g22190 (IM136) (b) STZ - At1g27730 (IM137)

(c) TCP15 - At1g69690 (IM147) (d) HAP3A - At2g38880 (IM160)

(e) HAT3 - At3g60390 (IM175) (f) ANAC092 - At5g39610 (IM188)

(g) Brother of FT - At5g62040 (IM193) (h) MYB59 - At5g59780 (TP017)

Figure 4.13 – Expression levels of biologically validated hub genes during
senescence
For each plot, the horizontal axis displays the harvest day whilst the vertical axis
displays the expression level which has been mean and sd normalised to 0 and 1
respectively. Each unit of change in expression relates to a doubling or halving of the
expression level as these are shown on a log 2 scale.
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of the family increase in expression during leaf senescence, whilst HAT3 is known to

decrease, particularly during the stages of flower development (Ciarbelli et al., 2008)

(Figure 4.13(e)). This possibly indicates that its role is only useful prior to the onset

of senescence processes or that it suppresses a senescence response from other genes in

the family.

ANAC092 (At5g39610 - IM188) is known by many names including ATNAC2

and ORE1, some of which are also used as the name of other genes, which makes

literature research challenging. ANAC092 has previously been shown to have a role in

senescence (Ooka et al., 2003; He et al., 2005), its expression suppressed in young leaves

by action of the micro-RNA miR164 which is in turn suppressed as the leaf develops

by EIN2 (At5g03280) (Kim et al., 2009). This delay in expression of ANAC092 was

also seen during the senescence experiment and can be seen in Figure 4.13(f). Despite

large amounts of research being performed on ANAC092, its direct downstream targets

and physiologically relevant trigger mechanisms are still largely unknown (Balazadeh

et al., 2010a, 2011). Response to salt stress is often associated with an increase in

expression of ANAC092 (He et al., 2005; Balazadeh et al., 2010b) and this may indicate

that ANAC092 operates in a associated pathway to STZ which has also been found

to show a phenotypical response to dark-induced senescence. Other stresses associated

with senescence and ANAC092 include oxidative stress where it was found that anac092

mutants were more tolerant to exposure to H2O2 or MV than the wild type, perhaps

indicating that oxidative stress causes up-regulation of ANAC092 and consequently the

senescence response (Woo et al., 2004).

BFT - Brother of FT and TFL1 (At5g62040 - IM193) encodes for a phosphati-

dylethanolamine-binding protein similar to the homologues Flowering Locus T (FT)

and Terminal Flower 1 (TFL1) which, via a single amino acid substitution, are able to

promote or repress flowering respectively (Hanzawa et al., 2005). Despite those simi-

larities, until very recently nothing was known about the function of BFT specifically

(Carmona et al., 2007). In the last year, it has been observed that the induction pattern

of BFT is di↵erent from those of other members in the FT/TFL1 family although its

function is more similar to TFL1 than it is to FT as its over-expression results in the

inhibition of flowering (Chung et al., 2010). These findings are despite BFT having a

higher sequence similarity to FT. An extensive study of the activity of BFT (Yoo et al.,

2010) leads to the same conclusions and also finds that, although thought to be redun-

dant in function, TFL1 has a bigger influence on the timing of flowering than BFT. The

role of BFT during leaf senescence is not immediately obvious, but given its reduction

in expression at around the time senescence is commencing (see Figure 4.13(g)), it may

be that it possesses the same inhibitory role for the onset of senescence as it does for

flowering.

MYB59 (At5g59780 - TP017) was found to be one of many genes down-regulated

by ANAC092 (He et al., 2005) and encodes a MYB domain transcription factor: a

superfamily of transcription factors that play regulatory roles in developmental processes
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and defence response in plants. With four alternative splice variants, MYB59 has been

shown to localise to and become involved in various biological processes (Li et al., 2006)

which does inspire the question as to which of these variants are represented by the

expression profile shown in Figure 4.13(h). One confirmed role of MYB59 is in the

regulation of root growth and the cell cycle (Cominelli & Tonelli, 2009; Mu et al., 2009)

but neither of these indicate a role in leaf senescence. Another study found MYB59

to be noticeably up-regulated by gibberellic acid and jasmonic acid, whilst even larger

responses were observed during exposure to salicylic acid and to 100µM CdCl2 (Yanhui

et al., 2006). These hormones are typical of those changing in levels during senescence,

though this still fails to identify the role MYB59 may play during senescence.

4.5 Predicting Local Networks for Module Centres

Eight genes were now shown to be involved in processes associated with senescence and

so VBSSM was now used as a method for identifying genes and their interactions which

form a local network around each of the eight module centres. To do this, VBSSM was

used in a similar manner to that of multi-modelling, but with gene selection based on

a Metropolis-like approach as described in Section 2.4.4. By selecting a pool of genes

which are believed to be elements of a network surrounding the eight module centre

genes, VBSSM could be provided with randomly selected sets of genes to model and

attempt to find the interactions between them. On this occasion, however, rather than

changing all the elements of the model, as was the case for multi-modelling, only small

numbers of genes are exchanged between models in an attempt to find the set which

maximises the log marginal likelihood and is therefore the best gene set for describing

the biological data with a predictive model.

Pools of genes were selected separately for each of the eight module centres

and were chosen because of their profiles providing a match to the target gene after an

optimum time-shift and inversion. The matches were identified using the Qian similarity

score (Qian et al., 2001), methods for which are described in Section 2.3.3. After scoring

all 8,788 di↵erentially expressed genes for their similarity to each of the genes predicted

to be module centres, they were classified into those which required no time-shift for the

optimum match and those which did. This is because the similarity score is degraded by

decreasing the number of gene expression observations which are compared between two

profiles, meaning that those with a time-shift, and hence fewer overlapping observations,

are unable to achieve comparably high scores and cannot be ranked with those needing

no time-shift.

Each list of genes were ranked according to their similarity with the target gene

and a hand-picked cut-o↵ defined for each list based on a comparison of the profiles of

genes sampled from the list against the profile of the target gene using the web-based

PRESTA Senescence Data Viewer (Legaie & McHattie, 2010). Before the 1,500th ranked

gene in each list, substantially reduced similarity could be identified by eye. A separate
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Gene Pool Number of
Identifier AGI Size Iterations

IM136 At1g22190 156 164
IM137 At1g27730 159 241
IM147 At1g69690 159 309
IM160 At2g38880 152 254
IM175 At3g60390 112 240
IM188 At5g39610 159 170
IM193 At5g62040 134 212
TP017 At5g59780 139 185

Table 4.8 – Metropolis-like VBSSM modelling runs performed for genes
identified as module centres
For each of the eight genes identified as module centres, a pool of transcription factors
with a similar profile to the module centre, as scored by the Qian similarity score,
was produced. The sizes of those pools are as shown alongside the number of itera-
tions required by the Metropolis-like VBSSM approach to find the most likely model
between them.

ranked list of genes with a time-shifted match was found to show no obvious profile

similarity after the 100th in the list. By using these as a threshold for similarity, all

the matching profiles were within a final list of 1,600 genes whilst many false positives

had also been identified. As the false positives should not be found to interact with the

target gene, their presence was deemed superficial.

Each of the eight lists of 1,600 genes were reduced in size by removing non-

transcription factors since the purpose was to find robust networks which were suitable

for in vivo testing. This provided eight pools of genes which could be combined with

the eight predicted module centres for modelling. The sizes of these lists can be found

in Table 4.8.

Each module centre, within its own modelling run, was retained across all mod-

els whilst other genes of those models were substituted following the procedures of

Section 2.4.4. After a number of iterative steps, the number of which for each run is

shown in Table 4.8, no improved log marginal likelihood could be found despite substi-

tuting as few as a single gene at a time from the last known optimum model. As can be

seen, in the majority of cases, the number of models was fewer than 300 which is fewer

than should be accepted in finding the optimum network under the Metropolis-like ap-

proach. The expectation should be that more improvement can be made given a longer

period of time. However, even after applying optimisations to the VBSSM process as

described within Section 2.4.4, the time taken to complete each iteration was around 20

minutes, depending on server load. Since the computing cluster was a shared resource

and time was limited it was not feasible to continue for longer periods of time. Unlike

multi-modelling, in which iterations are not dependent on the previous one, Metropolis-

like VBSSM must complete each iteration in series. As well as this, each Metropolis-like

VBSSM run required exclusive use of five cores on the shared server, resulting in 40 of

64 cores being used for most of a week.
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Figure 4.14 – Convergence of Metropolis-like VBSSM for HAT3
The plot shows the convergence of the log marginal likelihood for HAT3 during
Metropolis-like VBSSM. The horizontal axis indicates iterations of the process whilst
the vertical axis indicates the log marginal likelihood of the model. The blue line shows
the log marginal likelihood after each iteration of the process and models which were
accepted as better than the last best model are indicated by red circles. The orange
vertical line shows the point at which the process was initially halted before, values to
the right of that line showing progress in the 30 days after the process was resumed
indefinitely. It can be seen that the log marginal likelihood was close to being max-
imised by the time the process was initially halted at model 240, but that continuing
until 360 models were completed would have provided a yet further refined result.

As an assurance that the resulting models were su�ciently converged to be useful,

two of the module centres were explored further by allowing them to continue exploring

the gene pool to find more optimum gene sets. The Metropolis-like VBSSM was forced

into an infinite loop by resetting the number of genes being swapped back to 5 each

time that number was reduced below 1. After one month of processing in this way it

was found that the models had already converged to at least 95% of the maximum as

can be seen in Figure 4.14 where the original stopping point is marked by the vertical

orange line.

Whilst researching the possible functions of each of the module centres, it was

identified that HAP3A was part of a three protein complex of HAP2, HAP3 and

HAP5 that binds to a CCAAT-box motif in yeast (Edwards et al., 1998; Wenkel et al.,

2006). By looking back over the list of di↵erentially expressed genes, it was found that

HAP2B had also been di↵erentially expressed during the experiment but that HAP5

had not. This inspired the addition of HAP2B as a putative module centre and a ninth

Metropolis-like VBSSM run was performed to find if there were any strong interactions

with other transcription factors. HAP2B was given a gene pool of 142 genes, selected in
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Mutant Upstream Downstream
Identifier Gene Name Interactions Interactions

IM136 AP2-domain 1 0
IM137 STZ 2 0
IM147 TCP15 0 0
IM160 HAP3A 0 46
IM176 HAT3 2 4
IM188 ANAC092 3 64
IM193 Brother of FT 1 1
TP017 MYB59 1 0
— HAP2B 2 56

Table 4.9 – Numbers of predicted upstream and downstream interactions
for each module centre
Each of the nine module centres, including the later added HAP2B, provided a final
model showing the interactions between the selected gene set. Although the module
centre was always present in each model produced, they were not always identified as
the centre of the model because other genes which became part of the final model gave
stronger, more likely, interactions, resulting in little information about the module
centre. Those interactions which were greater than 99.0% likelihood in at least one
seed of the model are included above and it can be seen that three of the module
centres show strong hub-like behaviour with the majority of the gene set downstream
of them. Both HAP2B and HAP3A, known to be involved in a protein complex
together (Edwards et al., 1998), show similar numbers of downstream interactions.

the same manner as each of the other module centres, and a run of 142 models provided

an optimum log marginal likelihood of -4216.97.

The best model for each of the nine runs was summarised by observing the inter-

actions with the module centre only. Only those interactions which exceeded a 99.0%

confidence level in at least one model were included in the interactions that were re-

turned. This threshold was chosen as it allowed only the most robust interactions to be

identified, and pruned the networks su�ciently to allow a reasonable number of genes

to be identified for a few of the module centres. If this process were to be revisited,

consideration of interactions at a lower confidence level could be included so that those

module centres with very few interactions could be studied further. Interactions which

were predicted to be from upstream genes were separated from those which were pre-

dicted to be towards downstream genes. Numbers of each type of interaction are shown

in Table 4.9.

The results of this analysis allowed a final list of genes to be produced which

was used to identify a final model for biological validation. Given that the only module

centres to provide a reasonable number of downstream interactions were the three tran-

scription factors ANAC092, HAP2B and HAP3A, the final list was based on predicted

interactions with these alone. The downstream interactions between all three module

centres provide a list of over 150 target genes which needed to be reduced to fewer than

88 for a model. The final list was composed of:

• The three module centres, ANAC092, HAP2B and HAP3A.
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• Three genes, NYE1 (At4g22920), BFN1 (At1g11190) and SINA (At3g13672),

known to be downstream of ANAC092 based on microarray data comparing an

ANAC092 enhanced-expression line against the wild-type (Balazadeh et al., 2008,

2010a).

• All upstream regulators of the three module centres.

• All downstream regulators of the three module centres if the interaction were

present at greater than 99.0% confidence level in all five models (rather than just

one model as included in Table 4.9).

This approach resulted in the production of a list of 75 genes which could be

modelled together in order to find a putative biological network.

4.6 Identifying a Predicted Transcriptional Network As-

sociated with Senescence

The 75 genes were used to create one last VBSSM model in an attempt to find the

interactions not only for individual module centres, but also between module centres.

20 models were produced with di↵erent seeds to ensure that a comprehensive study of

the interactions between genes would be performed, and only those interactions which

demonstrated a confidence of at least 99.0% in at least 60% of those models were consid-

ered for reconstructing the network structure. This threshold was chosen as it allowed

the removal of peripheral genes which were less confidently predicted, whilst retaining

the structure at the core of the network. The identified interactions are shown in Fig-

ure 4.15 where it can be seen that two major hubs, SCL3 (At1g50420) and ANAC092,

control the network. SCL3 acts through BLH6 (At2g35940) which then acts upon STZ

which is also acted upon by ANAC092 directly. STZ then acts upon SINA and BFN1,

which are known to be regulated downstream of ANAC092, providing some evidence

for part of the structure of this network.

The network model predicts that ANAC092 enhances the expression of STZ

whilst SCL3 indirectly represses the expression of STZ, presumably resulting in an

opposing senescence phenotype for altered expression in either of these genes. This is

backed up by research which found that SCL3 was markedly up-regulated by gibberellin

inactive mutants which also showed delayed senescence (Curtis et al., 2005) whilst

it is known from the phenotype screens performed here that an enhanced-expression

of ANAC092 causes premature senescence, suggesting an opposite phenotype like the

model. Both ANAC092 and STZ have annotations in the TAIR database indicating

their association with response to salt stress, which provides a functional link between

these two genes.

Given the evidence showing the likely accuracy of the proposed final network

model, the network shown is the one that was then validated by in vivo study in the

following chapter.
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Figure 4.15 – The final VBSSM model showing interactions to be confirmed
in vivo
A model produced from the list of 75 genes identified by Metropolis-like VBSSM
shows those interactions which were of a likelihood greater than 99.0% in at least
60% of the 20 seeds. Note of course that only 18 genes are showing and that the other
57 genes did not have a predicted interaction that met the given threshold for the
model. Only the most likely interactions are shown. The colours used for the nodes
are reflective of those used in Figure 4.6 and indicate the classification given to each
node. Orange indicates a hub gene, green indicates an intermediate gene and blue
indicates a response gene. The log marginal likelihood of this network is -3475 which
is very high for a list of 75 genes with the senescence data. It can be seen that both
ANAC092 and SCL3 are the originating module centres which both pass through STZ
to control the downstream e↵ects of SINA and BFN1. Although it cannot be certain
that the interactions shown are direct, the hidden state dimensionality was 8 for this
model and so many of the interactions are predicted to be direct.

4.7 Conclusions

This chapter has introduced a number of methods which have been used in the analysis

of gene expression data. SplineCluster has been used as a method of grouping genes

into clusters of similar expression throughout the time course whilst BiNGO has pro-

vided a method for identifying which gene ontology terms are over-represented in each

cluster. These allowed initial selections of genes to be modelled using VBSSM, but it

was discovered that many of the interactions being identified by VBSSM must be false

positives since the models could be drastically altered by making small changes to the

selection of genes used for the modelling. However, these initial network models did al-

low the identification of gene roles in the network, including hub genes which are highly

regulatory of other genes whilst not regulated by known genes themselves.

As it was hypothesised that hub genes are likely to be the cause of a cascade

of interactions providing a senescence response, methods were developed to identify

those genes. A form of iterative VBSSM modelling, multi-modelling, was used to select

those genes, within a large pool of approximately 700, which robustly regulate multiple
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genes in the pool. 118 were identified as being potential hub genes and 53 of these

had available seed stock in reduced-expression lines for biological testing. By observing

altered phenotypes during dark-induced senescence, seven of the lines were confirmed

to have an e↵ect on the senescence response, as well as one enhanced-expression line

also tested.

Each of the eight genes were individually processed using another novel iterative

VBSSM modelling method, Metropolis-like VBSSM, which allowed the identification

of the most robust network of genes within a pool. A ninth gene, HAP2B, was also

processed in this way as it was believed it might form a complex with HAP3A which

was amongst those eight with a verified altered phenotypical response. By ensuring that

the gene of interest from those nine that were processed was never removed from the

gene set of its respective sequence of Metropolis-like VBSSM models, the most robust

networks were guaranteed to be produced from a gene set including at least one gene

of interest.

Three of the nine genes provided information about downstream interactions and

these formed the basis for a set of 75 genes to provide a model for biological testing. A

final VBSSM model produced from the set of 75 genes indicates a number of interesting

and logical interactions which were then biologically tested as described in Chapter 5.

4.7.1 E�ciency of Modelling in Identifying Valid Hubs

The confirmation of 7 lines showing altered phenotype amongst a pool of 53 genes which

were designated as putative hubs represents more than 13% accuracy in theoretical

identification of hubs using the multi-modelling approach. Unpublished data from the

Denby Group indicates that, prior to this approach, an average of 5% of lines tested for a

phenotypical e↵ect were biologically validated when alternative approaches were chosen

for the selection of genes. This improvement in the selection of genes provides strong

evidence that the multi-modelling approach saves time and money when compared with

the equivalent time spent testing further lines for their phenotypical response during

senescence.

Further testing within the Buchanan-Wollaston group is being performed to pro-

vide a baseline level of altered phenotypical responses amongst random selections of

reduced-expression mutants. This will provide a better quantification of the improve-

ments being made by the newly developed approaches presented in this chapter.

4.7.2 Future Development

During the prediction of local networks for module centres in Section 4.5 it was no-

ticed that the most suitable network discovered for the majority of gene pools does

not demonstrate the intended module centre as the primary hub in the network (see

Table 4.9). This may be an indication that a “stronger” hub which can be more easily

explained by the gene set dominates the network. Whilst this is not a poor result, it

does not provide useful results when the intention is to find the interactions specific to
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the module centre being studied, given that these are genes which have been verified to

have an altered phenotype during dark-induced senescence.

It was seen and demonstrated in Section 4.2.3, that specific interactions in any

given network can be severely disrupted by the replacement of other genes in the gene set

even if they form no part of the interactions being disrupted. However, whilst modelling

smaller gene sets, it should be true, assuming that true interactions exist between them,

that the level of disruption is reduced because the data about each gene remains con-

stant whilst the number of possible interactions between genes is substantially reduced.

Christopher Penfold of The University of Warwick developed a Metropolis-Hastings ver-

sion of VBSSM which allowed not only the control of the scale of variation between gene

sets as demonstrated in Metropolis-like VBSSM, but also the control of gene set size

during the process. In this way the number of genes removed from the best model in

a given iteration does not have to equal the number of genes randomly added to the

modelling set. If by changing the number of genes in the network, the log marginal

likelihood can be improved, the better model can be accepted with fewer nodes.

Unfortunately, it was found that in every case where this was applied, the opti-

mum model always resulted in only one gene being present: the gene of interest. This

is the nature of the log marginal likelihood calculation which favours simpler/sparser

models over more complicated/larger models. In order to improve on Metropolis-like

VBSSM and/or Metropolis-Hastings VBSSM, it would seem that the acceptance criteria

for each model would need to be changed. Suggestions might include scoring each model

based on the strength of interactions involving the module centre of interest and/or the

number of hidden states required to explain the observed data, these are both factors

which are already included in calculating the log marginal likelihood. In this way, the

focus remains with the module centre being tested and also in finding interactions which

are direct rather than requiring an unobserved intermediate entity.
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Chapter 5

Biological Validation of

Theoretical Models

5.1 Chapter Summary

In this chapter, the predictions made in the previous chapter were validated in vivo

so that any further findings could provide prior information to theoretical models and

hence improve the outcome of any future models. The basis of these validations is the

theoretical network model discovered and introduced in the previous chapter. The core

of that model, and the interactions being tested here are shown in Figure 5.1.

Yeast-1-hybrid analysis was used to find which prey from a library of transcrip-

tion factors would bind to upstream fragments of a number of genes from the model.

Those genes tested were STZ, AtNYE1, BFN1 and BLH6. For each of these genes,

an analysis was performed by Laura Baxter using Analysis of Plant Promoter-Linked

Elements (APPLES) (Baxter & Ott, unpublished) on their respective upstream region

in the genome to find highly conserved regions across species and known transcription

factor binding sites within those regions. Where these existed, an e↵ort was made to

ensure that those regions were cloned and tested.

The outcome of the yeast-1-hybrid analysis was a list of 14 transcription factors

which were found to be able to bind to some of those genes being screened. Amongst

those 14 were genes which were already thought to play a part in the senescence process,

although the exact mechanism of doing so was not obvious from past research. None of

the predicted interactions were confirmed by this analysis.

A second analysis was performed by harvesting senescing leaves from four reduced-

expression lines (anac092, stz and two of scl-3 ) during dark-induced senescence and

attempting to synchronise the levels of senescence across lines by using the same pho-

tography techniques as were used in phenotype screening in the previous chapter. Ex-

pression levels of the majority of the genome were compared between those mutants and

the wild-type in a small microarray experiment consisting of 30 microarrays in a bal-

anced design. Only two of the four lines tested demonstrated a reduction in expression
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Figure 5.1 – Elements of the theoretical network model which have been
tested in vivo
The core of the biological network discovered in Chapter 4 is shown and is composed
of two hub gene, shown in orange, two intermediary genes, shown in green and four
response genes, shown in blue. By application of a microarray experiment comparing
mutant lines and application of yeast-1-hybrid to identify which genes are able to bind
upstream of the target genes, it has been possible to strengthen and weaken individual
interactions of the network to complete the first cycle of the systems biology approach
to identifying true transcriptional networks during plant senescence.

(anac092 and stz ), but the findings showed that 58 genes were significantly di↵erentially

expressed in both lines. Since both lines were thought to be important to the senescence

response, a full analysis of those genes was performed. Additionally, it was determined

that STZ is not regulated by ANAC092 since its expression level remained unchanged

in the anac092 mutant.

Amongst the 58 genes, three of them (AtGDPD2, AOX1A and an unknown gene

At2g18690) demonstrated alternate regulation by ANAC092 and STZ whilst all the

others were similarly regulated by both transcription factors. Additionally, the three

genes shown to be downstream of ANAC092 in the theoretical network (SINA, AtNYE1

and BFN1 ) were all shown to be altered in expression by the anac092 mutant. Several

stress response genes were identified as being downstream of ANAC092 and STZ by

this analysis, including SRG senescence response gene, COR27 cold response, ERD10

response to drought and DIN11 response to darkness. These demonstrate that the

network of responses leading to senescence, even at the top of the hierarchy, as is being

observed here, is highly complex and diverse.

The findings of both analyses shown here were used to produce a new putative

network which is shown at the end of this chapter. The regulations shown may not be

direct due to the di�culty in isolating individual interactions, but should provide prior

information in any future modelling to help train the model more accurately.
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5.2 Yeast-1-Hybrid Analysis

Yeast-1-hybrid was used to identify transcription factors that are able to bind to the

upstream region of genes of interest and to test the predictions of the model. This

analysis was therefore capable of providing evidence for the identified interactions and

also identify further possible direct interactions which were not predicted during network

modelling. The genes selected for testing were BLH6, STZ, SINA, AtNYE1 and BFN1

as these all have a predicted upstream regulator and form a direct pathway between

the predicted hubs and the response genes. As STZ is the most central gene amongst

these, a more thorough screen was performed for this gene.

5.2.1 Identifying Conserved Regions Upstream of Genes

Before selecting which upstream regions to screen with yeast-1-hybrid, an analysis was

performed by Laura Baxter of The University of Warwick using the unpublished AP-

PLES software system developed by the Ott group at The University of Warwick. AP-

PLES identifies conserved regions within the promoter of genes across species. This

is achieved by comparing the promoter region of a chosen gene with its homologues

in other plant species to identify sequences which are highly conserved between them.

Species included in this analysis were Arabidopsis thaliana, Vitis vinifera (grape), Pop-

ulus trichocarpa (poplar), Oryza sativa japonica (short-grain rice), Oryza sativa indica

(long-grain rice), Oryza glaberrima (African rice), Sorghum bicolor (sorghum) and Zea

mays (maize). During this analysis, the region which lay 1,000 bp before the transcrip-

tional start site was processed for each of the five genes and only two conserved regions

were identified. These were:

• STZ - a 138 bp conserved region starting 226 bp upstream of the transcriptional

start site.

• BLH6 - a 180 bp conserved region starting 867 bp upstream of the transcriptional

start site.

Searching the TRANSFAC database (Wingender et al., 1996) for known binding sites

of transcription factors in these regions identifies two with a very high homology. The

identified sites are shown in Table 5.1.

Neither of the transcription factors listed could be found in the genome of Ara-

bidopsis, but they may have homologues with alternative names. Both genes obviously

contain a conserved region in their promoter and this alone qualifies them as regions

which should be studied by yeast-1-hybrid because it is likely that transcription factors

other than those shown could bind to these conserved sequences.

5.2.2 Selecting Fragments to be Screened

For each of the genes, pairs of primers were designed to amplify regions of the upstream

sequence. These fragments were to be used as the insert for plasmids used in the Y1H
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Gene Site Name Identity Sequence Factors

STZ XF12$CONS ACTTGTCACGCAACT XF1/2

BLH6 TST1$CONS 01 GGATTAAGATTA POU3F1

Table 5.1 – Conserved transcription factor binding sites in regions to be
cloned for yeast-1-hybrid
The sites shown are those which demonstrated the highest homology with the up-
stream sequences of genes to be cloned for yeast-1-hybrid. The identity shows the
sequence which must be found to be a 100% match to the known binding sites of
the transcription factors shown. The grey background to nucleotides shown in this
sequence indicate the actual match with the upstream sequence of the fragment to be
cloned.

Fragment
Gene

Length Primer
Location†

Number (bp) Pair

1 STZ 1000 11 + 12 1000 ! 1
2 STZ 425 11 + 13 1000 ! 576
3 STZ 383 14 + 15 777 ! 395
4 STZ 435 16 + 17 603 ! 169
5 STZ 424 18 + 12 424 ! 1
6 BLH6 421 3 + 4 421 ! 1
7 BFN1 392 1 + 2 392 ! 1
8 AtNYE1 402 7 + 8 402 ! 1
9 SINA 397 9 + 10 397 ! 1
10 BLH6 472 5 + 6 966 ! 495

† base pairs upstream of the transcriptional start site.

Table 5.2 – Length and position of fragments used as inserts for yeast-1-
hybrid cloning
Information regarding the length and position of fragments to be screened by yeast-
1-hybrid are shown. The primer pairs used to produce these inserts are identified by
the same numbering used in Figure 5.3.

screen. The fragments and corresponding primers can be seen in Figure 5.2. For all but

STZ, a fragment of approximately 400 bp directly upstream of the transcriptional start

site was selected. As STZ was pivotal to the theoretical network model, a number of

alternative overlapping fragments were produced within the 1,000 bp region upstream of

the transcriptional start site. Within these fragment, one of them, fragment 5, contains

the entire previously identified conserved region. As the conserved region of BLH6 was

not within the first 400 bp upstream of the transcriptional start site, a second fragment,

fragment 10, was produced further upstream to accommodate the conserved region.

The longer fragment of STZ was not of a conventional size for Y1H, but was

included as a comparison with the shorter overlapping fragments. The sequences of the

primers used to generate these fragments are shown in Figure 5.3. Information about

the fragment sizes and their locations relative to the transcriptional start site are shown

in Table 5.2.
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Figure 5.3 – Primer sequences used to amplify inserts for yeast-1-hybrid
cloning
The primers shown are those used during amplification of upstream regions of target
genes. In each, a poly-G tail begins the 5’ end which is followed by one or more
restriction sites. The ⇠30 bp region which follows is complementary to the upstream
sequence of the gene and is an approximate 50:50 ratio of AT:CG where possible.
Dark green indicates a forward primer whilst light green indicates a reverse primer.
Restriction sites shown include EcoRI, MluI, HindIII, SacI and SpeI only. The num-
bering relates to those shown in Figure 5.2 and Table 5.2.
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5.2.3 Amplifying Plasmid Inserts

Each fragment shown in Table 5.2 was amplified by PCR from a Col-4 template by

following the methods described in Section 2.8.2. The annealing temperature of the

primers was optimised after an initial attempt to amplify all the fragments at 60 �.

It was found that a clean product could be obtained by lowering the temperature to

55 � for fragments 1 through 5 and by raising the temperature to 65 � for fragments

6 through 10.

5.2.4 Inserting Fragments into Plasmid Vectors

After amplification and purification, the fragments were digested with restriction en-

zymes alongside the vectors which were digested with the same enzymes, following the

methods described in Section 2.8.3. Fragments 1 through 8 were digested with EcoRI

and MluI as these were to be inserted into the pHisLeu2 vector which was also digested

with these enzymes. Fragments 9 and 10 were digested with SacI and HindIII as these

were to be inserted into the pBlueScript KS+ vector. pBlueScript KS+ was to act as

an intermediary step into the pHisLeu2 vector because the restriction sites required to

insert into pHisLeu2 directly were present in the fragments themselves and so could not

be used.

Once digested, the fragments and vector were cleaned to remove cleaved frag-

ments as described in Section 2.8.3. An electrophoresis gel was used to confirm the

concentrations of both vectors and inserts and this can be seen in Figure 5.4. Vector

and insert pairs were ligated with one another using T4 DNA ligase in an overnight

reaction as described in the legend of that figure.

5.2.5 Bacterial Transformation and Plasmid Cloning

Competent E. coli cells were transformed with plasmids containing inserts following the

methods described in Section 2.8.4. Colonies were formed on all selection plates with

the exception of inserts 9 and 10. Those colonies were then processed by colony PCR,

following the methods described in Section 2.8.5, so that the size of the insert could

be established. Larger amplified regions indicated that an insert was present. For all

fragments except 1 and 5 which had only one positive colony each, at least two of the

colonies demonstrated the presence of an insert. By selecting one or two colonies of

each fragment for cloning, 14 colonies were cultured overnight in liquid media and the

plasmids from those cultures extracted as described in Section 2.8.6.

Plasmids were BigDye (Applied Biosystems) sequenced from both ends of the

insert region, following the methods of Section 2.7, which allowed any SNPs introduced

by the cloning process to be identified. Sequencing results were processed by Geneious

(Drummond et al., 2010) to identify the similarity to the expected genomic sequence. In

all cases, the sequence was a perfect identity match with the expected genomic sequence

and so all were then used to transform yeast cultures.
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Figure 5.4 – Comparing digested vector and insert concentrations by elec-
trophoresis gel
Vectors and fragments were digested and then compared for concentration using a 1

/10

dilution on an electrophoresis gel as shown. V1 represents two samples of digested
pHisLeu2 which was compared with fragments 1 through 8. 2 µL of vector was used
in each ligation reaction with either 3 µL of fragment 1, 5, or 7; 2 µL of fragment 2,
3, 4 or 8; or 1 µL of fragment 6. V2 represents the digested vector pBlueScript KS+
of which 3 µL was ligated with 1 µL of fragment 9 and 3 µL of fragment 10.

Due to a shortage of time, those plasmids containing inserts 9 and 10 were

abandoned at this stage. Although they might have provided valuable information

towards the validation of the theoretical network model, 8 separately screened inserts

consumed the remaining time available for the yeast-1-hybrid screen.

5.2.6 Screening Against the Transcription Factor Library

All 14 samples of amplified plasmids containing inserts of the correct sequence were used

to transform yeast by the methods described in Section 2.8.8. Transformed cultures were

plated on SD-Leu selective media and individual colonies restreaked onto further SD-

Leu plates for storage. One restreaked colony per insert was screened by mating with

the transcription factor library following the methods described in Section 2.8.9.

In all screens, after mating, all the mated cells were able to grow on media

deficient in leucine and tryptophan as would be expected of cells containing both the

pHisLeu2 and the pDEST22 plasmid. This indicated that mating between the bait

and the transcription factor strains was successful. However, media deficient in leucine,

tryptophan and histidine prevented the growth of most cells into new colonies. Those

exceptional colonies which were able to grow must be able to synthesise histidine because

of transcription of the HIS3 gene, caused by an interaction between the transcription

factor protein and the DNA sequence inserted into the pHisLeu2 plasmid. Colonies able
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Fragment 2 - STZ •• • •• • •
Fragment 3 - STZ •• • • •• ••
Fragment 4 - STZ • • •• • •• • •• •• • ••
Fragment 5 - STZ • • •• • • •• • •• •

Fragment 6 - BLH6 • •• • •• •
Fragment 7 - BFN1 •• • •• •• •

Fragment 8 - AtNYE1 • • • ••

Table 5.3 – Transcription factors proven able to bind specific DNA se-
quences and cause downstream transcription
Sequencing prey transcription factors able to bind to the DNA fragments that were
used as bait identified 15 which might play a regulatory role to the bait genes. Two
copies of the library were screened simultaneously and so one dot indicates a posi-
tive match in one copy of the library whilst two dots indicates a positive match in
both copies of the library. Gene abbreviation ANAC stands for Arabidopsis Nitrogen
Assimilation Control, whilst CUC stands for Cup-Shaped Cotyledon, ILR stands for
IAA-Leucine Resistant, PIF stands for phytochrome-interacting factor and TCP is an
abbreviation of the three genes which first formed the family, TB1, CYC and PCF1

to survive on the latter plate were therefore sequenced using the methods described in

Section 2.8.9.5 to identify the transcription factor causing the HIS3 gene transcription.

A full table of all the sequenced colonies can be found in Appendix L whilst a

summary of the transcription factors thought to be able to bind to each of the DNA

sequences and cause transcription of the downstream gene are shown in Table 5.3.

Interestingly, none of these results provided evidence for interactions which were

identified by the previously applied theoretical network modelling methods of Chap-

ter 4. This is despite the anticipated upstream transcription factors being present in

the library. This may be because the theoretical model does not only predict direct inter-

actions and that other elements, possibly identified here, are needed to make a complete

network. Other factors are that the yeast cells only provide a ‘similar’ environment to

that of Arabidopsis cells and some interactions may involve multiple elements, whereas

yeast-1-hybrid only tests one at a time. However, there is still a lot to be learnt from

these results which could allow a better selection of genes based around these bait. The

rest of this section describes known information about the transcription factors identi-

fied here which complement the findings of this screen and o↵ers proposed uses for these

results.

More than half of the transcription factors identified by this analysis are from the

TCP (TB1 CYC PCF1; named after the first members sharing the same conserved do-

main) family of transcription factors. This family of plant-specific proteins are known to

contain a domain which is predicted to form a basic-Helix-Loop-Helix (bHLH) structure

(Cubas et al., 1999). It is thought that the structure of these helices allow an interaction

with the main groove of the DNA such that the protein can interact with specific se-
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quences. TCP proteins fall into two subclasses and, of the nine TCPs identified above,

only TCP3 (At1g53230) and TCP4 (At3g15030) fall into Class II whilst all seven of

the others fall into Class I. This is despite the subfamilies being approximately equal

(13 members in Class I and 11 in Class II). Five of the class II transcription factors,

including TCP3 and TCP4 are known to be regulated by the microRNA 319 (miR319a)

and that these TCPs have also been linked with the biosynthesis of jasmonic acid and

senescence in Arabidopsis (Schommer et al., 2008). TCP3 and TCP4 are shown, here,

to be capable of binding the upstream DNA of, and possibly cause regulation of, STZ

(amongst others) which has been identified as an important gene in the senescence pro-

cess (see Section 4.4). Therefore, it may be that if these were both included in a network

model similar to that of Figure 5.1 an interaction could be found between them.

It is known that both TCP15 (At1g69690) and TCP20 (At3g27010) have similar,

although not identical, DNA-binding preferences (Viola et al., 2011). This is comple-

mented by the results of the Y1H screen in which both of these TCPs were able to

bind to sequences of STZ, BLH6 and BFN1, but not AtNYE1. It is interesting that

TCP15 shows such a strong ability to bind to the bait sequences screened here as it was

one of the eight hubs analysed using Metropolis-like VBSSM (see Section 4.5), but that

process was unable to identify any neighbouring transcriptional network nodes. This

may be caused by the limitations of that method caused by other strong interactions in

a given network as was briefly discussed in Section 4.7.2.

TCP20, also known as PCF1, has been found to cause transcription of CYCB1

by binding to GCCCR elements in its promotor region (Li et al., 2005), but these

elements do not exist in the bait fragments screened here and so this suggests that

other elements can be bound by this transcription factor. Other studies have shown

that alteration of the expression of TCP20 can cause severe growth alterations (Hervé

et al., 2009), but these do not appear to be relevant to senescence and so it may be

that TCP20, although capable of binding to the promotor region of STZ, is not causing

senescence specific responses. Given that STZ is known to be part of the pathway of

many stress responses (Sakamoto et al., 2004), this would be plausible.

TCP1 (At1g67260), TCP8 (At1g58100) and TCP16 (At3g45150) were the only

TCP transcription factors which showed specificity with only STZ. A comparison of the

profiles of these genes during the natural senescence process with that of STZ can be

made using Figures 5.5(f), (i), (l) and (o). It can be seen that TCP8 was not observably

altered in expression throughout but that TCP16 has a slight peak at the fourth time

point before falling again. TCP1 demonstrates a dramatic drop in expression between

the sixth and eighth time points before rising again. It is not easy to see, however,

how any of these could be regulating the expression of STZ when the most significant

change in expression for STZ is a rise between time points five and seven after which

the expression remains high. This may be an example of a combined e↵ect of these TCP

genes with others not considered here, but it would seem much more likely that these

genes are able to bind upstream of STZ, but do not actually regulate its expression
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(a) ANAC038 (b) ANAC102 (c) CUC2

(d) ILR3 (e) PIF7 (f) TCP1

(g) TCP3 (h) TCP4 (i) TCP8

(j) TCP14 (k) TCP15 (l) TCP16

(m) TCP20 (n) TCP23 (o) STZ

(p) BLH6 (q) BFN1 (r) AtNYE1

Figure 5.5 – Gene expression profiles for transcription factors identified by
yeast-1-hybrid and their targets
Plots are of relative changes in gene expression over the full time course of the original
microarray experiment on a log2 scale. Plots (a) to (n) are of the transcription factors
identified by yeast-1-hybrid, whilst plots (o) to (r) are of the genes capable of being
bound by those transcription factors.
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level.

Recent studies have shown that TCP1 negatively regulates the expression of

DWF4 which is part of the brassinosteroid synthesis pathway which also then regulates

the expression of TCP1 (Guo et al., 2010). An excess of brassinosteroids are known to

trigger leaf senescence (Clouse, 1996; Clouse & Sasse, 1998) and so it might be implicated

that TCP1 therefore does play a role in leaf senescence although the results shown here

would imply that this is not via the regulation of STZ. A further study of TCP1 has

shown further evidence for its activity in plant development by demonstrating that

the reduced expression of TCP1 in Arabidopsis leads to abnormal expansion of cells

(Koyama et al., 2010). Very little is known about the function of TCP16 although

research has shown that it is involved in the cell cycle process (Takeda et al., 2006).

TCP23 (At1g35560) has been shown to be able to bind to the promoter region of

both STZ and BLH6. Although the expression profile of TCP23, shown in Figure 5.5(n),

does show an increased expression level in the lead up to senescence followed by a

reduction in expression immediately after the peak change of senescence, there is very

little known about the function of this transcription factor. The rising expression of

STZ coupled with the similar but inverse falling expression of BLH6 does suggest that

they may be regulated by the same transcription factors. If TCP23 were one of these,

it would therefore positive regulate STZ and negatively regulate BLH6.

TCP14 (At3g47620) has been shown to bind to every fragment screened here,

which may suggest that its binding motif is very simple and that it must couple with

other proteins to actually cause altered transcription in those promoters that it binds

to. Its expression profile, shown in Figure 5.5(j), does show a similar response to that of

TCP23 described above with almost identical expression changes in the last part of the

time course. All of the downstream targets screened here demonstrate a large alteration

to their expression immediately after the 5th or 6th observation and this correlates with

the sudden dip in expression of TCP14, which may be significant. It was shown by

Tatematsu et al. (2008) that tcp14 mutants were hypersensitive to exogenously applied

abscisic acid which might indicate that TCP14 blocks the response to ABA, but that

the reduction in expression of TCP14 at observation six allows STZ, which has been

associated with ABA response, to begin to rise in expression.

All of the remaining transcription factors are neither members of the TCP family

nor do they show binding a�nity for the promoter of any gene other than STZ, with

the exception of CUC2 (At5g53950) which can also bind to the promoter region of

AtNYE1. The expression levels of CUC2 are shown in Figure 5.5(c) where it can be

seen that it changes only very gradually throughout senescence and also demonstrates

initial reduction in expression followed by a steady state and a final gradual increase

in expression. It is hard to find an association between these gradual changes and

the expression levels of STZ and AtNYE1 since both of those genes only show steady

periods and rising periods of expression. It is known that CUC2 is regulated by the

presence of miR164 (Nikovics et al., 2006) much like ANAC092 was shown to be by Kim
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et al. (2009). It has also been shown that miR164 and CUC2 can directly cause altered

serration during leaf development and alter the phyllotaxy of the leaves (Hasson et al.,

2011; Larue et al., 2009a,b; Peaucelle et al., 2007; Nikovics et al., 2006) but despite

obviously being related to leaf development, no research could be found to link CUC2

to senescence.

CUC2 is one of the initial transcription factors which founded the definition of

the NAC domain (Ooka et al., 2003). Amongst the other transcription factors found

to be able to bind to the promoter region of STZ were ANAC038 (At2g24430) and

ANAC102 (At5g63790). The expression profiles of these genes, found in Figures 5.5(a)

and 5.5(b), indicate that although ANAC038 does demonstrate a sudden change of

expression, after a long period of no change, at the eighth observation, this is unlikely

to be early enough to be the cause of any changes seen in the expression levels of STZ.

However, the changes in the expression of ANAC102 are a very close mimic of those

found in STZ but would not be su�cient to entirely explain the interaction between

them. ANAC038 has been implicated as being part of pathways leading to altered

sensitivity to gibberellic acid and auxin levels (Folta et al., 2003) and therefore may not

be relevant to senescence.

ANAC102 has been predicted, in a study of its closest homologue ATAF2 with

which it shares 92% of it amino acid sequence, to be involved in the response to biotic

stresses and the application of jasmonic acid and salicylic acid which are involved in

wounding responses (Delessert et al., 2005). Whilst the senescence response can be

induced by biotic stresses and wounding, these stresses were not present in the natural

senescence experiment and so may mean that ANAC102 is also responsive to other

causes of senescence. A more recent study by Christianson et al. (2009) has shown

that ANAC102 is likely to be the direct response to low-oxygen in roots during water-

logging and that mutants of ANAC102 do not show a phenotypical di↵erence from the

wild type unless stressed. Therefore ANAC102 is most likely a stress response gene and

may be one of the primary causes of the senescence response under those stresses but

because of its homology with ATAF2, the natural senescence response is not altered in

a single-gene mutation.

The specificity of NAC domain transcription factors to STZ in this analysis is

interesting but explainable by looking for known NAC-domain binding site motifs in

the sequence. Whilst the strict NAC binding motif, TTNCGTA, cannot be found in

the sequence of STZ, a more general sequence, WKNCGTR (Olsen et al., 2005), can

be found directly in the centre of the conserved region of fragment 5. The identified se-

quence is TTGCGTG and so is very close to the strict NAC binding motif shown above.

Furthermore, the binding motif for ANAC078, THNCKTGKG (Yabuta et al., 2010),

can be found closer to the transcription start site in fragment 5. These findings begin

to explain the number of NAC domain transcription factors binding to the promoter

of STZ and also suggests that others beyond those found by yeast-1-hybrid have the

potential to bind to the promoter of STZ.
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Of the two remaining transcription factors, ILR3 (At5g54680) is shown to rise in

expression steadily throughout the entire senescence process (Figure 5.5(d)) whilst the

expression level of PIF7 (At5g61270) is seen to remain steady for the first 6 observations

before rapidly falling to a lower level over the remaining period (Figure 5.5(e)). Given

that STZ begins to rise in expression after the 5th observation, before the point at which

PIF7 expression is lowered, it is di�cult to identify how PIF7 could be regulating STZ

expression, but if it were it would certainly be a repressor of STZ. However, if ILR3

is a trigger for the increased expression of STZ, it can be seen that ILR3 increases in

expression monotonically and so, once at a given threshold, STZ would not lower in

expression again as was observed in Figure 5.5(o).

ILR3 has been found to be capable of regulating several metal transporter genes

which infers that it is involved in metal homeostasis in cells (Rampey et al., 2006; Long

et al., 2010). However, this does not explain the relationship with STZ which is not yet

known to be involved in metal homeostasis. As its name suggests, PIF7 (phytochrome

interacting factor 7) is known to interact with phyB and its over-expression has been

found to reduce sensitivity to red and far-red light in Arabidopsis (Leivar et al., 2008).

Whilst this does not provide evidence for any relationship with STZ, another study

shows that PIF7 also negatively regulates the expression of DREB1B and DREB1C,

drought response elements, but only when the plant was subject to light (Kidokoro

et al., 2009). These findings explain the relationship of PIF7 with light response proteins

as well as possibly justifying the association with STZ which is known to respond to

drought conditions and therefore may contain similar promoter elements to DREB1B

and DREB1C.

The findings of the yeast-1-hybrid screen are informative, but cannot be used

alone to determine the structure of the true interactions around genes in the theoretical

model. Further experiments, presented throughout the remainder of this chapter, were

also performed and the results combined with those shown here to develop a better

understanding of probable interactions between senescence related genes.

5.3 Reduced-Expression Microarray Experiment

A microarray experiment was used to assess the dynamics of the model by comparing

the expression of genes between the wild type and a series of reduced-expression mutant

lines. By doing this, it was possible to identify which downstream genes exhibit altered

expression in response to reduced expression of specific genes and hence which must be

either directly or indirectly transcriptionally regulated by that gene. For this analysis,

eleven SALK reduced-expression mutants were considered for the experiment including

four mutants for STZ, four mutants for SCL3, two mutants for BLH6 and one mutant

for ANAC092. The SALK lines are shown in Table 5.4 where the IM line identifiers are

listed and these will be used to refer to the lines in this chapter.

It should be noted that IM327 and IM328 were allocated SALK IDs which are
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Gene Line Identifier SALK ID

stz IM137 SALK 054092
stz IM324 SALK 004580
stz IM325 SALK 016589
stz IM326 SALK 016596

anac092 IM188 SALK 090154

scl3 IM244 SALK 099576
scl3 IM323 SALK 002516
scl3 IM329 SALK 023428
scl3 IM330 SALK 107509

blh6 IM327 SALK 018707
blh6 IM328 SALK 018708

Table 5.4 – SALK lines considered for the model validation microarray
experiment
Eleven reduced-expression mutant plant lines were acquired for a microarray exper-
iment to identify the downstream e↵ects of such a knockout when compared with
the wild type. Lines IM137 and IM188 were already available from those screened
in Chapter 4 whilst all others were ordered from the Nottingham Arabidopsis Stock
Centre.

sequential. The SALK T-DNA FAQ website (http://signal.salk.edu/tdna_FAQs.

html) states that sequentially numbered lines for insertion in the same gene can be

because a contamination occurred between the samples during sequencing and hence

only one should have the appropriate insertion.

5.3.1 Sample Harvesting

Given that the intention of the experiment was to identify changes in the dynamics of the

senescence process given the reduced expression of a known gene, a novel method was

devised to allow samples to be collected at the same relative stage of senescence rather

than at the same absolute time by using the photograph analysis technique employed

during quantitative phenotype screening described in Section 4.4.1. This prevented the

observation of lines which exhibited delayed senescence before senescence had begun,

or the observation of lines which exhibited early senescence after critical stages had

completed, ensuring a more informative comparison with the wild type. Following

the methods of Section 2.9.1, 24 biological replicates were sown, grown and harvested

onto observation plates. Senescence was induced by light starvation and, on each day,

those biological replicates which had reached their randomly assigned target senescence

value, calculated as the normalised ratio of red and green in the leaf, were harvested for

microarrays. For the twelve lines, including the wild type, four biological replicates were

harvested at five senescence values: 0.7, 0.8, 0.9, 1.0 and 1.1, each replicate providing

leaves 3, 4 and 5 for analysis. The harvesting senescence values were chosen because

the value was 0.7 before the plants were subjected to light starvation and after 1.1 the

leaf was so senescent that much of the mRNA in the leaf had already been degraded.
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The target and actual senescence values of harvested leaves are shown in Table 5.5

where it can be seen that most harvests were very close to their intended level of

senescence with the exception of a few replicates which are highlighted. As senescence

reaches its peak change at a value of around 1.0, it becomes di�cult to harvest at a

pre-defined value because the leaf changes so rapidly from green to yellow in only a few

hours.

Since the day of harvest was also recorded for each line and for each senescence

value during the collection of samples, a comparison of the mean day of harvest for

each line to the mean day of harvest for the wild type gives an approximation of the

delay or advancement of senescence which has been caused by the reduced-expression

in the mutant. The harvest day of the initial 0.7 replicates were not included in this

mean as they were all harvested on the same day at the beginning of the experiment.

The harvest days for each line were compared with the harvest days of Col-0 in a t-test

which indicates whether the observed change in mean harvest day is significant. The

final columns of Table 5.5 shows these statistics where it can be seen that IM326 shows

significant di↵erence from the wild type and IM188 shows very significant di↵erence

from the wild type.

blh6 mutants, IM327 and IM328, were allocated sequential SALK IDs with the

possible explanation that one would contain the insert whilst the other would not.

Although neither shows a significantly altered mean harvesting day, it would be likely

that IM328, with a higher p-value of 0.7270 indicating greater similarity to the wild

type, is the line without an insert.

5.3.2 Identifying Homozygous T-DNA Insertions

Using the same techniques as were used in Section 4.4.2, DNA was extracted from a

mixed-leaf sample of the eleven lines, gathered from unneeded replicates during sample

harvesting. These extractions were performed by following the methods of Section 2.6.1.

The lines were screened by PCR amplification for a correctly located T-DNA insertion

using primers specific to the gene and to the border of the T-DNA insert, following the

methods of Section 2.6.2. The sequences of the primers were obtained directly from

SALK and are shown in Figure 5.6.

Three PCR reactions per line were prepared to establish whether the insert was

present and whether it was homozygous or heterozygous. Gene-specific primers were

used to amplify genomic DNA; the same primers were used to amplify DNA extracted

from the reduced-expression mutant and; the LBb1.3 T-DNA specific primer was used

alongside the gene-specific reverse primer to amplify the reduced-expression mutant

DNA. The results of these reactions are shown in Table 5.6 alongside conclusions which

can be drawn from the results.

It can be seen that most of the lines screened were heterozygous. Therefore,

if this generation of the plant was selfed and assuming that the reduced-expression

was not detrimental to the growth of the plant, one quarter of the o↵spring would
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Figure 5.6 – Primers used to screen for T-DNA insertions in reduced-
expression mutants
The primers shown were used to screen for T-DNA insertions in the reduced-expression
mutants. Where a T-DNA insert exists in the correct location, the forward and reverse
primers is able to amplify from the extracted DNA of the mutant whilst the LBb1.3
forward primer and the mutant reverse primer is able to to amplify from the same
DNA.

Primers: GSP GSP LBb1.3
Conclusions

Template: gDNA IM DNA IM DNA

IM137 X 7 X Homozygous
IM188 X 7 X Homozygous
IM244 X Faint X X Heterozygous
IM323 X X X Heterozygous
IM324 X X X Heterozygous
IM325 X X 7 Wild Type
IM326 X X X Heterozygous
IM327 X X X Heterozygous
IM328 X X 7 Wild Type
IM329 X X X Heterozygous
IM330 X 7 X Homozygous

Table 5.6 – Results of a T-DNA insertion screen performed on eleven
reduced-expression mutants
Where the primers are listed as GSP, these were the gene-specific primers for a given
plant line. LBb1.3 indicates that the LBb1.3 primer was used in conjunction with the
reverse GSP primer. In the template header, gDNA refers to genomic DNA whilst IM
DNA refers to DNA extracted from the reduced-expression mutant. Where a tick is
shown, this indicates that a product was able to amplify from the template whilst a
cross indicates that no product could be amplified. For a line to be homozygous, the
gene-specific primers must be able to generate a product in genomic DNA, but not
in DNA extracted from the mutant, and there must be a product from the LBb1.3
primer combination. In the case of IM244, the product from the reaction amplifying
mutant DNA with gene-specific primers was very feint, but it was identifiable and so
taken as a positive result.
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be homozygous, one quarter would be wild type and one half would be heterozygous.

However, this would require at least two generations to obtain homozygous seed and was

therefore unfeasible at this stage of the PhD. However, because the product was so faint

in the amplification of IM244 DNA using gene specific primers, this line was retained for

further analysis as RT-PCR and microarray analysis would be able to confirm whether

there was a change in expression of the gene.

As predicted by the t-test performed on the mean harvest day data, IM328 is

a wild type line, whilst IM327 contains the T-DNA insertion, even though it is het-

erozygous. However, the failure to find a homozygous line for reduced BLH6 expression

meant that, regrettably, this part of the predicted model could not be verified by mi-

croarray analysis in this study. The lines which were selected for continued study were,

therefore, IM137 (stz ), IM188 (anac092 ), IM244 (scl3 ) and IM330 (scl3 ).

5.3.3 Screening Expression Levels

It appeared appropriate to save leaf 4 for analysis by microarray since it was the leaf

used to determine the stage of senescence whilst harvesting samples in Section 5.3.1.

Therefore, leaf 5 was chosen for RT-PCR analysis to determine the expression level of

the gene containing a T-DNA insert. The leaves screened by this process were those

harvested at the third time point, when senescence had reached a value of 0.9. This

time point was selected because, whilst senescence had visibly begun as indicated by

the degradation of chlorophyll in the leaves, much of the leaf was still green and would

provide su�cient mRNA for the screen.

Leaf 5 of all four replicates of each of the lines were combined for this screen

by grinding with a pestle and mortar. Total RNA was extracted from the resulting

tissue by the Trizol (Invitrogen) methods shown in Section 2.6.3.1. However, after

achieving disappointing mRNA concentrations measured by NanoDrop, further total

RNA was extracted from another aliquot of the same tissue samples using a mirVana

RNA extraction kit (Ambion) as shown in Section 2.6.3.2. The concentrations and

purities obtained from both extraction methods are shown in Table 5.7 whilst results

from the Bioanalyzer 2100 Expert (Agilent) can be seen in Figure 5.7. IM188 was not

screened because it had been previously shown to demonstrate a lowered expression by

the same method in Section 4.4.3.

The results show that mirVana has provided an overall higher yield of total

RNA, similar level of purity according to the 260/280 nm absorbance ratio and lower

level of RNA degradation. For these reasons, the mirVana kit was used in all further

RNA extractions.

Since neither of the genes being screened by RT-PCR (STZ or SCL3) contain

an intron, conversion of RNA to cDNA by reverse transcriptase would have resulted in

a DNA sequence identical to that of the genomic DNA. This would mean that PCR

amplification would result in excessive product, regardless of the quantity of transcribed

mRNA for the gene. Therefore, before transcribing RNA back to cDNA, all traces
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Trizol Extraction mirVana Extraction
ng/µL 260/280 nm ng/µL 260/280 nm

IM137 17.8 2.20 20.7 2.30
IM244 16.5 2.15 25.5 2.14
IM330 18.7 2.26 32.3 2.04
Col-0 24.2 2.11 40.2 2.01

Table 5.7 – Total RNA concentrations obtained by extraction from har-
vested leaf tissue
Two methods of total RNA extraction were employed and compared for aliquots of
leaf tissue from senescing leaves of reduced-expression lines. It was found that the
mirVana extraction kit produced higher yields of RNA than Trizol across all samples
whilst retaining adequate purity.

(a) Trizol Extraction (b) mirVana Extraction

Figure 5.7 – Bioanalyser results for total RNA samples extracted using
two alternative methods
It can be seen that, in those samples extracted using the Trizol method, a greater
amount of degradation has occurred, as indicated by the pale grey smears along the
length of the fragment sizes. In comparison, this grey smear is much less prominent
in the samples extracted by the mirVana method. The only exception is IM137 where
the level of degradation is similar in both cases.

of DNA were removed by treatment with Turbo DNase (Ambion) by following the

manufacturers instructions. The success of this treatment was determined by PCR of a

small aliquot of each RNA sample with primers specific to an actin gene. No products

were amplified during this reaction, indicating that DNA removal was a success.

RT-PCR analysis was performed in a two stage process, first using Superscript™
II Reverse Transcriptase (Invitrogen) to produce cDNA from mRNA according to the

methods described in Section 2.6.7.2. The cDNA could then be used to confirm the

concentration of mRNA for specific genes by normal PCR amplification.

After the initial reverse transcription to produce cDNA for each of the four
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Figure 5.8 – Comparison of cDNA concentrations by PCR amplification
of a highly expressed gene
By amplifying cDNA of a highly expressed gene in all samples, it is possible to de-
termine the relative concentrations of each. Number of cycles refers to the number of
PCR cycles before the aliquot shown was removed from the reaction. It can be seen,
by comparing the band after 30 cycles, that all four samples were of a similar con-
centration with the possible exception of the wild type, Col-0, which is very slightly
weaker. Given that these samples will be used to determine whether the mutants show
reduced-expression of their respective gene relative to the wild type, this discrepancy
should not present any problems in the case of a positive result.

RNA samples, the concentrations of the cDNA were compared by amplifying each with

primers which were specific to an actin gene known to be highly expressed. By removing

aliquots of the reaction mixture at 20, 25, 30, 40 and 50 cycles and comparing the

brightness of bands on an agarose electrophoresis gel, the relative concentrations could

be determined. The resulting gel image can be found in Figure 5.8 where it can be seen

that the brightness of the bands across all three reduced-expression lines is very similar

at all stages of the reaction, indicating similar starting concentrations. The wild type,

Col-0, is very slightly lower in concentration, but this would not a↵ect the outcome of

a positive result where the mutant would show a reduced-expression in the respective

gene.

Comparison of the transcriptional levels of specific genes was performed using

four primer pairs: two pairs for IM137, one pair for IM244 and another pair for IM330.

In the case of IM244 and IM330, the T-DNA insertion is in the 3’ UTR and 5’ UTR

region respectively, hence why only a single pair of primers was necessary, whilst IM137

contained the T-DNA insert 278 bases downstream of the 5’ UTR and hence primers

were designed to amplify a region either side of this site. Figure 5.9 shows the results

of all four comparisons with the wild type for each primer pair.

Conclusions which can be drawn from this result are that STZ is reduced in

expression in IM137 as indicated by both pairs of primers. Whilst IM330 shows a

similar result for SCL3, IM244 shows no change in expression. This may be because

of the position of the T-DNA insert since in this line, the insert is in the 3’ UTR
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(a) IM137 Upstream
of T-DNA

(b) IM137 Down-
stream of T-DNA

(c) IM244 (d) IM330

Figure 5.9 – Relative expression levels of genes containing T-DNA in
reduced-expression lines
The results are representative of the expression levels of genes containing T-DNA in-
serts during RT-PCR amplification. IM refers to the insertion mutant line whilst WT
refers to the wild type. Amplification for both bands were performed under the same
conditions for the same number of cycles with the same volume of cDNA template.
It can be seen that IM137, (a) and (b), demonstrates reduced expression of STZ, as
determined by primers on both sides of the T-DNA insert. IM244 (c) demonstrates
no change in expression of SCL3, since it is known that the wild type cDNA is slightly
less concentrated (see Figure 5.8). The results for IM330 (d) indicate that SCL3 has
been reduced in expression in this line.

region which may result in either no transcriptional change, or partial transcription. In

this case, RT-PCR would not accurately determine the abundance of functional SCL3

protein in IM244.

5.3.4 Preparing Samples for Hybridisation

Although IM244 was suspected to be a heterozygous T-DNA insertion and also showed

no apparent change in expression by RT-PCR, it was considered that it should still be

included in the microarray experiment as the probes of the microarray would determine

whether SCL3 was reduced in expression or not. Therefore, four mutant lines, IM137,

IM188, IM244 and IM330 were to be hybridised to CATMA microarrays alongside Col-

0 to identify which genes exhibited altered expression and would therefore likely be

downstream of the genes containing T-DNA insertions in the transcriptional network.

Leaf 4 of the harvested samples was selected to provide 4 biological replicates

for each line since this leaf was the one which had been observed during the analysis of

the progress of senescence whilst harvesting. Similarly to RT-PCR, leaves collected at

the third time point when senescence had reached a value of 0.9 were selected for the

microarrays. This therefore provided 5 lines and 4 biological replicates for each. Total

RNA was extracted from these 20 leaves by individual grinding using a Dremel drill

bit and then subsequent extraction by use of a mirVana RNA extraction kit (Ambion)

following the methods described in Section 2.6.3.2.

Once extracted, the Bioanalyzer Expert 2100 (Agilent) was able to determine

the condition of the extracted total RNA. The results of this analysis are shown in

Figure 5.10 where it can be seen that all the samples show little degradation with

the possible exception of the first replicate of IM244 which demonstrates one smaller

fragment not found in the other samples. However, the concentration was good in this
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Figure 5.10 – Pseudo-electrophoresis gel produced during bioanalysis of
total RNA samples for microarrays
The pseudo-gel shows the fragments of total RNA extracted from all 20 leaf samples
to be analysed by microarray hybridisation. It can be seen that the samples exhibit
little degradation with the exception of replicate 1 of IM244 which demonstrates a
single smaller fragment than the other samples. It can also be seen that the lower
concentrations of replicate 1 of IM188 and replicate 2 of Col-0 are visible as duller
bands than the other samples.

sample and so it was not repeated.

The samples were processed using an Ambion MessageAmp II kit according to

the methods shown in Section 2.9.2 to provide high concentrations of aRNA for la-

belling. After these steps, the samples were placed on the NanoDrop to determine the

concentration of aRNA. Some of the samples failed to amplify su�ciently and were reat-

tempted. After a second attempt, some insu�ciently amplified samples still remained.

As at least three biological replicates for each line had provided su�cient aRNA, a de-

cision was made to reduce each line to three biological replicates, and the NanoDrop

results for these are shown in Table 5.8. For each sample, an aRNA concentration of at

least 400 ng/µL was required to be su�cient for fluorescent dye labelling and it can be

seen that each of the samples exceeds this threshold and that each demonstrates a very

high purity in the 260/280 nm ratio. The sample numbers shown in the final column

are used throughout the rest of the experiment and particularly in the hybridisation

design.

To confirm that the aRNA samples demonstrate a range of alternative fragment

sizes, the Agilent Bioanalyzer Expert 2100 was used to analyse each sample. The pseudo-

electrophoresis gel for these fragment sizes for each of the 15 samples can be found in

Figure 5.11 where it can be seen that each sample shows a smooth gradient of change

between larger and smaller fragments. A possible explanation for the diminishing mean

fragment size towards the right of the gel may be that the samples were degrading during
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Line Concentration
260/280 nm

Sample
& Rep (ng/µL) Number

IM137 - 2 616.3 2.19 1
IM137 - 3 665.0 2.19 2
IM137 - 4 1011.9 2.23 3
IM188 - 2 435.6 2.22 4
IM188 - 3 1313.6 2.21 5
IM188 - 4 1188.9 2.23 6
IM244 - 1 851.8 2.20 7
IM244 - 3 1526.6 2.24 8
IM244 - 4 1796.4 2.21 9
IM330 - 1 435.1 2.24 10
IM330 - 3 1136.7 2.23 11
IM330 - 4 618.7 2.24 12
Col-0 - 1 904.3 2.22 13
Col-0 - 3 594.2 2.26 14
Col-0 - 4 741.8 2.29 15

Table 5.8 – Concentrations of aRNA samples to be labelled with fluores-
cent dyes determined by NanoDrop
The concentrations of the 15 samples of aRNA to be labelled for microarray hybridi-
sation are shown. The replicate number in the first column relates to the replicates
as shown in Figure 5.10 whilst the sample number in the final column indicates the
sample number as used in all further references to samples. As all samples were re-
quired to have a concentration of 400 ng/µL or more for labelling with fluorescent
dyes, all are su�ciently concentrated to continue and all have a very high purity as
indicated by the 260/280 nm ratios.

the time in which the bioanalyzer was processing prior samples. However, all samples

are of su�cient quality for microarray analysis and could be labelled with fluorescent

dye.

Fluorescent dye labelling was performed according to the methods of Section 2.9.3.

Each aRNA sample was labelled in two separate reactions. One for labelling with Cy3

dye and one for labelling with Cy5 dye. Each labelled reaction had to be su�cient

for two hybridisations since there were four technical replicates of each sample, those

being equally split between the dyes so that dye-swapping had occurred. Where initial

attempts to label samples provided fewer than 30 pmol of labelled sample per hybridisa-

tion, further attempts to label were performed until as much labelled sample as possible

was available. Some samples were unable to reach a total of 60 pmols to achieve two

hybridisations, but both time and budget did not allow repetition of aRNA synthe-

sis and so all samples were used and split equally, where necessary, to maximise the

concentration of dye in each hybridisation.

Microarrays were hybridised according to the design shown in Section 2.9.4.

Hybridisation occurred overnight and microarrays were scanned the following day by

following the methods of Section 2.9.7 during which time they were also analysed to

produce numeric data describing the intensity of individual spots in each channel.
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Figure 5.11 – Pseudo-electrophoresis gel produced during bioanalysis of
aRNA samples for microarrays
The pseudo-gel shows that, after production of aRNA, all samples show a clean band
of various sizes as would be expected. The slight reduction in mean size shown here
in samples to the right of the gel can be attributed to degradation that may have
occurred during the time that the bioanalyzer was analysing prior samples. Each of
the samples shown can be labelled with fluorescent dyes.

5.3.5 Microarray Data Analysis

Microarray data was analysed by using the same MAANOVA package as was originally

developed and used in Chapter 3. In the same way as had been used on the original

senescence experiment, background corrected data was selected because this allowed

the removal of background noise present on the microarray. The corrective procedures

applied to the data were in the same order as that of the original senescence experiment

analysis. It was noticed and expected that those samples which were labelled with

lower dye concentrations provided a weaker signal overall, but because of the analysis

by MAANOVA which does not use ratios of raw data during model fitting and is able

to pool biological replicate information when establishing the e↵ects for each line, the

imbalance would not present a problem.

Because four technical replicates had been implemented in the microarray exper-

imental design, it was possible to use the new method of analysis developed previously,

techrepcheck, to test whether any technical replicates are outlying on a probe-by-

probe basis. As was seen in the original senescence microarray experiment, a number

of probes on each microarray demonstrated statistically significant between technical

replicate variability, but as was explained during that original analysis, high levels of

technical replicate variability will always exist for some probes in high-throughput tech-

nology such as microarrays and the benefits of reducing this must outweigh the costs

and time required to do so. In the case of the microarrays being analysed here, the

probes exhibiting this characteristic were not isolated to any particular region of the

211



microarrays and so it was concluded that no major issues existed prior to expression

data modelling.

An ANOVA model was fitted to the observed microarray expression data using

the model definition:

Expression ⇠ Dye+ Array+ Line/BioRep

in which both Dye and Array were specified as being random terms. It was then possible

to analyse the expression data of each line and produce t-tests using the matest function

of MAANOVA with a contrast matrix of the levels within the Line term above. The

contrast matrix ensured that the only comparisons made were between the expression

levels of the wild type and each of the mutant lines. To improve accuracy, the test was

performed with a computationally expensive 1,000 permutations to refine the p-values.

Returned p-values were adjusted for multiple testing by using the stepdown method

previously applied to the F-tests of the original senescence experiment data. Genes

showing statistically significant (p 6 0.05) altered expression after correction in each

mutant line were extracted and modelled expression data used to identify whether the

gene is more highly expressed than wild type or vice versa.

Figure 5.12 illustrates the number of genes which were significantly altered in

expression in each plant line when compared with the expression of the Col-0 wild type.

It can be seen, by summing the number of genes in each lozenge, that there were 199

genes associated with IM137, 414 associated with IM188, 138 associated with IM244

and 97 associated with IM330. Of those genes, 7 were associated with all lines and may

represent those genes which are very low in the hierarchy of the network.

Before drawing any conclusions from these figures, it was important to assess

whether the lines were demonstrating reduced expression of the expected gene and so,

for each line, the target gene’s p-value for di↵erential expression was assessed. These

figures are shown in Table 5.9 where it can be seen that IM188 does show a very

significant reduction in expression of ANAC092 and that IM244 shows a borderline-

significant reduction in expression of SCL3. Each of IM137 and IM330 showed no

significant change in expression of their respective genes.

Although this might be considered a poor result, it may be partly explained by

the position of the CATMA probe binding location, as shown in Figure 5.13. Here it

can be seen that, in the case of STZ (IM137) and ANAC092 (IM188), the binding site

lies upstream of the T-DNA insertion. The T-DNA insertion, being in the coding region

of the gene, will almost certainly prevent complete transcription and/or translation of

the gene in this location, but may result in a partial and stable mRNA fragment being

transcribed and therefore being detected by a CATMA probe upstream of the T-DNA

insertion. If this is the case, this might explain why non-significant changes in the

expression of STZ can be found in IM137. RT-PCR in Section 5.3.3 proved that the

expression of STZ and ANAC092 is definitely lowered in IM137 and IM188 respectively.

In the case of SCL3, the lowered expression observed by the CATMA probe in
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Figure 5.12 – A 4-way Venn diagram showing numbers of genes with al-
tered expression for each line
Those genes which were significantly di↵erentially expressed for each line when com-
pared with the Col-0 wild type were analysed to find which genes could be associated
with more than one line. The numbers shown indicate association with the four lines
where it can be seen that 89, 314, 36 and 37 genes were unique to lines IM137, IM188,
IM244 and IM330 respectively.

Line Gene
Col-0 Mutant Corrected

Expression Expression p-value

IM137 stz 8.673 8.285 0.9736
IM188 anac092 13.280 12.093 0.0000
IM244 scl3 13.678 13.201 0.0505
IM330 scl3 13.678 13.561 0.9812

Table 5.9 – A comparison of expression levels for reduced-expression genes
in T-DNA insertion mutants
Each of the reduced-expression mutants were compared with the Col-0 wild type
for the reported expression of the gene containing the T-DNA insertion. It was ex-
pected that these results would show highly reduced expression of that gene in the
mutant line, but, as can be seen, only IM188 showed significantly reduced expression
of ANAC092. IM244 was very close to showing significant reduction in expression of
SCL3 after correction of p-values but IM137 and IM330 did not show a significant
change in the expression of STZ and SCL3 respectively.
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Figure 5.13 – Binding sites for CATMA probes specific to reduced-
expression genes
Sequences lengths shown are not to scale. The figure shows where the CATMA probes
used to identify the expression levels of reduced-expression genes bind in relation to
the T-DNA insertion used to disrupt the transcription and/or translation of the gene.
White arrows represent untranslated regions of the gene whilst red arrows represent
the CATMA binding sites and the small black blocks indicate the expected insertion
point of the transfer-DNA sequence. Because CATMA probes bind to mRNA before
translation has occurred, it could be that partially transcribed sequences that main-
tain integrity can be shown to have high expression levels, even thought the gene
product may not be functional. This is a particular risk when the T-DNA sequence
lies after (to the right/3’-end of) the binding site of the probe as can be seen in IM137
and IM188. The CATMA probe for SCL3 binds to the right of the T-DNA sequence
in IM330 and so should give a true impression of the abundance of gene product.
The same CATMA probe straddles the T-DNA sequence in IM244 and so may give
artificially reduced expression levels by only partial binding of the probe to the cDNA
sequence.

IM244 may be because the probe is not able to completely bind to the sequence and,

instead, only partially binds either upstream or downstream of the T-DNA insert. In

the case of IM330, it should be possible for the CATMA probe to accurately determine

the expression of SCL3 and, therefore, because no significant change from the wild type

is observed on the microarrays, this line should be disregarded as it would seem the

T-DNA insertion is too far upstream of the coding region and having little to no e↵ect

on the expression of SCL3. Due to the previous uncertainty of IM244 as a homozygous

line and the negative result from RT-PCR as well as the uncertainty that the CATMA

probe is accurately determining the expression of SCL3 with the position of the T-DNA

insert as it is, results from this line can not be trusted and will also be disregarded.

Concentrating on the results of IM137 and IM188, the Venn diagram can be

reconstructed to show only genes significantly di↵erentially expressed in those two lines.

This diagram can be found in Figure 5.14.

Despite STZ being downstream of ANAC092 in the putative network model, no

significant altered expression of STZ can be found in the microarray data for IM188,

which might mean that the expression of STZ is influenced by multiple regulators and

the reduction in expression of ANAC092 can be compensated for by one of these. Know-

ing that STZ is not significantly altered in expression in IM188 allows the conclusion

that the 58 genes shown in the centre of Figure 5.14 are likely to be independently

regulated by ANAC092 and STZ. The other two figures in the diagram represent those

genes which are uniquely downstream of the respective mutated gene.
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Figure 5.14 –A 2-way Venn diagram showing numbers of genes with altered
expression for IM137 and IM188 only
Since IM224 and IM330 provide doubtful results regarding the reduced-expression of
SCL3, they were removed from the Venn diagram to provide the one shown here.

Of particular interest is the list of genes regulated only by ANAC092 as these can

be cross referenced with results obtained about transcription factors able to bind to the

sequence of STZ during yeast-1-hybrid. It was previously identified that potential regu-

lators of STZ include ANAC038, ANAC102, CUC2, ILR3, and PIF7 amongst a number

of TCP transcription factors (see Table 5.3). However, none of the genes encoding those

transcription factors are shown to exhibit altered-expression during reduced-expression

of ANAC092. When accompanied with the information that IM188 does not show re-

duced expression of STZ either, this provides substantial evidence that STZ may not

be downstream of ANAC092 at all, although their functions are undoubtedly similar if

they a↵ect the expression of a common subset of genes and also have similar senescence

phenotypes.

The putative network model shown in Figure 5.1 suggests that three genes are

regulated by STZ, SINA (At3g13672), BFN1 (At1g11190) and AtNYE1 (At4g22920).

SINA was represented by two probes on the microarrays. Whilst one probe found it

not to be di↵erentially expressed in either of the lines, the other probe found significant

down-regulation of SINA in both the stz and anac092 mutants before, but not after

multiple testing correction. BFN1 demonstrated significantly reduced expression in the

anac092 mutant, but no significant change in the stz mutant although this was predicted

by the putative network model. AtNYE1 was significantly reduced in expression in the

anac092 mutant prior to multiple testing correction, but not after correction. The stz

mutant did not demonstrate altered expression of AtNYE1.

Past research has suggested that STZ may be a transcriptional repressor of LOX3

(At1g17420), a jasmonic acid biosynthesis gene which may be involved in the senescence

response (Pauwels & Goossens, 2008). However, whilst the stz mutant does show a
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Description # of Genes p-value Corrected p-value

Response to cadmium ion 8 3.24 ⇥10�7 9.21 ⇥10�5

Response to metal ion 8 1.52 ⇥10�6 2.16 ⇥10�4

Response to inorganic substance 8 7.48 ⇥10�6 7.08 ⇥10�4

Response to abiotic stimulus 12 1.49 ⇥10�5 8.75 ⇥10�4

Response to stimulus 20 1.54 ⇥10�5 8.75 ⇥10�4

Response to temperature stimulus 7 2.33 ⇥10�5 1.10 ⇥10�3

Response to stress 14 5.83 ⇥10�5 2.37 ⇥10�3

Response to chemical stimulus 12 5.20 ⇥10�4 1.85 ⇥10�2

Glycerol metabolic process 2 1.30 ⇥10�3 3.68 ⇥10�2

Folic acid and derivative metabolic process 2 1.30 ⇥10�3 3.68 ⇥10�2

Alditol metabolic process 2 1.42 ⇥10�3 3.68 ⇥10�2

Reactive oxygen species metabolic process 2 2.11 ⇥10�3 5.00 ⇥10�2

Table 5.10 – Results of a BiNGO analysis of the 58 genes di↵erentially
expressed in both IM137 and IM188
The gene ontologies shown are those biological processes which are over-represented
in the 58 genes found to be di↵erentially expressed during dark-induced senescence of
IM137 and IM188. The full CATMAv4 probe set was used as a reference set for the
analysis and only those with a p-value corrected by the Benjamini & Hochberg False
Discovery Rate of less than 0.05 are shown.

higher expression of LOX3 than the others, the change in expression was not large

enough to be identified as significant in the t-tests here.

By analysing each of the three classifications of di↵erentially expressed genes

presented in Figure 5.14 with BiNGO, it is possible to identify biological process gene

ontologies which are over-represented in those sets relative to the abundance of those

ontologies across the genes analysed on the CATMA microarrays. This allows the

processes relevant to each of STZ and ANAC092 to be identified.

In the set of 141 genes uniquely altered in expression by the stz mutant, 91 gene

ontology terms are significantly (p 6 0.05) over-represented after false discovery rate

correction. Amongst those most highly over-represented are carboxylic acid metabolic

processes, responses to jasmonic acid and jasmonic acid biosynthetic processes.

In the set of 356 genes uniquely altered in expression by the anac092 mutant, 26

gene ontology terms are significantly (p 6 0.05) over-represented after false discovery

rate correction. Amongst those most highly over-represented are translation and gene

expression related processes, response to temperature stimulus and response to salt

stress.

As it is known that both the stz and anac092 mutants show a similar pheno-

typical senescence response, it would seem more likely that those 58 genes regulated by

both are senescence specific whilst other genes regulated by one or the other are specific

to other responses involving the respective mutated gene. For this reason, the focus of

the rest of this analysis will be around those 58 genes.

In the set of 58 genes altered in expression by both the reduced-expression of

STZ and ANAC092, 12 gene ontologies are significantly (p 6 0.05) over-represented

and are shown in Table 5.10. It can be seen that the most significant of these terms

represent genes involved in the response to abiotic stimuli. It appears that most of the

stimuli are metal ions, temperature and inorganic substances. This allows a number of

genes to be selected from the list of 58 and researched further.
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The 58 genes altered in expression by both IM137 and IM188 are shown in

Table 5.11. Observation of the direction of altered expression for senescence and stress

related genes in the list as well as a literature review of their known functions and

relationship to other genes of similar function were used to identify new elements in the

transcriptional networks surrounding STZ and ANAC092.

It is important to remember that the samples were collected for each line at a

time determined by the level of senescence in the leaf, rather than by the time that

had elapsed since treatment with reduced light conditions. This means that rather

than synchronising the treatment time between samples, as would be traditional, the

output response has been synchronised instead. This should e↵ectively isolate the local

network around the reduced-expression gene and prevents those genes which provide the

senescence response from showing as di↵erentially expressed. In theory, the only genes

which could be di↵erentially expressed are those which are regulated by the reduced-

expression gene or are altered in expression to compensate for the loss of its function.

Whilst 55 of the genes in the list show the same direction of altered expression,

up-regulated or down-regulated in both lines, three genes were curiously up-regulated

in IM137 but down-regulated in IM188. These genes were AtGDPD2 (At5g41080), an

unknown function gene (At2g18690) and AOX1A (At3g22370). It could be expected

that any genes associated specifically with causing the senescence response would also

show the same change in expression across both lines. Therefore, these three genes may

be those which are found downstream of both STZ and ANAC092 but with alternative

regulatory patterns whereby STZ represses their expression and ANAC092 promotes

them.

One of the genes which has been shown to be up-regulated in both mutants is

SRG3 (At3g02040) which has been found to accumulate after the growth-arrest phase

of Arabidopsis cell-suspension cultures (Callard et al., 1996). This behaviour is also

observed in the original senescence microarray data where SRG3 is seen to accumulate

steadily after the third observation and reaches a level 5-fold greater by the end of the

experiment. Subsequent study of SRG3 has elucidated that it contains a single GDPD

domain, demonstrating conservation of critical residues of the active site along with

five other proteins (Cheng et al., 2011). SRG3 has therefore been given a second alias,

AtGDPD1, and is likely to be functionally related to AtGDPD2 as mentioned above.

These genes appear to play an important role in the metabolism of phospho-

lipids into inorganic phosphate required for growth and development. Interestingly,

AtGDPD1’s closest homologue is AtGDPD2 (Cheng et al., 2011) and so their simi-

lar up-regulation in the stz mutant might be anticipated, but their responses in the

anac092 mutant are opposite with AtGDPD1 being up-regulated and AtGDPD2 being

down-regulated. It was noted by Cheng et al. (2011) that AtGDPD1 is highly induced

by inorganic phosphate deficiency and that if it has been muted and cannot be expressed

under these conditions, this alone is enough to prevent normal root and rosette growth.

As this family of proteins has only recently been established, no research has yet

217



AGI Gene Description
Basic IM137 IM188
Level Change Change

At3g01345 Unknown protein 10.3373 ÷4.613 ÷4.121
At1g67870 Glycine-rich protein 11.9025 ÷1.649 ÷2.129
At1g67870 Glycine-rich protein 12.5436 ÷1.792 ÷2.084
At1g21010 Unknown protein 13.0213 ÷1.335 ÷2.025
At1g20450 Early Response to Dehydration (ERD10) 12.4483 ÷1.748 ÷1.801
At5g41080 PLC-like phosphodiesterases protein (AtGDPD2) 13.1464 ⇥1.767 ÷1.784
At2g23120 Late embryogenesis abundant protein, group 6 13.1193 ÷1.594 ÷1.773
At3g28100 Nodulin MtN21-like transporter family protein 13.4205 ÷1.671 ÷1.734
At5g18600 Thioredoxin superfamily protein 12.8716 ÷1.673 ÷1.723
At5g62680 Major facilitator superfamily protein 13.1166 ÷1.508 ÷1.696
At2g18690 Unknown protein 13.0544 ⇥1.477 ÷1.617
At4g38470 ACT-like protein tyrosine kinase family protein 13.6864 ÷1.541 ÷1.545
At3g22370 Alternative oxidase 1A (AOX1A) 12.1523 ⇥1.374 ÷1.514
At1g30490 Phavoluta (PHV) 13.4753 ÷1.383 ÷1.485
At1g71950 Proteinase inhibitor, propeptide 13.3395 ÷1.352 ÷1.446
At5g62760 P-loop containing protein 10.5934 ÷1.546 ÷1.443
At3g47950 H(+)-ATPase 4 (HA4) 12.8593 ÷1.939 ÷1.329
At3g06350 Maternal E↵ect Embryo Arrest 32 (MEE32) 11.5393 ⇥1.279 ⇥1.228
At1g78660 Gamma-glutamyl hydrolase 1 (GGH1) 11.3889 ⇥1.586 ⇥1.326
At5g55970 RING/U-box superfamily protein 11.4159 ⇥1.428 ⇥1.376
At4g32020 Unknown protein 11.4827 ⇥1.862 ⇥1.511
At1g03900 Non-intrinsic ABC protein 4 (NAP4) 11.9434 ⇥1.599 ⇥1.544
At5g67300 MYB domain protein R1 (MYBR1) 11.9911 ⇥1.658 ⇥1.566
At3g22890 ATP sulfurylase 1 (APS1) 12.1270 ⇥1.639 ⇥1.593
At3g17800 Unknown protein 10.4928 ⇥1.591 ⇥1.605
At5g46250 RNA-binding protein 11.9501 ⇥1.617 ⇥1.607
At1g53320 Tubby like protein 7 (TLP7) 11.1119 ⇥1.588 ⇥1.640
At3g56310 Melibiase family protein 11.4049 ⇥1.643 ⇥1.700
At2g41100 Touch 3 (TCH3) 12.7647 ⇥1.927 ⇥1.709
At3g12050 AHA1 domain-containing protein 9.3608 ⇥1.779 ⇥1.718
At4g32300 S-domain-2 5 (SD2-5) 9.5664 ⇥1.700 ⇥1.719
At4g23700 Cation/H+ exchanger 17 (CHX17) 10.5125 ⇥1.919 ⇥1.752
At1g50480 10-formyltetrahydrofolate synthetase (THFS) 11.3216 ⇥1.509 ⇥1.770
At5g19120 Eukaryotic aspartyl protease family protein 11.5251 ⇥1.526 ⇥1.785
At1g31130 Unknown protein 9.4244 ⇥1.957 ⇥1.818
At5g42900 Cold regulated gene 27 (COR27) 11.9780 ⇥1.453 ⇥1.823
At5g23140 Nuclear-encoded CLP protease P7 (NCLPP7) 9.5468 ⇥1.603 ⇥1.828
At1g33610 Leucine-rich repeat (LRR) family protein 9.5847 ⇥2.054 ⇥1.829
At2g30490 Cinnamate-4-hydroxylase (C4H) 11.1215 ⇥1.479 ⇥1.879
At1g67810 Sulfur E2 (SUFE2) 10.0035 ⇥1.760 ⇥1.890
At1g56220 Dormancy/auxin associated family protein 11.3248 ⇥1.662 ⇥1.902
At3g02040 Senescence-related gene 3 (SRG3) 11.2894 ⇥2.170 ⇥1.911
At2g25490 EIN3-binding F box protein 1 (EBF1) 12.4339 ⇥1.979 ⇥1.925
At4g34460 GTP binding protein beta 1 (AGB1) 10.1661 ⇥1.901 ⇥1.946
At2g30870 Glutathione S-transferase PHI 10 (GSTF10) 10.1927 ⇥2.098 ⇥1.957
At2g30860 Glutathione S-transferase PHI 9 (GSTF9) 11.5819 ⇥2.217 ⇥1.967
At1g07890 Ascorbate peroxidase 1 (APX1) 10.8858 ⇥2.593 ⇥2.009
At3g02360 6-phosphogluconate dehydrogenase family protein 9.6839 ⇥1.825 ⇥2.046
At1g10070 Branched-chain amino acid transaminase 2 (BCAT-2) 11.0475 ⇥1.961 ⇥2.130
At4g17040 CLP protease R subunit 4 (CLPR4) 12.0460 ⇥1.807 ⇥2.317
At5g26920 Cam-binding protein 60-like G (CBP60G) 10.3443 ⇥1.809 ⇥2.399
At5g51440 HSP20-like chaperones superfamily protein 9.6403 ⇥2.326 ⇥2.568
At3g09440 Heat shock protein 70 (Hsp 70) family protein 10.2657 ⇥2.338 ⇥2.595
At2g39030 Acyl-CoA N-acyltransferases superfamily protein 9.7003 ⇥2.767 ⇥2.599
At4g02715 Unknown protein 9.7656 ⇥1.570 ⇥2.631
At3g49620 Dark Iuducible 11 (DIN11) 10.2378 ⇥2.953 ⇥2.643
At5g02500 Heat shock cognate protein 70-1 (HSC70-1) 9.9876 ⇥1.802 ⇥2.753
At5g14170 CHC1 9.9878 ⇥1.927 ⇥3.025
At2g41410 Calcium-binding EF-hand family protein 11.5021 ⇥2.120 ⇥3.314

Table 5.11 – Genes found to be altered in expression during reduced ex-
pression of STZ and ANAC092
The 58 genes shown were found to be altered in expression in both IM137 and IM188
mutants. 59 entries exist in the table, but At1g67870 (lines 2 and 3) was identified by
two independent CATMA probes to exhibit significant altered expression. Basic Level
represents the log2 level of expression in the Col-0 wild type whilst IM137 Change
represents the relative change to the expression level on the absolute scale invoked by
the IM137 mutant at the same point in senescence. IM188 Change shows this same
information for the IM188 mutant.
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been published about the mechanics of AtGDPD2. The coupling of the findings found

here with those of Cheng et al. (2011) do seem to insinuate, however, that both STZ and

ANAC092 may be involved in the response to changing levels of inorganic phosphate and

that ANAC092 promotes the expression of AtGDPD2 whilst STZ represses it. Whether

AtGDPD2 then has an a↵ect on the rate of senescence is uncertain, but these results

do show how complex the system can be in its response to many di↵erent stress types.

It does seem unlikely that SRG3 is negatively regulated by ANAC092 or STZ

as this microarray data suggests because it was seen to increase in expression alongside

STZ and ANAC092 during natural senescence. It could be suggested, therefore, that

its expression is regulated by another transcription factor which is compensating for the

loss of STZ and/or ANAC092 function.

Those genes which are down-regulated are likely to either be positively regulated

by both STZ and ANAC092 or are part of an alternative pathway in which their nega-

tive regulation causes a senescence response which compensates the loss of STZ and/or

ANAC092. The gene with the largest change in expression in both lines encodes an

unknown protein (At3g01345) which maintains a constant expression during the entire

period of the original senescence microarray experiment at a level which is low in com-

parison to active genes in that experiment. It only has one inferred function based on a

recognisable glycoside hydrolase domain. It would appear unlikely that both ANAC092

and STZ could positively regulate a gene but that its expression would still only remain

low and constant and so its altered expression observed here may indicate that it is a

member of an alternative pathway to the induction of senescence.

The second most down-regulated gene was identified by two independent probes

on the CATMA microarrays with very similar reported changes in expression in both

probes for each line. This glycine-rich protein (At1g67870) is more strongly down-

regulated by IM188, which conforms with the longer period of delay in senescence seen

in IM188, perhaps suggesting that its expression had been constantly reduced during

that longer period until it reached the observed lower level. Like the unknown protein

above, the changes in expression of this gene were minimal during the initial senescence

microarray experiment but at a much higher level. A study of the cabbage leaf curl virus

(CaLCuV) (Ascencio-Ibanez et al., 2008), which causes an early senescence response,

also found this gene to be significantly down-regulated by the infection and so might

imply that it plays a role in the repression of leaf senescence. The exact function of the

gene has, however, not yet been identified.

ERD10 (At1g20450) is part of the dehydrin family of proteins which are more

highly expressed in times of abiotic stress as have been associated with STZ and

ANAC092 (Kovacs et al., 2008; Kim & Nam, 2010). Rossel et al. (2007) observed

that in times of high-light exposure or under oxidative stress, both STZ and ERD10

are up-regulated which is the same but inverse behaviour observed here. During natural

senescence, ERD10 ’s expression was observed to fall for a single day around the time

that leaf senescence began to occur, before steadily rising to its maximum expression.
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It would seem feasible that, given that STZ and ANAC092 are known to be involved in

responses to abiotic stresses (Sakamoto et al., 2004; He et al., 2005; Balazadeh et al.,

2010b), they would cause up-regulation of ERD10, but that in their absence the expres-

sion levels of ERD10 would be reduced as is being observed here.

Only one gene, AHA4 (At3g47950) demonstrates a much larger significant change

in expression in IM137 than that of IM188. AHA4 has been found to play a role in the

salt resistance of Arabidopsis (Vitart et al., 2001) as have STZ and ANAC092, although

the former is more well characterised in this response and may account for the dif-

ference in altered expression of AHA4. If AHA4 were up-regulated by both STZ and

ANAC092, this would explain the observed reduction in expression of AHA4 when those

transcription factors are not expressed.

Other abiotic stress related genes in the list include COR27 (At5g42900), HSP70

(At3g09440) and HSC70-1 (At5g02500), all of which are responsive to temperature

change. It has been shown that STZ is induced by cold stress (Sakamoto et al., 2004)

but ANAC092 is not known to be regulated during this type of stress. It might be

assumed, then, that these genes are involved in a separate pathway that is able to

compensate for the loss of function from STZ and ANAC092. COR27 has only recently

been found to be induced in response to cold (Mikkelsen & Thomashow, 2009) and

only then when in the correct phase of the Circadian clock. COR27 ’s expression profile

bears some resemblance to STZ ’s during natural senescence and so perhaps they share

a common regulator or stimulus.

As was expected due to the induction method of senescence in this experiment, a

number of dark inducible genes were up-regulated in the samples, but not in a way that

would cause the mutant lines to express di↵erently compared with the wild type unless

those genes have a secondary function related to the reduced-expression gene. One of

these genes, DIN11 (At3g49620), is shown to be induced at a level 16-fold greater than

was observed during the natural senescence microarray experiment. This is in agreement

with Fujiki et al. (2001) where observable changes in expression of DIN11 can be seen

after 24 hours of darkness. It was also shown that this accumulation of DIN11 can

be suppressed by exogenous application of sucrose on the leaves, however, suggesting

that it is the reducing sugar levels of the leaf caused by cessation of photosynthesis

that induces DIN11. This then provides a possible explanation for why DIN11 is highly

expressed in the wild type, but even more highly expressed in the two mutants. Given

that the samples from the mutants were harvested at a later time due to the slower

senescence response in these lines, it would seem likely that the remaining sugars of the

leaf would be lower at that point in time since the leaves had been exposed to a greater

length of darkness. This would then suggest that DIN11 is not necessarily related to

STZ and ANAC092 or senescence specifically, but that the delayed senescence caused

by the silencing of those transcription factors is merely allowing the levels of sugars in

the leaf to fall.
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Figure 5.15 – An updated putative transcriptional network model based
on results of yeast-1-hybrid screens, literature resources and microarray
expression analysis
Using the information obtained by yeast-1-hybrid and microarray analysis of key
genes in the transcriptional network discovered in Chapter 4, a newly updated puta-
tive transcriptional network model was produced. Red arrows indicate up-regulation
whilst green arrows indicate down-regulation. Both red and green arrows may be
indicative of an indirect interaction. Orange genes are thought to be hub genes high
in the network hierarchy. Green genes act as intermediary genes to the senescence
response. Blue genes lead to networks which cause a senescence response. Blue arrows
are putative direct regulatory relationships of unknown kinetics which may cause up
or down-regulation. Solid blue lines were defined by yeast-1-hybrid results whilst the
dotted blue line represents a hypothesis that COR27 and STZ are regulated by a com-
mon transcription factor. The purple box groups transcription factors discovered by
yeast-1-hybrid screen. The pale red box groups temperature response genes thought
to form a separate network leading to senescence. The yellow box groups interactions
known from the study by Kim et al. (2009).

5.4 Updating the Putative Transcriptional Network Model

The information gathered from the yeast-1-hybrid screening, microarray experiment and

literary sources can be used to adapt the structure of the putative theoretical network

model introduced in Figure 5.1. The new model can be found in Figure 5.15 where the

discovered interactions link elements of the network in a way which could be tested in

future progression of this work.

It can be seen that the yeast-1-hybrid data has suggested that ANAC092 does
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not cause direct transcriptional regulation of STZ and this has also been verified by

the microarray data in which the expression of STZ was not altered in response for the

anac092 mutant. Therefore, these elements have been separated, but are considered as

hubs which act in union as controllers of the senescence response.

A number of potential regulators of STZ have been identified by the yeast-1-

hybrid process. These were all found to bind to sequences close to the start site of STZ

and have been included in the purple box. One of these transcription factors, CUC2, was

also found to bind upstream of AtNYE1 and this is shown. TCP23 was found to bind

upstream of BLH6. Other TCP transcription factors were identified by yeast-1-hybrid

but bound to most, if not all, of the fragments being screened which promotes doubt

as to whether they would have a transcriptional e↵ect on so many genes or whether,

instead, their preferred binding site is relatively simple and found in most upstream

regions of genes.

No evidence was given by the yeast-1-hybrid screen that BLH6 has a regulatory

e↵ect on STZ, nor that SCL3 has a regulatory e↵ect on BLH6. As the lines with

reduced-expression of SCL3 proved unreliable in the microarray analysis, no evidence

was available to prove these interactions. A negative result in yeast-1-hybrid cannot be

considered proof of absence of an interaction and so these interactions are present in

the updated model, to be tested in future work.

Other transcription factors which were proven to be able to bind to the up-

stream region of genes screened by yeast-1-hybrid include CUC2 binding to AtNYE1

and TCP23 binding to BLH6 and so these interactions are shown.

Kim et al. (2009) identified that ANAC092 ’s expression was negatively regulated

by Mir164 and that this was negatively regulated by EIN2. These have been included

in a yellow box to di↵erentiate them from the interactions hypothesised by the results

of this analysis.

Of the three putatively up-regulated genes downstream of STZ in the original

model, SINA was found to be up-regulated by both STZ and ANAC092 only before

multiple testing correction was applied to the t-tests. Given that the StepDown method

of false discovery rate was shown to be very stringent in Section 3.4.5 and that previous

microarray data has shown this gene to be up-regulated by ANAC092 (Balazadeh et al.,

2008, 2010a), these regulatory interactions have been included regardless. BFN1 was

found to be up-regulated by ANAC092 but unchanged by STZ and so this interaction

is shown. AtNYE1, similarly to SINA, was only significantly reduced in expression in

the anac092 mutant before correction, and this interaction is shown.

Senescence related genes with high levels of significant di↵erential expression

in both the stz mutant and the anac092 mutant have been included. Amongst these

are AHA4, which is proposed to be up-regulated by both STZ and ANAC092, whilst

At2g18690 (Unknown), AOX1A and AtGDPD2 are proposed to be up-regulated by

ANAC092 but down-regulated by STZ. Collectively, changes in the expression of these

genes are thought to lead to the senescence response. Further evidence suggesting the
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direct regulation of SINA, AtNYE1, AHA4 and AtGDPD2 can be found by analysing

their promoter regions (1,000 bp upstream of the transcription start site) in which

multiple copies of the known ANAC092 binding site motif, TDRCGTRHD (Olsen et al.,

2005), can be found.

Comparing these results with the findings of the ANAC092 enhanced-expression

microarray dataset previously mentioned in Section 4.5 (Balazadeh et al., 2008, 2010a),

it can be seen that SRG3 is 24th most reduced in expression during enhanced-expression

of ANAC092. This complements the results identified here. AtGDPD2 and AOX1A are

both similarly reduced in expression during enhanced-expression of ANAC092, but this

is the same response as is seen here in the reduced-expression of ANAC092 and may

indicate that their regulation is more dominant by STZ than it is by ANAC092.

A further comparison with an independently hypothesised transcriptional net-

work model can be made by considering the model inferred from microarray data of

Breeze et al. (2011). In that model, BFN1 was thought to be regulated by STZ, but

not by ANAC092 - this was, however, not seen in the microarrays performed here. In

that same model, ILR3 was thought to be a regulator of STZ which has not been shown

here. STZ was also predicted to be a regulator of ANAC102 in that model, whilst the

evidence shown here is that ANAC102 is probably a regulator of STZ. It may be that

both are correct and that a feedback loop exists between the two transcription factors.

Three temperature response genes, COR27, HSP70 and HSC70-1, are thought

to form a separate network similar to that shown in this model. These are therefore

grouped in the pale red box in the updated transcriptional network model. The expres-

sion profile of COR27 during the natural senescence experiment bears similarity to that

of STZ and so it was hypothesised that they may share a common regulator: this is

indicated by the dotted blue connection.

Senescence triggers other than STZ and ANAC092 were thought to cause up-

regulation of AtGRPD1/SRG3 and so these are shown at the bottom of the theoretical

network. Other genes, At3g01345 and At1g67870, also thought to cause or repress the

senescence response but not form part of the network with STZ and ANAC092 are also

shown.

It is obvious, when considering the structure of this new network that much

more work is required to reach a conclusive network, but also that this is an enormous

achievement in a relatively short amount of time. It is worth noting that although any

regulations suggested by blue lines would be direct as they were determined by yeast-1-

hybrid which assesses the ability of one gene to bind to the upstream region of another,

all other regulations should be considered as indicating that an interaction exists but

that it might pass through other entities.

The discovery methods of the structure of this network make it hard to envisage

how such a complex system might have evolved, but that is because this thesis has

focussed on identifying key causes of senescence and trying to identify how they lead to

the senescence response. From an evolutionary perspective, some of the first elements of
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the network would likely have been those at the bottom of the network with a senescence

response leading to the survival of fitter plants, after which the separate pathways

leading to senescence may have been constructed as these would allow the timing of

senescence to be more controlled and beneficial to the development of the plant. What

appears to be shown in this updated network are two branches causing senescence,

one from STZ and one from ANAC092 which appear to have somewhat independent

upstream regulation but that both lead to a similarly regulated core senescence network

leading to a senescence response. The diversity of the senescence network has been

shown to be large and the complexity of interactions within it is vast. However, by

following a process similar to that shown in this thesis, the network can be elucidated

and will eventually be determined as high-throughput technologies underlying these

techniques are improved.

5.5 Conclusions

This chapter has introduced an approach which has lead to the verification of a number

of putative interactions established in a transcriptional network model formed at the

end of Chapter 4. Yeast-1-hybrid screens have been successfully used to verify whether

the anticipated transcription factors regulating four di↵erent genes in the model are

able to bind to the sequence upstream of those genes and, therefore, potentially cause

transcriptional changes in them. Similarly, microarrays have been used to determine

which genes in the genome exhibit significantly altered expression when hubs STZ or

ANAC092 are silenced.

The yeast-1-hybrid analysis has identified 9 potential transcription factors as

regulators of STZ whilst two of them are also seen to regulate other members of the

network. The microarray analysis has identified a number of new genes which may be

downstream of both STZ and ANAC092 which are then thought to cause a senescence

response. At least four further genes have been identified as further potential sources

of a senescence response which may work in small networks which are adjacent to both

STZ and ANAC092.

5.5.1 Future Development

If time had permitted, it would have been valuable to perform the microarray experiment

testing the altered expression of genes between mutant lines across several time points.

Such a change would have provided more accurate results by introducing temporal data.

The new network model presents a second iteration of the systems biology pro-

cess to elucidating a definitive regulatory network of genes which lead to a senescence

response. If further time were available, the newly predicted downstream interactions

of ANAC092 and STZ could be confirmed by using alternative approaches. These may

include producing yeast-1-hybrid clones for these genes to find out whether STZ and

ANAC092 were able to bind to their upstream sequences. Those genes which have been
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identified as being part of adjacent networks to that which has been focussed on here

could be analysed using similar processes of theoretical modelling as used in Chapter 4

to try to find which genes they are likely to interact with both up-stream and down-

stream in the transcriptional network. These smaller networks could then be verified

using similar biological techniques to those shown here which might help to explain how

their behaviour links with that of STZ and ANAC092.

Eventually, after a number of iterations, a bigger picture would form and highly

interconnected transcriptional networks would result. These networks would have large

quantities of evidence supporting their structure and would form one of the first large

scale discoveries of a biologically validated transcriptional network of genes associated

with a specific function in Arabidopsis thaliana.
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Chapter 6

General Discussion

This thesis reports the systems biology approaches used to begin the identification of

neighbouring transcriptional networks of genes found to alter the phenotype of the

senescence response in Arabidopsis thaliana leaves. A high-resolution time series profile

of the expression of every gene found on CATMA microarrays has been produced using

techniques which minimise the technical and experimental variance associated with two-

channel microarrays. Those genes which demonstrate an altered expression throughout

the senescence time series have been isolated and grouped into functional clusters so

that they may be included in a large pool of genes for theoretical network modelling. By

selecting subsets of genes from large pools, those genes demonstrating extensive down-

stream transcriptional regulation were selected for further study. By investigating the

phenotypical e↵ect of reduced-expression in hub genes, those with statistically signifi-

cant altered phenotypes during dark-induced senescence were selected for local network

modelling. By modelling genes with altered phenotypes, local putative networks were

identified. Sets of genes likely to be both down and upstream of those hubs were com-

bined to provide a final model for biological validation. Tests of key interactions with

established experimental techniques identified a large number of new interactions which

had not yet been predicted. These findings have allowed a new network to be proposed

which could lead to the identification of further interactions if used as prior information

in a second round of modelling.

6.1 Microarray Data Analysis

Development and customisation of the MAANOVA microarray analysis package has

allowed the design of the senescence microarray experiment to be used in the analysis

of the microarrays and for normalised single value expression data to be obtained for

each of the genes at each of the time points. Improving the quality control techniques

of MAANOVA by providing semi-automated statistical analysis of probe intensities has

allowed artefacts amongst the 11,421,696 probe measurements to be easily identified

and for informed decisions to be made about the best mode of action to avoid those

artefacts.
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Additional information is also provided by the new TechRepCheck function which

compares the intensities of probes between technical replicates to identify those probes

which are significantly outlying on one or more replicates. By integrating this informa-

tion with the existing ArrayView function, the location of those outlying probes can

now be plotted to quickly illustrate problem areas of specific microarrays. It has been

demonstrated that this analysis provides information about misaligned grids during

microarray scan analysis, amongst other flaws, that are otherwise invisible to existing

analysis techniques. If left untreated, these misaligned grids would influence the final

expression data of specific time points for those probes, but this can now be avoided.

The adaptations made to MAANOVA have allowed complex designs in microar-

ray experiments to be analysed with the same simplicity as single-channel highly repli-

cable systems such as A↵yMetrix GeneChips at a fraction of the cost. This allows

extensive replication to be used which benefits both this analysis and also those of

further applications such as transcriptional network modelling.

6.1.1 Future Developments

Removal of Time of Day Variation Prior to the start of this project, microarrays

were hybridised with cDNA obtained from senescing leaf samples that were collected

at two times of day. The reason samples were collected in this way was to allow the

study of other processes such as the circadian clock genes as well as those involved in

senescence. Whilst it has been possible to negate the e↵ects of sampling at two times

of day whilst analysing the microarrays with MAANOVA, a better solution would have

been to collect the samples at one time of day only.

Extension of Tech Rep Check TechRepCheck, which analyses the variation be-

tween technical replicates to identify probes which are outliers in one replicate, is only

capable of analysing four technical replicates. Whilst this was ideal for the analysis of

the senescence microarrays presented in this thesis, this could be extended for datasets

with greater numbers of replicates to find outliers even more accurately. This would

require extensive consideration of possible formations of the technical replicates as was

performed in Table 3.3, from which alternative rules for di↵erent numbers of replicates

could be produced.

Introduction of BioRepCheck Another potential analysis which could be per-

formed in a similar manner to TechRepCheck was considered in which the biological

replicates would be analysed by BioRepCheck. In this case, each observation is repre-

sented by four biological replicates and each of those are represented by four technical

replicates providing sixteen comparable biological replicates. The technical replicates

could be averaged for the purpose of this analysis to reduce the number of compar-

isons to four again. The outcome of such an analysis would be that specific biological

replicates could be identified as a poor representation of a time point if an unidenti-
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fied bias has been imposed upon some samples. This information may not be useful

unless the sample can be easily replaced, but this would result in many microarray

re-hybridisations.

6.2 Analysis of Gene Expression Data

Application of theoretical network modelling techniques to gene expression data has

allowed the simultaneous inference of whole networks of genes rather than just single

interactions between genes as would normally be discovered by a non-systems biology

approach. Although theoretical network modelling is becoming a popular technique

amongst geneticists, the selection of genes for modelling are still heavily driven by

biological knowledge, inhibiting the discovery of new elements. Two methods have been

developed to enhance the discovery of new network elements.

Multi-modelling has allowed vast numbers of genes to be rapidly screened for

their importance in theoretical networks. By ensuring that all genes from a large pool

are given multiple opportunities to demonstrate their influence on every other gene in

the pool, those genes with transcriptional influences on many downstream genes can

be isolated. Whilst biologists have taken this approach to identifying hub genes in the

past, an automated approach like that demonstrated here improves the accuracy of

the analysis by being completely unbiassed in gene selection and allowing many more

models to be completed in the minimum time possible.

To demonstrate that genes identified as hubs were important to the senescence

process, a new phenotype screening process has been developed here. This process

provides a statistical analysis for the yellowing of senescing Arabidopsis leaves by ob-

serving the temporal changes in the ratio of the red and green components of digital

photographs taken during the senescent process. By using a logistic curve fitted to those

ratios, ANOVA statistics can be used to identify significant di↵erences in the shape of

the curves for a mutant plant line versus the wild type control. This removes inaccu-

racies introduced by subjective assessment of photographs as was previously used to

identify altered phenotypes and therefore demonstrates a vast improvement in the stan-

dardisation of screens performed by separate individuals. The application of this screen

on mutants of genes predicted to be hubs of senescence by multi-modelling demonstrated

that greater numbers of altered phenotypes can be identified using that method when

compared with random mutant screens.

A method for the identification of networks local to those hub genes demonstrat-

ing an altered senescence phenotype has been given the name Metropolis-like VBSSM.

This method has allowed the identification of an optimised set of genes from a pool of

genes thought to be related to the hub gene, chosen because of their similar profiles. A

number of genes were determined to be putatively interacting with hub genes by using

this method. Whilst finding directly interacting factors with key genes is undoubtedly

the main aim of all studies involving modelling, this method provides a fully automated
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approach to finding those genes which form the most robust network. The method is

expensive in both computer processing and time, but these quickly pale into insignif-

icance when compared with costly laboratory work discovering dead ends that would

otherwise be avoided by extensive preliminary theoretical modelling.

6.2.1 Future Developments

Alternative Clustering The multi-modelling approach to identify hub genes is very

reliant on initially identifying a large pool of genes and this was reliant on a good

clustering method for the di↵erentially-expressed genes. SplineCluster, as was used

here, has undergone several changes since the beginning of the project, and some of

these have been incorporated into the analyses performed here such as sweeping for

misallocated genes after each merger. Whilst this has allowed SplineCluster to become

a hybrid between a hierarchical clustering method and a partitional clustering method, a

more biologically relevant method, temporal clustering by a�nity propagation (TCAP),

has also been developed by Kiddle et al. (2010).

TCAP scores every gene to be clustered using the similarity score by Qian et al.

(2001) which allows directly correlating expression profiles to score highly as well as

those which are inversely correlated, correlated after a time-shift and correlated in only

part of the profile. These types of matches are all biologically relevant when looking

for functional sets of genes, which adds power to the clustering method. The scores

between genes are used to identify which are most related as a cluster using a�nity

propagation. For very large numbers of genes, this can be a time-consuming process,

but the end result would most likely have provided even more biological relevance than

SplineCluster’s hybrid clustering method.

Improved Logistic Curve Analysis The analysis of altered phenotypes during

screening of potential hub genes was improved a number of times throughout the project

and the results shown in this thesis are based on the latest improvements which test two

parameters of a logistic curve mapping the progression of senescence: the x-shift and

the y-shift of the curve. However, two other parameters exist in the logistic curve, the

x-amplitude and the steepness of the curve, and these could have been used to improve

the analysis further. These were not used here because the analysis of only the first two

parameters provided enough information to define which were statistically significant in

their altered expression.

Choice of Theoretical Network Modelling Methods VBSSM has been used

throughout the methods of Chapter 4 for theoretical network modelling and has been

shown to be successful in improving the reliability of hub gene selection when used

in multi-modelling. However, a number of limitations were identified when using VB-

SSM to identify local networks surrounding specific hub genes when applied using the

Metropolis-like VBSSM approach and these were discussed in Section 4.7.2.
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There are many alternative network inference methods available, recent examples

being BANJO (Yu et al., 2004), NIR (Gardner et al., 2003), TSNI (Gatta et al., 2008)

and ARACNE (Basso et al., 2005; Margolin et al., 2006). These four methods have been

compared for accuracy in determining the underlying network of an isolated synthetic

in vivo network of five genes in Saccharomyces cerevisiae (Cantone et al., 2009) where

it was found that TSNI was the most reliable method for identifying the network, suc-

cessfully identifying 4 of the 6 true interactions whilst only reporting 1 false interaction.

In a comparison to this result, Steven Kiddle of the University of Warwick obtained the

expression data used in this analysis and applied VBSSM to reverse engineer the same

network. VBSSM was also able to establish 4 true interactions whilst only reporting 1

false interaction, demonstrating that it is equally as capable as the best method tested

by Cantone et al. (2009). This demonstrates that, despite some drawbacks associated

with the reliability of network models identified by VBSSM, it is still one of the best

systems available in identifying underlying transcriptional networks for gene expression

data.

6.3 Biological Validation of Theoretical Models

In vivo testing of predictions made by VBSSM involved the analysis of transcription

factors able to bind to downstream targets by yeast-1-hybrid and the analysis of down-

stream genome wide expression changes during the mid-point of senescence in reduced-

expression mutants for key regulators of the putative network. Yeast-1-hybrid analy-

sis has shown that the predicted regulators of STZ, BLH6, BFN1 and AtNYE1 are

unlikely to be correct, but yeast-1-hybrid is thought to miss many true interactions

and also only identifies direct interactions, which the predictions may not be due to

the hidden states of VBSSM models. The analysis of downstream expression changes

in reduced-expression mutants of stz and anac092 identified a large number of genes

which are altered in expression as a result of the mutation. Given that the VBSSM

network predicts a close relationship between STZ and ANAC092, those 58 genes with

altered expression in both mutants were carefully assessed and a number of potential

relationships with the mutated genes identified.

A combination of both the yeast-1-hybrid results and the results of the reduced-

expression mutant analysis allowed a new putative network to be formed which shows

both up and downstream elements neighbouring ANAC092 and STZ. This model would

make an ideal continuation point for the ongoing analysis of these genes in the senescence

context and represent the start of the second iteration of the systems biology approach

to elucidating senescence related transcriptional networks.

6.3.1 Future Developments

Choice of Altered Expression Mutants With limited time and resources available,

the only plant lines to be tested by microarray analysis were reduced-expression lines
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available from SALK. Regretfully, many of the seed stock ordered did not demonstrate

a homozygous knockout of the intended gene and were therefore wasted. Others were

homozygous, but did not demonstrate a reduced-expression due to the location of the

T-DNA insertion. If more time had been available, it would have been beneficial to

the interpretation of the results shown in this thesis to have also tested enhanced-

expression lines for key genes and also analyse double-knockouts for genes thought to

be functionally-redundant. Despite these possible improvements, the results which have

been obtained for stz and anac092 have proven valuable in the progression of the work

shown here.

Introduction of ChIP-seq and DNase-seq Although the methods shown here

have focussed on yeast-1-hybrid and microarray analysis, other methods which would

complement these methods include Chromatin immunoprecipitation sequencing (ChIP-

seq) (O’Neill & Turner, 1995, 1996) and DNase-seq (Boyle et al., 2008). ChIP-seq

involves cross-linking transcription factors to the DNA they bind through application

of formaldehyde. This DNA is then sonicated to break it into small fragments where

breaks are less likely to occur at the point of bound transcription factors. Antibodies

attached to small beads are used to immunoprecipitate those fragments bound by a

specific transcription factor and enzymes used to digest those transcription factors.

The DNA is then sequenced to identify which DNA sequences can be bound by that

transcription factor.

DNase-seq is a complementary procedure in which DNase I is used to digest

DNA and high-throughput sequencing used to identify the resulting fragments. Where

the DNA is found to be hyper-sensitive to DNase treatment, indicated by the fragment

ends, this indicates that nucleosomes have been displaced and is most likely due to the

binding of transcription factors to promoter regions causing chromatin to remain open

and become more susceptible to DNase activity. By using this information to specify

cloned regions for yeast-1-hybrid analysis, the likelihood of finding true positives in

those clones would be increased.

6.4 Closing Remarks

Overall, this thesis demonstrates that a systems biology approach to the identification

of senescence associated transcriptional networks using theoretical network models com-

plemented by experimental validation techniques can provide vast quantities of valuable

information about genes involved in the senescence response and their involvement in

those networks. Whereas previous studies, as described in Section 1.3, have lead to

the discovery of small networks associated with one gene at a time, the methods im-

plemented here have provided extensive networks associated with several senescence

related genes and have also shown crosstalk known to exist between some of those

networks. A large number of hub genes remain that have not been studied in detail
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here and would provide an excellent progression of this research as well as the iteration

of theoretical modelling and experimental study to refine the understanding of these

senescence-related genes and their neighbouring transcriptional networks further.
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Appendix A

VBSSM Controlling Script

The MATLAB script shown below is that which was used to manage the VBSSM mod-

elling. A pseudo-code interpretation of its functionality can be found in Procedure 2.2

on page 47 of this thesis.

1 mkdir(’F_KK’);

2 mkdir(’log’);

3 mkdir(’vbnet’);

4 load data.txt;

5 [Obs_seq , Input_seq] = norm_genes(data , 11);

6 save Obs_seq.mat Obs_seq;

7 save Input_seq.mat Input_seq;

8 multipth = repmat ({pwd}, 1, 10);

9 s = dfeval(@FSvskk ,num2cell (1:10) ,multipth ,’PathDependencies ’,{pwd},’

Configuration ’,defaultParallelConfig);

10 [MaxF MaxK] = F_vs_k_plot (10,’./F_KK’);

11 cd ..;

12 save MaxF.txt MaxF -ascii;

13 print(’-dpsc’,’F_vs_K_Plot.eps’);

14 [M] = makeCytoscape (0,10,0,’./ vbnet/VB_base_net_seed ’,[’_kk_’ num2str(MaxK) ’.mat

’]);

15 cd ./ vbnet;

16 for i=1:10;

17 for j=1:20;

18 if j ~= MaxK;

19 delete ([’VB_base_net_seed ’ num2str(i) ’_kk_’ num2str(j) ’.mat’]);

20 end;

21 end;

22 end;

23 exit;
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Appendix B

WHRIMAANOVA Function

Definitions

This appendix lists the functions used during the analysis of the senescence data along

with all their parameters such that they may be better understood if being applied to

alternative datasets. Return values and descriptions have not been included for sakes

of space, but can be identified within the text of Chapter 3 and also in the help files of

WHRIMAANOVA.
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B.1 read.madata

B.1.1 Usage

read.madata(datafile=datafile , designfile=designfile , covM = covM ,

arrayType=c("oneColor", "twoColor"),header=TRUE , spotflag=FALSE ,

n.rep=1, avgreps=0, log.trans=FALSE , metarow , metacol , row , col ,

probeid , intensity , ...)

B.1.2 Parameters

datafile The name of a file, relative to the current working directory, con-

taining the microarray data.

designfile The name of a file, relative to the current working directory, con-

taining the experimental design.

covM Gene specific covariate matrix (optional).

arrayType Defines whether the microarrays are one or two colour.

header A logical value defining whether the input files have headers.

spotflag A logical value specifying whether spot data exists.

n.rep An integer representing the number of replicates.

avgreps An integer representing whether to collapse replicates or not. 0

means no collapsing, 1 means take the mean of replicates, 2 means

take the median of replicates.

log.trans A logical value defining whether to log2 transform the raw data.

metarow The index of the column in the data file containing meta-row

information.

metacol The index of the column in the data file containing meta-column

information.

row The index of the column in the data file containing row informa-

tion.

col The index of the column in the data file containing column infor-

mation.

probeid The index of the column in the data file containing probe identi-

fication information.

intensity The index of the first column in the data file containing intensity

information.

. . . The index of the column in the data file containing any other gene

information.
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B.2 gridcheck

B.2.1 Usage

gridcheck(object , array1 , array2 , num.split = 2, highlight.flag = TRUE ,

flag.color = "Orange", margin = c(4.6, 5.1, 3.1, 1.1))

B.2.2 Parameters

object The microarray data object loaded with read.madata().

array1 An integer of the first array number to plot. (optional)

array2 An integer of the second array number to plot (for cross-array

comparisons).

num.split An integer representing the number of pages to split the plots

over.

highlight.flag A logical value defining whether to plot flagged probes in an al-

ternate colour.

flag.color A string defining the colour to plot flagged probes with.

margin A vector of margin widths for plots. (bottom, left, top, right)

B.3 riplot

B.3.1 Usage

riplot(object , title , array , color = "blue",highlight.flag = TRUE ,

flag.color = "Red", idx.highlight , highlight.color = "Green",

rep.connect = FALSE , onScreen=TRUE)

B.3.2 Parameters

object The microarray data object loaded with read.madata().

title A string array of plot titles which must be of length ‘number of

arrays to plot’.

array A vector of array numbers to plot.

color A string defining the colour to use for plotting the probes.

highlight.flag A logical value specifying whether flagged probes should be high-

lighted.

flag.color A string defining the colour to use for plotting highlighted probes.

idx.highlight A vector of probe indexes to highlight separately.

highlight.color A string defining the colour to use for plotting indexed probes for

highlighting.

rep.connect A logical value specifying whether to connect replicate points or

not.

onScreen A logical value specifying whether to display plots on screen.
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B.4 arrayview

B.4.1 Usage

arrayview(object , array , colormap , num.split = 2, per.page = c(2, 4, 8),

onScreen=TRUE , margin=c(4.6 ,5.1 ,3.1 ,1.1), ...)

B.4.2 Parameters

object The microarray data object loaded with read.madata().

array A vector of array numbers to plot.

colormap A colour-map to be used as an alternative to

Red ! Black ! Green

num.split An integer specifying the number of pages to plot each array across

(cannot be used with per.page below).

per.page An integer specifying the number of arrays to plot per page.

onScreen A logical value representing whether to plot to the screen.

margin A vector representing the margins of each plot (bottom, left, top,

right).

B.5 techrepcheck

B.5.1 Usage

techrepcheck(object , array , sample , high.flag = TRUE ,

flagBothColor = "Purple", flag1stColor = "Green",

flag2ndColor = "Orange", margin = c(6.1, 5.6, 4.1, 2.6))

B.5.2 Parameters

object The microarray data object loaded with read.madata().

array A vector of integers specifying which arrays to check the technical

replicates of. (optional).

sample A vector of integers specifying which samples to check the techni-

cal replicates of (not to be specified at the same time as array).

high.flag A logical value indicating whether to highlight flagged probes.

flagBothColor A string specifying the colour to use for plotting probes flagged

in both technical replicates.

flag1stColor A string specifying the colour to use for plotting probes flagged

in the first technical replicate only.

flag2ndColor A string specifying the colour to use for plotting probes flagged

in the second technical replicate only.

margin A vector representing the margins of each plot (bottom, left, top,

right).
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B.6 transform.madata

B.6.1 Usage

transform.madata(_data , method=c("shift","glowess","rlowess","mglowess",

"linlog","linlogshift"), lolim , uplim , f=0.1, iter=3,

degree=1, cg=0.3, cr=0.3, n.bin=10,

draw=c("screen", "dev", "off"), ...)

B.6.2 Parameters

data The microarray data object loaded with read.madata().

method The method to apply for transformation.

lolim Low shift limit.

uplim High shift limit.

f The span parameter for a LOWESS transformation.

iter Number of iterations to make the LOWESS fit more robust.

degree The degree of polynomials used in LOWESS fits, up to 2.

cg The percentage of genes to be transformed linearly for the green

channel.

cr The percentage of genes to be transformed linearly for the red

channel.

n.bin The number of bins for calculating the variance after linlogshift.

draw Where to plot the transformation RIPlots.

B.7 fitmaanova

B.7.1 Usage

fitmaanova(madata , formula , random= ~1, covariate = ~1,

method=c("REML","ML","MINQE -I","MINQE -UI", "noest"),

verbose=TRUE , subCol=FALSE)

B.7.2 Parameters

madata The microarray data object loaded with read.madata().

formula A model formula defining the expected relationship between ex-

perimental design terms.

random A formula indicating which terms are randomly e↵ects.

covariate Array specific covariates.

method The method used for solving the mixed-model equation. Default

is REML.

verbose A logical value specifying whether to display messages about cal-

culation progress.

subCol A logical value specifying whether to subtract column mean. De-

fault is FALSE but two-colour arrays are always TRUE.
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B.8 matest

B.8.1 Usage

matest(data , anovaobj , term , Contrast , n.perm =1000 , nnodes=1,

critical =.9, test.type = c("ttest", "ftest"),

shuffle.method=c("sample", "resid"),

MME.method=c("REML","noest","ML"),

test.method=c(1,1),pval.pool=TRUE , verbose=TRUE)

B.8.2 Parameters

data The microarray data object loaded with read.madata().

anovaobj A MAANOVA data object obtained from fitmaanova().

term The term to be tested with an F-test.

Contrast A contrast matrix specifying levels of the term to test, each row

is a separate test, whilst columns represent the levels of the term.

n.perm An integer specifying the number of permutations to perform.

nnodes The number of nodes in the MPI cluster for permutation tests.

critical The percentile of the F-distribution to use for conducting permu-

tation tests.

test.type The type of test to perform. Default is ftest where Contrast is

missing and ttest where Contast has been provided.

shuffle.method The method used for data shu✏ing.

MME.method The method used for solving mixed-model equations. The default

is REML.

test.method A vector of integers indicating whether to (1) or not to (0) perform

the F1 and Fs tests, respectively.

pval.pool A logical value specifying whether to use pooled permutation F

values to calculate P values.

verbose A logical value specifying whether to display messages indicating

calculation progress.

B.9 ConvertMATest

B.9.1 Usage

convertmatest(bioreptest , alttest)

B.9.2 Parameters

bioreptest An object returned by matest() representing the F-test results

of a biological replicate term.

alttest An object returned by matest() representing the F-test results

of a non-biological replicate term.
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B.10 adjPval

B.10.1 Usage

adjPval(matestobj , method=c("stepup","adaptive", "stepdown", "jsFDR"))

B.10.2 Parameters

matestobj An object returned by either matest() or ConvertMATest().

method A string specifying the false discovery rate method to apply.

B.11 AnalyseMATest

B.11.1 Usage

analysematest <- (fstat=c("Fs", "F1"), test1 , test2 , test3 , sig1 = 0.05,

sig2 = 0.05, sig3 = 0.05, useAdjPVals = F, prefix = "CATMA")

B.11.2 Parameters

fstat A string specifying which F-statistic to use for plotting a Venn

diagram.

test1 An object representing the first F-test results to be plotted. It

must have been returned by ConvertMATest() and then option-

ally processed by adjPval().

test2 An object representing the second F-test results to be plotted. It

must have been returned by ConvertMATest() and then option-

ally processed by adjPval().

test3 An object representing the third F-test results to be plotted. It

must have been returned by ConvertMATest() and then option-

ally processed by adjPval().

sig1 The significance level to use in deciding which genes are signifi-

cantly di↵erentially expressed in test1.

sig2 The significance level to use in deciding which genes are signifi-

cantly di↵erentially expressed in test2.

sig3 The significance level to use in deciding which genes are signifi-

cantly di↵erentially expressed in test3.

useAdjPVals A logical value specifying whether adjusted p-values should be

used.

prefix A string indicating the prefix of probe IDs to be included in the

Venn diagram. Can be set as an empty string when not required.
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Appendix C

MAANOVA Analysis Script

This R script is the top-level script for the microarray analysis of the senescence data.

It calls a number of functions which operate MAANOVA’s pre-ANOVA quality control,

ANOVA model fitting and post-ANOVA identification of significantly di↵erentially ex-

pressed genes.

1 rm(list=ls())

2 library(whrimaanova)

3

4 # Change to the folder containing data from the experiment

5 setwd("~/Documents/MAANOVA/Data")

6

7 # Read in the data

8 catma <- read.madata("catma_bc_medians.txt", designfile="design.txt",

9 metarow=1, metacol=2, row=3, col=4, probeid=5,

10 intensity =6, arrayType="twoColor", log.trans=T, spotflag=T)

11

12 # Change to a folder where output can be placed

13 setwd("~/Documents/MAANOVA/")

14

15 # GridCheck , RIPlot and TechRepCheck the data

16 gridcheck(catma)

17 riplot(catma)

18 catma <- techrepcheck(catma)

19

20 # Save the output before attempting transformation

21 save(catma , file="./After Estimation.RData")

22

23 # Transform the data to remove anomalies

24 hri <- transform.madata(catma , method="mglowess", f=0.1, draw="pdf")

25 file.rename("./Output/Data Transformation RIPlots.pdf",

26 "./Output/MGLowess Transformation RIPlots.pdf")

27 hri <- transform.madata(catma , method="rlowess", f=0.1, draw="pdf")

28 file.rename("./Output/Data Transformation RIPlots.pdf",

29 "./Output/RLowess Transformation RIPlots.pdf")

30

31 # Check the final result in graphical form

32 arrayview(catma , per.page="2")

33

34 # Save the data ready for model fitting

35 save(catma , file="./Ready for Model Fitting.RData")
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36

37 # Fit a model to the data based on the terms of variation given

38 anova <- fitmaanova(catma , ~Dye+Array +(Day*ToD)/BioRep , ~Dye+Array)

39

40 # Save the ANOVA output

41 save(anova , file="./After Anova.RData")

42

43 # Do F-tests on the terms to find how much variation they provide to the model

44 # Remove the ftests as they are complete because they take up a lot of RAM

45 ftest4 <- matest(catma , anova , "Day:ToD:BioRep", n.perm =1)

46 save(ftest4 , file="./Output/F-Test Day x ToD x BioRep.RData")

47

48 ftest1 <- matest(catma , anova , "Day", n.perm =1)

49 save(ftest1 , file="./Output/F-Test Day.RData")

50 test1 <- convertmatest(ftest4 , ftest1)

51 rm(ftest1)

52

53 ftest2 <- matest(catma , anova , "ToD", n.perm =1)

54 save(ftest2 , file="./Output/F-Test ToD.RData")

55 test2 <- convertmatest(ftest4 , ftest2)

56 rm(ftest2)

57

58 ftest3 <- matest(catma , anova , "Day:ToD", n.perm =1)

59 save(ftest3 , file="./Output/F-Test Day x ToD.RData")

60 test3 <- convertmatest(ftest4 , ftest3)

61 rm(ftest3 , ftest4)

62

63 # Adjust P Values for false discovery rate

64 test1 <- adjPval(test1 , "stepdown")

65 test2 <- adjPval(test2 , "stepdown")

66 test3 <- adjPval(test3 , "stepdown")

67

68 # Test the terms and draw a Venn Diagram

69 analysematest("Fs", test1 , test2 , test3 , useAdjPVals=T)

244



Appendix D

DrawGOGraphs() Source Code

This R script accepts output BGO files from BiNGO and returns a PDF of informative

plots about the GO terms which were identified as over-represented.

1 DrawGOGraphs <- function(bgoFolder , csvOutFile = "BiNGOSpreadsheet.csv",

pdfOutFile = "BiNGOPlots.pdf", useCorrectedPvalue = F, plotLabelInCentre = F)

{

2 # A function to pick black or white as a contrasting text colour

3 SetTextContrastColor <- function(color)

4 {

5 ifelse( mean(col2rgb(color)) > 127, "black", "white")

6 }

7

8 # Get the lists of files from the BINGO output

9 bgoList <- dir(bgoFolder , ".bgo", full.names=T)

10

11 # Setup a legend table of colors

12 colorList <- colors ()[c(555 ,29 ,144 ,258 ,99 ,588 ,153 ,182 ,231 ,79 ,41 ,20)]

13 contrastTextColor <- unlist(lapply(colorList , SetTextContrastColor))

14 colorList <- data.frame(density = rep(c(100, 40, 40, 40, 40), each =12), angle

= rep(c(0, 22, 157, 112, 67), each = 12), color=rep(colorList , 5),

contrast=c(contrastTextColor , rep("black" ,48)), stringsAsFactors=F)

15

16 # Prepare to produce the ontList from the bgo files

17 ontList <- NULL

18

19 # Read in the data from the BGO files

20 clusters <- NULL

21 for (i in 1: length(bgoList)) {

22 # Read the data in to a messy table with header info

23 curCluster <- read.table(bgoList[i], fill=T, sep="\t", quote="", comment.

char="", blank.lines.skip=F, as.is=T, col.names=c("GO -ID", "p-value",

"corr p-value", "x in cluster", "x in universe", "cluster size", "

universe size", "Description", "Genes in test set"))

24

25 # Find the end of the header and cut it off

26 lineBeforeData <- which(curCluster [,1] == "GO -ID")

27 curCluster <- curCluster [-(1: lineBeforeData),]

28

29 # Add the ontologies to the ontList

30 if (nrow(curCluster) > 0) {

31 ontList <- rbind(ontList , cbind(i, curCluster))
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32 }

33

34 # Store this cluster ’s data in the clusters variable

35 clusters [[i]] <- curCluster

36 }

37

38 colnames(ontList) <- c("Cluster No.", "GO -ID", "p-value", "corr p-value", "x

in cluster", "x in universe", "cluster size", "universe size", "

Description", "Genes in test set")

39 write.csv(ontList , csvOutFile , row.names=F)

40

41 # Open a PDF file

42 pdf(pdfOutFile , height =7.5, width =11)

43 layout(matrix (1:2 ,1), widths=c(2,3))

44

45 # Go through the clusters one at a time

46 i <- 0

47 for (curData in clusters) {

48 i <- i + 1

49 # Check that the cluster has any GO terms

50 if (nrow(curData) > 0) {

51 # Sort the data into order of GO ontologies instead of P-value

52 curData <- curData[order(as.numeric(curData$p.value)) ,]
53

54 # Find the values which will be used to plot

55 pvalCol <- 1 * useCorrectedPvalue + 2

56 plotValues <- -log(as.numeric(curData[,pvalCol ]))

57

58 # Get the labels to be plotted above the bars

59 labelValues <- as.numeric(curData[,"x.in.cluster"]) / as.numeric(

curData[,"cluster.size"]) * 100

60 labelValues <- sprintf("%0.2f%s", labelValues , "%")

61

62 # Make a plot title

63 plotTitle <- sprintf("Cluster %d (%d members)", i, as.numeric(curData

[1,6]))

64 par(mar=c(1 ,4.5 ,2.5 ,0))

65

66 # Draw a barplot and put labels on the bars

67 xvals <- barplot(plotValues , density=colorList$density , angle=

colorList$angle , col=colorList$color , main=plotTitle , ylab="-log

(p-value)", cex.lab=1.2, col.main="blue2", col.lab="red2", ylim=c

(0, ceiling(max(plotValues))))

68 nBars <- length(xvals)

69 cexFactor <- min (12 / nBars , 1)

70 if (plotLabelInCentre) {

71 text(xvals , plotValues/2, labelValues , srt=90, col=colorList$
contrast , cex=cexFactor)

72 } else {

73 text(xvals , plotValues , labelValues , pos=3)

74 }

75

76 par(mar=c(0,1,0,0))

77

78 # Draw histogram legend

79 legendSize <- min(25 / nBars , 1)

80 plot.new()

81 legend("left", legend=curData$Description , fill=colorList$color ,
density=colorList$density , angle=colorList$angle , bty="n", cex=
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legendSize)

82 }

83 }

84

85 dev.off()

86 }
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Appendix E

Supplementary GO term results

After analysis, by BiNGO, of clusters returned by SplineCluster, a number of Gene

Ontologies were identified as over-represented. This table lists those terms and shows

the expected abundance of the term given the number of genes with that ontology

in the Arabidopsis genome and also the actual observed abundance in that cluster.

The discrepancy between these values allows the calculation of a p-value following a

hypergeometric test. This p-value was then corrected using a Bonferroni multiple testing

correction to eliminate most falsely identified significant terms. Those terms which were

still below the (p < 0.05) significance threshold are the only ones to be shown.

Cluster GO Term Term Observed Corrected

Number Description Abundance in Cluster p-value

1 cell wall organization 0.83% 7.21% 1.17 ⇥10�3

1 cell wall modification 0.63% 6.31% 1.87 ⇥10�3

1 cell wall organization or biogenesis 1.37% 7.21% 4.83 ⇥10�2

5 response to jasmonic acid stimulus 0.74% 5.88% 3.11 ⇥10�2

6 cellular respiration 0.35% 5.71% 3.41 ⇥10�2

6 energy derivation by oxidation of organic

compounds

0.35% 5.71% 3.41 ⇥10�2

10 defense response 3.08% 15.09% 4.17 ⇥10�2

12 response to starvation 0.52% 9.52% 1.82 ⇥10�2

19 response to water 1.43% 14.49% 1.06 ⇥10�5

19 response to water deprivation 1.40% 13.04% 1.12 ⇥10�4

19 response to abscisic acid stimulus 1.76% 13.04% 7.62 ⇥10�4

19 response to organic substance 5.89% 20.29% 1.05 ⇥10�2

19 response to desiccation 0.11% 4.35% 1.09 ⇥10�2

19 response to hormone stimulus 4.42% 17.39% 1.14 ⇥10�2

19 response to endogenous stimulus 4.76% 17.39% 2.35 ⇥10�2

19 cold acclimation 0.14% 4.35% 2.59 ⇥10�2

25 transport 8.72% 20.66% 1.57 ⇥10�2

25 establishment of localization 8.80% 20.66% 1.82 ⇥10�2

25 localization 8.97% 20.66% 2.51 ⇥10�2

25 response to osmotic stress 2.57% 9.92% 2.72 ⇥10�2

29 pyrimidine nucleotide biosynthetic pro-

cess

0.06% 5.00% 7.65 ⇥10�4

Continued on next page

248



Cluster GO Term Term Observed Corrected

Number Description Abundance in Cluster p-value

29 pyrimidine nucleotide metabolic process 0.08% 5.00% 1.90 ⇥10�3

37 cellular process 37.68% 59.74% 3.92 ⇥10�2

39 post-translational protein modification 5.38% 28.57% 2.37 ⇥10�2

39 response to fungus 0.96% 14.29% 3.97 ⇥10�2

44 response to wounding 0.86% 22.73% 1.67 ⇥10�4

44 response to stress 10.68% 45.45% 6.29 ⇥10�3

45 response to ozone 0.14% 5.88% 1.33 ⇥10�2

46 regulation of vegetative phase change 0.03% 3.77% 1.85 ⇥10�2

50 translation 2.74% 11.90% 2.65 ⇥10�2

50 cellular biosynthetic process 11.33% 26.19% 3.34 ⇥10�2

51 DNA metabolic process 1.48% 11.58% 5.83 ⇥10�5

51 DNA replication 0.55% 7.37% 3.40 ⇥10�4

51 cellular nitrogen compound metabolic

process

8.32% 22.11% 1.25 ⇥10�2

51 nitrogen compound metabolic process 8.65% 22.11% 2.22 ⇥10�2

51 nucleobase, nucleoside, nucleotide and

nucleic acid metabolic process

5.16% 15.79% 4.58 ⇥10�2

55 translation 2.74% 39.74% 1.16 ⇥10�26

55 gene expression 4.48% 42.31% 2.34 ⇥10�22

55 cellular macromolecule biosynthetic pro-

cess

4.87% 41.03% 5.40 ⇥10�20

55 macromolecule biosynthetic process 4.93% 41.03% 8.01 ⇥10�20

55 cellular biosynthetic process 11.33% 46.15% 1.98 ⇥10�12

55 biosynthetic process 12.27% 46.15% 2.43 ⇥10�11

55 cellular protein metabolic process 11.10% 43.59% 4.87 ⇥10�11

55 cellular macromolecule metabolic process 15.12% 47.44% 2.66 ⇥10�9

55 protein metabolic process 13.04% 43.59% 5.17 ⇥10�9

55 macromolecule metabolic process 17.26% 47.44% 1.42 ⇥10�7

55 primary metabolic process 27.23% 52.56% 4.05 ⇥10�4

55 cellular metabolic process 27.29% 52.56% 4.31 ⇥10�4

55 cellular process 37.68% 61.54% 3.60 ⇥10�3

55 metabolic process 34.58% 57.69% 5.48 ⇥10�3

55 nucleosome organization 0.32% 5.13% 2.40 ⇥10�2

55 nucleosome assembly 0.32% 5.13% 2.40 ⇥10�2

55 chromatin assembly 0.34% 5.13% 2.90 ⇥10�2

55 DNA packaging 0.34% 5.13% 2.90 ⇥10�2

55 protein-DNA complex assembly 0.35% 5.13% 3.48 ⇥10�2

58 photosynthesis 1.51% 15.00% 5.71 ⇥10�5

60 anatomical structure development 6.92% 20.48% 1.82 ⇥10�2

66 cellular nitrogen compound metabolic

process

8.32% 22.58% 4.29 ⇥10�4

66 chloroplast organization 0.65% 6.45% 5.81 ⇥10�4

66 nitrogen compound metabolic process 8.65% 22.58% 9.28 ⇥10�4

66 plastid organization 1.08% 7.26% 3.70 ⇥10�3

66 nucleobase, nucleoside, nucleotide and

nucleic acid metabolic process

5.16% 14.52% 3.49 ⇥10�2

67 photosynthesis 1.51% 9.38% 1.54 ⇥10�4

67 photosynthesis, light harvesting 0.26% 4.69% 2.09 ⇥10�4

Continued on next page
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Cluster GO Term Term Observed Corrected

Number Description Abundance in Cluster p-value

67 photosynthesis, light reaction 0.86% 6.25% 4.56 ⇥10�3

67 photosynthesis, light harvesting in photo-

system I

0.06% 2.34% 1.14 ⇥10�2

68 photosynthesis 1.51% 8.42% 3.65 ⇥10�2

68 pseudouridine synthesis 0.11% 3.16% 4.45 ⇥10�2

73 photosynthesis 1.51% 20.75% 3.06 ⇥10�17

73 photosynthesis, light reaction 0.86% 12.26% 1.08 ⇥10�9

73 photosynthetic electron transport chain 0.35% 8.49% 1.46 ⇥10�8

73 generation of precursor metabolites and

energy

1.68% 14.15% 6.04 ⇥10�8

73 electron transport chain 0.57% 9.43% 7.81 ⇥10�8

73 oxidation reduction 1.06% 10.38% 3.98 ⇥10�6

73 photosynthetic electron transport in pho-

tosystem I

0.22% 5.66% 1.64 ⇥10�5

73 cellular metabolic process 27.29% 45.28% 1.76 ⇥10�2

73 defense response to bacterium 1.29% 7.55% 2.23 ⇥10�2

74 small molecule catabolic process 1.34% 8.25% 1.98 ⇥10�2

74 photosynthesis 1.51% 8.25% 4.66 ⇥10�2

74 cellular carbohydrate metabolic process 2.90% 11.34% 4.90 ⇥10�2

75 embryonic development 2.54% 9.40% 1.23 ⇥10�2

75 embryonic development ending in seed

dormancy

2.22% 8.72% 1.27 ⇥10�2

75 seed development 2.48% 8.72% 4.11 ⇥10�2

76 photosynthesis 1.51% 15.29% 1.04 ⇥10�7

76 translation 2.74% 18.82% 2.87 ⇥10�7

76 gene expression 4.48% 21.18% 9.16 ⇥10�6

76 cellular macromolecule biosynthetic pro-

cess

4.87% 20.00% 1.79 ⇥10�4

76 photosynthesis, light reaction 0.86% 9.41% 1.92 ⇥10�4

76 macromolecule biosynthetic process 4.93% 20.00% 2.14 ⇥10�4

76 cellular biosynthetic process 11.33% 30.59% 4.36 ⇥10�4

76 cellular metabolic process 27.29% 51.76% 4.73 ⇥10�4

76 biosynthetic process 12.27% 30.59% 1.98 ⇥10�3

76 electron transport chain 0.57% 7.06% 2.58 ⇥10�3

76 photosynthetic electron transport chain 0.35% 5.88% 3.48 ⇥10�3

76 metabolic process 34.58% 57.65% 3.69 ⇥10�3

76 generation of precursor metabolites and

energy

1.68% 10.59% 3.94 ⇥10�3

76 photosynthetic electron transport in pho-

tosystem I

0.22% 4.71% 9.02 ⇥10�3

76 oxidation reduction 1.06% 8.24% 1.05 ⇥10�2

76 cellular process 37.68% 58.82% 2.03 ⇥10�2

77 pigment biosynthetic process 0.71% 5.41% 4.50 ⇥10�3

77 pigment metabolic process 0.82% 5.41% 1.34 ⇥10�2

77 quinone cofactor metabolic process 0.14% 2.70% 1.78 ⇥10�2

77 quinone cofactor biosynthetic process 0.14% 2.70% 1.78 ⇥10�2

77 metabolic process 34.58% 50.00% 4.04 ⇥10�2
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Appendix F

Multimodelling Source Code

This R script is the co-ordinating script for the multi-modelling process. It assembles

lists of genes appropriate for VBSSM, and then initiates an instance of MATLAB which

is tasked to provide the modelling results of VBSSM. Once the model is complete, an-

other is initiated until all pairs have been present at least 5 times.

1 bigGeneList <- as.matrix(read.table("GeneList.txt")) # Load in the gene list

2 nGenes <- nrow(bigGeneList) # Count the number of rows

3

4 # Check the two data files and if they are missing , create new empty ones

5 if (!file.exists("Pairs.RData")) {

6 warning("Pairs.RData doesn ’t exist; creating a new one")

7 pairs <- matrix(0, nrow=nGenes , ncol=nGenes)

8 save(pairs , file = "Pairs.RData")

9 }

10

11 if (!file.exists("Counts.RData")) {

12 warning("Counts.RData doesn ’t exist; creating a new one")

13 counts <- rep(0, nGenes)

14 save(counts , file = "Counts.RData")

15 }

16

17 load("Pairs.RData") # Load the pairs file

18 load("Counts.RData") # Load the counts file

19

20 threshold <- 1 # Only pairs picked less than this number of times are selected

for modelling

21 checkcapacity <- FALSE # Don ’t check capacity the first time

22

23 while (threshold <= 5) { # Continue until the threshold is greater than

24 repeat {

25 repeat {

26 if (!checkcapacity) { # If check isn ’t required , skip to workings

27 break

28 }

29 system("sleep 270") # Wait to check for more capacity on the cluster

30 maxpercent <- read.table("/Users/sdjmchattie/Model Parameters/MaxPercent.

txt")[[1]] # Read in the max cluster should be used

31 allprocesses <- length(system("qstat", intern=T)) - 2 # Find out how many

things are running

32 if (( allprocesses + 10) / 56 * 100 <= maxpercent) { # If new processes won
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’t push over the limit

33 break

34 }

35 }

36

37 idx <- matrix(F, ncol=nGenes , nrow=nGenes) # Start an index which will

diagonally cut the pairs matrix

38 pair <- matrix(0, ncol=2, nrow=nGenes * (nGenes - 1) / 2) # Start a matrix

of gene pairs

39 numPairs <- nGenes * (nGenes - 1) / 2 # Calculate total number of pairs

40 for (i in 1:(nGenes -1)) { # Loop rows of the table

41 for (j in (i + 1):nGenes) { # Loop cols of the table

42 idx[i,j] <- T # Set a filter index for the pairs table

43 pairCount <- ((j - 1) * (j - 2) / 2) + i

44 pair[pairCount ,] <- c(i, j) # Make an entry in pair storing which genes

are in each pair

45 }

46 }

47 lowPairs <- which(pairs[idx] < threshold) # Find out which pairs are

represented less than 4 times

48 if (length(unique(as.vector(pair[lowPairs ,]))) < 88) { # Less than 88 genes

left at threshold

49 threshold <- threshold + 1 # Raise threshold

50 cat("\nThreshold is being raised to", threshold , "\n\n") # Log the change

51 checkcapacity <- FALSE # Don ’t check capacity next loop

52 break # Exit repeat loop (drop back to while loop)

53 }

54 geneidx <- NULL # Start the geneidx variable

55 while(length(geneidx) < 88) { # Keep going until the geneidx has at least 88

entries

56 geneidx <- unique(c(geneidx , pair[sample(lowPairs , 1) ,])) # Pull pairs at

random and make sure genes remain unique in the index

57 }

58

59 folders <- dir(pattern="^[0 -9]+$") # Get a list of files/folders with

numbers only

60 folders <- as.numeric(folders) # Change the list into integers

61 newfolder <- sprintf("%04d", setdiff (1:9999 , folders)[1]) # Get next

available number

62 system(paste("cp -Rp Template", newfolder)) # Make an exact copy of the

Template folder

63

64 curdir <- getwd () # Record the current directory

65 setwd(paste("./", newfolder , sep="")) # Change to the new folder

66

67 smallGeneList <- bigGeneList[geneidx] # Subset the larger list

68 write.table(smallGeneList , "Genes.txt", row.names=F, col.names=F, quote=F)

69

70 cat("\nStarting list number", newfolder , "at", format(Sys.time(), "%H:%M on %

d-%m-%Y"), "\n") # Log to the screen

71 cat("Threshold is currently", threshold , "\n") # Log to the screen

72

73 source("extract.R") # Extract the data from the ANOVA object

74 system("matlab -nodisplay -nodesktop -nosplash -r script > output.txt 2>

errors.txt", wait=F) # Initiate the SSM Model

75

76 checkcapacity <- TRUE # Check capacity next time now that new processes are

running

77
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78 setwd(curdir) # Change back to the original folder

79

80 # Set values in Pairs and Counts

81 counts[geneidx] <- counts[geneidx] + 1

82 for (i in geneidx) {

83 for (j in geneidx) {

84 if (i != j) {

85 pairs[i,j] <- pairs[i,j] + 1

86 }

87 }

88 }

89

90 # Backup RData files in case of cluster crash

91 file.copy("Pairs.RData", paste("./RData Backups/Pairs before ", newfolder , ".

RData", sep=""))

92 file.copy("Counts.RData", paste("./RData Backups/Counts before ", newfolder ,

".RData", sep=""))

93

94 # Save RData files with new data

95 save(pairs , file="Pairs.RData")

96 save(counts , file="Counts.RData")

97 }

98 }

99

100 cat("\nAll models complete!\n")
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Appendix G

Metropolis-like VBSSM Source

Code

G.1 Altered VBSSM Process

The VBSSM processing script was split into four files so that the second and third could

be iterated until a maximum mean F could be found. The contents of each of these files

are as shown.

G.1.1 VBSSMPart1.m

1 scriptPath=’/Volumes/cluster/sdjmchattie/Work/LocalisedModels/VBSSMScripts/’;

2 addpath(scriptPath);

3 mkdir(’F_KK’);

4 mkdir(’log’);

5 mkdir(’vbnet’);

6 load data.txt;

7 [Obs_seq , Input_seq] = norm_genes(data , 11);

8 save Obs_seq.mat Obs_seq;

9 save Input_seq.mat Input_seq;

10 delete(’VBSSMPart1.m’);

11 delete(’VBSSMPart1_errors.txt’);

12 delete(’VBSSMPart1_output.txt’);

13 exit;

G.1.2 VBSSMPart2.m

1 scriptPath=’/Volumes/cluster/sdjmchattie/Work/LocalisedModels/VBSSMScripts/’;

2 addpath(scriptPath);

3 inp1 = num2cell (1:5);

4 inp2 = repmat ({pwd}, 1, 5);

5 inp3 = repmat ({lowkk}, 1, 5);

6 inp4 = repmat ({ highkk}, 1, 5);

7 copyfile ([ scriptPath , ’FSvskk.m’],’FSvskk.m’);

8 s = dfeval(@FSvskk ,inp1 ,inp2 ,inp3 ,inp4 ,’PathDependencies ’,{pwd},’Configuration ’,

defaultParallelConfig);

9 delete(’FSvskk.m’);

10 delete(’VBSSMPart2.m’);
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11 delete(’VBSSMPart2_errors.txt’);

12 delete(’VBSSMPart2_output.txt’);

13 exit;

G.1.3 VBSSMPart3.m

1 scriptPath=’/Volumes/cluster/sdjmchattie/Work/LocalisedModels/VBSSMScripts/’;

2 addpath(scriptPath);

3 [MaxF MaxK] = F_vs_k_plot(5,’./F_KK’);

4 cd ..;

5 save MaxF.txt MaxF -ascii;

6 save MaxK.txt MaxK -ascii;

7 print(’-dpsc’,’F_vs_K_Plot.eps’);

8 delete(’VBSSMPart3.m’);

9 delete(’VBSSMPart3_errors.txt’);

10 delete(’VBSSMPart3_output.txt’);

11 exit;

G.1.4 VBSSMPart4.m

1 scriptPath=’/Volumes/cluster/sdjmchattie/Work/LocalisedModels/VBSSMScripts/’;

2 addpath(scriptPath);

3 [M] = makeCytoscape (0,5,0,’./vbnet/VB_base_net_seed’,[’_kk_’ num2str(MaxK) ’.mat’

]);

4 cd ./vbnet;

5 for i=1:5;

6 for j=lowkk:highkk;

7 if j ~= MaxK;

8 delete ([’VB_base_net_seed’ num2str(i) ’_kk_’ num2str(j) ’.mat’]);

9 end;

10 end;

11 end;

12 cd ..;

13 delete(’VBSSMPart4.m’);

14 delete(’VBSSMPart4_errors.txt’);

15 delete(’VBSSMPart4_output.txt’);

16 delete(’Genes.txt’);

17 exit;

G.2 Coordinating R Script

This R script is the co-ordinating script for the Metropolis-like VBSSM process. It

assembles lists of genes appropriate for VBSSM, and then initiates an instance of MAT-

LAB which is tasked to provide the modelling results of VBSSM. After each model, the

gene list is updated based on the fit of the previous model and this is iterated until no

better fitting model can be identified.

1 specificGene <- read.table("../../GeneCATMA.txt", sep="\t", quote="", as.is=T,

check.names=F)[[1]] # Load in the specific gene for modelling
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2 sigGenes <- read.table("CloseMatches.txt", sep="\t", quote="", as.is=T, check.

names=F)[[1]] # Load in the list of significant genes from F-test

3

4 modFactor <- 1.05 # Set the factor to use for modifying swapNumber

5 modelNum <- 1 # Set the model number to be done next

6 targetListSize <- 88 # Set the target number of genes per model

7 swapNumber <- 20 # Set the number of genes to swap before the next model

8 Fgold <- -100000 # Set the F-score to beat

9 goldGeneList <- c(specificGene , sample(sigGenes , (targetListSize - 1))) # Make a

random list of genes

10 acceptance <- c(1, 0, 0, 0, 1, 0, 0, 0) # Make a vector of 0 for rejected and 1

for accepted

11

12 folders <- dir(pattern="^Run[0-9]+$") # Get a list of files/folders with runs

13

14 unfinished <- NULL # Set a new variable to store the unfinished folder name

15 write.table(NULL , "TimeCheck") # Create a file for checking the time since last

model

16 timeNow <- file.info("TimeCheck")["mtime"][[1]] # Find the time right now

17 for (folder in folders) {

18 # Go through the folders

19 modHours <- difftime(timeNow , file.info(file.path(folder , "RunData.RData"))["

mtime"][[1]] , unit="hours") # Find the number of hours since the run was

modified

20 if (modHours > 2) {

21 # If run hasn ’t been updated in 2 hours , assume not running

22 test <- new.env(parent = baseenv ()) # Start a new environment

23 load(file.path(folder , "RunData.RData"), test) # Load the RunData into the

environment

24 if (round(test$swapNumber) > 0) {

25 # If the run still has more to do

26 rm(test) # Remove the test environment

27 unfinished <- folder # Set the folder to continue into unfinished

28 break # Break the for loop

29 }

30 rm(test) # Remove the test environment

31 }

32 }

33

34 if (is.null(unfinished)) {

35 # If there is no unfinished run

36 folders <- as.numeric(substr(folders , 4, 6)) # Change the list into integers

37 newfolder <- sprintf("Run %03d", setdiff (1:999 , folders)[1]) # Get next

available number

38 dir.create(newfolder) # Make the new folder

39 setwd(newfolder) # Change to the new folder

40 } else {

41 setwd(unfinished) # Set the working directory to the unfinished run

42 load("RunData.RData") # Load the data for that run , ready to continue

43 }

44

45 logFile <- file("RunLog.txt", "a") # Append the runlog

46 if (file.exists("RunData.RData")) {

47 # If this is a continued run

48 cat("\n\nRecovering and continuing run from previous attempt ...\n\n\n", file=

logFile) # Log this fact to the log file

49 }

50

51 # Keep going until the swapNumber reaches zero
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52 while(round(swapNumber) > 0) {

53 newfolder <- sprintf("%04d", modelNum) # Create a folder for the model

54 if (file.exists(newfolder)) {

55 suppressValue <- unlink(newfolder , T) # Delete it as it ’s incomplete

56 }

57

58 curdir <- getwd () # Record the current directory

59 dir.create(newfolder) # Make the new folder

60 setwd(newfolder) # Change to the new folder

61

62 numToKeep <- (targetListSize - 1) - round(swapNumber) # Find number of genes

to keep in goldGeneList

63 geneList <- c(specificGene , sample(goldGeneList [-1], numToKeep)) # Keep that

number of genes at random

64 while (length(geneList) < targetListSize) {

65 # Continue to add genes until it ’s full sized

66 numToAdd <- targetListSize - length(geneList) # Calculate how many genes to

add to the list

67 geneList <- c(geneList , sample(sigGenes , numToAdd)) # Add the genes

68 geneList <- unique(geneList) # Make sure no duplicates exist in the list

69 }

70 write.table(geneList , "Genes.txt", row.names=F, col.names=F, quote=F) # Write

the list to the folder

71

72 write.table(NULL , "../../TimeCheck") # Create a file for checking the time

since last model

73 timeNow <- file.info("../../TimeCheck")["mtime"][[1]] # Find the time right

now

74 cat("Beginning model", newfolder , "at", format(timeNow , "%H:%M on %d-%m-%Y"), "

...\n", file=logFile) # Log information

75

76 source("~/Work/LocalisedModels/extract.R") # Extract the data from the ANOVA

object

77 supressValue <- file.copy("/Volumes/cluster/sdjmchattie/Work/LocalisedModels/

VBSSMScripts/VBSSMPart1.m", "VBSSMPart1.m") # Copy normalisation script in

78 system("matlab -nodisplay -nodesktop -nosplash -r VBSSMPart1 > VBSSMPart1_

output.txt 2> VBSSMPart1_errors.txt", wait=T) # Normalise the data

79

80 low <- lowkk <- 8 # Set initial lowkk to 8

81 high <- highkk <- 9 # Set initial highkk to 9

82 loopflag <- TRUE # Set the flag to allow loop

83 while (loopflag) {

84 doModelAgain <- TRUE # Set a flag to redo a model if FSvskk plot fails

85 while (doModelAgain) {

86 doModelAgain <- FALSE # Set it to false as we ’ll assume it went OK

87 # While the flag is set

88 newFile <- file("VBSSMPart2.m", "w") # Open a new file for the middle

script

89 cat("lowkk = ", low ,";\n", sep="", file=newFile) # Put the lowkk into the

script

90 cat("highkk = ", high ,";\n", sep="", file=newFile) # Put the highkk into

the script

91 close(newFile) # Close the new file

92 system("cat /Volumes/cluster/sdjmchattie/Work/LocalisedModels/VBSSMScripts/

VBSSMPart2.m >> VBSSMPart2.m", wait=T) # Append the contents of the

middle script

93

94 # Sleep for a while if the qstat list is full or another model was recently

run
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95 looped <- FALSE # Set the loop test to FALSE

96 while (TRUE) {

97 if (looped) {

98 system("sleep 50") # Wait for 45 seconds before checking capacity

99 }

100 looped <- TRUE # Indicate that the loop has happened at least once

101 write.table(NULL , "~/ModelParameters/TimeCheck") # Create a file for

checking the time since last model

102 timeNow <- file.info("~/ModelParameters/TimeCheck")["mtime"][[1]] # Find

the time right now

103 lastModelTime <- file.info("~/ModelParameters/LastModelStarted")["mtime"

][[1]] # Find the time of the last model to start

104 secsSinceLastModel <- difftime(timeNow , lastModelTime , unit="secs") #

Calculate the minutes between the two times

105 if (secsSinceLastModel > 45) {

106 # If more than 45 seconds have passed since the last model started then

consider starting another

107 qstat <- system("qstat", intern=T) # Get the qstat list

108 qstat <- qstat [ -(1:2)] # Remove header lines

109 qstat <- qstat[substr(qstat , 41, 41) == "r" | substr(qstat , 41, 41) ==

"q"] # Only look at running and waiting jobs

110 runningJobs <- sum(as.numeric(substr(qstat , 98, 102))) # Get the

column for slots and sum it

111 maxPercent <- read.table("~/ModelParameters/MaxCores.txt", sep="\t",

quote="", as.is=T, check.names=F)[[1]] # Load in the max

percentage of cluster to use

112 if (( runningJobs + 5) < maxPercent) {

113 break # Get out of the loop

114 }

115 }

116 }

117

118 write.table(NULL , "~/ModelParameters/LastModelStarted") # Generate a file

to time check the last model run

119 system("matlab -nodisplay -nodesktop -nosplash -r VBSSMPart2 > VBSSMPart2_

output.txt 2> VBSSMPart2_errors.txt", wait=T) # Initiate the SSM Model

120

121 supressValue <- file.copy("/Volumes/cluster/sdjmchattie/Work/

LocalisedModels/VBSSMScripts/VBSSMPart3.m", "VBSSMPart3.m") # Copy

normalisation script in

122

123 waitBeforeCheck <- FALSE

124 countLoops <- 0 # Set the number of attempts to plot FSvskk to 0

125 while (!file.exists("MaxK.txt")) {

126 if (waitBeforeCheck) {

127 system("sleep 15") # Wait for 15 seconds before checking again

128 }

129 system("matlab -nodisplay -nodesktop -nosplash -r VBSSMPart3 > VBSSMPart3

_output.txt 2> VBSSMPart3_errors.txt", wait=T) # Draw the F vs K

plot

130 countLoops <- countLoops + 1 # Add one to the loop counter

131 if (countLoops >= 40) {

132 # If been trying for around 10 minutes

133 unlink("./F_KK/*") # Delete old attempt at model

134 unlink("FS_on.mat") # Delete old FS_on file

135 low <- lowkk # Set the lowk value to the lowest used

136 high <- highkk # Set the highk value to the highest used

137 doModelAgain <- TRUE # Get the model started again

138 break
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139 }

140 waitBeforeCheck <- TRUE

141 }

142 }

143

144 maxK <- read.table("MaxK.txt")[[1]] # Find the MaxK identified so far

145 if (maxK <= lowkk) {

146 lowkk <- lowkk - 1

147 low <- high <- lowkk

148 unlink("MaxK.txt")

149 } else if (maxK >= highkk) {

150 highkk <- highkk + 1

151 low <- high <- highkk

152 unlink("MaxK.txt")

153 } else {

154 loopflag <- FALSE

155 }

156 }

157

158 newFile <- file("VBSSMPart4.m", "w") # Create a new finishing script

159 cat("lowkk = ", lowkk ,";\n", sep="", file=newFile) # Set the lowkk value

160 cat("highkk = ", highkk ,";\n", sep="", file=newFile) # Set the highkk value

161 cat("MaxK = ", maxK ,";\n", sep="", file=newFile) # Set the MaxK variable

162 close(newFile) # Close the new file

163 system("cat /Volumes/cluster/sdjmchattie/Work/LocalisedModels/VBSSMScripts/

VBSSMPart4.m >> VBSSMPart4.m", wait=T) # Append the generic finishing

script

164 system("matlab -nodisplay -nodesktop -nosplash -r VBSSMPart4 > VBSSMPart4_

output.txt 2> VBSSMPart4_errors.txt", wait=T) # Run the finishing script

165

166

167 Fnew <- read.table("MaxF.txt")[[1]] # Find the maximum F-score of the VBSSM

168 cat("\nModel", newfolder , "completed ...\n", file=logFile) # Log the end of the

modelling

169 cat("MaxF for model:", Fnew , "\n", file=logFile) # Log the F-score of the

model

170 if (Fnew > Fgold || runif (1) < exp(-abs(Fnew - Fgold))) {

171 # If the new model is better

172 goldGeneList <- geneList # Set the goldGeneList

173 Fgold <- Fnew # Set the gold F-score

174 acceptance <- c(acceptance , 1) # Set the last model as accepted

175 if (swapNumber > (targetListSize - 1)) {

176 swapNumber <- (targetListSize - 1) # If it has , set it back to the

maximum swapNumber

177 }

178 cat("Model was kept\n", file=logFile) # Log that the model is the new gold

179 cat("New Fgold value:", Fgold , "\n", file=logFile) # Log the new gold F-

score

180 cat("New goldGeneList:", paste(goldGeneList , collapse=", "), "\n\n", file=

logFile) # Log the new list of genes

181 } else {

182 acceptance <- c(acceptance , 0) # Set that the model was rejected

183 cat("Model was discarded\n\n", file=logFile) # Log that it was rejected

184 }

185

186

187 acceptedRatio <- sum(acceptance [-(1: modelNum)]) / 8 # Find the ratio of

accepted models

188 modRatio <- acceptedRatio - 0.25 # Subtract the target ratio
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189 cat("Percentage of accepted models is now:", sprintf("%0.2f%%", (acceptedRatio

* 100)), "\n", file=logFile) # Log the ratio

190

191 if (acceptance[modelNum + 8] == 1) {

192 # If the last model was accepted

193 swapNumber <- swapNumber * modFactor ^ 3 # Increase the swapNumber three

times

194 } else if (modRatio > 0.05) {

195 # If the ratio is too high

196 swapNumber <- swapNumber * modFactor # Make the swapNumber bigger to walk

parameter space faster

197 } else if (modRatio < -0.05) {

198 # If the ratio is too low

199 swapNumber <- swapNumber / modFactor # Reduce swapNumber to reduce speed of

random walk

200 }

201

202 if (swapNumber > (targetListSize - 1)) {

203 # Check that swapNumber hasn ’t exceeded the maximum

204 swapNumber <- (targetListSize - 1) # If it has , set it to the maximum

205 }

206

207 if (round(swapNumber) < 1) {

208 cat("\n\n**********\n** SwapNumber reached zero and has been set back to 5\n

*********\n\n", file=logFile)

209 swapNumber <- 5

210 }

211

212 cat("SwapNumber is now:", round(swapNumber), "\n\n\n", file=logFile) # Log the

new swapNumber

213

214 setwd(curdir) # Change back to the original folder

215 modelNum <- modelNum + 1 # Get ready for next model number

216

217 save(list=c("modelNum", "swapNumber", "Fgold", "acceptance", "goldGeneList"),

file="RunData.RData") # Save the RunData out

218 }

219

220 cat("\nHalting!", file=logFile) # Log end of run

221

222 close(logFile) # Finish with the log file

223 q("no") # Exit R
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Appendix H

White Balance Transformation

Script

This R script is used in the white balance of images used in quantitative phenotype

screening. Once the white balance has been applied, the newly normalised values are

then used to calculate the level of senescence in the leaf area which has been supplied.

1 gatherData <- function(path) {

2 modalvalue <- function(x, na.rm=FALSE) {

3 x = unlist(x);

4 if(na.rm) x = x[!is.na(x)]

5 u = unique(x);

6 n = length(u);

7 frequencies = rep(0, n);

8 for(i in 1:n)

9 {

10 if(is.na(u[i]))

11 {

12 frequencies[i] = sum(is.na(x))

13 } else

14 {

15 frequencies[i] = sum(x==u[i], na.rm=TRUE)

16 }

17 }

18 u[which.max(frequencies)]

19 }

20

21 inputFiles <- dir(path)

22 if (length(inputFiles) == 0) {

23 stop("No files found in that path")

24 }

25 lineNames <- unique(sub(" -[^-]*$", "", inputFiles))

26 repNames <- unique(sub("^.* -([^-]*).txt$", "\\1", inputFiles))

27 temp <- as.matrix(read.table(paste(path , inputFiles [1], sep=""), quote="",

header=F))

28 nTimes <- nrow(temp) / 256

29

30 dataArray <- array(0, c(length(lineNames), 13, length(repNames), nTimes), c("

Line", "RGB Data", "Replicate", "Time"))

31
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32 for (lineNum in 1: length(lineNames)) {

33 lineName <- lineNames[lineNum]

34 cat("Processing ", lineName , "...\n", sep="")

35

36 for (repNum in 1: length(repNames)) {

37 repName <- repNames[repNum]

38

39 fileToOpen <- paste(path , lineName , "-", repName , ".txt", sep="")

40 rawRGB <- as.matrix(read.table(fileToOpen , quote="", header=F))

41

42 for (i in 1: nTimes) {

43 from <- 256 * i - 255

44 to <- 256 * i

45

46 rData <- NULL

47 gData <- NULL

48 bData <- NULL

49

50 for (j in from:to) {

51 rData <- c(rData , rep(rawRGB[j,1], rawRGB[j,2]))

52 gData <- c(gData , rep(rawRGB[j,1], rawRGB[j,3]))

53 bData <- c(bData , rep(rawRGB[j,1], rawRGB[j,4]))

54 }

55

56 if (repNum > 1) {

57 rTrans <- 200 / dataArray[lineNum , 1, 1, i]

58 gTrans <- 200 / dataArray[lineNum , 2, 1, i]

59 bTrans <- 200 / dataArray[lineNum , 3, 1, i]

60 rData <- rData * rTrans

61 gData <- gData * gTrans

62 bData <- bData * bTrans

63 }

64

65 dataArray[lineNum , , repNum , i] <-

66 c(mean(rData), mean(gData), mean(bData),

67 median(rData), median(gData), median(bData),

68 modalvalue(rData), modalvalue(gData), modalvalue(bData),

69 sd(rData), sd(gData), sd(bData),

70 length(rData))

71 }

72 }

73 }

74

75 rownames(dataArray) <- c(lineNames)

76 colnames(dataArray) <- c("rMean", "gMean", "bMean", "rMedian", "gMedian", "

bMedian", "rMode", "gMode", "bMode", "rSD", "gSD", "bSD", "count")

77

78 lineNames <- rownames(dataArray)

79 nLines <- length(lineNames)

80 nReps <- dim(dataArray)[3] - 1

81 nTimes <- dim(dataArray)[4]

82

83 scoreCard <- matrix(0, nrow=nLines*nReps , ncol=nTimes)

84 rownames(scoreCard) <- paste(rep(lineNames , each=nReps), "- Rep", 1: nReps)

85

86 for (l in 1: nLines) {

87 for (r in 2:( nReps + 1)) {

88 rownum <- (l - 1) * nReps + r - 1

89 for (t in 1: nTimes) {
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90 scoreCard[rownum , t] <- dataArray[l,1,r,t] / dataArray[l,2,r,t]

91 }

92 }

93 }

94

95 write.table(scoreCard , file=outfile , quote=F, sep="\t", row.names=T, col.

names=F)

96 }
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Appendix I

Logistic Curve Model Fitting

Script

This R script is used to fit a logistic curve to the phenotype screen data and then process

the resulting curves to identify whether di↵erences exist between the wild type response

and the altered expression lines.

1 plotLogistic <- function(y, x, xshift = 10, xcoef = 1, yshift = 0.7, ycoef = 1,

plot = T, add = F, pch = 4, cex = 0.5, ...) {

2 plotdata <- data.frame(x, y)

3 if (plot) {

4 if (!add) {

5 plot(plotdata , pch = pch , cex = cex , ...)

6 } else {

7 points(plotdata , pch = pch , cex = cex , ...)

8 }

9 }

10

11 try(model <- nls(y ~ m * (1/(1 + exp(n * (-x + a)))) + b, plotdata , list(m =

ycoef , n = xcoef , a = xshift , b = yshift)))

12 if (!exists("model") || model$convInfo$stopMessage != "converged") {

13 stop("The model failed , try different starting parameters")

14 }

15

16 modelpars <- model$m$getAllPars ()
17

18 curveFunc <- function(x, pars = modelpars) {

19 y <- pars["m"] * (1/(1 + exp(pars["n"] * (-x + pars["a"])))) + pars["b"]

20 }

21

22 if (plot) {

23 curve(curveFunc , add=T, ...)

24 }

25

26 invisible(list(ycoef=modelpars["m"],yshift=modelpars["b"],xcoef=modelpars["n"

],xshift=modelpars["a"]))

27 }

28

29 processSenData <- function(filename) {

30 senescence <- read.table(filename ,quote="",sep="\t",fill=T)
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31 timepoints <- as.matrix(senescence [1,])

32 senescence <- as.matrix(senescence [-1,])

33

34 y <- NULL

35 x <- NULL

36

37 for (i in 1:nrow(senescence)) {

38 for (j in 1:ncol(senescence)) {

39 curdata <- senescence[i,j]

40 if (!is.na(curdata)) {

41 x <- c(x, timepoints[j])

42 y <- c(y, curdata)

43 }

44 }

45 }

46

47 returnList <- NULL

48 returnList$x <- x

49 returnList$y <- y

50 returnList$tps <- timepoints

51 returnList$repdata <- senescence

52

53 invisible(returnList)

54 }

55

56 interpolate <- function(target , axis , data) {

57 returnvals <- NULL

58 for (reprow in 1:nrow(data$repdata)) {

59 pars <- NULL

60 try (pars <- plotLogistic(data$repdata[reprow ,], t(data$tps), plot=F))

61 if (is.null(pars)) {

62 warning("Unable to evaluate logistic curve for replicate ", reprow)

63 }

64 else if (axis == 1 || axis == "x") {

65 returnvals <- c(returnvals , pars$ycoef * (1/(1 + exp(pars$xcoef * (-

target + pars$xshift)))) + pars$yshift)
66 }

67 else if (axis == 2 || axis == "y") {

68 returnvals <- c(returnvals , -1 * ((log((pars$ycoef / (target - pars$
yshift)) - 1) / pars$xcoef) - pars$xshift))

69 }

70 else {

71 stop("Invalid option specified for ’axis ’: ", axis)

72 }

73 }

74

75 invisible(returnvals)

76 }

77

78 makePlot <- function(mutant , wt , title , subtitle1="", subtitle2="", seprep=F, cex

=0) {

79 plotErrorBars <- function(x, y, yplus , yminus , widthCoef = 0.008 , col="black"

, ...) {

80 nbars <- length(x)

81 xmax <- max(x)

82 xmin <- min(x)

83 ebWidth <- (xmax -xmin) * widthCoef

84 for (bar in 1: nbars) {

85 xbar <- x[bar]
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86 upperbar <- y[bar] + yplus[bar]

87 lowerbar <- y[bar] - yminus[bar]

88 plotx <- c(xbar ,xbar)

89 ploty <- c(upperbar , lowerbar)

90 lines(plotx , ploty , col=col , ...)

91 plotx <- c(xbar -ebWidth , xbar+ebWidth)

92 ploty <- c(upperbar , upperbar)

93 lines(plotx , ploty , col=col , ...)

94 ploty <- c(lowerbar , lowerbar)

95 lines(plotx , ploty , col=col , ...)

96 }

97 }

98

99 par(mar = c(5, 4, 6, 4) + 0.1)

100 xlim <- range(wt$x)
101 ylim <- range(mutant$y, wt$y)
102 ylim [1] <- floor(ylim [1] * 10) / 10

103 ylim [2] <- ceiling(ylim [2] * 10) / 10

104 plot(NULL , xlim=xlim , ylim=ylim , xaxt="n", yaxt="n", xlab="Days after

Darkness", ylab="Yellowing", main=title)

105 posx <- xlim [1] + (xlim[2]-xlim [1]) * 0.2

106 posy <- ylim [1] + (ylim[2]-ylim [1]) * 0.95

107 text(posx , posy , subtitle1 , cex =0.7)

108 text(posx , posy , pos=1, offset =0.7, subtitle2 , cex =0.7)

109 xticks <- xlim [1]: xlim [2]

110 yticks <- seq(ylim[1],ylim [2] ,0.1)

111 axis(1, xticks , cex.axis =0.7)

112 axis(2, yticks , cex.axis =0.7, las =2)

113 for (i in xticks) {

114 abline(v=i, col="lightgrey", lty="dashed", lwd =0.5)

115 }

116 for (i in yticks) {

117 abline(h=i, col="lightgrey", lty="dashed", lwd =0.5)

118 }

119

120 if (seprep) {

121 mainlwd <- 2

122 }

123 else {

124 mainlwd <- 1

125 }

126

127

128 for (reprow in 1:nrow(wt$repdata)) {

129 wtpars <- NULL

130 try (wtpars <- plotLogistic(wt$repdata[reprow ,], t(wt$tps), col="

palegreen4", cex=cex , add=T, plot=seprep))

131 if (is.null(wtpars)) {

132 warning("Unable to evaluate logistic curve for wildtype replicate ",

reprow)

133 }

134 else {

135

136 }

137 }

138 for (reprow in 1:nrow(mutant$repdata)) {

139 mutantpars <- NULL

140 try (mutantpars <- plotLogistic(mutant$repdata[reprow ,], t(mutant$tps),
col="pink", cex=cex , add=T, plot=seprep))
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141 if (is.null(mutantpars)) {

142 warning("Unable to evaluate logistic curve for mutant replicate ",

reprow)

143 }

144 else {

145

146 }

147 }

148

149 wtpars <- plotLogistic(wt$y, wt$x, col="green", cex=cex , add=T, lwd=mainlwd)

150 if (!seprep) {

151 ebx <- sort(unique(wt$x))
152 eby <- wtpars$ycoef * (1/(1 + exp(wtpars$xcoef * (-ebx + wtpars$xshift)))

) + wtpars$yshift
153 ebse <- NULL

154 for (x in ebx) {

155 yvals <- wt$y[wt$x == x]

156 ebse <- c(ebse , sd(yvals)/sqrt(length(yvals)))

157 }

158 plotErrorBars(ebx , eby , ebse , ebse , col="green")

159 }

160

161 mutantpars <- plotLogistic(mutant$y, mutant$x, col="red", cex=cex , add=T, lwd

=mainlwd)

162 if (!seprep) {

163 ebx <- sort(unique(mutant$x))
164 eby <- mutantpars$ycoef * (1/(1 + exp(mutantpars$xcoef * (-ebx +

mutantpars$xshift)))) + mutantpars$yshift
165 ebse <- NULL

166 for (x in ebx) {

167 yvals <- mutant$y[mutant$x == x]

168 ebse <- c(ebse , sd(yvals)/sqrt(length(yvals)))

169 }

170 plotErrorBars(ebx , eby , ebse , ebse , col="red")

171 }

172

173 maxwtx <- wtpars$xshift
174 maxwty <- wtpars$ycoef / 2 + wtpars$yshift
175 mutantx <- -1 * ((log(( mutantpars$ycoef / (maxwty - mutantpars$yshift)) - 1)

/ mutantpars$xcoef) - mutantpars$xshift)
176 mutanty <- mutantpars$ycoef * (1/(1 + exp(mutantpars$xcoef * (-maxwtx +

mutantpars$xshift)))) + mutantpars$yshift
177 abline(v=maxwtx , col="green")

178 abline(h=maxwty , col="green")

179 abline(v=mutantx , col="red")

180 abline(h=mutanty , col="red")

181 maxwtx <- round(maxwtx , 2)

182 maxwty <- round(maxwty , 2)

183 mutantx <- round(mutantx , 2)

184 mutanty <- round(mutanty , 2)

185 axis(3, c(maxwtx , mutantx), cex.axis =0.7, las=2, lwd=0, lwd.ticks =1)

186 axis(4, c(maxwty , mutanty), cex.axis =0.7, las=2, lwd=0, lwd.ticks =1)

187 }

188

189 wt1 <- processSenData("1-Col0.txt")

190 im244 <- processSenData("1-IM244.txt")

191

192 xlevels <- t1 <- t2 <- p1 <- p2 <- NULL

193 wt1pars <- plotLogistic(wt1$y, wt1$x, plot=F)

267



194 maxwt1x <- wt1pars$xshift
195 maxwt1y <- wt1pars$ycoef / 2 + wt1pars$yshift
196

197 anovaTable <- data.frame(NULL)

198 anovaTable <- rbind(anovaTable , data.frame(Line = "WT", Yellowing = interpolate(

maxwt1x , 1, wt1)))

199 anovaTable <- rbind(anovaTable , data.frame(Line = "IM244", Yellowing =

interpolate(maxwt1x , 1, im244)))

200 test <- aov(Yellowing ~ Line , anovaTable)

201 df <- test$df.residual
202 rms <- sum(test$residuals ^2)/df
203 meanstable <- model.tables(test , "means")

204 linereps <- meanstable$n$Line
205 linemeans <- meanstable$tables$Line
206 n1 <- linereps [1]

207 xbar1 <- linemeans [1]

208 for (line in 2: length(linereps)) {

209 n2 <- linereps[line]

210 xbar2 <- linemeans[line]

211 sed <- sqrt(rms*(1/n1 + 1/n2))

212 newt <- (xbar1 - xbar2) / sed

213 newp <- 1-pt(abs(newt), df)

214 t1 <- c(t1, newt)

215 p1 <- c(p1, newp)

216 }

217 xlevels <- c(xlevels , test$xlevels [[1]][ -1])
218

219

220 anovaTable <- data.frame(NULL)

221 anovaTable <- rbind(anovaTable , data.frame(Line = "WT", Time = interpolate(

maxwt1y , 2, wt1)))

222 anovaTable <- rbind(anovaTable , data.frame(Line = "IM244", Time = interpolate(

maxwt1y , 2, im244)))

223 test <- aov(Time ~ Line , anovaTable)

224 df <- test$df.residual
225 rms <- sum(test$residuals ^2)/df
226 meanstable <- model.tables(test , "means")

227 linereps <- meanstable$n$Line
228 linemeans <- meanstable$tables$Line
229 n1 <- linereps [1]

230 xbar1 <- linemeans [1]

231 for (line in 2: length(linereps)) {

232 n2 <- linereps[line]

233 xbar2 <- linemeans[line]

234 sed <- sqrt(rms*(1/n1 + 1/n2))

235 newt <- (xbar1 - xbar2) / sed

236 newp <- 1-pt(abs(newt), df)

237 t2 <- c(t2, newt)

238 p2 <- c(p2, newp)

239 }

240

241

242 anovaresults <- data.frame(Line = xlevels , SameTimeTStat = t1, SameTimePvalue =

p1,

243 SameResponseTStat = t2 , SameResponsePvalue = p2)

244

245 sub1 <- paste("p-value for vertical comparison =", signif(p1 , 4))

246 sub2 <- paste("p-value for horizontal comparison =", signif(p2 , 4))

247
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248 pdf("Phenotype Means.pdf", width=8, height =11)

249 layout(matrix (1:2, ncol =1))

250

251 makePlot(im244 , wt1 , "IM244 - SCL3", sub1[3], sub2 [3])

252

253 dev.off()

254

255

256 pdf("Phenotype Replicates.pdf", width=8, height =11)

257 layout(matrix (1:2, ncol =1))

258

259 makePlot(im244 , wt1 , "IM244 - SCL3", sub1[3], sub2[3], T)

260

261 dev.off()
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Appendix J

Hub Genes Identified by

Multi-modelling

The tables in this Appendix show the list of genes identified as hubs by multi-modelling.

Criteria for entry in this list is that the gene must have been seen to have an influence on

the expression of at least 2 other genes on more than 50% of the occasions when those

genes were presented in the same model. The interaction was only considered to be true

if at least one of the modelling seeds was more than 95% confident of the interaction.

The entries of the table are sorted into order of the number of genes downstream of each

hub (labelled Upstream Of) and their TAIR description is presented, where available,

in adjacent columns.
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Appendix K

Logistic Curve Plots for

Quantitative Phenotype Screens

The plots shown on the following pages are the logistic curves fit to data collected during

the phenotype screening of altered expression mutants. The horizontal axis of each plot

represents the time at which observations were made whilst the vertical axis of each

plot represents the normalised level of yellowing in leaf 4 of the rosette. The green

line defines the logistic curve which best fits the yellowing data of the wild type whilst

the red line defines the logistic curve which best fits the yellowing data of the altered

expression mutant. Error bars are based on one standard error of the three biological

replicates. The horizontal and vertical green lines indicates the point of maximum rate

of change (the mid-point) in the wild type curve. The horizontal red line indicates the

level of yellowing in the altered expression mutant at the time the wild type reaches

maximum rate of change (i.e. the point at which the vertical green line intersects the

red curve). The vertical red line indicates the time at which the altered expression

mutant is as yellow as the wild type was at its maximum rate of change (i.e. the point

at which the horizontal green line intersects the red curve).

The p-value for vertical comparison indicates the significance of the di↵erence

between the two levels of yellowing as indicated by the horizontal lines. The p-value for

horizontal comparison indicates the significance of the di↵erence between the two time

stages indicated by the vertical lines. Where both these values satisfy p 6 0.05, the

phenotypical response is considered to be significantly altered in the altered expression

mutant. Only those mutants which demonstrated a significantly altered phenotypical

response are shown.
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Appendix L

Yeast-1-Hybrid Sequencing

Results

The following table shows which colonies were able to grow on a selective media of

SD-Leu-Trp-His during yeast-1-hybrid screening. The transcription factor library was

arranged over four plates and so the library number is given to show which of the

selective plates provided a positive result and the position of the colony on that plate is

also given. Library numbers 001 and 002 represent the transcription factor library in one

orientation whilst 101 and 102 represent the same library in an alternative orientation

and so where results are duplicated between both libraries, this may indicate a more

positive result. The best BLAST result was identified by BLASTing the sequence

obtained from BigDye sequencing of the transcription factor found in the pDEST22

plasmid. Only entries that gave a good sequencing result are shown: results with many

ambiguous bases or no results at all were removed. Where multiple lines show the same

information, this indicates that more than one colony was found to be growing and were

found to contain the same transcription factor.

Fragment Library Plate
Best BLAST Result

Number Number Position

1 001 E03 TCP3 mRNA, complete cds

1 001 F03 AT-TCP20

1 001 F10 AtTCP14

1 001 F10 AtTCP14

1 001 F10 AtTCP14

1 001 H03 TCP8

1 002 G03 TCP15

1 101 B04 AT-TCP20

1 101 G02 AtTCP14

1 102 B08 TCP15

1 102 B08 TCP15

1 102 E12 TCP4 (TCP family TF 4)

2 001 E03 TCP3

Continued on next page...
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Table L.1 – continued from previous page

Fragment Library Plate
Best BLAST Result

Number Number Position

2 001 F10 TCP14

2 001 F10 TCP14

2 001 F10 TCP14

2 002 G03 TCP14

2 002 G03 TCP15

2 101 B03 TCP3 mRNA

2 101 B03 TCP3 mRNA

2 101 B03 TCP3 mRNA

2 101 B04 AT-TCP20

2 101 B05 TCP8

2 101 B05 TCP8

2 101 G02 TCP14

2 101 G02 TCP14

2 101 G02 TCP14

2 101 G02 TCP14

2 102 B09 TCP14

3 001 E03 TCP3

3 001 E03 TCP3

3 001 F03 AT-TCP20

3 001 F03 AT-TCP20

3 001 F03 AT-TCP20

3 001 F10 TCP14

3 001 F10 TCP14

3 001 F10 TCP14

3 002 G03 TCP15

3 002 G03 TCP15

3 002 G03 TCP15

3 002 G03 TCP15

3 101 B03 TCP3

3 101 B03 TCP3

3 101 B03 TCP3

3 101 B03 TCP3

3 101 B03 TCP3

3 101 B03 TCP3

3 101 B03 TCP3

3 101 B03 TCP3

3 101 B03 TCP3

3 101 B04 AT-TCP20

3 101 B04 AT-TCP20

3 101 B12 TCP4 (TCP family TF 4)

3 101 B12 TCP4 (TCP family TF 4)

3 102 B08 TCP15

3 102 B08 TCP15

3 102 B08 TCP15

4 001 D02 PIF7 (PHYTOCHROME-INTERACTING FACTOR7)

4 001 D02 PIF7 (PHYTOCHROME-INTERACTING FACTOR7)

4 001 E03 TCP3

Continued on next page...
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Table L.1 – continued from previous page

Fragment Library Plate
Best BLAST Result

Number Number Position

4 001 E03 TCP3

4 001 F03 TCP16 (TCP domain protein 16)

4 001 F03 AT-TCP20

4 001 F10 TCP14

4 001 F10 TCP14

4 001 F10 TCP14

4 001 F10 TCP14

4 002 G03 TCP15

4 002 G03 TCP15

4 002 G03 TCP15

4 002 G07 ANAC102

4 101 A11 PIF7 (PHYTOCHROME-INTERACTING FACTOR7)

4 101 B01 TCP1

4 101 B03 TCP3

4 101 B04 AT-TCP20

4 101 B04 AT-TCP20

4 101 B04 AT-TCP20

4 101 B04 AT-TCP20

4 101 B05 TCP8

4 101 B05 TCP8

4 101 G02 TCP14

4 102 B05 ILR3 (iaa-leucine resistant3)

4 102 B05 ILR3 (iaa-leucine resistant3)

4 102 B05 ILR3 (iaa-leucine resistant3)

4 102 B05 ILR3 (iaa-leucine resistant3)

4 102 B05 ILR3 (iaa-leucine resistant3)

4 102 B08 TCP15

4 102 B08 TCP15

4 102 B08 TCP15

4 102 B08 TCP15

4 102 B09 TCP14

4 102 B09 TCP14

4 102 B09 TCP14

5 001 A12 ANAC038

5 001 A12 ANAC038

5 001 E02 CUC2 (CUP-SHAPED COTYLEDON 2)

5 001 E03 TCP3

5 001 E03 TCP3

5 001 F03 AT-TCP20

5 001 F03 AT-TCP20

5 001 F03 AT-TCP20

5 001 F03 AT-TCP20

5 001 F03 AT-TCP20

5 001 F10 TCP14

5 001 F10 TCP14

5 001 F10 TCP14

5 001 F10 TCP14

Continued on next page...
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Table L.1 – continued from previous page

Fragment Library Plate
Best BLAST Result

Number Number Position

5 101 B02 TCP23

5 101 B02 TCP23

5 101 B03 TCP3

5 101 B03 TCP3

5 101 B04 AT-TCP20

5 101 B04 AT-TCP20

5 101 B04 AT-TCP20

5 101 B04 AT-TCP20

5 101 B04 AT-TCP20

5 101 B05 TCP8

5 101 B05 TCP8

5 101 B05 TCP8

5 101 G02 TCP14

5 102 B08 TCP15

5 102 B08 TCP15

5 102 B08 TCP15

5 102 B08 TCP15

5 102 B08 TCP15

5 102 E12 TCP4 (TCP family TF 4)

5 102 E12 TCP4 (TCP family TF 4)

6 001 F03 AT-TCP20

6 001 F03 AT-TCP20

6 001 F03 AT-TCP20

6 002 G03 TCP14

6 101 B02 TCP23

6 101 B03 TCP3

6 101 B03 TCP3

6 101 B04 AT-TCP20

6 101 B04 AT-TCP20

6 101 B04 AT-TCP20

6 101 B04 AT-TCP20

6 102 B08 TCP15

6 102 B08 TCP15

6 102 B08 TCP15

6 102 B08 TCP15

6 102 B09 TCP14

7 001 F10 TCP14

7 001 F10 TCP14

7 002 G03 TCP15

7 002 G03 TCP14

7 101 B03 TCP14

7 101 B03 TCP3

7 101 B03 TCP3

7 101 B03 TCP3

7 101 B03 TCP3

7 101 B03 TCP3

7 101 B03 TCP3

Continued on next page...
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Table L.1 – continued from previous page

Fragment Library Plate
Best BLAST Result

Number Number Position

7 101 B04 AT-TCP20

7 101 B04 AT-TCP20

7 101 B12 TCP4 (TCP family TF 4)

7 101 B12 TCP4 (TCP family TF 4)

7 101 G02 TCP14

7 101 G02 TCP14

7 101 G02 TCP14

7 101 G02 TCP14

7 101 G02 TCP14

7 101 G02 TCP14

7 102 B08 TCP15

7 102 B08 TCP15

7 102 B08 TCP15

7 102 B09 TCP14

7 102 E12 TCP4 (TCP family TF 4)

7 102 E12 TCP4 (TCP family TF 4)

7 102 E12 TCP4 (TCP family TF 4)

8 001 E02 CUC2 (CUP-SHAPED COTYLEDON 2)

8 001 F10 TCP14

8 001 F10 TCP14

8 001 F10 TCP14

8 101 B03 TCP3

8 101 B03 TCP3

8 101 B03 TCP3

8 101 G02 TCP14

8 101 G02 TCP14

8 101 G02 TCP14

8 102 B09 TCP14

8 102 E12 TCP4 (TCP family TF 4)
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Appendix M

Balanced Design Source Code

The source code shown is written in R and produces every possible permutation of 15

samples in a 30 microarray design and tests each to find which are the most balanced.

1 require(gtools)

2 skeleton <- read.table("5x3sampleSkeleton.txt", header=T, sep="\t")

3

4 testSampleBalance <- function(cy3Samples , cy5Samples) {

5 # Check that each sample exists equally on both channels

6 dyeTable <- table(c(rep(c("Cy3", "Cy5"), each=length(cy3Samples))), c(

cy3Samples , cy5Samples))

7 if (any(dyeTable != 2)) {

8 return(FALSE)

9 }

10

11 # Check that the samples are connected only once to samples of other lines

12 lineTable <- table(c(skeleton$Cy3Line , skeleton$Cy5Line), c(cy5Samples ,

cy3Samples))

13 if (max(lineTable) > 1) {

14 cat(".")

15 return(FALSE)

16 }

17

18 return(TRUE)

19 }

20

21 setwd("./BalancedSampleDesigns")

22

23 # Produce sample layout

24 design <- 1

25 cy3Samples <- cy5Samples <- rep(0, 30)

26 cy3Samples [1:6] <- cy5Samples [7:12] <- rep(1:3, 2)

27

28 permsOf3 <- permutations (3,3)

29 nPerms3 <- nrow(permsOf3)

30 permsOfPerms <- permutations(nPerms3 , 4, , , T)

31 first12 <- t(matrix(t(permsOf3[t(permsOfPerms) ,]), nrow=ncol(permsOfPerms) * ncol

(permsOf3), ncol=nrow(permsOfPerms)))

32 for (i in seq(3, 12, 3)) {

33 first12[,(i-2):i] <- first12[,(i-2):i] + i

34 }

35 first12 <- first12[,c(1,2,4,7,8,10,5,6,3,11,12,9)]

36
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37 for (i in sample (1: nrow(first12), 10)) {

38 cat("Starting", i, "of", nrow(first12), "at", format(Sys.time(), "%H:%M:%S on

%d-%m-%Y"), "...\n")

39

40 # Arrange first 12 comparisons

41 cy5Samples [1:6] <- first12[i ,1:6]

42 cy3Samples [7:12] <- first12[i ,7:12]

43

44 # Update left

45 cy3Samples [13:30] <- cy5Samples [13:30] <- rep(0, 18)

46 cy3Left <- 2 - summary(factor(cy3Samples , levels =1:15))[1:15]

47 cy5Left <- 2 - summary(factor(cy5Samples , levels =1:15))[1:15]

48

49 # Prepare remaining B samples

50 cy3B <- rep(4:6, cy3Left [4:6])

51 cy5B <- rep(4:6, cy5Left [4:6])

52 cy3Perms <- permutations(length(cy3B), length(cy3B), cy3B , F)

53 cy5Perms <- permutations(length(cy5B), length(cy5B), cy5B , F)

54 x <- c(skeleton$Cy5Line [13:17] , skeleton$Cy3Line [18:21])
55 bPerms <- NULL

56 for (v in 1:nrow(cy3Perms)) {

57 for (w in 1:nrow(cy5Perms)) {

58 y <- c(cy3Perms[v,], cy5Perms[w,])

59 if (var(as.vector(table(x,y))) == 0) {

60 bPerms <- rbind(bPerms , y)

61 }

62 }

63 }

64 for (iBPerm in sample (1: nrow(bPerms), 10)) {

65 cy3Samples [13:17] <- bPerms[iBPerm ,1:5]

66 cy5Samples [18:21] <- bPerms[iBPerm ,6:9]

67 permsOfPerms <- permutations(nPerms3 , 3, , , T)

68 next9 <- t(matrix(t(permsOf3[t(permsOfPerms) ,]), nrow=ncol(permsOfPerms)

* ncol(permsOf3), ncol=nrow(permsOfPerms)))

69 for (i in seq(3, 9, 3)) {

70 next9[,(i-2):i] <- next9[,(i-2):i] + i + 3

71 }

72 next9 <- next9[,c(1,2,7,8,4,3,5,6,9)]

73 for (j in sample (1: nrow(next9), 10)) {

74 cy5Samples [13:17] <- next9[j ,1:5]

75 cy3Samples [18:21] <- next9[j ,6:9]

76

77 # Update left

78 cy3Samples [22:30] <- cy5Samples [22:30] <- rep(0, 9)

79 cy3Left <- 2 - summary(factor(cy3Samples , levels =1:15))[1:15]

80 cy5Left <- 2 - summary(factor(cy5Samples , levels =1:15))[1:15]

81 if(any(c(cy3Left , cy5Left) < 0)) next

82

83 # Prepare remaining C samples

84 cy3C <- rep(7:9, cy3Left [7:9])

85 cy5C <- rep(7:9, cy5Left [7:9])

86 cy3Perms <- permutations(length(cy3C), length(cy3C), cy3C , F)

87 cy5Perms <- permutations(length(cy5C), length(cy5C), cy5C , F)

88 x <- c(skeleton$Cy5Line [22:24] , skeleton$Cy3Line [25:27])
89 cPerms <- NULL

90 for (v in 1:nrow(cy3Perms)) {

91 for (w in 1:nrow(cy5Perms)) {

92 y <- c(cy3Perms[v,], cy5Perms[w,])

93 if (var(as.vector(table(x,y))) == 0) {
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94 cPerms <- rbind(cPerms , y)

95 }

96 }

97 }

98 for (iCPerm in sample (1: nrow(cPerms), 10)) {

99 cy3Samples [22:24] <- cPerms[iCPerm ,1:3]

100 cy5Samples [25:27] <- cPerms[iCPerm ,4:6]

101

102 permsOfPerms <- permutations(nPerms3 , 2, , , T)

103 next6 <- t(matrix(t(permsOf3[t(permsOfPerms) ,]), nrow=ncol(

permsOfPerms) * ncol(permsOf3), ncol=nrow(permsOfPerms)))

104 for (i in seq(3, 6, 3)) {

105 next6[,(i-2):i] <- next6[,(i-2):i] + i + 6

106 }

107 next6 <- next6[,c(1,2,4,5,6,3)]

108 last3 <- next6[,c(4:6 ,1:3)]

109

110 for (k in sample (1: nrow(next6), 10)) {

111 cy5Samples [22:24] <- next6[k ,1:3]

112 cy3Samples [25:27] <- next6[k ,4:6]

113

114 # Update left

115 cy3Samples [28:30] <- cy5Samples [28:30] <- rep(0, 3)

116 cy3Left <- 2 - summary(factor(cy3Samples , levels =1:15))[1:15]

117 cy5Left <- 2 - summary(factor(cy5Samples , levels =1:15))[1:15]

118 if(any(c(cy3Left , cy5Left) < 0) | max(cy3Left) > 1 | max(

cy5Left) > 1) next

119

120 for (l in 1:nrow(last3)) {

121 cy5Samples [28:30] <- last3[l ,1:3]

122 cy3Samples [28:30] <- last3[l ,4:6]

123

124 # Update left

125 cy3Left <- 2 - summary(factor(cy3Samples , levels =1:15))

[1:15]

126 cy5Left <- 2 - summary(factor(cy5Samples , levels =1:15))

[1:15]

127 if(any(c(cy3Left , cy5Left) != 0)) next

128 if (testSampleBalance(cy3Samples , cy5Samples)) {

129 write.table(data.frame(Cy3Sample=cy3Samples ,

Cy5Sample=cy5Samples), file=sprintf("%08d.txt",

design), sep="\t", row.names=F, quote=F)

130 cat("Design number", design , "written out\n")

131 design <- design + 1

132 }

133 }

134 }

135 }

136 }

137 }

138 }
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The results of the above script can then be used to find which assignment of

biological replicates to the samples produces the most balanced comparison between

replicates.

1 require(gtools)

2

3 testBioReps <- function(cy3Samples , cy3BioReps , cy5Samples , cy5BioReps) {

4 # Check that all bioreps are linked equally to each other overall

5 globalScore <- var(as.vector(table(cy3BioReps , cy5BioReps)))

6

7 # Check for minimisation of variance in bioreps connected to each sample

8 sampleTable <- table(c(cy3Samples , cy5Samples), c(cy5BioReps , cy3BioReps))

9 sampleScore <- sum(apply(sampleTable , 1, var))

10

11 return(c(globalScore ,sampleScore))

12 }

13

14 fileSelection <- sprintf("./BalancedSampleDesigns/%08d.txt", 1:120716)

15 designFiles <- sample(fileSelection , 1000)

16

17 biorepOptions <- permutations (3,3, toupper(letters [1:3]))

18 nBROpts <- nrow(biorepOptions)

19 biorepSelections <- permutations(nBROpts , 5, repeats.allowed=T)

20 biorepTable <- t(matrix(t(biorepOptions[t(biorepSelections) ,]), nrow=ncol(

biorepSelections) * ncol(biorepOptions), ncol=nrow(biorepSelections)))

21 nPerms <- nrow(biorepTable)

22

23 globalScore <- sampleScore <- matrix(0, ncol =1000 , nrow=nrow(biorepTable))

24 colnames(globalScore) <- colnames(sampleScore) <- sub("./BalancedSampleDesigns/",

"", sub(".txt", "", designFiles))

25

26 for (file in designFiles) {

27 skeleton <- read.table(file , sep="\t", header=T)

28 designNumber <- sub("./BalancedSampleDesigns/", "", sub(".txt", "", file))

29

30 cy3Samples <- as.numeric(as.vector(skeleton$Cy3Sample))
31 cy5Samples <- as.numeric(as.vector(skeleton$Cy5Sample))
32

33 for (i in 1: nPerms) {

34 cy3BioReps <- biorepTable[i,cy3Samples]

35 cy5BioReps <- biorepTable[i,cy5Samples]

36 scores <- testBioReps(cy3Samples , cy3BioReps , cy5Samples , cy5BioReps)

37 globalScore[i,designNumber] <- scores [1]

38 sampleScore[i,designNumber] <- scores [2]

39 if (i %% 1000 == 0) {

40 cat("Completed", i, "of", nPerms , "options for design", designNumber ,

"at", format(Sys.time(), "%H:%M:%S on %d-%m-%Y"),"...\n")

41 }

42 }

43 save(list = c("globalScore", "sampleScore"), file="Scores.RData")

44 }
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Lundeberg, J., Lurin, C., Moreau, Y., Nietfeld, W., Paz-Ares, J., Reymond, P., Rouzé,
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The key step in chlorophyll breakdown in higher plants. Cleavage of pheophorbide a

macrocycle by a monooxygenase. J Biol Chem, 273 (25), 15335–9.

Hung, K. T., & Kao, C. H. (2003). Nitric oxide counteracts the senescence of rice leaves

induced by abscisic acid. J Plant Physiol , 160 (8), 871–9.

Hung, K. T., & Kao, C. H. (2004). Hydrogen peroxide is necessary for abscisic acid-

induced senescence of rice leaves. J Plant Physiol , 161 (12), 1347–57.

303



James, P., Halladay, J., & Craig, E. A. (1996). Genomic libraries and a host strain

designed for highly e�cient two-hybrid selection in yeast. Genetics, 144 (4), 1425–36.

James, W., & Stein, C. (1961). Estimation with quadratic loss. In Proc. Fourth

Berkeley Symp. Math. Statist. Prob., vol. 1, (pp. 361–379).

Jenssen, T.-K., Langaas, M., Kuo, W. P., Smith-Sørensen, B., Myklebost, O., & Hovig,

E. (2002). Analysis of repeatability in spotted cDNA microarrays. Nucleic Acids

Res, 30 (14), 3235–44.

Jing, H.-C., Schippers, J. H. M., Hille, J., & Dijkwel, P. P. (2005). Ethylene-induced

leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J

Exp Bot , 56 (421), 2915–23.

Jing, H.-C., Sturre, M. J. G., Hille, J., & Dijkwel, P. P. (2002). Arabidopsis onset of

leaf death mutants identify a regulatory pathway controlling leaf senescence. Plant

J , 32 (1), 51–63.

Jung, S. (2004). E↵ect of chlorophyll reduction in Arabidopsis thaliana by methyl

jasmonate or norflurazon on antioxidant systems. Plant Physiology and Biochemistry ,

42 (3), 225–231.

Kamachi, K., Yamaya, T., Hayakawa, T., Mae, T., & Ojima, K. (1992). Changes in

Cytosolic Glutamine Synthetase Polypeptide and its mRNA in a Leaf Blade of Rice

Plants during Natural Senescence. Plant Physiol , 98 (4), 1323–1329.

Kerr, M., & Churchill, G. (2001). Experimental design for gene expression microarrays.

Biostatistics, 2 (2), 183.

Kiddle, S. J., Windram, O. P. F., McHattie, S., Mead, A., Beynon, J., Buchanan-

Wollaston, V., Denby, K. J., & Mukherjee, S. (2010). Temporal clustering by a�nity

propagation reveals transcriptional modules in Arabidopsis thaliana. Bioinformatics,

26 (3), 355–62.

Kidokoro, S., Maruyama, K., Nakashima, K., Imura, Y., Narusaka, Y., Shinwari, Z. K.,

Osakabe, Y., Fujita, Y., Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2009).

The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression un-

der circadian control in Arabidopsis. Plant Physiol , 151 (4), 2046–57.

Kim, H. J., Ryu, H., Hong, S. H., Woo, H. R., Lim, P. O., Lee, I. C., Sheen, J.,

Nam, H. G., & Hwang, I. (2006). Cytokinin-mediated control of leaf longevity by

AHK3 through phosphorylation of ARR2 in Arabidopsis. Proceedings of the National

Academy of Sciences of the United States of America, 103 (3), 814–9.

Kim, J. H., Woo, H. R., Kim, J., Lim, P. O., Lee, I. C., Choi, S. H., Hwang, D., &

Nam, H. G. (2009). Trifurcate feed-forward regulation of age-dependent cell death

involving miR164 in Arabidopsis. Science, 323 (5917), 1053–7.

304



Kim, S. Y., & Nam, K. H. (2010). Physiological roles of ERD10 in abiotic stresses and

seed germination of Arabidopsis. Plant Cell Rep, 29 (2), 203–9.

Kinoshita, T., Yamada, K., Hiraiwa, N., Kondo, M., Nishimura, M., & Hara-Nishimura,

I. (1999). Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegeta-

tive tissues during senescence and under various stressed conditions. Plant J , 19 (1),

43–53.

Klemm, S. L. (2008). Causal structure identification in non-linear dynamical systems.

Cambridge, UK: University of Cambridge, UK .

Klevebring, D., Gry, M., Lindberg, J., Eidefors, A., & Lundeberg, J. (2009). Automa-

tion of cDNA synthesis and labelling improves reproducibility. J Biomed Biotechnol ,

2009 , 396808.

Kong, Z., Li, M., Yang, W., Xu, W., & Xue, Y. (2006). A novel nuclear-localized

CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in

rice. Plant Physiology , 141 (4), 1376–88.

Kovacs, D., Kalmar, E., Torok, Z., & Tompa, P. (2008). Chaperone activity of ERD10

and ERD14, two disordered stress-related plant proteins. Plant Physiol , 147 (1),

381.

Koyama, T., Sato, F., & Ohme-Takagi, M. (2010). A role of TCP1 in the longitudinal

elongation of leaves in Arabidopsis. Biosci. Biotechnol. Biochem., 74 (10), 2145–7.

Larue, C. T., Wen, J., & Walker, J. C. (2009a). Genetic interactions between the

miRNA164-CUC2 regulatory module and BREVIPEDICELLUS in Arabidopsis de-

velopmental patterning. Plant Signaling & Behavior , 4 (7), 666–8.

Larue, C. T., Wen, J., & Walker, J. C. (2009b). A microRNA-transcription factor

module regulates lateral organ size and patterning in Arabidopsis. Plant J , 58 (3),

450–63.
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Taylor, C. B., Bariola, P. A., delCardayré, S. B., Raines, R. T., & Green, P. J. (1993).

RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-RNases

before speciation. Proceedings of the National Academy of Sciences of the United

States of America, 90 (11), 5118–22.

The Gene Ontology Consortium (2000). Gene ontology: tool for the unification of

biology. Nat. Genet., 25 (1), 25–9.

Theologis, A., Ecker, J. R., Palm, C. J., Federspiel, N. A., Kaul, S., White, O., Alonso,

J., Altafi, H., Araujo, R., Bowman, C. L., Brooks, S. Y., Buehler, E., Chan, A., Chao,

Q., Chen, H., Cheuk, R. F., Chin, C. W., Chung, M. K., Conn, L., Conway, A. B.,

315



Conway, A. R., Creasy, T. H., Dewar, K., Dunn, P., Etgu, P., Feldblyum, T. V.,

Feng, J., Fong, B., Fujii, C. Y., Gill, J. E., Goldsmith, A. D., Haas, B., Hansen,

N. F., Hughes, B., Huizar, L., Hunter, J. L., Jenkins, J., Johnson-Hopson, C., Khan,

S., Khaykin, E., Kim, C. J., Koo, H. L., Kremenetskaia, I., Kurtz, D. B., Kwan, A.,

Lam, B., Langin-Hooper, S., Lee, A., Lee, J. M., Lenz, C. A., Li, J. H., Li, Y., Lin,

X., Liu, S. X., Liu, Z. A., Luros, J. S., Maiti, R., Marziali, A., Militscher, J., Miranda,

M., Nguyen, M., Nierman, W. C., Osborne, B. I., Pai, G., Peterson, J., Pham, P. K.,

Rizzo, M., Rooney, T., Rowley, D., Sakano, H., Salzberg, S. L., Schwartz, J. R.,

Shinn, P., Southwick, A. M., Sun, H., Tallon, L. J., Tambunga, G., Toriumi, M. J.,

Town, C. D., Utterback, T., Aken, S. V., Vaysberg, M., Vysotskaia, V. S., Walker,

M., Wu, D., Yu, G., Fraser, C. M., Venter, J. C., & Davis, R. W. (2000). Sequence

and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature, 408 (6814),

816–20.

Thompson, J. E., Froese, C. D., Madey, E., Smith, M. D., & Hong, Y. (1998). Lipid

metabolism during plant senescence. Prog Lipid Res , 37 (2-3), 119–41.

Tommasini, R., Vogt, E., Fromenteau, M., Hörtensteiner, S., Matile, P., Amrhein,
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ABSTRACT
Motivation: Identifying regulatory modules is an important task in the
exploratory analysis of gene expression time series data. Clustering
algorithms are often used for this purpose. However, gene regulatory
events may induce complex temporal features in a gene expression
profile, including time delays, inversions and transient correlations,
which are not well accounted for by current clustering methods. As
the cost of microarray experiments continues to fall, the temporal
resolution of time course studies is increasing. This has led to a need
to take account of detailed temporal features of this kind. Thus, while
standard clustering methods are both widely used and much studied,
their shared shortcomings with respect to such temporal features
motivates the work presented here.
Results: Here, we introduce a temporal clustering approach for
high-dimensional gene expression data which takes account of time
delays, inversions and transient correlations. We do so by exploiting
a recently introduced, message-passing-based algorithm called
Affinity Propagation (AP). We take account of temporal features of
interest following an approximate but efficient dynamic programming
approach due to Qian et al. (2001). The resulting approach is
demonstrably effective in its ability to discern non-obvious temporal
features, yet efficient and robust enough for routine use as an
exploratory tool. We show results on validated transcription factor-
target pairs in yeast and on gene expression data from a study of
Arabidopsis thaliana under pathogen infection. The latter reveals a
number of biologically striking findings.
Availability: Matlab code for our method is available at
http://www.wsbc.warwick.ac.uk/stevenkiddle/tcap.html.
Contact: {s.j.kiddle,s.n.mukherjee}@warwick.ac.uk

1 INTRODUCTION
Gene expression analysis by microarrays is now a well established
approach in high-throughput biology. Time course studies are
widely used to probe the dynamics of gene expression and uncover
underlying regulatory programs. As costs per array have continued
to fall, the temporal resolution of such studies (in the sense

⇤to whom correspondence should be addressed

of the number of discrete time points sampled) has increased.
Indeed, it is now common to see studies with 20 or more time
points over timescales of hours to days. A central task in the
exploratory analysis of these high-dimensional time series is that
of identifying subsets of genes which are functionally related,
for example transcription factors (TFs) and their targets, genes
which share a regulatory program and so on. Following much
of the recent literature we call such subsets modules (Bar-Joseph
et al., 2003; Segal et al., 2003). Module identification plays a
key role both in the generation of experimental hypotheses and in
informing subsequent modelling. Microarray data which highlight
a set of genes as possibly functionally related can suggest specific
follow-up experiments, for example using interventions targeted at
module members. Equally, module identification informs further
computational work. The inference of gene regulatory networks
(e.g. using Bayesian networks or Gaussian graphical models), for
example, rapidly grows more challenging in higher dimensions. In
the same way, mechanistic models of gene expression (ODE, PDE
or statistical mechanical), become much more tractable for small
sets of genes. Thus, identifying transcriptional modules can greatly
aid downstream, detailed quantitative analysis.

Clustering algorithms are widely used for the purpose of
identifying gene modules (e.g. Ghosh & Chinnaiyan, 2001; Heard
et al., 2005; Thalamuthu et al., 2006). Such algorithms seek to
partition the set of genes into subsets whose within-subset similarity
is high relative to between-subset similarity. The most widely
used notions of similarity are simple vector distances between
temporal profiles, and include the Euclidean distance, Pearson’s
correlation coefficient (PCC) and Mahalanobis distance (used in
Gaussian mixture models). Loosely speaking, these methods seek
to find subsets of genes which look similar in the sense of having
highly correlated expression profiles. This in turn means that these
methods are well suited to detecting modules whose members are
co-regulated (Yona et al., 2006), for example by a shared TF, and
where regulatory events are simultaneous, at least up to the temporal
resolution of the dataset.

However, the general strategy of clustering by straightforward
profile similarity suffers from a number of drawbacks. First, while
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it is arguably well suited to certain cases of simultaneous co-
regulation, it is not as well suited to finding genes which regulate
each other. In these settings there can be a time lag between a
change in the profile of the regulator and the corresponding change
in its target. At very low temporal resolutions, this may not be an
issue, because the changes, if detected, may appear as de facto
simultaneous. However, at higher temporal resolutions time lags
become an important issue; we show experimental examples below.

Second, even when a set of putatively co-regulated genes can be
identified, the task of identifying a shared TF remains a challenging
one. A widespread approach is to use sequence analysis to discover
upstream motifs, shared among module members, which may
correspond to TF binding sites. However, even when upstream
motifs can be found, TFs that bind to these sequences are often
unknown, particularly in higher organisms. This motivates a need
for module finding methods which can identify subsets including
both regulator and targets directly from expression data.

Third, many existing approaches do not account for transient
correlations, in which gene profiles are similar only within a certain
time window, and not well correlated outside it. This can arise for
example in longer time courses, where the underlying biological
process driving profile similarity is itself transient, such that at its
end, the genes revert almost to a background level of variation. Two-
way clustering or biclustering (Hartigan, 1972; Lazzeroni & Owen,
2002; Balasubramaniyan et al., 2004; Madeira & Oliveira, 2005;
Meng et al., 2009) has been used to address the issue of transient
correlations. Here, clusters are sought which form subsets of both
genes and (contiguous) time points. However, robust biclustering
remains computationally challenging on account of the vast number
of possible biclusters that can be formed. Finally, inversions in the
sense of negative correlation/co-expression can be important when
regulatory relationships are repressive, but are not always accounted
for by clustering methods.

In order to account for these temporal features, a natural idea is to
carry out cluster analysis using richer similarity measures in place
of a simple vector distance; this idea appears several times in the
literature (Qian et al., 2001; Schmitt et al., 2004; Balasubramaniyan
et al., 2004; Smith et al., 2009). However, doing so brings with
it a non-trivial computational burden, especially under conditions
of high dimensionality and high temporal resolution (and resulting
longer time lags). Under Euclidean distance and its variants clusters
can be characterized by cluster-level statistics such as the mean; this
in turn permits (relatively) fast iterative computation via algorithms
such as K-means and Expectation-Maximization (EM). In contrast,
temporally rich gene-gene similarity measures typically do not give
an analogue to cluster mean. The standard approach then is to use
an iterative algorithm known as K-centres (or K-medioids) (see
e.g. Hastie et al., 2001). However, K-centres is notoriously slow,
requiring quadratic time in cluster size to find a cluster centre; it
is also known to be highly sensitive to initialization. The resulting
difficulty in clustering under rich gene-gene similarity measures has
meant that existing work on such measures has not led to a widely
applicable alternative to standard clustering.

We note that time delays are well accounted for in graphical
model formulations (including dynamic Bayesian networks, state
space models and hidden Markov models) where Markov
assumptions are used to model these temporal effects. However,
these approaches are computationally demanding and statistically
challenging for high-dimensional data, and have for these reasons

not usually been exploited to provide practical alternatives to
clustering for exploratory analysis. Hierarchical clustering (see
e.g. Hastie et al., 2001) and spectral clustering (Shi & Malik,
2000; Ng et al., 2002) address the related but quite distinct
problem of partitioning a dataset by recursively comparing pairs
of observations. In particular, these methods do not ensure that all
points within a cluster are similar to a cluster mean or centre and
indeed quite often make splits which lead to clusters which do not
have this property.

Here, we address these open issues by putting forward an
approach for finding gene modules which incorporates these key
temporal features — time lags, transient correlation and inversions
— but is computationally efficient enough to provide a practical
alternative to standard clustering. We do so by exploiting a
recently proposed message-passing-based algorithm called Affinity
Propagation (AP) (Frey & Dueck, 2007) which we show, using
biological data, to be robust and efficient in this setting. As a
similarity measure we choose a dynamic programming formulation
due to Qian et al. (2001); this is fast but approximate, and we
confirm empirically that it is sufficiently powerful to give good
results in this setting.

Our work adds to the existing literature in two main ways. First,
we put forward an approach for clustering microarray time series
data which captures rich temporal features yet is robust, requires
little or no user input and is fast enough for routine use in microarray
data analysis. For example, in an analysis of real microarray data,
this finds a substantially better value of the same objective function
than any of 400 runs of K-centres, while requiring a fraction of
the total compute time, and no user input whatsoever. Second,
we show extensive results on experimental data, highlighting the
biological relevance of richer temporal features and the importance
of capturing such features during clustering. We are able to cluster
together members of a recently identified gene regulatory network
whose profiles would not have been clustered together by traditional
clustering techniques. We also find several modules which suggest
hypotheses to test experimentally.

The remainder of the paper is organized as follows. We begin by
reviewing basic ideas and notation for clustering and then describe
the methods used here. We show results on a validated set of TF-
target pairs in yeast, and on experimental data from a study of
Botrytis cinerea infection in Arabidopsis thaliana. We conclude
with a discussion of the shortcomings of our work, possible
extensions and its relationship to other methods.

2 BACKGROUND
2.1 Notation
Let Xit be the mRNA expression value of gene i at time t. A time
series microarray dataset, X, is a matrix containing the expression
values of genes i 2 I = {1, 2, · · · , g}, for time points t 2
T = {1, 2, · · · , T}. The complete expression profile for gene i
is denoted Xi· = [Xi1, Xi2, · · · , XiT ]

T.

2.2 Clustering
Clustering is a form of unsupervised machine learning in which
observations are partitioned into groups, called clusters, such
that within-cluster similarity is large relative to between-cluster
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similarity. In the present setting, observations correspond to gene
expression profiles Xi·.

2.2.1 K-means Given a user-set number of clusters K,
(Euclidean) K-means seeks to find cluster assignments c(i), c :
I 7! K = {1 . . .K} and corresponding cluster means {µk}k2K
which minimize the following cost function:

J({c(i)}, {µk}) =
k2K i:c(i)=k

kXi· � µkk2 (1)

where, k · k2 denotes (squared) Euclidean distance and {c(i)} and
{µk} are cluster assignments and cluster means respectively.

K-means minimizes this cost function by means of an iterative
procedure in which the computation of cluster means alternates with
cluster assignment. Mixture-model-based approaches can be viewed
as a probabilistic generalization of K-means, in which observations
are assigned to clusters in a “soft” manner, under a probability
model in which cluster membership is treated as a latent variable.
Model fitting is usually accomplished using the EM algorithm; as is
well-known, K-means itself arises as a certain limiting case of EM
applied to a Gaussian mixture model.

2.2.2 K-centres Cost function Eq. (1) directly uses cluster means
{µk}. In contrast, a matrix of simlarities  (i, j), i, j 2 I between
observations may not give an analogue to cluster mean. In this
setting, a standard approach is to characterize a cluster by means
of an observation within that cluster, referred to as the centre of the
cluster. This formulation yields the following cost function:

J({e(i)}) = �
i2Is.t.i 6=e(i)

 (i, e(i)) (2)

where, e : I 7! E ⇢ I, |E| = K
is a cluster assignment function which in this case maps

observations to the (index of) the corresponding cluster centre.
The K-centres algorithm is a K-means-like heuristic method for

optimizing Eq. (2), in which a cluster characterization step is
alternated with a cluster assignment step. Absent any notion of
mean, the cluster characterization step involves searching over all
members of each cluster to minimize within-cluster distance; this
requires quadratic time in cluster size. Moreover, K-centres must be
initialized, and the initialization can affect which local maximum
the method will find.

Thus, while Eq. (2) provides a natural cost function for clustering
under a similarity matrix  , it can be difficult to obtain good
clusters in practice, and moreover to do so robustly and rapidly in
applications with a large number of objects to be clustered.

3 METHODS
Here we describe the methods used in the remainder of the paper. We
first discuss clustering by Affinity Propagation (AP) and then the similarity
measure used here.

3.1 Affinity propagation
Affinity propagation (AP) is an algorithm by which to learn cluster
assignments and cluster centres under the K-centres cost function Eq. (2).
Like K-centres, AP uses observations themselves to characterize clusters;

however, unlike K-centres AP simultaneously considers all observations as
candidate centres. Naı̈vely, this would be computationally intractable; in
AP this is accomplished by an efficient message passing formulation (which
can be derived as an instance of the max-sum algorithm for factor graphs).
Two different kinds of messages are exchanged between observations:
responsibility r(i, j), which reflects point j’s suitability as a centre for point
i and availability a(i, j), which reflects evidence in favour of i choosing j

as its centre. Here we briefly describe the AP algorithm, as it used in the
present application; for further details we refer the interested reader to Frey
& Dueck (2007).
Update equations. AP is provided with a similarity matrix  ⇤, such as the
one introduced in section 3.2.

Initially, availabilities a(i, j) are set to zero; “self-similarities”  ⇤(i, i)
are given a user-set value s, this is discussed below. Then, responsibilities
and availabilities are updated sequentially using the following:

r(i, j)  

⇤(i, j)� max
j0:j0 6=j

{a(i, j0) +  

⇤(i, j0)} (3)

8i 6= j, a(i, j) min 0, r(j, j) +
i0:i0 /2{i,j}

max{0, r(i0, j)}

(4)

a(j, j) 
i0:i0 6=j

max{0, r(i0, j)} (5)

A damping factor � 2 [0, 1] is used to prevent numerical oscillations:
each message is set to a weighted combination of its value from the previous
iteration and its updated value, weighted by � and 1 � � respectively. In
all our experiments we use a default value of � = 0.9. Update equations
are iterated until cluster centres remain unchanged for a user-set number of
iterations (see below). Then, cluster centres e(i) are given by maximizing
over the sum of responsibility and availability:

e(i) = argmax
j2I

a(i, j) + r(i, j) (6)

If e(i) = i, i itself is a cluster centre.
Algorithm parameters. The self-similarity value s influences the number
of clusters discovered, higher values giving a greater number of clusters.
However, in contrast to the parameter K in K-means and K-centres, this
is not a hard specification; rather, the number of clusters found emerges
from data, but is influenced by self-similarity s. In this sense, self-similarity
is closer in spirit to a shrinkage/regularization strength or Bayesian hyper-
parameter than a pre-specified number of clusters. Importantly, this means
that a default value for s can give good results for a wide range of problems;
in all our experiments, we set s to the median of the (off-diagonal entries of)
similarity matrix  ⇤. Finally, we call convergence if cluster centres remain
unchanged for 100 iterations and further set the overall maximum number of
iterations to 1000.

3.2 Similarity measure
As noted in the introduction, there are now a number of biologically
plausible similarity measures for gene expression time series in the literature.
We choose a similarity score due to Qian et al. (2001) which uses alignment
to find time lags in gene expression time series, as outlined below. Although
approximate, this approach is both efficient and rich enough to capture not
only time lags but also inversions and transient correlations, and is therefore
well suited to our goals.

Given time series data Xit for genes i 2 I at times t 2 T , Algorithm 1
returns a matrix (i, j) of similarity scores for all gene pairs (i, j). Data Xi·
for each gene profile are assumed to be normalized to mean zero and standard
deviation one. For a given pair (i, j) dynamic programming is used to build
up a matrix ⌦+, which compares and scores each alignment between profiles
Xi· and Xj· . Inversion or negative co-expression is captured in a second
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matrix ⌦�, whose entries are obtained in a similar manner. Finally, transient
correlations are captured by explicitly forcing each entry of ⌦+ and ⌦� to
be non-negative. Then, similarity score  is simply the highest entry in ⌦+

or ⌦�. The alignment matrices ⌦+ or ⌦� further yield a “match type”,
which may be positive/negative and simultaneous/delayed and describes the
characteristics of the highest scoring alignment. Specifically, if !+ =  the
profiles have a positive local correlation, whereas if !� =  the profiles
have a negative local correlation. Likewise, if  is achieved at ⌦+

t1t2
or

⌦�
t1t2

with t1 = t2 then the local correlation is simultaneous, otherwise it
is time delayed.

For AP a similarity matrix, where identical profiles have a score of zero,
is constructed using the following transformation:

 

⇤(i, j) =  (i, j)� T + 1 (7)

Algorithm 1 Computation of similarity measure  , following Qian
et al. (2001).
(1) Initialise ⌦+

t0, ⌦+
0t, ⌦

�
t0 and ⌦�

0t equal to zero 8t 2 T [ 0.
(2) Initialise t1 = t2 = 1.
(3) Calculate ⌦+

t1t2
and ⌦�

t1t2
:

⌦+
t1t2 = max(⌦+

t1�1t2�1 +Xit1Xjt2 , 0) (8)

⌦�
t1t2 = max(⌦�

t1�1t2�1 �Xit1Xjt2 , 0) (9)

(4) If t1 < T and t2  T then set t1 = t1 + 1 and go to step 3.
(5) If t1 = T and t2 < T then set t1 = 1 and t2 = t2 +1 and go to
step 3.
(6) Let !+ = maxt1t2{⌦+

t1t2
} and !� = maxt1t2{⌦�

t1t2
}. Set:

 (i, j) = max{!+,!�}.

4 RESULTS
We first show results in which we investigate whether richer
temporal features are indeed useful in uncovering biological
relationships. We then compare the ability of K-centres and AP
to cluster real microarray data under similarity matrix  . Finally,
we present an analysis, using our temporal clustering approach,
of a microarray time course experiment we carried out to better
understand the response of A. thaliana to infection by the pathogen
B. cinerea (Denby, manuscript in preparation).

4.1 Validation of similarity measure  
We sought to investigate whether the similarity measure  does
indeed capture biologically important relationships. To this end
we used two biological examples, from yeast and Arabidopsis
respectively, in which the underlying biology is relatively well
understood.
TF-target pairs in yeast. The yeast genome has been well studied
and provides a number of validated TF-target pairs. This makes
yeast TF-target pairs well suited to a validation study. Here, we
used published microarray data (Spellman et al., 1998; Gasch et al.,
2000; Qian et al., 2003) of such regulatory pairs, consisting of
validated positive and negative examples. The positive examples
were chosen from TRANSFAC and SCPD; negative examples were
identified by finding genes without the known binding site of the
transcription factor or permuting the gene (but not the transcription
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Fig. 1. Validation results using microarray data. (a) ROC plots obtained
from microarray data for validated examples of TF-target pairs in yeast
(data from Spellman et al. (1998); Gasch et al. (2000)). Similarity score
 outperforms both Pearson’s correlation coefficient (PCC) and its absolute
value. The dotted line corresponds to random guesswork. (b) ROC plots
obtained from microarray data, comparing the expression profiles of genes
from the A. thaliana circadian clock with that of random genes. Similarity
score  outperforms the other measures of similarity, performing roughly
twice as well as measures neglecting time lags.

factors) expression profile. The expression profiles cover a total
of 79 time points, which gives a relatively high time resolution
in line with the general motivation for our approach. We assessed
the ability of the similarity score  to capture underlying biology
by means of a Receiver Operator Characteristic (ROC) analysis.
Similarity scores  (i, j), for each TF-target pair (positive and
negative), were thresholded to yield predictions of TF-target pairs.
The predictions were then compared with the list of known positive
and negative pairs to yield true positive and false positive rates as
a function of threshold level. Varying the threshold gives a curve
which is referred to as a ROC curve; this shows the sensitivity and
specificity of the analysis across all possible thresholds on a single
plot, giving a comprehensive view of the ability of the score to
distinguish positive and negative examples. Fig 1(a) shows ROC
curves obtained from these yeast data for the similarity score  , the
widely-used Pearson’s correlation coefficient (PCC) and absolute
PCC. The (expected) curve which would be obtained by random
chance is also shown for comparison. Similarity score  performs
better than both PCC and the absolute value of PCC in this instance,
suggesting that the score is indeed able to detect instances of direct
regulation.
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Arabidopsis clock module. The results presented above pertain to
direct regulatory relationships between TFs and validated targets.
However, the complete set of pairwise relationships in a gene
regulatory module naturally includes indirect as well as direct
influences; e.g. within a module, if TF A has as its target gene
B, which in turn has target C, the pair (A,C) is an example of
an indirect relationship. We therefore sought to complement results
from yeast TF-target pairs with a study of a well-studied gene
regulatory network in A. thaliana. A small network of just six genes
has been shown to jointly control the circadian clock in A. thaliana
(Locke et al., 2006). Microarray data for these six genes were
supplemented with data for a further 560 genes, chosen at random
from the A. thaliana genome. None of the 560 genes were annotated
as belonging to the circadian clock (Swarbreck et al., 2008). In the
resulting set of pairs, those including only members of the known
circadian clock module were treated as positive examples, while
those with only one member of the circadian clock were considered
to be false positives1. As the similarity measure is symmetric, we
have 6

2 ⇥ 1
2 = 15 positive examples and 6⇥560 = 3, 360 negative

examples. Data were obtained from leaf samples taken every 2 hours
for 48 hours. ROC curves were constructed in a similar manner to
the TF-target case above.

Fig. 1(b) shows ROC curves obtained in this way: similarity
score  very clearly outperforms PCC and its absolute value in this
instance. For example 10 (out of 15) true positives are obtained at a
cost of 141 false positives; in comparison, PCC requires 1649 and
absolute PCC requires 1783 false positives. This suggests that  is
indeed able to detect both direct and indirect regulation, even under
highly sparse conditions, i.e. when true positives are scarce relative
to false positives. We note also that the vast gains relative to random
selection we see using all three similarity scores confirm that the
data are indeed information rich.

4.2 Comparative results
The similarity measure  captures a quite different notion of
closeness than a straightforward vector distance; we have shown
biological evidence in Fig 1 above that in the context of regulatory
relationships in time series data,  offers a superior ability to discern
validated biology. Because of this underlying difference in the
notion of closeness, clustering under  represents a fundamentally
different formulation of the clustering problem than many widely-
used methods (Hastie et al., 2001; Ghosh & Chinnaiyan, 2001;
Heard et al., 2005; Thalamuthu et al., 2006). In this sense,
our approach and these widely used methods address different
questions, which makes them difficult to compare directly. However,
K-centres (Hastie et al., 2001) represents a natural choice for
clustering under the similarity measure  ; indeed, it has been used
for this purpose in previous work (Qian et al., 2001). We therefore
compared our AP-based approach with K-centres, to investigate its
ability to find clusters under similarity measure  . We used two
microarray time series; 4,489 genes over 18 time points from a
published study in yeast (Spellman et al., 1998) and 6,000 genes
over 24 time points from a study we have carried out on A. thaliana

1 Despite these precautions, it is possible that some of the 560 genes are
circadianly regulated, as their roles may not currently be fully known.
However, it is highly unlikely that any more than a small minority are so
regulated.

leaves during infection by the necrotrophic fungal pathogen B.
cinerea.

For each dataset we applied both methods to the full set of genes
and also used smaller, randomly selected subsets, to investigate
dependence on dimensionality. For each regime of dimensionality,
10 runs of K-centres and one run of AP (which is deterministic)
was applied to the data. Since we use the same similarity measure
in both cases, the underlying cost function Eq. (2) is identical. AP
was applied using default parameters; AP is able to automatically
learn a good number of clusters (Frey & Dueck, 2007). To ensure
a fair comparison, we set the number K of clusters for K-centres
to equal the number of clusters discovered by AP in each case.
Fig 2(a) shows results obtained using the yeast dataset of Spellman
et al. (1998), which is a time course of expression profiles of genes
from cells synchronised by the addition of alpha pheromone. The
A. thaliana dataset contains the expression profiles of 6,000 genes
shown to be differentially expressed between infected and so-called
“mock infected” leaves (i.e. a control set of leaves not inoculated
with B. cinerea spores, but otherwise kept in identical experimental
conditions). Figure 2(b) shows results on the A. thaliana data. In
each case, boxplots show values of the objective function obtained
using K-centres; AP is deterministic and gives a single result in each
case.

Fig 2(c) shows an analysis in which we used 400 K-centres
runs on the full A. thaliana dataset, with each run allowed the
same compute time as a single run of our method. Our method is
completely deterministic, and therefore not subject to variation due
to initial conditions or stochastic steps. It is clear that K-centres
is performing significantly worse than our method at producing
clusters to minimize cost function (2).

4.3 Temporal clustering of A. thaliana time series data
Here, we apply our method to a microarray time series dataset
of gene expression in A. thaliana leaves during infection by the
necrotrophic fungal pathogen B. cinerea, as described in Section
4.2. We use the VirtualPlant software platform for GO term
over-representation analysis, with p-values calculated using the
hypergeometric distribution (Gútierrez et al., 2005).

We first visually highlight the ability of our method to uncover
non-obvious clusters by means of an illustrative example. Fig. 3(a)
is an example of a cluster whose underlying temporal patterns are
sufficiently complex as to make the cluster appear, at first glance,
devoid of any coherent pattern. Fig. 3(b) shows the same cluster,
adjusted for time lags and inversions: this is now highly coherent.

Application of our method produced 481 clusters; 143 of these
were singleton clusters and so were ignored. In Fig. 4 we highlight
several clusters which yielded modules with known interactions or
novel modules which are biologically interesting.
Circadian clock. Fig. 4(a) shows a cluster which appears to have a
24 hour rhythm. The cluster contains two genes encoding known
components of the circadian clock module. Gene GI is found
to score highly with LHY with a delayed and inverted match.
The delayed and inverted relationship between the two expression
profiles fits extremely well with the known role of LHY as a
transcriptional repressor of GI (Locke et al., 2006). In addition,
another member of the cluster, At1g56300, belongs to a class of
genes known as Rapid Wounding Response (RWR) genes, which are
known to be regulated by the circadian clock (Walley et al., 2007).
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(a) AP vs. K-centres in yeast data

500 1000 2000 3000 4000 5000 6000

21

21.25

21.5

(n
eg

at
iv

e)
 C

os
t f

un
ct

io
n/

#g
en

es
Number of genes

 

 

K−centres
Affinity propagation

(b) AP vs. K-centres in Arabidopsis data
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Fig. 2. Here the method proposed in Qian et al. (2001) is compared to our method. (a) They are both applied to data from Spellman et al. (1998), a time series
consisting of 4,489 genes over 18 time points. Various subsets of this are clustered and the cost function, as given in Eq. (2) and then divided by the number of
genes in the subset, is reported. 10 runs of K-centres each allowed to take as long as a single run of AP were applied to the data. (b) Both methods are applied
to data from A. thaliana leaves during infection by the necrotrophic fungal pathogen B. cinerea. Various subsets of this are clustered and the cost function, as
given in Eq. (2) and then divided by the number of genes in the subset, is reported. 10 runs of K-centres each allowed to take as long as a single run of AP
were applied to the data. (c) Here the A. thaliana data is clustered again by both methods, but with 400 runs of K-centres (shown in the grey histogram) each
allowed to take as long as a single run of AP (black line, representing the result of a single run of AP).
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Fig. 3. (a) A cluster returned by our method. (b) The same cluster as in the
previous figure, adjusted for time delays and anti-correlation. Some profiles
in this plot have been shifted in time and/or vertically inverted according to
their original match type.

The de novo discovery of a small cluster containing these genes is
striking in light of the fact that the relationship between these genes
took many years and much research effort to uncover. To the best of

our knowledge, the remaining cluster members have no known link
to the circadian clock; however, given the highly validated nature
of other cluster members, these further genes provide intriguing
hypotheses for additional downstream targets.

Ethylene response. Fig. 4(b) shows a second cluster whose members
form a striking and biologically coherent group. It is noteworthy
that this cluster contains a regulator and known target genes of
this regulator. The TF ORA59 (At1g06160) is in this cluster, along
with six genes (At1g59950, At2g43580, At3g23550, At3g56710,
At4g11280, At4g24350) that have been previously found to be
upregulated in an inducible overexpressor line of ORA59 (Pré et al.,
2008). These genes are also upregulated in the present experiment.
Moreover, ORA59 and another TF, ERF1 (At3g23240), are believed
to jointly regulate PDF1.2 (Pré et al., 2008) and ERF1 is also found
in this cluster. PDF1.2 itself is not in the dataset as there is no probe
for it on the microarrays used. Both ORA59 and ERF1 are known
to respond to the plant hormone ethylene; the cluster also has an
over-representation, significant at 1%, of the GO term response to
ethylene stimulus. Little is known in Arabidopsis about the relative
timing of expression of TFs and their direct targets. However, in
this case the time resolution of the dataset (2 hr) is apparently not
sufficient to pick up a delay between the expression of the regulator
ORA59 and its targets.

Response to abscisic acid. The cluster of 13 genes shown in Fig.
4(c) highlights a novel putative transcriptional module. The only
TF in this cluster, At1g71030 (AtMYBL2) scores highly for a match
with the other genes with a time delay of 6 hours. This cluster
has an over-representation, significant at 1%, of the GO term
“response to abscisic acid (ABA)” and as such may represent a
transcriptional module involved in signalling in response to this
hormone. Intriguingly, ABA has been shown to play a role in the
interaction between B. cinerea and plant hosts (Audenaert et al.,
2002; AbuQamar et al., 2006).
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Fig. 4. Clusters found by applying our method to biological data, with default parameters. Data represents Arabidopsis thaliana gene expression levels
following infection by Botrytis cinerea. (a) A circadian module. LHY (in blue) is known to be a transcriptional repressor of GI (in green). At1g56300 (in red)
is a Rapid Wounding Response gene, which are known to be regulated by the circadian clock. Here black dotted lines represent the expression levels of four
additional cluster members. (b) A cluster containing 6 genes co-regulated by ORA59 (in red), ORA59 (in orange) and gene ERF1 (in green) that is believed to
jointly regulate PDF1.2 with ORA59 (Pré et al., 2008). (c) A putative transcriptional module. AtMYBL2 (in red) is the only known transcription factor in this
cluster, and peaks 3 time points before the rest of the genes.

5 DISCUSSION
In this paper we have introduced a clustering methodology that
can reveal relatively complex temporal features in gene expression
time series datasets. Our method is complementary to standard
clustering approaches, but aimed specifically at high resolution
time series and regulatory modules whose expression profiles have
complex temporal relations. Here we discuss the shortcomings of
our method, discuss possible extensions and the relationship of our
method to others.

As transcriptional assays continue to mature higher resolution
datasets are becoming more common; our method is best suited to
data with (relatively) high temporal resolution, e.g. more than ten
time points. Time series data with fewer time points will naturally
give a higher chance of spurious correlations or missed time lags.

The method used here is able to detect transient co-expression,
but is not as sensitive as biclustering methods to events occurring
only within short windows of time. This is due to the conservative
approximation strategy of Qian et al. (2001), that divides the overall
score by the total number of time points rather than the number of
time points where co-expression occurs. We could improve this by
giving each  value a p-value using an empirical null distribution.
For example, a local correlation across 5 time points could be
compared to alignments of 5 time points in random expression
profiles. A matrix could then be constructed from the p-values and
clustered as described above. This would aid in identifying clusters
that contain genes that are transiently co-expressed.

The deterministic approach we have used for alignment is
effectively a (constrained) time-warping. An interesting extension
would be to carry out alignment within a probabilistic framework
using a Hidden Markov Model (Rabiner, 1989; Eddy, 1998).
However, in such an approach the design of the state space would
be crucial in capturing realistic gene expression time series using
conventional i.i.d. Gaussian observation models. Moreover the
resulting computational burden for all pairwise comparisons of ⇠
104 genes would be considerably greater than the method used here,
which is fast enough for interactive use as an exploratory tool.

As AP is an appropriate method to cluster arbitrary matrices
of similarity, it provides a flexible framework in which to carry
out further work in incorporating complementary information in
the similarity measure, e.g. additional time series of the same
genes under different environmental conditions, the identity of
TFs, presence of known TF binding sites in a gene’s promoter,
protein-protein interactions, etc.

A recent paper by Smith et al. (2009) demonstrated a method
called SCOW for aligning the profile of a gene with its profile
in another time series. This is subtly different from clustering the
profiles of different genes in the same time series, for example,
shorting is not appropriate in this case. It also allows for unequal
sampling. The problem of unequal sampling was partially treated
in Qian et al. (2001), but could certainly be improved. One way
that suggests itself is to record the spacing between time points, and
on the basis of that allow skips in matrices ⌦+ and ⌦� that are
acceptable given the spacing.
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Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered
regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The
regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little
information on how these function in the global control of the process. We used microarray analysis to obtain a high-
resolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence.
A complex experimental design approach and a combination of methods were used to extract high-quality replicated data
and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to
reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well
as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups
of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic
processes, signaling pathways, and specific TF activity, which will underpin the development of network models to
elucidate the process of senescence.

INTRODUCTION

During leaf senescence, the plant recovers and recycles valuable
nutrient components that have been incorporated during growth
that would otherwise be lost when the leaf dies or is shed. Ef-
ficient senescence is essential to maximize viability in the next
season or generation, but premature senescence, a protective
mechanism employed when plants are stressed, results in re-
duced yield and quality of crop plants. During the senescence

process, viability of cells within the leaf is actively maintained
until maximum remobilization has occurred (Hörtensteiner and
Feller, 2002). This requires meticulous control of each step of the
process, regulated by internal and external signals via a series of
interlinking signaling pathways involving gene expression
changes and influenced by the balance of hormones and me-
tabolites. Thus, senescence is a very complex process involving
the expression of thousands of genes and many signaling
pathways (Buchanan-Wollaston et al., 2005; van der Graaff
et al., 2006). Elucidation of the relative influences of each
pathway and the crosstalk between them is crucial in identifying
the key regulatory genes that control senescence.

To date, genes with a role in leaf senescence have been
identified either by forward genetic screening to find mutants
with altered senescence rates followed by cloning of the genes
involved or by using reverse genetics for functional analysis of
genes that show differential expression during senescence
(reviewed by Lim et al., 2007). Many of these altered senescence
phenotypes occur as a result of altered hormone signaling, such
as reduced ethylene signaling (Grbic and Bleecker, 1995) or
increased cytokinin signaling (Kim et al., 2006), both of which
result in delayed senescence. However, traditional molecular
biology approaches in which one gene or mutant at a time is
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identified and analyzed have resulted in interesting information
but have generally failed to reveal a global picture of senescence
regulatory networks, including likely feed-forward, feedback,
and crosstalk mechanisms. To understand a system as complex
as senescence, where the influence ofmany external and internal
signals is balanced to allow controlled disassociation and dis-
persal of cellular components, it is essential to study the system
in its entirety rather than focus on small parts. The first step in this
global analysis is to identify the dynamic changes that are
occurring in transcript levels as senescence progresses. Obvi-
ously, transcripts are only one part of the regulatory process;
factors such as RNA stability, translation rates, protein process-
ing and stability, metabolite concentrations, andmany others will
have essential roles in the fine-scale moderation of cellular
activity. However, transcription plays a key role in regulating
both senescence and hormone signaling; therefore, identifica-
tion of regulatory networks based on transcript levels is an ideal
starting point in identifying key switch points in senescence.

Here, we use high-resolution time series microarray data,
collected over many time points during the development of the
leaf, to identify and characterize the gene expression changes
during the different steps that make up the senescence process.
The resulting detailed measurement of transcript levels for 22
time points during the developmental process is highly valuable
for the investigation of numerous complex processes, such as
the discovery of metabolic pathway switches, the identification
of key regulatory genes that are active at different time points,
and the inference of gene regulatory networks. Analysis of the
expression patterns has enabled us to propose a detailed
chronology of transcriptional and functional changes during
leaf senescence. Promoter motif and transcription factor (TF)
analysis has revealed a progression of regulatory genes that
influence gene expression at different times during development.
Finally, a preliminary model, generated with selected genes from
the array data, is presented to illustrate the value of this data set
for future network inference.

RESULTS

Growth and Biochemical Changes during Senescence

All measurements in this study were made on samples collected
from leaf 7, chosen because senescence and mobilization of
constituents from this leaf occur concurrently with flower devel-
opment and silique filling in our growth conditions and are thus
likely to be controlled by developmental signals. Each sample
was harvested from an independentArabidopsis thaliana plant at
each time point (Figure 1A), and samples were not pooled for any
of the analyses. Arabidopsis Col-0 plants were grown in con-
trolled conditions until leaf 7 was;50%of its final size (19 d after
sowing [DAS]). This leaf was harvested at defined time points
until 39 DAS when it was visibly senescent (;50% of leaf area
being yellow, Figure 1B). Samples were taken in the morning (7 h
into the light period) and afternoon (14 h into the light period)
every other day, resulting in 22 time points in total. Sampling was
carried out at these two time points each day to allow us to
distinguish genes that are altered in a diurnal rhythm, as well as

being differentially expressed over time; the times were selected
based on likely maximum changes in expression. Plants started
flowering from around 21 DAS. Leaf 7 started to show yellowing
at the tip at around 31 DAS andwas 25 to 50% yellow by 37 DAS.
By the final sample time (39 DAS), the plants were fully flowering,
and siliques were filling. Physiological parameters were mea-
sured in the morning samples only (i.e., 11 time points). Sampled
leaves reached full expansion by 23 DAS (Figure 1C). However,
leaf weight increased significantly between time points up to 25
DAS (P < 0.01) and continued to increase, reaching a maximum
at 31 DAS when the first signs of yellowing were visible and
then declined rapidly after 37 DAS (P < 0.05). Once the leaf is
fully expanded, weight may continue to increase due to synthe-
sis of macromolecules, expansion of organelles, and water
uptake. Similarly, loss of fresh weight is primarily due to the
decline in macromolecules and the loss of water as the leaf
begins to dry.

Protein and chlorophyll levels are often used asmarkers for the
progression of senescence since both are degraded during the
senescence process. Levels of total chlorophyll and protein were
measured (Figure 1D). Chlorophyll levels did not change signif-
icantly until after 31 DAS, when levels started to fall (P < 0.001
from maximum). However, relative protein levels started to drop
considerably earlier at 23 DAS (P < 0.05 from maximal), which is
before the time at which maximum leaf weight is reached. This
implies that the leaf weight increase seen up to 31 DAS is not due
to new protein synthesis but is probably due to increased water
content and possibly continuing increases in cell wall density
and membrane and other structural developments. Levels of the
small and large subunit (SSU and LSU, respectively) of the pho-
tosynthetic carbon-fixation enzyme ribulose-1,5-bis-phosphate
carboxylase/oxygenase (Rubisco) increased to maximum at 23
DAS (LSU) and 25 DAS (SSU) and then fell steadily during
senescence (P < 0.001 from maximum; Figure 1E). Rubisco is
abundant in a mature green leaf and has been suggested to have
some role as a storage protein (Staswick, 1994). Early degrada-
tion of this protein may provide building blocks for synthesis of
additional proteins required for senescence without affecting the
rate of photosynthesis.

Senescence results in activation of signaling pathways involv-
ing the stress-related plant hormones salicylic acid (SA), jas-
monic acid (JA), and ABA (Weaver et al., 1998;Morris et al., 2000;
He et al., 2002). Levels of these three hormones were measured
in the leaf 7 developmental time series and showed phased
increases during senescence (Figure 2). SA levels were high in
immature leaves, gradually decreased to minimal levels at 31
DAS (P < 0.001 from initial maximum) and then rose significantly
(P < 0.05) from a relatively late stage (35 DAS). ABA levels
significantly increased earlier at around 31 DAS (P < 0.05), with a
subsequent increase tomaximum at 39 DAS; JA levels showed a
complex pattern with peaks at 25, 33, and 39 DAS.

Microarray Analysis over Multiple Time Points Identified
Thousands of Differentially Expressed Genes

Four biological replicates for each time point were used for RNA
isolation (88 samples in total), each hybridized as four technical
replicates to the two channel microarrays. The resulting gene
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expression profiles were analyzed, and time point means were
extracted using a local adaptation of the MAANOVA (MicroArray
ANalysis Of VAriance) package, which quality checks and nor-
malizes the data and produces data files containing predicted
means for each gene; in essence, a single normalized value for
each gene for each biological replicate measured at each time
point (Wu et al., 2003; Churchill, 2004). Two different data sets
were obtained in this way following the completed analysis: the
first contained predicted mean values for each of the four
biological replicates at each of the 22 distinct time points,
therefore including time-of-day variation, whereas the second
contained predicted mean values for eight biological replicates
for each of 11 d, the values calculated by omitting the time-of-
day and day/time-of-day interaction effects from the fitted
model. These data sets were both used in the further analysis
described below.

F tests, constructed from the variance estimates obtained
from the MAANOVA model-fitting process, were used to assess
each gene for significant changes in gene expression between
time points. The model fitting allowed separate assessments of
the variation due to differences between days (averaged across
time-of-day samples), differences between time of day (aver-
aged across days), and the interaction between these terms.
Significance levels for all tests were adjusted across genes for
multiple testing using a step-down false discovery rate (FDR)
controlling procedure (Westfall et al., 1998; Benjamini and Liu,
1999), resulting in 8878 genes showing significant (P < 0.05)
variation due to day of sampling (19–39 DAS). Additional genes
were identified as showing significant (P < 0.05) variation due to
the time of day or the interaction between day of sampling and
the time of day, and the numbers of genes having significant test
results for combinations of these terms are summarized in a Venn
diagram, together with sample expression profiles for each com-
bination (see Supplemental Figure 1 online). The selection pro-
cess that was used to identify the list of differentially expressed
genes used in all further analyses is described in the Methods
section and combined information about the adjusted signifi-
cance levels of the statistical tests with visual examination of
expression patterns. The final list of genes used for the analysis
described below contains probes for 6323 genes (see Supple-
mental Data Set 1 online).

We have generated a web tool that illustrates the expression
levels of each individual probe on the Complete Arabidopsis
thaliana MicroArray (CATMA; Allemeersch et al., 2005) array

Figure 1. Plant Growth Parameters and Protein and Chlorophyll Mea-

surements.

(A) Appearance of the Arabidopsis plants at three different stages of

development, 19, 33, and 37 DAS. White arrows indicate leaf 7, the

sampled leaf from each plant.
(B) An example of leaf 7 harvested from plants at 19 to 39 DAS (picture

shows the morning sample only).

(C) Length (mm, red bars) and weight (mg, blue bars) of the sampled

leaves over the time course. Least significant differences (LSD; 5%, 71

[length] and 99 [weight] df ) calculated based on the minimum sample
size of 6 (length) and consistent sample size of 10 (weight) for comparing

pairs of means is shown for each variable, calculated from the ANOVA.

(D) Total protein (blue bars) and chlorophyll a+b (red bars) levels were

measured in leaf samples at each stage of development. LSD (5%, 42
[protein] and 43 [chlorophyll] df ) is shown for both variables. FW, fresh weight.

(E) Levels of the large (LSU) and small (SSU) subunits of Rubisco were

estimated from stained polyacrylamide gels. LSD (5%, 42 df ) is shown

for both variables. Values shown in (D) and (E) represent the means of
five independent biological replicates per time point.
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using the two alternative summaries of the senescence data.
Expression patterns for each gene in the 22– and 11–time point
data can be viewed in the Data section at http://go.warwick.ac.
uk/presta.

Clustering Genes by Expression Pattern Illustrates the
Extensive Metabolic Changes Occurring during
Leaf Senescence

The 6323 differentially expressed geneswere clustered using the
time series-clustering software SplineCluster (Heard et al., 2006).
Clustering analysis of both the 22– and 11–time point data was

performed, and 48 and 74 clusters were obtained respectively.
Supplemental Data Set 1 online shows the cluster number for
each differentially expressed gene in both the 11– and 22–time
point clusters. For reasons of space, only the 22–time point
clusters are analyzed in this article (Figure 3A). The heat map
(Figure 3B) indicates that there are changes in gene expression at
each time point but that there are several time points at which an
obvious step change in the transcriptome occurs. Overall, the
major switch in gene expression in leaf 7, both in genes up-
regulated and downregulated, occurs between 29 and 33 DAS,
and the genes identified as differentially expressed can be
divided into two major groups, genes in clusters 1 through 24,
which are downregulated during this period, and genes in
clusters 27 through 48, which are upregulated. Some of the
clusters in the center of the heat map show a more complex
pattern; for example, cluster 26 genes are downregulated initially
and then increase in expression, and genes in clusters 27, 28,
and 29 show an initial increase followed by a decrease in
expression (Figures 3A and 3B).

A clear diurnal variation in expression is seen with many of the
differentially expressed genes, which show higher expression in
either the morning or the afternoon samples from the same
sample day. Other genes show a distinct morning to night rhythm
that did not alter significantly over the 22 d of the experiment.
These genes were not selected as being differentially expressed
over time but were identified in the MAANOVA analysis as being
significantly affected by the time of day term only (1086 genes;
see Supplemental Figure 1 online). These genes show clearly
that the clock does not decline as late senescence is reached.
Morning genes include well-characterized clock genes such as
LATE ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK
ASSOCIATED1 (CCA1), and PSEUDO-RESPONSE REGULA-
TOR 7 (PRR7; Harmer, 2009) as well as genes involved in
light signaling such as PHYTOCHROME A (PHYA), CRYPTO-
CHROME 1 (CRY1), and PIF4, a phytochrome-interacting factor
(see Supplemental Figure 2A online). Afternoon genes include
EARLY FLOWERING 4 (ELF4) and PHYTOCLOCK1 (PCL1), both
of which are negatively regulated byCCA1 and LHY (Hazen et al.,
2005; Kikis et al., 2005; see Supplemental Figure 2B online).

The 48 clusters of genes identified from SplineCluster analysis
of the 22–time point data were analyzed using the gene ontology
(GO) enrichment tool BiNGO (Maere et al., 2005). Initially, the two
groups of genes showing either decreasing (clusters 1–24) or
increasing (clusters 27–48) expression during leaf development
were analyzed for overrepresented functions using the GoSlim
Plants annotation. TheBiNGO-derived graph (Figure 4) illustrates
the most highly significant enrichment of specific functions.
Downregulated genes are significantly enriched for genes linked
to the plastid and thylakoid, and with functions in metabolic
processes, particularly photosynthesis and carbohydrate and
amino acid metabolism. A more detailed investigation using all
GO terms (see Supplemental Table 1 online) shows overrepre-
sentation for genes involved in chloroplast activity such as
photosystem (PS) I and II, carbon fixation, chlorophyll (tetra-
pyrrole) biosynthesis, and amino acid metabolism. All these
functions are essential for a growing and active leaf but are
downregulated during senescence, when cellular structures are
dismantled.

Figure 2. Hormone Levels during Leaf Development.

Levels of JA (A), SA (B), and ABA (C) were measured in leaf 7 harvested

at different times during plant development. LSD (5%, 41 df ) for

comparisons between pairs of means are shown for each hormone,

calculated from the ANOVA of log10-transformed data. Values represent
the means of five independent biological replicates per time point. DW,

dry weight.

[See online article for color version of this figure.]
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Figure 3. SplineCluster Analysis of Differentially Expressed Genes.
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Upregulated genes show a very different picture, illustrating
clearly the protective steps the plant takes to respond to the
stress generated by the degradative and mobilization functions
that occur during senescence (Figure 4). Only two cellular com-
ponent terms are overrepresented, peroxisome and vacuole.
Within the molecular function annotations, only transporter,
protein binding, and transcription are overrepresented, whereas
there is significant enrichment for stress response and catabolic
processes in the biological process terms. In more detail (see
Supplemental Table 1 online), enrichment is seen for genes
involved in response to stimulus, particularly ABA and ethylene,
and many stress responses such as osmotic, salt, and water
stress. Enrichment of genes involved in metal ion binding is
interesting. Many of these genes (64/222) encode zinc finger
(C3H4-type RING) proteins, which may be involved in targeting
specific proteins for ubiquitination and degradation. Other zinc
binding proteins present have DNA binding activity and may
act as TFs. Also, copper chaperones, metallothioneins, calcium
binding proteins, and metal ion transporters are represented,
which may illustrate the importance of the remobilization of
valuable metal ions. Autophagy genes are a significant group; 15
Arabidopsis genes involved in autophagy are upregulated during
senescence, showing the key role of autophagy in the controlled
degradation of cellular components.

This global analysis is highly informative, as it shows broad
classes of genes altered in expression during senescence and
indicates the processes that are changing. Analysis of enriched
GO terms in individual clusters should help to elucidate the
chronology of gene expression and associated metabolic ac-
tivities (Figure 3, see Supplemental Data Set 2 online). Not
surprisingly, there was a very strong representation of photo-
synthesis-related genes in many of the clusters of downregu-
lated genes. Clusters 2, 3, and 6, all of which show a strong
diurnal variation with higher morning expression (Figure 3A), are
highly enriched with photosynthesis genes, particularly those for
the light reaction. Cluster 16, which shows less diurnal change,
contains genes encoding enzymes such as Rubisco that are
involved in carbon fixation. Clusters 4, 10, 17, and 21 are en-
riched for chlorophyll biosynthesis genes, and clusters 18 and
19 contain genes involved in cellular biosynthesis such as those
for amino acid, polysaccharide, and lipid metabolism. Cluster 15
contains many genes encoding ribosomal proteins. Downregu-
lation of these groups of genes reflects the shutdown of cellular
biosynthetic activity as senescence occurs, and the coregulation
is an indication of the organized control of this process. Cluster
13 is enriched for cytokinin signaling genes; a reduced level of

cytokinin is a key signal that initiates the senescence process
(Noodén et al., 1990).

GO terms enriched in the clusters of genes showing increased
expression during senescence are less informative than those for
the downregulated gene clusters. Certain clusters are enriched
for stress-related genes, e.g., genes involved in JA and ethylene
signaling are overrepresented in cluster 34. Other clusters are
enriched for genes involved with macromolecule degradation,
such as clusters 40 and 41 containing genes involved in carbo-
hydrate and lipid degradation, respectively. Metal ion binding,
particularly calcium binding, is overrepresented in cluster 43 and
transporter genes in cluster 46.

Distinct Pathways Become Active at Different Times
during Senescence

Although SplineCluster is useful in identifying groups of genes
that are coexpressed and hence may be coregulated across the
entire time series, it is not easy to divide these clusters according
to their time of differential expression because the overall pattern
of expression is the driving factor for cluster membership. To
identify an ordering of events, the rate of change of gene
expression (gradient) was inferred using Gaussian process
(GP) regression applied to the 11–time point data set (described
in detail in Supplemental Methods 1 online). Where data are
sufficiently time resolved, this method can be used to identify the
time points at which the gradient of a gene’s expression profile is
significantly positive (increased), significantly negative (de-
creased), or not statistically different from zero (steady), whereas
for less resolved data, it will identify times of significant change to
the derivative of the global trend. The results are illustrated using
the well-characterized, senescence-enhanced gene SAG12
(Figure 5). Expression profiles (Figure 5A) are used to train a
GPmodel of gene expression (Figure 5B), afterwhich aGPmodel
of the gradient is obtained (Figure 5C) and used to identify
whether the gradient at any time is sufficiently far from zero at
three different significance thresholds (Figure 5D). A numeric
representation of Figure 5C is shown in Figure 5E and suggests
that SAG12 expression first becomes significantly enhanced
around 31 DAS. This method can also be used to show when the
gene expression gradient is maximal, i.e., the time of most rapid
change. For example, themaximumchange of the expression for
SAG12 occurs between 33 and 35 DAS (Figure 5E).

After examining the results for a number of genes, a signifi-
cance stringency of two standard deviations was taken to

Figure 3. (continued).

SplineCluster analysis was performed on the 22–time point data using normalized data for the 6323 differentially expressed gene probes (average of

the four biological replicates).

(A) Forty-eight clusters were obtained. The blue line on each plot represents the mean expression profile for the cluster. The genes present in each
cluster may be viewed in Supplemental Data Set 1 online. Selected enriched GO terms (data shown in Supplemental Table 1 online) are indicated, in

green for downregulated and red for upregulated genes.

(B) The heat map illustrates the expression profiles for genes in each cluster, with red representing high expression and green representing low

expression. Morning (a) and afternoon (p) data are shown for 19 to 39 DAS. Darker shades show intermediate levels of expression. A few cluster
positions are identified to compare with the cluster profiles shown in (A).

6 of 22 The Plant Cell



represent a sufficient distance from zero and was used to
generate discrete representations of the state of a gene (Figure
5D) for the 6323 differentially expressed genes. The resulting
data were then sorted according to the time of first differential
expression to identify 19 clusters (see Supplemental Data Set 3
online). GO term enrichment within the 19 clusters or subsets
provided more clarity on the cellular and metabolic activities,
showing step changes at each time point during the experiment
than was gained from the cluster analysis described above
(Figure 6, see Supplemental Data Set 4 online).

Downregulated Gene Clusters Show Step Changes in
Cellular Dismantling

It is clear that there are progressive changes in genes being
downregulated as senescence progresses, and these are highly
informative in indicating changes in metabolic pathways. Genes
downregulated from the first time point (19 DAS, cluster D1; see
Supplemental Data Sets 3 and 4 online), before the leaf is fully
expanded, are enriched for genes involved in amino acid me-
tabolism, including those for biosynthesis of Arg, Trp, Lys, and
Gln. Genes involved in tRNA aminoacylation and over 30 ribo-
somal protein genes are downregulated at 21 DAS (cluster D2),
indicating that expansion of the ribosomal content of the cells
has slowed down. This suggests that large-scale de novo protein
synthesis has ceased and that leaf cells are fully developed and
equipped for activity.

Many tetrapyrrole or chlorophyll biosynthesis genes are first
downregulated at 23 DAS (cluster D3), including the two genes
encodingHEMA (glutamyl- tRNA reductase), which catalyzes the
rate-limiting and first committed step in tetrapyrrole biosynthe-
sis, and two genes encoding the D subunit of Mg-chelatase, part
of the enzyme that diverts the tetrapyrrole pathway toward
chlorophyll biosynthesis (Tanaka and Tanaka, 2007). Thus, the
requirement for de novo chlorophyll biosynthesis appears to
cease at 23 DAS, indicating that all chloroplasts are fully devel-
oped. Three genes involved in a branch of the carotenoid
biosynthesis pathway (LUT1, 2, and 5) show a correlated drop
in expression at this stage. These genes encode enzymes in the
pathway leading from trans-lycopene via a-carotene to lutein,
themajor carotenoid component in the leaf with an important role
in light-harvesting complex-II structure and function and in
photoprotection (Kim and DellaPenna, 2006). In addition, ex-
pression of three cytokinin-inducible transcription repressors
(response regulators ARR4, 6, and 7) that mediate a negative
feedback loop in cytokinin signaling (Hwang and Sheen, 2001)
also drops at this time point.

At the next stage (25 DAS, cluster D4), there is significant
overrepresentation of genes involved in fixation of carbon di-
oxide or the Calvin cycle, including two Rubisco small subunit
genes and sedoheptulose bisphosphatase, a key enzyme in-
volved in the regeneration of the CO2 acceptor molecule, ribu-
lose-1,5-bisphosphate. The reduction in expression of the two
Rubisco small subunit genes correlates with the reduction in
protein levels shown in Figure 1E and indicates that photosyn-
thetic activity probably starts to drop at this stage. At 27 DAS
(cluster D5), expression of genes involved in Gly metabolism
declines, including Gly decarboxylase and Ser trans hydroxy-
methyl transferase 1, both involved in photorespiration, which
presumably is also less important as photosynthesis becomes
less active. Interestingly, five genes designated as HIGH CHLO-
ROPHYLL FLUORESCENCE PHENOTYPE (HCF101, 109, 152,
173, and 208) are downregulated together at 27 DAS. Several
such genes have been shown to have a role in maintaining the
stability of chloroplast-encoded transcripts (Meurer et al., 1996;
Meierhoff et al., 2003), and it may be that reduced expression of
these genes enables enhanced degradation of photosyntheti-
cally related transcripts in the chloroplast. Finally, gene clusters
that show expression that declines at 29, 31, and 33 DAS

Figure 4. Enriched GO Terms in Genes Upregulated and Downregulated

during Senescence.

The network graphs show BiNGO visualization of the overrepresented

GO terms for the combined clusters of genes either downregulated

(clusters 1–24, 2849 genes) or upregulated (clusters 27–48, 3292 genes)
during senescence. Categories in GoSlimPlants (Maere et al., 2005) were

used to simplify this analysis and the same nodes are shown on both

graphs. Uncolored nodes are not overrepresented, but they may be the
parents of overrepresented terms. Colored nodes represent GO terms

that are significantly overrepresented (Benjamini and Hochberg cor-

rected P value < 0.05), with the shade indicating significance as shown in

the color bar. A more detailed analysis of the GO categories is shown in
Supplemental Table 1 online. ER, endoplasmic reticulum.
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(clusters D6, D7, and D8) are significantly overrepresented for
photosynthesis-related genes. Cluster D7 includes the gene-
encoding TF GOLDEN2-LIKE (GLK2) that, together with its
functional homolog GLK1, has been shown to coordinate ex-
pression of the photosynthesis apparatus genes in Arabidopsis
(Waters et al., 2009). Inducible expression of GLK2 resulted in
significantly increased expression of many photosynthesis-
related genes (Waters et al., 2009), including those for the
PSII chlorophyll binding proteins LHCB 2.2, 4.2, and 6 that are
found in the same cluster of downregulated genes as GLK2,
together with many others encoding subunits of the PSI and
PSII complexes. The observation that expression of many
photosynthesis-related genes is maintained until this late stage
of development implies that there must be a continued require-
ment of these transcripts to retain sufficient energy production
for the senescence process to occur.

Upregulated Gene Clusters Illustrate the Complexity of the
Senescence Process and Reveal Novel Groups of
Coregulated Genes

Genes that show increased expression at different time points
during senescence were divided into clusters based on the time
of first significant increase, but these clusters were also sub-
divided further depending on the subsequent expression
patterns (see Supplemental Data Sets 3 and 4 online). This
separation revealed additional enriched GO terms, as shown in
Supplemental Data Set 4 online and Figure 6.

Many autophagy-related (ATG) genes are enhanced in ex-
pression from the start of the experiment (cluster U1), indicating
that there may be a role for these proteins even before the leaf is
fully expanded. Autophagy has a key role in the senescence
process, and accelerated senescence has been observed in a
number of autophagy-defective mutants (Doelling et al., 2002;
Hanaoka et al., 2002; Yoshimoto et al., 2004). Nine of the 15
upregulated autophagy genes show increased expression from
the first time point, with five others upregulated at 21 or 23 DAS
and one,ATG7, being upregulated at 29DAS. Investigation of the
overall expression patterns of the autophagy genes shows four
genes, ATG7, ATG8H, ATG8A, and ATG8B that show correlated
and rapidly increased expression between 29 and 31 DAS (see
Supplemental Figure 3A online). In yeast, ATG7p has been
shown to be required for activation of ATG8p to allow conjuga-
tion with phosphatidylethanolamine (Ichimura et al., 2000), and
the resulting ATG8p-phosphatidylethanolamine conjugates

Figure 5. Gradient Analysis of SAG12 to Identify the Time of First

Significant Change in Expression.

(A) Expression levels from microarray data (output from Gene Viewer).
The blue line shows the mean of the eight replicates (n = 8; error bars =

standard deviation, SD).

(B) Expression levels used by the GP regression, showing the eight

biological replicates and the 95% confidence interval.

(C) GP model of the gradient showing 95% confidence interval.
(D) Change in gradient measured at each time point, shown at three

different significance values: 3 SD, 2 SD, and 1 SD. Positive value of 1

shows an increased expression, 0 shows no significant change in ex-

pression, and !1 shows a significant decrease in expression.
(E) Data output for each significance value, i.e., whether gradient is

significantly positive or steady at each time point, with the actual gradient

value shown below.
[See online article for color version of this figure.]
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assist in the formation of the autophagosome. Thus, the timing of
expression of ATG7 (around 29 DAS) may be the key control
point for autophagy activation in senescing leaf cells.

Genes induced at 21 DAS (cluster U2) are enriched for re-
sponse to oxidative stress. These include TFs such as DREB2A,
a key regulator in drought and heat stress responses (Sakuma
et al., 2006), and LSD1, a zinc finger that monitors superoxide
levels and regulates cell death (Epple et al., 2003). Increased
expression of themitogen-activated protein kinaseMPK7, which
is also induced by hydrogen peroxide treatment and enhances
plant defense responses (Dóczi et al., 2007), and heat shock
proteins such as HSP70, a stress-enhanced heat shock chap-
erone with a protective role, also indicates that the plant is
protecting itself from the detrimental effects of oxidative stress
caused by the early stages of senescence. Genes involved in
response to water deprivation are also overrepresented; DRE-
B2A described above, Arabidopsis HISTIDINE KINASE3 (AHK3),
a stress-responsive gene that has been shown to influence
cytokinin control of leaf longevity (Kim et al., 2006), dehydration-
responsive genes such as ERD1 and ERD14, and RAB18, ABF2,
and other ABA-responsive genes.

Genes involved in both JA and ABA responses are clearly
overrepresented in those whose expression increases at 23 DAS
(cluster U3). Many of these show a peak of activity at this time
point followed by a drop, and this subset is highly enriched for JA
biosynthetic genes (cluster U3_1). JA-related genes upregulated

at this time point include genes required for JA biosynthesis such
as two lipoxygenases, two allene oxide cyclase genes, AOC1
and AOC4, and 12-oxophytodienoate reductase. This increase
correlates with a peak in levels of JA detected at 25 DAS (Figure
2). Also, genes implicated in controlling JA responses are up-
regulated, including the TF MYC2, and jasmonate ZIM-Domain
genes, JAZ1, JAZ6,and JAZ8. JAZ proteins are repressors of JA
signaling, binding toMYC2 and preventing its action (reviewed in
Staswick, 2008). MYC2 is also involved in expression of ABA
response genes, and this may be the cause of the increased
expression of ABA-related genes at this time point. ABA levels
only show a large increase later in senescence (Figure 2), but
several ABA-signaling genes (e.g., ABI1 and AFP1) and dehy-
dration response genes whose expression is induced by ABA
(e.g., RD20 and RD26; Fujita et al., 2004; Choudhury and Lahiri,
2011) are upregulated at 25 DAS. This suggests a potential
coordination of JA and ABA responses at this early stage of
senescence.

Many genes encoding TFs are first upregulated at 23 DAS,
including four WRKY factors, eight NAC domain (for Petunia
hybrida NAM and for Arabidopsis ATAF1, ATAF2, and CUC2)
proteins, 10 zinc finger proteins, and the Nuclear Factor Y sub-
unit NF-YA4, which has been implicated in regulating endo-
plasmic reticulum stress (Liu and Howell, 2010). Many of these
genes show an increased expression followed by a fall in ex-
pression later in senescence (cluster U3_3), whereas others

Figure 6. Metabolic Processes Initiated or Repressed at Different Time Points during Development.

Enriched GO termswere identified using BiNGO (Maere et al., 2005) in groups of genes that show first significant upregulation or downregulation at each

time point during leaf development and senescence. ROS, reactive oxygen species; white numbers indicate DAS.

Chronology of Senescence Processes 9 of 22



show a continued increase from this time until later in senes-
cence (see Supplemental Data Set 3 online). These are likely
candidates for the control of later senescence-related pro-
cesses.

At 25 DAS, the cluster of genes upregulated (cluster U4) is
enriched for metal ion binding proteins, including many genes
encoding DNA binding proteins, TFs, calcium-signaling genes,
etc. The subgroup of this cluster that shows a pattern of
increased followed by decreased expression (cluster U4_1) is
enriched for genes with a protein binding function. There are five
C3HC4-type RING finger protein binding genes in this group,
which presumably have a role in regulating specific protein levels
via the ubiquitination pathway.

At 27 DAS, there is an interesting overrepresentation of genes
involved in carotene metabolism (cluster U5). The three genes
involved are a b-carotene hydroxylase and two carotenoid
cleavage dioxygenase genes, CCD7 and CCD8. Carotenoids
are precursors of signaling molecules that regulate shoot branch-
ing in Arabidopsis, and CCD7 and CCD8 mutants, max3 and
max4, respectively, show increased lateral branching (Ongaro
and Leyser, 2008). These genes are involved in the production of
a strigolactone-related signaling molecule (Gomez-Roldan et al.,
2008). Interestingly, another gene that has a shoot-branching
role, MAX2, was originally identified as ORE9, encoding an
F box leucine-rich repeat protein required for normal leaf senes-
cence (Woo et al., 2001). Mutants in MAX2 show increased
branching, indicating that this protein is a regulator of the
strigolactone signal. The ORE9/MAX2 gene also shows senes-
cence-enhanced expression and is upregulated at 21 DAS.
Enhanced expression of all three genes that regulate shoot
branching in a senescing leaf and the fact that a mutant in
ORE9/MAX2 shows delayed senescence indicate that there
may be a role for the novel strigolactone-like hormone in regu-
lating an aspect of leaf senescence.

Caspase activity is also an enriched GO term in genes
upregulated at 27 DAS due to increased expression of two of
the nine Arabidopsis genes encoding potential caspase coun-
terparts, metacaspases MC6 and MC9. The other seven Arabi-
dopsis metacaspase genes do not show differential expression
during senescence. In other organisms, caspases play an es-
sential role in controlling and executing programmed cell death
(PCD), and two metacaspase genes, MC1 and MC2, have been
shown recently to control pathogen-induced PCD in Arabidopsis
(Coll et al., 2010). Links between senescence and plant PCD are
tenuous, but the coregulated expression of these two caspase-
like genes at this time point may indicate that they have a role in
the degradative processes and/or cell death that occur in leaf
senescence. The autophagy gene ATG7 also shows initial en-
hanced expression at this time point as described above, and
this may be a significant link showing that, under our growth
conditions, the first degradative processes of senescence are
initiated at 27 DAS.

At the next time point (29 DAS, cluster U6), senescence-
related degradation processes are shown by enrichment in
genes for cell wall degradation. Six upregulated genes encode
pectinesterase, involved in the degradation of plant cell wall
pectin components. These enzymes and others such as xylosi-
dase, glucosyl hydrolase, b-glucosidase, pectate lyase, and

pectin methylesterase inhibitor, may have a role in controlling the
degradation of cell wall components and releasing sugars for
respiration (Lee et al., 2007). Similarly, genes upregulated at
31 DAS (cluster U7) are highly enriched for catalytic activity,
reflecting the considerable degradation that is underway. These
include additional carbohydrate-degrading enzymes such as pec-
tinesterases, glycosyl and glucosyl transferases, and polygalactu-
ronase, and several proteases including the well-characterized
senescence-enhanced Cys protease SAG12, which may have a
role in chloroplast degradation (Martı́nez et al., 2008). Two upregu-
lated genes, LACS6, encoding a long-chain acyl-CoA synthetase
(Shockey et al., 2002), and ACX1 (acyl-CoA oxidase), encoding the
enzyme that catalyzes the first step in fatty acid b-oxidation in the
peroxisome (Fulda et al., 2002), are involved in mobilizing mem-
brane lipids via b-oxidation, likely to provide an energy source to
fuel the senescence process. This could act as an initiator of
precursors for jasmonate biosynthesis because levels of this
hormone increase after this time point (Figure 2).

By the later time points in this experiment, after 31 DAS, the
senescing leaf becomes more and more heterogeneous, with
some cells within the leaf being at a more advanced stage of
senescence than others and more variability between biological
replicates. This means that there is less clarity in the functions of
different groupings of genes that are differentially expressed at
each time point after 31 DAS. GO term enrichment analysis of the
31, 33, and 35 DAS groups combined (clusters U7, U8, and U9)
illustrates the degradation and mobilization of nutrients, with
44% of these genes involved in catalytic activity, with lipid
catabolism highly represented, and 10% involved in transport.
Response to chemical stimulus is also high, with two of the three
Arabidopsis genes annotated detection of ethylene stimulus, i.e.,
ethylene ETR1 and ACC OXIDASE2 (ACO2) being upregulated
late in senescence, indicating that the ethylene regulation of
senescence may have a significant role at this time.

A surprising group of genes identified by this analysis is
downregulated for most of the time course followed by a signif-
icant increase in expression at 35 or 37 DAS (clusters U8_1 and
U9). This group is highly enriched for genes involved in the
cytoskeleton (see Supplemental Figure 3B online), with mem-
bers of the a-tubulin family (TUA2, 4, and 5), actin genes, ACT3
and ACT11, and two aurora genes (AURORA1 and AURORA2)
encoding kinase proteins that have a role in histone phospho-
rylation and have been reported to be associated with microtu-
bule spindles and abundantly transcribed only in dividing cells
(Demidov et al., 2005, 2009). Downregulation of this group of
genes after completion of the cell division and expansion stages
of leaf development is to be expected, but the increase in
expression at the end of senescence is unanticipated. AURORA1
has been shown to phosphorylate histone H3 at Ser10 (Demidov
et al., 2009), and, in mammalian cells, this modification has been
suggested to have a crucial role in transcription and apoptosis
as well as in cell division (Prigent and Dimitrov, 2003). These
proteins may alter chromatin structure in late senescence to
allow DNA fragmentation and eventual degradation. Histone
modification and chromatin restructuring is a key regulator in
Arabidopsis stress responses (Kim et al., 2010), and H3 phos-
phorylation increased in response to salinity, osmotic stress, and
ABA treatment of cultured cells (Sokol et al., 2007).
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The increased expression of actin and tubulin genes late in
senescence could reflect an autophagy role (Monastyrska et al.,
2009). Evidence from yeast and mammalian systems indicates
that efficient autophagy requires microtubule action to facilitate
autophagosome movement, and actin microfilaments have a
role in selective types of autophagy in yeast. The Arabidopsis
autophagy ATG8 gene family shows significant homology to
mammalian microtubule binding proteins and bind to microtu-
bules in vitro (Ketelaar et al., 2004). Therefore, plant autophagy
may involve the action of microtubules and microfilaments,
explaining the increased expression of these genes late in
senescence when the autophagic degradation of cellular com-
pounds is active.

Chlorophyll degradation is a key step in the senescence
process, and several of the genes involved are under transcrip-
tional control (Hörtensteiner, 2009). The STAYGREEN gene,
SGR1 regulates the first step in the dismantling of chlorophyll
from the chlorophyll binding proteins. Key genes involved in
chlorophyll degradation, SGR1, SGR2, NYC1 (chlorophyll b
reductase), and PaO (pheophorbide a oxygenase), all show
enhanced expression during senescence. All of these genes
increase in expression during early time points, leveling out
between 25 and 29 DAS, followed by a sudden increase in
expression after 29 DAS (see Supplemental Figure 3C online). It
is likely that it is the expression of SGR after 29 DAS that initiates
the dismantling of the protein chlorophyll complexes, releasing
chlorophyll for detoxification.

Additional information can be gained from the gradient anal-
ysis described above if the time of maximum gradient is also
considered. For example, statistical analysis of gene clusters
based on time of first differential expression indicated that
photosynthetic genes were overrepresented in clusters showing
downregulation at 29 to 33 DAS. However, if all the down-
regulated genes annotated as photosynthesis are examined,
many of these show initial significant downregulation earlier in
the time series (see Supplemental Figure 4A online), but the
size of the clusters at these time points means this annotation
does not show up as being significantly enriched. When the
maximum absolute gradient for each of the photosynthesis
genes was calculated (see Supplemental Figure 4B online), the
vast majority of photosynthesis genes showed the most rapid
drop in expression between 31 and 35 DAS, confirming the ob-
servation that photosynthesis-related gene activity is maintained
until late in the leaf’s development (Figure 6).

The maximum absolute gradient analysis was also applied to
investigate genes responding to JA and ABA stimulus. In both
cases, the majority of genes were first significantly upregulated
at 21 and 23 DAS, early in senescence (see Supplemental
Figures 4C and 4E online). However, although several of the
genes had amaximum gradient early, at 23 DAS, there were also
many showing maximum gradient much later in the time series,
up to 35 and 37 DAS for the JA response genes and 33 and 35
DAS for the ABA response genes (see Supplemental Figures 4D
and 4F online). This correlates with the data on the levels of JA
and ABA shown in Figure 2 where a maximum level of both
hormones is measured late in the process (increasing at 33 and
31 DAS, respectively). The timing of expression of specific hor-
mone biosynthesis genes (see Supplemental Figure 5 online)

clearly illustrates the rapid increase in JA biosynthesis genes
between 23 and 25 DAS, whereas ABA and SA biosynthesis
genes show a later increase in expression with amaximum at the
final stage of senescence. Although ethylene levels were not
measured during the time course, the ethylene biosynthesis
genes ACS2 and ACS7 also show increased expression from
around 29 to 31 DAS, with a steady increase as senescence
progresses. Thus, ABA, ethylene, and probably SA synthesis
appear to be coordinately regulated in senescence, whereas JA
synthesis shows a different pattern. Interestingly, some JA
biosynthesis and signaling genes are only expressed at the early
time point (e.g., OPR3), whereas others (e.g., LOX3) are also
upregulated late, presumably enabling the accumulation of JA
later during senescence.

Our detailed expression profiles and novel tools have enabled
us to distinguish biological processes initiated at different stages
of senescence and hence tease apart some of the components
of this complex phenomenon. We now have a timeline that can
be built upon to link these different processes and to identify the
overarching regulatory mechanisms as well as candidate genes
for specific senescence processes.

TF Binding Motifs Show Specific Enrichment in
Differentially Expressed Gene Clusters

The SplineCluster analysis of differentially expressed genes
(Figure 3) identified groups of genes that exhibit similar expres-
sion profiles and thus may be coregulated. Analysis of such
coregulated gene sets should help pinpoint potential TF binding
motifs important for gene expression during leaf development.
To gain an initial understanding of the regulatory mechanisms of
genes differentially expressed during senescence, promoters
corresponding to 500 bp upstream of the predicted transcription
start site of genes in each cluster were screened for overrepre-
sentation of known TF binding motifs.

This analysis shows clearly that certain sequence motifs are
selectively enriched in clusters that exhibit similar expression
patterns (Figure 7, data shown in Supplemental Data Set 5
online), and there is an obvious difference in the range of motifs
distributed over the different clusters. Consistent with the GO
term analysis results, several of the downregulated clusters
(clusters 1–24) are significantly enriched for sequence motifs
associatedwith the regulation of photosynthesis and cell growth.
For example, the G box variant motif is linked with the regulation
of photosynthetic genes and responses to light (Martı́nez-Garcı́a
et al., 2000) and the TCP motif binds members of the TCP family
of TFs, which have been implicated in the regulation of growth
and cell division (Li et al., 2005). Binding sites for E2F TFs, key
regulators of cell proliferation (Ramirez-Parra et al., 2003) are
enriched in cluster 22, which is consistent with this cluster being
enriched with genes annotated with the GO term cell cycle.
Genes in this cluster are downregulated from the start of the
measured time course, and this would be expected since cell
division has ceased before the leaf is fully expanded.

Sequence regions upstream of genes in upregulated clusters
(clusters 27–48) contain a number of sequence motifs that can
bind TF families that are themselves upregulated during senes-
cence. For example, NAC domain and WRKY TFs constitute a
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large proportion of the senescence-regulated TFs and are known
to play significant roles in regulating leaf senescence in Arabi-
dopsis (Miao et al., 2004; Guo and Gan, 2006; Kim et al., 2009).
Binding sites for NAC andWRKYTF families are overrepresented
in several upregulated clusters sharing similar expression pro-
files. Sequencemotifs associated with stress responses are also
enriched. The heat shock element is overrepresented in a single
cluster, and several heat shock factors are upregulated during
senescence. The CGCG motif, which has been implicated as a
calcium-signaling element in a range of stresses, is enriched in
several upregulated clusters. This motif has been shown to bind
CAMTA TFs (Yang and Poovaiah, 2002) involved in signaling
responses to wounding, cold, and other stresses (Walley et al.,
2007; Doherty et al., 2009). The ABA-responsive element (ABRE)
is overrepresented in multiple upregulated clusters, and enrich-
ment correlates with the observed increase in levels of ABA
during senescence. ABRE-binding factors are known to activate
target genes in an ABA-dependent manner (Nakashima et al.,
2006). The ABRE contains an ACGT-core and, therefore, is a
subset of the G box sequence (CACGTG). However, the pattern
of overrepresentation of these two similar motifs across the
senescence clusters is different, suggesting that divergent func-
tional roles can be identified. G box–like motifs can bind many
members of the bZIP and bHLH TF superfamilies (Toledo-Ortiz
et al., 2003; Jakoby et al., 2002), and TFs fromboth these families
are upregulated during senescence.

TFFamiliesAreActiveatDifferentTimesduringSenescence

To complement the analysis of TF binding motifs above, we
investigated whether specific families of TFs were differentially
expressed at particular times during senescence. The groups of
genes identified as having the same initial timing of differential
expression by the GP gradient tool analysis were further ana-
lyzed to identify time periods when families were overrepre-
sented for genes with a positive or negative gradient (i.e.,
expression significantly increasing or decreasing). A heatmap,
mapped to the significance of each family’s activity, is shown in
Figure 8, with the numerical data shown in Supplemental Data
Set 6 online.

A number of TF families were significantly overrepresented for
upregulated genes (adjusted P < 0.01), indicating a large amount
of similar transcriptional activity and potential coregulation within
these families. Specific members of the bZIP family have been
shown to participate in defense against pathogens, develop-
ment, stress treatments such as cold and drought, ABA signal-
ing, and phenylpropanoid biosynthesis (Weisshaar and Jenkins,
1998; Jakoby et al., 2002). Another significantly overrepresented
upregulated family is the large C3H superfamily, of which little is
known of the function of many of its members. Several subfam-
ilies related to the CCAAT box binding factor family were also
significantly upregulated; factors in this family form the hetero-
trimeric NF-Y binding complex (consisting of NF-YA, NF-YB, and
NF-YC subunits) that has been shown to influence flowering time
and stress responses in plants (Wenkel et al., 2006; Liu and
Howell, 2010). Interestingly, it is the NF-YA subunits specifically
that are enriched in the senescence-enhanced gene lists, with
nine of the 10 genes in the genome showing increased expres-

sion during senescence. In comparison, few of the NF-YB and
NF-YC genes are altered in expression, with only three NF-YB
genes and one NF-YC gene being upregulated. This implies that
it may be the regulated expression of the NF-YA subunit that
controls the activity of the NF-Y complex during senescence.

The large NAC family also had a significant early overrepre-
sentation, with over 30 of the members of this family being
altered in expression at various times during senescence. Mem-
bers of this family are known to have a large number of regulatory
interactions with a diverse range of biological processes, includ-
ing senescence, defense, and abiotic stress (Olsen et al., 2005,
and references quoted above). Several other families show
upregulated transcription later in the time course. The WRKY
family shows an overrepresentation, with many members of this
family being upregulated from around 25 DAS. WRKY TFs have
been shown to be important for senescence (Robatzek and
Somssich, 2001; Miao et al., 2004); others are induced by

Figure 7. Over-Representation of Known TF Binding Motifs in Pro-
moters of Coexpressed Genes.

Logo representations of known TF binding motifs are on the horizontal

axis, and expression profile for each cluster (see Figure 3) is on the
vertical axis. Colored boxes represent pairs of motif and expression

cluster with a significant statistical link. Shown are a limited number of

representative motifs and clusters (see Supplemental Data Set 5 online

for full results).
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infection by viruses or bacteria (Eulgem et al., 2000) and are
downstream of defense-signaling mitogen-activated protein ki-
nase pathways and involved in the regulation of SA- and JA-
dependent defense signaling pathways (Ülker and Somssich,
2004; Eulgem and Somssich, 2007). The large AP2-EREBP
family becomes significantly overrepresented around 27 DAS;
members of this family are induced in several cases by hormones
such as JA, SA, and ethylene, along with other signals related to
pathogens, wounding, and abiotic stresses, and have influence
on other stress and disease resistance pathways (Kizis et al.,
2001; Gutterson and Reuber, 2004). Therefore, cascades of cel-
lular information flow during the progress of leaf senescence can
be predicted by this analysis, such as upregulation of NAC or
WRKY genes influencing various hormone responses, followed
by upregulation of AP2-EREBP TFs. This knowledge is key for
future modeling of senescence transcriptional networks.

ANAC092 Target Genes Are Highly Enriched in Clusters
Overrepresented for NAC Binding Motifs

The motif and TF analyses described above pinpoint NAC
domain genes as being of key importance in regulation of
senescence and we follow this observation up in more detail as
an example of the increased understanding that this data set
provides. A recent publication (Balazadeh et al., 2010) describes
an elegant experiment using inducible expression ofANAC092 to
identify likely target genes. Of the 170 genes identified in that
study as being upregulated after induced expression of
ANAC092, 102 of these are senescence enhanced in our time
course experiment; of these, 75%, including ANAC092 itself, are
to be found in the clusters enriched for NAC domain motifs
(clusters 41, 42, 44, and 45; see Supplemental Data Set 7 online).

This provides clear evidence that the detection of enriched
motifs within clusters is providing biologically relevant informa-
tion and also indicates that ANAC092, probably together with
other NAC domain proteins, has an influential role in regulating
the expression of many genes at this stage of senescence. This
information might be used in preliminary modeling experiments
to predict interactions that regulate gene expression in these
clusters.

DISCUSSION

In this article, we describe a high-resolution, highly replicated
time-course analysis of gene expression during Arabidopsis leaf
development from before complete expansion to full senes-
cence. Over this time, the leaf develops from a sink that is
importing nutrients for growth into an active source organ,
performing maximum photosynthesis and exporting fixed car-
bon for further growth of the plant. This is followed, relatively
rapidly in this short-lived plant, by the initiation of senescence
whereby the leaf is converted from a source of photosynthetic
carbon to a source of valuablemacromolecules such as nitrogen,
phosphorus. and minerals, as cellular components become
degraded and mobilized from the leaf. Thus, in this short time
period, the leaf undergoes enormous changes in metabolism
and transport of metabolites.

To obtain insight into the timing and potential coregulation of
the changes in genes and pathways in the complex process of
senescence, it is essential to sample highly controlled replicate
leaves and to measure at many time points. This is also essential
if these data are to be used for network inference analysis. In the
experiment reported here, we harvested the same leaf (leaf 7)
from individual plants at different times over 3 weeks. Previous

Figure 8. TF Families Significantly Over-Represented with Positive or Negative Gene Expression Gradients Highlighting Distinct Periods of Activity.

(A) A number of TF families significantly upregulated early, including the NAC and bZip families (19–21 DAS), remaining strongly upregulated throughout

the experiment, and a small number of families only upregulated toward the middle and end of the experiment (27+ DAS), such as WRKY, AP2, and
G2-like.

(B) A small number of weakly significant TF families downregulated early, and several families (C2C2-CO-like and TCP) significantly downregulated

toward the end of the experiment (33+ DAS).

Color bars indicate P value (after FDR correction), with a range of significance thresholds (0.01, 0.05, 0.1, 0.25, and 0.5). Numerical data used to derive
this figure are shown in Supplemental Data Set 6 online.
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transcript profiling studies on developmental leaf senescence in
Arabidopsis have analyzed a more limited number of time points
(e.g., Buchanan-Wollaston et al., 2005; van der Graaff et al.,
2006). Analysis of gene expression changes in field-grown
Populus leaves has been performed over several time points
during late summer and autumn (Andersson et al., 2004). In these
examples, pooled leaves were used as biological samples; and
replicates were limited; although these experiments gave a
picture of the overall changes in gene expression that occur
during senescence, they provide little information on the timing of
the changes during the process. Senescing leaves are, by their
nature, quite variable, particularly in mid or late senescence;
therefore, to accurately determine coregulation of genes through
senescence, it is essential to control and allow estimation of
other sources of variability, such as may be caused by plant-to-
plant differences and environmental factors by using a carefully
designed sampling strategy.

Methods Developed to Enable Large-Scale, Two-Color
Microarray Analysis and Identification of Differentially
Expressed Genes

This large-scale microarray experiment with both biological and
technical replication across multiple time points required the
development of a novel and complex design approach to take full
advantage of the two-color microarray system, providing effi-
cient estimation of the differences in response between adjacent
time points while still allowing effective comparison of all sam-
ples. The highly replicated experiment allowed the application of
stringent statistical analysis to identify and characterize genes
differentially expressed at different time points during senes-
cence, which has not been possible with data from previous
studies. The quantity of data generated necessitated the adap-
tation of existing analysis methods/algorithms, as well as the
development of some new analysis tools.

The Bioconductor package MAANOVA was adapted to meet
the specifications of the CATMA arrays, providing monitoring of
slide and data quality and using information from the four
technical replicates of each sample to remove the influence of
the occasional outliers. The mixed model-fitting algorithm then
enabled the estimation and testing of the differences caused by
the treatment factors (day, time of day, the interaction [combined
effect] of these factors, and the biological replicates), allowing for
the complex design structure and the sources of variability
(between slides and between dyes) imposed by using the two-
color microarray system. There are considerable advantages to
the experimental and analysis approaches used. The use of two-
color arrays allows direct comparisons of samples between key
time points and, through careful design of the pairs of samples
compared on each array, across all time points by indirect
association. By contrast, many applications of two-color arrays
compare experimental samples by calculating the ratio of ex-
pression responses of each with a control sample hybridized on
every slide, thus halving the amount of useful data obtained per
slide (or doubling the cost of obtaining the same data).

Identification of genes showing interesting differential expres-
sion patterns was achieved by first assessing the significance of
the variation due to different model terms (day, time of day, and

the interaction between them) relative to the between-biological
replicate variation using the MAANOVA analysis, and then
conducting a visual inspection of gene expression responses
over time for genes giving a less significant test result (0.0001 < P
< 0.05) for the effect of day. Of course, high levels of biological
(between-plant) variability can lead to large changes in gene
expression not being identified as statistically significant and,
hence, genes not identified as being differentially expressed.
Further exploration of approaches to control this biological
variation, through both the statistical design of future experi-
ments and the development of novel analysis methods, is im-
portant for future successful research.

The mixed model-fitting algorithm implemented in the MAA-
NOVA package allows separation of the variation due to different
sources within the treatment combinations (i.e., day, time of day,
the interaction between these factors, and biological replicates),
and hence the identification of genes showing different generic
patterns of differential expression (see Supplemental Figure
1 online). An advantage of this approach, over a simple compar-
ison of the responses across all 22 time points, is that genes
showing only diurnal (time of day) variation can be easily iden-
tified and ignored in subsequent modeling of potential senes-
cence-related gene networks, with those showing combined
effects of day and time of day also easily identified and included.
A disadvantage is that the analysis does not formally include any
allowance for the ordering of the samples through time (e.g., the
effect of day is essentially just an assessment of the average
variability between the 11 mean values, and reordering the days
would not change the test statistic and hence level of signifi-
cance). A further development of this approach, allowing both
separation of effects within a factorial treatment structure and
estimation of the underlying shape of response over time, pos-
sibly following the approach proposed by Eastwood et al. (2008),
should lead to a more reliable identification of genes showing
important patterns of differential expression, although issues with
high levels of biological variability would still result in some false-
negative test results. Better estimation of the shape of expression
profiles could also contribute to improved clustering of genes with
similar shapes of expression profiles. In the absence of such a
modelingapproach, the approachusedhere, combining the highly
significant results of the formal analysis with a visual inspection, is
likely to result in the identification of most of the important genes
showing differential expression related to senescence, while min-
imizing the number of false positives.

Analysis of Differentially Expressed Genes Revealed a
Chronology of Processes and Signals

Analysis of individual clusters identified in the SplineCluster
analysis, particularly those for downregulated genes, identified
groups of genes involved in a common process such as photo-
synthesis, chlorophyll metabolism, etc. It seems likely that genes
involved in the same process, with similar expression profiles,
are coregulated rather than simply coexpressed during senes-
cence, and this prediction is strengthened by the promoter motif
analysis.

The GP gradient analysis, developed to enable more effective
dissection of gene expression changes over time, identified
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groups of genes that showed their first significant change in ex-
pression between the same pair of adjacent time points. The
resulting clusters present a highly informative picture of the
timeline of senescence, showing when individual pathways are
upregulated or downregulated (Figure 6). Knowledge of such
timing will prove a powerful tool for separation of pathways into
groups to allow identification of upstreamgenes that control them.

Comparing the two approaches used to cluster the differen-
tially expressed genes, it is clear that they will generate different
sets of clusters. SplineCluster groups genes with overall profile
shapes that are similar based on the fitted regression coeffi-
cients, which should therefore mean that genes in the same
cluster will have similar changes in expression between every
pair of adjacent time points. However, the approach does not
take any account of the biological (between-plant) variability, so
that only the initial filter will determine the significance associated
with the overall differential expression, and so a gene with highly
significant variation in expression could be clustered with one
just breaking the significance threshold. By contrast, the GP
gradient analysis groups genes that have the first significant
changes in expression in the same direction at the same time.
However, unless the gradient information is also taken into
account, these may not always be showing the most dramatic
change in expression at the same time point. Therefore, both
approaches have value in identifying coregulated genes, but
both have the potential to inappropriately group genes.

The clustering results have been discussed in detail above and
have identified groupings of genes that had not been observed
previously with more limited time series data. For example, it is
clear that the extensive overall reduction in expression of genes
involved in chloroplast activities occurs via a timed process.
Chlorophyll biosynthesis genes are downregulated before car-
bon fixation genes, and these are downregulated well before the
majority of key genes encoding proteins involved in photosyn-
thesis, including chlorophyll binding proteins and components of
PSI and II. Autophagy genes are enhanced from the start, but the
level of the key geneATG7 starts to rise at 29DAS. This is also the
time at which chlorophyll degradation genes show a rapid induc-
tion of expression. Other metabolic pathways such as strigolac-
tone synthesis, hormone biosynthesis, cell wall degradation,
cytoskeleton, and microtubule activity, to name just a few, are
implicated at different times during the senescence process.

Microarray Data Analysis Tools Used to Develop and Test
Hypotheses for Transcriptional Control during Senescence

Analysis of the core promoters of coexpressed genes revealed
potential regulatory sequence motifs that are likely to contribute
to the coregulation of genes involved in the senescence process.
Known sequence motifs are enriched in the promoters of genes
that share similar expression profiles and correlate with the
biological processes associated with such genes. The impor-
tance of the NAC and, to a lesser extent, theWRKY TF families in
promoting senescence in Arabidopsis is illustrated through the
specific and highly significant enrichment for potential binding
sites for these regulators in the promoters of certain clusters of
upregulated genes. In addition, most of the genes implicated as
under the control of the senescence-enhanced ANAC092 TF

(Balazadeh et al., 2010) occur in these same clusters, showing
the importance of this TF and other NAC family members in
regulating gene expression during senescence. The identity of
specific TFs that target these known motifs is unknown, and
further bioinformatic analysis and modeling as well as laboratory
experiments is required to characterize them fully. Regulation via
known cis-regulatory elements is not sufficient to explain the
expression patterns of all genes, and unknown sequence motifs
likely contribute toward regulating specific groups of genes
within the senescence process.

In comparison with previous senescence gene expression
studies, the study reported here collected highly replicated gene
expression responses at a high temporal resolution across the
period during which the senescence response develops. Thus,
these data are more suitable than previously collected data sets

Figure 9. Network Model Inferred from Microarray Data.

Variational Bayesian state space modeling was used to generate a

network model using senescence-enhanced genes selected from Spline-

Clusters 41, 42, 44, or 45 in the microarray data. Genes showing induced

expression in an ANAC092 (yellow node) inducible overexpression
experiment (see Supplemental Data Set 6 online; Balazadeh et al.,

2010; orange nodes) were combined with selected TFs from the same

clusters (green nodes). Green edges represent positive interactions,
while red dashed edges predict negative effects. Genes are identified in

Supplemental Data Set 7 online.
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for applying statistical analyses aimed at predicting the gene
regulatory networks operating during senescence. This is of
immense value for the next step in the development of a model
for the regulation of leaf senescence. However, even this sub-
stantial microarray experiment still imposes data limitations that
make the application of network inference nontrivial; gene ex-
pression measurements of just 88 biological samples are insuf-
ficient to accurately model the regulation of thousands of genes.
As the number of possible networks grows superexponentially
with the number of genes involved, the correlations in the
patterns of response across these 88 samples are certainly
insufficient to accurately identify a unique network model de-
scribing the regulation of the 6326 genes identified as differen-
tially expressed. This is known as the “curse of dimensionality”
(Bellman, 1961). Therefore, the design of future studies needs to
consider the balance between experimental cost and informative
data for network inference, especially as a greater number of
samples brings diminishing returns with respect to the number of
additional genes it allows a researcher to model. It is also
important to balance the need for good information about the
biological (between-plant) variability, technical replicate varia-
bility, and temporal changes in gene expression during the
senescence process.

The data presented here can be used to produce constrained
network models for many small sets of genes. An example of the
type of network model that can be inferred from these data is
shown (Figure 9). A variational Bayesian state space modeling
method (Beal et al., 2005) was applied to a selection of genes
using the 11–time point data series (see Supplemental Table 2
online). Genes selected were present in clusters enriched for the
NACmotif (i.e., clusters 41–45) and also present in the ANAC092
overexpression data described above (Balazadeh et al., 2010;
see Supplemental Data Set 7 online) or were annotated as TFs.
The resulting model correctly predicts a positive influence of
ANAC092, either direct or indirect, on multiple known down-
stream target genes (Figure 9, orange nodes) The model also
makes several new hypotheses for experimental testing. For
example, it predicts the influence of a zinc finger protein (STZ) in
the expression ofANAC092 and its downstreamgenes. Although
no experimental evidence exists for this regulatory link, both STZ
and ANAC092 are induced in expression during salt stress, and
knock out mutants in both genes have enhanced tolerance to
stress inArabidopsis (Mittler, et al., 2006; Balazadeh et al., 2010).
Regulation by ANAC092 of several other TFs known to be stress
related is also predicted in this network model. ANAC019,
ANAC055, and RD26 (ANAC072) have all been shown to have
a role in drought stress (Tran et al., 2004); MYB2 has a role in ABA
signaling and salt stress (Abe et al., 2003; Yoo et al., 2005), and
PMZ, a zinc finger protein, has a role in stress-induced senes-
cence (Breeze et al., 2008). The gene regulatory network model
also predicts feedback and feed-forward connections between
ANAC092, STZ, and TBP1-1, which encodes a telomere binding
protein. These types of interactions are crucial for the robustness
of gene regulatory networks and would be almost impossible to
predict from biological data alone. Thus, this model, generated
with a small subset of the array data, correctly predicts known
gene-gene interactions and generates complex novel predic-
tions for experimental testing.

Many different models can be obtained with different collec-
tions of genes, and these transcriptional network models can be
expanded using information on coregulated pathways and pro-
moter motif analysis to identify likely downstream targets of key
TFs. This model development and experimental testing is un-
derway to generate validated gene regulatory network models
underlying senescence.

METHODS

Plant Growth

Arabidopsis thaliana plants were grown as described inBreeze et al. (2008).

Leaf 7was taggedwith thread 18DAS. Sampling of leaf 7 started at 19DAS
and continued every other day until full senescence was reached (39 DAS).

Leaveswereharvested twiceoneach samplingday, 7 and 14h into the light

period. This resulted in samples beingobtained at 22distinct timepoints. At

each time point, leaf 7 was sampled from 20 plants among the 720 being
grown in the controlled-environment growth room, the plants being ran-

domly selected to avoid any potential effects of position within the growth

room. Leaves were rapidly weighed and photographed with a size scale
before being frozen in individual tubes in liquid nitrogen. Leaf length was

estimated against this scale from the photographs.

Protein and Chlorophyll Measurements

Total protein was extracted from five individual leaf samples by grinding

the sample in liquid nitrogen before the addition of 500 mL of extraction

buffer (50 mM lithium phosphate [pH 7.2], 1 mM monoiodoacetic acid,
120 mM mercaptoethanol, 5% [v/v] glycerol, 1 mM PMSF, and 0.2%

lithium dodecyl sulfate). At this stage, a 100-mL aliquot of the extract was

taken for chlorophyll analysis. The protein extract was boiled for 45 s and

centrifuged for 20 min at 12,800g. Total protein was measured using the
RC DC protein assay (Bio-Rad) according to the manufacturer’s instruc-

tions. In addition, levels of the small and large subunits of Rubisco were

assessed by diluting the protein extracts to normalize for leaf weight and
then running an equal volume of each extract (equivalent to 0.5 mg of

fresh tissue) on polyacrylamide gels (Invitrogen Novex 4-12% Bis-Tris

gel), staining with Coomassie blue, and scanning the relevant protein

band. Protein levels were assessed densitometrically using image anal-
ysis software (GeneTools; Syngene) against a calibration curve of bovine

serum albumin (LSU) and lysozyme (SSU).

Chlorophyll was measured from five individual leaves using the total

protein extracts. The chlorophyll was extracted using 80% acetone,
vortexed, and then stored at2208C for 1 h in the dark. The samples were

then centrifuged for 3 min at 12,800g, and the absorbance of 1 mL was

measured at 663 and 646 nm. Chlorophyll concentrations were calcu-
lated using the equations: total chlorophyll (mg/L) = 20.2A646 + 8.02A663,

chlorophyll a (mg/L) = 13.19A663 2 2.57A646, and chlorophyll b (mg/L) =

22.1A646 2 5.26A663.

HormoneMeasurements

The hormones ABA, SA, and JA were measured in five individual leaves.

Each leaf was freeze dried and 10 mg of freeze dried tissue was used for
hormone extraction as described in Forcat et al. (2008). Analysis was

performed using an HPLC-ESI/MS-MS.

Statistical Treatment of Leaf Morphological and
Biochemical Measurements

Leaf morphology (weight and length) and biochemical assay (total pro-
tein, chlorophyll a+b, Rubisco LSU and SSU, and hormone) data were
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subjected to ANOVA to assess for differences in response over the time

course using GenStat (VSN International). Data from hormone assays
were subjected to a log10 transformation (including the addition of a small

constant to cope with zero observations) prior to analysis to satisfy the

assumption of homogeneity of variance. LSDs were calculated at a 5%

significance level to allow easy comparison of differences between
adjacent time points. Significant effects noted in the results relate to

either F tests for the overall variability over time or t tests for comparisons

between adjacent time points.

Microarray Analysis

RNA Preparation and Labeling

Total RNA was isolated from four individual leaves from each sampled

time point (arbitrarily labeled as biological replicates A, B, C, and D) using

TRIzol reagent (Invitrogen), purified with RNeasy columns (Qiagen), and
amplified using the MessageAmp II aRNA Amplification kit (Ambion) in

accordancewith the kit protocol with a single round of amplification. Cy3-

and Cy5-labeled cDNA probes were prepared by reverse transcribing

5 mg of aRNA with Cy3- or Cy5-dCTP (GE Healthcare) and a modified
dNTP mix (10 mM each dATP, dGTP, and dTTP; 2 mM dCTP) using

random primers (Invitrogen) and SuperScript II reverse transcriptase

(Invitrogen), with the inclusion of RNase inhibitor (RNaseOUT; Invitrogen)
and DTT. Labeled probes were purified using QiaQuick PCR Purification

columns (Qiagen), freeze-dried, and resuspended in 50 mL of hybridiza-

tion buffer (25% formamide, 53 SSC, 0.1% SDS, and 0.5mg/mL yeast

tRNA; Invitrogen).

Microarray Experiments

Themicroarray experiments were performed using theCATMA (version 3)

microarray (Allemeersch et al., 2005; http://www.catma.org). CATMA
probe annotations were updated using the TAIR9 release: oligo se-

quences of CATMA array probes were mapped to individual mRNA

sequences of transcripts from the TAIR9 genome assembly using

BLASTn (Altschul et al., 1997), with e-value cutoff of 0.01. Additionally,
results were filtered to exclude alignments shorter than 30 bp or with less

than 80% sequence identity. The best matching gene model (by e-value

of hit to transcript) was identified for each probe. In addition, probe

sequences were mapped to TAIR9 genomic DNA to clarify cases where a
probe had been designed to a region of an earlier genome assembly now

unannotated in TAIR9.

A novel experimental design strategy (A. Mead, unpublished data),
based on the principle of the “loop design” (Kerr andChurchill, 2001), was

developed to enable efficient extraction of information about key sample

comparisons using a two-color hybridization experimental system. With

88 distinct samples (four biological replicates at each of 22 time points) to
be compared, the experimental design included 176 two-color micro-

array slides, allowing four technical replicates of each sample to be

observed. The detailed structure of the design, indicating how pairs of

treatments were allocated to arrays, is described in Supplemental
Methods 1 online, with an illustrative diagram shown in Supplemental

Figure 6 online. According to a randomization of this experimental design,

pairs of labeled samples were hybridized to slides overnight at 428C.
Following hybridization, slides were washed and scanned using an

Affymetrix 428 array scanner at 532 nm (Cy3) and 635 nm (Cy5). Scanned

data were quantified using Imagene 7.5.0 software (BioDiscovery, Inc.).

MAANOVA Analysis

A local adaptation of the MAANOVA package (Wu et al., 2003) was used

to analyze the quantified microarray data, providing data quality assur-

ance, slide normalization through LOWESS data transformation, mixed

model fitting, and identification of genes showing significant differential
expression via F tests of fixed (treatment) terms included within the

model. MAANOVA was selected to analyze the data because it is able to

provide an accurate analysis of the effects on gene expression of multiple

sources of variation (both fixed, treatment, terms, and random sources of
background variation) in the experimental design, harnessing the power

of direct comparisons between pairs of samples obtained using two-

channel microarrays (Churchill, 2004). Full details of the data quality

checking procedures, of themixedmodel fitting approach to describe the
observed gene expression data, and of the construction of F tests for

fixed treatment terms are given in Supplemental Methods 1 online.

Having fitted the mixed model to each gene, predicted means were
calculated for each of the 88 samples, assuming the full treatment model

(effects of day, time of day, the interaction between them, and the nested

biological replicates) to produce a four-replicate 22–time point data set

for each gene, or assuming a reduced treatmentmodel (effects of day and
the nested biological replicates) to produce an eight-replicate 11–time

point data set for each gene. These data sets were then used in sub-

sequent analyses.

Selection of Differentially Expressed Genes

Themost significant differentially expressed geneswere identified initially

and this was followed by visual analysis of genes close to the borderline of

significance. First, CATMA probes with no corresponding gene model in
the TAIR9 annotation were ignored; also, replicate CATMA probes were

removed (the most gene-specific probe being identified in each case). In

total, 4989 genes had an adjusted daymain effect F test P-value < 0.0001
(after multiple testing correction via a step-down FDR-controlling proce-

dure (Westfall et al., 1998; Benjamini and Liu, 1999), equivalent to

responses showing a significant test result at an FDR of P < 0.0001),

and these were included in the initial list of differentially expressed genes.
The patterns of expression of all genes with an adjusted daymain effect F

test P-value between 0.0001 and 0.05 (further responses showing a

significant test result at an FDR of P < 0.05) were then screened visually

to remove any showing either a small or a very variable change in expres-
sion over time. The final list of 6323 differentially expressed genes, with

adjusted F test statistics, is shown in Supplemental Table 1 online.

Gene Expression Profile Clustering

Clustering of coregulated genes was performed by the application of
SplineCluster (Heard et al., 2006), a Bayesian model-based hierarchical

clustering algorithm for time series data, using the mean of the biological

replicates for each gene. Recent functionality added to SplineCluster,

(Heard, 2011) improves the gene allocation to clusters. Where a gene has
become an outlier for its allocated cluster, it is reallocated to alternative

clusters to maximize the log marginal likelihood once more. This option

was used on all SplineCluster analyses presented in this article. The 22–
time point data (averaged across the four biological replicates) was

clustered using a prior precision of 531024, while the other data set

composed of 11 time points was averaged across all eight morning and

afternoon biological replicates before being clustered using a prior
precision of 131024. These prior precisions were selected as they

produce ;50 clusters for each of the two data sets.

GP Gradient Analysis

To identify an ordering of events, the rate of change of gene expression
(gradient) was inferred using a GP regression approach (see Supplemen-

tal Methods 1 online), which has the notable advantage of incorporating

all biological replicates. Furthermore, since the marginal distribution of a
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GP is itself a Gaussian distribution, the probability that the gradient (at any

particular time) lies sufficiently far from zero may be calculated analyti-
cally. When data are sufficiently time resolved, the GP model may

therefore be used to identify timeswhen the gradient of a gene expression

profile is significantly positive (increased), negative (decreased), or not

statistically different from zero (steady), whereas for less time-resolved
data, it may identify times of significant change to the global trend.

GO Analysis

GOannotation analysis on gene clusters was performed using the BiNGO

2.3 plugin tool in Cytoscape version 2.6 with GO_full and GO_slim
categories, as described by Maere et al. (2005). Over-represented

GO_Full categories were identified using a hypergeometric test with a

significance threshold of 0.05 after a Benjamini and Hochberg FDR

correction (Benjamini and Hochberg, 1995).

Promoter Analysis

Plant position-specific scoring matrices (PSSMs) were collected from the

TRANSFACdatabase, version 2010.3, (Matys et al., 2006) and the PLACE

database (Higo et al., 1999). This set was supplementedwith PSSMs for a
heat shock element (TRANSFACmatrix record M00146) and two NAC TF

binding sites (Olsen et al., 2005) since these importantmotifs were absent

from the databases. PSSMs were clustered, and a representative of each

cluster was chosen for screening. Promoter regions corresponding to 500
bp upstream of the transcription start site were retrieved from the

Ensembl Plants sequence database (release 50).

For any given PSSM and promoter, we scanned the sequence and
computed a matrix similarity score (Kel et al., 2003) at each position on

both strands. P values for each score were computed from a score

distribution obtained by applying the PSSM to a random sequence of 100

million bases in length generated by a 3rd order Markov model learned
from the whole Arabidopsis genome. We took the top k nonoverlapping

hits and performed the binomial test for the occurrence of k sites with

observed n values within a sequence of length 500 bp. The parameter k is

optimized within the range 1 to 5 for minimum binomial P-value. This
allows detection of binding siteswithout a fixed threshold per binding site.

Using a threshold (P < 0.05), the presence or absence of a PSSM was

scored for each promoter based on the binomial probability.

For each PSSM, its frequency in promoters of each cluster was
compared with its occurrence in all promoters in the entire genome.

Motif enrichment was calculated using the hypergeometric distribution

(phyper function in the R stats package). Hypergeometric P-values were
corrected for the number of clusters tested using Bonferroni correction.

Corrected P-values# 0.05 were considered significant. Sequence logos

were generated using code modified from Lenhard and Wasserman

(2002). Sequence analysis was performed within the APPLES software
framework (S. Ott, unpublished data).

TF Family Analysis

Gene expression activity was analyzed for 1733 TFs, grouped into 50
families defined in the Arabidopsis thaliana Transcription Factor Data-

base, AtTFDB (Palaniswamy et al., 2006; 1843 TF, 50 families as of June

2010). Of these, 1733 were probes on the CATMA array using the GP

gradient model. Families overrepresented for genes with significantly
positive or negative gradients at each time point, using all geneswithin the

experiment as a reference, were identified using the hypergeometric

distribution (computed using the hypgeomdist function in MS Excel
12.2.3) with Benjamini and Hochberg FDR correction. A heatmap of

adjusted P-values, using five levels of significance (0.01, 0.05, 0.1, 0.25,

and 0.5) was then generated, using only those values that correspond to

overrepresented counts (e.g., the proportion of positive/negative gradient

TFs for a given family is larger than the proportion of positive/negative
gradient genes in the entire data set for each time point).

Variational Bayesian State Space Modeling

Data for eight biological replicates from the 11–time point data series

were used to generate a network model using the method published in

Beal et al., 2005. ANAC092 was used as the gene on which to base the

model and two groups of genes were selected to accompany it. First,
several genes were selected that showed rapidly increased expression

following induced expression ofANAC092 in green leaves (fromBalazadeh

et al., 2010),manyofwhichwere also in clusters enriched forNACdomains.
Therefore, these are likely to be direct or indirect targets of ANAC092

activation. Second, a group of TFs that show coexpression with ANAC092

selected from the clusters 41 through 45 was included. Ten models were

run from different random seeds and connections occurring in more than
50% of models at a confidence level of >95%were included in the network

shown in Figure 9.

Data Repository

The microarray data used in this article have been deposited in NCBI’s

Gene Expression Omnibus (Edgar et al., 2002) and have been given a

GEO Series accession number, GSE22982.

Accession Numbers

Arabidopsis gene names and identifiers referred to in this article are:
ANAC092 (At5g39610), WRKY53 (At4g23810), ANAC029 (At1g69490),

SAG12 (At5g45890), LHY (At1g01060), CCA1 (At2g46830), PRR7

(At5g02810), PHYA (At1g09570), CRY1 (At4g08920), PIF4 (At2g43010),

ELF4 (At2g40080), PCL1 (At3g46640), LUT1 (At3g53130), LUT2
(At5g57030), LUT5 (At1g31800), ARR4 (At1g10470), ARR6 (At5g62920),

ARR7 (At1g19050), sedoheptulose bisphosphatase (At3g55800),

HCF101 (At3g24430), HCF109 (At5g36170), HCF152 (At3g09650),

HCF173 (At1g16720), HCF208 (At5g52110), GLK2 (At5g44190), GLK1
(At2g20570), LHCB2.2 (At2g05070), LHCB4.2 (At3g08940), LHCB6

(At1g15820), ATG7 (At5g45900), ATG8H (At3g06420), ATG8A (At4g21980),

ATG8B (At4g04620), DREB2A (At5g05410), LSD1 (At4g20380), AtMPK7
(At2g18170), HSP70 (At3g12580), (AHK3 (At1g27320), ERD1 (At5g51070),

ERD14 (At1g76180), RAB18 (At5g66400), ABF2 (At1g45249), AOC1

(At3g25760), AOC4 (At1g13280), 12-oxophytodienoate reductase

(At2g06050), MYC2 (At1g32640), JAZ1 (At1g19180), JAZ6 (At1g72450),
JAZ8 (At1g30135), COI1 (At2g39940), LOX3 (At1g17420), ABI1

(At4g26080), AFP1 (At1g69260), RD20 (At2g33380), RD26 (At4g27410),

NF-YA4 (At2g34720), CCD7 (At2g44990), CCD8 (At4g32810), ORE9

(At2g42620), AtMC6 (At1g79320), AtMC9 (At5g04200), LACS6
(At3g05970), ACX1 (At4g16760), ETR1 (At1g66340), ACO2 (At1g62380),

TUA2 (At1g50010), TUA4 (At1g04820), TUA5 (At5g19780), ACT3

(At3g53750), ACT11 (At3g12110), AtAURORA1 (At4g32830), AtAUR-

ORA2 (At2g25880), SGR1/NYE1 (At4g22920), SGR2 (At4g11910), NYC1
(At4g13250), and PaO (At3g44880).
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Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z.,

Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST:

A new generation of protein database search programs. Nucleic Acids

Res. 25: 3389–3402.
Andersson, A., et al. (2004). A transcriptional timetable of autumn

senescence. Genome Biol. 5: R24.
Balazadeh, S., Siddiqui, H., Allu, A.D., Matallana-Ramirez, L.P.,

Caldana, C., Mehrnia, M., Zanor, M.I., Köhler, B., and Mueller-
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