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Abstract

Genes do not act alone, rather they form part of large interacting networks
with certain genes regulating the activity of others. The structure of these networks
is of great importance as it can produce emergent behaviour, for instance, oscilla-
tions in the expression of network genes or robustness to fluctuations. While some
networks have been studied in detail, most networks underpinning biological pro-
cesses have not been fully characterised. Elucidating the structure of these networks
is of paramount importance to understand these biological processes.

With the advent of whole-genome gene expression measurement technology,
a number of statistical methods have been put forward to predict the structure
of gene networks from the individual gene measurements. This thesis focuses on
the development of Bayesian statistical models for the inference of gene regulatory
networks using time-series data.

Most models used for network inference rely on the assumption that regula-
tion is linear. This assumption is known to be incorrect and when the interactions
are highly non-linear can affect the accuracy of the retrieved network. In order to
address this problem we developed an inference model that allows for non-linear
interactions and benchmarked the model against a linear interaction model.

Next we addressed the problem of how to infer a network when replicate
measurements are available. To analyse data with replicates we proposed two models
that account for measurement error. The models were compared to the standard
way of analysing replicate data, that is, calculating the mean/median of the data
and treating it as a noise-free time-series.

Following the development of the models we implemented GRENITS, an
R/Bioconductor package that integrates the models into a single free package. The
package is faster than the previous implementations and is also easier to use.

Finally GRENITS was used to fit a network to a whole-genome time-series
for the bacterium Streptomyces coelicolor. The accuracy of a sub-network of the in-
ferred network was assessed by comparing gene expression dynamics across datasets
collected under different experimental conditions.

v



Chapter 1

Introduction

1.1 Thesis Overview

Gene Regulatory Networks (GRNs) lie at the heart of many biological processes,

from the timing mechanism of the plant Arabidopsis thaliana [McClung, 2008] to

the control of cell differentiation in Caenorhabditis elegans [Raj et al., 2010].

This thesis focuses on the problem of predicting the structure of a GRN using

expression measurements of the individual network genes. We focus on the devel-

opment of Bayesian inference methods for the analysis of time-series. The methods

developed are used to analyse a number of synthetic datasets as well as experi-

mental datasets. Of the experimental data analysed, the data from the STREAM

consortium is noteworthy, as this data was specifically designed for a systems biology

approach.

1.1.1 STREAM

STREAM (STREptomyces Analysis of Metabolism) is part of SysMo, a European

funded project with members from United Kingdom, Germany, The Netherlands,

Spain and Norway. The project’s aim is to use a systems biology approach to study

the metabolic switch of the bacterium Streptomyces coelicolor.

Streptomyces coelicolor is the model representative of Streptomyces, a group

of soil-dwelling bacteria with a highly complex secondary metabolism. Strepto-

mycetes are of great interest to the pharmaceutical industry as they are able to

synthesise around two-thirds of naturally derived antibiotics currently used [Bent-

ley et al., 2002].

When Streptomyces coelicolor is starved of certain key nutrients it under-

goes a metabolic transition shifting its metabolism from primary to secondary
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metabolism. Antibiotics are synthesised and secreted. Under certain conditions

it may also form spores which will disperse and form new colonies.

For the STREAM project a novel fermentation set-up was implemented lead-

ing to highly reproducible results. The set-up was used to generate large, high-

quality time-series of expression data using custom built microarrays. Proteomic

and metabolomic data were also measured. Data was initially collected for three

different experimental conditions known to trigger metabolic switching, as well as a

knock-out mutant for one of the key regulators (phoP).

Analysis of the STREAM consortium data is covered in chapter 5.

1.1.2 Thesis Organisation

This thesis follows the format of a thesis based on publications. That is, novel

published research is presented in journal paper format. Unpublished work is also

included and written in paper format. Each paper is preceded by a preface con-

taining a summary and context of the research work. All background information

is covered in the introduction.

The Introduction covers genes, gene regulatory networks and measurement

of gene expression. Next, models used to describe networks are discussed, as well

as approximations used for the inference models presented in this thesis. Following

this, a summary of Bayesian inference is included. Finally, how to fit a network to

a whole genome dataset is discussed.

The first paper (non-linear interactions paper) covers the use of non-linear

regulation functions for network inference. A common approximation used for infer-

ence models is the use of linear functions to describe regulatory interactions; while

this approximation is useful, it may not always hold. In this paper we develop a

non-linear interactions model and compare inferred networks using the non-linear

model and a linear model. Both in-silico and experimental data are used for the

comparison.

The second paper (measurement error models paper) covers the use of re-

peated measurements for network inference. The paper presents two model variants

for the inference of networks using time-series with replicate measurements.

The inference models presented in the first two papers were implemented in

MATLAB and required in-depth knowledge to use. In the third paper (GRENITS

paper) we present an integrated, improved re-implementation of the models. The

re-implementation is fast and easy-to-use, as well as being freely available.

The final paper (STREAM paper) describes unpublished work relating to

the STREAM data. Here we use the GRENITS package to fit a network to a

2



whole-genome data-set generated by the STREAM consortium. Following this, the

results are benchmarked against other inference methods comparing across several

STREAM generated datasets.

The work is summarised and possible improvements are discussed in the

Conclusions section.

1.2 Gene Networks

1.2.1 Overview

Genes contain information needed to produce molecules that serve for cell construc-

tion and interaction with the environment. In general, the information encoded

in the genes is used to synthesise messenger ribonucleic acid (mRNA) in a process

called transcription. The mRNA molecule will in turn be used by the cell to synthe-

sise a specific protein (the process called translation). Depending on the gene, the

synthesised protein can serve a number of purposes. For instance, it can catalyse

certain reactions or act as a signalling molecule.

Genes are not necessarily always being transcribed. Aside from the drain

on energy and molecular resources that constant transcription would imply, certain

biological processes would be detrimental to cell survival if they are active at the

wrong moment. Certain proteins, called transcription factors (TFs), are able to

affect the expression of other genes, either by activating or inhibiting the activity

of the target genes. TFs can regulate large numbers of genes (the regulon) amongst

which can be TFs, forming a gene regulatory network (GRN). A crucial aspect of

these networks is the emergent behaviour that can arise due to the structure and, the

interaction types and strengths. For instance, the structure of the circadian clock

regulatory network in Arabidopsis thaliana [McClung, 2008] causes the expression

levels of all the genes in the network to oscillate with a specific frequency.

Network structure can not only underpin the dynamic of gene expression,

but can also confer robustness to fluctuations. An example of this was observed in

a recent study by Raj et al. [2010]. The authors studied the regulatory network

controlling intestinal cell differentiation in Caenorhabditis elegans embryos. By per-

turbing a number of elements of the network they were able to show that internal

fluctuations, previously buffered by the network, started to dominate cell fate.

Aside from naturally occurring networks, a number of gene networks with

interesting properties can be found in the field of synthetic biology. By using elec-

tronic circuits as inspiration small networks are designed using mathematical models

and later inserted into cells and tuned to produce the desired behaviour. Published
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networks show a wide range of behaviours, including oscillators [Elowitz and Leibler,

2000], toggle switches [Gardner et al., 2000] and discrete counters [Friedland et al.,

2009].

Not only is the elucidation of regulatory networks crucial for a better un-

derstanding of organisms and how they interact with the environment, it also offers

the potential to improve antibiotic and drug discovery. An example of this is the

use of networks to find key network elements sensitive to combinatorial drug attacks

Nelander et al. [2008].

1.2.2 Network Inference

A number of experimental techniques that allow the discovery of regulatory inter-

actions have been developed over the years. The most popular techniques are based

on chromatin immunoprecipitation (e.g. ChIP-seq [Park, 2009]).

The idea behind the ChIP technique is to temporarily fix the TF molecules

that are bound to DNA, shear the DNA and then use a molecule that will specifically

bind the TF of interest and allow the extraction of the fragment of DNA bound to it.

The extracted DNA fragment can then be mapped to the genome, this way finding

which gene the TF was regulating.

A central step to this method is the use of a molecule that specifically binds

the TF. This will usually be an antibody. These highly specific proteins have to be

produced individually for each TF and must bind the TF both in its DNA bound

form and in free solution. This is not always possible and when it is possible, this

is not a straightforward process.

Genetic perturbations (e.g. knock outs, RNAi, overexpressors) can also be

used to elicit regulatory interactions. By perturbing individual elements of the

network some information on the network connectivity can be found. However this

type of approach tends to be poor at separating direct network connections from

knock on effects caused by the perturbation.

Given that it is currently possible to simultaneously measure the gene ex-

pression of the whole genome of almost any organism, at a specific point in time

within an experiment, another approach that has emerged in recent years is the use

of mathematical/statistical models to propose plausible network structures from the

expressions of its genes [De Smet and Marchal, 2010].
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1.3 Measuring Gene Expression

1.3.1 Measurement Technology

Expression measurements can be separated into single cell measurements and pop-

ulation measurements. Single cell measurements are normally carried out by ge-

netically modifying cells in order to produce a detectable signal when the gene of

interest is transcribed, for example, a reporter gene can be inserted upstream of a

chosen gene. The reporter gene will normally encode a protein that produces some

sort of visual signal such as fluorescence (GFP) [Chalfie et al., 1994]. When the

gene of interest is transcribed so is the reporter gene, thus giving a measure of the

activity of the gene.

Reporter gene measurements have the advantage that the cells need not be

destroyed and can be followed over time. The downside is that only two or three

genes can be measured for each cell.

A more common approach is to collect a large number of cells, lyse them

and extract the mRNA. The mRNA pool is later transformed into its corresponding

cDNA form. After this step, depending on the technology used, it will either be

sequenced [Wang et al., 2009], bound to a chip [Ramsay, 1998] or measured using

qRT-PCR [Nolan et al., 2006].

qRT-PCR produces reliable results even for weakly expressed genes, although

it is normally limited to a handful of genes. RNA-seq is a novel method that does

not rely on anticipating what DNA sequences will be measured and offers sequence

counts rather than harder to interpret fluorescence units. This flexibility also allows

simultaneous measurements of several organisms’ transcriptome in one run which

can be useful, for instance, when measuring virus host interactions [Yang et al.,

2010].

However, currently microarray technology dominates the transcriptome mea-

surement field. The technology relies on the use of DNA base pairing. Homologous

strands of the transcript to be measured are synthesised and placed on a chip at

specific locations. Later a solution containing a pool of the fluorescently tagged

DNA to be measured is washed over it. By reading the fluorescence emitted for

each gene a proxy for the expression of the gene can be found.

Rather than place a single long DNA strand representing a gene, multiple

short DNA strands (probes) representing different sections of the gene of interest

are normally used. Shorter strands avoid secondary structures of the DNA as well as

the binding of contiguous probes. Once the probes have been read, software [Turro

et al., 2007; Irizarry et al., 2003; Pearson et al., 2009] is used to correct systematic
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effects known to occur, make different chips comparable and summarise the probes

into a single gene expression level.

1.3.2 Cell Population Synchronisation

The population approaches mentioned in the previous section benefit from the fact

that the total amount of DNA is far larger than in the single cell approach. The

downside of this is that cells are known to display heterogeneous behaviour even

under homogeneous external conditions [Wilkinson, 2009]. For example, cells may

be in different stages of the cell cycle, which would mean that different sets of

genes will be expressed. When all the mRNA is pooled together and measured, the

different signals are averaged leading to noisy dampened signals.

Some of this variation can be diminished by careful preparation of the ex-

perimental conditions. When studying the cell cycle of Saccharomyces cerevisiae,

Granovskaia et al. [2010] used mating hormones to synchronise the cell cycle. Sac-

charomyces cerevisiae is capable of both asexual reproduction and a form of sexual

reproduction. The hormones added in the experiment are naturally secreted mating

hormones and have the effect of arresting the progress of the cell cycle at a very

specific point, synchronising the whole population. The hormone is then washed

away and the cell cycle resumes.

For experiments with multicellular organisms, not only is it of interest to

synchronise populations of cells, it is also necessary to synchronise populations of

a multicellular organism, as each measurement normally requires the destruction of

the whole organism. In the case of the model plant Arabidopsis thaliana’s circadian

clock, the clock circuit can be synchronised by exposing the population of plants to

controlled light/dark cycles [Morrissey et al., 2010].

Population synchronisation for the STREAM consortium experiments was

achieved as follows. All the Streptomyces coelicolor cells were added in spore (dor-

mant) form in a single batch, meaning the whole population underwent the same

growth conditions. The experiment was conducted in fermenters where the environ-

mental conditions can be closely controlled. Diluted oxygen was controlled and set

at a constant level, which was found to produce strongly reproducible results.

One of the nutrients in the medium was introduced in a limiting concentra-

tion, so as to run out a few hours after beginning the sampling regime. For example,

in the first experiment, a limiting amount of phosphate was used. Once phosphate

ran out, the population responded in a synchronised manner by switching on phos-

phate scavenging mechanisms, shifting to secondary metabolism and later secreting

antibiotics [Nieselt et al., 2010].
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1.4 Gene Network Models

In order to build a network model to fit to data, a good starting point is to study

GRN models used to describe known networks.

The expression dynamics of genes forming GRNs can be mathematically

described in a number of ways. One of the most popular ways is by using mecha-

nistically derived models.

1.4.1 Mechanistic Models

Mechanistic models based on Ordinary Differential Equations (ODEs) and chemical

reaction kinetics have been successfully used in the past to describe known GRNs

[Ronen et al., 2002; Locke et al., 2006]. ODEs are used to describe the rate of change

of the concentration of the molecules involved in the network and chemical reaction

kinetics are used to describe the interaction between the TF and its target gene.

Gene Regulation Model

As mentioned previously, the process of gene regulation requires the TF gene to

be transcribed to mRNA. Following this, the mRNA must be translated and the

resulting protein must then bind a specific region close to the target gene, either

activating or inhibiting its expression.

Each of these steps can be modelled as an ODE describing the change in

concentration of the molecule over time, accounting for both molecule synthesis and

degradation. The first step of the process is the transcription of the TF gene:

dTFm
dt

= −λTFmTFm + h(t), (1.1)

where TFm is the concentration of TF mRNA, λTFm is the rate constant of degra-

dation and h(t) is its corresponding transcription rate, which could be due to some

other TF or an external factor.

The term −λTFmTFm accounts for mRNA decay. The decay can be due to

the mRNA’s limited half-life, as well as the organism’s degradation pathways that

degrade the mRNA in a controlled fashion [Houseley and Tollervey, 2009].

Next the mRNA will get translated into protein

dTFp
dt

= −λTFpTFp + αTFm, (1.2)

where TFp is the concentration of the TF protein, λTFp is the rate constant of
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degradation and α is the rate constant of translation. Finally, the concentration of

the target gene’s mRNA (Gm) can be described by

dGm
dt

= −λGmGm + βf(TFp), (1.3)

where λGm is the degradation rate constant of the mRNA and the product βf(TFp)

represents the transcription rate due to the TF. β is the rate constant of transcription

and f(·) a function that describes either the fraction of time the TF is bound

to the DNA (activation) or the faction of time the DNA binding site is unbound

(inhibition), and can be derived using chemical kinetics.

Assuming that the binding and unbinding of the TF to the DNA is at steady

state and that the TF binds as monomer, the fraction of time the TF is bound to the

DNA can be described by
TFp

k+TFp
, whereas the fraction of time the DNA is not bound

will be 1
k+TFp

. The activating function is known as the Michaelis-Menten equation

and k is the Michaelis-Menten constant.

It is also possible to derive more complex functions. For instance, when

the TF is assumed to bind cooperatively, the resulting functions are
TFn

p

kn+TFn
p

for

activation and kn

kn+TFn
p

for inhibition. Here n represents number of TF that are

required to bind the DNA and k is the Hill constant. The activating functional

form is known as the Hill function.

When several TF regulate a target gene, the functional form can also be

derived. For example, when an activator and inhibitor regulate a target gene, the

transcription rate can be modelled as a product of the activating and inhibiting

function.

Circadian Clock Model

GRNs can be modelled by coupling ODEs of the type described in the previous

section. An example of this is the circadian clock network in Arabidopsis thaliana.

Using coupled ODEs Locke et al. [2006] built a five gene network that was able

to explain the period of circadian oscillations experimentally observed. The model

includes the usual transcription and translation steps, although decay is modelled

using Michaelis-Menten kinetics. Additionally the model accounts for protein loca-

tion. The model assumes that the protein is synthesised in the cytoplasm and uses

an ODE to model protein transport into and out of the nucleus. The model also

includes the effect of light on certain genes in the network, a crucial aspect of the

circadian clock.

Model parameters were fitted using oscillation period information from sev-
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eral experiments, including knock-outs (KOs). Interestingly, in order to adequately

explain this data, it was necessary to include an unknown hypothetical gene. A

specific gene (GI) was proposed to be the hypothetical gene and later accepted to

be correct [McClung, 2008].

1.4.2 From Mechanistic Models to Approximate Models

While in general mechanistic models are able to capture fine details of the dynamics

of the GRNs, from the point of view of inference, they may be too complex, especially

considering the type of data used.

Microarray data is noisy, and because of its cost most experiments tend to

use a handful of arrays. This kind of data is not adequate for inference of a complex

model, even more so if the structure of the network is unknown and all possible

interactions must be modelled and queried. A simpler approximate model will be

easier to fit and it will be more computationally efficient.

TF mRNA concentration as protein concentration

Very rarely are quantitative protein measurements available, so most models use

the approximation that TF mRNA measurements constitute a good proxy for TF

protein measurements. This approximation is quite convenient as it removes a large

number of parameters from the model and in general mRNA will be translated into

protein after a time-lapse. In the case of prokaryotes, transcription and translation

occurs simultaneously.

Barenco et al. [2006] and Honkela et al. [2010] argue that protein dynamics

can play a prominent role and should be considered, especially in the case where

the decay parameters of the mRNA and protein are very different. In the first case

the authors use known targets of a TF along with mRNA decay measurements (of

at least one target gene) to estimate the dynamics of the unmeasured active form

of the TF protein. With this they then predict further targets of the TF. Honkela

et al. [2010] do not make use of any prior regulation knowledge and use mRNA

measurements of a TF and a candidate target to infer the protein concentration

that best explains the potential interaction.

Linear additive approximation

A further convenient simplification is to model the regulatory interaction with a

linear function. As the interaction function will be some kind of sigmoid, a linear
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approximation may work well, especially for values of the TF concentration away

from the saturation region.

A linear approximation will not only reduce the number of parameters, but

will also make the structure of the model easier to deal with when inferring the

model parameters.

While a linear approximation is convenient, using this approximation can af-

fect the retrieved network. Efforts to address this issue include using sigmoid func-

tions [Yip et al., 2010], flexible no-linear functions (Chapter 2, [Äijö and Lähdesmäki,

2009; Kim et al., 2004]) and linear interactions truncated at a maximum and min-

imum value to mimic known transcription saturation and minimum concentrations

effects [Bonneau et al., 2006].

These methods are equipped to deal with non-linear effects, but they tend

to require more data to work adequately, as they need to infer several parameters

to describe the interactions. As well as this, they are also computationally slower

than their linear equivalent.

Discrete Time Approximation

Gene expression will often be measured over a small number of time-points, leading

to a small discrete-time set of measurements (time-series). In order to fit this kind

of data to continuous time models, most network inference models use a discrete

time approximation to the derivative xt+1−xt
∆t .

Joining this with the previous approximations and re-parameterising leads

to the widely used linear autoregressive model (AR1):

Xt+1
i = µi + aXt

i +
∑
j 6=i

bijX
t
j , (1.4)

where µi is the basal mRNA level of regulated gene i, Xt
i is the mRNA concentration

of regulated gene i at time t, Xt
j represent the mRNA concentration of the regulator

gene j at time t, aXt
i is the fraction of mRNA remaining from the previous time-

point (mass conservation) and bij represent regulation strength of gene j on gene

i.

While the discrete time approximation is widely used, other solutions have

been proposed. For instance, Honkela et al. [2010] use an integral-form solution to

the ODE’s to perform further inference, whereas Bansal et al. [2006] interpolate and

smooth the mRNA expression profiles and use this to explicitly calculate the value

of the derivative.
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Another approximation used considers the system to be at steady state mak-

ing dx
dt = 0 in (1.3). This has the advantage that different experiments can be pooled

together allowing the use of hundreds of data-points [di Bernardo et al., 2005; Cos-

grove et al., 2008]. The downside is that causality can be hard to elicit. Gardner

et al. [2003]; Lorenz et al. [2009] get around the causality problem by externally

perturbing the steady state with a number of controlled mRNA over-expressions

which are included in the model. Bonneau et al. [2006] combine both time-series

and static measurements allowing for some causality to be elicited.

1.5 Bayesian Inference

Inferring the model parameters from the data requires the use of statistical method-

ology. The chosen methodology for the inference models presented in this thesis is

Bayesian inference.

The idea is to combine the data, a model that explains the data and prior

knowledge of the model parameters, in order to derive a probability distribution of

the model parameters.

A central element of Bayesian inference is the Likelihood function which will

be explained next.

1.5.1 Likelihood

The Likelihood function is a conditional probability distribution that relates the

data and the parameters as

L(θ) ≡ P (X | θ). (1.5)

Here X represents all the data and θ all the parameters.

For the models included in this thesis, the likelihood is made up of a system-

atic part (e.g. AR1) and a stochastic part. The stochastic part represents random

deviations from the systematic model.

We use the common assumption that the fluctuations are independent and

identically distributed. Generally, the distribution chosen for the fluctuations is

Gaussian.

In the case of gene regulatory networks, the likelihood function represents

the joint probability of the gene expression data given the model parameters and the

network structure. For each network structure we can define this joint probability

using Bayesian Networks [Pearl, 1985].
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Bayesian Networks

A Bayesian Network (BN) is a graphical model defined as a directed acyclic graph,

where the nodes are conditionally independent of all other nodes when conditioned

on their parent nodes. In other words

P (Xi|X1, X2, ..., Xi−1) = P (Xi|pai), (1.6)

where X are nodes in the network and pai are all parent nodes of node Xi. Com-

bining this property with the chain rule of probability calculus the joint probability

of all nodes can be described as

P (X1, X2, ..., Xi) =
∏
i

P (Xi|pai). (1.7)

A simple example of a Bayesian Network can be seen in figure 1.1. The joint

probability of this network can be written as:

P (A,B,C,D) = P (D | B,C)P (B | A)P (C | A)P (A). (1.8)

  

A

C

B

D

At

Bt

Ct

Dt

At+1

Bt+1

Ct+1

Dt+1
Figure 1.1: Example of Bayesian Network. Here A, B, C and D are variables and
the edges are conditional relations.

In the case of GRNs, the nodes represent the expression level for each gene

and the edges the regulatory relation. The conditional probabilities that define the

regulatory interactions can be calculated for example using the AR1 model and a

chosen distribution for the error [Grzegorczyk, 2010].

The conditionals can also be modelled using a purely probabilistic model, for

example, Yu et al. [2004] discretise the data and use a multinomial distribution to

describe the conditional relations.

Bayesian Networks are restricted to acyclic networks. When analysing bio-

logical networks (e.g. GRNs), this can be a severely limiting restriction, as loops

are central to biological networks. A simple example is positive self regulation of a
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TF, which allows a fast explosive response when triggered.

Also, when trying to infer the structure of the network, two networks with

different conditional dependence structure can give the same joint probability. For

instance, a given network with the same structure but with edges pointing in differ-

ent directions will, in general, have the same joint probability (graph equivalence),

making it impossible to elicit causality without more information (e.g. external

perturbations).

If the data being analysed is a time-series, Dynamic Bayesian Networks

(DBN) can be used. A DBN is a BN that accounts for time. The nodes are now the

values of the variables at different time-points and the relations can only go forwards

in time. For instance the BN example from figure 1.1 could be transformed to a

DBN as seen in figure 1.2.

DBNs allow for the inference of causality and also allow for GRN loops.

  

A

C

B

D

At

Bt

Ct

Dt

At+1

Bt+1

Ct+1

Dt+1

Figure 1.2: Example of Dynamic Bayesian Network. Here At, Bt, Ct and Dt repre-
sent network variables at time t and the edges are conditional relations.

Causal Bayesian Networks

The Bayesian Network representing the true Gene Regulatory Network is a Causal

Bayesian Network. A Causal Bayesian Network or Causal Network [Pearl, 2000] is a

Bayesian Network where all edges in the network are causal. This definition is par-

ticularly important when considering modifications to the network. With a Causal

Bayesian Network, it is possible to predict the outcome of external interventions.
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1.5.2 Posterior Distribution

As seen earlier, the likelihood is defined as the probability of the data given the

parameters P (X | θ). In order to find the distribution of the parameters given the

data P (θ | X) we must use Bayes’ theorem [Bernardo and Smith, 1994]:

P (θ | X) =
P (X | θ)P (θ)

P (X)
, (1.9)

where the left hand term P (θ | X) is the posterior, P (X | θ) is the likelihood, P (θ)

is the prior distribution of the parameters and P (X) is the probability of the data

under the model, also known as the Evidence.

The prior is a probability distribution that encodes the information about

model parameters, prior to analysing the data. There is some freedom in the choice

of priors (see below).

Noteworthy is the Evidence term. Calculating this term explicitly requires

a potentially high dimension integral

P (X) =

∫
P (X | θ)P (θ)dθ. (1.10)

While it may not be possible to calculate the Evidence term analytically, several

approximate techniques have been developed to find the posterior, that avoid dealing

with the Evidence term.

The Evidence term is of interest, as it is the basis for a type of Bayesian Model

Selection: Bayes Factors [Kass and Raftery, 1995]. Bayes Factors are used for pair-

wise model fit comparisons. This comparison has the appealing characteristic that

it automatically includes Occam’s razor. In other words, BFs account for model

complexity and thus favour less complex models with similar fits.

Equation 1.9 can be interpreted as a learning step that can be iterated. The

prior is seen as the distribution over the parameters using all the data available

before acquiring data X and the posterior P (θ | X) represents the updated distri-

bution once X is made available, thus, if further data Y becomes available, then we

can use the posterior from P (θ | X) as prior for likelihood P (Y |θ).

Priors

Strictly speaking, the prior is a probability distribution that should convey the prior

knowledge of the parameters before the data is analysed. Working on biological

problems, it is sometimes possible to find information from previous studies. In

some cases this information can be incorporated into the prior [Werhli and Husmeier,
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2007].

A more common scenario is that of little prior knowledge of the parameter

in question. In this case, it is of interest to use an uninformative prior. In other

words, a prior that will have a minimum impact on the posterior. The most obvious

way of achieving this is to use a distribution that is flat or as flat as possible over

the range of the parameter, for example a uniform distribution. A function of this

kind, if the support is not bounded, is called an improper distribution as integrating

over the parameter leads to an infinite value. An improper prior must be used with

caution as, depending on the amount and strength of the data, it can lead to the

posterior being improper.

Finding an uninformative prior is typically not simple. For example Jeffreys

[1946] noted that for a specific model a flat prior which should have been uninfor-

mative had a different effect if the physical units of the model were changed, this

led him to propose a method for calculating a prior using the likelihood (Jeffreys

prior), that can be shown to be invariant under change of physical units and other

re-parametrisations.

Similarly Bernardo [1979] proposed the idea of Reference Priors in order

to select a prior with minimal influence on the posterior. Reference Priors are

calculated by maximising the Kullback - Leibler divergence between the posterior

and the prior distributions.

Some authors use the prior to control parameters that are problematic or

hard to estimate. In some cases this involves using the data to estimate values for

the prior [Griffin and Brown, 2010].

Priors can also be used to share information between related parameters (hi-

erarchical priors). This can be useful if, for example, data arising from experiments

are regarded as somehow related. With a hierarchical prior, information can be

shared without necessarily fixing all the parameters to the same value.

For practical reasons most authors choose priors that fall into the category

of conjugate priors. This is, priors which yield a posterior within the same family of

distributions. By choosing conjugate priors, analytical calculation of the posterior

conditional distribution and integration tend to become easier.

Approximating the Posterior Distribution

As mentioned earlier, evaluation of the Evidence term is needed to obtain the nor-

malised posterior distribution, requiring the calculation of a high-dimensional inte-

gral. In some cases the integral can be calculated analytically, although this usually

requires use of very specific parametrisation.
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A number of computational methods have been put forward in order to

approximate the posterior distribution. By far the most used methods are Markov

chain Monte Carlo (MCMC) algorithms. These sampling algorithms make use of

the un-normalised posterior P (X | θ)P (θ) to draw samples from the normalised

posterior distribution. If run for a sufficiently large number of iterations the posterior

can be well approximated. Depending on how the algorithm is constructed it may

take a long time to produce an adequate approximation to the posterior. For this

reason the algorithms have to be carefully constructed and tuned.

Of all MCMC algorithms, Metropolis-Hastings (MH) algorithms are the most

used. These algorithms use a candidate value drawn from a proposal distribution

and a rejection step. Key to this algorithm is the choice of the proposal distribution,

as an inadequate choice can severely affect the efficiency of the sampler

A special case of the MH algorithm is the Gibbs sampling algorithm, where

if the proposal distribution used is the conditional posterior distribution it can

be shown that the proposed value will always be accepted. This is particularly

convenient as it becomes computationally more efficient, although it does generate

highly correlated samples [Casella and George, 1992].

While sampling methods are widely used, other methods exist for approxi-

mating the posterior distribution. Specifically in the field of network inference, Beal

et al. [2005] use an AR1 model with hidden variables and find the posterior using a

Variational Bayes approach.

Variational Bayes methodology is used to find an analytical approximation to

the posterior distribution. The method works by starting with a factorised free form

variational distribution and then using the Kullback-Leibler divergence in order to

select a specific distribution and parameters that best approximate the posterior

distribution [Beal and Ghahramani, 2003].

1.6 Network Topology Inference

In order to infer a network, all possible network links (i.e. regulatory interactions)

must be included in the model. The manner in which the links are then queried

varies. Some inference methods will fit a fully connected network and then assign

zero to those connections that have a weak effect, while others search through the

space of networks and use some formal criteria to decide which network configuration

is better supported by the data.

GRN are typically sparse. Given that there will be potentially hundreds of

candidate regulators, most of which are expected to not have an effect, it is of interest
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to use an approach that searches for solutions in the space of sparse networks.

Also, for most experiments the number of measured genes far outnumbers

the number of experiments. A full gene network, assuming that each interaction is

parametrised by a single parameter, will have at least G2 parameters. For n experi-

ments there will be G× n measurements, meaning that the data will be insufficient

to determine the parameters and that, if using Bayesian inference, most of the infor-

mation in the posterior will come from the prior. This scenario appears frequently

in statistics and is referred to as p� n scenario.

This problem can be side-stepped by constraining the solutions to sparse

networks.

1.6.1 Shrinkage Methods

One way to find a sparse solution is to use a shrinkage approach. In regression

problems, shrinkage attempts to draw all the coefficients towards zero. A well

known case is the LASSO method [Tibshirani, 1996], a regularised version of the

least squares problem. Rather than attempting to solve the Ordinary Least Squares

problem

β̂OLS = argminβ || y −Xβ ||2 (1.11)

a version including a regularising term is used

β̂LASSO = argminβ
(
|| y −Xβ ||2 −α || β ||1

)
. (1.12)

Here β are the regression coefficients, X are the regressors, y the response and α is

the shrinkage parameter. The LASSO method has been used in network inference,

for instance by Bonneau et al. [2006] and Cosgrove et al. [2008].

From a Bayesian perspective, LASSO regression can be viewed as a Bayesian

regression using a Laplace prior P (x) = α
2 exp (−α || x ||1) on the regression coef-

ficients [Hans, 2009]. As the Laplace Distribution is strongly peaked at zero, it is

easy to see how this would drag the coefficients towards zero (figure 1.3).

Drawing from the fact that the Laplace distribution can be described as a

scale mixture of normals P (x|0, α) =
∫
N(x | 0, τ)Exp

(
τ | α2/2

)
dτ , other similar

distributions can be derived.

For example, Griffin and Brown [2010] use a gamma mixing distribution and

show that the Bayesian LASSO is a special case of this normal-gamma distribution.

They also show that the gamma distribution allows for heavier tails, meaning that

the non zero coefficients are less affected by the shrinkage.

These types of priors have been used extensively for QTL (quantitative trait

17



−4 −2 0 2 4
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

X

P
ro

ba
bi

lit
y 

D
en

si
ty

Figure 1.3: Plot of Laplace probability distribution.

loci) mapping, for example a Jeffreys scale prior was used P (τ) = τ−1 [Xu, 2003],

producing aggressive shrinkage. A student distribution prior was also proposed for

shrinkage [Yi and Xu, 2008], which was implemented by using an inverse gamma

mixing distribution and was shown to work as well as the Bayesian LASSO for the

experimental data shown.

The fact that the distributions can be described as a scale mixture of normals

is particularly convenient, as MCMC samplers can be easily constructed for them.

Shrinkage methods do not explicitly select variables. Some further criteria

must be used to decide whether or not a coefficient can be considered to be zero.

This could be done for instance by using a threshold on the scaled coefficients.

1.6.2 Bayesian Model Selection

In its general from, Bayesian model selection allows the formal comparison of model-

fits to data. The idea was introduced by Harold Jeffreys (although also separately

attributed to Alan Turing) [Kass and Raftery, 1995], as a method to compare two

scientific theories. The comparison was formulated in terms of what are now known

as Bayes Factors (BF):

BF12 =
P (X |M1)

P (X |M2)
, (1.13)

whereMi is model i and P (X |M1) is the Evidence fromM1. Jeffreys [1998] provides

a table of intervals to interpret the value of BF. The BF can also be interpreted as

posterior odds for the case where the two models have equal prior probabilities.

Also referred to as Bayesian hypothesis testing, BFs are intrinsically different

to classical hypothesis testing, as two models are explicitly compared rather than

attempting to disprove a single model (with the exception of the likelihood ratio
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test). An appealing characteristic of the BF, is the fact that a balance between

model fit and model complexity is struck.

A more general formulation of model selection can be found by considering

the posterior probability of each model:

P (Mi | X) =
P (X |Mi)P (Mi)∑
k P (X |Mk)P (Mk)

, (1.14)

where each Mi represents a different model and k is added over all possible models.

Evaluating (1.14) requires calculating high-dimensional integrals and doing

so for a potentially enormous model space. MCMC alternatives exist [Brooks, 1998].

Bayesian Variable Selection

The case where Bayesian model comparison is used to determine which subset of a

model’s parameters best explain the data is referred to as Bayesian Variable Selection

(BVS). Given that a balance will be struck between complexity and fit, when applied

to the selection of a subset of regressors, under similar data-fits the sparser option

will be favoured. This type of sparsity induction differs to the shrinkage methods in

that the non-zero coefficients are not affected by the shrinkage mechanism and not

only is the value of the coefficients inferred, but also a probability for each network

or a marginal probability for each network connection is also inferred.

As mentioned earlier, while BVS requires dealing with the Evidence term,

MCMC alternatives have been proposed. One such approach (used for the models

described in this thesis) is Gibbs Variable Selection (GVS) [Dellaportas et al., 1997].

GVS uses a “slab and spike” prior [O’Hara, 2009] on the coefficients. The so-called

“spike and slab” prior is a mixture distribution which consists of a distribution that

concentrates all of its mass at zero (the “spike”) and a flat distribution centred

elsewhere (the “slab”). This is implemented by assigning an indicator (0 or 1)

variable γij to each coefficient in the model.

Xt+1
i = µi + aXt

i +
∑
j 6=i

γijbijX
t
j . (1.15)

From the point of view of network inference, the γij can be interpreted as

defining the topology of the network. When γij = 0, TF Xj has no effect on Xi, in

other words it is excluded from the model.

During MCMC, all variables will be sampled from as usual including the γij ,

which can be sampled from using a Gibbs update step. GVS generates an unusual

situation in that, during MCMC, when γij = 0 the value of the corresponding
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coefficient bij has no effect on the likelihood, but still has a value through the prior.

Though the posterior remains unaffected by the prior for γij = 0, the value of bij

will affect efficiency of the MCMC. This can be taken advantage of by choosing

a different prior for the case where γij = 0. This prior, called a pseudo-prior, is

chosen so as to improve the MCMC efficiency. A more efficient GVS approach can

be found by using a simultaneous block update of γij and bij , which produces a far

more efficient MCMC and avoids having to deal with pseudo-priors (See Chapter

2).

It is likely that several networks can explain the data similarly. Rather

than choosing the highest probability network, analysing the marginal distributions

P (γij | X) allows combining the information from all networks.

BVS can also be carried out using the Evidence explicitly, though this nor-

mally requires using analytical approximations to estimate the Evidence term. For

instance, the Laplace approximation assumes that the posterior is sharply peaked

around a unique maximum. By making this assumption, the posterior can be ap-

proximated by a Gaussian and can be analytically integrated. This approach was

used for network inference by Kim et al. [2004], where the authors used Penalised

Splines and the Laplace approximation to derive a network score.

1.7 Network Inference for a Whole-Genome Data-Set

Attempting to infer a network using DBN and BVS on a whole-genome dataset can

be problematic. In general, organisms will have of the order of thousands of genes,

which is currently too many genes for an MCMC sampler to run in a realistic amount

of time. Also, the number of genes will far outnumber the data points meaning an

extreme case of the p >> n scenario, which although addressed by BVS, can also

have an effect on the inferred network.

1.7.1 Preprocessing and Filtering Data

While an organism can have of the order of thousands of genes, usually only a

fraction will actually be expressed in a given experiment. By using a differential ex-

pression method, the dataset can be drastically reduced. For the STREAM analysis

of the first time-series, BATS (Bayesian Analysis of Time Series) [Angelini et al.,

2008] was run and reduced the dataset from 8000 genes to approximately 1000 genes.

Restricting the analysis to dynamically active genes will reduce the dataset

considerably, though usually this will not be sufficient. The size of the networks

to be fitted can be reduced by allowing only a subset of genes to act as regulators.
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Even for non-model organisms such as Streptomyces coelicolor, information about

the function of each gene can be found (e.g. http://strepdb.streptomyces.org.uk/).

Most of the the information will be putative, as it comes from sequence similarity

analysis of other organisms, as well as from the presence of certain protein domains,

such as the DNA binding helix-turn-helix protein motif. By selecting as regulators

those genes that have the ability to affect the expression of other genes either directly

(TF) or indirectly (Kinases), the number of regulators can be reduced again. Out of

the 1000 genes mentioned for the STREAM data, only ∼ 70 qualified as regulators.

A final preprocessing step is to run a clustering algorithm on the regulators,

as often a number of the regulators will cluster into groups of indistinguishable gene

expression profiles. In these cases it is reasonable to cluster those genes into a single

node and use either one of the genes or a summary statistic of the cluster for further

inference. For the STREAM data, clustering the regulators was done using the

Spline Cluster software [Heard et al., 2005] and led to ∼ 30 dynamically distinct

expression profiles. Using ontology and experts’ opinion, those genes regarded as

more biologically meaningful were selected to represent the rest of the genes within

the corresponding cluster.

1.7.2 Co-expressed Genes and the AR1 Model

The combination of discrete time measurements and noise can render certain gene

expression profiles as indistinguishable. Similarly, genes regulated by the same TF

can also present indistinguishable expression profiles. Fitting an AR1 network model

to data of this kind can lead to spurious connections.

When fitting the AR1 model to the STREAM data, preliminary runs showed

an unusual behaviour for an operon gene (phoP). Operons are sets of genes that are

transcribed as a single unit and therefore usually appear as co-expressed. When

inferring the regulators of phoP, another gene in the same operon was incorrectly

identified as a regulator. Interestingly, the probability of being a regulator of phoP

was distributed between the self interaction and the operon gene. As described in

section 1.4.2, a self interaction term representing mass conserved from the previous

time-point is expected. If the expression profiles of two genes are identical, then the

self interaction term can be replaced with a regulation term by an identical gene,

leading to a (potentially) spurious connection. To overcome this problem, the self

interaction term for the models presented in this thesis (chapters 2, 3, 4 and 5)

is forced to be permanently present. In further runs this modification proved to

remove the problem.

Fixing the self interaction has a further implication. In cases where the
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regulator and regulated gene share similar profiles it is likely that regulation will

not be predicted. For this reason it is also advisable to use a clustering method and

consider the possibility of genes co-clustered with a TF as potential regulon genes.

1.8 Other Network Inference Methods

The network inference methods referenced throughout this introduction correspond

to methods similar to those presented in this thesis. The problem of network infer-

ence has been tackled by scientists from varied backgrounds, leading to a number

of very different approaches.

Information theory methods have been used, with promising results. For

example CLR [Faith et al., 2007] uses mutual information, an undirected measure of

dependence between two random variates, to assess the dependence between a TF

and a potential target. The mutual information value is then corrected for the back-

ground distributions of mutual information between each of the pair of genes with

all other genes. Using a large compendium of Escherichia coli arrays and known

interactions from regulonDB, the authors were able to show that their method out-

performed the other methods considered. Mutual information will infer undirected

interactions and only considers pairwise interactions, therefore indirect interactions

will appear as significant. To address the problem of indirect interactions, Margolin

et al. [2006] propose an algorithm (ARACNE) which first calculates a mutual infor-

mation network and then uses the mutual information scores of triplets of interacting

genes to prune the network in an attempt to remove indirect interactions.

Statistical Physics approaches have also been used, for example Werhli and

Husmeier [2007] use Gibbs Free Energy to codify prior network information. Berg

[2008] uses a thermodynamic approach to infer targets of a specific TF. From the

field of econometrics, Granger Causality [Zou and Feng, 2009] has been applied

to network inference. Granger Causality attempts to elicit whether or not one

time-series has an effect on another, this is done via time delayed regressions and

comparison of the variance of the residuals.

A number of methods address the problem of co-expression mentioned in the

previous section. These methods, referred to as module based methods, either first

infer modules and then predict interactions between modules [Bonneau, 2007] or

simultaneously predict both [Segal et al., 2003; Hirose et al., 2008].

While not a network inference method per se, Liao et al. [2003] use microarray

data along with known network structure to predict which parts of the network are

active in a given experiment. This is an important problem to address given that
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although a TF may be expressed it could require activation via phosphorylation or

the presence of a metabolite [Cho et al., 2008]. Sabatti and James [2006] extend this

approach by using binding site predictions to propose putative connections and then

use a similar approach to predict which of these binding sites might be active/real.

Binding site predictions tend to produce a large number of false positives, though

they have proven to predict correct binding sites.
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Chapter 2

Non-Linear Interaction Model

Most network inference models make the assumption that the functional form of

the regulatory interaction is linear. While the interaction is known to be better

described by a sigmoid function, the linear approximation reduces the number of

parameters and simplifies inference.

In this paper we propose an alternative model where the interactions are al-

lowed to be non-linear. Contrary to other approaches that attempt to accommodate

non-linearities, no specific functional form is chosen. This is achieved by using spline

functions. Splines are flexible functions that are defined as a linear combination of

a set of basis curves. Their flexibility is controlled by a single parameter. In the

limit where the parameter is “large” the curve becomes linear. We use this property

to propose a prior for this parameter that will bias the regression towards linear-

ity unless there is strong evidence for non-linearity. This prior will avoid spurious

complex functions that could lead to overfitting.

As the posterior is analytically intractable, we constructed a Markov Chain

Monte Carlo algorithm to sample from the posterior. The sampler was built using

Gibbs updates for all variables, except for the network topology variables. In the

literature these are usually updated with Gibbs updates, but we found that these

updates generated convergence problems. The problem stems from the relation

between the coefficients and the topology variables. In order to improve convergence

we propose a novel block update for the topology variables and the coefficients, and

show that convergence is greatly improved compared to the separate Gibbs updates.

We build a similar model with linear interactions allowing us to compare

the effects of inference on non-linear data using both a linear and non-linear model.

Using a number of synthetic and experimental datasets we show that the networks

inferred by the non-linear model are more accurate than the linear model ones.
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2.1 Contribution

The initial idea was formulated by Morrissey, Juárez and Burroughs. The mathe-

matical expressions used for the sampler were calculated separately by Morrissey and

Juárez, and later compared. Both the computational and theoretical aspects of the

joint update of the Gibbs Variables was carried out by Morrissey under the su-

pervision of Burroughs. MATLAB code (serial and parallel) was in its majority

(approximately 90 percent) contributed by Morrissey, with Juárez contributing the

functions to calculate the design matrix for the Splines. Theoretical and sampler

related issues were discussed and solved between Morrissey and Juárez, under the

supervision of Burroughs. Morrissey generated the synthetic data, ran the models

and analysed the outputs.

Morrissey’s contribution to the writing was as follows. During the draft

stage, Morrissey wrote the circadian clock section and the description of the Gibbs

Variables block update, as well as contributing several sections of the introduction,

discrete time examples and the conclusions. Morrissey participated in the revision

of the draft suggesting changes and edits. During the journal submission process,

Morrissey and Juárez worked on addressing the problems raised by the reviewers

with the supervision of Burroughs.

The microarray data as well as the description of the experimental design

was contributed by Denby.
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SUMMARY

We propose a semiparametric Bayesian model, based on penalized splines, for the recovery of the time-
invariant topology of a causal interaction network from longitudinal data. Our motivation is inference of
gene regulatory networks from low-resolution microarray time series, where existence of nonlinear inter-
actions is well known. Parenthood relations are mapped by augmenting the model with kinship indicators
and providing these with either an overall or gene-wise hierarchical structure. Appropriate specification of
the prior is crucial to control the flexibility of the splines, especially under circumstances of scarce data;
thus, we provide an informative, proper prior. Substantive improvement in network inference over a linear
model is demonstrated using synthetic data drawn from ordinary differential equation models and gene
expression from an experimental data set of theArabidopsis thalianacircadian rhythm.

Keywords: Circadian clock; Gibbs variable selection; Markov process prior; Nonlinear gene regulatory networks;
P-Splines regression; time course gene expression data.

1. INTRODUCTION

Our objective is the inference of gene regulatory networks (GRNs) from time series data; specifically,
inferring the gene regulatory kinships for a particular process. To this end, we can conceptualize a GRN
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2 MORRISSEY AND OTHERS

asa directed graph, with its nodes representing genes and the edges gene–gene regulation. Bayesian net-
works (BNs) have been used previously in gene network determination (Friedmanand others, 2000).
However, it is well known that biological processes have feedback loops and thus the validity of BNs is
questionable when modeling such systems. Dynamic Bayesian networks (DBNs) have been proposed for
modeling time course (longitudinal) gene expression data (Zou and Conzen, 2005). These can be thought
of as “unfolding” a BN for every time point, and when folding back the network, selfregulation and cliques
may be obtained. Formally, a DBN is characterized by a set of conditional relations,p(yt+1|yt ). In the
case of an (auto)regression-based DBN, these relations can be written asyt+1

i = fi (yt ) + εt+1
i , whereyt

i
is the expression measurement of genei = 1, . . . ,G at timet = 1, . . . ,T , yt = yt

1, yt
2, . . . , yt

G andεt
i is

anidiosyncratic error term. The functional forms of the interactions,fi (∙), are usually unknown and typi-
cally nonlinear due to the complex biochemistry behind gene regulation. Whether or not∂ fi (yt )/∂yt

j ≡ 0
definesthe topology of the network. The interaction topology is key in GRN, as it determines the causal
relations in the gene regulatory dynamics for a given biological process. Although gene regulatory rela-
tionships can change in time, especially when dealing with varying experimental conditions (Ahmed and
Xing, 2009), we assume that the data have been produced in controlled conditions and thus regulation can
be suitably captured with a time-invariant network topology.

A flexible way of including unknown nonlinearities, and thus avoiding model selection issues, is to
use a semiparametric specification by letting the interactions be described by spline functions. The use
of splines in the estimation of GRNs has been advanced byi.a. Gustafssonand others(2005) andKim
and others(2004). A fundamental problem when using spline regression is knot selection that greatly
influences the curve fitting. One efficient solution is to select a few well-placed knots for a given spline
degree. This requires determining both the optimal number and the position of the knots, which is typically
addressed by means of a transdimensional Monte Carlo Markov chain (MCMC) scheme (Ferreiraand
others, 2008;Denisonand others, 2002) or by cross validation (Ruppert,2002;Friedman,1991). The
efficiency gained in the modeling may be offset by mixing problems in the sampler, due mainly to the
vast space that must be explored and the associated computational problems, or by the unwieldy amount
of comparisons required for cross validation.

Our approach avoids such issues by relying onP-splines (Eilers and Marx, 1996;Lang and Brezger,
2004), which are characterized by specifying a rather large number of evenly spaced knots. Then, in order
to avoid overfitting and also to control for the effective number of parameters to be estimated, a penalty
that shrinks the spline coefficients toward the origin is specified. Such a penalty depends crucially on a
so-called smoothness parameter. In this paper, we propose a fully Bayesian setup for dealing with this
smoothness parameter and discuss the implications of alternative prior specifications for this key model
component.

The proposed model is presented in Section2, where we also discuss the prior specification.
Implementation is briefly described in Section3. Section4 illustrates the application of our model to
3 examples, where we reconstruct the corresponding networks and assess their accuracy. Conclusions
and possible extensions are given in Section5. Data sets and Matlab code used in the paper are avail-
able in the supplementary material available atBiostatisticsonline and inhttp://majuarez.staff.shef.ac.uk
/materials/index.html.

2. THE MODEL

Let yt
g denotethe gene expression level of geneg = 1, . . . ,G, measured at timet = 1, . . . ,T . We

propose to model it asyt
g = ηt

g + εt
g, whereηt

g is the predictor andεt
g is an idiosyncratic error term,

centered at zero. We assume thatηt
g is determined by some unknown subset of the genes at the previous

time point, and that the error terms are Gaussian and independent for all genes and time points. Thus, we
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Semiparametric GRNs 3

can write it as

yt
g = ηt

g(y
t−1; θθθg) + εt

g, εt
g ∼ N(εt

g|0,λg) ind., (2.1)

whereyt = {yt
1, . . . , yt

G}, θθθg is a set of parameters indexingηt
g(∙; ∙) andλ−1

g = Var(εt
g).

In order to accommodate nonlinearities, the regulatory relationships are modeled by

ηt
g = fg1(yt−1

1 ) + fg2(yt−1
2 ) + . . . + fgG(yt−1

G ) + μg, (2.2)

whereμg is a gene-specific constant term andfgi (yi ) =
∑M

k=1 β
g
i k Bi k(yi ). Here,{Bi k(yi )} are M B-

spline basis functions of degreel defined over the set ofr evenly spaced knots,κκκ i = {κi 1, . . . , κi r }, with
min{yi } = κi 1 < κi 2 < . . . < κi r = max{yi }, andM = r + l . By defining the spline design row vectors
Xt

j ∈ RM , such thatXt
j (k) = Bj k(yt

j ), we can rewrite the predictor in (2.1) asηt
g = Xt−1

1 βββ1g + . . . +

Xt−1
G βββGg + μg, with βββ j g = {βg

j 1, . . . , β
g
j M } ∈ RM a column vector of coefficients forj = 1, . . . ,G. If

‖βββ j g‖ ≈ 0, there is negligible influence of genej on geneg, and thus the “link”j → g is off. If the link
is on, then we say thatj is a “parent” ofg.

Stacking the bases and the coefficients intoXt = {Xt
1, . . . , Xt

G} ∈ RMG andβββg = {βββ1g, . . . , βββGg} ∈
RMG, respectively, and after further stacking the equations over time, we have

yg = μμμg + Xβββg + εεεg, g = 1, . . . , G, (2.3)

whereμμμg = μgιιι
′
T , with ιιιT a row vector of ones of sizeT andX = {X1, X2, . . . , XT }′ a bases matrix

of sizeT × MG. This model is unidentifiable given that every potential parent spline contributes with its
own constant term. To correct for this, we add the identifiability restrictionιιιT × (Xβββg) = 0. We describe
its implementation within the sampling scheme in the supplementary material available atBiostatistics
online.

As it stands to estimate the 2+ M ×G parameters of each spline-regression component in (2.3) would
require in excess of this number of data points per gene. If the number of time measurements is relatively
small, one would need to select a rather small number of knots, thus effectively reducing the capacity of
the splines to capture nonlinearities. We address this issue by performing a Gibbs variable selection as
in Smith and Kohn(1996). The model is augmented with the indicatorsγj g, such thatβ̃ββ j g = γj g × βββ j g,
whereγj g = 1 if the link is on andγi j = 0 if the link is off and substituting these new coefficients into
the model.

The practical advantage of augmenting with the indicators is that it allows us to make inference about
the network topology, now parameterized by the connectivity matrix,0 = {γj g}.

2.1 Theprior

We use conditionally conjugate priors where suitable, which simplifies the sampling algorithm. We take
particular care when specifying a shrinkage or penalty prior for the spline coefficients, as this determines
the smoothness of the functional form fitted.

Precisions. We use conjugate, i.i.d. gamma priors, Ga(λg|aλ, bλ), on the gene precisions,λλλ =
{λ1, . . . , λG},

π(λλλ) =
G∏

g=1

baλ
λ

0[aλ]
λaλ−1

g exp[−bλλg]. (2.4)
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4 MORRISSEY AND OTHERS

Constantterm. An independent Gaussian prior,N(μμμ|0, τμ I ), for the gene-specific constant,μμμ = {μ1,
. . . , μG}

π(μμμ) =
( τμ

2π

)G/2
exp

[
−

τμ

2
μμμ′μμμ

]
. (2.5)

Network structure. We provide 2 alternatives for modeling the network topology. The first is to define the
“overall network connectivity,”ρ, asP[γ j g = 1] = ρ andcomplement it with a Beta prior, Be(ρ|aρ, bρ).
Thefull specification is then,

π(γj g|ρ) = ργj g(1 − ρ)1−γj g, g, j = 1, . . . , G, (2.6)

π(ρ) = [B(aρ, bρ)]−1ρaρ−1(1 − ρ)bρ−1 0 < ρ < 1. (2.7)

It is well known that GRNs often present hub-like structures where a handful of genes control the
regulation process almost completely and the rest of the genes have very few children, if any (see, e.g.Seo
and others,2009, and references therein). One can capture such features by allowing for “parent-wise
connectivity,” P[γ j g = 1] = ρ j andcomplementing it with independent priors, that is,

π(γj g|ρ j ) = ρ
γj g
j (1 − ρ j )

1−γj g, g = 1, . . . , G, (2.8)

π(ρ j ) = [B(aρ, bρ)]−1ρ
aρ−1
j (1 − ρ j )

bρ−1 j = 1, . . . , G. (2.9)

The hyperparameters{aρ, bρ}, convey our prior knowledge about the connectivity of the network
and can be set accordingly. For general purposes, we recommend setting both equal to 1/2, as this is
the reference prior for a Bernoulli experiment (Bernardo and Smith, 1994). If biological knowledge of
the process demands it, it is straightforward to fix any link to be deterministically on (off) by setting
γr l = 1(0), modifying the prior accordingly.

Spline coefficients.We use a second-order Markov process prior on the coefficientsβββ j g to shrink them
toward the origin.

π(βββjg|τjg) = N(βββjg|0,τjgK ), (2.10)

whereτj g arethe smoothness parameters addressed below. The structure of the covariance matrix,K =
{Kkl }, is constructed from the second-order differences between adjacent coefficients, that is,βk =
2βk−1−βk−2, omitting link identifiers for simplicity (see supplementary material available atBiostatistics
online). The prior for the 2 remaining coefficients,{β1, β2}, is discussed below.

Smoothness parameters.In the case of small data sets, the specification of the smoothness parameters,
τjg, becomes crucial as these largely determine the fitting of the spline to the data. In the limit, when
τjg → 0, an interpolating spline is fitted, while asτjg → ∞ a straight line is rendered.

A conditionally conjugate prior is the product of independent gamma distributions, Ga∙|aτ , bτ ). This
specification concentrates mass aroundaτ /bτ andhas a relatively large right tail for small values ofbτ .
It is common to find in the literatureaτ = bτ andset to quite small values, for example, 0.001. This
indeed is quite flat over a large range ofτ , but has a mode at zero effectively giving relative importance to
rougher curves and thus favoring overfitting when the data are only weakly informative. On the other hand,
if mass is carried toward larger values ofτ—thus favoring smoother curves—the gamma distribution tails
off quite quickly to the left and experiences difficulties capturing nonlinearities, (see, e.g.Jullion and
Lambert,2007).

In order to obtain a more flexible prior specification, while retaining the conditional conjugacy, we also
tried a gamma scale mixture of gammas. The resulting gamma–gamma distribution (Bernardo and Smith,
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Semiparametric GRNs 5

1994, p. 120;Zellner,1971, p. 376), can achieve a larger spread than the gamma and also has a heavier
right tail. It may also not have any finite moments for certain parameter values. Despite these desirable
characteristics, we found that the heavy right tail of this prior, combined with the flatness of the likelihood
in regions whereτ is very large can lead to identifiability issues. This can be understood since there exists
a threshold value,τ ?, for which the fit of the spline is practically linear and thus indistinguishable for any
τ > τ?.

This lead us to propose an inverted Pareto prior, Ip(∙|aτ , bτ ):

π(τj g|aτ , bτ ) =
aτ

bτ

(
τj g

bτ

)aτ −1

, τj g 6 bτ , aτ > 0. (2.11)

We restrictaτ > 1, to prevent concentration of mass near the origin. Settingaτ = 1 is tantamount to
putting a uniform prior on(0,bτ ). The prior is concave for 1< aτ 6 2 and convex foraτ > 2, gathering
mass closer tobτ asaτ grows, thus favoring smoother curves. Values ofaτ > 3 allocate too much mass
close tobτ andthus are not advisable, unless there is prior evidence for high levels of linearity. The cutoff
valuebτ canbe interpreted as that level ofτ after which the likelihood is numerically invariant, that is, the
fitted curve is practically linear.

2.2 Posterior propriety

In most of our intended applications, we will have a limited number of time measurements compared to the
number of genes. Given that an improper prior will yield an improper posterior if the number of parents
for any given gene exceedsT/M (see the supplementary material available atBiostatisticsonline), we
construct a proper prior by supplying (2.10) with an independent specification for the first 2 coefficients,

π(β1, β2) = N(β1|0,k1)N(β2|0,k2). (2.12)

To approximate the behavior of the improper prior, we could letk1, k2 → 0. In situations where
the data are scarce, we do not recommend this, as it will affect the stability of the posterior (Sun and
Speckman,2008). In our applications, we setk1 = k2 = τ0.

3. IMPLEMENTATION

3.1 P-splines model algorithm

As there is no closed-form expression for the posterior numerical methods are needed. We propose a
Metropolis-within-Gibbs scheme that leads to a dramatic decrease in autocorrelation of the chain, com-
pared to a Gibbs move. Details are given in the supplementary material available atBiostatisticsonline.

3.2 A linear model

In order to compare the network retrieval power of the splines model, we constructed a fully parametric,
linear AR(1) model

yt+1
g = μg +

G∑

j =1

βj gyt
j + εt

g, (3.1)

with the same prior specification as above, deleting the irrelevant terms.
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6 MORRISSEY AND OTHERS

4. ILLUSTRATIONS AND APPLICATIONS

First,we analyze 2 synthetic, discrete time data sets where the data generation mechanism and the topol-
ogy of the network are known. Second, we examine a synthetic data set comprising discrete time mea-
surements drawn from a continuous time ordinary differential equation (ODE) model of a circadian clock.
For our last example, we use microarray gene expression data from theArabidopsis thalianacircadian
clock. Details on the prior parameters specification are given in the supplementary material available at
Biostatisticsonline.

4.1 Discrete time synthetic networks

In order to assess the network topology recovery power of our model, we produced 2 synthetic, first-
order autoregressive processes. One has only linear and the second a number of nonlinear relations. In
the nonlinear case, all the functional relations were produced using Hill functions, except for the self-
interactions that are linear. In both cases, we setG = 16,T = 40, andρ ≈ 0.1.

When the topology of the network is known, we can use the receiver operating characteristic (ROC)
curve to assess graphically the retrieval performance of a model. A more formal comparison can be carried
out by calculating the area under the ROC curve (AUC) and the mean cross entropy (MxE). For the linear
data set, the AUC were 0.999 for the fully parametric model and 0.998 with the splines; and when fitting
the nonlinear data set, we obtained 0.728 and 0.912, respectively. In the linear network, the MxE was
0.042 when fitting the parametric model and 0.064 when fitting the splines; with Hill interactions the
values were 0.41 and 0.22, respectively. Thus, using these scores network topology retrieval from the
splines model is almost as good as that from the linear when the interactions are linear and outperforms
it when nonlinearities are present (ROC curves are shown in the supplementary material available at
Biostatisticsonline).

To further understand the differences between the inferred networks under either model, we plot in
Figure1, the partial and full reconstructions for gene 8’s trace in the nonlinear data set, along with the pos-
terior of the corresponding smoothing parameter. Both models provide similar predictions, as illustrated
by the full reconstructions that are practically undistinguishable (Figure1(d)). However, the way this fit
is achieved varies significantly. As expected, both models have a very similar fit for the self-regulation
(Figure1(a)). As the self-interaction is linear, the splines model fits it by allocating most of the poste-
rior mass of the corresponding smoothness parameter toward high values, depicted by the solid line in
Figure1(e). Gene 8 has one parent with a nonlinear interaction and the splines model is capable of re-
producing the Hill functional relationship quite precisely (Figure1(b)), by allocating almost all posterior
mass toward small values of the corresponding smoothness parameter, shown in Figure1(e) (dot-dashed
line). Obviously, the linear model cannot accommodate such behavior and may include spurious parents
in order to compensate for the lack of fit, as in this case, illustrated in Figure1(c). In contrast, the splines
model does not predict Gene 5 as a parent (solid line in Figure1(c)). Notice the mass allocation of the
self-regulation link (solid) in Figure1(e): it is basically drawn from the prior (dashed), illustrating that
our specification is adequate for linear relations to be reproduced accurately.

When the network topology—that is, the biological model—is fixed, we can compare the fit of al-
ternative statistical models using formal tools. We calculated the deviance information criterion (DIC)
obtained from the different data/model combinations used in this paper by fixing the network topology
to those links with posterior probability larger than 0.8 (Table1). In the linear data case, both models
produced similar estimates of the connectivity matrix and therefore their AUC and MxE scores are quite
close to each other. However, the DIC indicates that the linear model is preferred to the splines, mainly
due to the costs associated with the additional complexity of the splines model, unnecessary for this data
set. In contrast, the DIC from the nonlinear data set favors the splines model, granting the increase in
model complexity.
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Semiparametric GRNs 7

Fig. 1. Partial and full reconstructions of Gene 8’s trace using splines (solid) and linear (dashed) models. The circles
represent a scatter plot of the expression values of Gene 8 against 3 potential parents (Genes 8, 1, and 5) at the
previous time point. (a) Both models capture the linear self-regulation. (b) The true parent is predicted in both models,
while splines is able to reproduce the Hill functional relationship. (c) The linear model predicts one spurious parent.
(d) Trace reconstruction from both models is almost identical. (e) Marginal posterior distributions of the smoothing
parameter for the self-regulation (solid, prior dashed) and nonlinear parent (dot-dashed, prior dotted)

Table 1. Comparing model fit with a fixed network topology. DIC values obtained from the data sets used
in the paper when fitting the linear and the splines models. The network topology is fixed by selecting
those links with posterior probability above0.8. The model preferred by DIC is highlighted in boldfont

Data set Linear model Splinesmodel

Synthetic linear 2.02××× 104 2.56× 104

Synthetic Hill 3.01× 104 3.64××× 103

ODE data 2.44× 105 2.34××× 105

Microarray data 9.95× 103 1.93××× 103

4.2 Biological GRN: the plant Circadian clock

In the following sections, we focus on a partially known GRN, specifically the plantA. thalianacircadian
clock.Lockeand others(2006) developed an ODE model of the clock, which we use below for generating
synthetic observations. The current working biological model is due toMcClung (2008). Both models
include nodesX and Y, representing genes that are thought to be involved in the circadian clock, but
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8 MORRISSEY AND OTHERS

whose identity remains unknown. These network models are shown schematically and further explained
in the supplementary material available atBiostatisticsonline.

Differential equation data. We generated data from the ODE model fixing the light source to be per-
manently on. The data were then subsampled, logged, and standardized. The resulting data set has 50
time points with a time spacing of 1 h. We present the results obtained using the parent-wise connectivity
structure (2.8)–(2.9). In order to interpret the output, rather than examining the ROC curves, we analyze
the inferred network at a given threshold. This is more convenient given that there are only a few genes
and therefore a more detailed comparison with the true network is possible. We plot the number of links
included in the predicted network against the posterior link probability when fitting the linear model,
Figure 2(a), and when using the splines model, Figure2(b). We use a cross (circle) for a correctly

Fig. 2. Network topology inference on the ODE circadian clock data. (a) The number of links predicted to be present
in the network versus posterior link probabilities estimated when using the linear model (LM) and (b) with the
splines model (SM). Crosses (circles) represent correctly (incorrectly) predicted links. (c) The network obtained
with a threshold of 0.8 using the LM and (d) when using the SM. Solid lines represent correct predictions, dashed
lines incorrect predictions, and thin lines correct predictions, but with the wrong sign.
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Semiparametric GRNs 9

(incorrectly) predicted link; for instance, the predicted network with the splines model using a thresh-
old of 0.85 would have 9 links (circles and crosses with link probability above 0.85 in Figure2(a)), 7 out
of these correct. It is apparent that the splines model produces a better separation in the link probabilities,
classifying all but one link into 2 populations: a low probability (below 0.2) and a high probability (above
0.8) group. This contrasts with the linear model Figure2(a) where almost 40% of the links are in the
ambiguous region between 0.2 and 0.8.

Using 0.8 as the threshold value, we plot the reconstructed networks for both models in Figure2(c)
and (d). The inferred network for splines (Figure2(d)) contains all correct links from the network,
except for the TOC1–Y link. There are 2 spurious links (LHY/CCA1–X and PRR7/PRR9–TOC1)
and 2 links with incorrect signs (LHY/CCA1–TOC1 and LHY/CCA1–Y). In addition to only having
half of the correct links, the inferred network for the linear model adds a large number of spurious
links (false positives). Again, we found cases where the splines model correctly predicts a single par-
ent using a nonlinear interaction, whereas the linear model predicts that link but adds extra spurious
links to improve the fit (not shown). Moreover, the DIC of the estimated network topology from the
splines model is smaller than that from the linear model at threshold 0.8 (see third row of
Table1).

Experimental data. We use our methods on gene expression time series forArabidopsisleaves generated
using microarrays and analyze the output using the parent-wise connectivity structure. The separation of
posterior link probabilities into groups is no longer as pronounced as in the synthetic data—see Figure3(a)
and (b). This may be due to the combination of a high level of noise and fewer time points. The networks
inferred by each model, using a threshold of 0.8, are shown in Figure3(c) and (d). All links predicted
by the splines model appear in the linear model reconstruction. However, the linear model predicts an
additional 2 parents for ELF4 and an additional 3 parents for LUX. Among those additional links are
TOC1–ELF4 and TOC1–LUX, which while we have marked as correct on the plot (for consistency with
the current working model), are probably incorrect. Those links were included in the accepted model as
an indication that TOC1 regulates some gene (X) that in turn regulates LHY, but neither of the genes are
predicted to regulate LHY. Furthermore, from the previous examples, it is clear that the linear model tends
to add spurious parents.

Although only mild nonlinearities are found, the DIC score indicates a better fit from the splines
model than the linear alternative for the given threshold (last row of Table1), suggesting that even mild
departures from linearity can have an important effect in model fit.

For network reconstruction, we have used a subjective choice for the posterior probability threshold.
Moreover, as our reconstruction is based solely on the individual link marginal probabilities, possible cor-
relations between these are disregarded. In order to provide a graphical representation of the uncertainty
in our network retrieval, in Figure4, we plot a heatmap with the distribution of the number of parents
for each gene in the clock (left), together with a heatmap with the marginal link probabilities of its top 4
potential parents (right). These complementary sources of information render a picture of the uncertainty
in the retrieval of the network topology. For instance, the splines model predicts one parent for LHY with
very high probability and there is only one potential parent with high marginal probability, suggesting a
very confident prediction; in contrast, the linear model predicts 1 or 2 parents with a mild probability (and
3 with a very slight probability), while one of the potential parents has a high marginal probability, there
are 2 more with intermediate marginal probabilities, suggesting an ambiguity in the identity of the second
potential parent. Overall, there is a shift to the left of the distribution for the number of parents from the
splines model compared to the linear model, strengthening the evidence for overfitting in the latter model.
Likewise, marginal link probabilities for the splines model seem to be higher over a smaller number of
potential parents, thus suggesting a decrease in the uncertainty in topology retrieval compared to the linear
model.
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10 MORRISSEY AND OTHERS

Fig. 3. Network topology inference on the circadian clock microarray data. (a) The number of links predicted to be
present in the network versus posterior link probabilities estimated when using the LM and (b) with the SM. (c) The
network obtained with a threshold of 0.8 using the LM and (d) when using the SM. Solid lines represent inferred links
that are included in the currently accepted model (most of which have been experimentally confirmed) and dashed
lines inferred links absent in the accepted model (though not necessarily incorrect).

5. DISCUSSION

We have presented a fully Bayesian implementation ofP-spline based inference of a DBN within a
sparse connectivity context. Our motivation is the inference of GRNs from longitudinal data, for instance,
from microarray time series data. Despite being capable of measuring up to tens of thousands of genes
simultaneously, currently available microarray time series are typically shorter than 20 time points. This
introduces significant problems for analysis and modeling, particularly as it limits the complexity of the
models that can be used. We addressed this issue through use of spike-and-slab type priors that limit
the connectivity of the GRN. Within this context, we are able to increase regression model complexity,
designing a method for exploring whether nonlinear regulatory mechanisms are present in time series
data.
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Semiparametric GRNs 11

Fig. 4. Uncertainty inArabidopsiscircadian clock gene network reconstruction. On the left, a heatmap of the distri-
bution of the number of parents for each gene in the clock, estimated using microarray data with the linear (top) and
splines (bottom) models. On the right, a heatmap with the marginal probabilities of the top 4 potential parents.

Our model successfully identified nonlinear interactions on simulated data (both discrete time and
ODE models), while the corresponding DIC scores favored the estimated network topologies with the
splines model, for a given threshold, over the linear alternative. On simulated data with nonlinear inter-
actions, the inferred GRN under a linear model typically acquired additional parents, these incorrectly
predicted parents improved the fit to a similar quality to that achieved by theP-splines model. The
P-splines model also enhances network sparsity since an additional parent under a splines regression
model incurs a greater penalty than a parent with a linear functional dependence model given the higher
(model) complexity; thus even when the links are actually linear there is stronger control on the number
of parents. This compares to artificially imposed parent number penalization, for instance, through an
arbitrary weighting exp(−n) for n parents, as inKim and others(2004).

Assessing the uncertainty in network topology retrieval is an active field of research. We provide a
graphical representation that combines the information on the distribution on the number of parents for
each gene, with the marginal posterior probabilities of the most probable regulators. In our example using
microarray data fromA. thalianaleaves, joint inspection of these estimates suggests that the splines model
provides a more accurate network reconstruction compared to the linear model.

Use of splines in inference requires handling of their functional flexibility. We recommend that the
number of knots is much smaller than the number of time points; here, we presented results using 10
knots for a time series with 40–50 time points. We found that doubling the number of knots (20) gave
severe problems in the mixing of the chain, while using a smaller number (7) gave similar results. We
also use a prior on the coefficients that effectively controls the spline curvature. This entails choice of
the value of the smoothing parameterτ ; previous authors have optimized and fixed it before estimating
the regression. We propose a fully Bayesian approach, inferring it concomitantly with the regression and
performed a sensitivity analysis to confirm our prior is sufficiently weak, further confirming that linear
relations can be retrieved. Network connectivity and spline smoothness were regression/gene specific;
this allowed for both heterogeneity in the nonlinearity and the number of parents across the network. We
presented the results for parent-wise connectivity and the proposed Beta prior parameters that we expect to
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12 MORRISSEY AND OTHERS

beappropriate for data sets similar as those used in this paper. Moreover, performing a sensitivity analysis
by modifying these values in the region(1/2,2), and also restricting to an overall connectivity did not
affect the results significantly in our examples. However, we have found that when the number of genes
increases significantly with respect to the number of time points there might not be enough information
for using the parent-wise prior and we suggest using an overall/global connectivity model.

Our P-splines model can be extended and modified for specific purposes. First, we model only direct,
first-order filiation. One can extend the present model for allowing higher degree interactions, for exam-
ple, by using tensor product splines. The main hindrance would then be the combinatorial growth of the
topology space, and efficient methods for exploring it must be devised. Second, spline coefficient shrink-
age can be performed in a number of ways. Additional constraints can be used, including a further term
on the prior for the spline coefficients,N(βββ|0, ωH), with H derived from the first-order differences of
adjacent coefficients. This effectively penalizes large first-order differences and favors less jagged curves,
depending on the value ofω > 0. Additionally, the shape of the functional form the spline may take can
also be further restricted. For instance, many gene regulatory effects are monotonic. Extending the model
to include monotonicity restrictions is feasible by providing such information through a prior (Ansleyand
others, 1993). Finally, the splines model can be utilized to infer the functional form of the regulation, and
coupled with current biological knowledge, serve as a basis of a tailor-made parametric model.

SUPPLEMENTARY MATERIAL

Supplementarymaterial is available athttp://biostatistics.oxfordjournals.org.
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1. THE MODEL

For completeness, we repeat the model and the prior specification. Stacking the bases
and the coefficients intoX t D

˚

X t
1; : : : ; X t

G

	

2 R
MG and ˇg D fˇ1g ; : : : ; ˇGgg 2

R
MG, respectively, we can express the model asytC1

g D �g C X tˇg C "t
g and after

further stacking the equations over time we have,

yg D �g C X ˇg C "g ; g D 1; : : : ; G ; (1.1)

where�g D �g�0

T , with �T a row vector of ones of sizeT andX D fX1; X2; : : : ; XTg
0

a bases matrix of sizeŒT � MG�.
Precisions.We use conjugate, iid gamma priors, Ga.�g j a�; b�/, on the gene preci-

�To whom correspondence should be addressed.
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sions,� = f�1; : : : ; �Gg,

�.�/ D

G
Y

gD1

b
a�

�

� Œa��
�a��1

g expŒ�b� �g � . (1.2)

Constant term. An independent Gaussian prior, N.� j 0; ��I/, for the gene-specific
constant,� = f�1; : : : ; �Gg

�.�/ D
� ��

2 �

�G=2

exp
h

�
��

2
�0 �

i

. (1.3)

Network structure. We provide two alternatives for modelling the network topology.
The first is to define theoverall network connectivity, �, as P

�


jg D 1
�

D � and com-
plement it with a Beta prior, Be.� j a�; b�/. The full specification is then,

�.
jg j �/ D �
jg .1 � �/1�
jg ; g; j D 1; : : : ; G ; (1.4)

�.�/ D ŒB.a�; b�/�
�1

�a��1.1 � �/b��1 0 < � < 1 . (1.5)

Alternatively, we can accommodateparent-wise connectivity, PŒ
jg D 1� D �j , by
letting

�.
jg j �j/ D �

jg

j .1 � �j/
1�
jg ; g D 1; : : : ; G ; (1.6)

�.�j/ D ŒB.a�; b�/�
�1

�
a��1

j .1 � �j/
b��1

j D 1; : : : ; G . (1.7)

Spline Coefficients.We use the prior on the coefficientšjg to shrink them towards the
origin specifying a second order Markov process prior

�. ǰg j �jg/ D N. ǰg j 0; �jg K/ . (1.8)

Where,

KM;M�2 D 1 ; KM �2;M �1 D �4 ; KM;M D 1 ;

KM;M�1 D �2 ; KM �1;M �1 D 5 I

and for alli; j 2 f3; : : : M � 2g,

Ki;j D

„
0 ji � j j > 2

�4 ji � j j D 1

1 ji � j j D 2

6 ji � j j D 0

.

Commonly, the two remaining coefficients are given an improper prior, �.ˇ1; ˇ2/ / 1.
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We discuss conditions for posterior propriety in Section 1.1.
Smoothness parameters.An inverted Pareto prior, Ip.� j a� ; b�/:

�.�jg j a� ; b�/ D
a�

b�

�

�jg

b�

�a� �1

; �jg 6 b� ; a� > 0 . (1.9)

1.1 Posterior propriety

Fahrmeir and Kneib (2009) discuss conditions for posteriorpropriety using the covari-
ance structure,K, arising from the second order Markov process prior and different
alternatives for the smoothing parameters within the context of structured additive mod-
els. We provide a result justifying the extension of this prior for GRN inference used in
the paper. The proof is standard and therefore omitted.

Theorem 1 Consider the longitudinal data setY D
˚

yt
g

	

, consisting ofg D 1; : : : ; G

genes measured at timest D 1; : : : ; T , modelled as (1.1) and with prior given by (1.2)–
(1.9). LetKg D blkdiagŒ�1gK; �2gK; : : : ; �G?gK� and	g D X 0

gXg C Kg . WhereXg

is the design sub-matrix conformable toG?
g , the number of parents of geneg. Then, the

posterior distribution offˇ1; : : : ; ˇG; �g is proper if	g is positive definite for everyg
andM � G?

g < T .

Given that in most of our applications we will only have a limited number of time
measurements compared to the number of genes, this leads to an improper posterior if
the prior was not proper, since the number of parents for any given gene only needs to
exceedT=M . To construct a proper prior we supply (1.8) with an independent specifi-
cation for the first two coefficients,

�.ˇ1; ˇ2/ D N.ˇ1 j 0; k1/ N.ˇ2 j 0; k2/ . (1.10)

Including these into the covariance structure we have

K1;1 D .1 C k1=�/; K1;2 D �2; K1;3 D 1; K2;2 D .5 C k2=�/ andK2;3 D 1;

for the appropriate smoothness parameter,� .

2. MCMC SCHEME

Combining the likelihood with the prior and letting� denote all the model parameters
we obtain,

�.� j X ; Y/ /

�Y

g

NT

�

yg j �g C X ž
g ; �gIT

�

�

�
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�Y

g

�.ˇg j �g/�.�g/�.�g/�.�g/�.
g j �g/�.�g/
�

;

whereIT is the identity matrix of sizeT , 
g D f
1g ; : : : ; 
Ggg and�g D f�1g ; : : : ; �Ggg.
As there is no closed form expression for the posterior numerical methods are needed.
We propose a Metropolis-within-Gibbs scheme which is drafted below.

Precisions The full conditional of�g , g D 1; : : : ; G is given by

�.�g j —/ / �T=2Ca��1
g exp

�

��g

�

b� C
1

2
e 0

g eg

��

which is the kernel of a gamma distribution, witheg D yg � �g � X ž
g .

Constant term �g is conditionally Gaussian, with mean and precision

mg D
xyg � xX ž

g

�g C ��=T
and � 0

� D �� C T �g ;

respectively, wherexyg D T �1
P

t yt
g and xX D T �1

P

t X .

Connectivity The full conditionals for the gene-wise connectivity,�g , are obtained as

�.�g j —/ / �
SgCa��1
g .1 � �g/

GCb��Sg�1 with Sg D

G
X

i


gi ;

and are sampled from a Be.�g j Sg C a�; G C b� � Sg/, for g D 1; : : : ; G .

The overall connectivity,�, is sampled from a Be
�

� j S C a�; G2 C b� � S
�

, with

S D
PG

gD1 Sg .

Smoothness parametersWhen the corresponding link is on, the full conditional is
given by

�.�jg j —/ / �
.M � 2/=2Ca� �1

jg exp

�

��jg

1

2
ž0

jgK ž
jg

�

; 0 < �jg < b�

and can be sampled from a truncated gamma distribution (Damien and Walker,

2001; Gentle, 2003) with parameters
n

.M � 2/=2 C a� ; ž0

jgK ž
jg=2

o

. An obser-

vation is drawn from the prior when the link is off.

Spline Coefficients and link probabilities The update of the spline coefficients and in-
dicator variables is performed as a block. Specifically, theupdate of a given in-
dicator variable
jg and all the coefficients of the regression for geneg, ˇg , are
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performed simultaneously. In practice, as the regression is sparse, only a few links
are actually present drastically reducing this computation. At every iteration, the
individual link indicator
jg is turned on (off) if it is off (on) and the associated co-
efficient,ˇg 2 R

MG, for present links (on) is proposed from the joint conditional.
Schematically we have,


 W 0 ! 1 and ˇ W ˇa ! ˇb

with acceptance probability

˛ D min

(

�
�

žb
�

�
�

ža
�

q.ˇa j 
a/q.
a/

q.ˇb j 
b/q.
b/
; 1

)

;

where the subscripts have been omitted for clarity.
 is proposed symmetrically,
thusq.
a/=q.
b/ D 1. Forq.ˇ j 
/ we use the proposal

q.ˇ j —/ D N.�ˇ; ˙ˇ/

with

˙ˇ D
�

�gX 0

gXg C �g

�

and �ˇ D �g.yg � �g/Xg˙�1
ˇ ;

where�g is the block diagonal penalty (precision) matrix, calculated by multiply-
ing each block inKg times the corresponding�jg . Note that, as only the coeffi-
cients with non zero indicator variable are updated,Xg , yg and�g are adjusted to
only include the appropriate elements. Substituting this in the Hastings ratio gives

�

1 � �
�0�

.M �2/=2
jg

exp

�

1

2
�b

ˇ˙�1b
ˇ �b

ˇ

�

exp

�

1

2
�a

ˇ˙�1a
ˇ �a

ˇ

�

ˇ

ˇ

ˇ
˙b

ˇ

ˇ

ˇ

ˇ

1=2

ˇ

ˇ

ˇ
˙a

ˇ

ˇ

ˇ

ˇ

1=2
.

The opposite move (switching an indicator variable off) canbe performed using
the reciprocal of the ratio above.

In order to enforce the identifiability restriction, at eachstep we calculateNmg D

�T �
h

X ž
g

i

, for every gene, subtract it from the splines and add it to theconstant term,
�g .

Our sampler exploits the conditional independence structure of the model. We con-
structed a parallel scheme where the calculation for each parent is assigned to aCPU-
node, these communicating only when the overall connectivity is updated and for sample
recording. Gains in computation times can potentially be upto n-fold, with n the number
of CPU-nodes used.
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2.1 Improving convergence

The last move in Section 2 leads to a dramatic decrease in autocorrelation of the Markov
chain, compared to a Gibbs move. Indeed, a common approach inthese cases is to use
a full Gibbs specification, with a full conditional Bernoullidistribution on the
jg and
a full conditional Gaussian for the coefficientsǰg . The latter requires the introduction
of a so-called pseudo-prior which needs to be tuned to improve the mixing of the chain
(Dellaportasand others, 2000; Ntzoufras, 2002; O’Hara and Sillanpää, 2009). In or-
der to assess the gains in mixing, we implemented a full Gibbssampler for the linear
model. When chain mixing is compared, the advantage of our MH update becomes ap-
parent as illustrated in Figure 1, obtained by running both samplers on the non-linear
synthetic data described in Section 3.1. The top panels plotthe number of times that link
was switched during theMCMC run against the posterior probability of the link being
present. One would expect that links with probabilities around1=2 would change more
often, as in Figure 1b. However, the Gibbs strategy tends to mix more slowly, as shown
in Figure 1a. Although the MH step is more computationally demanding, the benefit
brought about by the improved mixing of the chain, quantifiedby the reduction in au-
tocorrelation (ACF), offsets this cost easily (compare Figure 1c with Figure 1d). Given
that the parameter space of the splines model is much larger than the linear one, the
benefits of using this move, compared to the full Gibbs alternative are expected to be
even greater.

2.2 A linear model

Our fully parametric, linear AR(1) model

ytC1
g D �g C

G
X

j D1

ǰgyt
j C "t

g ; (2.1)

has similar basic interaction dynamics to those used ine.g.Opgen-Rhein and Strimmer
(2006) and Lëbre (2009). However, the way network topology estimation is carried out
varies significantly. Clearly, the latter models outperformour implementation in terms
of speed; however, our Bayesian formulation is capable of providing measures of vari-
ability on all model parameters, including the network topology. Further, by using an
identical prior structure (up to the relevant terms), we canfocus on non-linear depar-
tures alone.

3. ILLUSTRATIONS AND APPLICATIONS

In all our applications, we include a slight modification of the structure of the network
topology to that described in Section 1. We know from the context that each gene has a
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decay term, corresponding to mRNA decay. We include this information in the prior by
fixing 
gg D 1. As we also know that this decay is close to linear, we set the shape of
the inverted Pareto prior for these smoothing parameters tothrice the value used for the
rest,i.e.a�gg

D 3 � a�ij
; i 6D j .

The splines and linear models were fitted using the overall and gene-wise connectiv-
ity specifications. Throughout, 13 bases were used, i.e. splines of degree 3 with 10 evenly
spaced knots. Prior parameters were set tofa�; b�g = f1=2; 1=2g, fa�; b�g = f2; 0.01g,
�� D 1=4, �0 D 0.25 andfa� ; b�g = f1.5; 104g. We ran two parallel chains of length105,
dropping the first104 steps and then recording every tenth draw. We performed some
sensitivity analyses, varyinga� from 1 (uniform prior) up to 3, settinga� D b� D 1; 2

and using flatter versions of the prior for� by settinga� D 1; 0.1, without finding note-
worthy differences. Convergence was assessed by comparing both chains graphically
and by formal tests using theCODA package (Plummerand others, 2006).

3.1 Discrete time synthetic networks

In order to assess the network topology recovery power of ourmodel, we produced
two synthetic, first order autoregressive processes. One has only linear and the second
a number of non-linear (S-shaped) relations. In the non-linear case, all the functional
relations were produced using Hill functions, except for the self-interactions which are
linear. In both cases we setG D 16, T D 40, and� � 0.1.

The models with gene-wise and overall connectivity produced almost indistinguish-
able estimations for the network topology and thus we reportthe results for the simpler
model only. In Figure 2a we plot the marginal posterior and prior distributions of the
model precisions,�g (for a selection of the genes only, to avoid clutter). We alsoper-
formed a sensitivity analysis on�, fixing the prior parametersa� D b� D 2. As shown
in Figure 2b, the posterior was practically unaffected by this change.

When the topology of the network is known, we can use theROCcurve plotted in Fig-
ure 3 below, to assess graphically the retrieval performance of a model (Pepe, 2000; Sing
and others, 2005). A more formal comparison can be carried out by calculating the area
under theROCcurve (AUC): the closer theAUC to one, the better the retrieval. For the lin-
ear data set these were 0.999 for the fully parametric model and 0.998 with the splines;
and when fitting the non-linear data set we obtained 0.728 and0.912, respectively. An
alternative measure of fit is the so-called mean cross entropy (MxE), calculated as the
Kullback-Leibler divergence from the known network topology to that estimated by the
inferred connectivity matrixy� , averaged over all possible links. MxE is bounded from
below at zero, when the predicted topology is identical to the real one. Its value for a
network topology predicted totally at random,i.e. y
ij D 1=2, is� log1=2 � 0.7. In the
linear network the MxE was 0.042 when fitting the parametric model and 0.064 when
fitting the splines; with Hill interactions the values were 0.41 and 0.22, respectively. It
is apparent that network topology prediction from both models is almost identical when
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fitting the linear interactions network (left panel). When non-linearities are present, the
splines model achieves a better network retrieval, according to the ROC curve (right
panel).

3.2 Biological GRN: the plant Circadian Clock

Most organisms have the ability to track time even in the absence of external input
(e.g.light). This ability allows the organism to anticipate and prepare for future events,
thus enabling it to optimise the interaction with the environment. In some cases, such
as inArabidopsis, diurnal period tracking is achieved via a regulatory network that os-
cillates with a period close to 24 hrs. This period then propagates through one or more
of the core genes of the clock to target genes responsible forother biological processes
(reviews can be found in Harmer, 2009; Más, 2008; McClung, 2006). The circadian
clock is of central importance and has been extensively studied both experimentally and
through mathematical modelling. It has recently been reported to regulate up to 90%
of theArabidopsisgenome under some environmental conditions (Michaeland others,
2008). While the circadian clock is able to maintain oscillations without the need of
light, it is known that the period is modified by light exposure, allowing it to adapt to
shorter and longer daylight hours. The ODE and current working network models are
schematically outlined in Figure 4. As usual, genes are represented by nodes and regu-
lation by directed edges ending either in arrows (activation) or bars (inhibition).

3.2.1 Differential Equation Data. We generated data from Lockeand others(2006) us-
ing COPASI (Hoopsand others, 2006) fixing the light source to be permanently on. The
data was then subsampled, logged and standardised. The resulting data set has 50 time
points with a time spacing of 1 hr, see Figure 5 a. Given that simultaneous measurement
of multiple proteins is currently very hard, usually only mRNA is available for network
inference. For this reason, although the ODE model outputs protein concentration and
location, we used only the mRNA data. We expect the data generated from this model
to be a reasonable reflection of experimental data, not only because it is a continuous
time model with nonlinear interactions, but it also reflectsrealistic sampling regimes and
interaction intensities.

3.2.2 Experimental Data.Whole leaves were harvested every 2 hrs for 48 hrs, with
four biological replicates at each time point. To reduce variability, the same leaf (the 7th
leaf to emerge) was harvested for each sample. This means that the same plant was not
monitored over the entire time series but leaves of 96 distinct plants grown in identical
conditions were sampled (four at each of the 24 time points).Full genome expression
profiles of these leaves were generated using CATMA arrays (Sclep and others, 2007).
Data processing and normalisation of the time series was carried out using a pipeline
based on the R package MAANOVA (Wuand others, 2003). Given that the replicates
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showed some outliers we use the median of the four bioreplicates as the observed series.
We use the same genes as those that appear in the ODE model, leaving some freedom
to choose which genes to use for the ambiguous nodes. For the two genes that represent
pairs, we selected those that showed least variability across replicates (LHY, PRR7). To
represent X we chose the genes amongst the candidates in the current working model
that showed the strongest signal-to-noise ratio: LUX and ELF4. For Y we chose PRR5
as it had a stronger signal than GI. Traces of the selected genes are depicted in Figure 5 b.

One way to assess the accuracy of the splines inferred network topology is to restrict
our analysis to the most extensively studied genes: PRR7, LHY,TOC1 and (less so)
PRR5. We can reasonably assume that the connections between these links are known.
As can be seen in Figure 4b, there are 6 connections amongst these genes. The splines
model predicts 5 connections, of which 3 are correctly predicted. Both of the incorrect
predictions appear for genes that are missing a link in the inferred networks, indicating
that the model has found the wrong parent rather than overfitting with more parents than
necessary. Neither candidate gene for X (LUX and ELF4) regulates LHY, which would
be evidence supporting the hypothesis that one of them is theunknown gene. On the
other hand, these genes were proposed to be X as they are knownto be involved in the
clock and have some effect on the system, so the predictions can serve as a working
hypotheses for determining the role they play within the network.

4. COMPUTATION TIMES

Our algorithm took 2.7 hrs to run105 iterations with the nonlinear synthetic data (G D
16, T D 40, � � 0.1) and scaling is likely to be quadratic in the number of genes
and number of potential parents, and linear in the number of time points; for instance,
fitting a microarray gene expression data set —not shown— with G D 30 andT D 37

( O� � 0.15) took 20 hrs for the same run length. Thus, for data sets with alarge number
of genes a parallel algorithm is available which reduces computation time approximately
linearly in the number of cpu-nodes; for instance, using 31 cpus the former data set took
28.6 mins and the latter 3 hrs.
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Fig. 1. Chain mixing comparison of the Gibbs and MH strategies. Top panelsplot the number of state changes of

a link during the MCMC run against its posterior probability. The bottom panelsshow the autocorrelation function

(ACF) for a single link’s precision (gene 15).

Fig. 2. Marginal posterior distributions calculated when fitting the splines model to the non-linear synthetic data set.

(a) The posterior for a selection of the gene precisions,�g and the corresponding prior. (b) The posterior of the

overall-connectivity,�, from two different priors,a� D b� D 1=2 and2. In both panels priors are depicted by the

thick (red) dashed lines.
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Fig. 3. ROC curves from synthetic networks. On the left panel, the ROC curves from the linear synthetic network

obtained when fitting the linear AR(1) and the splines models. The right panel depicts the ROC from the non-linear,

synthetic network.

Fig. 4. Models of the Circadian Clock inArabidopsis thaliana. (a) The ODE model of Lockeand others(2006). (b)

The current working model of the clock (redrawn from McClung, 2008). Nodes represent genes known (or suspected)

to be part of the clock. Positive regulation is represented by an arrow and suppression by an edge with a bar end.
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Fig. 5. Time traces of the ODE model and experimental data for the Circadian Clock inArabidopsis thaliana. (a) Data

simulated with the ODE clock of Lockeand others(2006). (b) Gene expression profiles ofArabidopsisleaves. Data

sets are standardised.



Chapter 3

Error Model

Noise is a prominent feature of biological systems with variability occurring from the

molecular level all the way up to the multicellular level. When designing experiments

it is common to include replicate measurements so as to have a measure of the

different sources of variability.

In this paper we look at different ways of using replicate expression time-

series for the retrieval of regulatory networks. Microarray gene expression measure-

ments require destructive sampling, meaning that replicate measurements cannot

be arranged into a single set of replicate time-series. This is because each replicate

time-point cannot be assigned to a specific time-series, leading to a large number

of different ways of arranging the data into replicate time-series, with each of these

combinations potentially yielding different network predictions.

A straightforward way of analysing replicate data is to take the mean/median

of the replicates and proceed to infer a network in the usual way. In this paper we

give evidence that by proceeding in this way valuable information is discarded. We

propose two variants of a statistical model that make use of the information in the

variability. In our approaches we assume there is a “true value” of the expression

data for the population and that the replicates are noisy surrogate measurements

of the true value. This true value is inferred by the models simultaneously with

the regulatory network. The two proposed models differ in the distribution of the

replicates around the true value, in one case Gaussian and the other Student.

We benchmarked the two models using several synthetic datasets with repli-

cates and compared the results to inference using just the mean value of the repli-

cates. The retrieved networks showed clear improvement for the replicates models

over the mean data model. Finally, we used the models to analyse an experimental

dataset from the model organism Arabidopsis thaliana, consisting of a 24 time-point

52



time-series with 4 replicates per time-point. The preferred model was Student-t,

suggesting that outliers can have a significant impact on network inference.

3.1 Contribution

The initial idea was formulated by Morrissey, Juárez and Burroughs. The mathe-

matical expressions used for the sampler were calculated separately by Morrissey and

Juárez, and later compared. MATLAB code was contributed by Morrissey. Theo-

retical and sampler related issues were discussed and solved between Morrissey and

Juárez, with the supervision of Burroughs. Morrissey generated the synthetic data,

ran the models and analysed the outputs.

Morrissey’s contribution to the writing was as follows. During the draft stage,

Morrissey wrote the results section and the conclusions. Morrissey participated in

the revision of the draft suggesting changes and edits. During the journal submission

process, Morrissey and Juárez worked on addressing the problems raised by the

reviewers with the supervision of Burroughs.

The microarray data as well as the description of the experimental design

was contributed by Denby.
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ABSTRACT

Motivation: Gene expression measurements are the most common
data source for reverse engineering gene interaction networks. When
dealing with destructive sampling in time course experiments, it is
common to average any available measurements for each time point
and to treat this as the actual time series data for fitting the network,
neglecting the variability contained in the repeated measurements.
Proceeding in such a way can affect the retrieved network topology.
Results: We propose a fully Bayesian method for reverse
engineering a gene interaction network, based on time course
data with repeated measurements. The observations are treated
as surrogate measurements of the underlying gene expression.
As these measurements often contain outliers, we use a non-
Gaussian specification for dealing with measurement error. The
network interactions are assumed linear and an autoregressive model
is specified, augmented with indicator variables that allow inference
on the topology of the network. We analyse two in silico and
one in vivo experiments, the latter dealing with the circadian clock
in Arabidopsis thaliana. A systematic attenuation of the estimated
regulation strengths and a concomitant overestimation of their
precision is demonstrated when measurement error is disregarded.
Thus, a clear improvement in the inferred topology for the synthetic
datasets is demonstrated when this is included. Also, the influence
of outliers in the retrieved network is demonstrated when using the
in vivo data.
Availability: Matlab code and data used in the article are available
from http://go.warwick.ac.uk/majuarez/home/materials.
Contact: m.a.juarez@warwick.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Identifying and understanding gene regulatory networks is of key
importance in Systems Biology. Reverse engineering such networks
is thus paramount and a plethora of literature dealing with the
problem has developed in recent years (see Bansal et al., 2007;
Hache et al., 2009 and references therein). Bayesian networks (BNs)
have been used previously in gene network determination (Friedman
et al., 2000; Friedman, 2004; Hongqiang et al., 2005). However, it is

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.

well known that when followed through time, biological processes
have feedback loops and thus the validity of BNs is questionable
when modelling such systems. Dynamic BNs (DBNs) have been
proposed for modelling time course (longitudinal) gene expression
data (Cao and Zhao, 2008; Murphy and Mian, 1999; Perrin et al.,
2003; Yu et al., 2004; Zou and Conzen, 2005). These can be thought
of as ‘unfolding’ a BN for every time point and when folding it back
self-regulation and cliques may be obtained.

Formally, a DBN is characterized by a set of conditional relations,
p(yt+1 | yt). In the case of a regression-based DBN, these relations
can be written as

yt+1
g = fg(yt)+εt+1

g , (1)

where yt
g is the expression level of gene g=1,...,G, measured at

time t =1,...,T , yt ={yt
1,yt

2,...,yt
G} and εt

g is an idiosyncratic error
term.

The approaches above assume one observed time series for each
gene. However, gene expression measurement normally requires
destruction of the sample, e.g. microarrays, and, therefore, the idea
of a longitudinal time series becomes problematic. This is because
a single individual is not followed throughout the experiment, but
rather a population of cells or individuals are sampled and their
gene expression measured. The phenomenon is particularly acute
in experiments with multicellular organisms, where not even the
same population of cells can be followed through time. Thus, rather
than ‘real’ gene expression measurements, we are faced with a
set of surrogate measures. In addition to the uncertainty involved
in the sampling process, it is well known that gene expression
measurement technologies, such as microarrays, render noisy data
and frequently exhibit outliers (Brody et al., 2002; Lewin et al.,
2007).

When repeated measurements are available, time course data used
for reverse engineering gene interaction networks are commonly
obtained as a (weighted) average of these replicates and, therefore,
these sources of uncertainty are ignored. Neglecting the variability
within the replicates can have severe effects when fitting a linear
model, with perhaps the most important being attenuation of
the coefficient estimates (see Carroll et al., 2006; Fuller, 1987).
Working within a univariate first-order linear autoregressive setting,
Schmid et al. (1994) demonstrated that neglecting measurement
error yields severe attenuation, of the autoregressive coefficient and
the variability of this estimate. Interpreting this result within the
framework of (1) with a linear specification of fi(yt), this suggests
that an averaged time series will yield attenuated estimates of the
interactions within the network, with a spurious sense of security
given the concomitant underestimation of the variability of these
estimates.
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In the context of regulatory networks, Fujita et al. (2009) examine
the effect of including measurement error in a linear model, both in
static and dynamic contexts. They verify that the OLS estimator of
the regression coefficients is attenuated and that its corresponding
standard error is sub-estimated; then they provide a correction
based on the asymptotic behaviour of the OLS. However, they
do not assume sparsity in the network and, therefore, require
more observations than the number of parameters in the model,
making practical applications of their method to biological network
inference difficult. Further, when dealing with time series data,
they are forced to assume the measurement error precision known,
omitting this source of uncertainty, which in turn will affect the
estimation of the autoregression coefficients’ precision. The main
aim of this article is to show that by neglecting the uncertainty
within the measurement process some biases can be passed on to
the estimated network and, more importantly, that the confidence in
the retrieved network will be spuriously large.

In the sequel, we present a model that takes into account repeated
measurements of time course gene expression data for estimating
the topology of a gene interaction network. We model the network
topology explicitly, enabling us to control for the effective number
of parameters to be estimated and, therefore, able to apply the
methodology to commonly available time course gene expression
datasets, where the number of parameters exceeds the number of
observations. To ease the presentation, we assume an underlying
first-order linear autoregressive process, AR(1), for the interaction
network. As gene expression measurements frequently exhibit
heavier-than-normal tail behaviour, we model the measurement
process with Student-t errors. To this end, we present our approach in
Section 2. To account for all sources of uncertainty in the model and
measurement process, modelling and estimation is carried out from
a Bayesian perspective, with our prior specification and estimation
procedure explained in Section 3. Illustrations of model fitting and
comparisons with the standard approach are conducted in Section 4.
A final discussion is provided in Section 5.

2 APPROACH
Denote by yt

g the expression level of gene g=1,...,G, measured at
time t =1,...,T . We model the interaction network as a linear AR(1)
process,

yt+1
g =µg +

G∑
j=1

yt
j β̃jg +εt

g , (2)

where µg is the basal expression level of gene g; β̃jg =γjgβjg
measures the influence of gene j on gene g, with βjg ∈R and γjg =1,
if j regulates g and γjg =0 otherwise. Finally, εt

g is an idiosyncratic
error term, centred at zero and with precision parameter λg, typically
assumed to be Gaussian. We augment the model with the parenthood
(link) indicator variables �={γjg}, which will be the basis for
estimating the network topology.

Assume now that instead of measuring yt
g directly, we are

presented with R surrogate measurements X ={xt
gr}, r =1,...,R. As

mentioned before, the common approach is to calculate

x̄t
g =

⎡
⎣ R∑

r=1

ωgr

⎤
⎦

−1 R∑
r=1

ωgrxt
gr , (3)

with ωgr ≥0; and then replace yt
g in (2) with x̄t

g. Influence of
possible outliers will depend on the choice of ωg ={ωg1,...,ωgR}.
The pervasive choice in the literature is to set ωgr =1; but when
outliers are suspected, sometimes a more robust alternative, such as
the median, can be used. In the process of fitting (2), the probability
of any given link being present depends on the relative magnitude
of its associated coefficient, and hence failure of acknowledging
measurement error can yield an attenuated network connectivity.

In Section 3, we provide a fully Bayesian approach to
accommodating measurement error when estimating the topology
of a gene interaction network within a linear AR(1) specification.

3 METHODS
To account for the additional uncertainty when repeated measurements are
available, we assume that the regulation process can be captured by (2), but
instead of actually observing yt

g, we have noisy measurements, xt
gr , such that

xt
gr =yt

g +ηt
gr , r =1,...,R, (4)

with ηt
g a zero mean measurement error term, with precision parameter τg,

independent for all g,t,r. This error term is frequently assumed Gaussian;
however, given that the measurement process can potentially produce
outliers, we will use a Student-t specification, St(ηt

g | 0,τg,ν), such that

Var [ηt
g ]=ντ−1

g /(ν−2) provided the degrees of freedom, ν>2.
When combining (2) and (4), and using the Student-t representation as a

Gamma scale mixture of normals, one can write the likelihood as


(�;X)=
G∏

g=1

T∏
t=1

R∏
r=1

N(yt+1
g | µg +yt β̃g,λg)

×N(xt
gr | yt

g,ω
t
grτg)Ga(ωt

gr | ν/2,ν/2) .

(5)

where Y ={yt
g} are the unobserved expression levels, X ={xt

gr} denote
their surrogate measurements and �={µ,B,�,λ,τ ,ν} collects the model
parameters, with µ = {µ1,...,µG}; B={β ′

1,...,β
′
G}∈RG×G and βg =

{β1g,...,βGg}; �={γij}; λ={λ1,...,λG}; and τ = {τ1,...,τG}.
The Bayesian model is completed by specifying a prior for all the

unknowns. We use a product structure

π(�)=π(ρ)π(ν)
G∏

g=1

[
π(µg)π(βg)π(λg)π(τg)π(γ g)

]
, (6)

and specify componentwise conditionally conjugate priors where suitable.
Thus,

π(µg)=N(µg | 0,k), (7)

π(βg)=NG(βg | 0,kβI), g=1,...,G, (8)

π(λg)=Ga(λg | aλ,bλ), (9)

π(τg)=Ga(τg | aτ ,bτ ), (10)

π(γ g | ρ)=
G∏

j=1

Ber(γjg | ρ), g=1,...,G, (11)

π(ρ)=Be(ρ | aρ,bρ), (12)

π(ν)=Ga(ν | aν,bν). (13)

Of paramount importance in our modelling is the inclusion of the link
indicator variables, �={γij}, and their probabilistic structure, controlled by
(11) and (12). By augmenting the model in this way, we are able to switch
the regulation of gene i on gene j on or off, controlling for the effective
number of parameters to be estimated. Moreover, the posterior mean of the
link indicators, γ̂ ij , are interpreted as the posterior link probabilities, the
building blocks of the network topology retrieval. From a formal viewpoint,
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� supply the means for performing an automated link selection (see Smith
and Kohn, 1996). The overall connectivity of the network is controlled by ρ

and any relevant information about this key aspect can be fed into the model
through its prior.

Identifiability is always a potential issue when dealing with measurement
error models, ‘particularly when neither gold-standard measurements or pure
replicate measurements can be obtained’ (Gustafson, 2004, Section 6.3). This
problem is further compounded in gene network determination where the
number of potential parameters to be estimated (p=dim�≥G(G+1)) is
typically much greater than the available data points (n=T ×G), i.e. the
so-called p�n case. From a Bayesian perspective, models are always
identifiable as long as a proper prior is specified. However, this formal
identifiability may imply not learning from the data (Poirier, 1998) and thus
calls for a careful elicitation of the prior (Gustafson, 2005). Indeed this is the
case with the model and measurement precision parameters, when repeated
measurements are absent (R=1). We take advantage of the information
contained in the measurements X about τ and use a rather flat prior on this
parameter, while carefully eliciting the parameters for π(λ). To the extent of
our knowledge, there is no conventional prior for the degrees of freedom, ν.
We decided to use a gamma distribution such that P [ν≤30 ]≈0.6 and with
mode at 15; thus giving roughly prior odds of 3 to 2 for the measurement error
distribution being fat-tailed. A detailed specification of the prior parameters
is given in Supplementary Section 2S.

There is no closed analytic expression for the posterior distribution,
π(� | X)∝
(�;X)π(�), and numerical methods to explore it are needed. To
this end, we constructed a Markov chain Monte Carlo (mcmc) algorithm. We
use Gibbs sampling for all of the parameters except B and ν. For the former,
(Morrissey et al., submitted for publication) showed that a Metropolis-
within-Gibbs strategy improves mixing and, therefore, faster convergence
of the chain, and we follow their suggestion. We use a Metropolis step for ν

with a Gamma proposal centred at the previous draw and tune its coefficient
of variation to control for the acceptance rate.

In passing, noteworthy is the Gibbs step used for drawing a new non-
observable expression level yt

g. These are drawn from a Gaussian distribution,
N(yt

g | mt
g,p

t
g), with location

mt
g = λgmAR +τgmmeas

pt
g

and precision

pt
g =λg(1+β̃2

gg)+τg

R∑
r=1

ωt
gr ,

where

mAR =
∑
i 	=g

β̃ig(yt−1
i −β̃ggyt

i )+β̃gg(yt−1
g +yt+1

g )

and

mmeas =
R∑

r=1

ωt
grxt

gr .

It is apparent from the expression above that draws of yt
g depend on the

weighted average of the observed measures, with the weights determined by
the degrees of freedom through ωt

gr . These averages are then combined with
theAR(1) component of the model, thus effectively entertaining all sources of
uncertainty. A detailed description of sampler is presented in Supplementary
Section 3S.

Our estimation method is computationally intensive. Runtime for any
of the measurement error models is not significantly longer than for the
plain AR(1), though. Sampler’s 2×105 iterations with the 16 gene linear
data used in Section 4.1.1 took 2.10, 2.14 and 2.24 h for the AR(1), the
Gaussian and the Student error models, respectively. In terms of scalability,
the algorithms show the usual problems associated with network inference.
Large datasets (i.e. thousands of genes) can take unrealistically long times

to run. Runtime can be reduced by allowing only transcription factors to
be regulators (and possibly other genes that could affect regulation, such as
kinases), encoding such information in the prior through (11). Further, the
algorithm is straightforwardly parallelized, as the parameters for each gene
can be computed independently, the CPU-nodes needing to communicate
only for updating the overall connectivity, ρ and for collecting the draws,
thus reducing the runtime roughly proportionally to the number of available
CPU-nodes.

4 RESULTS
We analyse two in silico and one in vivo datasets. The simulated
experiments allow us to isolate the effect of explicitly modelling
measurement error in controlled situations and highlight the
attenuation effect. We then turn to a real experiment dealing with
the circadian clock in Arabidopsis thaliana. In all cases, we fit the
model with and without the measurement error component, using the
same prior structure (6)–(13), deleting the relevant terms when not
accounting for measurement error or when assuming it is Gaussian
distributed.

4.1 In silico networks
The first synthetic network is linear, and thus serves as a baseline for
comparisons. The second is nonlinear and will allow comparisons
within a more realistic, yet still controlled setting. For each synthetic
dataset, we generate a rather large number of time points, 41 and 50,
respectively, so we can highlight the effect of measurement error in
network reconstruction.

4.1.1 Linear interactions Here, we use (2) and (4) to generate
a synthetic data set with G=16 and T =41. We set the network
connectivity ρ≈0.13 and produced a layered network: a hub gene
is perturbed by an (unmeasured) external input, the signal is then
propagated to a second layer of genes with another hub which, in
turn, propagates the signal to a third layer. A small amount of links
feeding forward and backward between layers are also included.
Expression profiles can be found in Supplementary Figure S1a.

This dataset is regarded as the ‘noiseless’ case. Using it as
basis, we generated noisy replicates according to (4) with ηt

g either
Gaussian (GD) or Student (SD) distributed. For each distribution, we
generated two datasets: one with few (R=4) and a second with many
(R=20) replicates. In both cases, we consider rather noisy scenarios

by setting τ
−1/2
g at 50% of the maximum absolute expression value

of each gene (note that in the GD case, τg corresponds to the
measurement precision). We fixed ν=5, for the Student-t case.

We fitted three models to each dataset: one where the measurement
error is assumed to be Student distributed (SM), the second assumes
normal errors (GM) and the third disregards measurement error by
taking the mean of the replicates as the true time series (MM). To
summarize the results of the inference on the network topology,
we use two threshold-independent scores: the area under the ROC
curve (AUC) and mean cross entropy (M×E). The AUC provides
an overall accuracy measure of network retrieval, using the link
predictions sorted according to their magnitude. It thus fails to
account for the strength in the predictions; in our case, the estimated
link probabilities. These are key as, when performing inference
on an unknown network, we will normally set a threshold above
which links will be predicted as being present. For this reason, we
also calculate the M×E defined as the average Kullback–Leibler
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Table 1. Performance comparison using a synthetic linear network

AUC M×E

R=4 R=20 R=4 R=20

GD SD GD SD GD SD GD SD

MM 0.78 0.68 0.91 0.82 0.40 0.59 0.24 0.33
GM 0.86 0.77 0.92 0.89 0.32 0.37 0.21 0.28
SM 0.85 0.81 0.93 0.92 0.32 0.36 0.20 0.24

AUC and M×E scores obtained by fitting the model without measurement error (MM)
and those with Gaussian (GM) and Student (SM) errors to in silico data with Gaussian
(GD) and Student (SD) distributed errors. Bold values are the best scores for each case.
The smaller the M×E the better. The larger the AUC the better.

divergence from the link structure of the true network to the posterior
link probabilities, over all possible links (detailed in Supplementary
Section 4.1S). As a baseline for comparison, the M×E of a perfectly
inferred network is 0 and that of one predicted totally at random
(i.e. probability of 1/2 for each link) is −log(1/2)≈0.7. In the case
of the AUC, this corresponds to values of 1 and 1/2, respectively.
For instance, we fitted the AR(1) model with the ideal, noiseless
data, resulting in an AUC of 0.99 and a M×E of 0.05.

When using GD, GM and SM perform equally well under both
criteria—see the corresponding columns of Table 1. This is to be
expected, since a Student distribution with large degrees of freedom
approaches a Gaussian. Using a small number of replicates (R=4 in
Table 1) GM and SM outperform MM in either criteria. When a large
number of replicates is considered (R=20 in Table 1), the AUC for
all three scenarios are quite close, indicating a similar ordering of
the estimated link probabilities for all models fitted. However, the
M×E scores are better for SM and GM, highlighting that the inferred
probabilities with measurement error are comparatively higher for
existent links and lower for non-existent.

Regarding inference on data with Student error, MM performs
worse under both scores—first row in Table 1. In fact, the M×E score
with few replicates is very close to that of random predictions. SM
shows a small improvement over GM for both small and large R. This
difference is slightly larger for R=20, illustrating that the degrees
of freedom are hard to estimate; four replicates is barely enough to
infer them, while R=20 allows for a more precise estimation.

The effect of measurement error can also be highlighted when
concentrating on the data with several replicates (columns with
R=20 in Table 1), while relative differences in the AUC between
MM and SM are reduced to <2% for GD and 11% for SD, relative
differences in M×E are 17% and 28%, respectively. This can be
understood since attenuation reduces with increased number of
replicates and, therefore, the point estimates of the coefficients from
either model will be closer to each other, resulting in a similar AUC.
However, the variance of these estimates will still be underestimated
when using MM and as a result the M×E, which takes into account
the actual value of the estimated probabilities, will capture these
differences.

Attenuation and underestimation of the variability on the
coefficients estimates are illustrated in Figure 1 for a specific
link, gene12 →gene9. As expected in the ideal, noiseless case, the
posterior distribution of the corresponding coefficient, β12,9, has
its mode close to the true value of the coefficient (1.0) and has a

0 0.2 0.4 0.6 0.8 1 1.2
0

3

6

9

12

β12,9

Noiseless
MM
SM

Fig. 1. Marginal posterior distributions of the coefficient, β12,9

corresponding to link gene12 →gene9 of the in silico linear data. The
noiseless data (dot-dashed) is the data without noise, the MM (dashed) is
the mean of four replicates, neglecting measurement error and SM (solid)
uses the four replicates and assumes Student measurement error.

rather large precision. With noisy measurements MM renders an
attenuated coefficient, with its posterior distribution shifted towards
the origin (dashed curve). Moreover, the corresponding posterior
has negligible mass near the true value. In contrast, the posterior
from SM overlaps nicely (solid). Also, the MM estimate has a
posterior precision of about 72, larger than the SM, 62, illustrating
the underestimation of the uncertainty in the coefficient estimate.
This effect was observed more or less markedly in all predicted
links (not shown).

4.1.2 Nonlinear interactions A dataset with nonlinear
interactions was generated using a gene network model built
with ordinary differential equations (ODEs). The network is
a mathematical model of the A.thaliana circadian clock and
consists of G=5 genes with eight links, and also includes protein
production and transport, as well as daylight (Locke et al., 2006).
We generated data from this model using COPASI (Hoops et al.,
2006) with the light source fixed permanently on. To mimic
realistic sampling regimes, we sub-sampled the data so as to have
a time spacing of an hour and then took logs. The resulting time
series has a total of T =50 time points (plots of the profiles are
shown in Supplementary Fig. 1Sb). This is the ‘noiseless’ dataset.
We generate noisy replicates using Student distributed errors. As
before, we fix τ

−1/2
g at 50% of the maximum value of the noiseless

gene expression, use ν=5 and produced two datasets: one with 4
replicates and the other with 20 replicates.

Due to the small size and high connectivity of the network
(ρ≈0.40), the scores used in the previous example become quite
sensitive. This is because the ROC is a piecewise constant function
and with a small number of genes (and therefore links), the size of
the steps becomes larger and thus comparisons get more sensitive.
For improved interpretability, we plot in Figure 2 the links included
in the predicted network against the posterior link probability when
fitting the data with R=4 replicates. We use a circle (cross) for
an incorrect (correct) link; for instance, in the noiseless case the
predicted network using a threshold of 0.95 would have nine links
(circles and crosses with link probability threshold above 0.95 in
Fig. 2a), four out of which (crosses) are correct.

Inspection of the inferred link probabilities using the noiseless
data (Fig. 2a), shows that there is some overfitting. For instance,
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Fig. 2. Network topology retrieval for the ODE circadian clock in silico
dataset with R=4 replicates. Links predicted to be present in the network
versus posterior link probabilities estimated for the noiseless case and when
using MM, GM and SM. A link (not) present in the ODE model is shown
with a (circle) cross.

using a link probability threshold of 0.7, 14 out of 20 possible links
are predicted to be present. The main reason for this is that the linear
model is unable to explain the nonlinear interactions adequately,
resulting in either a misprediction or a compensation by the inclusion
of spurious parents (see Morrissey et al., submitted for publication,
for a detailed discussion).

For the case where we have few replicates, GM and SM
outperform MM (Fig. 2b–d). MM predicts only two links with
high probability (γ̂ ij ≥0.8), both incorrect. For a link probability
threshold of 0.7, GM performs marginally better than SM (even
though the true noise is Student). Using a threshold of 0.5, the
inferred network would be the same for both models, though. If
we compare model fit for low thresholds, MM predicts 17 links not
present in the network with a threshold of 0.2 (i.e. those crosses
and circles to the left of 0.2). Seven out of these are real (crosses);
i.e. it has a high false negative rate, compared to the models with
measurement error: 4 out of 10 for GM and 3 out of 9 with SM.
Moreover, the true positive rate for this (low) threshold is 1 out of 3
for MM (one cross and two circles to the right of 0.2), while GM has
4 out of 10 and SM 5 out of 11. When a large number of replicates are
available, the three models yield similar network reconstructions;
however, the spread of posterior link probabilities is still more
concentrated when using MM (see Supplementary Fig. S3).

The effect of attenuation in network retrieval can be seen by
comparing Figure 2b to Figure 2c and d. Most posterior link
probabilities of MM are tightly clustered towards zero; this is due
in part to the combined effect of attenuated coefficients (and thus a
lower overall connectivity) and the underestimation of the variability
on these estimates (the tight grouping). In contrast, the posterior link

probabilities in either GM or SM have a wider spread reflecting both
the larger estimates of the coefficients and the increased variability
in the estimates when considering measurement error.

4.2 In vivo data
We used a microarray time series of gene expression profiles from
A.thaliana (Denby,K.J. unpublished data). Sampling is destructive,
with a different plant used for each time-replicate. To reduce
variability, the same leaf was used for each sample. A total of 96
plants were grown under a 16 h : 8 h light : dark cycle and the seventh
leaf to emerge from each of R=4 plants was sampled every 2 h over
a 48-h period, i.e. T =24.

To select those genes to be included in the analysis, we referred
to the current working model of the circadian clock in Arabidopsis
(Robertson and Webb, 2009), sketched in Figure 3a. Recently, a
new gene (CHE) was identified as a member of the core circadian
clock (Pruneda-Paz et al., 2009), so we include this gene to entertain
the most up-to-date version of the clock. Two nodes in Figure 3a
(LHY/CCA1 and PRR7/PRR9) represent pairs of genes that perform
the same role and have very similar expression profiles. To avoid
collinearity, a single gene to represent each pair was selected. PRR7
is chosen over PRR9 as it shows a higher signal to noise ratio
and CCA1 over LHY given that CHE is predicted to regulate
CCA1 and not LHY (traces of the expression profiles are shown
in Supplementary Fig. 2S).

Figure 4 depicts the distribution of the inferred link probabilities
for each of the three models. As there are few links predicted with
high probability, we set a link probability threshold of 0.5. Figure 3
shows the inferred networks for this threshold. GM and MM infer
the same network topology, whereas SM infers a network with six
links, only two of them in common with the GM/MM network.

This large difference is explained by the posterior probability
distribution of the degrees of freedom (Fig. 5), where four out of
the five genes are inferred to have a fat-tailed measurement error
distribution, with a mode of ν=3 for PRR7. The effect of attenuation
in the estimation of the link probabilities is illustrated by comparing
the three pictures on Figure 4. Again, the majority of probabilities
estimated by MM are smaller than those estimated by either GM
or SM and are more tightly grouped. On the other hand, GM and
SM reflect the additional uncertainty in the measurement process by
dragging these probabilities towards the centre of the plot.

The GM/MM network correctly predicts the TOC1→GI→TOC1
loop, but also predicts two incorrect links (GI→CCA1 and
TOC1→PRR7). The SM model also correctly predicts TOC1→GI
but incorrectly TOC1→PRR7. The other four links that are absent
in the GM/MM predicted network involve either PRR7 (three
links) or CCA1 (one) as a regulator. Out of these, there are
two correct predictions: PRR7→CCA1, CCA1→TOC1 and two
incorrect: PRR7→GI and PRR7→TOC1.

Noteworthy is the discrepancy between the SM and MM/GM
inferred networks (Fig. 3). The fact that for the given threshold the
MM and GM inferred networks are the same illustrates the effect
of outliers in the estimation: when using GM, despite taking into
account the uncertainty in the replicates through τg, these are treated
as interchangeable in the update of yt

g (in this case, ωt
gr ≡1). In

contrast, the weights in SM depend on the degrees of freedom and
will be more variable for smaller values of ν, allowing for some
of the measurements to dominate the average. To verify that this is
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Fig. 3. Arabidopsis circadian clock. (a) Current working model (redrawn from Robertson and Webb, 2009): dotted lines represent protein production and oval
shapes (binding) proteins. (b) and (c) Depict the network topologies inferred with the measurement error models with a threshold of 1/2, using the microarray
data. Solid edges represent predicted links that are present in the working model and dashed represent links predicted by either model and not present in the
working model. (b) The retrieved topology with Mean and Gaussian models and (c) with the Student model.

Fig. 4. Gene network link prediction for the Arabidopsis circadian clock microarray data. Posterior link probabilities from each model are depicted as circles.
The vertical dotted line represents a threshold of 1/2.

Fig. 5. Marginal posterior distributions of the degrees of freedom, ν, for each
gene when fitting the Student measurement error model to the Arabidopsis
circadian clock microarray data.

indeed the case, we fitted the AR(1) model using the median value
of the replicates as the sole source of information. The predicted
network topology (not shown) also has six links with only one of
them differing from those inferred by SM (incorrect in both cases);

nevertheless, the posterior distribution of the link probabilities was
tighter, illustrating the sub-estimation of the coefficients’ precision.

These comparisons are dependant on the threshold selected and
as such are only a point estimate of the network. As described
in the Section 1, the fundamental effect of not accounting for
repeated measurements is the overconfidence in the estimation of
the coefficients and its effect on the estimates of link probabilities.
Even though the topology retrieved from MM and GM, for a
fixed threshold, is similar, the distribution of the link probabilities
is extremely different. MM predicts three links with very high
probability (>0.8) and 14 with very low probability (<0.2), with
only three in the central region of Figure 4a. In contrast, GM predicts
only 1 link with high probability and 10 with low, leaving 9 possible
links in the central zone of Figure 4b. The conclusions obtained from
either model can thus be quite distinct, while MM suggests a high
confidence in its predictions, GM correctly warns about the high
levels of uncertainty in the recovery of the network.

Interestingly, no parents or children are predicted for the new
clock gene CHE. Pruneda-Paz et al. (2009) showed that CHE can
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bind TOC1 and also binds the promoter region of CCA1. This
suggests that we can expect non-additive, nonlinear effects that
may be difficult to capture with an additive linear model. For
the regulation of CHE, we do not expect these problems. From
Pruneda-Paz et al. (2009), we know that CHE is regulated by
CCA1. Analysing the SM posterior link probabilities, we found that
the other four genes appear as regulators of CHE with posterior
probabilities of around 0.13, suggesting that either the regulation is
highly nonlinear, or there are other regulatory mechanisms such as
post-translational modifications. The latter would not be unlikely as
it is well known that targeted protein degradation and sequestration
plays a very important role in the circadian clock.

We further explored the effect of having less replicates available.
To this end, we sub-sampled the original four replicate dataset and
generated 60 datasets, 30 with three replicates and 30 with one.
The datasets were sampled in a controlled manner to ensure they
were not too similar to the original four replicate dataset (see
Supplementary Section 4.3S).

We summarize the information by setting the same link probability
threshold as in the four replicate case (γ̂ ij ≥0.5), and then counted
the times a link was predicted to be present. These counts are shown
in Table 2 for the 1-replicate case and Table 3 for the 3-replicate.
As expected, the ‘no replicates’ scenario (Table 2) shows high
variability in the inferred networks. No single link was predicted
as present in more than half the datasets. A third of the predicted
networks had no more than one predicted link and a further third
of the networks had from four to six predicted links (not shown).
Three links appeared more frequently than the rest: the two link
loop TOC1→GI→TOC1 and the PRR7→TOC1 link. The two links
in the loop were predicted together only in five of the datasets,
reflecting the loss in estimation precision when no replicates are
available.

Table 2. Circadian clock experimental data. Link prediction counts using
the 30 sub-sampled datasets with one replicate and a threshold of 1/2

CCA1 TOC1 PRR7 GI CHE

CCA1 0 3 3 4 1
TOC1 6 0 3 14 0
PRR7 2 14 0 2 1
GI 0 13 6 0 0
CHE 1 3 0 0 0

As there is only one replicate per gene, the model without measurement error is used.
Genes in columns are regulators and rows are regulatees.

Table 3 illustrates the benefits of including repeated
measurements: there is a clear separation in the link prediction
frequency, with a few links being predicted quite frequently and the
rest barely appearing. Those links predicted in more than half of the
datasets (highlighted in Table 3) are consistent with those predicted
using the full dataset. Links predicted by MM are exactly the same
as those with the full data (see Fig. 3). Compared to SM, GM
incorrectly swaps TOC1→GI for PRR7→GI while SM misses two
links (TOC1→GI and PRR7→TOC1), but is still able to correctly
predict two further links (CCA1→TOC1 and PRR7→CCA1). This
shows that even in the case when less data is available, SM is still
able to infer the degrees of freedom and outperforms MM/GM. In
a scenario where few replicates and time points are available, it
may be advisable to modify SM making the degrees of freedom
common to all genes.

5 DISCUSSION
We demonstrate here that the uncertainty conveyed in repeated
measurements of time course gene expression data can have a strong
effect when estimating a gene interaction network. In the case of a
linear autoregressive network specification, not accounting for this
uncertainty leads to attenuation of the autoregressive coefficients
and overestimation of the precision of these estimates. This in turn
can affect the network topology retrieval. To address this issue, we
propose a model that explicitly includes this variability.

Our modelling is fully Bayesian, with the true gene expression
unobserved and thus inferred. Inference of these expression values
draws information from both the surrogate measurements and the
linear AR(1) process assumed for the gene network interaction,
with the influence of each source weighted by the relative value
of the AR(1) precision, λ, and the measurement precision, τ . When
τ is relatively small, inference on the expression values will be
predominately determined by the AR(1) part of the model. In the
case where there is little information in the data about the regulatory
process, the prior on λ must thence be carefully elicited. We provide
a benchmark prior for the kinds of datasets arising from microarrays.

Our model accommodates simultaneous inference of the network
topology along with the interaction coefficients. We showed that
attenuation of the network coefficients as well as the underestimation
of the variability of these estimates is systematic. Such behaviour
is then passed on to the estimated link probabilities, yielding a
more concentrated distribution of link probabilities towards either
one or zero. The retrieved networks are obtained by setting an
(arbitrary) threshold on the posterior link probabilities, and thus

Table 3. Link prediction counts using the Arabidopsis circadian clock microarray sub-sampled datasets with three replicates

MM GM SM

CCA1 TOC1 PRR7 GI CHE CCA1 TOC1 PRR7 GI CHE CCA1 TOC1 PRR7 GI CHE

CCA1 0 0 1 17 0 0 0 2 24 0 0 0 21 7 0
TOC1 1 0 1 29 0 4 0 1 22 0 15 0 7 5 0
PRR7 1 29 0 3 0 0 30 0 5 0 0 30 0 3 0
GI 1 29 1 0 0 0 11 20 0 0 0 9 24 0 0
CHE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bold values are those links that were predicted present in more than one half of the 30 subsets, using a threshold of 1/2. Genes in columns are regulators and rows are regulatees.
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are only point estimates of the network topology. Thus, the final
effect on the inferred network topology is case dependant. This is
because, while searching for regulatory dependencies, the estimation
process implicitly compares alternative parenthood configurations
and the inclusion/exclusion of a link depends on the specific
dynamics of each gene and its relative variability. However, the
distribution of these probabilities can be quite different, providing
the experimentalists with a more accurate description of the
uncertainty contained in the model fitting, and thus will be better
informed when designing further experiments.

High-throughput technologies yield noisy measurements, with the
noise distribution typically exhibiting heavier than Gaussian tails.
Not accounting for this behaviour can also have a negative impact
when performing inference on the interaction coefficients of the
network. In our examples, we showed that the inferred topology
with the synthetic datasets improved when using SM over GM and
MM. Even though there is not a definite network as yet for the in vivo
dataset, the inferred topology showed no difference between MM
and GM for the selected threshold, while the posterior distributions
of the degrees of freedom indicate heavy tails for all but one of the
genes, indicating significant outliers in the data and thus suggesting
the MM/GM predictions are questionable.
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These supplementary materials are presented in order of appearance within the main paper. For complete-

ness, we briefly recall the model specification.

1S THE MODEL

Denote by yt
g the expression level of gene g D 1; : : : ; G, measured at time t D 1; : : : ; T . We model the interaction

network as a linear AR(1) process,

ytC1
g D �g C

GX
j D1

ž
jgyt

j C "t
g ; (1)

where �g is the basal expression level of gene g; ž
jg D 
jg ǰg measures the influence of gene j on gene g, with

ǰg 2 R and 
jg D 1 if j regulates g and 
jg D 0 otherwise; finally, "t
g is an idiosyncratic error term, centred

at zero and with precision parameter �g , typically assumed to be Gaussian. We augmented the model with the

parenthood (link) indicator variables � D f
jgg which will be the basis for estimating the network topology.

In order to account for the additional uncertainty when having repeated measurements we assume that the

regulation process can be captured by (1), but instead of actually observing yt
g , we have noisy measurements, xt

gr ,

such that

xt
gr D yt

g C �t
gr ; r D 1 : : : ; R ; (2)

with �t
g a zero mean error measurement term, with precision parameter �g , independent for all t; g; r . This er-

ror term is frequently assumed Gaussian; however, given that the measurement process can potentially produce

outliers, we will use a Student-t specification, St
�
�t

g j 0; �g ; �
�
, such that Var

�
�t

g

�
D � ��1

g =.� � 2/ provided the

degrees of freedom, � > 2.
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2 2. THE PRIOR

2S THE PRIOR

The likelihood for the Student-t measurement AR(1) model is,

`.‚I X/ D

GY
gD1

TY
tD1

RY
rD1

N
�
ytC1

g j �g C ž
gy t ; �g

�
N

�
xt

gr j yt
g ; !t

gr�g

�
Ga

�
!t

gr j �=2; �=2
�

: (3)

Where Y D
˚
yt

g

	
are the unobserved expression levels, X D

˚
xt

gr

	
denote their surrogate measurements and

‚ D f�; B; �; �; �; �g collects all the parameters involved, with � = f�1; : : : ; �Gg; B D
˚
ˇ0

1; : : : ; ˇ0
G

	
2 RG�G

and ˇg D fˇ1g ; : : : ; ˇGgg; � D f
ijg; � D f�1; : : : ; �Gg; and � = f�1; : : : ; �Gg.

We specify a product form (independent) prior,

 .‚/ D  .�/  .�/

24 GY
gD1

 .�g/  .ˇg/  .�g/  .�g/  .
g/

35 ; (4)

where,

 .�g/ D N.�g j 0; k/ ; (5)

 .ˇg/ D NG

�
ˇg j 0; kˇ I

�
; g D 1; : : : ; G ; (6)

 .�g/ D Ga.�g j a�; b�/ ; (7)

 .�g/ D Ga.�g j a� ; b�/ ; (8)

�.
g j �/ D

gY
j D1

Ber.
jg j �/; g D 1; : : : ; G ; (9)

 .�/ D Be.� j a�; b�/ ; (10)

 .�/ D Ga.� j a� ; b�/ : (11)

Given that the data is standardised before performing the estimation (zero mean and unitary standard devi-

ation for each time series), we set k� D kˇ D 1=4; i.e. the prior variance of any component of � and B is four. In

our experience, this is typically not over-informative for microarray data.

As mentioned in the paper, when repeated measurements are available it is easier to estimate � than �. Thus,

we set fa� ; b�g = f2; 1=100g which is renders a rather flat prior with mode at 100 and variance of 20000.

For the autoregressive precision �, we used fa�; b�g= f1=10; 1=10g. Thus setting the prior mean at one and the

variance at 10. The mode now does not exist.

Derived from the conditions given in the paper: P Œ� � 30� � 0:6 and ModeŒ�� D 15, it is straightforward to

verify that fa� ; b�g = f3:5; 0:15g.

In the absence of any prior information, we treat � as the probability of any given link to be present and thus

use the corresponding reference prior, Be.� j 1=2; 1=2/ (Bernardo and Smith, 1994, p. 315) .
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3S THE SAMPLER

AR(1) Precisions The full conditional of �g , g D 1; : : : ; G is given by

�.�g j —/ / �T=2Ca��1
g exp

�
��g

�
b� C

1

2

�
ytC1

g � �g � y t ž
g

�0�
ytC1

g � �g � y t ž
g

���
and thus can be sampled from a gamma distribution.

Constant term �g is conditionally Gaussian, with mean and precision

mg D
xytC1

g � xy t ž
g

�g C k�=T
and � 0

� D k� C T �g ;

respectively, where xytC1
g D T �1

P
t ytC1

g and xy D T �1
P

t y t .

Connectivity The overall connectivity, �, is sampled from a Be
�
� j S C a�; G2

C b� � S
�
, with S D

PG
i;j D1 
j i .

Measurement precision For each gene g D 1; : : : ; G, the measurement precision, �g are updated from a gamma

distribution Ga
�
�g j a0

� ; b0
�

�
with

a0
� D R T=2 C a� and b0

� D b� C
1

2

TX
tD1

RX
rD1

!t
gr

�
xt

gr � yt
gr

�2
:

Degrees of freedom We use a Metropolis-within-Gibbs strategy to draw a new value, �.m/, with a gamma proposal

with its mean fixed at the previous draw, �.m�1/. We control for the acceptance rate to lie around 1/3 by

tuning the proposal’s coefficient of variation, cv. Thus, we propose a new �.m/ from

Ga
�
�.m/

j cv�2; cv�2=�.m�1/
�
:

Coefficients and link probabilities The update of each indicator variable 
jg is performed jointly with all the

corresponding coefficients

ˇ W ˇa
! ˇb and 
 W 0 ! 1

with acceptance probability

˛ D min

(
�. žb/

�. ža/

q.ˇa j 
a/ q.
a/

q.ˇb j 
b/ q.
b/
; 1

)
;

where the subscripts have been removed for clarity. Given that we propose 
 symmetrically, q.
a/=q.
b/ D 1.

The Hastings ratio is then

q.ˇa j 
a/

q.ˇb j 
b/
D

�

1 � �
k

1=2

ˇ

exp

�
1

2
�b

ˇ†�1b
ˇ �b

ˇ

�
exp

�
1

2
�a

ˇ†�1a
ˇ �a

ˇ

�
ˇ̌̌
†b

ˇ

ˇ̌̌1=2

ˇ̌̌
†a

ˇ

ˇ̌̌1=2
:

with †� the covariance matrix obtained by considering only the relevant gene expression vectors. For the

opposite move i.e. switching a link off, we use the reciprocal of the ratio above.



4 4. DATA SETS

Non-observables These are drawn from a Gaussian distribution, N
�
yt

g j mt
g ; pt

g

�
, with location

mt
g D

�gmAR C �gmmeas

pt
g

and precision pt
g D �g

�
1 C ž2

gg

�
C �g

RX
rD1

!t
gr ;

where

mAR D
X
i¤g

ž
ig

�
yt�1

i � ž
ggyt

i

�
C ž

gg

�
yt�1

g C ytC1
g

�
and mmeas D

RX
rD1

!t
grxt

gr :

4S DATA SETS

Time traces of the data sets used in Section 4 of the paper. The linear in silico data, Figure-S 1a, comprises 16

genes measured at 41 time points. The ODE data has five genes and 50 measurements in time, Figure-S 1b.

(a) Linear interactions (b) ODE data

Figure-S 1. In silico data sets. Traces of the noiseless synthetic linear and ODE, non-linear data sets.

The Arabidopsis data set has 5 genes with 24 time points and four repetitions.

Figure-S 2. Circadian clock related genes in Arabidopsis thaliana. Gene expression repeated measurements. The
mean (dashed) and median (dot-dashed) of each time point are plotted as time series.
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4.1S MEAN CROSS ENTROPY

The score used in the paper, MxE, is simply the Kullback-Liebler divergency from any specific link to the true

network configuration, KL.y
ij j pij /,

KL.y
ij j pij/ D pij log
pij

y
ij
C .1 � pij / log

1 � pij

1 � y
ij

averaged over all possible links, i; j; D 1; : : : ; G, where pij D 1 if the link is present and zero otherwise; with the

convention of 0 log 0 D 0.

4.2S In silico DATA

As expected, when a large number of replicates are available the three models yield similar networks, for a given

threshold. However, the effect of overestimation in the regression coefficients posterior precisions is apparent

when looking at the probabilities predicted by MM: again, they are less disperse than those predicted by either

GM or SM.

Figure-S 3. ODE circadian clock in silico data set with R D 20 replicates. Number of links predicted present
in the network versus posterior link probabilities for each model considered. A link present in the ODE model is
highlighted with a cross.

4.3S In vivo DATA

To have a more or less representative sample, we calculated all the possible subsamples with three replicates, P3,

and then measured the Euclidean distance between the standard deviations of the original data and P3. These

were classified into large, medium and small, based on their empirical distribution and ten series were selected

from each region. For the 1-replicate case we used the Euclidean distance between the mean of the four replicate

data set and the single data set. Interestingly we found no apparent effect of the Euclidean distance in the retrieved

topologies and therefore we joined them when calculating the counts tables.
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Chapter 4

GRENITS: An R/Bioconductor

Package

The network inference models described in the previous sections were published

along with the papers. The models were written in MATLAB, a high level pro-

gramming language. While MATLAB can be efficient, it suffers greatly with loops,

an unavoidable element of Markov Chain Monte Carlo (MCMC) samplers. As well

as this, it is not open source, free nor is it the programming language of choice for

most gene expression analysis software.

In this paper we present GRENITS, a R/Bioconductor package that collates

the inference models described in the two previous chapters. That is, the two models

with measurement errors (Student-t and Gaussian), the non-linear model and the

linear model. The models have been rewritten in C++ and where possible, the algebra

has been rewritten in a more efficient manner. These changes have led to speed

increases of up to 60 fold compared to the original MATLAB code.

The package has been designed to cater for both experienced users and casual

users. To this end, the package offers some basic analysis functions as well as

“reasonable” default parameters for the prior distributions and MCMC sampler.

That is to say it is possible to run a full MCMC inference run with a single function

and two arguments. The output can then be analysed with a single function with

one argument. The analysis includes basic convergence checks, as well as plots and

files that we have found to be useful in our analyses. For the experienced user we

also make available functions to modify and plot priors, as well as functions to read

MCMC chains for further analysis.

A further improvement is that there is an option for fixing connections in the

network to be on/off. This feature can be used to input a list of regulators, allowing
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for the analysis of networks of a significantly larger size. Fixing network links can

also be useful, for example, to fix a full network and use the non-linear model to

infer the functional form of the interactions.

4.1 Contribution

This paper is a submitted paper. The initial idea was formulated by Morrissey.

Morrissey contributed both the C++ code and the R code. Morrissey submitted the

package to Bioconductor and addressed the issues raised by the reviewer.

Morrissey wrote the draft of the paper. Juárez helped with testing. Both

Juárez and Burroughs contributed with suggestions both for the package and the

paper.
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ABSTRACT
Summary: GRENITS is an R/Bioconductor package for the inference
of gene regulatory networks using time-series gene-expression data.
The package implements four published network inference statistical
models using Dynamic Bayesian Networks and Bayesian Variable
Selection. The four methods include a linear interactions model, two
models that account for experimental noise under linear interactions
(useful when replicates are available) and a non-linear interactions
model. The implementations are in C++ with an R interface and
optimised for speed, taking respectively seconds to hours to run on
typical networks of size 10 to 1000 nodes. The package is intended
to be used by both users with a background in Bayesian Inference, as
well as casual users.
Availability: GRENITS is available as an R/Bioconductor package
from http://bioconductor.org/packages/2.9/bioc/html/GRENITS.html.
Contact: edward.morrissey@gmail.com

1 INTRODUCTION
With the ability to measure the expression of the whole genome,
there is significant interest in studying biological processes using a
top-down approach (Nieselt et al., 2010; Amit et al., 2009). Time-
series are particularly attractive given their ability to capture causal
events, the relative expression profiles between genes indicating
the presence of a potential regulatory interaction (mediated
through expressed proteins). A number of computational/statistical
approaches have been proposed to produce plausible hypothesis
about which genes are key regulators and how they contribute to
the biological process, as well as how they may affect (influence,
interact with) each other. One such approach is network inference
(De Smet et al., 2010), where a mathematical/statistical model of
how the genes interact is fitted to the data, allowing a network
structure to be predicted.

Here we present GRENITS, an R/Bioconductor package
implementing four previously published statistical models (Morrissey
et al., 2010, 2011) that allow network inference from time-
series expression data. The models are dynamic Bayesian network

∗to whom correspondence should be addressed

models based on regression between time points. There are three
linear models available, a linear regression model with Gaussian
noise appropriate for longitudinal time-series, e.g. sampling from
a fermentor, and two with measurement error models included
where replicates are required. These measurement error models
are appropriate for time-series studies where there is no continuity
between sequential samples, e.g. sampling involves different
organisms under a synchronised experimental protocol. The fourth
model implements non-linear dependencies between genes. The
fastest and simplest of the four models is the linear model. Here
the regulation function is assumed linear. This model is particularly
useful for short time-series (10 to 20 time-points) and capable of
handling a large number of genes. For the case where repeated
measurements are available, the package has two models that
account for measurement errors (Morrissey et al., 2010). As in
the previous case, the interactions are taken to be linear. Both
measurement error models accommodate biological noise in the
same way: we assume that the replicates represent noisy realisations
of a true unmeasured gene expression value whose dynamic is then
driven by the network. The two error models differ in the underlying
measurement error distribution assumptions: either Gaussian or
Student-t (heavy tailed in order to capture outliers). The true
expression values are modelled as hidden variables. The number of
replicates per time point do not have to be identical. Also available is
a model that accounts for non-linear interactions (Morrissey et al.,
2011). Non-linear interactions are constructed using B-Splines, a
flexible non-parametric type of function. Using these functions, the
model infers simultaneously the functional form of the interactions
along with the structure of the network.

All of the models rely on Markov chain Monte Carlo (MCMC)
algorithms to sample from the posterior. Thus, all parameters are
inferred together; this includes the network structure variables. The
network structure variables tend to have the poorest mixing; thus to
improve the speed of the samplers we use a novel block sampling
step described in (Morrissey et al., 2010).

c© Oxford University Press 2011. 1
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2 IMPLEMENTATION
Although MATLAB implementations of the inference algorithms
were distributed with the papers, the samplers rely heavily on loops–
a weak point of high level programming languages. The samplers
implemented in GRENITS are written in C++ and called from
R, making the models considerably faster than their MATLAB
equivalents whilst retaining the advantages of the Bioconductor
platform. For matrix algebra, Armadillo (Sanderson, 2010) the fast
C++ library was used. A further speed increase was achieved by
optimising the code structure and matrix algebra where possible.
All in all, this has lead to speed improvements of up to 60 fold with
respect to the MATLAB versions.

2.1 User Interface
The package is intended to be used by both experienced and casual
users. For casual users, we provide default parameter settings both
for the priors and the MCMC algorithms, that in our experience,
have worked well for a range of data sets. This means that the
sampler should be usable ’off the shelf’ on most data sets. Caution
however is recommended, as with all MCMC samplers as results
are only trustworthy if the chains have converged. We therefore
strongly recommend running parallel analyses (default is 2 chains)
and provide a function for the analysis (comparison) of those chains.
The function provides basic convergence plots and issues a warning
to the user if there is evidence for a lack of convergence; a longer
burn-in is then advised. It also produces some plots with information
on the network structure, and outputs files with link probabilities
that can be read either into R or used with network analysis software
such as cytoscape (Shannon et al., 2003).

For the more experienced user, functions to adjust and plot the
prior distributions are available, along with functions to read the
MCMC chains for further analyses.

2.2 Speed and Network Size
Although the R/Bioconductor implementation of the algorithms
is much faster than the MATLAB versions, the run time is still
considerable (12+ hrs depending on number of time points and
model) on networks over 1000 genes. However, often when
inferring a network the identity of potential regulators is known.
Regulating genes can be either transcription factors or proteins able
to indirectly affect the expression of other genes. GRENITS allows
this information to be used by letting the user provide a list of
potential regulators and only allowing these genes to be parents in
the network. This considerably reduces the algorithm runtime. For
instance, the linear model was used to infer a network comprising
988 genes with 35 regulators, 41 time points, in about 3 hours per
chain (run on a dual-core 2.53GHz laptop).

2.3 Limitations
Sampling times need to be spaced at equal intervals, ideally with
a time spacing that is finer than the time scale of the regulatory

dynamics. The measurement error models can deal with missing
data since the number of replicates need not be identical per time
point. Individual missing data on genes is not dealt with. Provided
these are small in number linear interpolation can be used.
3 DISCUSSION
Here we have presented GRENITS, an R/Bioconductor package
for the inference of regulatory networks from gene expression
data, such as that available from microarrays, quantitative PCR,
nanostring and RNAseq. The package reimplements previously
published methods, integrating them into the same common
framework. This implementation is much faster than the original
MATLAB versions thanks to a faster programming language, better
code structure and optimised matrix algebra. As well as this,
all functions are fully documented and a number of convenient
functions to read, analyse and plot the output from the samplers
are provided. Further, prior information on the potential regulators
can be utilised, allowing realistic data sets to be run in an acceptable
amount of time. The package is freely available from Bioconductor.
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Chapter 5

Network Inference for

STREAM Data

The following paper addresses the analysis of the STREAM data. The focus of

the paper is on the regulon of phoP, a key regulator in the response to phosphate

starvation. The data used to study phoP ’s regulon were three high resolution gene

expression time-series. Two of the time-series were measured in exactly the same

experimental conditions of phosphate starvation, with one of the experiments being

performed with wild type Streptomyces coelicolor and the other with a knock out

(KO) mutant missing phoP. The third time-series was generated by subjecting a

wild-type strain to glutamate starvation conditions. All three time-series trigger

metabolic switching and the secretion of antibiotics, though phoP is only active in

the wild type phosphate limitation experiment.

By comparing the two phosphate starvation time-series, it was possible to

find a list of genes showing evidence of phoP regulation. The glutamate limitation

time-series was then used to categorise the type of regulation.

Several computational methods were used to predict phoP ’s regulon: two

types of clustering, a network inference algorithm and two variants of a sequence

analysis algorithm. For the clustering and network inference methods only the wild

type phosphate limitation time-series was used. The computational methods were

then benchmarked against the across-time-series predictions.

The networks fitted in the previous chapters were small networks of between

five and twenty genes. For the STREAM time-series we fitted a network to a whole-

genome dataset with close to 8000 genes. Given the speed of the methods described

in the previous chapters, fitting a full network to a dataset of this size would be

impractical. In order to fit a network in a reasonable amount of time we first
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filtered the dataset to those genes that appeared as dynamic during the experiment.

Next we identified the genes known to be regulators and clustered these regulators

so as to have a set of dynamically distinct regulators/clusters. A gene was chosen

from each cluster to represent the whole cluster. Finally we used GRENITS to fit a

linear network restricting regulation to the list of regulators.

Of the computational predictions the clustering methods performed best,

followed by the sequence analysis methods and finally the network inference pre-

dictions. When including co-clustered genes, the network inference method showed

a considerable improvement, indicating that a number of the inferred relations are

different from the co-clustered genes.

5.1 Network Inference Pre-analysis

As mentioned in the introduction (section 1.7.2) the network inference methods

presented in this thesis all have the self interaction term fixed on. The decision to

do this, as well as consider co-clustered genes as potential regulators, arose from the

pre-analysis of the STREAM data.

As an initial exploratory analysis, we extracted from the first time-series a

set of genes with known interactions. The genes chosen were two TFs (redD and

redZ ) and a non-TF gene (redM ) belonging to one of the antibiotic biosynthesis

pathways [Williamson et al., 2006]. We fitted networks using the linear and splines

model with no interactions fixed and found that of the inferred networks, the splines

network was slightly more accurate. We then fitted a full network to the data and

found connections being predicted between genes in the same operon (phoP,phoR).

When looking in more detail at the BVS parameters, we found that regulation was

being switched between just a self-interaction term and just a regulation term by an

operon gene. In other words, the data can be equally well explained by using the self-

interaction term or by predicting regulation by a gene that is co-expressed. Given

that a self interaction term is expected (mass conservation) and that co-clustered

genes, a very common occurrence, can be spuriously predicted as regulators, we

opted to fix the self-interaction on.

When we fitted networks to the three gene dataset (redD, redZ and redM ),

we found that fixing the self-interaction term degraded the quality of the inferred

network, as the expression of the three genes is very similar. As expected, for the

full dataset we found less connections and loss of regulation of co-clustered genes,

including genes we knew from the literature were regulated by co-expressed genes.

This lead us to include information of all clustered genes within the predictions.
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5.2 Contribution

This paper is an early-stage draft. Morrissey contributed the inferred network.

Morrissey did not contribute any of the writing.
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Unravelling cross-regulation and elucidating regulatory networks is a major 
theme of systems biology. Many methods have been advocated; however there is 
no consensus on which methods are most accurate, or if performance is species 
or condition specific. We compare 3 computational methods to ascertain if there 
is a bias towards particular forms of coregulation or functional categories. By 
using comparative dynamic signatures on multiple high time resolution 
experimental time-series data we validated computational predictions for PhoP 
dependent genes in Streptomyces coelicolor. Our analysis shows that the 
prediction methods have little overlap with no single method predicting more 
than 52% of the PhoP dependent genes, whilst all methods contribute unique 
predictions demonstrating that pooling predictions across information sources is 
necessary. In our system correlation methods had greater accuracy than motif 
based methods, whilst causal signal based inference (using 1 hr time difference) 
had the lowest sensitivity, although it identified a rich set of coregulated genes. 
The coregulation profiles of these prediction methods were distinct indicating 
methodology biases. By integrating predictions from these methods we 
constructed a refined PhoP regulon and demonstrated that it has a mixed 
coregulation profile with genes either solely regulated by PhoP (within the frame 
of reference of our experiments), are jointly regulated by PhoP and a glutamate 
specific response or coregulated by a phosphate PhoP independent response 
pathway.  
 
Key words: regulatory network, flow chart, PhoURP, phosphate depletion, glutamate 
depletion. 
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Introduction. 
Systems biology has the potential to dramatically accelerate knowledge acquisition, 
high-throughput techniques being able to reverse engineer global regulatory networks 
within a comparatively short time frame either from time-series data, multiple 
conditions/strains comparison experiments or more recently, measuring regulator 
binding directly by chromatin immuno-precipitation (ChIP-Seq/chip). A number of 
methods have been developed to extract regulatory networks from these data, 
predominantly sequence based prediction algorithms (building binding site motif 
models using target searches) and network inference methods utilising correlates in 
gene expression data. There are a large number of available methods under the latter, 
differing in how they interpret correlations in gene expression profiles as evidence of 
regulatory links. Bayesian network models typically model regression correlates, e.g. 
either expression correlations (1) or causal signals in time series (2), while they are 
highly flexible allowing considerable model expansion, such as incorporation of 
hidden (unmeasured) variables (3) and nonlinearity (4). Information based methods 
interpret the conditional probability between genes as evidence of links, e.g. BANJO 
(http://www.cs.duke.edu/~amink/software/banjo) and ARACNE (5). The primary 
distinction between these methods, and their applicability to a given data set, depends 
on whether there is a structure to the patterns within the data, e.g. causal signals in 
time-series data; this structure can be utilised to extract informative signals through 
use of appropriate models. This is qualified by the need to match model complexity 
with the information levels in the data. There is thus a method hierarchy through 
model complexity, information based methods having the lowest complexity and 
consequently, fewest assumptions. However, there remain major unanswered 
questions on all these methods, specifically the reliability of these methods, the 
appropriate levels of interpretation that can be applied to patterns in the data, and the 
relative weighting of data types (6). A thorough comparison of these computational 
prediction methods has not been undertaken in any biological system, while the 
validity of extensive comparisons on simulated data (7) is unclear given the difficulty 
of simulating experiments with sufficient (unknown) realism. In particular, it is 
unknown if there are classes of targets that are preferentially detected by particular 
methods, and, as is typical for discovery studies, the accuracy of the resulting 
predictions is difficult to assess. This is in part because of 3 difficulties, specifically, 
separating ambiguous signals in correlated dynamic patterns, distinguishing direct and 
indirect (grandchild) regulation and decoupling the dynamic influences from multiple 
regulators of a gene. A major hindrance to solving these issues is the lack of a 
reference data set where the truth is known, synthetic networks (8) still being too 
small for extensive validation.  
 
We propose a new validation methodology where we examine the performance of 
predictions against a set of comparative dynamic signatures that either support or 
contradict the claim of a particular regulatory dependence. The idea is to utilize the 
high levels of information inherent in the changes in temporal gene expression under 
different conditions or strains, essentially providing additional information/data to 
score predictions. We analyse microarray data from three time-series experiments 
performed on Streptomyces coelicolor, a model actinomycete producing a range of 
secondary metabolites including antibiotics under nutrient starvation. Upon phosphate 
depletion the PhoP two-component system (PhoURP, SCO4228-30) is the primary 
response pathway (9), affecting the expression of a swathe of genes. Importantly for 
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our analysis, the PhoP regulon, and more broadly, the set of PhoP dependent genes is 
large, allowing a statistical assessment of prediction methods.  
 
This paper is organised as follows. We examined seven predictions for PhoP 
dependent genes - a regulon constructed from previous biochemical and genetic 
studies, denoted Glit, and six groups constructed by computational prediction methods 
utilising at most a single time-series, Supplementary TableS1. All the computational 
groups constitute legitimate predictions for PhoP dependent/influenced genes, and, 
ideally, should identify the same targets. Comparison of these predictions shows that 
they have little overlap. By scoring predictions against the comparative signatures we 
obtain an estimate of their accuracy whilst also decomposing the predictions into sole 
and joint (co-) regulation by PhoP. Integration across these predictions led to a list of 
genes with significant support for being involved in the nutrient limited response 
regulatory network that ultimately drives secondary metabolite production. 
 
Results. 
Transcriptome  analysis:  dynamics  and  differentially  expressed  (DE)  genes.  We 
analyse microarray data from three time-series (TS) experiments performed on S. 
coelicolor using the submerged batch cultivation system as described previously (10). 
Specifically, the TSs are TSwt

PO4: wildtype (strain M145), phosphate depletion 
conditions (10); TSko

PO4: phoP knock-out (INB201), phosphate depletion conditions 
(this study); and, TSwt

glu: wildtype, glutamate depletion conditions (Mast et al., 
submitted). Gene expression was measured approximately hourly over a period of 40 
hrs as previously described (10). Transcription of the phoP operon dramatically 
increased within 1hr of phosphate depletion in wt (experiment TSwt

PO4), but is not 
activated under glutamate depletion conditions, TSwt

glu, Fig. 1. Thus, the PhoP 
pathway is only active in TSwt

PO4, as phoP is deleted in TSko
PO4 and phosphate is not 

the limiting resource in TSwt
glu.  

 
We identified differentially expressed (DE) genes (11), typically giving ~2000 genes 
(25% of genome) per TS. We also added an additional 148 genes from the prediction 
groups deemed DE by eye but below threshold in the BATS analysis. We denote by 
DEwt

PO4 genes that are DE in TS wt
PO4, etc and by DE genes that are DE in any of the 3 

TSs. There were 2867 genes considered DE in any time-series out of the genomic 
complement of 78141 genes on the array (37%). There are similar numbers of DE 
genes in each TS whilst nearly 40% of the DE genes were DE in all TSs, Fig. 2A. DE 
genes unique to a TS ranged from 11-24% of the DE genes, TSwt

PO4 having the fewest 
(200), while overlaps between any 2 were of the same order (188-277). This already 
suggests that unravelling PhoP regulation is a complex problem since any pairwise 
comparison has similar levels of complexity; the comparison with Δpho alone 
suggesting that there may be as many as 388 genes for which PhoP expression is 
essential, these genes losing DE under KO of phoP. 
 
Performance of a literature compiled PhoP predicted regulon, Glit. We examine a 
group of predictions, denoted Glit consisting of 60 genes identified from the literature 
as regulated by PhoP and independent of our data sets (Table S1A). Of these 60 Glit 

                                                        
1 Based on annotation available in 2007. The new Uniprot-GOA annotation Barrell et al 
2009 has 11 more genes. 
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genes, only 42 are DE in TSwt
PO4, with 19 in TSko

PO4 and 24 in TSwt
glu; 54 are DE in at 

least one of the TSs, Fig. 2B. This bias of DE towards TSwt
PO4 provides confirmation 

of the enrichment of PhoP dependent genes in Glit since PhoP is only active in this 
experiment. However, since only 70% of the predictions are active in TSwt

PO4 there is 
clearly a lack of support for a PhoP dependence for the 18 genes that are not active in 
this TS. Analysis of the DE overlap, Fig. 2B, identifies 27 genes that no longer 
display temporal variation in TSko

PO4. These genes, all of which are activated upon 
phosphate depletion, are clearly verified as PhoP dependent genes; i.e. PhoP activity 
is essential for their expression. The 15 genes that are DE in TSwt

PO4 and in TSkoPO4 
need further analysis to ascertain if they are likely to be PhoP dependent, i.e. these 
could have a second coregulator. Clustering of expression of the Glit genes in TSwt

PO4 
demonstrates they display a variety of behaviours with only 12 genes having a phoP-
like profile, Supplementary Fig. S3. None show an inhibition profile.  
 
Computational prediction methods. We analysed three computational prediction 
methods for PhoP dependent genes, Supplementary TableS1B, consisting of firstly, 
sequence based predictions using the PHO box motif, Gdr/word, secondly, methods 
identifying genes with similar dynamic patterns to phoP, GsimphoP/phoPclust, and thirdly, 
an inferred causal network, Gcausal. In brief, Gdr and Gword differ in that either a 
directed repeat PHO box (Supplementary Fig. S1A) or a single word PHO box 
(approximately GTTCA) is used in the genome search, the latter allowing for the fact 
that the directed repeat (dr) motif may have a variable spacer or a weak second word, 
as is in fact evident in our case, Supplementary Fig. S1A. GsimphoP, GphoPclust are based 
on similar principles but implemented by a distance metric (searching across all gene 
expression profiles in TSwt

PO4 for those similar to phoP) and by clustering in TSwt
PO4 

(restricted to the 1000 most significant DE genes in TSwt
PO4) respectively.  

 
We also define a second causal group that includes possible targets that are activated 
too rapidly by PhoP to leave a causal signature in the data. To infer dependent genes 
based on causal signals (Gcausal) there must be a sufficiently strong causal signal 
(evident as a time displacement) between the expression profiles. Thus, genes with an 
expression similar to phoP cannot be ascribed a causal relationship. Thus, genes in the 
same cluster as phoP are probably regulated by PhoP given the lack of any other 
suitable regulator. We define the extended causal prediction group Gcausal+ as the 
union of Gcausal and the phoP cluster, Supplementary TableS1B.  
 
To define comparative signatures on gene expression profiles, the gene must be DE in 
at least one of the TS. Thus, we restrict these computational predictions to the set of 
DE genes giving a combined total of 288 predicted PhoP dependent genes from the 
computational methods. There are a further 71 and 38 genes that are not DE in the 
prediction groups Gdr and Gword, respectively, Table 1. These genes are probably not 
PhoP dependent given the lack of dynamics in TSwt

PO4 and this should be borne in 
mind in the following analysis, i.e. these groups have another large group of false 
positives. Genes in these groups are given in Supplementary Tables 
TableS2_Causal.xls, etc. 
 
Comparing the PhoP influenced gene predictions. There are 307 genes predicted to 
be PhoP regulated by any of the methods (including the 19 unique predictions from 
Glit), with GsimphoP, Gdr/word of similar size at 78, 113 and 112 resp. GphoPclust and Gcausal 
are smaller which is probably due to the restricted target search within a smaller set of 
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genes (1000; to enable clustering in TSwt
PO4). The overlaps of these prediction groups 

are shown in Table 2. The 78 genes in GsimphoP include most of the genes that cluster 
with phoP, i.e. >91% of GphoPclust are in GsimphoP. The causally predicted regulon Gcausal 
has little overlap with GsimphoP (6%); this is because genes with similar dynamics to 
phoP have no causal signal since regulation by PhoP is indistinguishable from a 
causal dependence on self, see Supplementary Methods. This suggests that correlation 
methods may fail to detect a proportion of PhoP dependent genes (~30%, Gcausal 
comprising an additional 34 genes over and above the 78 contained in GsimphoP). The 
two motif predictions have overlaps of 21%; this is because there are genes with a 
weak second repeat which have insufficient conservation to be identified in the dr 
search. If we interpret the presence of a dr PHO box as identifying directly regulated 
genes (Gdr), the proportion of targets in each group that are directly regulated by PhoP 
are low at 38% for GphoPclust, 28% GsimphoP and only 8% for Gcausal. Finally, comparing 
the computational predictions to Glit shows that there are major differences to these 
other groups. Specifically, it has 19 unique predictions (35%), with only 35 
predictions that are in any of our computationally predicted groups. The largest 
overlap is with Gdr, (26), closely followed by the correlation groups GsimphoP, GphoPclust, 
while there is near negligible overlap with Gcausal, Table 2.  
 
This high disparity between predictions clearly calls into question the accuracy of all 
methods, suggesting that the computational predictive methods identify different 
targets. In the following we analyse these groups against 2 additional TS experiments 
and construct a framework to validate predictions and thus score prediction method 
accuracy. 
 
Dynamic signature categorisation of (co)regulation. High-resolution time sampling 
provides a rich resource for ascertaining regulatory dependencies. PhoP dependent 
genes are expected to show significant dynamic differences between the cases where 
the PhoP pathway is active (TSwt

PO4) and the two time-series where it is inactive 
(TSko

PO4 and TSwt
glu), Fig. 1. However, pleiotrophic effects complicate the 

interpretation of changes except in the simplest of cases. For instance, genes that are 
solely activated by PhoP can be identified because they are dynamic in TSwt

PO4 but 
inactive (non DE/flat) in the other time-series. The key issue therefore is whether 
genes with less dramatic dynamic changes between experiments can be interpreted in 
terms of regulatory relationships. To tackle this complexity we define 10 comparative 
signatures, see Methods & Supplementary TableS5. Combinations of signatures were 
then used to identify whether there is evidence of a PhoP dependence, and secondly if 
there is evidence of co-regulation, see flow chart in Fig. 3. Specifically we define 
categories SoloPhoP: sole regulation by PhoP (genes are only active (DE) in TSwt

PO4); 
CRPhoP,glu: co-regulated by PhoP and Glu (respond under both phosphate and 
glutamate depletion but show no activity (non DE) under KO of phoP); CRPhoP,PO, 
phosphate specific but involving a PhoP independent response (inactive under 
glutamate depletion but have different dynamics under phosphate in the wt/KO); 
Integ: Multiple pathway integration (active, and profiles distinct, in all TSs).  
 
We ran this categorisation on the DE genes, and on the best 1600 predictions the 
category was checked by inspection and reassigned if necessary, an assignment we 
denote as Expert in the following, see Methods. This reassignment was necessary 
since the above flow-chart does not distinguish dynamic changes around nutrient 
depletion from that elsewhere, either early or late in the time series. Thus, we 
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reassigned the category based on changes within -1 to 5 hrs of nutrient depletion. 
Further, many ambiguous assignments could be resolved by eye. We identified 245 
genes with strong support from the comparative signatures for being PhoP dependent, 
i.e. had an assignment to one of the regulatory categories SoloPhoP, CRPhoP,glu, 
CRPhoP,PO or Integ. These genes separated into 5 distinct types of expression patterns 
in TSwt

PO4, (13 clusters), Supplementary Fig. S7, with most genes showing activation 
at, or near nutrient depletion (149) compared to inhibition (96). The profile patterns 
also had distinctive regulatory category profiles, with SoloPhoP dominating 5 clusters, 
while the inhibitory expression profiles displayed high levels of coregulation.   
 
The flow chart categorisation was 46% accurate (relative to Expert) for designating a 
gene as PhoP dependent based on the regulatory categories. This could undoubtably 
be improved by threshold optimisation but this was not explored. The frequency of 
genes with a PhoP dependence was low outside the pooled predictions of Table 1, 
specifically 139 (48%) of the 288 computationally PhoP dependent predictions of 
Table 1 had evidence of being PhoP dependent from the Expert categorisation, which 
decreased to <8% for the remaining manually inspected genes.  
 
Scoring predictions against dynamic signatures. To ascertain which computational 
methods are most accurate, we utilised the regulation category assignment above to 
score genes as having support for being PhoP dependent, or otherwise from the 
comparative analysis. Specifically we define a regulatory category as providing 
evidence of comparative support (ECS) if the category supports a PhoP dependence, 
e.g. SoloPhoP, counter comparative evidence (CCE) if there is evidence against PhoP 
regulation, or unassigned if PhoP dependence is unclear, see Supplementary TableS6.  
 
Using this comparative analysis we find in all predictive groups evidence to both 
support and contradict claims of a PhoP dependence, Table 1. The performance of the 
group Glit is good, with a 78% classification, although 29% of these genes are 
contradicted as being PhoP regulated since they are classified as CCE. The prediction 
method with the highest consistency under the comparative dynamics analysis is that 
based on correlation, GsimphoP/phoPclust both having high assignment rates (>95%) and a 
high accuracy (>96%) of assigned genes. The causal network predictions had similar 
performance to Glit, while the sequence predictions Gdr/word were the poorest with only 
a 67-70% assignment rate and 55-56% accuracy, Table 1. Only the GphoPclust group is 
redundant, each of the others uniquely identifying a number of PhoP dependent genes 
(unique and with ECS, 14 Gdr, 29 Gword, 26 GsimphoP, 12 Gcausal). We pool all the 
accepted predictions over the 7 prediction groups and denote this set GDep, 142 genes 
in total. Only GsimphoP predicts more than ½ of these accepted PhoP dependent 
predictions (52%), Fig. 4A. 
 
There are distinct profiles of co-regulation for the prediction methods, Fig. 4A. 
SoloPhoP dominates the PhoP dependent genes in GsimPhoP and Glit, whilst the former 
also contributes most of the targets that exhibit coregulation by PhoP and a phosphate 
PhoP independent response, CRPhoP,PO. The causal prediction is dominated by targets 
that have evidence of multiple regulation, particularly by a glutamate dependent 
response. This analysis confirms the intuition that genes with an expression profile 
similar to phoP in TSwt

PO4 (GsimphoP) are unlikely to have additional regulators; 
additional regulators, if active, would contribute to the expression profile and make it 
diverge from that of phoP. A regulatory category breakdown of the predicted groups 
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is given in Supplementary Tables S3. We also examined whether there were 
functional enrichment within the predictive groups (GO analysis). We failed to find 
broad categorisations; all significant enrichments were due to a small number of 
genes (or an operon). 
 
Improving the predicted PhoP dependents by integrating across data. There are 
288 genes in the union of the three computational predictions (groups Gdr, Gword, 
GsimphoP, GphoPclust, Gcausal).  139 (48%) are confirmed as PhoP dependent. Of the 
remaining 149 predictions, 74 (26%) are inconsistent with being PhoP dependent 
(CCE) while the remaining 75 (26%) have no signature either way. A further 3 genes 
were identified from Glit as PhoP dependent, and an additional 103 were identified 
from the comparison method alone by searching within DE (above) but not predicted 
by any of the 7 groups of Table 1. This high number of additional targets indicates 
that the computational methods are incomplete predictive methods; the failure to 
detect these targets is likely explained in part because these targets tend to have a later 
response to phosphate depletion, potentially indicating that they may be downstream 
of the PhoP pathway, or they show a relatively small change at nutrient depletion and 
thus their regulatory signals are weak.  
 
To distinguish direct (versus indirect) regulation by PhoP we assume that genes in the 
regulon have a PHO box dr motif; this defines the refined regulon GReg 
(Supplementary Table S1B) as the intersection of GDep and Gdr giving 42 genes with 
ECS, Table 1. 21 of these genes have evidence of being solely PhoP regulated while 
21 have evidence of also being regulated by a glutamate pathway (3 genes have joint 
classification). The rapidity of the response to phosphate depletion should enrich for 
direct regulation, i.e. those genes with an immediate (within 1hr) response are more 
likely to be in the PhoP regulon. This identifies clusters A-E and G (Supplementary 
Fig. S7) as the regulon, 102 genes (85 predicted) of which 30 possess a dr motif (33 
either a dr or single PHO box), while 17 were not identified by any of the 
computational methods or in Glit; all inhibitory profiles are excluded since these all 
have a delayed response. 
 
For the 142 genes in GDep, there are 46-61 SoloPhoP, 13-16 CRPhoP,PO and the 
remaining have evidence of coregulation by a glutamate response pathway. This 
contrasts to the predictions containing a dr PHO box, GReg, which have a higher 
proportion of SoloPhoP (20-23) relative to GDep, Fig. 4 Thus, there is a correlation of 
being  SoloPhoP and having a dr PHO box; specifically 43% of SoloPhoP genes have a 
PHO box compared to 27% of those PhoP dependent genes not categorised as 
SoloPhoP.  
 
Robustness to thresholds: ROC curves. To estimate the performance (sensitivity 
and specificity) of our predicted groups a reference group of genes definitely 
regulated by PhoP is needed. Such a group is not known, but we can approximate it as 
the group GDep, i.e. predicted genes for which the comparative analysis confirms their 
PhoP dependence. This refined PhoP dependent gene set allows us to estimate the 
sensitivity of our predictive groups, Table 1. The correlation methods, GsimphoP/phoPclust 
are again identified as the best performing methodology with a true positive rate TPR 
>44% and false positive rate FPR<0.12% (FP=5, 1 resp., the number of negatives 
being large at 2725 within DE). This conclusion is robust to the choice of (stringency) 
threshold used in the group definition. Specifically, we can carry out the same 
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analysis for the 4 prediction groups Gdr, Gword, GsimphoP and Gcausal under a change of 
stringency thresholds spanning from the most confident predictions (high stringent 
threshold) to low quality predictions (low threshold), see Methods. This allows us to 
map out the performance relative to our best estimate of the PhoP influenced genes, 
GDep by tracing out the Receiver Operating Characteristic (ROC) curve, Fig. 5. The 
causal predictions Gcausal had poorest performance, whilst GsimphoP was the best, in fact 
reaching a 70% prediction rate with a reasonable level of false positives. The 
sequence prediction methods Gdr/word had similar (intermediate) performance. When 
the causal network is corrected for similar genes (Gcausal+) it had good predictivity, a 
performance that could evidently be further improved by taking a larger group of 
phoP-similar genes. All methods show an initially high performance at high 
stringency that drops off rapidly after a method specific threshold is reached, the ROC 
gradient thereafter being close to, or less than 1 (random selection of a FP or TP). The 
threshold separating this change in behaviour is similar to that chosen independently 
for defining the predictive groups as given in Table 1 suggesting that these thresholds 
are well chosen for each method. 
 
For the unparametrised groups, Glit, GPhoPclust and the DE genes in each TS we find the 
former two perform well on FPR but relatively low on TPR (low sensitivity), 
suggesting they are conservative. This is expected for Glit since it is a prediction of 
PhoP directly regulated genes (the regulon). Correspondingly, the set of DE genes in 
each experiment are effectively random, although DEwt

PO4 has a higher TP rate as 
expected since the PhoP regulon is activated. 
 
Discussion 
We identified 139 genes with evidence of support of being PhoP dependent from our 
comparative analysis (having ECS) amongst the original 288 PhoP dependent 
computational predictions, Table 1. These predictions can be ranked by the number of 
methods predicting each gene. There are 30 PhoP dependent genes (including operons 
SCO4139-42, SCO4877-82, SCO5010-11) identified by at least 2 computational 
methods; most of these are a match between Gdr and GsimphoP, and thus are part of the 
PhoP regulon. Amongst the 3 computational methods, (sequence motifs, correlated 
profiles, causal), each have unique predictions, 167, 47 and 27 respectively, with 45, 
43, 12 resp. unique predictions accepted as PhoP dependent (ECS), i.e. most of the 
validated predictions (72%) are unique to one method. This suggests that detection of 
downstream targets cannot be solely based on one method, since there is no universal 
characteristic that can be used to detect these genes, no single method detecting more 
than 52% of the dependent genes, Fig. 4. A further concern was that these methods 
may not detect all PhoP dependent genes. Our comparative analysis revealed an 
additional 103 targets (17 immediate responders) as PhoP dependent over and above 
those from the predictions in Table 1. A ROC analysis of the prediction methods, 
Supplementary Fig. S5, demonstrated that the specificity of the computational 
methods for these additional targets was very poor. This indicates that the 
methodologies are incomplete, and there remain another set of PhoP dependent genes 
that are only evident from a comparative (KO) analysis. The regulon faired no better, 
of the 42 genes at most 53% were predicted by a single (GsimphoP) computational 
method (other than Gdr). The immediate responsive genes in TSwt

PO4, identified 102 
genes as potentially comprising the PhoP regulon; however only 85 (83%) were in 
any of our prediction groups. This set of genes are enriched for the directed repeat 
PHO box (30%, p<10-30) or single PHO box (either, 33%).  
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Of the previously predicted targets (Glit), we find evidence to support 30 predictions 
out of the 54 that are DE, whilst 12 show CCE and thus there is significant counter 
evidence of a PhoP dependence. The remaining 6 show no DE and thus should also be 
regarded as lacking support. These contradictions to previous studies may be a 
reflection of our higher resolution experimental data and thus more informative, 
easier to interpret patterns, but could also be a result of an environment/culture 
condition dependence of the PhoP targets. Specifically, in other studies only 50-58% 
of ChIP-Seq/chip binding sites have been reported to be functional (12, 13), this 
possibly being explained through the lack of expression of an essential cofactor under 
the given environmental conditions, i.e. the targets are coregulated in a cooperative 
(logical AND) fashion. This implies that further testing of these predicted PhoP 
dependent genes is necessary to identify whether context is playing a role. This 
difficulty is not unique to PhoP, but relevant to all determinations of regulons.  
 
The poorest performing predictive method as measured by the sensitivity was the 
causal signal based network inference method, group Gcausal. Of the 36 predictions, 21 
genes were ECS, while 7 demonstrated CCE. This is a high accuracy compared to 
sequence based methods. Thus, the poor sensitivity is only a reflection of the small 
number of initial predictions. A ROC analysis however demonstrated that lowering 
the stringency failed to detect additional targets with any level of accuracy, and in fact 
these additional targets were worse than random, Fig. 5. This is partly because of the 
inability of the method to identify targets with expression profiles that are very similar 
to that of phoP; the large contribution of GsimphoP to GDep demonstrates that phoP 
similar genes comprise a large proportion of the PhoP dependent genes, GDep, Fig. 4. 
Despite the low sensitivity, there were 12 ECS confirmed predictions unique to this 
method, and 1 in GReg. This method showed a distinct bias towards identifying genes 
with a rich coregulation, i.e. many of the target genes have a glutamate dependent 
response which contrasts to the high dominance of SoloPhoP targets in the correlation 
methods (GsimphoP, GPhoPclust). Most of the genes in Gcausal are in fact inhibited at 
phosphate depletion, Supplementary Fig. S4, consistent with there being additional 
regulators. These genes also typically did not have a dr (or GTTCA) motif, and 
therefore are unlikely to be directly regulated by PhoP; this is supported by their 
response timing, inhibition typically starting 2hrs after nutrient depletion. Thus, the 
poor sensitivity of the causal predictive group is probably a mix of 2 effects: in 
bacteria transcriptional regulation is rapid and so a 1hr time resolution is on the verge 
of being too long an interval to detect direct causality, (compare the significant 
improvement of Gcausal+ with respect to Gcausal, Fig. 5), downstream genes in the 
pathway in fact being detected, and secondly, the complexity of coincident responses 
under phosphate depletion means that PhoP dependent and PhoP independent 
phosphate responses are inseparable by examination of gene expression dynamics in  
TSwt

PO4 alone, these genes having similar expression profiles under these conditions.  
 
Conclusions 
In this paper we have utilized three high resolution time-series of microarray derived 
gene expression data to evaluate, and distinguish genes regulated by PhoP and other 
stress pathways. We developed a methodology based on comparison of high 
resolution temporal profiles to classify genes based on 3 regulatory influences- PhoP, 
PO4 (possibly multiple PhoP independent phosphate depletion responses) and Glu 
(possible multiple glutamate depletion specific responses). We were able to 
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distinguish sole regulation by PhoP (SoloPhoP) and coregulation by PO4 (CRPhoP,PO) 
and/or Glu (Integ/CRPhoP,glu) in conjunction with PhoP. This identification of a 
gene’s regulatory influences allowed us to firstly, score computational prediction 
methods for their accuracy, secondly, construct a refined prediction for PhoP 
dependent/regulated genes based on confirmed computational predictions against 
comparative signatures, and thirdly, analyse prediction methods against the type of 
regulation. We demonstrated that causal, correlation and comparative information 
have fundamental (coregulation) biases in their predictions, and thus an integration 
across methods is necessary to achieve a coverage of both PhoP dependent genes and 
the regulon, Fig. 4. Specifically, causal signals (Gcausal) detect a high prevalence of 
phosphate and glutamate influenced genes (Integ, CRPhoP,glu), while correlation 
methods (GsimphoP) are dominated by solely PhoP dependent genes (SoloPhoP). The dr 
motif search Gdr identifies a high number of Integ and SoloPhoP targets. Of the three 
computational methods, the correlation based methods have the best performance 
with a sensitivity of 45-51%, followed by sequence search methods (30-31% TPR), 
Table 1. The number of FP predictions was low for correlation methods, but the 
sequence prediction methods had FP/TP ratios close to 1. This high error rate was also 
evident in the CCE statistic, Table 1, indicating that the motif methods had low 
accuracy. The dr and single word motifs performed similarly indicating that the dr 
PHO box signature had no more predictive power than a single GTTCA motif, 
identifying predominantly different sets (only 21% overlap, 14 (12%) with ECS). This 
might reflect the difficulty in performing a flexible dr search (only the first word is 
well conserved, see Supplementary Fig. S1), or it may reflect biological functionality 
of highly imbalanced dr word components, genes with a poor/absent second word 
being more likely to be coregulated, Fig. 4. Our analysis supports the hypothesis that 
PhoP is predominantly an activator of transcription; most of the PhoP dependent 
genes have an activation profile at nutrient depletion. The mechanism of inhibition 
has been suggested to be indirect through prevention of RNA polymerase binding by 
obstructive binding of PhoP in the -10 region (14).  
 
Our analysis is very dependent on having a sufficiently large diverse, and importantly, 
coherent data set on which we can utilise a number of prediction methods. This 
contrasts to other studies where only a single method is typically implemented, 
usually because of the inappropriateness of other methods. For instance, analysis of 
large compilations of microarray data such as M3D, (15) is restricted because of 
compatibility issues and the low information per dataset (few samples). Fundamental 
to our analysis is a standardised experimental methodology across experiments 
(minimising variation due to experimental protocols) and a high time resolution 
coupled with an ability to synchronise the time-series; in our case the time of nutrient 
depletion is a natural point of reference. Our integration across methodologies is thus 
highly dependent on the ability to apply multiple methods to our data and utilise 
detailed modelling/categorisation of patterns to interpret the fine detail in the 
expression profiles. Through this comparative dynamic analysis we demonstrate that 
there is a methodology bias towards certain types of gene regulation, although no 
method is redundant, with unique targets being identified from each. Further, we 
identified methodology limitations in causal network inference that stem from 
inadequate time resolution in the experimental time-series. 
 
Materials and Methods.  
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Transcriptome data. Cultivations were carried out as (10) with the exception of 
TSwt

glu where glutamate was reduced from 55 to 15 g/L and phosphate doubled from 
4.6 to 9.2 mM. Samples were distributed over 20-60 hrs post inoculation with time 
separation as low as ½ hr. mRNA was extracted and hybridised to the microarrays as 
(10). Arrays were processed using RMA with loess normalisation, separately for each 
time-series. Differential expression was ascertained using the BATS package 
(www.na.iac.cnr.it/bats). Microarray Data for TSwt

PO4 and TSko
PO4 are available on 

Gene Expression Omnibus (GEO) at http://www.ncbi.nlm.nih.gov/geo/ with series 
identifiers GSE18489 and GSE310682 respectively. Prediction groups. Glit is a set of 
directly PhoP regulated genes identified from the literature, see Supplementary 
TableS1A for provenance information. Gdr is a genome-wide search (MEME 
software suite) for the directed repeat PHO box (16 bases) generated from targets in 
Glit, motif model as Supplementary Figure S1A. Gword is the corresponding search for 
the single binding site approximating GTTCA (first word of above motif). All genes 
in the operon are considered as having these motifs, (operon definitions as (16)). 
Thresholds 9 and 12.5 for the dr and word motif respectively were used in the groups 
used in Tables 1,2 (see Supplementary data for a discussion). Gcausal comprises all 
genes predicted to be regulated by phoP with a posterior link probability >0.4 in the 
sparse linear causal model of (4), generated from the GRENITS bioconductor 
package (submitted). GsimphoP comprises genes with similar profiles to SCO4230 
(phoP) based on a distance metric lying within the q-th lower quantile of the 
distribution (Tables 1,2 use q=0.01). Comparative Signature Analysis and scoring. 
The regulation categories are defined as composite logical relations on the signatures 
defined in Supplementary TableS5. The regulatory category assignments of the best 
20% of predictions from each method were inspected by eye (Expert categorisation). 
Predicted genes were scored for being in a PhoP dependent regulatory category. ROC 
curves were plotted using as the reference set either GDep or GReg running over the 
group defining threshold: Gcausal the posterior link probability, Gdr/word the motif 
threshold and GsimphoP the tail percentile q. 
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Tables. 
 
TABLE  1.  Predictive  group  performance  against  the  comparative  dynamic 
signatures. Rows are group size,  the number of genes that are DE in any of  the 
time‐series,  Evidence  for  comparative  signature  (ECS),  Comparative  counter 
evidence  (CCE),  assignment  rate p  (either ECS, CCE),  error  and precision Q,  all 
measured  relative  to  DE  (not  Size).  Performance  is  calibrated  against  the 
accepted  PhoP  dependent  genes  GDep  giving  FP,  TP,  FPR  and  sensitivity  TPR 
(relative to the universe of genes used by the prediction method, i.e. the genome, 
DEwt

PO4 or 1000 top ranking DEwt
PO4). Max TPR refers to the size of the universes 

used in the prediction group relative to DE.  
 

 
 
 
TABLE  2.  Overlaps  of  predicted  PhoP  dependent  genes  of  Table  1  (pairwise), 
restricted to genes that are DE. Overlap percentage of each row group is shown 
in parentheses.  There are 307 genes in the union across all predictions. The last 
column  shows how many predicted  genes  are  unique  to  each  group  (Gcausal+  is 
removed from the uniqueness analysis). 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Figures. 
 
Figure 1. Gene expression  and nutrient dynamics. A. mRNA time course (log base 2) 
phoP (SCO4230) expression for TSwt

PO4 (blue), TSko
PO4 (red), TSwt

glu (black). B. 
Phosphate and glutamate levels (dashed) for the 3 experiments (same colours as A). 
Time is measured from nutrient depletion (35 hrs from inoculation for TSwt

PO4). 
 
Figure 2. Overlaps of differentially expressed genes and predicted groups. A. Overlap 
of DE genes in each TS relative to whole genome, B. decomposition of Glit 
predictions by DE, C. overlaps of predictive groups Gcausal, Gdr and GsimphoP within the 
set of DE genes. 
 
Figure 3. Flow chart classification of PhoP dependence by the comparative dynamic 
signatures analysis. See text and Supplementary Data for regulatory category 
description. Sig. dyn. change stands for significant dynamic change, Sdynko and Sdynenv 
of Supplementary Table S5.   
 
Figure 4. Regulation profiles of the PhoP dependent genes by prediction method. A. 
Decomposition of predictions in GDep and each group’s accepted PhoP predictions 
(based on the comparative analysis (ECS)). CSA are the genes identified from the 
comparative signatures as PhoP dependent but not predicted from any of the groups. 
B. Decomposition of predictions in GReg, and the respective members from each 
prediction group. Only the principle categories are shown (joint categories are 
partitioned proportionally to components); see Supplementary Data for definitions of 
categories. 
 
Figure 5. ROC curves for the groups of predictions. A. ROC of prediction of GDep 
for the 4 parametrised prediction groups Gdr (red), Gword (green), GsimphoP (blue), 
Gcausal (black). B. Detail of A. Red dashed line is equality of TP and FP. C. ROC of 
prediction of GReg for the 3 parametrised prediction groups Gword (green), GsimphoP 
(blue), Gcausal (black).  The performance of groups at the thresholds used in Table 
2  are  shown  as  dots  while  the  performance  of  the  groups  Gcausal+  (black 
diamond),  GphoPclust  (blue  diamond),  Glit  (magenta  star)  and  DEwtPO4  (black 
square), DEkoPO4 (red square),   DEwtglu (blue square), are shown. All ROC curves 
are computed relative to the prediction group universe DE, thus Gcausal  is based 
on  a  smaller  set  of  possible  TPs,  Table  2.  ROCs are incomplete for the motif 
searches as the score jumps to zero at around 2000 genes. 
 



  14 

 
Supplementary materials. 
 
Text and Figures. 
SupplementaryTextECS.pdf 
 
Tables. 
Table S1A. Provenance of PhoP regulated genes identified in the literature.  
Table S1B. Predictive group definitions. 
 
Tables S2. Excel files TableS2_GroupName.xls. 
Tables of genes in each computational predicted group Gdr, Gword, Gcausal, GsimphoP. 
Column two contains the respective score for each gene where relevant. Common 
names and annotation are included. The motif files are corrected for operons, see 
Methods.  
 
Tables S3. Excel file TableS3_GroupName.xls. 
Performance Tables of genes in each predicted group Gdr, Gword, Gcausal, GsimphoP, Glit 
of Table 1. Thresholds correspond to 0.4, Gcausal, 9, Gdr, 12.5, Gword, 0.01, GsimphoP 
relative to TableS2, whilst all groups are restricted to DE. Columns are: the regulation 
category according Flow Chart (FC) and Expert, PhoP dependence (which can be 
fractional if multiple regulation categories given), the number of signatures 
supporting activation (nECS+) or reduction (nECS-) of dynamic variation on 
activation of PhoP, differential expression in each of the time series (column DE with 
a 3 letter code, D for DE, N for not DE, order TSwt

PO4, TSko
PO4, TSwt

glu), annotation as 
(17) and COG class when available. For Gcausal, Glit membership of clusters (column 
Cluster) shown in Figs. S3/4 is indicated (Singleton indicates the gene is in a cluster 
by itself ).  
 
Table S4. Excel file TableS4_CSA_PhoPDeptargets.xlsx. 
Predicted PhoP dependent genes GDep, and GReg Columns as above in S3. The groups 
identifying that target are also indicated under columns named by each group (0 
absent, 1 present); NoGrps gives the number of groups predicting gene, and No. 
Methods identifies the number of computational method (motif, similarity, causal) 
identifying the gene. Targets identified only from the comparative analysis (Expert 
assessment) are also included and identified as having NoGrps=0.  
 
TABLE  S5.  Definition  of  comparative  signatures  defined  on  the  3  TSs  TSwt

PO4, 
TSko

PO4,  TSwt
glu  and  associated  methodology.  ko/env  refer  to  the 

strain/environment  comparison  respectively.  All  comparisons  are  carried  out 
with matched time at nutrient depletion using common time points. 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Supplementary Text.

Coregulation profiling of causal, correlation and bioinformatic predictions
of PhoP dependent genes in S. coelicolor reveals methodology biases

Contact: Nigel Burroughs. Email: N.J.Burroughs@warwick.ac.uk.

1 Contents.

• PHO box motifs constructed from Glit

• Glit clusters.

• Gcausal clusters.

• Robustness analysis.

• Extended Materials and Methods

• Supplementary Table legends.

• Additional Supplementary Figures.

2 PHO box motifs constructed from Glit

The gene group Glit (60 genes) was used to construct position weight matrix models of PhoP binding
sites using the MEME suite, Fig. S1. The resulting motif was a directed repeat (dr), with a weaker
second repeat. We subsequently used the dr motif and its first word as PhoP binding site models.
Although an alignment (Supplementary Table S1A) showed the presence of a common motif in
all operons, the constructed motif models revealed that specificity dropped rapidly with increasing
stringency, Fig. S2, with only 20% (dr), 4% (word) of genes in the genome with the respective motifs
actually being in Glit at a score of 10, a score where the sensitivity (the proportion of Glit) plateaued
at 45% (dr) and 38% (word). The sensitivity remained at that level for the dr and increased for the
single word motif to about 80% but at a significant loss of specificity. At high stringency (score), the
dr demonstrates that it picks out only members of the training set within the genome for thresholds
>17, identifying 20% of the target set. In contrast the single word motif is unable to identify only
targets of the training set. This analysis demonstrated that there were rapid changes in sensitivity
for our 2 motifs above the thresholds 13 and 10 respectively. The thresholds used in the analysis
(Table 2) were thus reasonable and would not unfairly disadvantage Glit performance.
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Figure S1. PhoP binding site models. A. PHO box directed repeat (dyad) motif, constructed
using MEME on genes in Table S1A (Glit). B. PHO box for E. coli K12 (RegulonDB).
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Figure S2. Performance of PhoP motifs against the training set. The proportion of genes in
each of Glit and the genome with a motif score above the given threshold is shown for, A. Directed
repeat motif. Red Glit, Blue 2188 highest scoring genes in the genome, B Single word motif. Red
Glit, Blue 4551 highest scoring genes in the genome. On each plot the specificity is shown (black
dashed), i.e. the ratio of genes in Glit to the genes in the genome with a motif score above the given
threshold. Genes are operon corrected.

3 Glit clusters

The 54 DE genes belonging to the prediction group Glit were clustered using the SplineCluster
package (Heard et al., 2005), Fig. S3. There were 6 clusters and 7 singletons. Of the clusters,
only 4 clusters showed an expression change at nutrient depletion, all showing activation, whilst the
other non-singleton clusters (5,6 genes, not shown) had an expression profile with changes during the
growth phase but were flat after 31 hrs post inoculation, and exhibited gradual decay throughout
respectively. Cluster A (12 genes) is similar to the expression of phoP with a substantial transient
activation followed by a sustained activation level, Cluster B (13 genes) shows sustained activation
from nutrient depletion, Cluster C (3 genes) increased expression over 5 hours prior to nutrient
depletion then exhibits a further increase in activation at nutrient depletion, and Cluster D (8)
shows weak transient activation at nutrient depletion.
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Figure S3 Clusters of prediction group Glit of the PhoP regulon. Six distinct clusters were found
(and 7 singletons), four (A-D) with dynamics around nutrient depletion. A. Peak activated genes
(12), B. sustained activation genes (13). C. early activated genes (3), D. weak transient activation
(8). Numbers in parentheses are the number in each cluster. Mean cluster profile (black), confidence
intervals (dashed) and gene expression of individual genes (cyan) are shown. Bar indicates proportion
of ECS (green), UA (black), CE (blue). Gene membership of these clusters is given in Table S3.
Clustering performed using SplineCluster software.

4 Gcausal clusters

The genes belonging to the causal regulon were clustered using the SplineCluster package (Heard
et al., 2005), Fig. S4. Four clearly distinct clusters were identified, Cluster A, comprising activated
genes (6 genes), cluster B, has a transient activation then inhibition profile (4 genes), clusters C
and D, two inhibited expression clusters (26 genes). The first cluster (A) comprises genes presenting
a similar but delayed expression profile to phoP with an expression peak at approx. 38h post
inoculation. Only 3 of these genes show activity in TSwt

glu, SCO1048, SCO0919, SCO1196 (categorised

as CRPhoP,glu) with transient activation on glutamate depletion over 3-8 hrs; all the rest (classed as
SoloPhoP ) are inactive. All are inactive in TSko

PO4. The second cluster (B) contains 4 genes showing
a high peak in expression at 36h, dynamics again delayed relative to phoP. This high expression lasts
only for around two hours before returning rapidly to a lower inhibited level (relative to growth phase
expression). They are all inhibited in TSwt

gluat glutamate inhibition, while only SCO2052 (Integ) is

active in TSko
PO4, with transient activation at PO4 depletion, whilst SCO1845 (CRPhoP,glu) is the



only one that shows distinct loss of expression. Cluster C (predominantly Integ) comprises genes
activated during growth phase but inhibited on phosphate depletion. All show similar profiles
in the other times series; transient inhibition on TSwt

glu, and inhibition in TSko
PO4, although all are

typically over expressed relative to TSwt
PO4up to nutrient depletion. This suggests that the early phoP

expression in TSwt
PO4, Fig. 1, is in fact inhibiting these genes. The last, largest cluster D contains

17 genes (most showing regulation by glutamate either as CRPO,glu or CRPhoP,glu), showing rapid
inhibition 1hr post depletion in TSwt

PO4. About half show similar (invariant) profiles in TSwt
PO4 as

TSko
PO4, except the decline at depletion is more gentle; the others are approximately flat although

expression levels of all genes remain higher than in TSwt
PO4, similar to pre-depletion values. In TSwt

glu,
all except SCO6108 show a transient dip in expression after glutamate (depletion). Typically there
is a predominant lowering of expression after phosphate depletion in TSwt

PO4 relative to TSko
PO4 and

TSwt
glu, suggesting these genes may be switched off. This indicates that most of these genes are not

PhoP dependent but responding through generic stress pathways, i.e. the CCE classification is
correct.
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Figure S4. Clusters for the causal network predicted phoP target genes (posterior probability
of phoP being a parent p > 0.4). Clustering of the target genes show four distinct clusters, A.
Activated genes (6), B. Transiently activated inhibited genes (4). C. late exponential inhibited
genes (9) D. Inhibited genes (17). Numbers in parentheses are the number in each cluster. Mean



cluster profile (black), confidence intervals (dashed) and gene expression of individual genes (cyan)
are shown. Bar indicates proportion of ECS (green), UA (black), CCE (red). Gene membership of
these clusters is given in Table S3 Causal. Clustering performed using SplineCluster software.

5 Robustness analysis

Robustness of the results to choices and thresholds in the analysis are further examined here. A
basic ROC analysis was given in Fig. 5 of main text demonstrating that results were invariant to the
choice of predictive group thresholds. However, additional analyses are needed, specifically showing
an invariance to -

• Universe size. The universe for the prediction groups differ, specifically the causal network is
based on the top 1000 most DE genes in TSwt

PO4, while motifs and similar profiles can be defined
across the genome. The ROC can thus be either computed relative to a common universe (such
as DE genes, as shown in Fig. 5, main text), or relative to each universe, Supplementary Fig.
S5A.

• Indeterminancy in regulatory category assignment/indeterminancy in GDep. The Expert as-
signment allowed for a joint assignment, i.e. cases where the assignment was unclear. This
weighting can be allowed for in the ROC analysis, Fig. S5B, giving essentially similar results.

• An analysis of the sensitivity and specificity of the computational methods to the additional
targets found by the comparative signature analysis (CSA).

These analyses demonstrated that there was an effect, but the results are essentially similar. The
common versus relative universe has a distinct effect in that for methods utilising a smaller universe
their sensitivity drops in absolute terms since there are targets that are inaccessible (lying outside the
universe). This is clearly an important issue because there are 184 genes in the full Gdr prediction,
only 113 are in DE, and only 62 are DE in TSwt

PO4. Since our signatures are not defined outside
DE, we cannot reliably score the 71 predictions outside of DE. It is likely however, that the number
of TP in this unscored set of predictions is low suggesting Gdr, has a substantially larger number
of FP than discussed here. The probabilistic weighting performance is very similar to the analysis
using only uniquely categorised targets, Fig. 5. For detection of the CSA only targets we find that
performance is poor, far below a 1:1 detection TP:FP, while the motif and causal predictions are
close to random (equal TPR, FPR).
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Figure S5. Performance (ROC) of prediction groups under variation of A relative universe size,
B weighted ROC with probabilistic categorisations (by Expert). C performance on the additional
CSA targets, CSAPhoP . Genes in the group GDep were removed. The dashed lines are equal TPR
and FPR (black, random performance), and equal TP and FP counts (red).

6 Extended Materials and Methods

Cultivations. Three cultivation experiments with high resolution time-series sampling for tran-
scriptome analysis were performed using S. coelicolor strains M145 (WT, (Kieser et al., 1999) and



INB201 (phoP deletion mutant). Time-series experiments TSwt
PO4(WT, phosphate depletion) and

TSko
PO4(INB201, phosphate depletion) were performed using the cultivation conditions as described

in (Nieselt et al., 2010), featuring phosphate depletion during cultivation after 35hrs and 41hrs,
respectively. TSwt

glu(WT, glutamate depletion) was performed using identical cultivation conditions
except for altered concentrations of glutamate (reduced from 55 to 15 g/L) and phosphate (doubled
from 4.6 to 9.2 mM) in the medium. As a consequence, the sole nitrogen and the most important
carbon source (glutamate) in this medium is depleted after 35hrs of cultivation, while phosphate
remained in excess until the end of the fermentation. These data are further discussed in (Nieselt
et al., 2010), and Mast et al., submitted.

Microarray processing. Arrays were processed using RMA with loess normalisation, sepa-
rately for each time-series. A subsequent normalisation was used to collate the time-series. Quality
control measures RLE, NUSE (Brettschneider et al., 2008) were within acceptable ranges. Some
arrays were removed because of batch effects that could not be removed by normalisation. Differ-
ential expression was ascertained using the BATS package (www.na.iac.cnr.it/bats). SplineCluster
software (Heard et al., 2005) was used to cluster groups of genes, priors 10−4 − 10−2 depending on
experiment. Gene Ontology analysis (for the differentially expressed genes between experiments and
clusters) was performed using BINGO (Maere et al., 2005).

Literature based predicted regulon. Glit is a set of PhoP directly regulated genes identified
from 1) experimentally proven PhoP binding sites (gel-retardation and footprinting assays for all
operators), 2) previous transcriptomic results (Rodŕıguez-Garćıa et al., 2009), 3) promoter-probe
assays, 4) putative transcriptional units. See Supplementary Table S1A for provenance information.

Bioinformatic prediction groups Gdr/word. A binding signature (the PHO box) has been
identified for PhoP comprising a direct repeat (two linked instances) of the motif GTTCACC in S.
coelicolor (Sola-Landa et al., 2008), a motif that is conserved throughout the actinomycetes (Mendes
et al., 2007), although distinct from those of E.coli (CTGTCAT; (Wanner, 1996) and other bacteria
(Bacillus subtillus, (TT[A/T]ACA; (Liu and Hulett, 1998)), see Supplementary Fig. S1. This allows
bioinformatic (sequence) methods to be used to search for PhoP targets. We constructed the motif
using MEME software suite from sequences of experimentally determined PhoP binding sites, Table
S1A; this gave a motif (the PHO box) comprising a directed repeat of GTTCA with a spacer of 6 bp,
Supplementary Fig. S1. The first word is more conserved than the second. This structure is typical
of bacterial transcription factor binding sites which are often of the dyad-type, i.e. having two
conserved words separated by a variable non-conserved spacer between them. We then searched the
S. coelicolor genome for the binding sites matching that motif using MEME (http://meme.nbcr.net,
(Bailey and C., 1994)). We created the group Gdr as genome-wide matches of this model of the PHO
box (16 bases) as described above. Genes in the same operon are also included as having this motif
(all assigned the highest score of genes in the operon), using the operon definitions of (Charaniya
et al., 2007). We also defined a single word motif group Gword, i.e. genes with just a single binding
site comprising the first word in Fig. S1A, specifically an approx. GTTCA word plus the flanking
sequences (two letters with background genome frequency on each side of this word). We justify this
single-word search since the constrained directed repeat search may miss potential targets because of
a noisy middle spacer between the conserved words and the weakness of the second GTTCA motif.
Genes in the same operon are again included. The score of each motif in both groups was used to
quantify motif quality as used in the ROC analysis. Thresholds 9 and 12.5 for the directed repeat
and word motif respectively were used in the groups used in Tables 1,2 (see Supplementary data for
a discussion).

Gcausal. Sparse AR(1) model. We used the sparse linear causal model of (Morrissey et al.,
2011), implimented in the GRENITS bioconductor package (submitted), under Gaussian noise ex-
tracting the subnetwork of depth 1 outgoing from phoP in the full directed gene-gene interaction
network. This model implicitly determines the (posterior) probability of a regulatory link being
present which was used to quantify quality in the ROC analysis. Gcausal comprises all genes pre-
dicted to be regulated by phoP with a posterior link probability > 0.4. Members are given in
Supplementary Table S3 Causal.

Similar expression profiles GsimphoP . We use a metric methodology to define genes with
similar profiles to SCO4230 (phoP). We subtract the trace of SCO4230 from each gene profile.



To remove effects such as probe efficiency, we rescale each gene to mean zero, variance 1 prior to
subtraction. Those genes within q-th lower quantile of the distribution are selected as GsimphoP .
For the standard group of Tables 1,2 we use q=0.01. Members are given in Supplementary Table
S3 SimilarphoP.

Signature definitions. All signature definitions are dependent on expression profile informa-
tion, and thus the analysis is restricted to DE genes only. We use the DE groups in each TS to
define two of the signatures, i.e. a shift to non DE from being DE in TSwt

PO4. The remaining are
defined below. To ascertain appropriate thresholds we used a variety of methods. On all signatures
we compared DE genes and non DE, the latter acting as a control set. Typically we used a threshold
corresponding to a tail with 1-5% in the non DE gene statistic. Thresholds were ultimately chosen
based on an assessment of their discrimination ability (by eye).

Invariant signatures, Sinv. We used significant levels of correlation between the TSs, matching
the time of nutrient depletion between the TSs. Typically there was a more compact distribution
of correlation in both the DE and non DE genes relative to a random walk process, with the former
having higher levels of correlation as expected. To define invariant profiles Sinv we used a correlation
coefficient threshold corresponding to a highly significant correlation, a Bonferroni multiple testing
correction at significance 1% giving a distribution tail of the order of 17-19% of the population. A
stringent threshold was indicated since the non DE genes had high levels of correlation.

Differential activity signatures SLH/HL. Signatures SLH/HL were defined for each gene by
taking the ratio of the standard deviation of the TS in each experiment and using a tail threshold
on the distribution to determine genes with extremely different activities, from high to low (HL)
variation and vice versa. To establish an appropriate level for the threshold we used an F-test for
the variance ratio, assuming all samples are independent. Tail fractions between 5-23% were used
with p-values (F-test) of 10−3 − 10−4. These thresholds gave reasonable discrimination compared
to the statistic computed on the non DE genes.

Significant difference in expression profiles Sdiff . We determined whether genes have a
significant difference in their dynamics between two given time-series by subtracting one time-series
from the other. Thus, to identify those genes with invariant dynamics from TSwt

PO4to TSko
PO4/TSwt

glu,
we matched the nutrient depletion times in both time-series and then calculated the standard devia-
tion of the difference time-series (sdD); we restrict to common time points, giving approximately 27,

22 time points per comparison, TS
wt/ko
PO4 , TSwt

PO4/glu respectively. The significantly different genes
were those within the q-th higher quantile of the sdD distribution. To determine the threshold we
compared to the non DE genes.

Flow chart regulation categories. The regulation categories are defined in terms of the
dynamic signatures as follows,

• SoloPhoP : Sko
DEnDE & Senv

DEnDE

• CRPhoP,glu: Sko
DEnDE & !Senv

DEnDE This category can be further decomposed into conver-
gent coregulation CVPhoP,glu= Sko

DEnDE & !Senv
DEnDE & Senv

inv where dynamics is identical in
TSwt

PO4and TSwt
glu

• CRPhoP,PO: Senv
DEnDE & DEko

PO4 & Sko
dyn

• Integ: DEwt
PO4 & DEko

PO4 & DEwt
glu & Sko

dyn

Here & denotes logical AND, ‖ logical OR, ! NOT. The signature Sdyn is a composite signature,
Sdyn=Ssigdiff ‖ SHL ‖ SLH identifying genes with large changes in the dynamic profile. Subscripts

on Signatures indicate the comparison pair, ko= TS
wt/ko
PO4 , env= TSwt

PO4/glu.

Expert evaluation of category assignment. The best 20% of predictions from each com-
putational method, and Glit were examined by eye and reassigned based on an assessment of the
expression profile for the type of regulation. The regulation category was restricted to apply to
dynamics between -1 to 5 hrs of nutrient depletion.

Scoring predictions and Receiver Operating Characteristics (ROC). Under these sig-
natures we score the genes in each group and count the number of genes in the group for which there



is ECS, CCE or a lack of an assignment UA relative to PhoP dependence (see text). We can thus
quantify the assignment fraction p= (ECS+CCE)/n, where there are n genes in the group, and the
precision (positive predictive value) of the group Q=1-E, with error E=CCE/(ECS+CCE). Clearly
high assignment and low levels of incompatibility are preferable. To estimate the sensitivity S (true
positive rate, TPR) and specificity F (1-FPR, false positive rate FPR) of each group we use our
improved predictions of PhoP regulated genes, GDep, GReg. Sensitivity is defined by S=ECSD/m,
ECSD the hits in the reference group GDep (of size m), and FPR=CCE/mN , where mN is the
number of true negatives, i.e. compliment of GDep (GReg) in the universe. The universe differs
depending on the set- for Gdr/word, GsimphoP it is the set of all genes (in the genome), and the set
of 1000 top differentially expressed genes in TSwt

PO4for Gcausal, GphoPclust.
ROC curves were plotted using as the reference set either GDep or as indicated. We used pa-

rameters: Gcausal the posterior link probability, Gdr/word the motif threshold and GsimphoP the tail
percentile q.



7 Supplementary Tables

See main text.

8 Figures
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Figure S6. Gene profile variation for TSwt
PO4versus TSko

PO4and TSwt
glushowing selected prediction

groups. A/E. 47 genes of the previously compiled phoP regulon gene list, Glit, Table S1A. , B/F.
88 genes with a dr motif PHO box, Gdr, C/G. 73 genes with similar dynamic profile to phoP,
GsimphoP , D/H. the 36 genes of the causally identified regulon Gcausal. Only genes DE in either
TSwt

PO4 or TSko
PO4 (resp. TSwt

glu) are shown (black), genes in each group that are DE in any of the

TSs are shown (blue), while those in GDep are plotted in magenta. For all the prediction groups
there is a significant reduction of profile variance for a number of genes in TSko

PO4and TSwt
glu relative

to TSwt
PO4. The average variance across all genes in each experiment is set to 1 giving the scale.
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Figure S7. Clusters of gene expression profiles in TSwt
PO4of all genes identified as PhoP dependent



(245) from the comparative analysis. Cluster patterns can be grouped as peak profile: A (22, all
predicted), B (28, 26 predicted), C (22, 19 predicted), D (6, 3 predicted), activation profile: E (11,
all predicted), F (31, 2 predicted), progressive activation: G (12, 3 predicted), H (14, 13 predicted),
inhibition: I(14, 9 predicted), J(7, none predicted), K(15, 6 predicted), decreasing expression: L
(38, 16 predicted), M(7, 5 predicted), N(15, 6 predicted). Numbers in parentheses relate to cluster
size and the number that are predicted as PhoP dependent from the 7 prediction groups (Table 2).
Cluster pattern is shown (solid) with confidence (dashed). Depletion time indicated by the grey
vertical line. Fractional decomposition by regulation type is shown as a bar on right with categories
SoloPhoP (red), CRPhoP,PO (magenta), CR/CVPhoP,glu (blue), Integ (yellow). Genes without a clear
category are shown black. Gene membership is given in Supplementary Table S4 GDep breakdown.
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Chapter 6

Conclusions

6.1 Thesis Summary

Gene regulatory network inference has emerged as a key challenge in the field of

systems biology. Network inference refers to the process of determining the structure

of a network using expression measurements from the individual network genes. This

thesis has focused on network inference, specifically inference using time-series gene

expression data. The statistical framework chosen is Dynamic Bayesian Networks

coupled with Bayesian Variable Selection.

Network inference models usually model regulatory interactions with linear

functions. As the functional form of the interaction is known to be non-linear,

we developed a non-linear interaction model and benchmarked it against a linear

model using several datasets. The non-linear model outperformed the linear model

for most cases studied, with the exception of data with linear interactions, where

the performance was similar.

Next we addressed the issue of how to infer a network when replicate mea-

surements are available. An initial approach would be to approximate the true

expression value by the mean/median of the replicates. In other words, calculate

the mean/median and then run a regular network inference method. By doing this,

information on the variability within replicates is discarded. To use the information

in the variability we developed two alternative models that account for measurement

error; the two models differ in the assumed distribution of the replicates around the

true value.

As we used Bayesian statistics for our inference models, it was necessary to

choose priors for all parameters. A crucial step of the model building process was

to carefully chose these priors and calibrate them adequately. It was necessary to
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test different types of priors and measure the effect on the posterior. This was in

general a non-trivial process given that some of the priors had a very strong effect

on the posterior, requiring a large amount of tuning in order for the inference model

to work adequately.

The network inference models developed were implemented using MATLAB.

While MATLAB is an easy-to-use high-level programming language, it is highly

inefficient when evaluating loops. As loops are an unavoidable feature of the infer-

ence algorithms, there was room for improvement. We reimplemented the models

using C++ and wrapped them in R. The software is available as the R/Bioconductor

package GRENITS. Due to the reimplementation, the algorithms are considerably

faster than their MATLAB equivalent. In some cases the increase in speed can be

up to 60 fold.

Finally, we used GRENITS to fit a network to a whole-genome gene expres-

sion time-series generated by the STREAM consortium. The dataset consisted of

1000 DE genes. In order to run the algorithm on the full dataset, we restricted

regulation to those genes known to be able to regulate the expression of other genes.

The resulting inferred network was then compared to predictions from other infer-

ence methods for the regulon of a specific TF, for which biological knowledge and

further experiments were available.

6.1.1 Non-Linear Interactions

In general, the functional form relating the mRNA transcription rate of a given gene

to the concentration of the TF regulating it is a sigmoidal curve. If the regulation

is positive, for large values of the TF concentration the production rate will sat-

urate and essentially remain unchanged. Depending on the way regulation occurs

(e.g multimers) there might also be an initial TF concentration range where little

transcription takes place.

An explicit functional form reflecting this regulatory behaviour (Michaelis-

Menten function or Hill function) can be derived using enzyme kinetics [Alon, 2006].

Such functional forms have been used to fit simple experimental setups and have

proven to describe the behaviour adequately (e.g. [Ronen et al., 2002]). However

using Michaelis-Menten or Hill functions for a network inference model has a number

of inconvenient features. The data used for inference will be sparse and noisy, which

could lead to over-fitting. Also, given the structure of the function, it is not possible

to use conjugate priors and Gibbs updates for all parameters.

In order to avoid these problems we chose to use Splines, a family of piecewise

polynomial functions frequently used for curve fitting and smoothing. An advantage
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of using these functions is that they are defined as a linear combination of basis

functions, thus the model parameters are the coefficients of a linear combination,

meaning that the parameters can be sampled from using Gibbs updates.

Spline functions are highly flexible and if not constrained may over-fit the

data. To avoid overfitting it is common to use a prior that will curb the flexibility by

biasing the function towards a linear form. This prior in turn introduces a further

hyper-parameter that controls the smoothness of the spline function. In our work

the prior on the smoothness parameter proved to be crucial. The parameter has

two limiting behaviours. When the parameter is very large, the function becomes

linear, whereas for small values the function becomes highly non-linear. When

using a typical conjugate prior the resulting posterior became very sensitive to the

parameters being used, either accumulating too much mass close to the non-linear

region or the linear region. After trying different priors we settled on a inverted

Pareto distribution. This selection enabled us to select the scale parameter such

that linear relationships can be described. Moreover, by carefully selecting its shape

parameter we managed to bias the spline fit towards linearity, unless there is strong

evidence against it in the data.

A further improvement we developed is related to the uncertainty in network

estimation. The usual way of predicting a network from the posterior is to calculate

the marginal probability of each network link and then use a threshold to select

which links are present. By proceeding in this way, cases where the probability of

regulation is split between several genes, thus diluting the individual probabilities,

are lost. In order to highlight these cases we developed a network plot that combines

marginal link probabilities and the probability of total number of regulators. This

plot provides a visual representation of the uncertainty in the retrieval of the network

structure/topology.

The resulting non-linear inference model was benchmarked against the AR1

model using different synthetic data sets. We found that both models performed

equally well in the case of data with linear interactions. Whereas for non-linear

interaction data the non-linear model outperformed the linear model.

6.1.2 Replicate Measurements

Both the linear model and the non-linear model described in the previous sections

account for biological noise. The noise represents deviations from the determinis-

tic linear/non-linear model. This form of noise is produced by fluctuations in the

concentration of mRNA. In other words, the fluctuation will propagate through

the network via the genes regulated by it. When replicates are available for time-
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series data, if they can be considered as biological replicates, they can be analysed

jointly with the linear/non-linear model. Experimental noise on the other hand is

not accounted for by the previous models. Fluctuations associated to experimental

noise do not propagate through the network. If replicate measurements are avail-

able for this kind of data, a network can be inferred by taking the mean/median

and producing a single averaged time-series and proceeding as usual. However this

approach will discard valuable information about the variability of the expression

measurements. In order to use all the information contained in the replicates, we

extended the AR1 model to account for experimental noise. We achieved this by

assuming that the replicates are centred around a true unmeasured expression value

and follow some distribution. We considered two cases. The first case is that the

replicates are distributed following a Gaussian distribution and second a Student-t

distribution, this way accounting for possible outliers.

The priors used for the newly introduced parameters were all conjugate,

except for the degrees of freedom of the Student-t distribution. By testing the

model with several datasets and performing a sensitivity analysis, we found that

the model is highly sensitive to the prior on the AR1 precision; especially so when

the replicates are few and noisy. With this scenario, if a prior concentrates mass at

high values of the regression precision, we are essentially implying that there is a

network topology that explains the data well. As the information in the replicates is

very weak, there will be several combinations of networks and true expression values

that fit the data and the prior. All this leads to severe convergence problems. To

solve this we selected a prior that is very flat but still concentrates mass close to zero.

The resulting model will make weak predictions when there is little information in

the replicates and will not have a strong effect when the replicates are informative.

Using several synthetic datasets with replicates we showed that the measure-

ment error models produce improved inference results with respect to running the

regular AR1 model on replicate-averaged data. Also, we showed that the Student

error model outperformed the Gaussian error model when the data analysed pre-

sented outliers. This result was confirmed for synthetic data as well as microarray

data.

6.1.3 GRENITS

Four inference models have been presented in this thesis: a linear model, a non-

linear model, a Gaussian measurement error model and a Student-t measurement

error model. MATLAB code for these models was published with the corresponding

paper.
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MATLAB can be in general quite fast, especially if the code can be writ-

ten in a vectorised manner (i.e. avoiding explicit loops). In the case where loops

cannot be avoided MATLAB becomes quite inefficient. This is the case for MCMC

algorithms, where loops are entirely necessary. Algorithm speed is an issue for the

inference models used, as it limits the size of the networks that can be analysed. I

reimplemented the four models using C++. For matrix algebra I used armadillo, a

fast linear algebra library that serves as a wrapper to LAPACK and BLAS func-

tions. A bottleneck of the algorithm and a common function to all models is the

Gibbs/MH update. This function was optimised, including using a combination

of Cholesky decomposition and triangular optimised functions. The triangular op-

timised functions were not included in armadillo, so it was necessary to call the

LAPACK functions directly.

The full code for all four models was profiled and optimised. The result-

ing algorithms are considerably faster than the MATLAB code. For instance the

STREAM dataset of 1000 genes and 35 regulators, run on a desktop, took just over

6 hours to fit a network. This represents a 60 fold speed up with respect to the

MATLAB implementation.

Using the C++ code I built an R package (GRENITS). I structured the pack-

age so that it would be useful to both casual and advanced users. Any of the four

methods can be run with a single function, with a time-series data matrix and out-

put folder name as arguments. The hyperparameters and MCMC parameters are by

default fixed to values that in our experience work well for a large range of datasets.

Once the MCMC has completed, an analysis function can be run that will produce

plots and output files. For advanced users I implemented functions to allow mod-

ification of the prior parameters, plots of the priors, as well as a function to read

MCMC chains. The package has been accepted in Bioconductor and is available

from the Bioconductor repository.

6.1.4 Bayesian Network Inference For Large Networks

The datasets used for inference in the previous chapters corresponded to small net-

works of up to twenty genes. Inference of small networks can be useful if, for exam-

ple, a set of genes were known to form a network but the wiring of the network was

only partially known. A more general scenario is that of a dataset measuring the

response of an organism to a specific perturbation or environmental change. This is

the case for the dataset generated by the STREAM consortium. The data was gen-

erated by subjecting the bacterium Streptomyces coelicolor to a environment with

a limiting amount of phosphate and measuring gene expression at regular interval
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during phosphate starvation.

Attempting to fit a network to a whole-genome dataset would be problem-

atic given the speed of the sampling methods described in this thesis. In order

to fit a network to the STREAM dataset we first filtered the data to those genes

that are dynamically active. This was done by running the BATS differential ex-

pression algorithm, which reduced the dataset from around 8000 genes to around

1000 genes. Next we used biological knowledge to find those genes able to regulate

the expression of other genes. The total number of regulators found was around 70.

The regulators were then clustered so as to group those genes with indistinguishable

expression patterns. After clustering, the regulators list was comprised of total of

35 clusters/genes. Using biological criteria we selected one gene from within each

cluster to represent the whole cluster. Finally we used GRENITS to fit an AR1

model to the 1000 gene dataset and limited regulation to the 35 regulator-genes.

The algorithm ran in approximately 5 hours on a desktop computer. To the best of

our knowledge this is the first time such a large network has been run using BVS.

Along with the time-series used for network inference another time-series

was generated under the same experimental conditions using a phoP KO strain. A

third time-series generated using a WT strain subjected to glutamate starvation

conditions. By comparing gene expression dynamics across the three time-series,

it was possible to compile a list of genes with evidence for regulation by phoP.

The list was then used to compare the performance of the inferred network against

correlation methods and sequence analysis methods. The best method appeared to

be the sequence based method, although if the network inference predictions were

complemented with genes strongly correlated with phoP they outperformed the rest.

Merging the network inference predictions with genes strongly correlated with phoP

is justified by the fact that co-expressed genes are known to be potential regulated

genes and are not detectable by an AR1 network inference method.

6.2 Comparison to Other Published Models

The main focus of this thesis has been the implementation of a computationally

efficient AR1 model with BVS and the development of improvements to this model

in order to address key issues (e.g. non-linear interactions). The improved models

were benchmarked against the AR1 model, thus allowing for the explicit assessment

of the effect of the model improvements. However, an issue that has not been

addressed is how well the basic AR1 model and the improved models compare to

other published methods.
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method algorithm network 1 network 2 network 3 network 4 network 5

DBN G1DBN 0.73(0.37) 0.64(0.34) 0.68(0.45) 0.85(0.69) 0.92(0.77)
VBSSM 0.73(0.38) 0.66(0.41) 0.77(0.49) 0.80(0.46) 0.84(0.64)
LinearNet 0.85(0.69) 0.73(0.57) 0.75(0.49) 0.90(0.82) 0.71(0.54)
NonLinearNet 0.85(0.64) 0.74(0.53) 0.76(0.55) 0.91(0.83) 0.76(0.57)

ODE TSNI 0.62(0.27) 0.63(0.32) 0.58(0.21) 0.63(0.23) 0.68(0.25)
NDS GP4GRN 0.66(0.42) 0.69(0.44) 0.70(0.47) 0.62(0.35) 0.86(0.65)

CSId 0.72(0.64) 0.75(0.54) 0.67(0.45) 0.83(0.67) 0.90(0.78)
CSIc 0.78(0.42) 0.73(0.40) 0.66(0.29) 0.64(0.26) 0.75(0.27)

GC GCCA 0.67(0.30) 0.70(0.47) 0.62(0.26) 0.80(0.56) 0.80(0.58)
random random 0.55(0.18) 0.55(0.19) 0.55(0.17) 0.57(0.17) 0.56(0.16)

Table 6.1: Performance of different network inference methods. The data used
was generated in-silico using five different ten gene networks. Scores used are AU-
ROC/AUPR, with AUROC appearing first and AUPR next in brackets. Bold font
indicates best score. CSIc evolves over continuous time and CSId over discrete time.
Italicised algorithms/scores indicate thesis algorithms/scores.

We can, to some extent, address this question by drawing on the model

comparison work published in Penfold and Wild [2011]. In brief, for this work the

authors used time-series data generated from ten in-silico networks (five ten gene

networks and five one hundred-gene networks) and two in-vivo networks. With this

data they then inferred networks using seven different network inference methods

and used the known true networks to assess the quality of the predictions. The

scores used to assess the quality of the predictions were the area under the receiver

operating curve (AUROC) and the area under the precision recall curve (AUPR).

The seven methods chosen were separated into the categories of: ordinary

differential equations (TSNI), Dynamic Bayesian Networks (G1DBN, VBSSM), non-

linear dynamical systems (GP4GRN, CSI) and Granger causality (GCCA). For the

sake of brevity the reader is referred to the original paper [Penfold and Wild, 2011]

for details on the models and the data sets.

Using GRENITS we fitted the models presented in this thesis to data from

Penfold and Wild [2011] (data provided by C. Penfold). As GRENITS does not allow

for the use of multiple time-series representing different experimental condition, the

time-series were concatenated. The single concatenated time-series has inconsistent

time-steps where the individual time-series concatenate–though this represents a

small percentage of the time-steps (≈ 4%).

As the network from the Arabidopsis thaliana data-set is only partially

known, we did not include it in the comparison. Also, of the data used, only the

yeast data has replicates, thus we could only run the replicates model with the yeast
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method algorithm network 1 network 2 network 3 network 4 network 5

DBN G1DBN 0.68(0.11) 0.64(0.10) 0.68(0.13) 0.66(0.10) 0.72(0.11)
VBSSM1 0.59(0.08) 0.56(0.05) 0.59(0.11) 0.67(0.10) 0.71(0.09)
VBSSM 0.56(0.09) 0.57(0.06) 0.62(0.12) 0.64(0.12) 0.70(0.09)
LinearNet 0.78(0.26) 0.69(0.11) 0.75(0.17) 0.71(0.23) 0.69(0.16)
NonLinearNet 0.82(0.27) 0.72(0.13) 0.76(0.20) 0.74(0.22) 0.74(0.15)

ODE TSNI 0.55(0.02) 0.55(0.03) 0.60(0.03) 0.54(0.02) 0.59(0.03)
NDS GP4GRN 0.72(0.22) 0.62(0.10) 0.70(0.16) 0.70(0.21) 0.69(0.12)

CSId 0.71(0.25) 0.67(0.17) 0.71(0.25) 0.74(0.24) 0.73(0.26)
CSIc 0.65(0.13) 0.56(0.03) 0.63(0.07) 0.61(0.07) 0.60(0.05)

GC GCCA 0.60(0.04) 0.57(0.04) 0.60(0.07) 0.58(0.07) 0.57(0.03)
random random 0.50(0.002) 0.50(0.002) 0.50(0.002) 0.50(0.002) 0.50(0.002)

Table 6.2: Performance of different network inference methods. The data used
was generated in silico using five different hundred gene networks. Scores used are
AUROC/AUPR, with AUROC appearing first and AUPR next in brackets. Bold
font indicates best score. CSIc evolves over continuous time and CSId over discrete
time. VBSSM1 uses a single hidden state. Italicised algorithms/scores indicate
thesis algorithms/scores.

data.

The results of the analysis have been added to the original tables presented

in Penfold and Wild [2011] and reproduced in tables 6.1, 6.2 and 6.3.

Table 6.1 shows the results of inference on the ten gene network data. In

general the performance of the two methods is good, coming first in two out of the

five networks with respect to the AUROC score and four out of five with respect

to the AUPR score. Of the two methods, the NonLinearNet model performs better

than the LinearNet model for most networks under both scores.

For the case of the hundred gene networks (table 6.2) the NonLinearNet

ranked first or joint first for all networks under the AUC score. Under the AUPR

score, the NonLinearNet model ranked first in one network and second or third in

all other networks. The results of the Linear model are also good, scoring second

best under the AUROC score in three out of five cases and also three out of five for

the AUPR score.

As mentioned earlier the experimental data was measured in replicate (four

replicates for the switch off experiment and five for the switch on) allowing the

use of all the methods available through GRENITS. The results can be seen in

table 6.3. Here the results are less favourable for the thesis methods, especially for

the non-replicate methods (LinearNet and NonLinearNet), both of which score close

to random under both AUROC and AUPR scores for the switch-off data. On the
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method algorithm switch on switch off

DBN G1DBN 0.78(0.64) 0.61(0.34)
VBSSM 0.79(0.70) 0.76(0.60)
LinearNet 0.76(0.48) 0.65(0.38)
NonLinearNet 0.74(0.46) 0.65(0.38)
GaussReps 0.80(0.65) 0.72(0.45)
StudentReps 0.78(0.59) 0.73(0.52)

ODE TSNI 0.68(0.51) 0.68(0.42)
NDS GP4GRN 0.73(0.61) 0.76(0.57)

CSId 0.63(0.46) 0.86(0.72)
CSIc 0.64(0.39) 0.73(0.59)

GC GCCA 0.71(0.55) 0.74(0.65)
random random 0.65(0.45) 0.65(0.45)

Table 6.3: Performance of different network inference methods. The data corre-
sponds to two experiments measuring genes in a synthetic biology engineered five
gene network. Scores used are AUROC/AUPR, with AUROC appearing first and
AUPR next in brackets. Bold font indicates best score. CSIc evolves over contin-
uous time and CSId over discrete time. Italicised algorithms/scores indicate thesis
algorithms/scores.

other hand, the replicates methods do reasonably well, scoring better than both the

non replicates methods for both data sets. For the switch-on data, the GaussianReps

model shows the best score out of all methods compared under the AUROC score

and scores second under the AUPR score.

In terms of timing, one of two chains run on a single 2.53GHz processor took

approximately 4 seconds, 12 seconds and 35 minutes for the LinearNet to run a five

gene data-set, ten gene data-set and one hundred gene data-set respectively. The

NonLinearNet took 1.2 minutes to run a five gene data-set, 6.7 minutes to run a

ten gene data-set and 3 days for a one hundred gene data-set. Both the replicates

models took under 15 seconds to run a five gene data-set.

A small fraction (≈ 0.3%) of the network links did not fully converge with

the default parameters for the NonLinearNet 100 gene networks. To reduce this

problem, we pooled the samples from both chains.

Worthy of mention is the fact that the models that we are benchmarking

against share similarities with the thesis models. For instance, G1DBN uses an

AR1 model identical to the Linear model, though the way the model is fitted to the

data is completely different. Also the replicates models share some similarities to

VBSSM [Beal et al., 2005] as the replicates models classify as State Space Models

(SSM). Though for the replicates models only the hidden factors follow an AR1
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process. In this sense, the models are more similar to the SSM of Hirose et al. [2008]

and Wu et al. [2004], though in the replicates model the number of hidden factors

is fixed and each map to a unique set of replicates.

6.3 Final Reflections

From the analysis of the STREAM data it is clear that network inference can be

a useful tool, as can be seen by the fact that within the phoP predicted targets a

small number were not accounted for in the literature and were later proven to be

correct by the KO data. The analysis of the STREAM data also showed that the

predictions have to be handled with caution as they contain a large number of false

positives, implying that expert biological knowledge is also needed.

The methods presented in this thesis aimed at improving upon certain ap-

proximations commonly used, specifically the use of linear interactions and dis-

carding the information within the replicates. The improved models showed good

performance for synthetic data that met the model assumptions; even in the case

where the data-generating-model was different to the inference model (Locke data,

Locke et al. [2006]). When the network models were fit to experimental data the

improvements were appreciable though small. As the model improvements reduce

the algorithm speed, from a practical point of view it may be better to try to find

other approximations that have a stronger negative effect and address them; for

example including unmeasured protein concentrations.

6.4 Future Work

6.4.1 Extensions of Presented Work

The work presented in this thesis has relied on a number of assumptions, for instance,

the replicates model assumes that the individual replicates are not correlated across

time. This is not always the case. It would be possible to extend the model to

account for this correlation by assuming the correlated replicates follow an AR1

process with two forms of noise, biological and experimental.

Also, for the network analysis of the STREAM data clustering was performed

and a gene from each cluster was selected to represent the cluster. This was done by

choosing a gene thought to be most biologically relevant. It would be interesting to

assess the robustness of the inferred network by selecting different genes to represent

the clusters.
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6.4.2 Regulatory Protein Concentration

One of the approximations used for the models included in this thesis, is to assume

that the concentration of regulating protein can be approximated by a scaled version

of the concentration of mRNA of the corresponding regulator. This approximation

will not always hold and may lead to scenarios that affect the accuracy of the

retrieved network.

The effect of approximating the concentration of TF protein from its mRNA

concentration can be visually explored for Locke et al.’s circadian clock model. By

plotting the mRNA production rate for genes with a single regulator against protein

concentration of the TF regulating it the regulating function can be reconstructed.

If instead we plot the production rate against a surrogate measurement, such as the

TF mRNA concentration, we can visualise the distorting effect.

For Locke et al’s model, regulation is directly dependant on TF protein in the

nucleus, although values for protein in the cytoplasm are also available. Figure 6.1(a)

and figure 6.1(b) show the transcription rate plotted against protein in the nucleus

(left), protein in the cytoplasm (middle) and mRNA (right) for the regulation of

TOC1 by gene X and the regulation of PRR7 by LHY respectively. In both cases the

left hand plot (protein in the nucleus) shows the correct Hill function. When using

protein in the cytoplasm as a surrogate for protein in the nucleus, neither regulation

shows a large disruption, but when using mRNA (right plot), the approximation is

clearly very poor for the TOC1-X interaction. On the other hand for the PRR7-LHY

interaction, the approximation appears to be reasonable.

The AR1 model could be expanded to include the concentration of the reg-

ulatory proteins. The equations would be:

Xt+1 = Ayt + µ+ ν

yt+1 = ayt +Xt + ε,

where A is the network coefficients matrix, µ is the baseline transcription level for

the regulated gene, X is the measured expression data, y is the unmeasured protein

concentration, a is a protein decay term and both ν and ε are Gaussian distributed

noise. While the translation rate does not appear explicitly in the equations, it has

been accounted for by rescaling A, y and ε.

Given the lack of information on the protein measurements, it is possible that

several networks could give similar data-fits, which could lead to strong convergence

issues. This implies that the priors would have to be carefully chosen and tuned.
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(a) Plots for the regulation of X by TOC1
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(b) Plots for the regulation of PRR7 by LHY

Figure 6.1: Plots of the transcription rate (see equation 1.3) for a regulated gene
with a single regulator versus: the concentration of the regulator protein in the
nucleus, in the cytoplasm and the regulator’s mRNA. All the data was generated
using the ODE model from Locke et al. [2006].
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6.4.3 Data Integration

Even in the case that a time-series has many more time-points than parameters, it

may not contain sufficient information to determine the full network structure. For

example if two regulators share the same dynamic trace, it will be impossible to

determine which of the two might be regulating a third gene.

Potentially more information may be found by combining datasets from dif-

ferent experimental conditions or perturbations. This raises the question of how

to integrate disparate datasets. For the case of multiple time-series the plain AR1

model could be used to jointly analyse the data, thus assuming that the AR1 pa-

rameters are identical for each time-series (see for example Bonneau et al. [2006]).

This assumption can be weakened by using a hierarchical structure to allow differ-

ent parameters in each experiment while still sharing information across time-series.

Another approach could be to just allow the network topology to be the same across

datasets and let each dataset have its own AR1 parameters.

A problem that could hamper the integration of different experiments is

topology rewiring. Certain molecules, such as metabolites, can modify the activity

of a TF by either activating, inhibiting or changing the sign of the regulation (see

for example [Cho et al., 2008]). As only the expression is used to infer a network,

a regulator may be expressed but not regulating in one experiment whilst it could

be regulating in another experiment, depending on whether a specific molecule is

present or not. In other words the topology changes due to the presence or absence

of unmeasured molecules. If the molecule is present in certain experiments and not

in others, the data being merged contains contradictory information.

Network inference using expression data could be improved by integrating

different data types. Complementary data that could be integrated in the model

include metabolomic data, in order to predict TF activity modification. Proteomic

data could also help improve predictions, especially if the data has information on

protein state (e.g phosphorylation state).

TF binding information could also be integrated as priors on the BVS vari-

ables. Binding information can be found using for example ChIP data or putative

binding site data when a consensus motif is available.

6.4.4 Biologically Derived Priors

So far, the priors used for the coefficients of the AR1 model are chosen to be as

uninformative as possible. The data is scaled, which will in turn scale the coefficients.

Following this, a Gaussian centred at zero and with a large variance is used as
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prior for all coefficients. This could lead to inference of a model with biologically

infeasible parameters, for example a regulatory interaction with an unrealistically

fast transcription rate. It would be interesting to construct informative priors for the

coefficients using information such as number of nucleotides per gene or maximum

transcription speed.

Biologically motivated priors could also be used to reduce problems with the

self interaction term. The trace of mRNA concentration is a continuous (noisy)

function, meaning that the correlation between one time-point and the next for

the same gene will be high. When fitting an AR1 model this high correlation can

lead to the self interaction term playing an excessively prominent role. As the self

interaction term comes from decay and mass conservation, including information on

mRNA decay could help reduce this problem. Using a measured decay term in the

context of network inference has been done before by Barenco et al. [2006]. Using

a transcription blocking molecule, mRNA decay traces were measured in the same

experimental conditions as the experiments used for network inference. Exponential

functions were fitted to the data, thus finding the decay parameters for each gene.

The inferred parameters were then fixed for the inference model and used to fit to

data from other experimental conditions. Whole genome studies on mRNA decay

can be found for different organisms (see for example [Selinger et al., 2003]). It

would be interesting to study whether the use of measured decay can improve the

quality of inferred networks.

6.4.5 Quantitative Networks

While the models covered in this thesis have concentrated on inference of the network

topology, it would be interesting to see if the quantitative aspect can be used to solve

further problems. An example of this would be the work done by di Bernardo et al.

[2005]. The authors fit a linear network model to a compendium of about 500

microarrays. The resulting network was used as a tool to analyse microarrays where

certain genes had been perturbed. The network allowed the separation between

genes that had been perturbed directly and genes affected by a network knock on

effect.

The models developed in this thesis could be modified to analyse data in a

similar way. Using the AR1 model it would be possible to elicit priors of known

network interactions, this way inferring a more accurate network. Also the non-

linear model could be used, potentially improving the predictions.
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