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Abstract

This thesis presents a general formalism for a Density Functional Theory descrip-

tion of the magnetic state of a heterogeneous system, from its paramagnetic high–

temperature state to the magnetically ordered ground state. The key ingredient is

the identification of localised magnetic moments as emergent electronic degrees of

freedom, and the evolution of their orientations under a classical spin Hamiltonian

dictated by the underlying electronic structure, computed using Multiple Scattering

Theory. The magnetic interactions are contained in the spin–spin correlation func-

tion, derived in a linear response approach, and are fully anisotropic, as relativistic

effects are accounted for.

A range of applications is given. A Mn monolayer on the W(001) is shown

to favour a cycloidal spin spiral as ground state, with a well–defined rotational

sense due to unidirectional anisotropic interactions. The antiferromagnetism of Mn

monolayers on X(111), with X = Pd, Pt, Ag and Au, is analysed, and the triangu-

lar Néel state is shown to possess a well–defined chirality pattern. Calculations for

bulk zinc–blende MnSb characterise the half–metallic state as being robust against

magnetic disorder; this particular polymorph was discovered in epitaxial form by

experimentalists at the University of Warwick, and shows promise for spintronics

applications. Bulk Co in the hcp and fcc structure reveals the strong feedback be-

tween the magnitude of the spin moment and the degree of magnetic order, through

the corresponding electronic structure. To conclude, an FeRh film embedded in V

is considered. The magnetisation profile corresponding to the imposed antiferro-

magnetic order is computed self–consistently, and shows the stabilisation of the Fe

layers close to the interface with V by those in the interior of the film.
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Chapter 1

Introduction

Magnetism is a quantum–mechanical effect [1]. The Bohr–van Leeuwen theorem

shows that the magnetic susceptibility of a classical system is zero, by direct com-

putation of the magnetic moment induced by an applied magnetic field; a non–

zero answer requires quantisation of the orbital angular momentum. It was also

recognised that electrons must possess intrinsic angular momentum, or spin, first

experimentally and then mathematically, from the Dirac equation [2]. The classical

theory of paramagnetism by Langevin had a quantisation hypothesis: the magnetic

moments were assumed to be of fixed size, which has no classical justification. Quan-

tum mechanics is thus at the heart of magnetism, and will constitute the cornerstone

of the entire thesis.

Atomic magnetism is well–understood; the discrete nature of the energy levels

determines the magnetic moment of the atom, following Hund’s rules. The Langevin

theory then becomes justified as a limit of the Brillouin theory of quantised atomic

moments. When many atoms are brought together (to form a solid, a thin film,

or a cluster) no such simple description is available: the electronic states from

each atom are modified by hybridisation with their neighbours, and the simplicity

of Hund’s rules is lost, except in some special cases [3]. Simple models can be

deployed to analyse the range of possible behaviour, with fitted parameters, but for

a quantitative and independent analysis a first–principles theory is required.

There are several first–principles approaches to the quantum many–body prob-

lem, but the best compromise between accuracy and computational expedience is

afforded by Density Functional Theory (DFT). Under the umbrella of DFT, many

different computational methods are found [4]. Few, however, can deal with systems

in which translational invariance does not apply in all three spatial directions1. One

1String theorists should read no further on this thesis.
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is Multiple Scattering Theory (MST), the Korringa–Kohn–Rostoker (KKR) Green

function (GF) method [5]. GFs were an exotic concept in band structure calcula-

tions, where the Bloch wavefunctions stood unchallenged, while familiar to prac-

ticioners of quantum many–body and quantum field theory. In recent years this

separation is being eroded [6]: the two lines of research are merging, and modern

extensions to DFT, or methods going beyond it, make extensive use of GFs, which

are also a natural quantity in linear response and transport calculations. GFs will

be seen to be more convenient for statistical mechanics than wavefunctions.

The magnetic properties of a condensed matter system are ultimately an aspect

of the complex many–body ground state of a system of interacting electrons. Thus

magnetism is an emergent property: the cooperative electronic motions result in the

collective degrees of freedom thought of as net magnetic moments associated with

each atom, and will be affected by them [7]. The different energy scales governing the

electronic motions and the evolution of the magnetic moments can sometimes lead

to an adiabatic approximation: the fast electronic degrees of freedom are integrated

out, and the magnetic moments evolve under an effective Hamiltonian, valid for

low (compared with the electronic) energies. The mutual feedback between the

electrons and the magnetic moments they generate has to be accounted for, but if

the electronic structure is fairly insensitive to the magnetic configuration it may be

small, and perhaps neglected.

In this low energy regime, two opposite limits can be found: if the energy required

to change the length of a magnetic moment is much larger than that of changing its

orientation, the basic magnetic excitations will be transverse, precessional motions

of the orientations of the moments about their equilibrium directions. These are the

familiar magnons that emerge from the Heisenberg model for a collection of moments

of fixed (quantum or classical) magnitude. If the longitudinal excitations are on the

same energy scale as the transverse one, the Stoner picture is more appropriate:

there are no local moments, the magnetism is delocalised throughout the system,

and one thinks of spin fluctuations. Most systems will lie in–between these two

idealised limits, and theoretical challenges remain in understanding them [7].

In metals sp–like electrons are considered to be delocalised, less so d electrons,

and f electrons are usually completely localised. Delocalisation of the d electrons is

not a synonym for the delocalisation of the associated magnetic moments: it took a

few decades for this fact to be understood, with much controversy. It should then

be possible to describe metallic systems which possess local magnetic moments in

a way similar to the Heisenberg model picture [8]. Experimentalists were never shy

of adopting this point of view (maybe not always in a justifiable way).
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The interactions between magnetic moments are usually dominated by isotropic

contributions, depending only on the relative angles between the moments which

they couple. Anisotropies arise from relativistic effects, mainly spin–orbit coupling

[2], which are usually weak compared with the isotropic exchange interaction. The

anisotropic interactions, however, have a qualitative impact: they set the orien-

tations of the magnetic moments in real space, and can lift degeneracies between

magnetic states which are equivalent for the isotropic interactions. When inversion

symmetry is broken, unidirectional interactions appear, usually of Dzyaloshinsky–

Moriya (DM) form [9, 10]; these are the only ones which can lift chiral degeneracies.

The previous discussion should motivate the goals for the theory to be presented

and its applications to be discussed in this thesis.

• It must be rooted in quantum mechanics, and have a sound first–principles

basis. This leads to the use of DFT;

• Translational invariance should be a bonus, not a requirement. This argues in

favour of the KKR–GF approach;

• The feedback between the electronic structure and the magnetic state must be

included. This requires the incorporation of the statistical mechanics of the

magnetic moments into DFT, which is made amenable by the use of GFs;

• Anisotropic effects should be treated on the same footing, thus the relativistic

version of the KKR method is employed.

The outcome of combining all these ingredients is a theory which can be applied to

an heterogeneous system, be it a solid, a thin film or a nanoparticle. The magnetic

and electronic properties will be accessible from the fully saturated zero temperature

regime up to the high–temperature paramagnetic state, and the effects of anisotropy

can be tracked at the same time. Such an ambitious scheme will fall prey to the

approximations necessary to make it computationally tractable: a thorough discus-

sion will be given, and in the end it is hoped that the reader will be persuaded that

there is much useful information to be extracted from the approximate version of

the theory.

We begin by introducing the computational framework for electronic structure

calculations, in Chapter 2. DFT is presented as a tractable scheme providing an ap-

proximate solution of the full quantum many–body problem. Then a method for the

practical solution of the DFT equations is presented: MST—KKR. A self–contained

presentation is given, motivating all the main results needed in the following.
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The basic concepts of statistical mechanics are presented in Chapter 3. The

variational property of the free energy is recalled, together with some approxima-

tion techniques. Conventional finite temperature DFT is briefly outlined, and the

effective medium approach to the problem of computing the statistical averages is

reviewed. This is immediately applied to electronic structure calculations, without

further ado, as a consequence of working with GFs.

Chapter 4 collects the most useful concepts in magnetism for condensed matter

systems. The main approximations and computational schemes are introduced both

for the zero temperature and the finite temperature properties, with special emphasis

on those deployed in the later theoretical developments and numerical applications.

The ingredients presented in the first three chapters are then combined into the

disordered local moment theory of magnetism, in Chapter 5. The best single–site

approximation to the statistical mechanical problem is explained, and given in its

most general form. This is then cast into the KKR–DFT formalism, and practical

considerations discussed. A linear response approach gives access to the magnetic

interactions in the system, contained in the spin–spin correlation function, or S(2).

The extreme limits of complete magnetic order and complete magnetic disorder are

analysed, and the magnetic susceptibility emerges as a tool for detecting instabilities

of the reference magnetic state.

The S(2)’s computed from the paramagnetic state are used to understand the

magnetism of Mn monolayers, in Chapter 6. The role of the DM interactions is

highlighted. In Mn1/W(001), considerations based on a simple model, combined

with the information extracted from the S(2), explain the stabilisation of a cycloidal

spin spiral. The chiral degeneracy is lifted by the DM anisotropy, and the spin

spiral acquires a well–defined rotational sense [11]. Then the properties of Mn

on X(111), with X = Pd, Pt, Ag and Au, are presented. This informs on the

experimental finding of 120◦ antiferromagnetism in Mn1/Ag(111), in contradiction

with theoretical calculations. It is suggested that the different magnetic domains

observed in experiment could be attributed to the two chirality patterns possible for

the 120◦ state, which have their energy degeneracy broken by the DM anisotropy,

as in the previous case [12].

Chapter 7 describes three other applications. The evolution of the half–metallic

state in zincblende MnSb, which was grown epitaxially by experimentalists at the

University of Warwick [13], is tracked as a function of the degree of magnetisa-

tion. The spin polarisation at the Fermi energy is shown to be more robust against

magnetic disorder than that of NiMnSb [14], and shows promise for spintronics ap-

plications. Then the assumptions of the theory are put to the test in a system for

4



which the feedback between the magnitude of the local magnetic moments and the

electronic structure is important, bulk Co. To conclude, an illustration of how the

theory allows to compute the magnetic profile of a heterogeneous system is given,

taking an FeRh film embedded in V as an example.

Final remarks and an outlook then conclude this thesis, with some helpful but

not always essential information given in three appendices: on spherical harmonics,

on the energetics of spin spirals, and on the specifics of working with an hexagonal

lattice.
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Chapter 2

Properties of real materials

from ab–initio calculations

In a condensed matter system, one is faced with the daunting task of computing

the physical properties of a large number of electrons and nuclei, all mutually inter-

acting. There is no exact solution, and even if such a solution existed, its practical

manipulation would be impossible. This realisation leads to approximation schemes,

which may be more amenable to analytical or numerical treatment. Density Func-

tional Theory (DFT) is one of such schemes, in which the fundamental quantities

are the equilibrium densities (charge, magnetisation, etc.) of the physical system.

It allows detailed comparison with experiment at an affordable computational cost,

and provides a very flexible framework for theoretical and numerical developments.

For this reason DFT is the foundation of all that follows.

Once the DFT formalism is established, practical methods for solving the Kohn–

Sham equations for the systems of interest must be considered. Of the plethora

of methods available, the one which will be discussed is Multiple Scattering The-

ory (MST), the Korringa–Kohn–Rostoker (KKR) Green function (GF) formalism.

Working with the GF instead of the wave functions is very advantageous for several

problems, including those to be treated in this thesis. At the same time, employing

a DFT method which is naturally GF based also simplifies the numerical implemen-

tation of the theoretical developments. This justifies a self–contained presentation

of the theory, as later chapters will make heavy use of these concepts.
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2.1 Density Functional Theory

2.1.1 The quantum many–body problem

One could in principle attempt a solution of the system of coupled electrons and

nuclei, as done in the Car–Parrinello molecular dynamics method [15]. However

there is an intrinsic timescale separation in the problem: if the system is in thermal

equilibrium, the electrons and nuclei have comparable kinetic energy. As the nuclear

mass (M) is thousands of times larger than the electron mass (m), from the ratio

of the respective kinetic energies the nuclear velocities (vn) must be much smaller

than the electronic velocities (ve): vn/ve ≈
√
m/M . This is the essence of the Born–

Oppenheimer approximation [4]: the electrons move in the field of the stationary

nuclei, and follow them adiabatically.

The non–relativistic time–independent Hamiltonian operator describing this pic-

ture is, in the language of Quantum Field Theory [16],

Ĥ = K̂ + V̂ + Û =− ~2

2m

∑
α

∫
d~r ψ̂†α(~r)∇2 ψ̂α(~r) +

∑
α

∫
d~r ψ̂†α(~r)Vext(~r) ψ̂α(~r)

+
1

2

∑
αβ

∫
d~r

∫
d~r′ ψ̂†α(~r) ψ̂†β(~r′)W (~r, ~r′) ψ̂β(~r′) ψ̂α(~r) , (2.1)

{
ψ̂α(~r), ψ̂β(~r′)

}
=
{
ψ̂†α(~r), ψ̂†β(~r′)

}
= 0 ,

{
ψ̂α(~r), ψ̂†β(~r′)

}
= δ(~r − ~r′) δαβ . (2.2)

Here ψ̂α(~r) and ψ̂†α(~r) are fermionic field operators, which obey the standard

fermionic anticommutation relations, α, β = ↑, ↓ are spin labels, and Vext(~r) is the

one–body external potential, in this case the attractive Coulomb potential gener-

ated by the nuclei. W (~r, ~r′) = W (~r′, ~r) is the symmetric two–particle interaction

between the electrons, usually the repulsive Coulomb interaction, which is the source

of most difficulties for an approximate solution. Its second quantised form follows

straighforwardly from the requirement that the Hamiltonian be a Hermitian op-

erator. Both the one–body external potential and the two–body interaction can

be spin–dependent, but this is an unnecessary complication for the moment. The

Hamiltonian then naturally decomposes into the kinetic energy term K̂, the external

potential term V̂ and the interaction term Û . Symbols with a hat denote operators,

and the same symbols without the hat their expectation values.
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2.1.2 Hohenberg–Kohn theorem and the Kohn–Sham equations

In DFT the focus is on the ground state density,

n(~r) = 〈Ψ| n̂(~r) |Ψ〉 = 〈Ψ|
∑
α

ψ̂†α(~r) ψ̂α(~r) |Ψ〉 , W (~r, ~r′) =
e2

4πε0|~r − ~r′|
(2.3)

where |Ψ〉 is the many–body ground state, and we consider explicitly Coulomb

interactions. The Hohenberg–Kohn theorem [17] concerns the mappings from the

allowable external potentials Vext(~r) to the respective ground states Ψ, and from

these to the density n(~r). Suitable extensions to degenerate ground states and

other less restrictive formulations exist, but for illustration purposes the original

statements are sufficient:

• There is a one–to–one mapping between the external potential Vext(~r) and the

one–particle density n(~r), through the many–body ground state;

• Variational principle: the total energy of the system is minimised by the

ground state density, for a given external potential.

The total energy functional is given by

E[n] = 〈Ψ[n]| K̂ + Û + V̂ |Ψ[n]〉 = FHK[n] +

∫
d~r n(~r)Vext(~r) (2.4)

and FHK[n] is the Hohenberg–Kohn functional, which is a universal functional of

the density. The variational principle is given by the Euler–Lagrange equation

E[n] −→ E[n] + µ

(
N −

∫
d~r n(~r)

)
,
δFHK[n]

δn(~r)
+ Vext(~r)− µ = 0 (2.5)

by introducing the chemical potential µ, to ensure the correct number of electrons

is obtained.

As the exact functional is unknown, the Euler–Lagrange equation cannot be

solved as it stands. Kohn and Sham [18] suggested an approximation scheme, which

connects the real interacting electron system to a fictitious non–interacting system,

constructed so as to reproduce the one–particle density of the real system. Rewriting

the universal functional,

FHK[n] = K0[n] + EH[n] + Exc[n] (2.6)
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where K0[n] is the kinetic energy of the non–interacting system, the Hartree inter-

action energy term and the respective potential is introduced,

EH[n] =
1

2

∫
d~r

∫
d~r′ n(~r)

e2

4πε0|~r − ~r′|
n(~r′) =

1

2

∫
d~r n(~r)VH(~r) (2.7)

and the remaining term is the unknown exchange–correlation functional, which is

expected to be a small contribution, and which has to be approximated:

Exc[n] = K[n]−K0[n] + U [n]− EH[n] ,
δExc[n]

δn(~r)
= Vxc(~r) (2.8)

where the exchange–correlation potential is also defined. This functional must obey

many sum–rules and satisfy properties which were theoretically derived for the exact

functional [19]. The accuracy of a DFT calculation will depend crucially on the

approximation used here.

This rewriting leads to an Euler–Lagrange equation for non–interacting electrons,

which is equivalent to the Schrödinger Kohn–Sham equation,

δT0[n]

δn(~r)
+ Veff(~r) = µ =⇒ HS φn(~r) =

(
−~2∇2

2m
+ Veff(~r)

)
φn(~r) = εn φn(~r) (2.9)

with the effective potential and density,

Veff(~r) = Vext(~r) + VH(~r) + Vxc(~r) , n(~r) =
∑
n

fn φ
†
n(~r)φn(~r) ,

∑
n

fn = N (2.10)

with occupation factors fn = 1 if εn < µ, fn = 0 if εn > µ and 0 ≤ fn ≤ 1 if εn = µ

(in case of degeneracy at the Fermi level). As the effective potential depends on the

density, which in turn depends on the effective potential, we have a self–consistent

field (SCF) problem. This leads to the familiar expression for the total energy:

E[n] =
∑
n

fn εn − EH[n] + Exc[n]−
∫

d~r n(~r)Vxc(~r) (2.11)

where the first contribution is known as the single–particle or band energy, and two

double–counting terms are subtracted, to correct the contributions already included

in the eigenvalues εn.

2.1.3 Relativistic theory and magnetism

So far the magnetic properties have been omitted from the discussion. Magnetism

arises from the electronic spin, which is a natural concept in a relativistic formalism,

9



and somewhat ad–hoc in the previous non–relativistic Schrödinger picture. A full

relativistic description should employ the four–component current density instead

of the one–particle density, and include the electromagnetic Hamiltonian [19]. How-

ever, for the energies commonly encountered in condensed matter systems most of

these effects are insignificant, and one can proceed with a more limited theory.

The main difficulties in establishing the relativistic version of DFT are the same

one finds in developing relativistic quantum field theory. One must carefully renor-

malise the theory to ensure the removal of divergences, as explained in detail in

Ref. [19], arriving at a formulation based on the conventional particle and vector

current densities, and their couplings to the scalar and vector electromagnetic po-

tentials. Next one invokes the Gordon decomposition of the current [20], which sep-

arates the total current into its orbital and spin parts (plus a gauge term). Keeping

only the spin current (i.e., ignoring diamagnetic effects) leads to the Dirac version

of the Kohn–Sham Hamiltonian [5]:

HD φn(~r) =
(
−i~c ~α · ~∇+ βmc2 + Veff(~r) I4 + β~Σ · ~Beff(~r)

)
φn(~r) = ωn φn(~r) .

(2.12)

Now the Kohn–Sham orbitals are four–component spinors, the relativistic kinetic

energy includes the rest mass term mc2. From the familiar 2× 2 Pauli matrices

I2 =

(
1 0

0 1

)
σx =

(
0 1

1 0

)
σy =

(
0 −i

i 0

)
σz =

(
1 0

0 −1

)
(2.13)

one introduces the vector of Pauli matrices ~σ = (σx, σy, σz) and constructs the

necessary 4× 4 matrices:

~α =

(
0 ~σ

~σ 0

)
β =

(
I2 0

0 −I2

)
~Σ =

(
~σ 0

0 ~σ

)
I4 =

(
I2 0

0 I2

)
(2.14)

The scalar effective potential Veff(~r) is defined as before, and there is in addition an

effective magnetic potential,

~Beff(~r) = ~Bext(~r) + ~Bxc(~r) , ~Bxc(~r) =
e~

2mc

δExc[n, ~m]

δ ~m(~r)
= µB

δExc[n, ~m]

δ ~m(~r)
. (2.15)

The exchange–correlation functional may now include relativistic corrections. The

relativistic definition of the particle and magnetisation densities are as follows,

n(~r) =
∑
n

fn φ
†
n(~r) I4 φn(~r) , ~m(~r) =

∑
n

fn φ
†
n(~r)β~Σφn(~r) ,

∑
n

fn = N (2.16)
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where the four components of the spinors trace out. The summations are only over

positive energy states. As done for the particle density, the magnetisation density

is also defined without any prefactors (the Bohr magneton µB is affected to the

effective magnetic field).

The electrostatic interaction can be factored out into the Hartree term, but now

there is also a magnetostatic contribution:

EB[~m] =
1

2

∫
d~r

∫
d~r′

µ2
B

|~r − ~r′|3
~m(~r) · ~m(~r′)−

4πµ2
B

3

∫
d~r ~m(~r) · ~m(~r)

− 1

2

∫
d~r

∫
d~r′

3µ2
B

|~r − ~r′|5
~m(~r) · (~r − ~r′) ~m(~r′) · (~r − ~r′) (2.17)

which is one form of the Breit interaction [21]. This term is usually not consid-

ered explicitly, but it is an important contribution to the magnetic anisotropy, and

to the stability of domain walls and domain structures, as is well–known in the

micromagnetics community [22].

The total energy is the natural extension of the previous definition:

E[n] =
∑
n

fn ωn−EH[n] +Exc[n, ~m]−
∫

d~r n(~r)Vxc(~r)−
∫

d~r ~m(~r) · ~Bxc(~r) (2.18)

and is the same expression found in conventional spin–polarised non–relativistic

DFT [19]. The subtle effects of relativity in condensed matter physics will be con-

sidered in detail in later sections.

2.1.4 Properties of the exchange–correlation functional and the

Local Density Approximation

A closer look at the ingredients of the quantum many–body problem gives useful

information about the properties of the exchange–correlation functional. Consider

the pair density,

n2(~r, ~r′) = 〈Ψ|
∑
αβ

ψ̂†α(~r) ψ̂†β(~r′) ψ̂β(~r′) ψ̂α(~r) |Ψ〉 (2.19)

which is the probability of finding an electron at ~r′, given that there is one at ~r.

Manipulating the field operators this can be rearranged as

n2(~r, ~r′) = n(~r)
[
n(~r′) + nxc(~r, ~r

′)
]

(2.20)
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where the quantity nxc(~r, ~r
′) is known as the exchange–correlation hole. Integrating

the pair density yields the number of pairs in the system, so∫
d~r

∫
d~r′ n2(~r, ~r′) = N(N − 1) =⇒

∫
d~r′ nxc(~r, ~r

′) = −1 (2.21)

which shows where the exchange–correlation hole gets its name from. If the system

is non–interacting, W (~r, ~r′) = 0, then by definition there is no correlation among

the electrons, and we find only the exchange hole, nx(~r, ~r′), which accounts for the

quantum–mechanical nature of the electrons. Then we may split as follows,

nxc(~r, ~r
′) = nx(~r, ~r′) + nc(~r, ~r

′) ,

∫
d~r′ nx(~r, ~r′) = −1 ,

∫
d~r′ nc(~r, ~r

′) = 0 (2.22)

a result which can be proved through the adiabatic connection between the inter-

acting and the non–interacting system [19].

Introducing these definitions in the interaction functional one obtains

W [n] =
1

2

∫
d~r

∫
d~r′ n2(~r, ~r′)W (~r, ~r′)

=
1

2

∫
d~r

∫
d~r′ n(~r)W (~r, ~r′)

[
n(~r′) + nxc(~r, ~r

′)
]

= EH[n] + E′xc[n] (2.23)

which then decomposes into the Hartree energy and one contribution to the exchange–

correlation functional (the other arising from the difference between the kinetic en-

ergy for the interacting and the non–interacting systems).

From the last expression one can see that the exchange–correlation functional is

a non–local quantity. On the other hand, it should also be a universal functional.

This reasoning leads to the Local Density Approximation (LDA): the exchange–

correlation functional can be obtained for the homogeneous interacting electron gas

[19]. Then one uses this result locally at each point for the inhomogeneous system:

Exc[n] =

∫
d~r n(~r) gxc[n] ≈

∫
d~r n(~r) gLDA

xc (n(~r)) . (2.24)

The key for the success of the LDA is that is satisfies the sum rules indicated above,

despite the local approximation. These ensure some cancellation of errors, but

more refined approximations to the exchange–correlation functional exist and are

necessary in many cases. The LDA was used in all the calculations to be described

in the following.
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2.1.5 Constrained calculations

Already in the development of the Kohn–Sham formalism a constraint was intro-

duced in DFT, the chemical potential µ, ensuring the correct number of electrons

is obtained. This is a very general way of incorporating constraints into DFT: the

constraint and the respective Lagrange multiplier are added to the total energy func-

tional, which is then minimised to obtain a modified Euler–Lagrange equation, and

the respective Kohn–Sham equations [23]. The constraints relevant in the present

context are those on magnetic properties.

Suppose one wishes to constraint the total magnetisation inside some volume V .

The magnitude of the total magnetisation, M , and its orientation, ê, are defined as

M =

∣∣∣∣∫
V
d~r ~m(~r)

∣∣∣∣ , ê =
1

M

∫
V
d~r ~m(~r) , ~M = Mê (2.25)

and let the desired values be M0 and ê0 (both constraints need not be simultaneously

enforced). The functional to be minimised is given by

E[n, ~m;M0, ê0] = E[n, ~m] + hL
(
M −M0

)
+ ~hT ·

(
~M −Mê0

)
. (2.26)

Varying with respect to the Kohn–Sham–Dirac orbitals, one arrives at

(
HD + β~Σ · ~h

)
φn(~r) = ωn φn(~r) , ~h = hLê+ ~hT with ~hT · ê = 0 . (2.27)

Here the Lagrange parameters are longitudinal (hL) and transverse (~hT ) magnetic

fields, with respect to the magnetisation direction ê.

The differential of the total energy functional with respect to the parameters M0

and ê0 is simply

dE[n, ~m;M0, ê0] = −hL(M0, ê0) dM0 −M~hT (M0, ê0) · dê0 (2.28)

which is one instance of the ubiquitous Hellmann–Feynman theorem [19], and gen-

eralises the classical Zeeman energy. One can obtain the energy difference between

constrained magnetic states by integrating this expression. Possible applications

include energy differences between magnetic states, magnetic anisotropy energy cal-

culations and magnetic exchange interaction parameters [23–26].

2.1.6 Extensions and going beyond Density Functional Theory

DFT using the LDA is a very successful scheme, giving results for lattice constants

within a few percent of the experimental values for most systems. This is im-
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proved further by the Generalised Gradient Approximation (GGA) [19, 27], which

includes corrections due to the gradient of the density into the exchange–correlation

functional. Research into improvements of the exchange–correlation functional is

on–going, with new proposals being presented regularly. Both the LDA and the

GGA, however, still fail for special classes of materials, most notably strongly cor-

related systems. This can be traced into two main points: the self–interaction error

and the derivative discontinuity error. They are closely related to each other.

The derivative discontinuity error is the failure of the approximate exchange–

correlation functional in reproducing a property of the exact one: the derivative of

the total energy with respect to the number of electrons (generalised to be a real

number) should be constant between integer values, with a jump at each integer

[28, 29]. This derivative is just the chemical potential, and the jumps are related to

the change in energy as an electron is added (affinity) or removed (ionisation) from

the system.

The self–interaction error stems from approximating the true potential energy

by the Hartree electrostatic energy, which includes the interaction of each electron

with itself, and this is only partially corrected by the LDA functional. This was

recognised a long time ago [30], and the self–interaction correction (SIC) scheme

has been implemented successfully in various DFT codes, including KKR [31]. As

an application, the magnetic properties of the rare–earth metals [32] and some tran-

sition metal oxides [33] were computed and found to be in very good agreement

with experiment. It can be shown that the self–interaction error vanishes for a com-

pletely delocalised state. It should then be small for the delocalised sp states, but

important for the fairly localised d and completely localised f states. An alternative

correction scheme, the LDA+U [34, 35], adopts this point of view: electronic corre-

lations in localised states are the important source of error, and so these are treated

using a Hubbard–like model. The Hubbard parameter U can be determined from

first–principles, but it is usually kept as an adjustable quantity. Dynamical Mean

Field Theory (DMFT) [36] is the natural extension of the LDA+U method, moving

from the static to a dynamic treatment of correlations. LDA+DMFT methods are

becoming more common, also in KKR [37].

Ultimately a direct attempt at solving the full many–body problem could also

be pursued, thanks to modern fast supercomputers. The GW method [38] is the

first step towards this goal: starting from a DFT calculation, the screened Coulomb

interactionW is computed, and the new ground state properties constructed. Many–

Body Perturbation Theory (MBPT) [6] takes a similar approach. The most accurate

and most computationally demanding methods are the quantum–chemical Configu-
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ration Interaction (CI) [39] and the Quantum Monte Carlo (QMC) methods [40, 41].

This brief overview of methods beyond simple DFT+LDA is by no means exhaus-

tive, and it is only meant to give a flavour of some challenging problems.

2.2 Multiple Scattering Theory

2.2.1 The Lippmann–Schwinger and Dyson equations

The core of any DFT calculation is the solution of the appropriate Kohn–Sham

equations, to then reconstruct the density and proceed with the self–consistent cy-

cle. In general terms, the problem is how to find the solution of the appropriate

single–particle equations, given the Hamiltonian. This usually leads to an cumber-

some eigenvalue problem, and much cunning is needed to accelerate this part of the

computation. On the other hand, if one switches from wave functions to GFs, this

can be avoided, and other benefits will follow, from the analytical properties of these

operators. The application of these ideas to DFT calculations constitutes the KKR

method of electronic structure [5, 42, 43].

The single–particle problem can be stated as such: given the Hamiltonian H,

find the eigenvalues εn and the corresponding eigenfunctions ψn. The Hamilto-

nian is then split into a reference part, H0, and a remainder, which is typically a

potential term, V . H0 has its own set of eigenfunctions, φn, and presumably its

spectrum overlaps with that of H, so that in that energy range the eigenvalues are

shared (which typically happens in the continuum part of the spectrum, for positive

energies). If the eigenvalue εn is shared, then one can write

(εn −H)ψn = 0 and (εn −H0)φn = 0 =⇒ (εn −H) δψn = V φn (2.29)

by putting ψn = φn + δψn. Defining the resolvents or GFs G(z) and G0(z) at

complex energy z = ε+ iδ,

G(z) =
1

ε−H+ iδ
, G0(z) =

1

ε−H0 + iδ
=⇒

{
ψ±n = φn +G±(εn)V φn

ψ±n = G±0 (εn)V ψ±n
(2.30)

where it is indicated that when the energy approaches an eigenvalue, one can choose

two different side limits, δ → ±0. This result is known as the Lippmann–Schwinger

equation [5], and has a simple physical interpretation. The total wavefunction ψn is

the sum of the reference wavefunction φn, and its multiple scattering contribution

from the potential V . Many experiments can be understood in this way.

As might be expected, the resolvents are also connected in a simple way, by the
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so–called Dyson equation [5]:

G(z) = G0(z) +G0(z)V G(z) = G0(z) +G(z)V G0(z)

= G0(z) +G0(z)V G0(z) +G0(z)V G0(z)V G0(z) + . . .

= G0(z) +G0(z) T (z)G0(z) (2.31)

where the last equality makes the connection with the familiar Born series for mul-

tiple scattering from a given potential [5]. All the effects of scattering from the

potential V were summed into the t–matrix operator, T . The Lippmann–Schwinger

equation can now also be written as

ψ±n = φn +G±0 (εn) T (εn)φn as G±(εn)V = G±0 (εn) T (εn) . (2.32)

The usefulness of the GF concept is already apparent in its spectral representa-

tion:

G±(ε) =
P

ε−H
∓ iπ δ(ε−H) =⇒ ∓ 1

π
Im TrG±(ε) =

∑
n

δ(ε− εn) ≡ n(ε) (2.33)

where P is the principal value, and we obtain the density of states (DOS) of the

Hamiltonian, by definition. The number of electrons at energy ε is given by

N(ε) =

∫ ε

dε′ n(ε′) = ± 1

π
Im Tr logG±(ε) (2.34)

which follows directly from the previous equation and the definition of the GF. Using

the Dyson equation and performing some manipulations yields

N(ε) = N0(ε) + ∆N(ε) , ∆N(ε) = ± 1

π
Im Tr log T ±(ε) (2.35)

with N0(ε) the number of electrons for the reference GF, and ∆N(ε) the excess

number of electrons due to the scattering properties, the celebrated Lloyd formula

[44].

In the position representation one writes

G±(~r, ~r′; ε) =
∑
n

ψn(~r)ψ†n(~r′)

ε− εn ± i0
=⇒ n(~r) = ∓ 1

π
Im Tr

∫
dε f(ε)G±(~r, ~r; ε) (2.36)

as can be checked by comparing with the definition, Eq. 2.10. The occupation

function is simply f(ε) = 1 if ε ≤ µ and zero otherwise. Similar expressions can be

derived for other physical properties, and will be presented later. In what follows
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the approach to the real energy axis will always be taken from the upper half of the

complex plane, so the sign in the GF is fixed to + and will henceforth be dropped.

As the GF G(z) is analytic for z = ε + i|δ|, the energy integration contour can

be deformed into the upper half of the complex plane. Computationally this is very

advantageous, as the highly structured nature of the GF on the real energy axis is

broadened when the energy acquires a finite imaginary part. The particle density

can then be computed using only complex energies:

n(~r) = − 1

π
Im Tr

∫ µ

dεG(~r, ~r; ε) = − 1

π
Im Tr

∫ µ

y
dz G(~r, ~r; z) . (2.37)

The integration along the real axis up to energy µ is deformed into a semicircular

contour in the upper half of the complex plane, ending at the same energy.

More generally, consider some operator Â. Evaluating

− 1

π
Im Tr

∫ µ

y
dz ÂG(~r, ~r; z) =

εn≤µ∑
n

ψ†n(~r′) Â ψn(~r) = A(~r, ~r′) (2.38)

where the trace was used to reorder the wavefunctions, and the contour integration

becomes a summation over the simple poles corresponding to the eigenenergies. The

expectation value of any operator can thus be computed by tracing it together with

the GF, in the desired representation.

2.2.2 Scattering by a localised potential

The total potential is usually split into contributions surrounding each atom, V =∑
i Vi. Then the calculation splits into two parts: solution of the scattering problem

associated with each potential Vi, and combining all the scattering contributions

into the full scattering properties of the system. The first part is described in this

subsection, while the second part follows in the next subsection. Some comments

on terminology [5]:

• Muffin–tin approximation (MTA): spherical potential in a spherical region,

V (~r) = V (r) for r < rMT and V (~r) = 0 otherwise. When splitting the

potential into cells, non–overlapping spheres are used. The region of constant

potential outside the potential spheres is called interstitial region;

• Atomic sphere approximation (ASA): same conditions on the potential as the

MTA. In the ASA the interstitial region is eliminated, by choosing overlapping

spheres whose volume adds up to the total volume of the system;
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• Full–potential: non–spherical potential in a non–spherical region. There is no

interstitial region or overlap between potentials in adjacent cells.

Let Vi(~r) denote some local potential of finite range centred at position ~Ri, and Si
the region where it is non–zero. The position vectors ~r and ~r′ will be taken to refer to

this origin. The following discussion applies to non–spherical potentials in regions of

arbitrary shape [45], but the original theory made use of spherical potentials inside

spherical regions [46]. The Lippmann–Schwinger equation now reads, in the position

representation,

ψi(~r; ε) = φ(~r; ε) +

∫
d~r1

∫
d~r′G0(~r, ~r1; ε) ti(~r1, ~r

′; ε)φ(~r′; ε) (2.39)

while the t–matrix for the potential Vi(~r) satisfies the Dyson equation:

ti(~r, ~r
′; ε) = Vi(~r) δ(~r − ~r′) + Vi(~r)

∫
d~r1G0(~r, ~r1; ε) ti(~r1, ~r

′; ε) (2.40)

and ti(~r, ~r
′; ε) = 0 if ~r or ~r′ are outside the potential region.

Choosing the free electron Hamiltonian for H0, the wavefunctions φ(~r; ε) are just

plane waves, and can be written in spherical coordinates as a linear combination of

spherical Bessel functions j`(x), using Bauer’s identity [5]:

ei~k·~r = 4π
∑
L

i` j`(kr)Y
∗
L (r̂)YL(k̂) , k =

√
ε . (2.41)

Here ` is the angular momentum quantum number, m is the magnetic quantum

number, and L = (`,m) is a combined index. The functions YL(r̂) are spherical

harmonics, the eigenfunctions of the orbital angular momentum operator, and we

have L̂2 YL(r̂) = `(` + 1)YL(r̂) and L̂z YL(r̂) = mYL(r̂). This is the motivation for

the partial wave representation, where all quantities are expressed in terms of linear

combinations of spherical Bessel functions and spherical harmonics.

The GF corresponding to H0 is then the GF for the Helmholtz wave equation:

G0(~r, ~r′; ε) = − 1

4π

eik|~r−~r′|

|~r − ~r′|
= −ik

∑
L

j`(kr<)h+
` (kr>)YL(r̂)Y ∗L (r̂′) (2.42)

with r> = max{r, r′} and r< = min{r, r′}, and h+
` (x) a spherical Hankel function.

For ~r outside the sphere bounding the region Si, we can write from Eq. 2.39

ψi(~r; ε) −→ Ri,L(~r; ε) = j`(kr)YL(r̂)− ik
∑
L′

h+
`′ (kr)YL′(r̂) ti,L′L(ε) (2.43)
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which defines the angular momentum representation of the t–matrix:

ti,L′L(ε) =

∫
d~r

∫
d~r′ j`′(kr

′)Y ∗L′(r̂′) ti(~r
′, ~r; ε) j`(kr)YL(r̂) (2.44)

and this solution must match smoothly to the corresponding one for ~r inside the

bounding sphere,

Ri,L(~r; ε) = j`(kr)YL(r̂) +

∫
d~r1

∫
d~r′G0(~r, ~r1; ε) ti(~r1, ~r

′; ε) j`(kr
′)YL(r̂′) (2.45)

which is regular at the origin of the potential, ~Ri. Likewise an irregular solution can

be defined, by finding the solution that matches to

Hi,L(~r; ε) = −ik h+
` (kr)YL(r̂) (2.46)

outside the bounding sphere. There is an alternative set of solutions, which is also

in common use, with different matching conditions:

Zi,L(~r; ε) −→
∑
L′

j`′(kr)YL′(r̂) t–1
i,L′L(ε)− ik h+

` (kr)YL(r̂) (2.47)

Ji,L(~r; ε) −→ j`(kr)YL(r̂) . (2.48)

This approach leads naturally to matrix equations in angular momentum labels,

where the angular momentum matrices are denoted with an underline. For instance,

the Dyson equation for the t–matrix is then just

ti(ε) = V i(ε) + V i(ε)G0,ii(ε) ti(ε) =⇒ ti(ε) =
[
V –1
i (ε)−G0,ii(ε)

]–1
(2.49)

where the potential coefficients are

Vi,L′L(ε) =

∫
d~r

∫
d~r′ j`′(kr

′)Y ∗L′(r̂′)Vi(~r) δ(~r − ~r′) j`(kr)YL(r̂) . (2.50)

The GF is then, choosing the latter set of solutions,

Gi(~r, ~r
′; ε) =

∑
LL′

Zi,L(~r; ε) ti,LL′(ε)Z×i,L′(~r
′; ε)−

∑
L

Zi,L(~r<; ε) J×i,L(~r>; ε) . (2.51)

The × superscript means conjugate only the spherical harmonics, and ~r> and ~r<

stand for the largest and the smallest of the vectors ~r and ~r′, respectively.

The partial wave basis is a minimal basis for spherically symmetric potentials

inside spherical regions. When dealing with non–spherical potentials and/or non–
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spherical regions it can become quite cumbersome. The sum over angular momen-

tum components is usually truncated at some value of `. Typically `max = 3 or 4

is sufficient for most applications. The expansion of the potential also has to be

truncated, but not necessarily at the same value of `max. For instance, the MTA

and the ASA use `max = 0 for the potential, which is the spherical approximation.

When ~r � ~r1 then |~r− ~r1| ≈ r− r̂ · ~r1, the Lippmann–Schwinger equation gives

ψi(~r; ε) ≈ ei~k·~r − eikr

4πr

∫
d~r1

∫
d~r′ ei(~k·~r′−~k′·~r1) ti(~r1, ~r

′; ε) = ei~k·~r +
eikr

r
f(~k′,~k) (2.52)

by letting ~k′ = kr̂. The initial planewave, with chosen ~k and k =
√
ε, is scattered into

an outgoing spherical wave, with scattering amplitude from ~k to ~k′ given by f(~k′,~k),

and its absolute value squared is the differential cross–section for the scattering

process [45]. This asymptotic limit makes the connection with experiments in which

a probing beam is fired at a sample, and its properties reconstructed from the signal

measured at detectors placed around the sample.

2.2.3 Scattering by a collection of localised potentials

Suppose that the total potential is given as a sum of non–overlapping potentials

Vi, centred at position vectors ~Ri. If we work in the partial wave basis, operator

equations become matrix equations in angular momentum labels. Eq. 2.49 then

generalises to (omitting the energy dependence)

T =
∑
i

V i +
∑
ij

V iG0,ijV j +
∑
ijk

V iG0,ijV j G0,jkV k + . . . (2.53)

Making use of the single–site t–matrices introduced before, the Born series can be

rewritten as [5, 45]

T =
∑
ij

τ ij , τ ij = ti δij + ti
∑
k 6=i

G0,ik τkj = ti δij + (1− δij) tiG0,ij tj + · · · (2.54)

where the scattering path operator (SPO) τ ij has been introduced. The scattering

from each potential is contained in the ti’s, while the propagation between sites is

given by G0,ij . The SPO then sums all scattering events which begin on site i and

end on site j; each such sequence of scattering events is called a scattering path.

The other new quantity in this expression is the angular momentum represen-

tation of the free electron GF between different potential sites. This is given by
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G0,ij,LL′(ε) = −4π ik
∑
L1

i`−`
′−`1 CL1

LL′ YL1(R̂ij)h
+
`1

(kRij) (2.55)

where ~Rij = ~Rj − ~Ri is the vector connecting the origins of the potentials Vi and

Vj , Rij its norm and R̂ij the unit vector pointing from i to j. The coefficients CL1
LL′

are the Gaunt numbers,

CL1
LL′ =

∫
dr̂ YL(r̂)Y ∗L′(r̂)YL1(r̂) (2.56)

which can also be expressed in terms of Clebsch–Gordan coefficients. The full GF

is then written in terms of its blocks in site indices

Gij(~r, ~r
′; ε) = Zi(~r; ε) τ ij(ε)Z

×
j (~r′; ε)− δij Zi(~r<; ε) J×i (~r>; ε) (2.57)

and omitting the summation over the angular momentum labels (cf. Eq. 2.51).

Now the main advantage of using MST and the KKR method becomes apparent:

there is a clear separation between the potentials, whose local effects are summed up

into the single–site t–matrices ti, and their arrangement in space, which is described

by the reference GF connecting the potential sites, G0,ij .

2.2.4 Choice of reference system: free and screened propagators

The free electron GF has no special status in Multiple Scattering Theory. One could

equally well choose a different reference Hamiltonian, and the theory would follow

as before. This is the key idea to the screening transformation [47, 48]: the reference

system is now taken as a set of repulsive potentials in the same geometry as the real

system. For simplicity repulsive spherical muffin–tin potentials are usually chosen:

Wi(r) = W0 > 0 if r < rMT and zero otherwise. The scattering properties of these

potentials are encoded as usual in single–site t-matrices; tr(ε) will then apply to all

sites i. The GF for this new reference system has the following important property:

Gr,ij(ε)→ 0 exponentially when Rij →∞ (2.58)

One can then consider only those sites which are less than some distance d apart,

suitably chosen. The GF of the real system is connected to the one of the reference

system by the usual Dyson equation:

G(z) = Gr(z) +Gr(z) ∆T (z)Gr(z) . (2.59)
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Here ∆T (z) denotes the difference in the scattering properties of the two systems.

In terms of the single–site t–matrices this can be written as ∆ti(ε) = ti(ε) − tr(ε),
where ti are the previously described t–matrices, which in this context are referred

to as bare or unscreened t–matrices. The corresponding SPOs are also connected in

a simple way, as the transformation is diagonal in site indices [47]:

τ ij(ε) = ti(ε)
[
∆ti(ε)

–1∆τ ij(ε) ∆tj(ε)
–1 + δij

(
ti(ε)

–1 −∆ti(ε)
–1
)]
tj(ε) (2.60)

and the screened SPO is now obtained by inverting a sparse matrix, by construction:

∆τ ij(ε) =
[
∆t–1(ε)−Gr(ε)

]–1

ij
. (2.61)

2.2.5 Bulk, surface and interface formulations, and the embedded

cluster method

In most situations one is interested in a regular arrangement of single–site poten-

tials. Examples are crystalline lattices, and their surfaces or interfaces. Here one

can exploit two or three–dimensional periodicity to enormously reduce the compu-

tational burden, often in combination with the screening transformation. However,

systems in which there is no periodicity, such as clusters, nanoparticles, and molec-

ular junctions, are also within the remit of MST. This is in contrast to most other

electronic structure methods, in which some supercell approximation must be made,

in order to restore the necessary periodicity for calculations. Periodicity in a given

spatial direction can be assumed if there is a macroscopic number of atoms in that

direction: for instance, the number of atoms in a bulk sample is of the order of

Avogadro’s number, 1023, and so the limit N →∞ at constant density is taken, the

so–called thermodynamic limit.

Let us start from the most basic case: three–dimensional periodicity, which ap-

plies to bulk systems. The locations of the potentials are given in a regular fashion:

~RIi = ~RI + ~Ri. Here ~RI sets the origin of sublattice I, and ~Ri = i1~a1 + i2~a2 + i3~a3

spans the Bravais lattice associated with the lattice vectors ~a1, ~a2 and ~a3, common

to all sublattices, with i1, i2 and i3 running over all positive and negative integers.

On every site of each sublattice the same potential can be found, VIi = VI , and so the

same single–site t–matrix tI applies to all the sites in each sublattice. The reciprocal

Bravais lattice is spanned by the vectors ~b1, ~b2 and ~b3, such that ~aα ·~bβ = 2πδαβ,

for α, β = 1, 2, 3. Due to periodicity, the crystal momentum can be restricted to
~k = k1

~b1 + k2
~b2 + k3

~b3, where k1, k2 and k3 are reals, say between zero and one.
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Figure 2.1: Commonly encountered geometries: a) — Simple bulk geometry, the
same potential on all sites. b) — Two examples of semi–infinite structures. Semi–
infinite left (L) and right (R) regions interact through an interfacial (I) region. The
left diagram represents a surface, with vacuum depicted by empty circles, while
the right diagram represents an interface between different materials; the dashed
lines delimit the notional interface region, where the potentials deviate from their
bulk counterparts. c) — A cluster embedded in a host material. The dashed circle
represents the embedding region, including perturbed host atoms due to the presence
of the neighbouring cluster atoms.

The SPO is given by Eq. 2.54. Summing over the Fourier factors yields

τ IJ(~k; ε) = tI(ε) δIJ + tI(ε)
∑
K

G0,IK(~k; ε) τKJ(~k; ε) (2.62)

with the Fourier transforms defined as (~RIi,Jj = ~RJj − ~RIi = ~RIJ + ~Rij)

AIJ(~k) =
∑
j

ei~k·~RIi,IjAIi,Jj , AIi,Jj =

∫
d~k

VBZ
e−i~k·~RIi,JjAIJ(~k) (2.63)

and noting the independence of the choice of origin for the lattice. Then the Fourier

transformed SPO can be obtained by inverting a matrix in sublattice and angular

momentum indices,

τ(~k; ε) =
[
t–1(ε)−G0(~k; ε)

]–1
=⇒ τ Ii,Jj(ε) =

∫
d~k

VBZ
e−i~k·~RIi,Jjτ IJ(~k; ε) (2.64)

with VBZ the volume of the Brillouin zone, the Wigner–Seitz cell of the reciprocal

space Bravais lattice. These statements are equivalent to the traditional Bloch

theorem of solid state physics. Site–diagonal properties, such as the density in each

unit cell, are independent of the site index, but depend on the sublattice index.

In surface and interface calculations the system of interest is taken to be an

infinite stack of layers, all of which must possess the same two–dimensional Bravais
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lattice. Then only two–dimensional periodicity applies; in the previous definitions

we now have the restrictions ~Ri = i1~a1 + i2~a2 and ~k = k1
~b1 +k2

~b2. The vectors ~RI

set the origin for each layer. The next step is to assume that the surface or interface

region is of finite extent, being confined to a finite number N of layers (see Fig. 2.1):

• Left region (L): layers numbered −∞ ≤ P ≤ 0; a set of t–matrices tL applies;

• Right region (R): layers numbered N + 1 ≤ P ≤ +∞; a set tR applies;

• Surface/interface region (I): layers numbered 1 ≤ P ≤ N ; a set tI applies.

This means that Eq. 2.64 is now infinite–dimensional. If however the left and right

regions only couple through the interface region, the matrix to be inverted has the

following structure:t
–1
L (ε)−G0,LL(ε;~k) −G0,LI(ε;

~k) 0

−G0,IL(ε;~k) t–1
I (ε)−G0,II(ε;

~k) −G0,IR(ε;~k)

0 −G0,RI(ε;
~k) t–1

R (ε)−G0,RR(ε;~k)

 (2.65)

and the central block is of finite dimension in layer indices. This matrix can be

formally inverted using the inversion formula for block matrices. Defining

τLL(ε;~k) =
[
t–1
L (ε)−G0,LL(ε;~k)

]–1
, τRR(ε;~k) =

[
t–1
R (ε)−G0,RR(ε;~k)

]–1
(2.66)

which are the SPOs for the left and right semi–infinite regions, and so can be ob-

tained by the procedures applicable to bulk calculations, the SPO corresponding to

the interface block is then given by the following finite–dimensional matrix inversion:

τ II(ε;
~k) =

[
t–1
I (ε)−G0,II(ε;

~k)−G0,IL(ε;~k) τLL(ε;~k)G0,LI(ε;
~k)

−G0,IR(ε;~k) τRR(ε;~k)G0,RI(ε;
~k)
]–1

. (2.67)

The inverse of the first two terms would be the SPO for the isolated N interface

layers; then the next two terms are the coupling to the left and right regions. Two–

dimensional periodicity still applies.

All these computations are made very efficient by choosing the screened reference

GF instead of the free electron one for G0. Then the matrix becomes sparse, and

the method of Godfrin can be used [49].

If there is no overall periodicity to be exploited, but the system can be thought

of as a perturbed region in some host material, one can make use of the embedded

cluster method. The t–matrices for sites inside the cluster or perturbed region are
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denoted tc while for the unperturbed host atoms th applies. The SPO for the cluster

region is then expressed in terms of the difference between the scattering properties

of the atoms in the cluster and those of the host material [50, 51]:

τ c(ε) = τh(ε)
[
1 +

(
t–1
c (ε)− t–1

h (ε)
)
τh(ε)

]–1
. (2.68)

Here τh is the SPO one obtains for the cluster region if all atoms are replaced with

host atoms. As no use can be made of translational invariance, the matrix size is

the product of the size of the angular momentum matrices and of the number of

atoms in the cluster. Iterative methods can also be considered, again exploiting

the short–range nature of the screened GFs. This geometry is depicted in the right

panel of Fig. 2.1.

2.2.6 Relativistic formulation and magnetism

In the non–relativistic case, the angular momentum label L = (`,m) combines the

eigenvalues of L̂2 and L̂z, and can also include a spin label, for the spin–polarised

case, according to the eigenvalues of Ŝz Φs = sΦs, where Φs is a two–component

spinor (s = ±1/2). These are the appropriate quantum numbers for a Schrödinger–

type single–particle Hamiltonian. However, once relativistic effects are considered,

in particular spin–orbit coupling (SOC), the spin and orbital degrees of freedom

become coupled, and the more appropriate operators to consider are the total an-

gular momentum Ĵ = L̂ + Ŝ and the SOC operator K̂ = 2L̂ · Ŝ + Î. Instead

of spherical harmonics, augmented by spinor functions, one must now construct

appropriate linear combinations, called spin–spherical harmonics, and denoted by

χκµ(r̂). The new quantum numbers are obtained from Ĵ2 χκµ(r̂) = j(j + 1)χκµ(r̂),

Ĵz χκµ(r̂) = µχκµ(r̂) and K̂ χκµ(r̂) = −κχκµ(r̂). The following relationship is to be

noted: κ = ` if j = `−1/2, and κ = −`−1 if j = `+1/2, so there is a unique connec-

tion between κ and j, through `. The relativistic quantum numbers are thus usually

chosen as Q = (κ, µ), and there is a simple correspondence between the (`,m, s) and

(κ, µ) representations, through the relevant Clebsch–Gordan coefficients [5].

Formally all the equations of MST are very similar in the non–relativistic and

relativistic cases. However, there are two main caveats: working at complex energies

and the presence of an effective magnetic field in the equations. These lead to

several technical complications [5], but also to some symmetry considerations. While

the non–relativistic Hamiltonian commutes with spin rotations, which leads to the

generalised Bloch theorem used in magnetic spin spiral calculations [52], this is no

longer true in the relativistic case. The Dirac Hamiltonian only remains invariant
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to transformations which rotate simultaneous the spin and the coordinates [52].

In the relativistic case, the radial solutions become bi–spinors, and the particle

and magnetisation densities in the cell corresponding to site i follow from Eq. 2.38,

with ε =
√
ω2 −m2c4:

ni(~r) = − 1

π
Im Tr

∫
dε f(ε)Gii(~r, ~r; ε)

~mi(~r) = − 1

π
Im Tr

∫
dε f(ε)β~ΣGii(~r, ~r; ε) (2.69)

which integrate to the total number of electrons and total magnetic moment in the

cell. The DOS is given by

ni(ε) = − 1

π
Im Tr

∫
d~r
∑
QQ′

Zi,Q(~r; ε) τii,QQ′(ε)Z×i,Q′(~r; ε) + . . . =
∑
QQ′

ni,QQ′(ε) (2.70)

and the eigendecomposition of this angular momentum matrix provides information

on the number of states (eigenvalue) of each symmetry (eigenvector). In particular,

the amount of mixing betweeen spin–up and spin–down channels due to SOC can

be assessed, after transforming back to the (`,m, s) basis.

The bandstructure is given by the poles of the Bloch spectral function. If there

is translational invariance, and for simplicity all sites are taken to be equivalent,

AB(~k, ε) =
∑
n

δ
(
ε− εn(~k)

)
= − 1

π
Im Tr

∫
d~r G(~r, ~r;~k, ε)

= − 1

π
Im Tr

∫
d~r
∑
QQ′

ZQ(~r; ε) τQQ′(~k, ε)Z×Q′(~r; ε) + . . . (2.71)

which just requires the Fourier transform of the SPO.
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Chapter 3

Ensemble averages and the

effective medium approach

In DFT the original quantum–mechanical problem involving a large number of de-

grees of freedom (DOFs) was reduced to a much simpler problem, involving only

the groundstate densities of the system of interest. The same approach is taken in

statistical mechanics: the properties of the system are described by a small set of

equilibrium variables. The parallel goes further: both formalisms can be cast into a

variational form, and conventional DFT can be constructed as the zero–temperature

limit of the electronic grand–potential, which will also be demonstrated here. The

variational principle for statistical mechanics affords both a well–defined method of

approximation, the Feynman–Peierls–Bogoliubov inequality, as well as a systematic

perturbation theory, based on the generalised cumulant expansion.

Then the problem of computing the equilibrium properties of the interacting

electron system is discussed. An introduction is given to several types of disorder,

and the effective medium approach is presented as an alternative to the brute force

calculation of the ensemble averages. It is shown that the GF is the appropriate

quantity to work with, and the so–called single–site Coherent Potential Approxi-

mation (CPA) is derived, after some preliminaries on impurities in a host medium.

The non–local extension of the method is outlined last.

3.1 Variational statistical mechanics

3.1.1 Basic results in statistical mechanics

The equilibrium properties of a system described by the Hamiltonian Ĥ can be

obtained from a variational principle. In the grand–canonical ensemble, where the
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number of particles is allowed to vary, the partition function is given by

Z = Tr e−β(Ĥ−µN̂) = e−βΩ (3.1)

which defines the thermodynamic grand–potential, tracing (i.e. summing or inte-

grating) over all DOFs. Now define the grand–potential functional as

Ω̃[ρ̂] = 〈 Ĥ+
1

β
log ρ̂− µN̂ 〉 with 〈 Â 〉 = Tr ρ̂ Â , Tr ρ̂ = 1 and ρ̂ ≥ 0 (3.2)

for some trial probability density operator ρ̂. Here 1/β = kBT is the temperature

factor, µ is the chemical potential as before, and N̂ is the particle number operator.

Using the convexity properties of exponentials, it is straightforward to show that

the minimum of Ω̃[ρ̂] is given by the thermodynamic grand–potential [53]:

e−βΩ ≡ 〈 e−β(Ĥ−µN̂)−log ρ̂ 〉 ≥ e−β〈 Ĥ−µN̂+1/β log ρ̂ 〉 = e−βΩ̃[ρ̂] (3.3)

and it is attained for the correct probability density operator,

ρ̂ =
e−β(Ĥ−µN̂)

Z
=⇒ Ω = 〈 Ĥ 〉+

1

β
〈 log ρ̂ 〉 − µ 〈 N̂ 〉 = U − TS − µN . (3.4)

Here the internal energy U , the entropy S and the average number of particles N

are also defined.

From the same inequality a variational bound on the grand–potential can be

immediately derived. Suppose that we consider some Hamiltonian H0, parametrised

in a convenient way. From the respective probability density operator we have

Ω ≤ Ω̃[ρ̂0] = 〈 Ĥ 〉+
1

β
〈 log ρ̂0 〉 − µ 〈 N̂ 〉 with 〈 Â 〉 = Tr ρ̂0 Â . (3.5)

Minimising Ω̃[ρ̂0] with respect to the available variational parameters will then pro-

vide an upper bound to the true grand–potential. This result has been derived

several times, and will be called the Feynman–Peierls–Bogoliubov inequality [54]. It

is valid in both classic and quantum statistical mechanics.

3.1.2 Generalised cumulant expansion method

Another way of developing an approximate treatment of the statistical mechanical

problem is by employing the generalised cumulant expansion method [55]. The

classical statistical mechanics case is considered, so the operator notation is dropped.

Similarly to the GF approach of referring the problem to a suitable reference system,
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we formally split the Hamiltonian as follows:

H = H0 + (H−H0) = H0 + ∆H . (3.6)

In the canonical ensemble the partition function is given by

Z = Tr e−βH = Tr e−βH0
Tr e−βH0 e−β∆H

Tr e−βH0
= Z0 〈 e−β∆H 〉 , ρ0 =

e−βH0

Tr e−βH0
(3.7)

where the ensemble averages are taken with the probability density ρ0. This is an

exact statement. The exact free energy is then

F = − 1

β
logZ = − 1

β
logZ0 −

1

β
log〈 e−β∆H 〉 = F0 + ∆F (3.8)

and the difference can be expanded in a power series (if it converges):

∆F = − 1

β
log
(

1−
〈

1− e−β∆H
〉)

= − 1

β

∞∑
n=1

1

n

〈 ∞∑
m=1

(−β)m

m!
(∆H)m

〉n
(3.9)

which corresponds to the Ursell–Mayer expansion [55]. The first two terms are:

∆F1 = 〈∆H〉 , ∆F2 = ∆F1 −
β

2

(
〈∆H2 〉 − 〈∆H〉2

)
(3.10)

which require the first and the second cumulant, 〈x 〉 and 〈x2 〉− 〈x 〉2. The general

expression sums all cumulants, which gives the method its name. The quantum

version is called the linked cluster expansion [55], but the commutation properties

of the operators make the result more involved.

Taking H0 = 0 we regain the high–temperature series expansion of the free

energy, which is a power series in the inverse temperature β. Approximating ∆F ≈
∆F1 and minimising the resulting free energy with respect to parameters in H0

reproduces the previous variational argument, Eq. 3.5:

F ≤ F1 = F0 + 〈H −H0 〉 . (3.11)

If one takes more terms it is no longer clear if the true free energy is bounded

from above or below. However one can attempt to minimise |∆F|, or a suitably

truncated version, as indicated before.

In connection with lattice models, the variational method combined with the ∆F1

approximation yields the conventional mean–field theory of statistical mechanics.

More refined approximations then lead to the variational cumulant expansion, which
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has been used with some success in treating Heisenberg and Ising models [56], and

also to the variational cluster expansion [57, 58] and spin cluster expansion [59,

60] used in the theories of chemical/compositional ordering in alloys and magnetic

ordering.

3.1.3 The Fluctuation–Dissipation theorem

A very important result in Statistical Mechanics is the fluctuation–dissipation theo-

rem, which connects the energy dissipated in the system to its statistical fluctuations.

Let H depend on a discrete set of DOFs {x}; this formulation is appropriate for

lattice models, but it can easily be extended to continuum models. Consider also the

conjugate fields to those DOFs, {h} defined by the way they enter the Hamiltonian:

H({x}) −→ H({x})−
∑

i hixi. The free energy is given by

F = − 1

β
log Tr e−βH({x}) = − 1

β
logZ (3.12)

and the mean value of xi and the pair–correlation function follow,

〈xi〉 =
Trxi e

−βH({x})

Z
= −∂F

∂hi
(3.13)

β(〈xixj〉 − 〈xi〉〈xj〉) = − ∂2F
∂hi∂hj

=
∂〈xi〉
∂hj

≡ χij . (3.14)

The last equation can be interpreted as follows: the susceptibility quantifies the

change in the order parameter 〈xi〉 when there is a change in the conjugate field,

while the pair–correlation 〈xixj〉−〈xi〉〈xj〉 measures the fluctuations away from the

order parameters. Thus the amount of energy dissipated into the system by the

conjugate fields is connected to the fluctuations by the temperature factor β; this is

one version of the general fluctuation–dissipation theorem [61].

3.1.4 Density Functional Theory at finite temperature

The finite temperature extension of DFT follows immediately from the properties

of the grand–potential functional, by considering the Hamiltonian with the added

external potential, as shown by Mermin [53]. The particle density determines all

equilibrium properties, so the grand–potential functional can also be taken as a

functional of the equilibrium particle density.

For definiteness, the statistical properties of an ensemble of non–interacting elec-

trons are briefly reviewed. The energy eigenvalues εn are independent of the particle

number, and the grand–potential follows by summing over the possible occupancies
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of each eigenstate (0 or 1 for fermions) with the corresponding Boltzmann factor:

Ω0 = − 1

β

∑
n

log
[
1 + e−β(εn−µ)

]
= U0 − TS0 − µN . (3.15)

The internal energy is simply U0 =
∑

n fn εn, the entropy of non–interacting fermions

S0 is given by

S0 = −kB

∑
n

[
fn log fn + (1− fn) log(1− fn)

]
, fn =

1

eβ(εn−µ) + 1
(3.16)

and the occupation function fn is now the Fermi–Dirac function. Introducing the

DOS, Eq. 2.33, the grand–potential can be rewritten as

Ω0 = − 1

β

∫
dε log

[
1 + e−β(ε−µ)

]
n(ε) = −

∫
dε f(ε−µ)N(ε) (3.17)

integrating by parts and using the definition of the number of electrons at energy ε,

Eq. 2.34. This formulation is the main ingredient in combining DFT and statistical

mechanics, as will be seen in the following.

Generalising the previous expressions, Eqs. 2.4, 2.5 and 2.11,

Ω[ρ̂] −→ Ω[n] = FHK[n] +

∫
d~r n(~r)

(
Vext(~r)− µ

)
= Ω0[n]− EH[n] + Ωxc[n]−

∫
d~r n(~r)Vxc(~r) (3.18)

where the Hohenberg–Kohn energy functional becomes a Helmholtz free energy, and

the remaining quantities are defined as before, with the new occupation function,

and the appropriate double–counting terms. This result can also be shown directly

by starting with Eq. 2.11, and allowing the occupation factors to vary, adding the

correction term which keeps the functional variational [62].

The exchange–correlation contribution is now much more involved, but for the

temperatures of relevance in typical condensed matter systems the main contribution

is the correction to the specific heat. The LDA then generalises as

ΩLDA
xc [n] = ELDA

xc [n]− T 2

2

∫
d~r γLDA

xc (n(~r)) (3.19)

and a calculation of the specific heat coefficient for the homogeneous electron gas is

provided in [63]. Working at finite temperature also eliminates many technical points

which arise in the formal development of conventional DFT, concerning degenerate

states.
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Finite temperature DFT has not been pursued much in this form because the

exchange–correlation functional does not capture the effects of thermally excited

collective modes of the electronic system (phonons, magnons, . . . ). There are a few

recent studies which attempt unified first–principles calculations of free energies of

real materials [64], but most calculations still proceed by modelling thermal effects

on top of conventional zero–temperature DFT calculations. A related question is

what is the feedback between the thermally excited collective modes and the un-

derlying electronic structure, or more generally what is the connection between the

effective single–particle electronic structure and the ensemble averaged properties

of a given system. An approximate way of addressing this matter will be described

next.

3.2 The Coherent Potential Approximation

3.2.1 Types of disorder and the effective medium approach

The equilibrium properties of a physical system are given by an ensemble average

over all possible configurations of the system. One can either take the brute force

numerical approach, by sampling an appropriate set of configurations and estimating

the partition function directly, or adopt some approximation scheme, to circumvent

this calculation. The latter is the spirit of the effective medium approach: one

constructs a fictitious system, the effective medium, which reproduces the average

properties of the true physical system.

The problem can be further simplified if the collective modes of the system evolve

on a much slower timescale than that pertaining to the electronic motions. This

timescale separation is not as justifiable as the Born–Oppenheimer approximation,

as there is no obvious small parameter to which one can refer. However it affords a

very convenient picture: on the electronic timescale the collective DOFs are frozen in

some configuration, and act as background to the electronic motion. The energy of

each configuration then dictates the evolution of the system on the slower timescale.

This is still a self–consistent problem, as the collective DOFs are themselves set up

by the electrons.

One could consider different types of disorder, corresponding to the relevant

DOFs (see Fig. 3.1):

• Chemical disorder: several kinds of atoms are present, not necessarily at the

sites of a regular lattice;

• Positional disorder: there are atomic displacements from the sites of an ideal
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periodic structure;

• Magnetic disorder: the orientations of the magnetic moments do not form an

ordered structure.

Several types of disorder may be present at the same time, but from the computa-

tional point of view it will be very important if the locations of the atoms form a

periodic structure or not, as in the former case the effective medium can be cho-

sen to have the periodic properties of the underlying structure. For the formal

developments such assumptions are not needed.

3.2.2 The Green function as a self–averaging operator

For a particular configuration of the system, the electronic properties can be com-

puted through MST from the corresponding GF, as shown by Eq. 2.38. It then

follows that the ensemble–averaged properties can be computed from the ensemble–

averaged GF:

〈G 〉 = G0 +G0 〈 T 〉G0 , T =
∑
ij

τij (3.20)

as the reference GF is independent of the DOFs of the system.

If one instead refers the GF to the one corresponding to some effective medium

T̃ , independent of the local DOFs involved on the ensemble averaging, one obtains

the modified Dyson equation which was already discussed in the subsection on the

screening transformation:

〈G 〉 = G̃+ G̃ 〈∆T 〉 G̃ , G̃ = G0 +G0 T̃ G0 (3.21)

where 〈∆T 〉 is the averaged difference between the scattering properties of the

real system and those of the effective medium. The prescription for setting up the

effective medium is then simply to make this averaged difference as small as possible.

a) b) c)

Figure 3.1: Some examples of disorder types: a) — Chemical disorder. b) — Posi-
tional disorder. c) — Magnetic disorder.
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A self–consistent formulation is obtained by defining an approximation to the exact

averaged difference, by algebraic or diagrammatic methods, and then to enforce

〈∆T 〉approx = 0. This is the key idea for the CPA.

Turning around the initial definition of the GF as the resolvent of the Hamilto-

nian, one can introduce an effective Hamiltonian and an accompanying self–energy,

〈G(z) 〉–1 = z −Heff(z) = z −H0 − Σ(z) . (3.22)

These are non–Hermitian, satisfying instead the reality conditionsHeff(z∗) = Heff(z)†

and Σ(z∗) = Σ(z)†, properties inherited from the GF. This also suggests the equiva-

lence between a diagrammatic approach, where the focus is usually on approximat-

ing the self–energy, and the algebraic approach, where one seeks to approximate the

scattering matrices.

3.2.3 The single–site coherent potential approximation

The single–site CPA is the equivalent in scattering theory of the mean–field theory

in statistical mechanics: the problem is solved exactly for a single site, and the

interactions with the rest of the system are described by an effective field. This was

also done for the DFT problem: the Kohn–Sham scheme describes the motion of a

single electron in a self–consistent field, so it is also a mean–field theory. The point

here is that mean–field theories should not be regarded lightly.

Let ξi label the possible values at site i of the local DOF corresponding to the

slowly evolving collective DOF, and suppose that it is possible to represent its effect

by some local potential, Vi(ξi), with associated single–site t–matrix ti(ξi). The

scattering properties of all sites other than i are determined by some effective t–

matrices t̃j , whose construction is still to be specified. If one replaces t̃i by ti(ξi) at

i, the site–diagonal SPO is immediately given by

〈 τ ii 〉ξi = τ̃ ii

[
1 +

(
t–1
i (ξi)− t̃

–1
i

)
τ̃ ii

]–1
(3.23)

by recalling Eq. 2.68. The host medium is the effective medium, whose properties

are determined by the t̃j ’s, and the respective SPO is denoted by τ̃ ij . Introducing

the impurity matrix

Di(ξi) =
[
1 +

(
t–1
i (ξi)− t̃

–1
i

)
τ̃ ii

]–1
(3.24)
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Figure 3.2: The construction of the partial averages. The statistical average is
performed on all sites but one, indicated by the dotted circle. Then the averaging
is completing by summing over the possible values of the DOF, weighted with the
appropriate probability. Here this is illustrated for magnetic DOFs. The average
magnetic moment on each site is represented by the green arrows, while the possible
values of their orientations correspond to the red and blue arrows.

and the excess scattering matrix,

Xi(ξi) =
[(
t̃
–1
i − t–1

i (ξi)
)–1
− τ̃ ii

]–1
(3.25)

the partially averaged SPO can be rewritten as

〈 τ ii 〉ξi = τ̃ iiDi(ξi) = τ̃ ii + τ̃ iiXi(ξi) τ̃ ii . (3.26)

With the probability Pi(ξi) of finding the value ξi for the local DOF, one can com-

plete the averaging (see Fig. 3.2):

〈 τ ii 〉 =
∑
ξi

Pi(ξi) 〈 τ ii 〉ξi = τ̃ ii + τ̃ ii

(∑
ξi

Pi(ξi)Xi(ξi)
)
τ̃ ii (3.27)

The effective medium is specified by requiring the vanishing of the average excess

scattering:

〈 τ ii 〉 = τ̃ ii =⇒
∑
ξi

Pi(ξi)Xi(ξi) = 0 (3.28)

which shows that this approximation is site–diagonal, and completes the single–site

CPA prescription [45, 46, 65].

The site–diagonal GF follows without effort, from Eq. 2.57. For each value of ξi

one can define the respective GF,

Gii(~r, ~r
′; z, ξi) = Zi(~r; z, ξi) 〈 τ ii(z) 〉ξi Z

×
i (~r′; z, ξi)−Zi(~r<; z, ξi) J

×
i (~r>; z, ξi) (3.29)

which require the scattering solutions corresponding to the potential Vi(ξi), and the
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respective partially averaged densities:

ni(~r; ξi) = − 1

π
Im Tr

∫
y
dz f(z)Gii(~r, ~r; z, ξi) , 〈ni(~r) 〉 =

∑
ξi

Pi(ξi)ni(~r; ξi) (3.30)

and the fully averaged density is given. This is enough to close the loop from the

effective potentials to the density and back, in self–consistent calculations.

The off–diagonal elements in site indices raise the question of how the single–site

approximation applies:

Gij(~r, ~r
′; z, ξi, ξj) = Zi(~r; z, ξi) 〈 τ ij(z) 〉ξi,ξj Z

×
j (~r′; z, ξj) (3.31)

and the answer consistent with the single–site approximation is to ignore correlations

between ξi and ξj [46]. Then

〈 τ ij 〉ξi,ξj = τ̃ ij + τ̃ iiXi(ξi) τ̃ ij + τ̃ ij Xj(ξj) τ̃ jj + τ̃ iiXi(ξi) τ̃ ij Xj(ξj) τ̃ jj (3.32)

which obeys ∑
ξi,ξj

Pi(ξi)Pj(ξj) 〈 τ ij 〉ξi,ξj = τ̃ ij (3.33)

so that no conditional probabilities apply. It is evident that each excess scattering

matrix can appear at most once in the expression for 〈 τ ij 〉ξi,ξj , if the off–diagonal

elements of the SPO are to be regained by completing the average in the single–site

approximation, as shown.

To derive the electronic grand–potential in a concise form an expression for the

integrated DOS in terms of the GF is needed. This was already provided in Eq. 2.35,

Lloyd’s formula. In the present context this specialises to

〈N(ε) 〉 = N0(ε) +
1

π
Im Tr log τ̃(ε) +

1

π
Im Tr

∑
i,ξi

Pi(ξi) logDi(ε; ξi) . (3.34)

The first logarithm is a matrix logarithm in both site and angular momentum labels,

while the rest are just matrix logarithms in angular momentum labels. The site–

off–diagonal excess scattering contributions are neglected, and one can show that

this is consistent with the variational requirement

δ〈N(ε) 〉
δt̃

–1
i (ε)

= 0 =⇒
∑
ξi

Pi(ξi)Xi(ξi) = 0 (3.35)

after some lengthy linear algebra, and is an alternative way of deriving the CPA.
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The grand–potential then follows from Eqs. 3.17 and 3.18:

〈Ω 〉 = 〈Ω0[n] 〉+ 〈∆Ω 〉 = −
∫

dε f(ε) 〈N(ε) 〉+ 〈∆Ω 〉 (3.36)

and the correction term 〈∆Ω 〉 results from the averaged double–counting terms:

〈∆Ω 〉 =− 1

2

∑
i,ξi

Pi(ξi)

∫
d~r

∫
d~r′ ni(~r, ξi)

e2

4πε0|~r − ~r′|
ni(~r

′, ξi)

− 1

2

∑
i,j 6=i

∫
d~r

∫
d~r′ 〈ni(~r) 〉

e2

4πε0|~r − ~r′ + ~Rij |
〈nj(~r′) 〉

+
∑
i,ξi

Pi(ξi)

(
Ωxc[ni(ξi)]−

∫
d~r ni(~r, ξi)Vxc(~r, ξi)

)
. (3.37)

A detailed derivation is given in Ref. [66] for magnetic systems, together with a

discussion of all the assumptions involved in arriving at the final result. It is also

shown that the averaged grand–potential is stationary with respect to changes in

the densities,
δ〈Ω 〉

δni(~r, ξi)
= 0 (3.38)

which is analogous to the stationary condition from convential DFT (see Eq. 2.5).

The single–site CPA has been applied to both model and first–principles calcu-

lations, the main applications being in the theory of random alloys [46] and mag-

netic systems [66]. Its dynamical extension was shown to be equivalent to Dynam-

ical Mean Field Theory [67], which is used when strong electronic correlations are

present. The main drawback is the single–site approximation, which was recently

lifted, and will be briefly discussed next.

3.2.4 The non–local coherent potential approximation

The single–site approximation is the weak point of the CPA. This was realised quite

early, and attempts have been made at generalisations since at least three decades

ago. None were found to be completely satisfactory, as the CPA should satisfy some

key requirements, which are obeyed by the single–site approximation:

• It should produce an analytical GF;

• The effective medium should preserve translational invariance, if present.

These points were addressed in recent years by the Non–Local CPA (NLCPA)

scheme [68]. The main hurdle in lifting the single–site approximation is the ex-
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ponential increase in the number of configurations which need to be considered to

construct the effective medium. For an N–site extension of the CPA and for a binary

alloy (two types of atoms), 2N configurations exist (the vast majority of which might

be equivalent or irrelevant to the statistical average). Techniques like importance

sampling or Monte Carlo might ameliorate this point.
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Chapter 4

Magnetism

In this chapter the basic concepts in magnetism are introduced, and a survey of the

most common methods employed in first–principles calculations is given. The first

section concerns the description and calculation of magnetic properties using the

conventional ground state DFT. Then the effects of temperature are discussed.

4.1 Magnetism at zero temperature

4.1.1 Itinerant versus localised description

It is useful to begin by recalling the magnetic properties of isolated atoms, as dictated

by Hund’s rules. These are, in the Russell–Saunders scheme:

• First rule: the state with maximal value of the total spin angular momentum

is the one with lowest energy. If each electron has spin angular momentum Ŝi,

then the total spin angular momentum is Ŝ =
∑

i Ŝi;

• Second rule: the state with maximal value of the orbital angular momentum

which is compatible with the first rule has lowest energy. If each electron has

orbital angular momentum L̂i, then in total we have L̂ =
∑

i L̂i;

• Third rule: the energy is minimised by the state which is compatible with

the first and second rules, and has the value of the total angular momentum

Ĵ = L̂+ Ŝ which minimises the spin–orbit interaction, ESO ≈ λL̂ · Ŝ.

and their application is straighforward to atoms, where one deals with discrete

energy levels. When several atoms are brought together to form a solid, however,

the discrete nature of the energy spectrum is lost, as states belonging to different

atoms hybridise, and electrons can hop from one atom to the next. If some states
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are mostly localised around each atom, one could think of them as atomic–like, and

try to apply Hund’s rules. If on the other hand they are delocalised, there are no

grounds to justify their usage.

As a mock example, consider bulk Fe: it takes on the bcc crystal structure at zero

temperature, and the valence states are formed from the 3d64s2 electrons. The 4s

wavefunctions extend well beyond half the nearest–neighbour separation, and one

could expect the corresponding electrons to be delocalised. The 3d wavefunctions,

however, have shorter range, and so are candidates to a careful application of Hund’s

rules. The second rule does not apply, as the cubic environment around each atom

will quench the orbital angular momentum. The third rule is of no concern here, and

applying the first rule would suggest a total spin moment of MS = 3d5
↑−3d1

↓ = 4µB.

The experimental value is MS ≈ 2.2µB, which besides being half the naive estimate,

it is also non–integer. The first goal of an electronic theory of magnetism is to explain

the origin of the experimental value, and the nature of the magnetic moment.

The main idea is the balance between lowering the kinetic energy by delocalising

the electrons across the solid, and lowering the exchange energy by spin polarisation.

This argument was formulated mathematically by Stoner [69, 70], and can be roughly

outlined as follows: let n(ε) denote the DOS of the unpolarised electron system,

which is the equivalent for a system of itinerant electrons of the discrete electronic

spectrum of an atom. Splitting the up and down spin states by a small amount ∆

leads to a small spin polarisation, given by

M = N↑ −N↓ =

∫ εF

−∞
dε
[
n(ε−∆/2)− n(ε+ ∆/2)

]
≈ n(εF) ∆ . (4.1)

The total energy increases by the change in the kinetic energy, and decreases by the

change in exchange energy, modelled by the Stoner parameter I,

E(M)− E(0) ≈ 1

2

[
n(εF)∆2 − IM2

]
=

1− In(εF)

2n(εF)
M2 =

M2

2χ
(4.2)

and the enhanced spin susceptibility χ was identified. The unpolarised state becomes

unstable when In(εF) > 1, which is the Stoner criterion for the appearance of a

spontaneous magnetisation in an itinerant electron system. These ingredients are

included in the DFT total energy functional, in a parameter–free way, and so allow

first–principles calculations of materials–specific properties.

In insulators electrons are localised, and integer spin moments are often found,

so the localised description applies naturally. The question then remains of whether

it is meaningful to identify local magnetic moments in metals. Many experiments
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on metallic systems can be interpreted by making use of the Ising and Heisenberg

models, which conceptually require integer spin moments, while an interpretation in

terms of the magnetism of delocalised electrons is much more cumbersome or even

inconsistent with experimental data. Local magnetic moments are thus an emergent

property of the electronic structure, set up by the correlated electronic motions.

This picture is captured in reasonable detail by DFT at zero temperature, but a

proper description of metallic magnetism at finite temperatures must incorporate

these localised DOFs in the theory explicitly, as will be shown.

4.1.2 The rigid spin approximation and the magnetic force theorem

In Multiple Scattering Theory space is partitioned into cells surrounding atoms,

and the Kohn–Sham potentials are partitioned in the same way; for simplicity the

following discussing is given in terms of the ASA, the same approximation used for

the calculations. In the ASA the potentials are assumed spherical, Vi(~r) = Vi(r)

and ~Bi(~r) = Bi(r) êi. The orientation of the local magnetic field is given by the unit

vector êi, and is constant throughout the atomic sphere. The single–site t–matrix is

obtained by solving the associated Dirac equation with the magnetic field pointing

along the z direction, and then rotated to the desired orientation:

ti(êi) = R(êi) ti(êz)R†(êi) . (4.3)

The magnetisation on cell i is given from Eq. 2.69 as

~mi(~r) = − 1

π
Im Tr

∫
dε f(ε)β~ΣZi(~r; ε, êi) τ ii(ε, {ê})Z×i (~r; ε, êi) + . . . (4.4)

This expression shows that the magnetisation on cell i is not necessarily collinear

with the orientation of the local magnetic potential êi, as the SPO depends on the

orientations of all sites.

Assume now that the system is locked into some magnetic configuration specified

by a set {ê}, and SCF potentials are computed. Focusing on site i, and keeping Bi(r)

fixed, vary the orientation of the local magnetic field. The total spin moment is

~Mi(êi) =

∫
d~r ~mi(~r) = M‖(êi) êi + ~M⊥(êi) , ~M⊥(êi) · êi = 0 (4.5)

which is decomposed into a parallel and a perpendicular component to êi. If one

had introduced a constraining field, as in Eq. 2.26, one could force M⊥(êi) = 0; it

is more instructive not to do so.

This procedure suggests a computational test for the presence of a local moment
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on site i: M⊥(êi)�M‖(êi) and M‖ ≈ constant. The physical interpretation of these

conditions is that the magnetic moment at site i is mainly set up by the intra–atomic

exchange interaction, in analogy with Hund’s first rule, and is little affected by the

magnetic configuration of the system. When this is so, one can speak of a good

local moment, and justify the Rigid Spin Approximation (RSA), which is encoded

in Eq. 4.3. Good local moments arise from d or f–electrons, which are fairly well

localised; the delocalised sp–electrons are also spin–polarised, but their degree of

polarisation will depend strongly on the magnetic configuration, as they are spread

out over many sites. This intuitive picture helps explaining the dependence of the

magnitude of the magnetic moment on the magnetic state. Normally non–magnetic

atoms can also be polarised by their magnetic neighbours.

These ideas can be cast on a more formal footing by invoking the magnetic force

theorem [25]. The orientations of the local magnetic fields can be taken as external

parameters, and so the first order change in the total energy is just the change in

the band energy,

E[{ê+ δê}]− E[{ê}] =
∑
i

δE

δêi
· δêi ≈

∑
i,n

δωn
δêi
· δêi (4.6)

starting from a reference configuration, using Eq. 2.18 and keeping the potentials

fixed. This is a delicate approximation, as discussed by Bruno [25]; the main ob-

servation is that the contribution to the single–particle energy coming from letting

the potentials relax self–consistently cancels out the contribution from the double–

counting terms. Energy differences between different magnetic configurations can

thus be estimated in a non–self–consistent way, and under some assumptions the

magnon spectrum and the ordering temperature can also be computed [25].

4.1.3 Spin spirals or frozen magnons

An alternative and complementary technique to the magnetic force theorem is given

by the generalised Bloch theorem [52], which allows calculations of special magnetic

states known as spin spirals, without the use of large supercells. Spin spirals or

frozen magnons are magnetic structures described by the following expression:

~Mi(~q) = M(~q)
(

cos(~q · ~Ri + φ) sin θ n̂1 + sin(~q · ~Ri + φ) sin θ n̂2 + cos θ n̂3

)
(4.7)

for vectors ~Ri in a Bravais lattices, and one magnetic atom per unit cell (the gen-

eralisation to more than one atom is simple). Here the unit vectors n̂1, n̂2 and

n̂3 are the basis of a right–handed orthogonal coordinate system. The polar angle
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θ is the cone angle, and φ is the azimuthal angle. The magnetic moments are of

the same length M(~q) on all sites, and their orientation precesses with wavevector

~q about n̂3. Simple magnetic states, such as ferromagnetic and different kinds of

antiferromagnetic states, can also be described by this expression (see Fig. 4.1).
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Figure 4.1: Some examples of spin spirals, from Eq. 4.7, on a linear chain of lattice
constant a: a) — Flat spiral (θ = π/2). b) — Conical spiral (θ 6= π/2). c) —
Ferromagnetic state (q = 0). d) — Antiferromagnetic state (q = π/a). e) —
Up–up–down–down state. This has to be described by splitting the chain into two
subchains of lattice constant 2a, and then imposing the same spin spiral on each
subchain.

The following derivation, appropriate for the MST–KKR formalism, follows Ref. [71].

If the SOC is left out of the Kohn–Sham Hamiltonian, the magnetic properties be-

come independent of the overall orientation of the moments with respect to the
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underlying lattice, and the azimuthal angle becomes redundant in a system with

one atom per unit cell. One can thus choose the standard Cartesian coordinate axes

for the unit vectors defining the orientation of the spin spiral.

The single–site t–matrices now transform as (RSA)

ti(~q) = Ri(~q) t0(êz)R†i (~q) , Ri(~q) =

(
ei~q·~Ri/2 0

0 e−i~q·~Ri/2

)
R(θ, φ) (4.8)

where the operator Ri(~q) acts only on the spin components, in two stages: first

the moment on site 0 is rotated away from the z direction by the rotation matrix

R(θ, φ); then it is rotated about the z axis by an angle ~q · ~Ri (the factor of 1/2 comes

from the spin matrix), and we obtain the single–site t–matrix at site i. The last

rotation is equivalent to a translation in each spin component, as each exponential

is in the form of the translation operator: each spin component will obey Bloch’s

theorem, but with different wavevectors [52].

The SPO follows immediately:

Ri(~q)† τ ij(~q)Rj(~q) = t0

[
δij +

∑
k 6=i

(
Ri(~q)†G0,ikRk(~q)

)(
Rk(~q)† τkjRj(~q)

) ]
(4.9)

and can be obtained from a Fourier transform, as before (Eq. 2.64):

Ri(~q)† τ ij(~q)Rj(~q) =
1

VBZ

∫
d~k e−i~k·~Rij

[
t–1
0 −G0(~k; ~q)

]–1
. (4.10)

All the electronic structure properties can then be computed as previously explained.

The inversion is of a matrix in angular momentum but not site labels; this also shows

that the calculation is no more demanding than a conventional ferromagnetic one.

As was already remarked before, orienting the t–matrices or the local magnetic

fields along some prescribed directions gives no guarantee that the total spin moment

will point in the same direction. This means that in general spin spiral calculations

require constraining fields. For the special case of θ = π/2, so–called flat spirals,

it can be shown that no constraining fields are needed. The intuitive explanation

is that in this case the net magnetic field on any site coming from all other sites is

parallel or antiparallel to the assumed orientation of the moment on that site, and

so no transverse component to the spin moment should be generated.
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4.1.4 Model–based approaches using total energy calculations

The approaches described previously are completely first–principles, and provide

useful information on their own. Physical insight can however be gained by trying

to understand the results in terms of an appropriate spin model. For quantitative

comparisons, the model should be able to reproduce the total energies and other

magnetic properties to a reasonable degree. One can either choose a minimal model,

or fit all available data in a systematic way. Then there is also the matter of whether

to choose a quantum (spin operators) or a classical (unit vectors) spin model. The

following discussion is made in terms of classical spin models; similar terms apply for

quantum spin models, but may depend on the size of the spin (for instance certain

terms are zero for spin–1/2 models, due to the properties of the Pauli matrices).

A subtle point which comes into question when modelling itinerant systems is

the nature of the spin associated with each atoms. The only quantum spin operator

which can be readily associated with a system of itinerant electrons is spin–1/2;

if and how these combine to form a larger total spin operator is unclear, and as

already discussed the spin moments are not necessarily integer. This explains the

compromise in using classical unit vectors: the magnetic moment enters these models

as a classical vector, of given length and well–defined orientation.

The ingredients usually found in classical spin models are:

• Pair interactions:
∑

ij J
(n)
ij (êi · êj)n; n = 1 gives the usual bilinear Heisenberg

interactions, and n = 2 corresponds to biquadratic interactions;

• Multi–spin interactions; the most common is the four–spin term, which accord-

ing to the restrictions to the site indices can represent a two, three or four–site

interaction:
∑

ijklQijkl[(êi · êj)(êk · êl) + (êi · êk)(êj · êl)− (êi · êl)(êj · êk)];

• Cost of changing the size of the magnetic moments from their equilibrium

values: (M − M0)2/2χL; this is a form similar to the result obtained from

Stoner theory, but the equilibrium value of the moment, M0, can be non–zero.

The denominator can be interpreted as a longitudinal susceptibility; if this is

small then the moment will always be M ≈M0, a good local moment;

• Anisotropic terms: these are discussed in detail below.

All these parameters will inevitably depend on the magnetic configuration, and so

realistic models range from very simple (simple physical interpretation, bad fit) to

very complex (the converse). This is the intrinsic problem in itinerant electron

magnetism: environmental effects are very important for the electronic properties,
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and in turn affect the magnetic properties. Examples of this approach are given in

Refs. [72–77].

The systematic fitting procedure is now described. The energy of a magnetic

configuration is expanded in contributions from all sites (i 6= j 6= k 6= . . .):

E({ê}) = E(0) +
∑
i

E
(1)
i (êi) +

∑
i,j

E
(2)
ij (êi, êj) +

∑
i,j,k

E
(3)
ijk(êi, êj , êk) + . . . (4.11)

and then a complete orthonormal set of functions of the orientations is introduced.

The simplest choice is to use spherical harmonics (say real, with a suitable normal-

isation), and the corresponding expansion is

E
(1)
i (êi) =

∑
L

E
(1)
iL YL(êi) , E

(2)
ij (êi, êj) =

∑
L,L′

E
(2)
iL,jL′ YL(êi)YL′(êj) , . . . (4.12)

If there is no magnetic anisotropy (no SOC taken into consideration), the energy is

invariant under global rotations of the moments. This sets the single–site term to

zero, and restricts the angular momentum sums in the other terms. This kind of

expansion is known as the Spin Cluster Expansion [59, 60], which is the generali-

sation to magnetic systems of the Cluster Expansion used in alloy theory [57, 58].

Products of spherical harmonics can be transformed into familiar forms for the in-

teraction energy. A few examples will be given later.

4.1.5 Thin films, surfaces and interfaces

In ordered bulk materials, there is a small number of inequivalent atoms, those in

the unit cell. There is three–dimensional translational invariance, and often each

atomic position possesses high symmetry. All these factors enormously reduce the

number of parameters necessary to describe bulk properties.

When a surface or interface is present, such simplicity is lost. If the defect is taken

as a perturbation on the bulk properties, the perturbed region typically extends over

many bulk unit cells. There may also be qualitatively different properties: materials

which are non–magnetic in the bulk might become magnetic at surfaces, due to the

reduced coordination and the resulting loss of hybridisation, so that the Stoner

criterion might be satisfied. Even for bulk magnetic materials, the changes in the

electronic structure at surfaces or interfaces might also change the nature of the

magnetic interactions, stabilising a magnetic state different from the bulk one.

Heterogeneous materials can also be grown by modern experimental techniques,

and stacks of different magnetic materials in atomic contact through an interface,
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or interacting via a non–magnetic separator, are of fundamental technological im-

portance, besides remaining challenging for theoretical descriptions.

An extreme case is that of single atomic monolayers of a magnetic species grown

on top of non–magnetic substrates. Magnetism in less than three dimensions not

always leads to magnetic ordering, as stated by the Mermin–Wagner theorem [78].

The hybridisation with the substrate may also play a crucial role in determining

the magnetic properties and the magnetic structure of the monolayer. As this is

the simplest magnetic thin film one can consider, it will be analysed in detail in

Chapter 5, to demonstrate the new theory being presented in this thesis, and to

quantitatively illustrate the previous comments.

4.1.6 Relativistic effects and anisotropy

Magnetic anisotropy derives from the relativistic properties of electrons, through

the SOC. It is useful to decompose the total magnetic energy into an isotropic and

an anisotropic contribution, defined as the remainder. In this way, the anisotropic

part is seen to be from one to three orders of magnitude smaller than the isotropic

part, which explains why under certain circumstances it can be neglected in the

calculations. However it has a qualitative impact: it defines the orientation of the

magnetic moments in real space, and can also lift degeneracies between magnetic

states, for instance favouring chiral states.

The two main forms of anisotropy considered are:

• On–site anisotropy: this refers to the anisotropic one–site term in the magnetic

energy. It obeys the local point group symmetry [79, 80]. The lowest order

term is the uniaxial anisotropy, which is very important in layered systems,

and vanishes in cubic systems:

∑
i

∑
αβ

Ki,αβ êiα êiβ =
∑
i

3∑
n=1

Ki,n (êi · ûi,n)2 , α, β = x, y, z (4.13)

where Ki,n are the eigenvalues and ûi,n the associated eigenvectors of the 3×3

matrix in cartesian components, on each site. The eigenvectors determine the

directions along which the energy is minimum (easy axes) or maximum (hard

axes);

• Pair or exchange anisotropy: anisotropic pair interactions. Each pair interac-
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tion matrix has a well–known decomposition:∑
ij

∑
αβ

Jij,αβ êiα êiβ −→ J ij = J I
ij + JS

ij + JA
ij . (4.14)

The isotropic part reduces to the usual Heisenberg pair interaction:

J I
ij =

1

3
(TrJ ij) I −→

1

3
(TrJ ij) êi · êj (4.15)

and is usually the dominant part. The antisymmetric part is rewritten as a

Dzyaloshinskii–Moriya term [9, 10]:

JA
ij =

1

2
(J ij − JTij) −→ ~Dij · (êi × êj) (4.16)

and T denotes the transpose of the matrix. This interaction lifts the chiral

degeneracy; taking a spin spiral as an example, the cross–product will be

sensitive to the clockwise or anticlockwise precession of the orientations about

n̂3. This term is only present if allowed by symmetry, see Refs. [10, 81]. The

symmetric part can be decomposed as the on–site anisotropy:

JS
ij =

1

2
(J ij + JTij)− J I

ij −→
3∑

n=1

JS
ij,n (êi · ûij,n)(êj · ûij,n) . (4.17)

It is sometimes called pseudo–dipolar anisotropy, by comparison with the

dipole–dipole interaction, the coarse–grained version of the magnetostatic Breit

interaction, Eq. 2.17:

∑
i 6=j

[
3

R3
ij

( ~Mi · ~Mj)−
1

R5
ij

( ~Mi · ~Rij)( ~Mj · ~Rij)
]
. (4.18)

These concepts will be of use when interpreting the results of the calculations for

the magnetic monolayers, in Chapter 5.

4.2 Magnetism at finite temperature

4.2.1 Collective versus particle–hole excitations

The thermal properties of a magnetic system are determined by the kind of excited

states which can be thermally populated, i.e., those roughly within kBT of the

ground state. The two main types of excitations are:
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• Particle–hole excitations: an electron is removed from the occupied majority

spin states to the unoccupied minority spin states. This is a longitudinal spin

fluctuation, as the size of the magnetic moment is reduced. This process fits

naturally within the Stoner picture;

• Collective excitations, or magnons: the orientations of the magnetic moments

deviate from their equilibrium directions, in a coherent way. This transverse

spin fluctuation is usually pictured as a spin spiral with a small cone angle,

which is why these are also known as frozen magnons. They arise naturally

when working with models of localised spins.

Typically the dominant contribution will come from magnons, as their minimum

excitation energy is either zero (Goldstone mode) or the magnetic anisotropy energy

(which is usually small). Particle–hole excitations make a sizable contribution only

when transitions between electronic states of the same symmetry are considered; as

these are usually separated in energy by the exchange splitting, they should only

become important at high temperatures. In general both kinds of excitations might

be present and mutually affect each other.

Taking a ferromagnetic system as an example, the temperature–dependent mag-

netic susceptibility very often follows the Curie–Weiss (CW) law above the Curie

temperature Tc,

χ(T ) ≡ dM

dH

∣∣∣∣
H=0

=
C

T − Tc
, C =

µ2
B qc(qc + 2)

3kB
(4.19)

where qc is known as the number of magnetic carriers per atom, which is an effective

quantity. These can be compared with the value of the magnetic moment at zero

temperature, MS = µB qs, and the ratio qc/qs [82] indicates whether a magnetic

material is a good local moment system, qc/qs ≈ 1, or a weakly ferromagnetic

system, qc/qs � 1 (i.e. small qs). Some examples are given in Table 4.1. EuO is an

insulator, and the local moment corresponds to a spin of S = 7/2. ZrZn2 is a weak

itinerant ferromagnet; it is clear no local moment can be identified. Fe and Ni are

in–between; Fe seems to fit the local moment criterion, but it would correspond to

a non–integer spin. For Ni there is no simple interpretation.

The CW law is the high–temperature classical limit of the fluctuation–dissipation

theorem, which applies when the thermal energy is much larger than the charac-

teristic energies of the collective modes [1]. It then comes as no surprise that the

Stoner model does not reproduce this behaviour, as kBT � εF in most systems, and

so the puzzle remains as to why the CW law is so common; the answer comes from
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qc qs qc/qs Tc (K)

EuO 7.00 7.00 1.00 77
Fe 2.33 2.22 1.05 1043
Ni 0.89 0.61 1.25 631

ZrZn2 0.86 0.16 5.38 26

Table 4.1: Some examples of qc and qs, from Wohlfarth [82].

the nature of thermal fluctuations about the equilibrium value of the magnetisation,

as is explained by Spin Fluctuation Theory, outlined below.

4.2.2 Spin fluctuation theory

Fluctuations of the thermodynamic quantities are very important when determining

the thermal properties of a physical system, in particular magnetic properties. Here

a short exposition of the most basic spin fluctuation theory is given, for illustration

purposes. The most general version, that of Moriya, is explained in detail in his

book, Ref. [7]. This restricted description follows the treatment in [3], and should

apply to weakly ferromagnetic systems, such as ZrZn2.

The finite temperature properties of the Stoner model can be computed by stan-

dard statistical mechanics, but for the purpose of this discussion only the main

results will be needed [3]. The Landau expansion of the free energy of an isotropic

ferromagnetic Stoner system is

F =
A

2
M2 +

B

4
M4 −MH =

1

2χ0

(
T 2

T 2
c

− 1

)
M2 +

1

4χ0M2
0

M4 −MH (4.20)

where M0 is the value of the magnetisation at T = 0, and χ0 sets the scale for the

susceptibility. The equilibrium value of the magnetisation comes from the conditions

dF/dM = 0 and d2F/dM2 > 0, and with H = 0

T > Tc : M = 0 ; T < Tc :
M2

M2
0

= 1− T 2

T 2
c

(4.21)

with the inverse susceptibility

χ0

χ
=

3M2

M2
0

+
T 2

T 2
c

− 1 (4.22)

that does not follow the CW law. This is due to the neglect of fluctuations in the

order parameter. The Curie temperature entering these expressions is given from a

50



more detailed analysis as [3]

k2
BT

2
c = ε2

F

(
In(εF)− 1

)
(4.23)

which shows that it is of the order of the Fermi degeneracy temperature, much too

high to explain the experimental values.

The order parameter is given by 〈 ~M 〉 = M êz. Consider now the addition of a

thermal fluctuation, such that 〈 ~m 〉 = 0. Replacing

M2 = 〈 ~M2 〉 −→ 〈 ( ~M + ~m)2 〉 = M2 + 〈m2
‖ 〉+ 2 〈m2

⊥ 〉 (4.24)

and the fluctuation is decomposed into a component parallel to the order parameter

and two transverse ones, taken to be equal by symmetry. The other replacement is

M4 −→ M4+M2
(

6 〈m2
‖ 〉+ 4 〈m2

⊥ 〉
)

+3 〈m2
‖ 〉

2+4 〈m2
‖ 〉〈m

2
⊥ 〉+8 〈m2

⊥ 〉2 (4.25)

and the modified free energy is

F =

[
A

2
+
B

4

(
6 〈m2

‖ 〉+ 4 〈m2
⊥ 〉
)]
M2 +

B

4
M4 −MH + . . . (4.26)

The magnetisation is reduced by the fluctuations

dF
dM

= 0 =⇒ M2 = −A
B
− 3 〈m2

‖ 〉 − 2 〈m2
⊥ 〉 ≈M2

0 − 3 〈m2
‖ 〉 − 2 〈m2

⊥ 〉 (4.27)

where −A
B ≈ M2

0 is valid if the new Curie temperature is much smaller than the

previous Stoner value, i.e., if the fluctuations are strong enough. It is computed

from the inverse susceptibility in the paramagnetic state, where M = 0 and 〈m2
‖ 〉 =

〈m2
⊥ 〉 = 〈m2 〉,

d2F
dM2

=
1

χ
= A+ 5B 〈m2 〉 = 0 =⇒ 〈m2

c 〉 =
M2

0

5
, T = Tc (4.28)

which establishes the value of the fluctuations at Tc, Moriya’s formula.

The temperature dependence of the fluctuations is still unknown, as their origin

was not specified, and they were taken to be uncorrelated with the bulk order

parameter. Assuming a linear isotropic behaviour (which can be loosely justified

through the fluctuation–dissipation theorem, Eq. 3.14)

〈m2
‖ 〉 = 〈m2

⊥ 〉 = 〈m2 〉 ≈ M2
0

5

T

Tc
=⇒ M2

M2
0

= 1− T

Tc
(4.29)
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and the total magnetisation, including the fluctuations, becomes

〈 ( ~M + ~m)2 〉 = M2 + 3〈m2 〉 =

{ (
1− 2

5
T
Tc

)
M2

0 , T < Tc
3
5
T
Tc
M2

0 , T > Tc
(4.30)

so that it decreases as the temperature goes up to Tc, and then increases again.

This also restores the CW law for the susceptibility, as now the main temperature

dependence comes from the amplitude of the thermal fluctuations.

To close, one should point out that the present exposition, based on Landau

theory augmented with spin fluctuations, still does not reproduce many experimental

facts, such as the T 3/2 decay of the magnetisation in bulk systems, which is obtained

when the fluctuations are magnons, or the critical behaviour near Tc [1]. These are

well–known limitations of this kind of approach. The important concept that this

brief outline was meant to demonstrate is that only with an adequate treatment of

the fluctuations in the order parameters will the expected physical behaviour emerge

from the statistical mechanics. The weak points in this treatment were the assumed

temperature dependence of the fluctuations, and their independence of the average

magnetic moment; more sophisticated treatments based on model Hamiltonians can

be considered [7], and connected to first–principles calculations, as explained before.

4.2.3 Disordered local magnetic moments

If the system of interest is a metallic magnet in which local moments are present,

longitudinal and transverse excitations are not independent of each other. As pre-

viously discussed, the size of the local moment will depend to some extent on the

overall magnetic state of the system; if the magnetisation is being reduced by trans-

verse fluctuations (magnon creation) then the size of the moments will also change,

which is a longitudinal fluctuation. The electronic structure will also change: it will

evolve from the sharp DOS corresponding to the completely ordered state at zero

temperature to the broadened DOS corresponding to the disordered paramagnetic

state. Here a crucial insight is that the paramagnetic state corresponds to the ab-

sence of long–range order of the orientations of the local moments, but not to the

vanishing of the local moment size on each atom; this is the key idea in the theory

of the Disordered Local Moment (DLM) state, which will be developed in MST

language in the next chapter.
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4.2.4 Other ways of modelling temperature–dependent effects

So far two ways of incorporating thermal effects into the theory of magnetism were

mentioned. Spin Fluctuation Theory as presented was model–based, but one could

conceivably derive all the parameters from electronic structure calculations, as ex-

plained by Moriya [7]. The DLM approach will be introduced in the next chapter

couched in the MST–KKR formalism. Other approaches which remain parameter–

free are those which compute the dynamical magnetic susceptibility from DFT (by

linear response or explicit time dependence, e.g. [83]), and spin dynamics incorpo-

rated into or derived from electronic structure codes [84–86] (the magnetic equivalent

of Carr–Parrinello molecular dynamics).

On the other hand, if the zero temperature DFT calculations were mapped to a

model, as described before, then the thermodynamic properties of this model can be

computed, and should qualitatively and sometimes even quantitatively describe the

true magnetic properties of the system at finite temperature. The most commonly

encountered methods are Monte Carlo based, such as spin dynamics [86] and, on a

larger scale, micromagnetic simulations [22].
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Chapter 5

Disordered Local Moments and

Linear Response Theory

In this chapter the statistical mechanics of local magnetic moments is combined with

finite temperature DFT, thus including in the first–principles treatment the effects

of the slowly evolving magnetic DOFs, and healing some of the failures of finite

temperature DFT. In the first part, the best single–site mean–field approximation

(in a variational sense) is derived, and extended to be of a general form in its angular

dependence. This scheme is then combined with DFT.

Then a linear response theory of the magnetic susceptibility is presented, based on

the new theory. This gives direct access to the spin–spin correlation function, S(2),

and so to the magnetic interactions in the system. The limiting cases of complete

magnetic order and complete magnetic disorder are analysed, and the mean–field

estimate of the ordering temperature is given. To conclude, an extension is briefly

outlined, the Onsager cavity field construction, which can be used to correct some

failures of the mean–field theory.

5.1 Disordered Local Moments and DFT

5.1.1 Introduction: variational approach to the Heisenberg model

To illustrate the statistical mechanics, the variational method is applied to the

classical Heisenberg model, with local external fields ~Hi to break the symmetry.

Choosing as reference Hamiltonian that of non–interacting moments coupled to
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effective local fields, ~hi, which will be variational parameters, we have:

H = −1

2

∑
i,j 6=i

Jij êi · êj −
∑
i

~Hi · êi , H0 = −
∑
i

~hi · êi . (5.1)

Due to the single–site nature of the approximation, all quantities factor:

Z0 =
∏
i

Z0,i =
∏
i

∫
dêi e

β~hi·êi = (4π)N
∏
i

sinhβhi
βhi

. (5.2)

The local order parameters are defined as

~mi =

∫
dêi

eβ
~hi·êi

Z0,i
êi =

∫
dêi Pi(êi) êi = L(βhi) ĥi ≈

β

3
~hi (βhi � 1) (5.3)

with the Langevin function L(x) = cothx− 1/x. The free energy gives

F0 = − 1

β
logZ0 = − 1

β

∑
i

log

∫
dêi e

β~hi·êi =⇒ −∂F0

∂~hi
= ~mi +

∑
j 6=i

~mj ·
∂~hj

∂~hi
(5.4)

and the second term on the last right hand side accounts for a possible non–linear

dependence of the vector parameters.

Minimising the variational inequality, Eq. 3.11,

F ≤ F1 = F0 + 〈H −H0 〉 ,
∂F1

∂~hi
= 0 =⇒ ~hi = ~Hi +

∑
j 6=i

Jij ~mj (5.5)

which shows that the effective field is just the Weiss mean–field, and so as expected

we regain the conventional mean–field approximation to the Heisenberg model. This

corresponds to a non–linear set of coupled equations, through the local order pa-

rameters ~mi. The variational free energy is

F1(β; { ~H}) = − 1

β

∑
i

log

∫
dêi e

β~hi·êi +
1

2

∑
i,j 6=i

Jij ~mi · ~mj =⇒ −∂F1

∂ ~Hi

= ~mi (5.6)

and the second term is a double–counting correction, akin to those that arise in

DFT: the sum of single–site contributions counts the pair interaction twice. The

last equation shows that the approximate free energy yields the correct expression

for the local order parameter.
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The magnetic susceptibility is

∂ ~mi

∂ ~Hj

=
∂ ~mi

∂~hi

(
δij +

∑
k 6=i

Jik
∂ ~mk

∂ ~Hj

)
⇐⇒ χij = χ0,i δij + χ0,i

∑
k 6=i

Jik χkj (5.7)

and can formally be obtained by inverting a matrix in site indices,

χ = χ0 + χ0 J χ ⇐⇒ χ–1 = χ–1
0 − J . (5.8)

This leads to the mean–field expression for the transition temperature from the

paramagnetic state (~mi = 0, ∀i) into a magnetically ordered state,

χ0,i ≈
β

3
, detχ–1 = 0 =⇒

∏
n

(
3kBT − λn

)
= 0 =⇒ Tc =

λmax

3kB
(5.9)

where λn are the eigenvalues of the matrix J , and λmax is the largest. The associ-

ated eigenvector contains the information about the orientations of the moments on

each site. These equations are usually Fourier transformed to exploit the transla-

tional invariance of the paramagnetic state, but that is not necessary for the general

considerations given here.

The expression for Tc is independent of the dimensionality of the lattice, and

so mean–field theory always predicts a magnetic phase transition for the classical

Heisenberg model, which is incorrect if the lattice is 1D or 2D, as shown by the

Mermin–Wagner theorem [78]. Furthermore, this expression for the magnetic sus-

ceptibility also violates the fluctuation–dissipation theorem, Eq. 3.14:

χij =
∂ ~mi

∂ ~Hj

6= β
(
〈 êi êj 〉 − 〈 êi 〉〈 êj 〉

)
= β

(
〈 ê2

i 〉 − 〈 êi 〉2
)
δij (5.10)

as the mean–field theory is only a theory for the order parameter, and not for the

fluctuations. These statements should be kept in mind for later applications.

5.1.2 The best single–site approximation to a spin Hamiltonian

As the energetics of the spin configurations will be computed from DFT, their func-

tional form is unknown, and so it is necessary to develop the theory for an ar-

bitrary spin Hamiltonian. Let H represent the unknown spin Hamiltonian, and

write the single–site approximation in terms of unspecified variational functions
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H0 =
∑

i gi(êi). Carrying out a functional minimisation of Eq. 3.11 yields [66]

δF1

δgi(êi)
= 0 =⇒ 〈H 〉êi − 〈H 〉 = gi(êi)− 〈 gi 〉 , Pi(êi) =

e−βgi(êi)∫
dêi e−βgi(êi)

. (5.11)

〈A 〉êi =
∏
j 6=i

∫
dêj Pj(êj)A({ê}) , 〈A 〉 =

∫
dêi Pi(êi) 〈A 〉êi (5.12)

This shows that the crucial quantity is then the partial average of the unknown

Hamiltonian, 〈H 〉êi : this means to average over all sites except site i, the full

average being regained by performing the last average over the values of the DOF

on site i. The main goal of the theory will be to compute this quantity from DFT.

Writing the Hamiltonian as a sum of contributions coming from different sites,

H = H1 +H2 +H3 + . . . (i 6= j 6= k 6= . . .),

H1 =
∑
i

f
(1)
i (êi) , H2 =

∑
ij

f
(2)
ij (êi, êj) , H3 =

∑
ijk

f
(3)
ijk (êi, êj , êk) , . . . (5.13)

we obtain the variational functions as a generalisation of the Weiss fields (care must

be taken to collect all contributions, as shown for the two–site term):

gi(êi) = f
(1)
i (êi) +

∑
j

∫
dêj Pj(êj)

(
f

(2)
ij (êi, êj) + f

(2)
ji (êj , êi)

)
+ · · · (5.14)

= − ~Hi · êi −
∑
j

Jij êi · ~mj (Heisenberg model)

illustrated by comparing with the result obtained using the Heisenberg model,

Eq. 5.1. The general variational free energy, with multiple–counting corrections,

is

F1 = − 1

β

∑
i

log

∫
dêi e

−βgi(êi) −
nmax∑
n=2

(n− 1)〈Hn 〉

= 〈H 〉+ kBT
∑
i

∫
dêi Pi(êi) logPi(êi) = 〈H 〉 − TS0 (5.15)

where terms up to some nmax number of coupled sites are considered. The second line

shows that the approximate free energy is the sum of the internal energy, computed

from the full Hamiltonian with the variational single–site probability functions, and

the corresponding entropy.

To make these equations more transparent, and to connect with the results of the

previous section, a complete set of angular functions must be introduced. For conve-
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nience, let us expand the angular functions in renormalised real spherical harmonics,

YL(ê), with L = (`,m), as detailed in Appendix A.

A general angular function is expanded as

f(ê) = f0 +
∑
L>0

fL YL(ê) , f0 =
1

4π

∫
dê f(ê) , fL =

2`+ 1

4π

∫
dê YL(ê) f(ê) (5.16)

The Hamiltonians are written as (i 6= j 6= k 6= · · · , all L’s > 0)

H = c+
∑
iL

f
(1)
iL YL(êi) +

∑
iL,jL′

f
(2)
iL,jL′ YL(êi)YL′(êj) + . . .

H0 = c0 +
∑
iL

giL YL(êi) . (5.17)

The constants c and c0 are not very relevant at present, but will be needed later.

The other advantage is that the functional minimisation becomes a conventional

differentiation with respect to the parameters giL. Using

∂Pj(êj)

∂giL
= −βPj(êj)

∑
L′

∂gjL′

∂giL

(
YL′(êj)−

∫
dêi Pi(êi)YL′(êj)

)
(5.18)

and the previous results we arrive at c0 = c and

giL({m}) = f
(1)
iL +

∑
jL′

(
f

(2)
iL,jL′ + f

(2)
jL′,iL

)
mjL′

+
∑

jL′,kL1

(
f

(3)
iL,jL′,kL1

+ f
(3)
jL′,iL,kL1

+ f
(3)
jL′,kL1,iL

)
mjL′ mkL1 + . . . (5.19)

Now the expectation values of the spherical harmonics replace the usual vector

order parameters:

miL =

∫
dêi Pi(êi)YL(êi) , −1 ≤ miL ≤ 1 (5.20)

which shows the convenience of the present choice of normalisation, and for defi-

niteness the free energy is

F1 = − 1

β

∑
i

log

∫
dêi e

−β
∑
L giLYL(êi) −

∑
iL,jL′

f
(2)
iL,jL′ miLmjL′ − . . . (5.21)

The external fields are defined as conjugate to the local DOFs. As these are now

represented by the spherical harmonics, the coupling to the external fields is ex-

tended: − ~Hi · êi −→ −
∑

LHiL YL(êi), which leads to a new magnetic susceptibility,
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− ∂F1

∂HiL
= miL , χij =

∂miL

∂HjL′
= χ0,i

[
δij +

∑
k

S
(2)
ik χkj

]
(5.22)

with the on–site susceptibility given by (Eq. 5.18)

χ0,iLL′ = β

[∫
dêi Pi(êi)YL(êi)YL′(êi)−miLmiL′

]
−−−−−−→
Pi(êi)=

1
4π

β

2`+ 1
δLL′ (5.23)

and the generalised spin–spin correlation function, or S(2),

S
(2)
iL,jL′ = f

(2)
iL,jL′ + f

(2)
jL′,iL +

∑
kL1

(
f

(3)
iL,jL′,kL1

+ f
(3)
jL′,iL,kL1

+ f
(3)
iL,kL1,jL′ + f

(3)
jL′,kL1,iL

+ f
(3)
kL1,iL,jL′ + f

(3)
kL1,jL′,iL

)
mkL1 + . . .

= f
(2)
iL,jL′ + f

(2)
jL′,iL +

∑
kL1

S
(3)
iL,jL′,kL1

mkL1 (5.24)

which shows how multi–spin interactions should contribute to the susceptibility, and

generates a chain of correlation functions. This quantity plays the same role as the

exchange parameters Jij in the classical Heisenberg model, and can be seem to be

completely symmetric in its labels. The on–site terms f
(1)
iL in the spin Hamiltonian

are handled by the on-site susceptibility.

It is also helpful to find the connection between different couplings used in spin

models and the new formulation in terms of angular functions. Consider a model

Hamiltonian, with i 6= j 6= k 6= l,

H =
∑
i

Ki (êi · n̂i)2 +
∑
iα,jβ

Jiα,jβ êiα êjβ +
∑
i,j

Bij (êi · êj)2

+
∑
i,j,k,l

Qijkl

[
(êi · êj)(êk · êl)− (êi · êk)(êj · êl) + (êi · êl)(êj · êk)

]
. (5.25)

The terms included are, in order: an on–site uniaxial magnetic anisotropy; anisotropic

bilinear exchange interactions; isotropic biquadratic interactions; and the sym-

metrised four–spin coupling.

Making use of the sum rule that turns spherical harmonics into Legendre poly-

nomials,

∑
m

Ym` (êi)Ym` (êj) = P`(êi ·êj) , P0(x) = 1 , P1(x) = x , P2(x) =
3x2 − 1

2
(5.26)

this Hamiltonian maps onto the following interaction functions (omitting a con-
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stant):

f
(1)
i,2m =

2Ki

3
Ym2 (n̂i) , f

(2)
i1m,j1m′ = Jim,jm′ , f

(2)
i2m,j2m′ =

2Bij
3

δmm′

f
(4)
i1m,j1m′,k1m1,l1m2

= Qijkl

[
δmm′δm1m2 − δmm1δm′m2 + δmm2δm′m1

]
(5.27)

and in principle these contributions can be extracted from the mean–field approxi-

mation functions gi(êi) or from the S(2).

The usefulness of this approach should be now clear. Although the statistical

mechanics dictated by the single–site approximation might be qualitatively wrong,

it provides an interpretative tool for connecting the electronic structure and mag-

netism. The coefficients of the variational functions and their dependence on the

order parameters supply a mean of identifying the dominant spin couplings in the

system, and the mean–field behaviour can also be a useful interpolation for systems

of intermediate dimensionality (such as magnetic films a few atoms thick, which lie

between 2D and 3D). It now remains to derive an approximation to compute the

partial averages from DFT, which is explained in the next subsection.

5.1.3 Merging DFT and variational statistical mechanics

The previous statistical mechanical formalism relies on the identification of good

local moments associated with some sites in the lattice. These are assumed to

behave like classical unit vectors evolving under some unknown spin Hamiltonian

dictated by the electronic structure, as explained in Chapter 3. There it was also

pointed out that other atoms might become magnetised, without developing a local

moment. These cannot be incorporated directly in the statistical mechanics, unless

the formulation is extended to handle induced moments. Such an extension will not

be considered here.

Taking as the slow DOF the orientation êi of the local moment at site i, one can

invoke the CPA to handle the construction of the required partial average, 〈H 〉êi ,
as explained in Chapter 2. From the general expression Eq. 3.36, we have for the

averaged grand potential 〈Ω 〉 = 〈Ω0 〉+ 〈∆Ω 〉:

〈Ω0 〉 =−
∫

dε f(ε)N0(ε)− 1

π
Im Tr

∫
dε f(ε) log τ̃(ε)

− 1

π
Im Tr

∑
i

∫
dε f(ε)

∫
dêi Pi(êi) logDi(ε; êi) (5.28)

(the double underline on the second term signifies a matrix in site and angular
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momentum labels), with the impurity and excess scattering matrices,

Di(ε; êi) = 1 +Xi(ε; êi) τ̃ ii(ε) (5.29)

Xi(ε; êi) =
[(
t̃
–1
i (ε)− t–1

i (ε; êi)
)–1
− τ̃ ii(ε)

]–1
(5.30)

and the CPA condition ∫
dêi Pi(êi)Xi(ε; êi) = 0 . (5.31)

The effective medium is now magnetic, and is required to reproduce the averaged

magnetic properties of the system. The double–counting terms 〈∆Ω 〉 are given by

the magnetic version of Eq. 3.37.

The averaged grand potential 〈Ω 〉 plays the same role as the averaged spin Hamil-

tonian 〈H 〉 from the previous section. The variational free energy then becomes

F1 = 〈Ω 〉+
1

β

∑
i

∫
dêi Pi(êi) logPi(êi) = 〈Ω 〉 − TS0 (5.32)

and the variational functions gi(êi) that define the single–site probabilities Pi(êi)

(Eq. 5.11) must be specified:

δF1

δgi(êi)
= 0 =⇒ 〈Ω 〉êi − 〈Ω 〉 = gi(êi)− 〈 gi 〉 (5.33)

and observing that the averaged grand potential is stationary with respect to changes

in the particle (and magnetisation) densities, Eq. 3.38, while the single–particle

contribution to the grand potential, 〈Ω0 〉, is stationary with respect to changes in

the effective medium, Eq. 3.35. These steps have to be taken more carefully because

one is not dealing with a fixed spin Hamiltonian: the effective medium will adjust to

changes in all quantities, as the itinerant electrons will relax, and so these variations

have to be considered in detail (see Ref. [66]).

The variational functions are then given by the following expression:

gi(êi) = − 1

π
Im Tr

∫
dε f(ε) logDi(ε; êi) + ∆gi(êi) (5.34)

which can be conveniently expanded in spherical harmonics (see Eq. 5.16)

gi(êi) =
∑
L

giL YL(êi) , giL =
2`+ 1

4π

∫
dêi YL(êi) gi(êi) =

∂〈Ω 〉
∂miL

(L > 0) (5.35)

and the L = 0 term can be disregarded, as it will not contribute to define the prob-
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abilities Pi(êi) that specify the effective medium and the approximate free energy.

The double–counting correction is given by

∆gi(êi) =− 1

2

∫
d~r

∫
d~r′ ni(~r, êi)

e2

4πε0|~r − ~r′|
ni(~r

′, êi)

−
∑
j 6=i

∫
d~r

∫
d~r′ ni(~r, êi)

e2

4πε0|~r − ~r′ + ~Rij |
〈nj(~r′) 〉

+ Ωxc[ni(êi); ~mi(êi)]−
∫

d~r ni(~r, êi)Vxc(~r, êi)−
∫

d~r ~mi(~r, êi)· ~Bxc(~r, êi)

(5.36)

This term is usually neglected; this can sometimes be justified, but a critical assess-

ment is always necessary [66]. These double–counting terms vanish if the particle and

magnetisation densities are independent of the orientations of the local moments;

changes in the local electronic structure driven by hybridisation with the rest of the

system as the orientation of the moment varies ensures that this will never happen,

and the importance of these effects should be reflected in the importance of these

correction terms.

The formal prescription connecting DFT and the statistical mechanics of the local

moments through the CPA is now complete, and describes the Disordered Local

Moment (DLM) theory [26, 32, 33, 66, 87–90]. The picture is that of magnetic

impurities described by the single–site t–matrices ti(êi) embedded in an effective

magnetic medium, set up by the t̃i’s. The CPA provides the partially averaged

particle and magnetisation densities, ni(~r, êi) and ~mi(~r, êi), and the corresponding

potentials are obtained from the Poisson equation. The practical implementation of

this scheme, however, must overcome a few obstacles, which are now analysed.

5.1.4 Practical aspects of the Disordered Local Moment theory

The main problem in the implementation of the theory is to define consistently the

local moment and its orientation. In principle a constraining field must be included,

to ensure that the partially averaged electronic structure produces a magnetic mo-

ment along the desired direction êi, see Eq. 2.26. As explained in Chapter 3, the

magnetic moment will have the following form,

~Mi(êi) =

∫
d~r ~mi(~r, êi) = M‖(êi) êi + ~M⊥(êi) , ~M⊥(êi) · êi = 0 (5.37)

and the local moment condition being M⊥ � M‖. The effect of the constraining

field is to suppress M⊥; in principle a different constraining field should be computed
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for each required orientation of the local moment.

On the other hand, the following approximations will be used: the potentials are

assumed to be spherically symmetric, the LDA is the chosen approximation to the

exchange–correlation functional, and the magnetisation direction is assumed to be

uniform inside each sphere (either MT or ASA constructions). The LDA ensures

that the magnetic potential is collinear with the magnetisation direction, and the

component of the magnetisation direction which is transverse to the local moment

orientation is thus identically compensated point by point by the constraining field

[85]. The following expressions should then apply:

ni(~r, êi) = − 1

π
Im Tr

∫
dε f(ε) 〈Gii(~r, ~r; ε) 〉êi

~mi(~r, êi) = − 1

π
Im Tr

∫
dε f(ε) êi (β~Σ · êi) 〈Gii(~r, ~r; ε) 〉êi (5.38)

and the associated potentials Vi(r, êi) and Bi(r, êi) are defined as usual through the

densities (the β in the last expression is one of the 4×4 Dirac matrices in relativistic

theory, see Eq. 2.12).

The possible dependence of the length of the local moment on the orientation is

handled by writing all quantities in a global cartesian frame,

êi =
∑
m

Ym1 (êi) êm = Y1
1 (êi) êx + Y–1

1 (êi) êy + Y0
1 (êi) êz

= cosφi sin θi êx + sinφi sin θi êy + cos θi êz (5.39)

and the local moment at site i becomes

~Mi(êi) =
∑
α

∑
L

Mα
iL YL(êi) êα (m = 1, 2, 3 ←→ α = x, y, z) (5.40)

by resumming the spherical harmonics expansion. The averaged magnetic moment

vector then follows simply

〈 ~Mi 〉 =
∑
α

∑
L

Mα
iL 〈 YL(êi) 〉 êα =

∑
α

∑
L

Mα
iLmiL êα (5.41)

using the generalised order parameters from Eq. 5.20. As an example, consider

~Mi(êi) =
(
M0 +M1 cos θi

)
êi =⇒ 〈 ~Mi 〉 =

(
M0〈 cos θi 〉+M1〈 cos2 θi 〉

)
êz (5.42)

assuming that the order parameter develops along the z–direction. Non–rigid be-
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haviour of the magnetic moment will then naturally introduce the generalised order

parameters.

Another practical question concerns the number of orientations êi needed to

compute the angular integrals. A systematic approach to the angular integrations

is given by the Lebedev–Laikov meshes [91], which ensure numerical integration of

spherical harmonics to machine precision up to a desired angular momentum cutoff.

The quantities which have the strongest angular dependence are the probability

distributions Pi(êi), which are sharply peaked when the local order parameter is

sizable. The densities, the potentials and the single–site functions gi(êi) can be

expanded in spherical harmonics up to a fairly small cutoff, say `max = 2 or 3, which

can be different for different quantities, and chosen to ensure that the neglected

coefficients in the expansion are small. If orientations which are not part of the

mesh are desired, an interpolation scheme is immediately provided by the truncated

sum in spherical harmonics.

To conclude this section, the limiting case of the alloy analogy is reviewed. The

magnetic system is pictured as a binary alloy of magnetic atoms pointing parallel

(↑) or antiparallel (↓) to the local order parameter, which is equivalent to an Ising

model [66]. This kind of problem is straighforward to solve in any KKR code which

has a basic CPA implementation, and self–consistent potentials are readily available.

A non–self–consistent evaluation of the several quantities in the theory so far would

then be possible, using the four potentials obtained from the alloy calculation:

Vi(r, êi) =
Vi(r, ↑) + Vi(r, ↓)

2
+
Vi(r, ↑)− Vi(r, ↓)

2
(êi · n̂i) (5.43)

Bi(r, êi) =
Bi(r, ↑) +Bi(r, ↓)

2
+
Bi(r, ↑)−Bi(r, ↓)

2
(êi · n̂i) (5.44)

This goes one step beyond the RSA explained in Chapter 3, and incorporates the

longitudinal effects of the magnetic effective medium.

To set up the magnetic alloy, the ‘concentrations’ of magnetic atoms parallel and

antiparallel to the local order parameter on each site must be specified. A way of

doing this is by resorting to the Langevin model in Eq. 5.3. Choosing the z–axis

to be parallel to the local order parameter, the probability of finding the magnetic

atom parallel or antiparallel to the order parameter is given by

P↑ =

∫ 2π

0
dφ

∫ π
2

0
dθ P (θ, φ) =

eβh − 1

eβh − e−βh
, P↓ = 1− P↑ , βh = L–1(m) (5.45)

and the ratio of the Weiss field to temperature, βh, is given by inverting the Langevin

function for the corresponding value of the order parameter, m. To illustrate the
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m 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

L–1(m) 0.000 0.302 0.615 0.953 1.336 1.797 2.401 3.304 4.998
P↑ 0.50 0.57 0.65 0.72 0.79 0.86 0.92 0.97 0.99
P↓ 0.50 0.43 0.35 0.28 0.21 0.14 0.08 0.03 0.01

Table 5.1: The correspondence between the Langevin order parameter and the con-
centrations in the magnetic alloy analogy. See text for details.

correspondence, a few selected values are given in Table 5.1. When the order param-

eter is larger than, say, 0.8, the magnetic alloy becomes very dilute, and it makes

more sense to think of ‘impurities’ (antiparallel magnetic atoms) in a ‘host’ (parallel

magnetic atoms).

5.2 Linear response and the magnetic susceptibility

5.2.1 Linear response to a perturbation in a reference state

In linear response theory, the quantity of interest is the susceptibility which measures

the proportionality between a change in an observable and the change in the external

field that couples to it: the magnetic susceptibility is the change in the magnetisation

~m(~r) of the system brought about by a change in the external applied magnetic

field, ~H(~r′). From Eq. 2.69 and the properties of Green functions it follows that the

magnetisation response is coupled in general to the charge density response, through

the changes in the effective potential:

δn(~r)

δ ~H(~r′)
≡ χn(~r, ~r′) =

∫
d~r1

(
χnn0 (~r, ~r1)

δVeff(~r1)

δ ~H(~r′)
+ χnm0 (~r, ~r1)

δ ~Beff(~r1)

δ ~H(~r′)

)
(5.46)

δ ~m(~r)

δ ~H(~r′)
≡ χm(~r, ~r′) =

∫
d~r1

(
χmn0 (~r, ~r1)

δVeff(~r1)

δ ~H(~r′)
+ χmm0 (~r, ~r1)

δ ~Beff(~r1)

δ ~H(~r′)

)
(5.47)

with the Kohn–Sham susceptibilities (the cyclic property of the trace was used)

χnn0 (~r, ~r1) =
1

π
Im Tr

∫
dε f(ε)G(~r1, ~r; ε)G(~r, ~r1; ε) (5.48)

χmm0 (~r, ~r1) =
1

π
Im Tr

∫
dε f(ε)β~ΣG(~r1, ~r; ε)β~ΣG(~r, ~r1; ε) (5.49)

χnm0 (~r, ~r1) =
1

π
Im Tr

∫
dε f(ε)G(~r1, ~r; ε)β~ΣG(~r, ~r1; ε) (5.50)

χmn0 (~r, ~r1) =
1

π
Im Tr

∫
dε f(ε)β~ΣG(~r1, ~r; ε)G(~r, ~r1; ε) (5.51)
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and a possible change in the Fermi level should be considered [92]. This leads to two

coupled integral equations for the susceptibilities, where the coordinate dependence

is omitted for simplicity, and the appropriate integrations implied:

χn = χnn0 Knn χn + χnn0 Knm χm + χnm0 Kmn χn + χnm0 Kmm χm (5.52)

χm = χmm0 + χmm0 Kmm χm + χmm0 Kmn χn + χmn0 Knm χm + χmn0 Knn χn . (5.53)

The magnetic susceptibility χm begins with the bare magnetic susceptibility χmm0 ,

but the charge susceptibility χn is driven exclusively by feedback effects. The four

kernels are given by

Knn(~r, ~r′) =
δVeff(~r)

δn(~r′)
, Knm(~r, ~r′) =

δVeff(~r)

δ ~m(~r′)

Kmn(~r, ~r′) =
δ ~Beff(~r)

δn(~r′)
, Kmm(~r, ~r′) =

δ ~Beff(~r)

δ ~m(~r′)
. (5.54)

These expressions hint at the level of complexity required in a full linear response

calculation of the non–uniform static susceptibility; if the dynamical response is

considered the problem is computationally even harder.

The simplifications usually considered are in the spirit of the adiabatic approxi-

mation, the same argument that was used to identify the local moments as slowly

evolving DOFs. In the LDA and with the external field transverse to the magneti-

sation, its effect will be to induce a deviation of the orientation of the magnetisation

away from its equilibrium direction. As the effective magnetic field points in the

same direction as the magnetisation, only one term is necessary to describe this

transverse response (the magnitude of the magnetisation is kept fixed)

Kmm(~r, ~r′) =
δ ~Beff(~r)

δ ~m(~r′)
=
Bxc(~r)

m(~r)
δ(~r−~r′) , δ

δ ~m
=

1

m

δ

δm̂
(transverse only) (5.55)

and a more amenable integral equation must be solved,

χm(~r, ~r′) = χmm0 (~r, ~r′) +

∫
d~r1 χ

mm
0 (~r, ~r1)

Bxc(~r1)

m(~r1)
χm(~r1, ~r

′) (5.56)

which has the form of a bare Kohn–Sham susceptibility with an enhancement factor

due to exchange and correlation effects. This is the typical ansatz for calculations

of the transverse magnetic susceptibility, which circumvents the need to include the

response from the charge density. It is expected to be a good approximation for local

moment systems, as longitudinal fluctuations of the magnetisation are energetically
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much more costly than the transverse ones. The theory to be developed next has

a different starting point, and will combine the same ingredients in an alternative

way, as the slow local moment DOFs were already extracted in the DLM picture.

5.2.2 The spin–spin correlation function and the magnetic

susceptibility

The conventional Zeeman coupling of the local moment to the external field is given

by, after Eq. 5.40,

~Hi · ~Mi(êi) =
∑
αL

HiαM
α
iL YL(êi) =

∑
L

HiL YL(êi) (5.57)

so the following correspondence applies:

∂

∂Hiα
=
∑
L

Mα
iL

∂

∂HiL
. (5.58)

The response of the average local moment on site i, 〈 ~Mi 〉, to a change in the

external magnetic field on site j, ~Hj , follows from Eq. 5.41:

∂〈 ~Mi 〉
∂ ~Hj

=
∑
αβ

∑
LL′

(
∂Mα

iL

∂HL′
miLM

β
jL′ +Mα

iLM
β
jL′

∂miL

∂HjL′

)
êα ⊗ êβ

=
∑
αβ

(
χL
iα,jβ + χT

iα,jβ

)
êα ⊗ êβ (5.59)

where the susceptibility separates into a longitudinal and a transverse response. As

explained before, the longitudinal response couples to the charge density response,

and describes high energy contributions, while the transverse part is associated with

deviations in the orientations of the magnetic moments, which are the low–energy

excitations in local moment systems. In the following only the transverse part of

the magnetic susceptibility will be considered, and the double–counting corrections

will be ignored. Under these approximations, the variational free energy is of the

form (note a sign change)

F1 = Ω̃− 1

β

∑
iL

log

∫
dêi e

β(giL({m})+HiL)YL(êi) (L ≥ 0) (5.60)

with the grand–canonical potential for the reference system

Ω̃ = −
∫

dε f(ε)N0(ε)− 1

π
Im Tr

∫
dε f(ε) log τ̃(ε) (5.61)
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and the single–site coefficients (sign change), which depend on the magnetic state

through the effective medium,

giL({m}) =
2`+ 1

4π

∫
dêi YL(êi)

1

π
Im Tr

∫
dε f(ε) logDi(ε; êi) . (5.62)

It is then straightforward to show that the free energy is stationary to changes in the

order parameters miL, and that these are generated by the corresponding conjugate

external fields HiL:
∂F1

∂miL
= 0 , − ∂F1

∂HiL
= miL (5.63)

using a sum rule for the spherical harmonics and the stationarity of the free energy

to changes in the effective medium.

To compute the transverse magnetic susceptibility the following auxiliary suscep-

tibility has to be evaluated (see Eqs. 5.22 and 5.23):

∂miL

∂HjL′
≡ χiL,jL′ =

∑
L1

χ0,iLL1

[
δijδL1L′ +

∑
kL2

S
(2)
iL1,kL2

χkL2,jL′

]
(5.64)

with the spin–spin correlation function, S(2), now computed from the electronic

structure,

S
(2)
iL,jL′ ≡

∂giL
∂mjL′

= − ∂2〈Ω 〉
∂miL∂mjL′

. (5.65)

In the spirit of the magnetic force theorem, Eq. 4.6, which is compatible with the

current approximations, the free energy difference between magnetic states charac-

terised by two different sets of order parameters is expressed as

∆F1 ≈
1

2

∑
iL,jL′

δmiL χ
–1
iL,jL′ δmjL′ =

1

2

∑
iL,jL′

δmiL

[
χ–1

0,iLL′δij − S(2)
iL,jL′

]
δmjL′ (5.66)

This shows that the auxiliary susceptibility is a useful concept by itself.

To compute the S(2), one must find the response of the effective magnetic medium

to a change in the order parameters, caused by the change in the external fields,

which is obtained from the CPA equation that defines the effective scattering ma-

trices, Eq. 5.31: ∫
dêi

(
∂Pi(êi)

∂HjL′
Xi(ε; êi) + Pi(êi)

∂Xi(ε; êi)

∂HjL′

)
= 0 (5.67)

yielding, after some linear algebra and use of the CPA condition to integrate out
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two terms,

∂t̃
–1
i (ε)

∂HjL′
= β

∫
dêi Pi(êi)Xi(ε; êi)

∑
L

(
YL(êi)−miL

)[
δijδLL′ +

∂giL
∂HjL′

]
+

∫
dêi Pi(êi)Xi(ε; êi)

∑
k 6=i

τ̃ ik(ε)
∂t̃

–1
k (ε)

∂HjL′
τ̃ki(ε)Xi(ε; êi) . (5.68)

Identifying

δijδLL′ +
∂giL
∂HjL′

=
∑
L1

χ–1
0,iLL1

χiL1,jL′ and
∂t̃

–1
i (ε)

∂HjL′
=
∑
kL1

∂t̃
–1
i (ε)

∂mkL1

χkL1,jL′ (5.69)

and introducing the bare and full vertex response, respectively,

Λ
(1)
iL (ε) = β

∫
dêi Pi(êi)Xi(ε; êi)

∑
L1

(
YL1(êi)−miL1

)
χ–1

0,iL1L

=
2`+ 1

4π

∫
dêiXi(ε; êi)YL(êi) , Λ

(2)
i,jL(ε) =

∂t̃
–1
i (ε)

∂mjL
(5.70)

a closed equation is obtained

Λ
(2)
i,jL(ε) = Λ

(1)
iL (ε) δij +

∫
dêi Pi(êi)Xi(ε; êi)

∑
k 6=i

τ̃ ik(ε) Λ
(2)
k,jL(ε) τ̃ki(ε)Xi(ε; êi)

(5.71)

which also supplies the S(2), from Eq. 5.62 and differentiating,

S
(2)
iL,jL′ = − 1

π
Im Tr

∫
dε f(ε) Λ

(1)
iL (ε)

∑
k 6=i

τ̃ ik(ε) Λ
(2)
k,jL′(ε) τ̃ki(ε)

= − 1

π
Im Tr

∫
dε f(ε) Λ

(1)
iL (ε) τ̃ ij(ε) Λ

(1)
jL′(ε) τ̃ ji(ε) + . . . (5.72)

The structure of this S(2) derived from linear response of the effective medium is

more complex than the transverse susceptibility introduced in the previous section,

see Eq. 5.56. In that equation the full susceptibility could be related to a bare

susceptibility which is the product of two GFs. The full expression for the S(2), and

so for the DLM transverse susceptibility, also starts with two GFs, the SPOs, as

indicated in the second line of Eq. 5.72, but then higher order terms also contribute

in an averaged way, as seen from the equation for the full vertex, Eq. 5.71.

The S(2) and the DLM state do not depend explicitly on temperature, but only

on the values of the order parameters. To see this, note that the CPA condition,
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Eq. 5.31, can be rewritten as

0 =

∫
dêi Pi(êi)Xi(ε; êi) =

∑
L

∫
dêi Pi(êi)YL(êi)

2`+ 1

4π

∫
dê′iXi(ε; ê

′
i)YL(ê′i)

=
∑
L

miL
2`+ 1

4π

∫
dêiXi(ε; êi)YL(êi) =

∑
L

miL Λ
(1)
iL (ε) (5.73)

so that specifying the order parameters also specifies the electronic structure. This

means that the poor description of the temperature dependence of the magnetic

properties in the single–site approximation does not affect the construction of the

effective medium.

The physical transverse magnetic susceptibility is then just

χT
iα,jβ =

∑
LL′

Mα
iL χiL,jL′ Mβ

jL′ (5.74)

which reverts to the conventional expression using only the ` = 1, 3 × 3 block if

the local moments are rigid, ~Mi(êi) = Mi êi. Non–Heisenberg–like interactions are

still included in general even in this case, as the susceptibility is given by the usual

inverse,

χiL,jL′ =
[
χ–1

0 − S(2)
]–1

iL,jL′
. (5.75)

5.2.3 Complete magnetic order and complete magnetic disorder

In the paramagnetic state all order parameters are zero (except the trivial one for

L = 0, which is always 1). By symmetry the local moments behave as rigid, as the

effective medium is now paramagnetic, and so there is no favoured direction (barring

on–site anisotropies, which are small and will be neglected for the moment). Eq. 5.73

then becomes

Λ
(1)
i0 (ε) = 0 ⇐⇒ 1

4π

∫
dêiXi(ε; êi) = 0 ⇐⇒ Pi(êi) =

1

4π
. (5.76)

If the moments are arranged in a periodic lattice, there is translational invariance

and one can Fourier transform the equations,

χ–1
LL′(~q) = χ–1

0,LL′ − S(2)
LL′(~q) = (2`+ 1) kBT δLL′ − S(2)

LL′(~q) (5.77)

using the limit indicated in Eq. 5.23. The mean–field transition temperature can

be extracted from this equation, by setting it to zero, and the periodicity of the

magnetic state is given by ~q.
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The same t–matrices applies on all sites, and so the S(2) becomes

S
(2)
LL′(~q) = − 1

π
Im Tr

∫
dε f(ε) Λ

(1)
L (ε)

∫
d~k

VBZ
∆τ̃(~k + ~q; ε) Λ

(1)
L′ (ε) ∆τ̃(~k; ε) + . . .

= − 1

π
Im Tr

∫
dε f(ε) Λ

(1)
L (ε)

∫
d~k

VBZ
∆τ̃(~k + ~q; ε) Λ

(2)
L′ (~q; ε) ∆τ̃(~k; ε) (5.78)

with

∆τ̃(~k; ε) = τ̃(~k; ε)−
∫

d~k

VBZ
τ̃(~k; ε) . (5.79)

The integration over the Brillouin zone of the SPOs will favour those vectors ~q

for which there is strong nesting of the electronic states of the effective medium;

some states which might nest otherwise may give a much weaker contribution, if

the broadening introduced by the statistical average is significant. These nesting

conditions are the explanation for the Ruderman–Kittel–Kasuya–Yoshida (RKKY)

interaction in metallic systems [93–95], which is driven by Fermi surface nesting.

This expression for the S(2) also applies if the reference state is ferromagnetic,

as translational invariance is preserved, with the appropriate effective medium t–

matrices being used. The on–site susceptibility then has its general form from

Eq. 5.23, and the susceptibility is given as before. It can be used to detect an in-

stability of the ferromagnetic state against some modulation ~q, as the ferromagnetic

order develops.

Taking now the limit of complete magnetic order, we have

Pi(êi) −→ δ(êi − n̂i) , t̃i(ε) −→ ti(ε; n̂i) (5.80)

where n̂i denote the orientations of the magnetic moments in the completely ordered

state. In this limit, the S2 becomes just a pair interaction:

Xi(ε; êi) =
[(
ti(ε; n̂i)− t–1

i (ε; êi)
)–1
− τ ii({n̂}; ε)

]–1
, Λ

(2)
i,jL(ε) = Λ

(1)
iL (ε) δij (5.81)

as the second term in Eq. 5.71 vanishes. This shows that the thermal effects are

twofold: the electronic structure is altered, as the sharp electronic states correspond-

ing to complete magnetic order become more or less broadened, as described by the

effective medium; and the pair interactions become renormalised by the average

fluctuations from all other sites.

These concepts generalise naturally to a system which can be described by a finite

number of sublattices. The interface between two magnetic systems, or a magnetic

surface, however, have to be handled in a different way, as one or two ideally semi–
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infinite systems have to be described. The DLM state must then obey the bulk

magnetic boundary conditions, and the magnetic susceptibility has to be written

in terms of the bulk susceptibilities, in a similar way to the procedure leading to

Eq. 2.67.

5.2.4 Short–range correlations and the Onsager cavity field

The main drawback of the mean–field theory just described is the failure to incor-

porate short–range correlations, which leads to quantitative and qualitative discrep-

ancies. To conclude this chapter on the theoretical aspects it is worth discussing a

modification of the theory which amelliorates some of these faults. It is called the

Onsager cavity field construction, going back to Lars Onsager pioneering work on

dielectrics [96], and was applied to magnetism by Brout and Thomas [97].

The argument behind the Onsager cavity field construction is fairly simple to

formulate: the effective field acting on the local moment at a given site must not

include the interaction of the moment with itself; this generates a reaction field which

is always parallel to the orientation of that moment, and so does not contribute to

the statistical averages, and to the local order parameter. The simple Heisenberg

model, Eq. 5.1, will be used to briefly illustrate this concept.

The reaction field is to be subtracted from the effective field:

~hi = ~Hi +
∑
j 6=i

Jij ~mj − λi ~mi (5.82)

and the magnetic susceptibility is modified accordingly (the possible dependence of

the reaction field parameter λi on the external fields is neglected)

χij = χ0,i δij + χ0,i

∑
k 6=i

Jik χkj − λi χij . (5.83)

One can now reinstate the diagonal part of the fluctuation–dissipation theorem,

Eq. 3.14,

χii ≡ χ0,i =⇒ λi = χ–1
0,i

∑
k 6=i

Jik χki (5.84)

so that the Onsager reaction field parameter λi is temperature dependent, and must

be calculated self–consistently with the rest of the statistical quantities.

This simple correction scheme has been used successfully in the DLM theory [88]

and in the order–disorder theory of alloys [98], as well as in handling strong electronic

correlations and magnetism in the Hubbard model [99]. A model of classical spin

fluctuations applicable for itinerant electron systems was discussed in the same way
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[100]. For classical unit vectors it is equivalent to the spherical model [101], and it

suppresses the mean–field magnetic phase transition in 2D systems, in the absence

of anisotropy, thus restoring the Mermin–Wagner theorem [78]. In first–principles

approaches which compute the transition temperature from the Fourier transform

of the exchange interaction parameters there is a similar treatment known as the

Random Phase Approximation [72].
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Chapter 6

Magnetic monolayers on

non–magnetic substrates

In this chapter the formalism previously introduced is applied to the problem of the

properties of magnetic monolayers (MLs) supported on non–magnetic substrates. A

brief overview of some theoretical and experimental results is given first, followed by

calculations for a system which is well characterised theoretically and experimentally,

the Mn ML on the W(001) surface. Then original theoretical results are given for

Mn MLs on the (111) surfaces of Pd, Pt, Ag and Au. This is a systematic study

of the influence of the substrate on the properties of the ML, and was spurred

by experimental investigations of Mn on Ag(111). These calculations were already

published [12].

6.1 Complex magnetism in supported monolayers

Modern experimental techniques developed over the past decades, such as molecu-

lar beam epitaxy (MBE), magnetron sputtering, ion beam sputtering, pulsed laser

deposition (PLD) or metal organic chemical vapor deposition (MOCVD), afford

unprecedented control in the growth of artificial magnetic structures. A range of

characterisation techniques is also available, from electron and X–ray diffraction to

scanning probes, such as scanning tunneling microscopy (STM). Neutron scattering

is also becoming more frequent, such as polarised neutron reflectometry. The ex-

perimental progress has not been completely followed by the necessary theoretical

developments, and the field of first–principles and micromagnetic modelling of the

magnetic properties of nano and heterostructures is a very active one.

The reason why theoretical progress has been slower is that the loss of symmetry
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and the intrinsic heterogeneity of most systems of interest make any analysis much

more complicated, and even simple mean–field theories can become quite involved. A

notorious example that has spread controversy and years of theoretical work consists

of a few layers of Fe deposited on Cu(001) [89, 102–105]. This is the thin film version

of the controversies over the magnetic ground state of fcc Fe, and is still on–going

work. To gain insight into the several mechanisms driving the magnetic properties

of these systems it is convenient to consider the simplest case possible: a single

atomic layer of magnetic material deposited on a non–magnetic substrate. This

is the best approximation available to a true two–dimensional system, and raises

fundamental questions. Very recently the Mermin–Wagner theorem was extended

to models which might be applicable to itinerant electron systems [106], and rules

out magnetic ordering for continuous symmetry (like vector models) in the absence

of anisotropy, as the original result [78].

A brief selection of first–principles results concerning magnetic MLs, often ac-

companying experimental findings, is now given. Fe on 4d and 5d substrates is

sometimes no longer ferromagnetic (FM) [107]. FM Fe on W(110) has a chiral

spin–wave spectrum [108], the domain walls separating magnetic domains are also

chiral [109], and becomes antiferromagnetic (AFM) on the W(001) surface [11]. Fe

on Ir(111) displays a very complicated magnetic structure [110], which has been

interpreted as the magnetic analogue of a skyrmion lattice [111]. Mn exhibits a spin

spiral state on W(001) and W(110) [112, 113], a triangular AFM state on Ag(111)

[114], and was predicted theoretically to display a magnetic state corresponding to

a superposition of three different wavevectors of the same symmetry on Cu(111)

[115]. For the test calculations Mn1/W(001) was chosen, and for the original results

Mn1/Ag(111) and the related Pd, Pt and Au substrates were analysed.

6.2 A test case: Mn monolayer on W(001)

6.2.1 Understanding the system

The Mn1/W(001) system consists of a single Mn ML on the (001) surface of bcc

W. The Mn atoms form a square lattice (taken in the xy–plane), matching the in–

plane lattice constant of W (a = 3.165 Å), and relaxing towards the substrate, in

comparison with the ideal W—W interlayer separation along the z–direction (this

is not determined experimentally, but first–principles calculations give values in the

10–15 % range [116, 117], depending also on the assumed magnetic state). The

experimental finding is that the magnetic state is a cycloidal spin–spiral (~q · n̂3 = 0

and θ = π/2, see Fig. 4.1, top), with a well–defined rotational sense [112].
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To aid the understanding of the theoretical results, the simplest model with the

necessary ingredients to generate such a magnetic state is now explained. Firstly,

for a spin–spiral to be energetically favourable, at least two different isotropic ex-

change interactions must be present1, which will be taken to be J1 for nearest–

neighbours (nn) in the Mn square lattice, and J2 for next–nearest–neighbours (nnn).

A schematic of this geometry is given in Fig. 6.1, left. Let us compute the energy of

a generic spin spiral, according to Eq. 4.7 (the length of the spin moment is assumed

independent of the wavevector, and can be absorbed into the exchange interactions):

~mi(~q) =
(

cos(~q · ~Ri + φ) sin θ n̂1 + sin(~q · ~Ri + φ) sin θ n̂2 + cos θ n̂3

)
. (6.1)

The energy due to isotropic pair interactions per atom is given by

Eiso(~q ; θ) = − 1

2N

∑
ij

Jij ~mi(~q) · ~mj(~q) =
J(0)− J(~q)

2
sin2 θ − J(0)

2
(6.2)

and the lattice Fourier sum is (~q = π/a (qx, qy), with qx, qy ∈ [−1, 1])

J(~q) =
∑
j

J0j cos(~q ·~R0j) = 2J1 [cos(πqx) + cos(πqy)] + 4J2 cos(πqx) cos(πqy) (6.3)

The extremal values of this energy are given by the conditions

sin(πqx)
(

1 +
2J2

J1
cos(πqy)

)
= 0 (6.4)

sin(πqy)
(

1 +
2J2

J1
cos(πqx)

)
= 0 (6.5)(

J(0)− J(~q)
)

sin 2θ = 0 (6.6)

The cone angle θ can take on the values 0 or π/2, and only in case of accidental

degeneracy on any other values, as shown by the last equation. Flat spirals are then

the norm2.

The first two equations show that there are simple magnetic states corresponding

to (qx, qy) = (0, 0), (±1, 0), (0,±1) and (±1,±1), which are FM, four symmetry–

equivalent row–wise AFM, and four checkerboard AFM. Setting the term in brackets

on the first two equations to zero gives the condition for the possibility of a spin

spiral state: −2J2 ≤ J1 ≤ 2J2. This implies that the nn interaction must be weak

1Or an appropriate anisotropic interaction, as will be shown below.
2θ = 0 gives a FM arrangement, which is equivalent to a flat spiral with ~q = ~0.
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x

y

a) b)

Figure 6.1: Geometry for the Mn ML supported on the W(001) substrate. Mn
atoms are in blue, and W atoms in red. a) — nn interactions J1 (solid green line)
and nnn interactions (dashed green lines) between the central atom and the first
and second lattice shells. b) — DM vectors between the central Mn atom and the
four nearest neighbours.

enough compared to the nnn interaction. The spiral wavevector is then along one

of the diagonals of the square lattice.

As expected, the isotropic interactions do not dictate the real–space orienta-

tion of the magnetic state, which is given by the unit vectors n̂1, n̂2 and n̂3. For

this one must consider anisotropic interactions, see Chapter 3. The unidirectional

Dzyaloshinsky–Moriya (DM) interaction [9, 10] can also fix the orientation of the

magnetic moments, and is now analysed. Take the following form for the anisotropic

nn pair interaction:

J ij =

 J1 Dz −Dy

−Dz J1 Dx

Dy −Dx J1

 , J ji = JTij (6.7)

and the overall symmetry of the pair interaction is reflected in the second equality.

The non–zero off–diagonal coefficients of this matrix form an antisymmetric matrix,

and results in the following coupling:

~mi ·J ij · ~mj = J1 ~mi · ~mj+ ~Dij ·
(
~mi× ~mj

)
, ~Dij = (Dx, Dy, Dz) , ~Dji = − ~Dij (6.8)

which introduces the DM vector ~Dij . The non–zero coefficients of this vector are

dictated by the local symmetry of the pair of interacting sites [81]; for the current

case, the square lattice supported by the non–magnetic substrate, Dz = 0, and the

vector is in–plane and perpendicular to the line connecting i and j, with |Dx| =

|Dy| = D (see Fig. 6.1, right). Evaluating the cross product with the spin spiral

form in Eq. 6.1, only one term gives a non–zero contribution to the lattice Fourier
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sum (more details in Appendix B):

EDM(~q ; θ; n̂3) = − 1

2N

∑
ij

~Dij ·
(
~mi× ~mj

)
= − 1

2N

∑
ij

~Dij ·n̂3 sin(~q ·~Rij) sin2 θ (6.9)

A non–vanishing contribution to the energy requires a non–zero dot product, so

the spin spiral will have a definite orientation in real space, according to the non–

vanishing elements of the DM vector. The meaning of ‘unidirectional’ is now evident:

the DM energy is not invariant under the ~q → −~q transformation, only if n̂3 → −n̂3

also applies at the same time. This is why the DM interaction defines the rotational

sense of a spin spiral, which is given by the pair (~q , n̂3).

In the present case this form specialises to

EDM(~q ; θ; n̂3) = D
[
(êx · n̂3) sin(πqy)− (êy · n̂3) sin(πqx)

]
sin2 θ (6.10)

= D
[

cosα sin(πqy)− sinα sin(πqx)
]

sin2 θ (6.11)

by writing n̂3 = cosα êx + sinα êy, and for collinear states sin(πqx) = sin(πqy) = 0,

which shows that the DM energy is zero, as the cross product ~mi × ~mj is zero. In

general the DM interaction can always lower the energy, by lifting the degeneracy

coming from the isotropic energy, Eiso(~q ; θ) = Eiso(−~q ; θ).

The stationary points of the energy come from (ignoring the cone angle)

sin(πqx)
(

1 +
2J2

J1
cos(πqy)

)
− D

J1
sinα cos(πqx) = 0

sin(πqy)
(

1 +
2J2

J1
cos(πqx)

)
+
D

J1
cosα cos(πqy) = 0 (6.12)

cosα = ± sin(πqy)√
sin2(πqx) + sin2(πqy)

, sinα = ∓ sin(πqx)√
sin2(πqx) + sin2(πqy)

(6.13)

and the last two equations determine the two stationary directions of n̂3, and come

from differentiating the energy with respect to the angle α. These are shown to

depend on the modulation vector of the spin spiral, ~q. One maximises the DM

energy, while the other minimises it, while both directions are degenerate for the
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isotropic energy. The spiral wavevector is then determined from the two equations

sin(πqx)

1 +
2J2

J1
cos(πqy)±

D

J1

cos(πqx)√
sin2(πqx) + sin2(πqy)

 = 0

sin(πqy)

1 +
2J2

J1
cos(πqx)± D

J1

cos(πqy)√
sin2(πqx) + sin2(πqy)

 = 0 (6.14)

There are spin spiral solutions with ~q along the nn or nnn directions. The DM can

also stabilise a spin–spiral by itself, as can be checked by setting J2 = 0. From the

equations for the angle α, it also follows that n̂3 · ~q = 0 in all cases.

Extending the discussion to include the uniaxial anisotropies would lead to un-

necessary complication at this point. A general consequence of these anisotropies is

that the energy can be lowered by deviating the orientations of the moments from

the ideal spin spiral arrangement to align slightly with the anisotropy easy axes (this

is sometimes called ‘bunching’ [8]). This also provides a mechanism to stabilise coni-

cal spin spirals: with n̂3 pointing along an easy axis, the cone angle can deviate from

θ = π/2. If different kinds of anisotropies are present, competition between them

might occur. This is analogous to the competition between isotropic interactions

which leads to the formation of non–collinear magnetic states, as explained above.

A more detailed discussion is given in Appendix B.

Armed with these insights as to how the different ingredients combine to deter-

mine the magnetic state, we can now analyse the results of first–principles calcula-

tions of the spin–spin correlation function, and compare with published theoretical

and experimental results.

6.2.2 Linear response from the paramagnetic state

The Mn1/W(001) self–consistent calculations were done using the Budapest SKKR

code [47], in the ASA with `max = 3. A semicircular contour in the upper half of

the complex plane with an asymetric distribution of 16 or 24 points was employed

for the energy integrations, and 78 points in the irreducible wedge of the Brillouin

zone were taken, which amounts to 624 points in the full zone, according to the

C4v symmetry of the system. The interfacial region was taken to comprise of eight

layers of W, the Mn layer, and three layers of empty spheres modelling the decay

towards the vacuum, and the matching was done to the semi–infinite W substrate

and to the semi–infinite vacuum. The Mn layer was relaxed 10.8% towards W, in

comparison with the ideal W–W interlayer separation, as in Ref. [116].
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Figure 6.2: Layer–resolved DOS for ferromagnetic (left) and DLM (right) states
of Mn1/W(001). The majority spin DOS is plotted as positive values, while the
minority spin DOS is given as negative. W 1 is the substrate layer farthest from the
Mn ML, while W 8 is in atomic contact with it. Vac 1 is the vacuum layer next to
the Mn ML. In the DLM calculation there is no net spin polarisation; the Mn DOS
is then computed from the partially averaged GF, to allow a comparison with the
respective FM DOS.

Let us first compare the electronic structure and properties in the FM and DLM

states. In the DLM state only Mn has a spin moment, of 3.10µB, which gives a net

vector spin moment of zero upon averaging with P (ê) = 1/4π. This increases to

3.15µB in the FM state, and the W layers magnetise in an alternating fashion: the

layer next to Mn aligns antiparallel to the Mn moment, with 0.32µB, and succes-

sive layers align antiparallel to each other, with the induced magnetisation quickly

decreasing to zero towards the bulk. The actual value of the spin moment depends

on the value chosen for the relaxation towards the substrate, and different methods

given different equilibrium geometries [116–118]. Our calculated values agree with

those given in a recent paper by Shick [116] for the FM state.

The calculated layer resolved DOS, see Fig. 6.2, show that the sharp structure

of the DOS in the FM state is broadened due to the magnetic disorder in the DLM

state. To highlight the effect of hybridisation between the Mn and the nearest W

layer, the DOS for the W layer farthest away from Mn is also given for comparison

(along with the DOS in the first layer of vacuum). It can be seen that there are

states in the W layer next to Mn which are not present in the bulk around the

Fermi level. These are spin–polarised in the FM state, but there is no spin splitting

in the DLM state, as W does not have a local magnetic moment. The Mn DOS

remains spin–polarised in the DLM state, which demonstrates the presence of the

local moment.

The S(2) calculations were done using only the ` = 1 block of the general expres-
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sion, Eq. 5.78, in the DLM state. This reverts back to the familiar vector notation.

For the susceptibility, Eq. 5.77 becomes

χ–1
αβ(~q) = 3 kBT δαβ − S

(2)
αβ (~q) , (α, β = x, y, z) (6.15)

and the appropriate S(2) is

S
(2)
αβ (~q) = − 1

π
Im Tr

∫
dε f(ε) Λ(1)

α (ε)

∫
d~k

VBZ
∆τ̃(~k + ~q; ε) Λ

(1)
β (ε) ∆τ̃(~k; ε) (6.16)

and only the bare vertex is considered in the following, except when otherwise noted.

Calculations done using the full expression show only small numerical differences,

and no change in the qualitative behaviour. A dense equidistant mesh (40 × 40

points) was used for the BZ integration, and the modulation vectors ~q were chosen

from that mesh.

As explained in Appendix B, it is useful to decompose the 3×3 tensor in isotropic,

traceless symmetric, and antisymmetric parts:

S
(2)
αβ (~q) = S(2)(~q) δαβ + S

(2),S
αβ (~q) + S

(2),A
αβ (~q) , S(2)(~q) =

1

3

∑
α

S(2)
αα(~q)

S
(2),S
αβ (~q) =

S
(2)
αβ (~q) + S

(2)
βα (~q)

2
− S(2)(~q) δαβ , S

(2),A
αβ (~q) =

S
(2)
αβ (~q)− S(2)

βα (~q)

2
(6.17)

To identify the main contributions, some representative plots are given in Fig. 6.3,

left. The wavevectors are taken along straight lines in the BZ, with the endpoints

indicated on the plot. The isotropic part is by far the dominant contribution, as

expected, and already indicates that a spin spiral state would be more energetically

favourable than the FM state ~q = (0, 0). The checkerboard AFM, ~q = (1, 1)π/a,

is very unfavourable, while the row–wise AFM, ~q = (1, 0)π/a, is not much lower in

energy than the FM state, as well as all spin spirals on the line connecting those

magnetic states. The result using the full vertex is also given, and as stated before

the differences are small, for this system.

A fit to the J1–J2 model for the isotropic interactions, Eq. 6.3, is also given. The

structure near the centre of the BZ, ~q = ~0, is not captured in this simple model.

This is due to the long ranged nature of the interactions. To help quantify this,

consider the quantity

J0 =
∞∑
n=1

zn Jn ≡ S(2)(~0) (6.18)

which is the total isotropic interaction for the FM case. Here n labels the n–th
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Figure 6.3: The most important components of S(2) (see Eq. 6.17) for Mn1/W(001),
along special symmetry directions in the BZ. The wavevector is given in units of
π/a, and the fit uses the S(2) computed with the full vertex. The fit in the left panel
is to Eq. 6.3, and in the right panel to Eq. 6.19.

shell of atoms, zn the number of atoms in that shell, and Jn the value of the pair

interaction between the atom at the origin and any atom on the n–th shell. The

pair interactions are long–ranged and of varying sign, so this is an alternating series,

thus defining a reliable truncation has to be done with care.

By inverse Fourier transforming (as a dense equidistant set of ~q’s is available),

these parameters can be determined without fitting. Taking the S(2) computed

with the bare vertex as an example, we obtain J1 = 9.79 meV and J2 = −2.89

meV. The simple fit using Eq. 6.3 gives J1 = 9.70 meV and J2 = −3.16 meV,

and is displayed in Fig. 6.3, left. The agreement is fair. However, S(2)(~0) = 24.5

meV, while 4J1 + 4J2 = 27.6 from the same data. The remaining 3 meV is the

true value of the sum of all the pair interactions, of alternating sign, and it is very

difficult to reproduce this number using a finite truncation and a fitting procedure.

Returning to the previous model based solely on isotropic interactions, no spin

spiral is predicted, as can be observed from the fitting curve and from J1 > 2|J2|.
This contrasts with the untruncated first–principles results, which already indicate

a spin spiral with ~q ≈ (0.2, 0.2)π/a, only slightly higher in energy than all other

wavevectors with q ≈ 0.25π/a around the BZ centre.

The most important anisotropic contributions to the S(2) are shown in Fig. 6.3,

right. By symmetry, the xz and yz elements of the uniaxial anisotropy are zero, as

are the xy elements of the unidirectional anistropy, which would be the z–component

of the DM vector. This is in agreement with the discussion in Ref. [81]. There is

a weak in–plane uniaxial anisotropy, corresponding to an xy term, which is not

shown, and the dominant uniaxial anisotropy is the out of plane element, which was
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represented in Fig. 6.3 with the average of the xx and yy elements subtracted out.

The form of the DM vector, for nn and nnn, is

~D1(~q) = 2D1

[
sin(πqx) êy − sin(πqy) êx

]
(6.19)

~D2(~q) = 4D2

[
sin(πqx) cos(πqy) êy − cos(πqx) sin(πqy) êx

]
(6.20)

On the path in reciprocal space with (qx, qy) = (q, q), Dx(~q) = −Dy(~q), while for

(qx, qy) = (q, 0) we have Dx(~q) = 0 and for (qx, qy) = (1, q) it follows that Dy(~q) = 0.

All these relations hold for a general form of the DM vector, and are a consequence

of the C4v symmetry of the surface [81]. It can also be seen from Fig. 6.3, right that

the nn approximation to the DM vector is well–justified. Taking the bare or the full

vertex makes little difference for the actual numbers for the anisotropy.

Ignoring the uniaxial anisotropy for the moment, one can solve Eqs. 6.14 for the

three symmetry directions shown in the plot, using the three fitted parameters, J1,

J2 and D1. As D1 < 0, the solution for the minimum is obtained by choosing the

minus sign in those equations (cf. Eqs. 6.11 and 6.13). Two solutions are almost

degenerate minima of the model energy, q = (0.17, 0.17) and q = (0.25, 0.00), and

interestingly are in approximate correspondence with the ring of almost degenerate

maxima found for the calculated isotropic part of S(2). The uniaxial anisotropy

energy is also about the same for both spin spirals, as can be seen from Fig. 6.3,

right. The spiral vector might be slightly changed when this additional anisotropy

energy is considered, but no qualitative change is expected. The absolute minimum

is obtained for q ≈ (0.17, 0.17), which corresponds to a real–space period of 21 Å,

or about four lattice constants of bulk W, and corresponds to a cycloidal spin spiral

(n̂3 · ~q = 0, see Fig. 4.1, top).

To conclude, we refer back to Ref. [112], which reports on the experimental

discovery of the magnetic state of Mn1/W(001), along with first–principles calcu-

lations. The magnetic ground state is a cycloidal spin spiral, with period of 22 Å,

propagating along the diagonals of the square lattice. The first–principles calcula-

tions were done using the generalised Bloch theorem for spin spirals, and are in very

good agreement with experiment. As was demonstrated by the previous discussion,

our linear response theory of the instabilities of the DLM state finds essentially the

same results, but from a very different starting point.
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6.3 Mn monolayers on d9 and d10 substrates

6.3.1 Introduction to the experimental results for Mn1/Ag(111)

The inspiration for the theoretical investigation to be described in the following

sections came from an experimental ‘detective’s work’ on triangular Mn islands

grown on the hexagonal (111) surface of fcc Ag [114]. Keeping the orientation of

the surface fixed, there are four different types of islands, as depicted in Fig. 6.4.

According to how the islands stack on the substrate, they can be called fcc (if there

is no subsurface atom underneath the Mn atoms, Fig. 6.4, left) or hcp (if Mn atoms

stack on top of the subsurface atoms, Fig. 6.4, right). The triangles can form in two

different ways, and are creatively called ‘up’ and ‘down’ triangles. The islands can

be considered as assembled from the building blocks highlighted by the green lines;

fcc and hcp islands then also differ by the relative position of the surface atom with

respect to these losenges.

The magnetic structure of the Mn islands was investigated using spin–polarised

STM. It is fairly easy to establish that the magnetic state corresponds to triangular

AFM, with 120◦ angles between neighbouring magnetic moments. The real detective

work was in establishing the relative orientations of the moments in different types

of islands. The moments in the fcc islands appear to be rotated by 30◦ or 60◦ from

the moments in the hcp islands (this is part of the subtlety of interpreting the STM

contrast). It was found that up and down islands display identical behaviour, for

the same type of stacking.

First–principles calculations for this system predict that the magnetic ground-

state should be row–wise AFM, in contradiction with experiment. Simple row by row

AFM is predicted in Ref. [119], while Ref. [120] predicts double rows of FM spins

antiparallel to each other. There is no quantitative explanation for this discrepancy

so far.

6.3.2 Reference states for Mn1/X(111), X = Pd, Pt, Ag and Au

To investigate the disagreement between theory and experiment, a comparative

study was made by calculating the properties of the Mn ML on the Ag substrate

with those corresponding to the Pd, Pt and Au substrates, which are all fcc, and

neighbours on the periodic table. The geometry used in our calculations was as

follows. The interface region was composed of eight layers of the transition metal

substrate, the Mn ML, and three layers of empty spheres. This was then matched

to the semi–infinite bulk substrate and to the semi–infinite vacuum region.

No attempt was made at determining the equilibrium geometries for the four
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a2

a1

hcpfcc

Figure 6.4: The geometry of the Mn triangular islands grown on an fcc(111) sub-
strate. The Mn adatoms are in blue. The surface layer is represented by the bright
red circles, while the subsurface layer is depicted with dark red circles. In the fcc
stacking, the Mn adatoms stack on the hollow sites without a subsurface atom un-
derneath (left), while for the hcp stacking, they stack on the hollow site directly on
top of the subsurface atoms (right). A possible choice for the basis vectors spanning
the hexagonal layers is also shown.

systems studied. However, the influence of different interlayer spacings between

the magnetic ML and the substrate was investigated for the cases of Mn/Ag and

Mn/Au, and it was found that there was no qualitative change in the magnetic

properties, up to 15% inward relaxation. The dependence of the magnetic properties

on the in–plane lattice constant was addressed in a previous study [121], and for

the range relevant to our systems the same conclusion can be made. On the other

hand, the relaxed geometrical parameters depend on the magnetic state and other

approximations, such as the exchange–correlation functional and the handling of the

charge density, so a definite statement is precluded. We thus progress with a simple

model of the geometric structure, which we now describe.

To aid comparison, the average of the experimental lattice constants for Pd and

Pt was used for both Pd and Pt (a = 3.905 Å), and likewise for Ag and Au (a =

4.085 Å). This means that the in–plane lattice constant for the Mn ML is the same

for the Pd and Pt substrates, and also for the Ag and Au substrates. To estimate the

inward relaxation, it was assumed that Mn grows on Cu(111) without any significant

relaxation, thus defining the Mn ML hard sphere radius. By considering how these

hard spheres stack on top of the larger ones corresponding to the substrate, the

following relation was obtained for the ratio between the estimated and the ideal

distance between planes: d/d0 =
√

3/8 (1 + aCu/aX)2 − 1/2. We then round the
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Figure 6.5: Layer–resolved DOS for Mn1/X(111), with X = Pd, Pt, Ag and Au.
The majority spin DOS is plotted as positive values, while the minority spin DOS
is given as negative. Only the DOS for the Mn and the nearest substrate layer is
shown. In the DLM calculation there is no net spin polarisation; the Mn DOS is
then computed from the partially averaged GF, to show the local spin splitting of
the states; by averaging over all orientations of the local moment with Pi(êi) = 1/4π
no net spin polarisation remains. The substrate layers possess no local moments,
and so no local spin splitting can be detected.

results and use 5% inward relaxation for the Pd and Pt substrates, and 10% for Ag

and Au.

The influence of the substrate on the electronic structure of the Mn ML can

be readily understood from the layer–resolved DOS, in the DLM state, shown in

Fig. 6.5. The Mn minority states are just slightly affected by changing the substrate,

as can be seen be comparing all four cases. The majority states, however, show a

marked difference. For the Ag and Au substrates these states are fairly narrow, while

for the Pd and Pt substrates they are much wider in energy, and show strong signs

of hybridisation. This can be explained by the position of the substrate d–states.

Ag and Au have filled d–bands, lower in energy than the Mn majority states, and so

there is little hybridisation. On the other hand, Pd and Pt have partially filled d–

bands, which extend up to the Fermi energy, so there is much stronger hybridisation

with the Mn majority states. The strength of the hybridisation with the substrate

also affects the size of the DLM spin moments: for Mn/Ag and Mn/Au it is about

3.9 µB, in agreement with previous calculations [119], while for Mn/Pd and Mn/Pt

it drops to about 3.6 µB.

6.3.3 Magnetic interactions from the DLM state of Mn1/X(111)

We now analyse the magnetic correlations in the DLM state of Mn1/X(111), ex-

tracting the relevant information from the S(2), calculated according to Eq. 6.16.
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Figure 6.6: Left: isotropic part of the S(2) tensor, plotted along the high–symmetry
lines of the hexagonal BZ. The symmetry points are shown on the inset, and cor-
respond to simple magnetic states (see Fig. 6.7). Right: DM vectors in real space,
computed by inverse Fourier transforming the first–principles data, plotted for all
pairs formed by some atom and its neighbours in concentric shells. See Eq. 6.17 for
the decomposition of the data into isotropic and anisotropic quantities.

3721 equidistant points in the 2D BZ were used. The isotropic part of the tensor is

again the dominant part, and is given in Fig. 6.6, left. The discussion of the J1–J2

model on the hexagonal lattice is slightly more involved than on the square lattice,

and so is given in detail in Appendix C. The main ideas will be quoted from there

as needed.

For the isotropic part of the interaction, the J1–J2 model predicts extrema at

Γ, M, K and K’ (see inset in Fig. 6.6, left), as well as one on the Γ–K line. This

is the behaviour seen in Mn/Ag and Mn/Au. For both cases the favoured state is

row–wise AFM (Fig. 6.7, left), but Mn/Au shows an approximate degeneracy with

the 120◦ AFM state (K or K’ points). On the other hand, Mn/Pd and Mn/Pt show

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

Figure 6.7: Simple magnetic states on the hexagonal ML. Arrows indicate the ori-
entations of the Mn spins, while the crosses highlight one of the possibilities for the
position of the substrate atoms. Left: row–wise AFM state, associated with the M
point. Right: 120◦ AFM state, associated with the K or K’ points. The rotational
sense will depend on the specification of n̂3 (consult Appendix C for details). The
chemical unit cell is highlighted in light blue.
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Figure 6.8: Left: length of the DM vectors in real space as a function of distance.
The nn DM vector is much larger than all the others for Mn/Pd (D = 1.2 meV)
and Mn/Pt (D = 4.3 meV). Right: the Fourier transformed z–component of the
DM interaction. Departure from a simple sine–like form indicates that many shells
of atoms are important in determining this particular unidirectional contribution,
for all four substrates. See Appendix C for more details.

almost identical energy dispersions, favouring the 120◦ AFM state (Fig. 6.7, right).

An extension of the J1–J2 model to include the third shell of neighbours shows that

this additional interaction can modify considerably the magnetic phase diagram, see

for instance Ref. [107]. Relying on the Fourier transformed quantities, as it is being

done here, circumvents the need to determine the most important interactions and

the model which best represents the data.

The anisotropic part of the tensor is dominated as before by the DM–type inter-

action. The nn DM vector is large for the Pd (D = 1.2 meV) and Pt (D = 4.3 meV)

substrates, and relatively weak for the Ag and Au substrates (D = 0.3 meV). The

length of the DM vector is plotted as a function of distance in Fig. 6.8, left. It can

be seen that only the nn vector is greatly enhanced by the Pd and Pt substrates,

and that there are substantial contributions up to the fifth or sixth shell of atoms.

This was already illustrated for Mn/Au in Fig. 6.6, right.

As explained in Appendix C, the 120◦ AFM state acquires a well–defined rota-

tional sense, i.e., n̂3, if the z–component of the DM vector is non–zero. This is the

case for all four systems considered, as can be seen in Fig. 6.8, right. The symmetry

considerations described in Appendix C are general, and can be checked in this plot.

As there is a mirror plane on all the Γ–M lines, Dz(~q) = 0. The dispersion on the

Γ–K lines is related to that on the Γ–K’ lines by simply reversing the sign of Dz(~q).

Competing contributions from different shells of atoms make Dz(~q) relatively small

for Mn/Au at the K and K’ points, in comparison with all other systems. Up to an
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Figure 6.9: Left: a single rhombus with the two chiralities marked, according to
Eq. 6.23 (see accompanying text also). Right: chirality pattern generated by repe-
tition of the basic tile.

arbitrary global phase angle, the spins follow the expressions (~Ri = i1~a1 + i2~a2):

K ≡
(

2

3
,
1

3

)
: ~mi = cos

2π

3
(2i1 + i2) êx + sin

2π

3
(2i1 + i2) êy (6.21)

K ′ ≡
(

1

3
,
2

3

)
: ~mi = cos

2π

3
(i1 + 2i2) êx − sin

2π

3
(i1 + 2i2) êy (6.22)

These generate exactly the same magnetic pattern, and correspond to Fig. 6.7, right,

with êz pointing towards the reader (after an overall rotation of 90◦). The weak

in–plane anisotropy will then favour orientations either along the nn directions or

perpendicular to them; this was not extracted from the first–principles data, as the

numbers were below the numerical uncertainty.

One can also associate a chirality pattern with the chemical unit cell, see Fig. 6.9,

left. Consider the single rhombus depicted on the left, split into two triangles.

Travelling anticlockwise on each of those triangles, define the chirality vector as

~ξ = ~m1 × ~m2 + ~m2 × ~m3 + ~m3 × ~m1 (6.23)

Figure 6.10: A possible interface between two chirality patterns. The bond marked
yellow loses energy, while the bond in magenta gains energy.
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where the numbers label the magnetic atoms in the order they are encountered while

travelling around each triangle. An anti–clockwise symbol is assigned if ~ξ · êz > 0,

and vice–versa. The resulting chirality pattern is shown on Fig. 6.9, right. The total

or net chirality is zero, as might be expected.

Each rhombus can be assigned one of two chirality patterns, giving rise to two

types of rhombus. Suppose that two magnetic domains are constructed out of each

type of rhombus, see Fig. 6.10. If these are brought into contact, there will be a

competition between the loss in isotropic exchange energy at the interface, and the

gain in anisotropy energy by preserving the chirality pattern on each domain, and

by aligning the moments along the easy axes. The sharp domain wall depicted here

is purely schematic; in reality this might deform into some kind of Bloch or Neél

wall, spanning more than two atoms.

The idea is to illustrate how the magnetic moments on different domains might

appear at an angle to each other, from the point of view of an STM experiment,

as in Ref. [114]. The colours chosen for the clockwise and anti–clockwise rotations

of the moments on each triangles are not arbitrary (compare with the colours in

Fig. 6.4): the conjecture is that the same chirality applies when the magnetic atoms

surround a substrate atom, correlating with the alternating sign of Dz as one goes

around the central atom; the position of the substrate atoms in fcc and hcp islands

is related by a mirror symmetry along a nn direction, reversing the sign of Dz in all

pairs (see Appendix C). Then each type of island, fcc or hcp, would have a different

chirality pattern. Thus when going from an fcc island (Fig. 6.4, left) to an hcp

island (Fig. 6.4, right), there would be a domain wall between these two chirality

patterns just described.

6.3.4 Role of the substrate: band filling and spin–orbit coupling

A simple picture can be invoked to synthesise these calculations: on the Ag and

Au substrates, the magnetic properties of the Mn ML are quite similar to those of

a conceptual free standing or unsupported ML, as found before in other electronic

structure calculations [119]. This explains the similarity between the S(2)’s for

the Ag and Au substrates. The Pd and Pt substrates then represent a strong

enhancement of the nn interactions due to hybridisation with the substrate, which

stabilises the 120◦ AFM state over the row–wise AFM state found for the Ag and

Au substrates.

It can be seen that the anisotropic effects scale with the atomic number of the

substrate, due to the SOC effect, as expected. The DM vectors on the first shell,

however, show a marked difference: they are much larger in the Pd and Pt sub-
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strates than in the Ag and Au substrates, regardless of the similarity between atomic

numbers. This reveals another ingredient to a large anisotropic effect: strong hy-

bridisation with the substrate. This is why the first shell DM vector in Mn/Pd is

three times larger than the one in Mn/Au, despite the differences in atomic number,

and so in SOC strength. This implies that a careful choice of substrate might yield

similar anisotropic properties using lighter elements, thus dispensing the use of their

heavier counterparts, which may be rarer and more expensive.

6.3.5 Comments on the Mn1/Ag(111) system

We suggest two explanations for the disagreement between theory and experiment.

Both are based on the delicate balance found between the two types of AFM:

• There may be some buried Mn atoms underneath the studied Mn triangular

islands. This would enhance the hybridisation to the substrate, which has a

very strong influence on the strength of the nn couplings, as found for the Pd

and Pt substrates, and thus favours the 120◦ AFM state.

• There may be an inadequate treatment of the exchange–correlation effects in

the Mn ML. Although this might be a small correction, the Mn1/Ag(111)

system, as described by the LDA, has a small energy difference between the

two types of AFM states just discussed. The electronic structure changes that

may be brought about by an improved treatment might be enough to tilt the

preference from the row–wise to the 120◦ AFM state.

The experimental data on Mn1/Ag(111) also suggests that similarly oriented

magnetic islands with respect to the substrate have different magnetic domains,

and so different magnetic anisotropies. We propose that this might be due to two

different chirality patterns of the 120◦ AFM state, as explained in detail previously.
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Chapter 7

Other applications and

preliminary results

In this chapter other work and preliminary data is collected and explained. Firstly,

the results of a theoretical investigation on the magnetic properties of MnSb are

discussed. These are part of a join theoretical–experimental effort at the University

of Warwick to characterise epitaxially stabilised MnSb polymorphs, particular the

half–metallic properties of the zinc–blende structure.

Next a more detailed analysis of the properties of the intermediate magnetisation

states between the FM and the DLM state is given for hcp and fcc Co. The feedback

between the degree of magnetic order and the length of the local spin moment

is exposed, and the applicability of an interpretation in terms of a conventional

Heisenberg model is discussed.

To conclude we present data on the calculated first–principles mean–field mag-

netisation profile of an FeRh thin film. This will illustrate that the problem of

finding the equilibrium magnetisation profile for an inhomogeneous system solves

itself on the course of the self–consistent iterations, consistent with the supplied

type of magnetic order — FM, AFM, etc.

7.1 Half–metallicity in zinc–blende MnSb

The half–metallic (HM) state (the majority spin DOS is metallic, and the minor-

ity spin DOS has a gap around the Fermi energy) was first predicted in electronic

structure calculations for NiMnSb [122]. Since the original finding many other ma-

terials were predicted to be HM, including other Heusler alloys [123]. One quantity
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Figure 7.1: Crystal structure of the half–Heusler NiMnSb (left), the zb MnSb (mid-
dle), and the double hcp MnSb (right). Mn atoms are in dark red, Sb atoms in light
green, and Ni atoms in light blue.

of interest is the intrinsic spin polarisation at the Fermi level,

p(εF ) =
n↑(εF )− n↓(εF )

n↑(εF ) + n↓(εF )
(7.1)

with n↑(εF ) the DOS for the majority spin channel and n↓(εF ) the DOS for the

minority spin channel. The predicted 100% spin polarisation at the Fermi energy

has proved very hard to detect experimentally in many of those systems: extrinsic

effects such as impurities and the difference between the bulk and the surface or

interface properties, where measurements are usually made, but also intrinsic effects,

such as temperature or strong correlation effects, conspire to cloud the data, or to

destroy the complete polarisation [123]. A tell–tale sign of HM in electronic structure

calculations is an integer value of the spin moment in otherwise metallic systems,

for which this is very rarely the case.

The experimental interest in possibly HM MnSb concerns spintronics applica-

tions, where this material could play the role of a spin injector. It is also compatible

with common semiconductors such as GaAs, forming clean and sharp interfaces [13].

The zinc–blende (zb) MnSb was predicted theoretically to be HM, but also that it

should be unstable to a tetragonal distortion, while the true equilibrium structure

is of NiAs type, or double hcp, and the HM is lost [124].

The structures of zb MnSb and cubic NiMnSb are closely related (see Fig. 7.1).

The HM and the minority spin gap were shown to originate from the tetrahedral

bonding of Mn with its neighbours. In NiMnSb Mn bonds tetrahedrally with Ni

(while Sb forms octahedra around Mn), while in MnSb Sb plays the role of Ni in

NiMnSb. For comparison the stable structure of MnSb is also shown on the same

figure; no tetrahedral bonding occurs, and no HM is present.
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Figure 7.2: Comparison between the total DOS for NiMnSb (top) and zb MnSb
(bottom) for selected reduced magnetisations (see text). The majority spin DOS is
plotted as positive values, and the minority spin DOS as negative values.

The KKR calculations were done using the experimental lattice parameters de-

termined for the MnSb polymorphs grown on GaAs. For zb MnSb a = 6.50 Å, while

for the dhcp MnSb a = 4.12 Å, c = 5.77 Å. The alloy analogy described in Chap-

ter 4 was used to investigate the evolution of the electronic structure as the relative

magnetisation is reduced. In this model the atoms with a local moment (which are

taken to be only Mn), form a binary alloy, of concentration c↑ for Mn atoms parallel

to the magnetisation direction, and of concentration c↓ for Mn atoms antiparallel

to it, with c↑ + c↓ = 1. The reduced magnetisation, M(T )/M(0), is then obtained

by taking the ratio of the total magnetic moment for each alloy composition with

the value obtained for the FM case, c↑ = 1; the temperature T is unknown. For
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comparison with Ref. [14], calculations for NiMnSb were also performed, using their

value of a = 5.9 Å.

Some results for the DOS are shown in Fig. 7.2. The top panel pertains to

NiMnSb. The FM minority DOS (M(T )/M(0) = 1) shows a small gap around the

Fermi energy, Eg, of about 0.5 eV. The empty Mn minority d states can be seen

1 eV above the Fermi energy, εF , while the majority d states are between 3 eV

and 2 eV below εF , which an associated minority peak. These majority states are

hybridised with the d states of Ni, which can be considered as being magnetised by

Mn. The Mn spin moment then reduces from the ideal value of 4µB to 3.75µB, while

Ni picks up a spin moment of 0.25µB, so that overall the spin moment is integer.

The spin gap is filled with states very quickly as the magnetisation is reduced: at

M(T )/M(0) = 0.95 these states are already at εF , and are the explanation for the

fast drop in p(εF ), which is the parameter of interest for applications (see Fig. 7.3).

The DOS for the DLM state is shown for completeness; no sign of the spin gap

remains, by symmetry.

The bottom panel of Fig. 7.2 shows the DOS for zb MnSb. Let us consider the

FM DOS first. The crucial difference is that the hybridisation is no longer with the

d states of Ni, but with the p states of Sb. The conduction band is narrower than

in NiMnSb, and the Mn d states more localised, as can be seen by the narrow peaks

between 4 eV and 2 eV below εF (the majority states) and 0.5 eV above εF (the

minority states). The peak about 1 eV below εF is from Sb; it polarises antiparallel

to Mn, with a spin moment of 0.2µB. Mn has a spin moment of 4.2µB in this

system, so that the net spin moment is again 4µB.

MnSb in the zb structure is much more robust against loss of complete spin

polarisation at εF than NiMnSb. The large gap (Eg ≈ 1.1 eV) and the absence of d

states close to the Fermi level seem to be the key ingredients. As shown in Fig. 7.2,

the states in the spin gap approach the Fermi level only for M(T )/M(0) ≈ 0.80.

The peak positions appear shifted due to the change in the Fermi energy between

the two calculations.

Collecting p(εF ) for NiMnSb and MnSb as a function of the reduced magnetisa-

tion, we obtain Fig. 7.3, which should be compared with the plot given in Ref. [14]

for NiMnSb. The behaviour of the polarisation at the Fermi level is easy to under-

stand: it is saturated until some electronic states finally appear just below εF , and

then it drops much faster than the total spin moment itself, as a small addition of

states at the Fermi energy has little effect on the total spin moment, while causing

the collapse of the polarisation.

These results are part of a joint paper with the experimentalists at the University
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Figure 7.3: Polarisation at the Fermi energy as a function of the reduced magneti-
sation for NiMnSb and zb MnSb, after Eq. 7.1.

of Warwick who discovered the epitaxial polymorphs of MnSb, which has been

submitted for publication, and form the theoretical background for the claim of HM

and high spin polarisation at the Fermi level at high temperatures. This is due to

the fact that M(T )/M(0) ≈ 0.80 gives T not far from the Curie temperature, Tc.

For NiMnSb, the experimental value is Tc = 730 K, while the mean–field estimate

points to Tc = 1290 K, after Eq. 5.77. For MnSb the theory gives a similar value,

Tc = 1250, so that a high experimental Tc is anticipated.

7.2 Bulk Co between the FM and the DLM state

In the previous section the simple alloy analogy was used to construct an effective

medium mimicking the desired partially magnetised states. This is an interpolation

scheme between the FM and the DLM states. The alloy analogy naturally reverts to

the FM state (one component limit), and it also reproduces the DLM state correctly.

The equivalence between the alloy analogy and the continuous distribution of local

moment orientations in the DLM state was shown before [66], and is a consequence

of isotropy of the paramagnetic state. The systems considered so far possessed good

local moments (the size of the spin moment was fairly independent of the magnetic

state), and so it is fair to enquire how does the theory perform, in an approximate

way, for a system which does not satisfy the good local moment condition.

For this purpose bulk Co was chosen for the test calculations. Its zero tempera-

ture crystal structure is hcp, but the fcc structure has only slightly higher energy.

The nn distance was taken to be 2.51 Å, which corresponds to the experimental ahcp
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parameter. The hcp lattice was assumed to be ideal, c/a =
√

8/3, and for the fcc

we have afcc =
√

2 ahcp, so that the nn distance is the same for both structures.

DOS for the FM and DLM states of hcp and fcc Co are shown in Fig. 7.4.

The stability of FM hcp Co over FM fcc Co can be attributed to the details of the

minority DOS around the Fermi level: there is a peak at εF for fcc Co, while for

hcp Co εF is in a valley, which lowers the total energy. The spin moment is slightly

lower for FM hcp Co, 1.58µB, than for fcc Co, 1.63µB. The difference is larger for

the DLM states: 1.13µB for hcp Co and 0.94µB for fcc Co. This 60–70% reduction

of the magnitude of the spin moment from the FM to the DLM state suggests that

there is a feedback effect: the spin moment raises from its value on the DLM state

by responding to the partial state of magnetisation, until it saturates when the FM

state is reached.

We carry out the calculations for intermediate values of the order parameter by

modifying the RSA picture, which should apply to good local moment systems. In

the RSA we require the potential functions to be independent of the local moment

orientations, except for the explicit orientation of the effective magnetic field:

Vi(~r; êi) = Vi(~r) +Bi(~r)~σ · êi . (7.2)

This implies that the charge and magnetisation densities must also be independent

of the orientations, in the way just described,

ni(~r; êi) ≡ ni(~r) = − 1

π
Im Tr

∫
dêi Pi(êi)

∫
dε f(ε) 〈Gii(~r, ~r; ε) 〉êi

mi(~r; êi) ≡ mi(~r) = − 1

π
Im Tr

∫
dêi Pi(êi)

∫
dε f(ε) (β~Σ · êi) 〈Gii(~r, ~r; ε) 〉êi (7.3)
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Figure 7.4: Total DOS for hcp and fcc Co in the FM and DLM states. The majority
spin DOS is plotted as positive values, and the minority spin DOS as negative values.
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mean–field approximation to the Heisenberg model, Eq. 5.5.

which gives ~mi(~r; êi) = mi(~r) êi, and the connection between the densities and the

potential functions is consistent with the LDA. This reproduces the averaged charge

density, and so the correct number of valence electrons:

〈ni(~r) 〉 =

∫
dêi Pi(êi)ni(~r; êi) = ni(~r) , Qi =

∫
d~r ni(~r) (7.4)

which motivates the choice of the averaging function, Pi(êi).

For a FM order parameter, the partially averaged quantities depend only on the

angle θi between the local moment orientation, êi and the order parameter, 〈 êi 〉,
which will be oriented along the z–direction in all sites (the magnetic anisotropy is

very small in bulk Co, so it can be neglected here). The general spherical harmonic

expansion used before then reduces to an expansion in Legendre polynomials in

cos θi (cf. Appendix A), and all the expressions simplify; the order parameter is

then just a scalar, 〈 cos θi 〉.
The single–site functions (Eq. 5.35) that determine the probability distribution

Pi(êi) become

gi(êi) =
∑
`

gi` P`(cos θi) = gi0 + gi1 cos θi + gi2
3 cos2 θi − 1

2
+ . . . (7.5)

(recall that constants do not affect the form of Pi(êi)).

One can also analyse the partially averaged single–site GF being used to construct

the densities. This provides some information on how the magnetic moment changes
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Figure 7.6: Expansion coefficients for the valence charge and spin moment for hcp
and fcc Co (Eq. 7.8). See text for a detailed discussion.

as a function of its orientation with respect to the order parameter. The number of

valence electrons for a given orientation is defined as

Qi(êi) = − 1

π
Im Tr

∫
d~r

∫
dε f(ε) 〈Gii(~r, ~r; ε) 〉êi (7.6)

and the spin projection as

Mi(êi) = − 1

π
Im Tr

∫
d~r

∫
dε f(ε) (β~Σ · êi) 〈Gii(~r, ~r; ε) 〉êi (7.7)

which specialise in the current context to

Qi(êi) =
∑
`

Qi` P`(cos θi) , Mi(êi) =
∑
`

Mi` P`(cos θi) . (7.8)

The calculations are performed by adjusting the inverse temperature β so that a

desired value of the order parameter is obtained, after each self–consistent iteration.

In Fig. 7.5 we show our preliminary results for the first coefficients in the expan-

sion of Eq. 7.5. The g2 coefficient, corresponding to the second Legendre polynomial,

is much smaller than g1: this would suggest that a Weiss field–like description is

valid, as done for the mean–field treatment of the simple Heisenberg model. However

the dependence on the order parameter is not simply linear, as would be expected

from Eq. 5.5. This also appears to be the case in preliminary calculations for bcc Fe,

which is usually thought of as a good local moment system; they are not reported on

this thesis. The nonlinearity illustrates the feedback effects between the electronic

structure and the magnetic state; in this case it corresponds to the enhancement

of the Co spin moment from its DLM value, and the knock–on effect on the Weiss
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field (the coefficient g1). A good discussion of how different approximations affect

the magnetic moments for itinerant systems is given in Ref. [75], through the use of

spin spirals.

The coefficients for the valence electron number, after Eq. 7.8, are given in

Fig. 7.6, left. The orange and purple lines show the average number of electrons,

which confirms that the correct valence is reproduced (9 was subtracted from the

zeroth coefficient, so that only deviations are plotted). On the right panel of Fig. 7.6

the respective coefficients for the expansion of the spin moment are given. The or-

ange and purple lines are again the averaged value; they follow the M0 coefficient

for most of the range of order parameters, which shows that the main effect is the

enhancement of the length of the spin moment. Only when approaching the FM

state do the other coefficients become important. In a good local moment system

M0 should be approximately constant over the entire range shown in the plot (size

of the moment independent of the magnetic state), and the other coefficients should

be much smaller than it, as was argued in Chapter 4 (see discussion of the RSA).

This approximate treatment of the full statistical mechanical problem suggests

that the energetics in Co are ruled by the enhancement of the length of the spin

moment, until the order parameter reaches 70–80%. Then the coefficient M0 does

not change much anymore, up to the FM state. It is tempting to label this behaviour

as a crossover from Stoner–type behaviour, in which the main effect is the increase

of the spin polarisation, to a Heisenberg–type behaviour, in which the transverse or

orientational effects become important.

Two caveats apply: the effects of the approximation described in this section

should be assessed, by comparison with less approximate schemes. The influence

of the longitudinal fluctuations should also be considered separately: in the present

scheme the length of the spin moments is not allowed to fluctuate, but is slaved to

the magnetisation state, by minimisation of the DFT total energy.

7.3 The magnetisation profile of an FeRh thin film

We now apply the approach described in the previous section to an inhomogeneous

system, an FeRh film embedded in bulk V. FeRh crystalises in the CsCl structure,

while V adopts the bcc structure. The CsCl structure would revert to a bcc structure

if both atoms were identical; the nn distances are very similar for both FeRh and

V. For our setup we neglect the small mismatch and adopt an ideal bcc structure

with a = 3.02 Å, the experimental value for V.

The film is spanned along the body diagonal, or (111) direction, and is taken to

100



be symmetric around its middle. The interfacial region consists of six layers of V,

followed by eight Fe and Rh layers, an Fe layer which is the middle layer, and again

eight Rh and Fe layers, finished by six V layers, for a total of 45 layers. Layers 1–6

are thus V, all the following odd numbers are Fe, while even numbers correspond to

Rh, until layers 40–45, which are V again. Half of this interfacial region is depicted

in Fig. 7.7. The preliminary calculations were done using `max = 2 instead of the

standard value of 3 used in all previous calculations.

Bulk FeRh is well–known for a phase transition from its AFM ground state at

low temperature to a FM state at high temperature [125]. The AFM state can be

thought of as FM planes antiparallel to each other along the (111) direction, which

is the justification for the choice of orientation in the film calculation. The FM and

the AFM states can then be computed using the same structure, by just aligning

consecutive Fe layers parallel or antiparallel to each other.

In the following the focus will be on the AFM configuration between the fully

magnetised and the DLM state. The orientation of the magnetisation on each layer

is fixed to be antiparallel between consecutive Fe layers, but the value of the order

parameter is allowed to relax. This allows an approximate solution of the magnetic

equation of state, the set of coupled equations given by Eqs. 5.19 and 5.20.

First some data pertaining to the fully magnetised FM and AFM configurations is

briefly discussed. The Fe layers away from the interfaces with V have spin moments

of 3.15µB for the FM and 3.13µB for the AFM case, while the Rh layers sandwiched

by these Fe layers have an induced spin moment of 0.95µB in the FM case only.

The four Fe layers next to the two interfaces with V deviate from the bulk values.

In the FM case, the layer in atomic contact with V shows a reduced spin moment

of 2.44µB, which increases progressively to 2.98µB, 3.12µB and 3.14µB. The Rh

layers go from 0.62µB to 0.88µB and 0.95µB, again starting from the interface. In

the AFM case the Fe spin moments go as 2.37µB, 2.94µB, 3.11µB and 3.13µB. The

Rh layers near the interface also display induced spin moments of 0.15µB, 0.04µB

and 0.01µB, due to the broken symmetry, which generates a net magnetic field on

the Rh layers from the neighbouring antiparallel Fe layers, as their spin moments

are different. The DLM Fe spin moments are essentially identical to the ones for the

AFM setup, and there is no induced spin moment on any Rh layer in this case. The

1 7 19 20 21 22 231817161514131211109865432

Figure 7.7: Left half of the interface region for the symmetric FeRh film embedded
in V. Blue circles depict Fe layers, red circles Rh layers, and green circles V layers.
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Figure 7.8: Left: average magnetisation on each Fe layer, normalised to the value
of the central layer at T = 0 K. Only half of the layers is shown, as the film is
symmetric. The central layer (23) was used as reference layer when performing the
calculations. Right: the average magnetisation on selected layers, normalised to the
value of each layer at T = 0 K, plotted versus the mean–field temperature derived
from the central layer. For numbering of layers consult Fig. 7.7.

V layer next to the first Fe layer is polarised antiparallel to it, with 0.54µB for the

FM, 0.42µB for the AFM case, and no spin moment for the DLM case. The other

V layers also acquire a small spin polarisation, which quickly decays away from the

interface.

To generate the magnetic state for an intermediate value of the order parameter,

the value of the inverse temperature β is adjusted, such that the order parameter

for the middle Fe layer (number 23) has a prescribed value. This is an effective

constraint on the whole magnetic state of the system: the single–site functions for

each layer, Eq. 5.35, which determine the respective probability functions Pi(êi),

and so the order parameter on each layer, relax with the electronic structure. Thus

by the end of the self–consistent iterations, both the electronic structure and the

magnetisation profile of the film are determined.

The magnetisation profile for the Fe layers in AFM FeRh film is shown in Fig. 7.8,

left. The average magnetisation is given by the length of the averaged spin vector,

and it is normalised to the value of the spin moment in the fully magnetised state

for the central layer, number 23. Thus the topmost curve is just a plot of the

values discussed before for the AFM state. It provides visual confirmation that bulk

behaviour starts after the first three or four Fe layers. These interior layers start

deviating from the bulk behaviour only when the normalised average magnetisation

falls below 0.65, so that when it is down to 0.10 only two Fe layers on each side of

the central Fe layer still appear to follow the bulk behaviour.

Fig. 7.8, right plots the average magnetisation, this time normalised to the fully
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Figure 7.9: Left: Weiss field (the coefficient g1, see Eq. 7.5) for selected layers.
Right: the M0 coefficient of the averaged spin moment, see Eq. 7.8. For numbering
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magnetised AFM value of each layer, against the mean–field temperature extracted

from constraining the order parameter on the central layer. This should be com-

pared with the form expected from the Langevin function, L(x) = cothx− 1/x. All

the curves go to zero at about 600 K, which is the mean–field estimate for the tran-

sition temperature of the thin film. For reference, the experimental bulk transition

temperature is T = 670 K, for the high temperature FM state [125]. The curve for

layer 7, which is the Fe layer next to V, is similar to the mean–field solution in the

presence of a finite external magnetic field. The role of the external field is played

by the magnetisation of the interior of the FeRh film, which prevents the outermost

Fe layers from becoming paramagnetic before the rest of the film does. Layer 9

displays similar behaviour. It is also possible that FM instead of AFM coupling be-

tween some of the layers would be energetically favourable; these calculations have

not been performed so far.

The Weiss field acting on selected layers is plotted in Fig. 7.9, left. The middle

layer shows a non–monotonic dependence on the mean–field temperature; this does

not imply a non–monotonic dependence of the magnetisation, as can be confirmed in

Fig. 7.8, right. As the Weiss field depends on the state of magnetisation of all layers

(cf. Eq. 5.5, for instance), no simple interpretation appears possible. To illustrate

the good local moment behaviour, Fig. 7.9, right displays the M0 coefficient of the

averaged spin moment, see Eq. 7.8. It should be noted that the range of values in

this plot is much smaller than the total spin moments in the saturated AFM state,

which were subtracted out. In layers 7 and 9 M0 is almost constant, which was

proposed before to be an indicator of good local moment behaviour. This is due to

the presence of the interface, which reduces the hybridisation in those two layers.
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The same physical mechanism applies for the magnetic monolayers discussed in the

previous chapter; the reduced number of neighbours of the same kind of atom favours

the intra–atomic exchange (Hund’s rules) over the delocalisation energy gained by

hybridisation with the neighbours.

The complex behaviour observed in this thin film is not unexpected: even a simple

Heisenberg model with different coupling strengths between different layers would

generate non–trivial behaviour [126]. The advantage of the present approach is that

all quantities are computed on the same footing; the only input parameters are the

structure and the desired type of magnetic order. For collinear magnetic states

the only possible deviation from the initial magnetic order is by a spin flip; in the

present context the Weiss field would have to change sign. If the electronic structure

is such that instead of a sign change only a reduction of the value occurs, then the

magnetic configuration is stationary (although it might not be the ground state).

Direct comparisons would only be possible if the free energy of each configuration

was available; this should include contributions from the other layers also, and so

far it has not been implemented.
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Chapter 8

Outlook

In Chapter 5 we presented a new theory of the magnetic properties of a heteroge-

neous system, firmly rooted in DFT, and thus first–principles. The GF formulation

allowed for the natural incorporation of the statistical mechanics of the collective

degrees of freedom, identified as local magnetic moments, and the main approxima-

tion was the single–site variational approach. The ensuing approximations (such as

the form of the single–site potentials) were needed for computational reasons, and

so can be lifted in due course. It was shown that an understanding of the magnetic

properties could be given in terms of magnetic interactions between these local de-

grees of freedom, as extracted from the underlying electronic structure, using linear

response to compute the spin–spin correlation function, or S(2).

There is still plenty of scope for extensions and generalisations of the theory.

The single–site approximation can be lifted using the non–local coherent potential

approximation (CPA), briefly outlined in Chapter 3; magnetic short–range order

would then be naturally incorporated. A less demanding and also well–tried route

is to introduce the Onsager cavity field, explained at the end of Chapter 5. Temper-

ature plays a secondary role in the present theory: the prescription of the magnetic

state through the values of the order parameters is the essential point. If the statis-

tical mechanics of the longitudinal magnetic fluctuations are to be considered, then

the mean–field temperature will take a leading role: it will control the equilibrium

magnitude of the local moments, which will no longer be determined from the usual

minimisation of the DFT total energy. As pointed out by Kakehashi [67], the con-

ventional CPA used in this thesis is the static limit of dynamical mean–field theory:

a dynamical extension of the theory can also be envisaged.

The usefulness of the S(2) concept was illustrated in Chapter 6. The paramag-

netic disordered local moment (DLM) state was chosen as reference state, in contrast
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to most other first–principles calculations, which are based on fully ordered mag-

netic states (simple or of spin spiral form). The latter approach can bias the results:

magnetic interactions derived from the ferromagnetic (FM) state may be very dif-

ferent from those computed in some antiferromagnetic (AFM) state [77], or from

the DLM state [127]. The pivotal role of the Dzyaloshinsky–Moriya interaction in

establishing chiral magnetic states on the Mn monolayers was exposed [12]; this was

due to the ability to handle the anisotropic effects generated by spin–orbit coupling

on par with the conventional isotropic interactions. Simple models inspired by the

information extracted from the first–principles calculations were also shown to be

quite helpful. The material presented in Appendix B shows how the lattice Fourier

transform of the S(2) can be used to compute the energetics of a perturbation with

a spin spiral form. This is fairly general and should have wide applicability.

Chapter 7 focused on the connection between the electronic structure and the

degree of magnetic order, as given by a simple interpolation version of the general

theory developed in Chapter 5. The experimental finding by researchers at the

University of Warwick of the zincblende MnSb in epitaxial films [13] led to an

investigation of its predicted half–metallic properties. The spin polarisation at the

Fermi level, p(εF ), remains saturated until the magnetisation is reduced to about

80% of its FM value; this is in contrast with the behaviour of p(εF ) in NiMnSb [14],

for which the threshold is at 95%. Given the typical shape of the magnetisation

curve as a function of temperature, this implies p(εF ) ≈ 1 for a much larger thermal

range in MnSb than in NiMnSb, with potential benefits for spintronics applications.

The calculations for hcp and fcc Co were intended to test the limitations of the

current approximate scheme. The main effect found was a reduction of the local

moment from 1.6µB in the FM state to about 1µB in the DLM state. The linear

dependence of the Weiss field on the order parameter expected from the mean–

field theory of the simple Heisenberg model, Eq. 5.5, was not found: the magnetic

interactions in the system depend on the magnitude of the local moment. Its angular

dependence, measured with respect to the orientation of the FM magnetisation,

revealed two different regimes: up to about 70% of the FM magnetisation the local

moment is fairly independent of the orientation, but increases from its DLM value;

then it becomes dependent on the orientation, but its magnitude increases only

slightly, up to the FM value. This suggested an interpretation in terms of a crossover

from a Stoner–type behaviour, where the dominant effect is the enhancement of the

local moment length, to a Heisenberg–type behaviour, where the orientations of the

local moments become the important parameters. This is a system for which it

would be interesting to consider the effects of the thermally excited longitudinal
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fluctuations, going beyond the current description.

The final example in Chapter 7 takes an FeRh film embedded in bulk V to

demonstrate how the magnetic properties of a heterostructure can be computed,

from the low temperature AFM state to the high temperature DLM state. The

feedback between the electronic structure and the imposed magnetic state auto-

matically determines the equilibrium magnetisation profile, during self–consistency,

revealing the stabilisation of magnetism at the film interfaces by the bulk magneti-

sation of the film. It should be noted that even a simple mean–field theory based

on the Heisenberg model becomes unwieldy, as different interaction parameters ap-

ply between different Fe layers; the present approach circumvents the need for such

considerations. The actual equilibrium magnetic structure of the film was not deter-

mined, as only a simple imposed AFM order was considered; bulk FeRh is famous

for its high–temperature transition from an AFM to an FM state [125], and how this

picture is modified in a film of finite thickness will be left for future investigations.

The versatility of the present theory should be emphasised. Not only it allows

detailed access to the magnetic interactions in a given system, through the S(2)

calculations, but it can also solve an approximate magnetic equation of state, by

imposing a given type of magnetic order, for a heterogeneous system. Both ap-

proaches are complementary; for instance, an instability of the magnetic reference

state can be detected by the S(2)’s at some intermediate stage between the fully or-

dered and the paramagnetic state. When there are many non–equivalent magnetic

atoms, as in a heterostructure, the number of parameters provided by the S(2) might

constitute too much information; here the equation of state approach allows for a

simpler way of exploring the magnetic phases. Large systems can be considered, as

the SKKR method scales linearly with system size (cf. Chapter 2).

Combined approaches with spin dynamics or Monte Carlo (MC) simulations are

very appealing. These would allow a determination of the true magnetic ground

state, without the need to impose its form, as done so far. It might also mitigate

some of flaws of the single–site mean–field approximation: the single–site probability

functions Pi(êi) could be imported from, say, a MC simulation, and used in setting

up the electronic structure. A realistic temperature dependence of the magnetic

properties would also be obtained. The dependence of the magnetic interactions

on the magnetic state would be available to the MC simulations; the most frequent

approach is to compute the magnetic interactions once and for all from a chosen

reference state and for some spin Hamiltonian, and assume they will be valid for

the entire temperature range covered by the simulation [86].

To conclude, consider the wealth of experimental data available for magnetic
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thin films and heterostructures [128], driven by fundamental as well as technological

interest. Most of what is known about the finite temperature properties of such large

systems is model based. First principles–theories of magnetism in these systems are

still mostly restricted to conventional ground state DFT, or to fairly small system

sizes. There are many opportunities for theoretical developments in this area, as

well as fruitful collaborations with experimental groups. I hope the theoretical and

computational developments presented in this thesis will make a useful contribute

to address these questions, and spur new investigations.

108



Appendix A

Spherical harmonics

Spherical harmonics are eigenfunctions of the angular part of Laplace’s equation in

spherical coordinates:

1

sin2 θ

(
sin θ

∂

∂θ
sin θ

∂

∂θ
+

∂2

∂φ2

)
Y m
` (θ, φ) = −`(`+ 1)Y m

` (θ, φ) (A.1)

and obey the following relations,

Y m∗
` (θ, φ) = (−1)mY −m` (θ, φ) , Y m∗

` (π − θ, φ+ π) = (−1)`Y m
` (θ, φ) (A.2)

They form a complete orthonormal basis set,∫ 2π

0
dφ

∫ π

0
dθ sin θ Y m∗

` (θ, φ)Y m′
`′ (θ, φ) = δ``′δmm′ (A.3)

∑
`m

Y m∗
` (θ, φ)Y m

` (θ′, φ′) = δ(cos θ − cos θ′)δ(φ− φ′) (A.4)

and are given explicitly by the formula

Y m
` (θ, φ) = (−1)m

√
2`+ 1

4π

√
(`−m)!

(`+m)!
Pm` (cos θ) eimφ (A.5)

which makes use of the associate Legendre polynomials, Pm` (x).

In the main body of the thesis the abbreviated notation ê is used in place of

the pair (θ, φ), as any unit vector is given by its spherical angles, and the two

angular momentum labels are combined in a single one, L = (`,m), which makes all

109



equations easier to write. A very useful result is the addition theorem,

∑
m

Y m∗
` (ê′)Y m

` (ê) =
2`+ 1

4π
P`(ê · ê′) (A.6)

The prefactor in front of the Legendre polynomial is inconvenient for some purposes,

and will lead to a redefinition of the spherical harmonics below.

Real spherical harmonics can be obtained from the standard complex spherical

harmonics by a simple unitary transformation, U :

ULL′ = δ``′ Umm′ , Umm′ =


(−1)m 1√

2
δm′m + 1√

2
δm′,−m (m > 0)

1 (m = 0)
i√
2
δm′m + (−1)m i√

2
δm′,−m (m < 0)

(A.7)

The spherical harmonics used in all the angular expansions in the main text are real

renormalised spherical harmonics, obtained from the complex ones by:

YL(ê) =
∑
L′

WLL′YL′(ê) , WLL′ =

√
4π

2`+ 1
δ``′ Umm′ (A.8)

The addition theorem now reads∑
m

Ym` (ê′)Ym` (ê) = P`(ê · ê′) (A.9)

and an extra factor has to be included in the orthonormality and completeness

relations:

2`+ 1

4π

∫
dêYL(ê)YL′(ê) = δLL′ ,

∑
L

2`+ 1

4π
YL(ê)YL(ê′) = δ(ê− ê′) (A.10)

Any angular function can be expanded in complex spherical harmonics as

f(ê) =
∑
L

CL YL(ê) , CL =

∫
dê Y ∗L (ê) f(ê) (A.11)

and in terms of the renormalised ones as

f(ê) =
∑
L

CL YL(ê) , CL =
2`+ 1

4π

∫
dêYL(ê) f(ê) (A.12)
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The first few renormalised spherical harmonics are given by:

Y0
0 = 1

Y1
1 = sin θ cosφ , Y0

1 = cos θ , Y–1
1 = sin θ sinφ

Y2
2 =

√
3

4
(1− cos 2θ) cos 2φ , Y1

2 =

√
3

2
sin 2θ cosφ , Y0

2 =
3

4
cos 2θ − 1

4
,

Y–2
2 =

√
3

4
(1− cos 2θ) sin 2φ , Y–1

2 =

√
3

2
sin 2θ sinφ (A.13)
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Appendix B

Spin spirals and lattice sums

This appendix is dedicated to obtain the free energy of a spin spiral from a general

quadratic form, which displays the translational invariance of the underlying Bra-

vais lattice. For example, if one considers a perturbation of the paramagnetic or

ferromagnetic state of the spin spiral form,

δ ~mi = δm
(

cos(~q · ~Ri + φ) sin θ n̂1 + sin(~q · ~Ri + φ) sin θ n̂2 + cos θ n̂3

)
(B.1)

the change in the free energy per site is given by (see Eq. 5.66)

δF =
1

2N

∑
ij

∑
αβ

δmiα

(
χ–1

0,iαβ δij − S
(2)
iα,jβ

)
δmjβ = δF (1) + δF (2) (B.2)

These relations hold:

1

N

∑
i

cos(~q · ~Ri) = δ(~q) ,
1

N

∑
i

sin(~q · ~Ri) = 0 (B.3)

where the delta function should read as a Kronecker delta, unless N → ∞. Using

elementary trigonometry the following identities can be derived:

1

N

∑
i

cos2(~q · ~Ri + φ) =
1 + cos 2φ δ(~q)

2
(B.4)

1

N

∑
i

sin2(~q · ~Ri + φ) =
1− cos 2φ δ(~q)

2
(B.5)

1

N

∑
i

cos(~q · ~Ri + φ) sin(~q · ~Ri + φ) =
1

2
sin 2φ δ(~q) (B.6)
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(n̂1 · êα)(n̂1 · êβ) + (n̂2 · êα)(n̂2 · êβ) + (n̂3 · êα)(n̂3 · êβ) = δαβ (B.7)

This last expression is just the definition of the dot product between êα and êβ in the

{n̂1, n̂2, n̂3} basis (which was introduced as a right–handed orthonormal system).

The on–site susceptibility is the same on all sites, according to the initial as-

sumption, and so the first contribution to the free energy is, using vector–matrix

notation,

δF (1) =
(δm)2

4

[
sin2 θTrχ–1

0
+ (3 cos2 θ − 1) n̂3 · χ–1

0
· n̂3

]
(B.8)

including the ~q = ~0 case, as then one can choose θ = 0. Pulling out the isotropic

part of the on–site susceptibility,

χ–1
0,αβ =

1

3
Trχ–1

0
δαβ +

(
χ–1

0,αβ −
1

3
Trχ–1

0
δαβ

)
= χ–1

0 δαβ + χ̃–1
0,αβ (B.9)

a separation between the isotropic and the anisotropic parts of the free energy is

obtained,

δF (1) =
(δm)2

2

[
χ–1

0 +
3 cos2 θ − 1

2
n̂3 · χ̃–1

0
· n̂3

]
(B.10)

To exploit the translational invariance of the S
(2)
iα,jβ, i.e., the fact that it will

depend only on ~Rij and not on ~Ri and ~Rj separately, the following standard tricks

will be used:

cos(~q · ~Rj + φ) = cos(~q · ~Rij) cos(~q · ~Ri + φ)− sin(~q · ~Rij) sin(~q · ~Ri + φ) (B.11)

and

sin(~q · ~Rj + φ) = cos(~q · ~Rij) sin(~q · ~Ri + φ) + sin(~q · ~Rij) cos(~q · ~Ri + φ) (B.12)

which introduce the cosine and sine lattice sums, and are related to the symmetric

and antisymmetric parts of the tensor,

S
(2),S
αβ (~q) =

∑
j

cos(~q · ~Rij)S(2)
iα,jβ , S

(2),S
βα (~q) = S

(2),S
αβ (~q) (B.13)

S
(2),A
αβ (~q) =

∑
j

sin(~q · ~Rij)S(2)
iα,jβ , S

(2),A
βα (~q) = −S(2),A

αβ (~q) (B.14)

As was done before, it is convenient to separate out the trace of the symmetric
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tensor,

S
(2),S
αβ (~q) = S(2)(~q) δαβ + S̃αβ(~q) (B.15)

The second contribution to the free energy reads

δF (2) = −(δm)2

4

∑
αβ

[
S

(2),S
αβ (~q) sin2 θ

(
(n̂1 · êα)(n̂1 · êβ) + (n̂2 · êα)(n̂2 · êβ)

)
+ S

(2),A
αβ (~q) sin2 θ

(
(n̂1 · êα)(n̂2 · êβ)− (n̂2 · êα)(n̂1 · êβ)

)
+ 2S

(2),S
αβ (~0) cos2 θ (n̂3 · êα)(n̂3 · êβ)

]
(B.16)

Recognising

(n̂1 · êα)(n̂2 · êβ)− (n̂2 · êα)(n̂1 · êβ) = (n̂1× n̂2) · (êα× êβ) =
∑
γ

εαβγ êγ · n̂3 (B.17)

where εαβγ is the completely antisymmetric Levi–Civita symbol for the Euclidian

metric, the second line of the previous equation can be rewritten as a DM term∑
αβγ

εαβγ S
(2),A
αβ (~q) êγ · n̂3 = ~D(~q) · n̂3 , ~D(−~q) = − ~D(~q) (B.18)

For ~q = ~0 or other collinear magnetic states the DM term is zero, as the cross

product of the orientations of any pair of spins is zero.

Using vector–matrix notation the result can be written in a simple form,

δF(~q; θ; n̂3) =
(δm)2

2

(
χ–1

0 − S(2)(~0)
)

+
(δm)2

2
sin2 θ

(
S(2)(~0)− S(2)(~q)

)
+

(δm)2

2

3 cos2 θ − 1

2
n̂3 ·

(
χ̃–1

0
− S̃(~0)

)
· n̂3

+
(δm)2

4
sin2 θ

[
n̂3 ·

(
S̃(~0)− S̃(~q)

)
· n̂3 − ~D(~q) · n̂3

]
(B.19)

The first line is the change in free energy from the isotropic terms, the second line

is the uniaxial anisotropy of a FM perturbation, and the last line the unidirectional

or DM and the uniaxial anisotropies for a spin spiral perturbation.

The equilibrium cone angle is derived from the stationarity conditions, and the

anisotropies may stabilise a conical spiral.

114



Appendix C

The hexagonal lattice

The hexagonal lattice is taken to be spanned by the basis vectors ~a1 = a (1, 0)

and ~a2 = a (1/2,
√

3/2), so that ~Ri = i1~a1 + i2~a2, with i1 and i2 integers. The

basis vectors for the reciprocal lattice are then ~b1 = 2π/a (1,−1/
√

3) and ~b2 =

2π/a (0, 2/
√

3), and the modulation vector is written as ~q = q1
~b1 + q2

~b2. The nn

and nnn stars are given by the following (i1, i2) pairs:

• First star: (1,0), (-1,0), (0,1), (0,-1), (1,-1) and (-1,1);

• Second star: (1,1), (-1,-1), (2,-1), (-2,1), (1,-2) and (-1,2).

The corresponding geometry is given in Fig. C.1, for the case of the supported

monolayer. There is a subtlety concerning the symmetry of this arrangement. It

is C3v and not C6v: the rotational axis passing through the central atom is three–

fold, not sixth–fold, as would apply if only one hexagonal layer would be present.

This means that the nn and nnn atoms decompose into two sets. The atoms in

each set relate to one another by a 120◦ rotation, while atoms from distinct sets are

related by a single mirror plane. Two consecutive mirror transformations through

two planes forming an angle of 60◦ are equivalent to a 120◦ rotation.

For the J1–J2 isotropic interaction, we have the following form:

J(~q) = 2J1

[
cos 2πq1 + cos 2πq2 + cos 2π(q1 − q2)

]
+ 2J2

[
cos 2π(q1 + q2) + cos 2π(2q1 − q2) + cos 2π(q1 − 2q2)

]
(C.1)

and the corresponding energy for a spin spiral is defined as usual,

Eiso(~q ; θ) =
J(0)− J(~q)

2
sin2 θ − J(0)

2
(C.2)
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a
2

a
1

a) b)

Figure C.1: Geometry for the Mn monolayer supported on the X(111) substrate.
Mn atoms are in blue, and X atoms in red. a) — nn interactions J1 (solid green
line) and nnn interactions (dashed green lines) between the central atom and the
first and second lattice shells. b) — DM vectors between the central Mn atom and
the six nearest neighbours. Two sets of DM vectors exist, related by the mirror
planes indicated in yellow. See the discussion in the text.

The stationarity conditions for q1 and q2 are then, after some trigonometry,

sinπ(2q1 − q2)
[

cosπq2 +
J2

J1

(
cos 3πq2 + 2 cosπ(2q1 − q2)

)]
= 0

sinπ(2q2 − q1)
[

cosπq1 +
J2

J1

(
cos 3πq1 + 2 cosπ(2q2 − q1)

)]
= 0 (C.3)

Setting sinπ(2q1 − q2) = 0 gives q2 = 2q1 + n, and the second equation becomes

sin 3πq1

[
cosπq1 +

3J2

J1
cos 3πq1

]
= 0 (C.4)

From sin 3πq1 = 0 we obtain the FM solution, (q1, q2) = (0, 0), and the 120◦ AFM

solution, (q1, q2) = (1/3, 2/3) and the five other possibilities due to sixth–fold sym-

metry. Choosing instead the expression in square brackets to be zero, another

equation arises:

cosπq1

[
1− 3J2

J1
+

6J2

J1
cos 2πq1

]
= 0 (C.5)

From cosπq1 = 0 we obtain the FM solution again, and the row–wise AFM solution,

(q1, q2) = (1/2, 0) and the five other possibilities. Setting the term in brackets to

zero gives the condition for a spin spiral solution,

−3J2 ≤ J1 ≤ 9J2 (C.6)
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The corresponding wavevectors are of the form (q, 2q) and equivalent lines related

by 60◦ rotations1.

Returning now to the symmetry of the supported monolayer, it is useful to recall

that mirroring a vector ~u through a plane whose normal is given by n̂ can be encoded

in the following symmetric transformation P :

P ~u = ~u− 2(~u · n̂) n̂ =⇒ P = 1− 2n̂⊗ n̂ , P (P ~u) = ~u =⇒ P –1 = P (C.7)

The three mirror planes for the C3v symmetry have normals n̂1 = (1/2,−
√

3/2, 0),

n̂2 = (0, 1, 0) and n̂3 = (1/2,
√

3/2, 0), in cartesian components. The respective

transformation matrices are thus

P1 =


1
2

√
3

2 0
√

3
2 −1

2 0

0 0 1

 , P2 =

−1 0 0

0 1 0

0 0 1

 , P3 =


1
2 −

√
3

2 0

−
√

3
2 −1

2 0

0 0 1

 (C.8)

It can be confirmed that two mirroring transformations by two adjacent mirror

planes are equivalent to a rotation. For instance, P2 (P1 ~u) = Rz(120◦) ~u.

Take now the nn interaction between the central atom and its nn at ~a1 to be

J(1,0) =

 J‖ Dz −Dy

−Dz J‖ Dx

Dy −Dx J⊥

 (C.9)

with a uniaxial anisotropy given by the difference in the in–plane exchange J‖ and

the out–of–plane exchange J⊥, and the form of the DM vector is to be specified.

This identity must be satisfied:

J(−1,0) = JT(1,0) = P2 J(1,0) P2 =

 J‖ −Dz Dy

Dz J‖ Dx

−Dy −Dx J⊥

 =⇒ Dx = 0 (C.10)

The first equality is the overall symmetry of the pair interaction, Jji = JTij , while

the second uses the symmetry of the system, as the atom at −~a1 is the image of the

one at ~a1 through the mirror transformation P2. The form of the DM vector is then

as sketched in Fig. C.1.

1In Ref. [119] it is incorrectly stated that these spin spirals should have wavevectors of the
form (q, 0) and symmetry equivalent lines. Their calculated energy dispersion for spin spirals shows
a local minimum on the expected line, confirming the present theoretical analysis. This mistake
reappears in some of the follow–up papers.
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For the atom at ~a2 we have

J(0,1)T = P1 J(1,0) P1 =

 J‖ −Dz −1
2Dy

Dz J‖ −
√

3
2 Dy

1
2Dy

√
3

2 Dy J⊥

 (C.11)

The elements on the diagonal are unchanged by successive mirroring transforma-

tions (or rotations, for that matter). The in–plane components of the DM vector

follow by successive 60◦ rotations, while the z–component alternates in sign as one

goes along the atoms in the nn shell. This is colour–coded in Fig. C.1: the DM vec-

tors are represented by their in–plane projection, and the sign of the z–component

corresponds to the two shades of green. On the nnn shell the z–component is zero,

as all pairs of atoms line in mirror planes [81]. This can be easily checked using the

appropriate transformation matrices.

Relabelling D‖ ≡ Dy and D⊥ ≡ Dz, the lattice sum for the nn DM vectors gives

~D(~q) = D‖
√

3
[

sin 2π(q1 − q2)− sin 2πq2

]
êx

+D‖

[
2 sin 2πq1 + sin 2π(q1 − q2) + sin 2πq2

]
êy

+ 2D⊥

[
sin 2πq1 − sin 2π(q1 − q2)− sin 2πq2

]
êz (C.12)

For the 120◦ AFM state, there are two inequivalent modulation vectors, again stem-

ming from the reduction of symmetry from C6v to C3v. For (q1, q2) = (1/3, 2/3),

~D(~q) = 3
√

3D⊥ êz, while for (q1, q2) = (2/3, 1/3), ~D(~q) = −3
√

3D⊥ êz. As the

moments are noncollinear, there is a splitting of the energy if D⊥ 6= 0:

δFDM = −(δm)2

2

3
√

3

2
|D⊥| ,

{
(q1, q2) =

(
1
3 ,

2
3

)
=⇒ n̂3 = D⊥

|D⊥| êz

(q1, q2) =
(

2
3 ,

1
3

)
=⇒ n̂3 = − D⊥

|D⊥| êz
(C.13)

where the orientation of n̂3 that minimises the DM free energy is indicated for both

cases. This can be interpreted as a lifting of the chiral degeneracy of the 120◦ AFM

state, as discussed in the main text.
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