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Abstract It is shown that every Boolean function of n

arguments has a circuit of depth n+1 over the

basis {f|f : {0,132 -~ {0,11}}.



1. Introduction
Spira showed in [ 1] that for any k > O, there is a nurmber N(k)
such that if n > N(k) then any n argument Boolean function has a

circuit of depth n + longog?...logzn.

<

~k times——>

Upper bounds on depth for specific values of n, given by
Preparata and Muller [ 2], are
n for n< 8
n+l for n < 28 + 8 = 264
n+2 for  n < 226% + 264

etc,

Whereas Knuth has shown, by computer analysis, that there

are 4 argument Boolean functions requiring depth 4,

In this paper, we describe a construction which yilelds an

upper bound of n+l for all values of n.

2. Schemes

" Qur present constructions, and all previous ones for minimizing
depth that we know of, have the property of being "uniform” for all
functions of n arguments. The same directed graph with the same
assignment of arguments to inputs is used for all the functions,thes
necessary variation being only in the assignment of base functions
to the nodes., Lupanov's construction for minimizing formula size [ 3]

is notable for escaping this form.

We formalize this restriction in our definition of "ecircult
scheme" and show that for schemes our construction achieves the

optimal depth to within an additive constant.
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B = {f]f: {0,1}" » {0,11}
and Xn = <Xo’xl""’xn—f> be the set of formal arguments we shall

tse in formulae and circuits.

Definition. A circuit scheme is a connected acyclic directed graph in

which nodes have either in-degree 2 (gates) in which case the pair of

incoming arcs are ordered, or else in-degree O (input nodes) in which

case an argument X is assigned to the node, A formula scheme is a

circuit scheme in which all gates have out-degree at most one.

Let C E.B

and b ¢ B
n —

A circuit scheme S covers C,_over

n 2°

basis b 1f for each f € C, there is an assignment of functions from b
to the gates of S such that the resulting circuit computes f. TFigure 1

shows a formula scheme which covers B3 over basis BQ. This fellows

from the expansion

f(xo,xl,x2) = (xo A fl(xl’XQ)) ® fo(Xl’XQ)

where ® denotes sum modulo 2, fo(xl,xz) = f(O,xl,xz) and
= ® f ifi i s
fl(xl’XQ) ; f(l’xl’XQ) I(O,xl,xz). We have verified that this is

the unique formula scheme (to within obvious symmetries) with fewer

than five gates that covers B Its depth of 3 is therefore optimal.

3.

Fig.1l.



We prove a lower bound on the depth of schemes by a simple counting

argument,

Theorem 1., Any circuit scheme which covers Bn over any basis b ¢ B,

has depth at least n-1,

Proof. A scheme of depth D has at most QD—l gates, and so by varying

. D_
+the assignment to gates from b can cover a set of at most {b 271
different functions.
Since IBn| = 22n we have
16 2D > 22I1
which yields D 2 n-1 0
Note that this argument produces no better bound even when |b| = 2.

In the next two sections we describe the main result of the
paper, a scheme of depth n+l to cover B, over basis BQ. The first

stage is to produce an "approximation" to such a scheme in depth m.

3. The approximation of depth mn.

§ k
1-[ C = <Cl,oon,ck> € {Ogl} and Y = <yl,...,yk>, we Shall

write Y = C for A y. =c. and O for <o,...,0>.
: i i
lgigk

Another abbreviation will be to write f(Y) for f(y.,e.0s¥ )5
1 s

g(Y,7) tor g(yl,...,yk,zl,...), etc,

Definition, Given S = {Rl,...,Rk} where Rj < Xn for all j,

and any f(Xn), we define g(Xn), the approximation to f with respect

to 5 by
g(¥n) = 0 1if HRj e S5 such that Rj =0

f(Xn) otherwise

1



Any function f(Y,Z) € B may be expressed as a disjunctive expansion

k+m

about Z by
£(Y,2) = \\V// 8c(2) A £(Y,C)

cefo,1}"
where 6C(Z) =1 if Z = C

0 otherwise

Dually, the conjunctive expansion about Z is

CE(Y,2) ://\\SC(Z) v £(Y,C)

C

where SC denotes the complement (negation) of GC

It is evident that GC_ and §  require formulae of depth only Flogzmj.

C

For each n>2, we may define sequences of positive integers <r ,v_,...,r >
o’ 1 P

m

which satisfy the following conditions, where Sm = X r, for all m:
izo *

(1) r =1 = 2

(ii) S =n

P s
(1i1) ro < 2 m-2 form > o and m even
S S
(iv) v <2 m=2_ 2 m-3 form>1 and m odd

l'or each such n, let p be maximal such that,

P.(.g.tl'—)_+l<n

We choose the sequence defined by

r =2

o

r. = i+l for p>i>o
r_ = n-S

p p-1




For example if n=12 we get <2,2,3,4,1>. This sequence satisfies
(i)-(iv). The fastest-growing sequence satisfying (i)-(iv) begins,

for large n, with <2,2,4,12,256,220-256, 2276,,,.>

Given <ro,...,rp> = <2,2,3,4,...~ let Ro’Rl""’Rp be a

corresponding partition of Xn with |Ri[ =r. for all i.

We shall describe our construction in terms of formulae rather
than in a more abstract way as schemes. Lt will be clear throughout

however that the formulae are uniform,

Theorem 2. For all f e B , (n>4), there is a formula of depth n

for the approximation to f w,r.t. S = {Rl"'°’Rp—l}'

. £ . - .
Proof. Since n > U, then p > 1, We express f as an expansion about

Rp which is disjunctive if p is odd and conjunctive if p is even.
r

Fach of the 2 P terms in this expansion is expressed in depth S :

, p=

by using the results and constructions of the following lemma 3

For an inductive proof we must incorporate a more detailed

specification of the formulae at each stage.

Lemma. Let RO,R Rm(m>o) be disjoint sets of arguments with

l,o..

their cardinalities P oseeesT satisfying conditions (i), (iii) and (iv)
above. Then for any function f(Ro,...,Rm), there is a formula for
its approximation g w.r.t. {Rl,...,Rm} consisting of:-

T
Case(a): if m is odd, a disjunction of 2 "™_1 subformulae each of

depth Sm—l
“n
case(b): if m is even, a conjunction of 2 -1 subformulae each of

depth S and another subformula of depth S .
m-1 m-2

Proof. We proceed by induction on m using two alternative expansions.



In case (a),

E(R_yeeesR ) \/(GC(Rm) A EL(R sevesRy 1))

C#0

and in case (b),

g(Ro’f”’Rm) §5(R ) A/C¢\()(6C(Rm) v gC(RO,...,Rm_l))

where in each case ga is the approximation to f(Ro,...,Rm_l,C)

over {Rl,oc.’Rm_l}o

The validity of these expansions 18 easily verified.
If m = 1, then the first expansion is of the required form since both 60

and Eo have depth 1 and so we have a conjunction of 3 formulae of depth 2.

If m > 1 and m is odd then in the same expansion we may, by the inductive
r
hypothesis, take o to be a conjunction of 2 n l-l subformulae of depth

Sm__2 and a smaller subformula of depth Sm—a' Since 6C is essentially a
S S

. . m-2 m-3 . -
conjunction of r arguments and T < 2 -2 , 1t may be conjoined

with the smaller subformula to produce a formula of depth Sm—2' The
v
resulting conjunction of 2 formulae of depth Sm_2 can be written

in depth ro1 + Sm—2 = Sm-l' The requirements of case (a) are thereby

met.

I1f m is even then the second expansion is used, the GC are themselves of

depth S, and case (b) is easily satisfied m]

-2



The lemma may be illustrated with n=17, m=3 and the sequence <2,2,3,10>.

The resulting approximation g(RO,Rl,RQ,Rg) is a disjunction of 1023

formulae each of the form:

X

X X X, X

7 *16%u%s5 %g

A
o O

R
gD( O,Rl,RQ) A 6D(R3)

The leftmost subformula may be given in more detail as:

FIG. 3 ll'



where the base functions associated with certain gates are not

defined if they depend on D.

Each of the hC(Ro’Rl’RQ) subformulae are of the form:

X

FIG. 4 v

R,)

hC(RO,Rl, )

where the leftmost subformula is:

T

FIG, 5

and the associated base functions depend on C.
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4, Main Result

£

It remains to be shown how the approximation g to f over

R . R can be used to compute f.

1o -1
Lemma, Suppose Rl""’Rk are disjoint subsets of Xn. For all f(xn),
k
1S - - = £,
there exist fl(Xn Rl),...,f (Xn Rk) such that gk(Xn) f o 6}) £,
i=1

is an approximation to some function w.r.t. {Rl,...,Rk}
Proof. This is by induction on k. The lemma holds trivially for k=0,

Let k>0, and suppose the result is true for k-1l. Then,

et _ _ 1. 1<i<k
there exist fl(Xn Rl)""’fk—l(xn R —l) such that for all i, 1€i<k,

k
o
R.:O$ (Xn):f@ f. = 0
i gk—l <t 1

We define fk(Xn-Rk) 0 if 3i, l¢igk, R, = 0

th

otherwise

B R =0

and can verify that &, has the required property .

Main Theorem
For all n, nzl, there is a formula scheme with depth n+l which

covers Bp over BQ.

Proof. Schemes for Bl’BQ are obvious, while for BS’Bu expansions

can be made about 1 and 2 arguments respectively to yield schemes

of depth 3 and 4. By the previous lemma, any function f(Xn) may be
p-1
computed as gp_l(Xn) ® éi? fi(Xn—Ri) where gp_l(Xn) is an

approximation to some function w.r.t. {Rl,...,RP_l}.
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By Theorem 2, any function f(Xn) may be approximated w'r't'{Rl"°°’Rp—l}

within depth n.

Thus for n>u4, there is an approximation £ with depth n and we
need to "add in" appropriate functions fl""’fp—l where fi has
n, = n - 1 - 1 arguments. Whenever n. < 4, a formula for fi is

constructed directly, otherwise the present construction is used

recursively to yield a formula of depth n, +1=n -1,

Thus f is expressed as -1
f (Xn)@@ f.(Xn-R.)
o > i i
1=1
or, after reassociation, as
E: & ®...®
FO(F ®(£,® .. 05 ).
Since fi has depth n-i for i=o,...,p-1, this represents a formula

of depth n+l.

Again it is clear that the construction is uniform and thus

yields a scheme )

5. Restricted Bases
The formulae considered so far have used all of B2 as the basis.
Provided that the basis b permits a scheme to cover B2 and contains at

least one function from each of the following three types:

A-type P Aq

v-type P'.': v q:':
®-type p* ®q

where a starred variable represents either the variable or its complement,
the construction can be followed more or less as before, complementing

subformulae as necessary to achieve depth nt+2,
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An interesting basis is the set which excludes the two & ~type

functions. In using this unate basis we may replace ® by
p®q=pAg.v. PAQ

In order to fit in the correcting functions efficiently we

choose a new sequence

<p T > = <2,2,4,6,8,10,...”

o2F1oFpecee
so that each fi contains 2 fewer arguments than the previous one.

The result is a scheme of depth n+3.

For b consisting of one A-type function and one V-type
Ffunction we can obtain n+4 by taking the unate construction

and complementing subformulae as necessary.

Conjecture. For any b ¢ B_, if there is a scheme over b which

29
covers B2 then there is a constant c such that

for all n there is a scheme over b of depth ntc

which covers Bn'

For b = {p V q, D} We have, at present, achieved no better

than n + O(log2n).

We must distinguish the notions of complete bases for formulae
and for schemes. For example, b = {NAND} is complete for formulae
but obviously no singleton basis can be complete for schemes, hence

the condition on b given in the conjecture.
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6. Conclusion

We have des;ribed a uniform scheme for expressing all n-argument
Boolean functions in depth n+l, and have matched this upper bound with
a lower bound of n-1 under the restriction of uniformity. For a basis

of unate functions only, our upper bound is nt3.

In our construction we used a sequence <2,2,3,4,5,...>, Dbut a
sequence which grows much faster could be used instead. The effect
of the choice of sequence on formula size has not been considered but
. . . . R n-1 n+l
easy counting arguments limit the possible size to within 2 and 2
for our method. Lupanov's construction [3] yields formulae of size

about 2n/1og?n, though not of course using schemes. This raises the

following:

Open problem : Does a lower bound of "n-constant" on depth still

hold when the restriction to schemes is removed?
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