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The Y-combinator in Scottts Larbda-Calculus Models.

(Revised Ve:rsion )

David Park

Assume the notation and tenminology of Dana Scottts papen

ilModel-s fon the Lambda-Calculusrr. fn this note I want to exhibit the

relationship between the lambda-calculus rrpanadoxical openatonrr

Y = lx((ry.x(yy) )ry.x(yy) )

and the minimal fixpoint ope:.aton
6

yr'c = ),x. [J *t o

obtained by reganding the lambda-calculus modef as a lattice. Intuitively,

one expects that

t : tr'c

should hold in all Scottrs models; and this is indeed the case in the

models constructed as in his paper; howeven there is an (unexpected?)

complication, in that a slight alte::ation in the construction obtains

anothen class of models in which Y * Ytt. This anomaly lacks (so far)

any complete rationalization; one looks for gnounds on which to neject

such frpathologicalfr modefs, but so fan I know of no completely convincing

ones.

Since Ft, fnom lattice theony, obtains the giAiIgI fixpoint, and Y,

by beta-neductions, is certainly anothen fixpoint operator, it must be

the case that

YfCE Y

-t_-



The difficulties anise over the converse question, whethen YE Y",
o

i.e. whether: Yx 
= 

L| "t o foo all x.
n=o

Abbr"eviate Yx by wniting

x = ly.x(yy)

then yx = XX =li X", X.-t 1 by Scott.
n=L

Now note the following:

(a) Using Scottfs methods, it is straightforwand that

,-,x = L.| try:Drr.*.,+r(0rrvv)
n=o

We need something stnongen, viz.

Xn+I =),y:Drr.*r,*t(orryy) ,n)o .

(i.e. that the right hand side is arrbest appnoxinationrtin Dr,+l to X).

To show this' we need that

0r, (ry:Drr. *n+l(Orrw)) = try:Drr_r. *rr(0rr-tlT), n > 0.

Now rememben the following identities:

(i) rJrrr(u(Qrrv)) = {,rr*, u v (by defn. of tr,+t)

(ii) On (uv) = 0n+1 r (Orrt') 
('rt 

defn. of or,+t 
\

\ a sin.. urr(0rrv) = ",/
Thenrfonn>O

tn(ry:Dn. Xn+r(orrw)) = try:Dn-l.sn-r(xrr*r(0rr(orr-rv)(orr-tv)) (by defn. of rlr,)

= ty :Dn_t.trr_r(*r,*r(0rr_r(0rr-1yy) ) )

(from (ii))

= trI:Dn-I. 0r, xn+IQrr-fYf)

Cfnom G) )

: lYiDn-l' *rr(on-tYY)

which is the exPnession we wanted.
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(b) Now for n > 0

Xrr+r Xr, = (lY: Dr ' *rr+l- (onw ) )xr,

= x ..(O X X )nr|n n n

= x . - (6 - (X (rl, -X ))) (from defn. of d )n+J_ 'n-I n n-r n n

= *rr*1(on-t (X' X',-t ) )

But this pnovides a simple recurnence nelation, so that

xn+l Xr, = *rr*1(0rr_r(xrr(0rr- 2(.'... ..x2(Oo(xr xo) )'. " '') ) ) )

@

Hence Yx=ll X -xn+J- n
ll -v

= l-J *r,+I("r,(......xr(xr to)......))
n=1

dnopping the $rs.

(c) Evenything now depends on the initial value tl *o' which

is detenmined by the choice of 4orVo .

In Scottrs case

0o = lx:Do. ),Y:Do. x

Uo = trx:Dr. xo

so that X, = try:Do. xl(0o1ry)

= lv:D . x.v
J_-

=*1

Xo= ooxt=*ro

and *1 to = xr(x, O)

Ther"efore, in this caser

v* = lj- *r,+r(*r,(......xr(xr(x, o))......)) .
n=I
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But *nE* , n)l

6

therefore vx E LJ xn o = Yf'x
n:o

so that in this case Y = Yt.

(d) An alternative choice of 0o, 0o Provides the anomaly;

viz. suppose Do has a comDact element a * fl, and considen the following

possi-ble 0o, So :

0o = lx:Do. ly:Do.(Yra+xr Q)

Vo = lx:Dl.xa

(The compactness condition is necessary just for $e to be continuous,

and holds e.g. fon all elements of a finite Dor on of Scottrs lattice N).

Notice that this choice of 0o, Uo is O.K.r i.e. that 0or 0o ane continuous

and

0o(0o x) = x

0o({'o x) E x

ane satisfied; so Scottts constnuction is nepeatable on this basis, and

obtains a ::espectable modet D- of the lanbda-cal-culus.

But now what is YI in such a model? With x : I we have

XI = try:no.Ir(ooW)

: trY:Do.OoW since r, = trx:Do'x

= Iy:Do(yf ".Yr O)

Xo=Xta=a

and XrXo=a
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@

Thenefone YI = U lrr*t(In......Ir(a))
n=J-

= a + o t since rn = l*:Dn_r.x

But Y:tI = fl

The::efone Y + Y,t in this vension.

(Actually, it tunns out in such nodels that
6.

v = rx.ll *t(*u=a -) a, e) ;
n=o

thJ.s produces the minimal fixpoint of x which contains ao if xa = a,

and the trcorrectrr minimal fixpoint othenwise. )
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Additional Remanks:

I. Fon 0o of the form

lx. Iy. (y f a -> x, O)

any x € D_ r Yx is the minimal fixpoint of x whieh is l-definable

from x.

(Note that, in D-

a=Ix.x=a+Elr0.

Hence

xfa(:)axfa<:>xa=a.

and xrYf a => xYld.

A11 combinatons = a, since

Saaa = (aa)Caa) = a => Saaf a =>"'S=Et

& Kaa:a :> f.a=u => K:ra

2. The obvious generalization of (1) fails, since

with Do = Il 0o as belowr we get

YI=r in D

which is centainly g! the minimal tr-definable element of D

T
of+

I

this

xl =

XtX

.+- -

i-
lt"
I

I

1""
I

I

I

L_

case:

T
T

I

:T
o

=+X

eD

eD

o

o


