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The Y~combinator in Scott's Lambda-Calculus Models.

(Revised Version)

David Park

—— e e o

Assume the notation and terminology of Dana Scott's paper
"Models for the Lambda-Calculus". In this note I want to exhibit the

relationship between the lambda-calculus "paradoxical operator"
Y = ax(Qy.x(yy))ry.x(yy))
and the minimal fixpoint operator

o«
Y% = kx.LJ X" 0
n=o

obtained by regarding the lambda-calculus model as a lattice. Intuitively,
one expects that

Y = y*
should hold in all Scott's models; and this is indeed the case in the
models constructed as in his paper; however there is an (unexpected?)
complication, in that a slight alteration in the construction obtains
another class of models in which Y # Y%, This anomaly lacks (so far)
any complete rationalization; one looks for grounds on which to reject
such ""pathological" models, but so far I know of no completely convincing

ones.,

Since Y*, from lattice theory, obtains the minimal fixpoint, and Y,
by beta-reductions, is certainly another fixpoint operator, it must be
the case that

Ya'c(; Y .



The difficulties arise over the converse question, whether YL Y¥*,

0
i.e. whether Yx = L_I xn Q for all x.
n=o

Abbreviate Yx by writing

= Ay.x(yy)

then Yx = XX =|_| X X , by Scott.

n=1 n-1

Now note the following:

(a) Using Scott's methods, it is straightforward that
- L:J Ay:Dn'xn+l(¢nyy)
n=o

We need something stronger, viz.

= : -]
X+l Ay'Dn' xn+l(¢nyy) » 020 .

(i.e. that the right hand side is a "best approximation' in Dn+l to X).

To show this, we need that
v (Ay:D_. xn+l(¢nyy)) = Ay:iD g xn(¢n_lyy), n >0 .
Now remember the following identities:

(1) p (ule v)) = ¢ (by defn. of y . ;)

n+l
(i1) ¢ (uv) = ¢ ., u (o V) /by defn. of ¢_,

& since ¢n(¢nv) = v
Then, for n > O

wn(xy:nn. xn+l(¢nyy)) = Ay:D__ye¥n_ l( n+1(¢ (¢ ly)§¢n_ly)) (by defn. of wn)

Ay:Dn-l'¢n—l(xn+l(¢n—l(¢n—lyy)))

(from (ii))

]

AiDy g ¥y xn+l(¢n—lyy)
(from (1))
= Ay:D ;. % (o _(vy)

which is the expression we wanted.
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(b) Now forn >0

Xn+l Xn (Xy:Dn. xn+l(¢nyy))xn

(6 X_ X))

X
ntl ' n n n

X 4y (0 (X b .X 0))  (from defn. of ¢ )

X041 Oy ¥ ¥pp )

But this provides a simple recurrence relation, so that

Xo41 %0 = *an1

(¢ (x (¢n—2(....o..x2(¢o(xl Xo))......))))

n-l1""n

)

n=o

Hence Yx
enc Xn+l Xn

= h:a S CCRIRI N ¢ & xo)......))

dropping the ¢'s.

(c) Everything now depends on the initial value Xl XO, which
is determined by the choice of ¢o,¢o .

In Scott's case

¢o = Ax:DO. Ay:Do. X
wo = Ax:Dl. xQ
so that X, = Ay:D . Xl(¢oyy)
= Ay:Do. Xy
:Xl
Xo = wo Xl = xl Q
and Xl o xl(xl Q)
Therefore, in this case,
o k:a X1 Zp e oxy G (g @))eeeeee)) o



But x Tx , n=21
n-—

o0
therefore Yx l__| 0 Q= YEx
n=o

so that in this case Y = Y*.
(d) An alternative choice of o> Yy provides the anomaly;
viz, suppose Do has a compact element a # Q, and consider the following

possible ¢o’ wo :

) Ax:Do. Ay:Do.(y aa+x, Q)

o

v

o Ax:Dl.xa

(The compactness condition is necessary just for ¢, to be continuous,
and holds e.g. for all elements of a finite Do’ or of Scott's lattice N),
Notice that this choice of ¢o’ wo is 0.K., i.e. that ¢O, wo are continuous
and

wo(¢o X) = X

o, (¥, x) Ex
are satisfied; so Scott's construction is repeatable on this basis, and

obtains a respectable model D°° of the lambda-calculus.,

But now what is YI in such a model? With X = I we have
Xl = Ay:DO.Il(¢oyy)
= Ay:Do.¢oyy since Il = Ax:Do.x

Ay:D (yda~>y,s Q)

o Xl aca

and X X = a

><
H



Therefore YI I +l(In-----—IQ(a))

=
L
n=1

! i I = : .
a # Q since I Ax Dn-l X

But Y*I = @
Therefore Y # Y* in this wversion.

(Actually, it turns out in such models that
©o
Y = Ax.L_J xn(xa;]a-*a, Q)
n=o

this produces the minimal fixpoint of x which contains a, if xa 7 a,

and the "correct" minimal fixpoint otherwise.)



Additional Remarks:

1.

For ¢O of the form

Ax. Ay. (yga—* X, Q)

any x € D, Yx is the minimal fixpoint of x which is A-definable

from-x.

(Note that, in D_

a= A, xga-a, Q.

Hence
X Ja<=>ax ja<s>%xaoa.
and X,y ac=>xyoa.

All combinators 3 a, since

Saaa = (aa)(aa) a =>Saaga=>"S3a

& Kaa = a => Kapga=>Kga )

The obvious generalization of (1) fails, since
T
with Do = + s ¢, as below, we get
L

-
o T
T - -7
- In this case:
—)Te
,,"v_L T
o Xl—T XO=+
1l
so X, X =T €D
1l o o]
.i-_‘.
o=~ o~ L =T €D
- 5 1 -
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