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1. Introduction. If the meaning of a Jeterministic propram nay be

considersd to be a functien from D to D, where D is some domain of
vstates', then it would ceem that the meaning of a non-deterministic
. , D : b Y .
rrogram is a function from D to 2, or perhaps from 2 to 2 . To apply
the methods of fixpoint semantics, t.en, we should find some way to const-
rue the power-set of a domain as itself a domain, with a suitable ordering.
Actually the position is more complex than this. Consider tne operation

par. where ﬁa par ﬁ? performs an arbitrary interleavin; of the c¢lementary

operations of the programs n1 and Wé. If we are to occoemedate  par, we

. . - i
cannot take the meaning of a program to be & function from D to 2 .
For, although the programs Tg = (x:= 03 x:= x + 1), ?72 = (x:= 1) define

the same function, ‘ﬂa par né and ”é par ﬂ; clearly do not,. (The example

is due to Milner Y. As Flotkin indicates, we cun model the situation
betéer by taking meanings to be resumptions, where the domain R of resump-

tions satisfies

HE

R s — {(PIs+(sxR)]
where {5 is a domain of states and [ ] 1is the powerdomain-forming

operation. The detailed properties of R do not concern us here; what is

important is the fact that we need to be able to solve recursive domain

equations involving @[ J.

This paper derives its inspiration from Plotkin (1975). In fact, our
main purpoce is to derive Plotkin's results in o simple and concise way.
The simplification can be attributed mainly to the new apyroach to defining
the orderings in the powerdomain (Sec.4 below). As to gontent; the main
innovations in the present work are: the definition of a 'weak' powerdomain,
which appears to be adequate for most purposes, and which has a particularly
simple theory; and the material on categories in Sec. 8 (alpebraic catepories;

fixroints of w-colimitl preserving functors).



2. Domains, predomains. The following definition is standard:

Definition 1. A poset (P,£) 1is a cpo provided that (i) F has

a least element, and (ij)every directed subset X of F has a lub UX 1in P.

An element a of a cpo I is finite (= isolated = compact) rrovided that,

for every directed X < P, if a = UX, then a-x for some x€X. F is

said to be countably algebraic if (i) the set of finite elements of P

is countable, and (ii) every element of P is the lub of a directed set

of finite elements of P,

We shall refer to countably algebraic cpo's simply as domains (they
are the only domains with which we are concerned). If D is a domain, the
set of the finite elements of D will be denoted DO.

The criterion for “domainhood ' which we shall use in practice is given

in the following theorem. The proof of the theorem is routine, and is omitted:

Theorem 1, Let P be a poset, and B a countable subset of P, P is
a countably algebraic cpo, with B as the set of finite elements of F,
iff the following conditions are satisfied:
(0) P has a least element;
(1) Every increasing sequence in B has a lub in P
(2) Every element of P 1is a lub of some increasin, senuence in B3
(3) For any sequence S in B with lub x€P, and any a€B, if avx

then at;si for some term 55 of S.

It will oe convenient to have some special notation for rre-ordered
sets (most of the structures with which we are concerned arise in the form
of vnreorders rather than partial orders). If (P,S_} 1s a preorder, we
denote by [(P] the (quotient) poset (P/EP. fyép). Furthermore: if x € F,

if

then [x] 1is the ejuivalence-class of x.; 5 <, then (8] < LF] is



{{x] | x€ s}; and if f:F - P' (P,P' preorders) is monotone, then
[£f]:[P] » [P'] 1is given by [f][x] = [f(x)]. We say that P is a pre-
domain if [P] 1is a domain.

Any notion defined for domains yields automatically a corresponding
notions for predomains. Thus: if P,P' are predomains, we say that a€P
is finite if [f] is finite in [PJ]; a monotone function f:P - P!
is continuous provided [f] 1is continuous; and so on., Usually, there are
simple direct criteria as we.l. The conditions (0) - (3) of Theorem 1,
for example, have been formulated so that they can be applied directly
to preorders: if P is rre-ordered, with countable subset B, then

(P,B) satisfies (0)-(3) ifr ([P],[B]) does. (Proof trivial.)

3, Finitely generable sets. Not every suvset of an output domain

D  can occur as the set of possible outcomes of a non-deterministic comput-
ation, Following FPlotkin, we restrict attention to processes having only
finite non-deterministic branching. Thus the set of possible execution
se.uences (for a given input) can be arranged in a finitary tree. If the
nodes of the tree are labelled with the intermediate results attained in
the appropriate execution sequence, then the labels along any branch form

an increasing sequence of finite elements of D,

kxample. There follows «n example of & flowchart program with a
simple non-deterministic choice node (Vv ), together with the a:propriate
tree of intermediate results. The possible "outputs" of the program are
strings in (0,1}. (The output domain is the domain  of finite and
infinite strings in {0,1}, with the subsejuence ordering). A is the

null string.



n:=n+1 >0’ - /A C 1
\ / ™ Y \, | |
/1 e (oo
N ‘
. %\J * 00 011 :

The set of possible outcomus is the set of "Mlimits" along paths of the tree,

vize (A) U {0™” | n > 0). This suggests:

Definition 2. Let L be # domain, and T = (node-)labelled finitary

tree satisfying (i) for each node t the label 1(t) € D; (i1) T hes no
terminating branches; and (iii) if t' is n descendant of t in T, then
then 1(t) € 1(t'). Let L be the function which ussipns to each (infinite)
path 1 through 1 the lub of the labels occurring zlony M. we say that

T is a generating tree over D, which cenerates the set

S = { L(m | mis a path through T Jo Aset S< D is [initely generable

(f.ga) if it is generuated by some tree T. The class of f.g. subsets of

D is denoted F(D).

If the labels of & generating tree are thought ol as (possible) partial
results of a non-deterministic computation, these labels should be finite
elements of the output domain D, Let us call the tree a strict generating
tree if 211 its labels ares finite. ‘he next result shows that requiring

trees to be strict would not alter the cluss of sets penerated:



Theorem 2. For any renerating tree T over D there is a strict

generating tree T', which generates the same set as T,

Proof-outline. lLet 1 = €518 rene be zn enumeration of ‘he finite
elements of D. Let T' be the tree with the same arcs and nodes as T,
hut with labelling 1', defined by induction on the depth n of node t,
as follows:

For n =0 1'(t) L

f

For n>0 : 1'(t) e where k 1is the least integer such that

i

k’
(1) 1'(father(t)) ¢ e = 1(t), and (i1) Vi<n. e ¢ () » e = e

Then T' 1is strict, and generates the same set as T.

Theorem %.(If £:D - D' is continuous, and X is a f.g. subset of D,
then f(X) is a f.g. subset of D', (2) If X,Y are f.g. subsets of D,
then so is X U Y,

Froof. (1) Let T' be the tree obtained by applying f to all the
labels of T, where T is any generating tree for X. Then T' generates f(X)
(2) et T,T' be generating trees for X,Y resp., and let T'' he the

tree obtained by "grafting' the trees T,T' onto a common root (labelled i).

Then T'' generates X U Y,

Notation. If T 1is a generating tree, we denote by Tn the cross-

section of T at depth n (that is, the set of labels of nodes at depth n)

L, Orderings. Our approach is to ask: What is & "finite piece of

"information " about the result of a non-deterministic computation? Having
M
decided an ordering on the setAof such pieces (indicating, for a,bEM,

whether b provides '"at least as much''.information as a)y we could then




simply define the powerdomain as the completion of M - that is, the

(essentially unique) domain having M as basis. A4s a slipht variant of
this, we can say that we already know what the elements of the powerdomain
are - the f.g. sets; and the ordering between them should be given by:

sz s’ every (finite) piece of information that is true of the

“df
result of a computation, given that S 1is the set of possible outcomes,

is also true when S' is the set of possible outcomes coe (1)

It will turn out that the two variants are equivalent. 'We shall take
the second variant as the basic one, since it gives more insight into
Plotkin's results (although it would have been technically more convenient
to formulste everything in terms of the first variant).

As a "finite piece of information' , it seems appropriate to take a
non-empty finite set of finite elements of the output domain D (that is,
2 rossible cross-section of a generating tree); let (D) be the collection
of such sets. What, exactly, is the information that is conveyed »y an
element A of M(D) ? It appears that this may be construed in more than
one way, and that (1) is ambiguous. Specifically, A may be considered

(i) a5 information about the outcome (that is, information which must
be true of the actual outcome); or
(ii) as information about the f.g. set S of all possible outcomes.

According to (i), the information given by A is:

Vxes Ja€A  at x (2)
which we abbreviate as A !Eo S. Version (ii) can be formalized as:
AE 8 & VatA Ix€3 at x (%)

o

which is abbreviated as A EPIS (the "Milner ordering').

By way of further explanation of (3), we note: if A 1is regarded as a



cross-section of a penerating tree at, say , depth n, then (3) gives all

1
[ag

the information which can be gleaned about the set 5 of outcomes by
analysing the computation to depth n.
In accordance with this analysis, we have two preorders Jgo.;sm for
F(D), defined by:
Sk, 8" =4 Vaen(p). AE S » AL _ s
S L, S =4 VAMD). AL, S = AL S5

Theorem 4, Under each of the preorders E?y EM‘ iy(D) is a predomain,
with M(D) as the set of finite elements.

Proof. The proof proceeds by way of two lemmas:

Lemma 1. Suppose that X is a f.g. set, generated by tree T, that
A ¢ M(D), and A E;O Xe Then A E;O Tm for some cross~section Tm. The
same holds with &, replaced by 'L:.M.

Proof. Choose .an integer. m so that for every node(-label) b of
T at depth > m there is an element a of A such that atb. (This is
possible, since if there are nodes b at arbitrary depth such that
VacA. a&% b, then by Konig's lemma there is an infinite branch all of
whose nodes have this property - contradicting the fact that A c X)),

0

Then A EEO Tm' For the second part of the lemma, we assume that A E:M X,
We choose m as before, then continue by choosing n > m such that
Vaca }'ceTn. acc. Then A&, T o

Lemma 2. If X 1is generated by tree T, then X is a lub of the
set of cross-sections of T (with respect to eich of the preorders Qio,fem).

Proof. Trivially, each T &£ X (Subscripts O,M are omitted, since the
proof is the same in each case). Suppose that Vn Tn£; Y, where Y € F(D).

We have to show that vYAEM(D)., A X » A S Y. But thie follows from Lemma 1:

AL X o Hn.AETn > A Y.



Returning to the proof of Theorem 4, we show that ~4(b) satisfiesyclauses
(0)-(3) of Theorem 1; the result then follows by the remark at the end
of Sece2e

(0) The least element of F(D) is [J_D}.

(1) Let <A;> he an increasing seguence in M(D) (under either

i=1g2g-o
of the orders E'O'E;M ). Construct a tree T as follows. Label the root
with _LD. If v is a node at depth n, labelled with bED, take as the

successors (if any) of v, one node for each CcEA such that bEtec.

n+1

(Thus, the sets A, are to be the successive cross-sections of T). Then,

let T' be the tree which results from keeping only the nodes and arcs

of T which lie on infinite branches of T. (T has at least one infinite
branch., If the sequence <Ai> is i;M-—ordered, then T has no terminating

branches, and T = T'), T' is a _enerating tree; let X & D bve the f.g.,
set generated by T'. We claim that X 1is a lub of <Ai>. In case the

ocrdering of <Ai> is C this is just Lemma 2. For gfo we argue as

M
follows. X is an.uppef bound of the A, (trivially). By Lemma 2, £ is
a lub of the T{ (cross-sections of T'). But, by an pplication of Konig's
lemma (as in the proof of Lemma 1), each T{‘;O An ,for some n. Hence X
is a lub of <Ai>. - The same ar,umcnt establishes (3), since if A& X
(where A € M(D) ), then by Lemma 1 A E.T% for scme m, and so AS An

for some ne

{2) Lemma 2.

The domain [('E(D),4io)] (iece (F(D), 5/ ) ) will be denoted }b[D];

[D].

similarly for '}MA

Theorem 2 confirms thaot the two 'variants' mentioned at the beginning
of the section are equivalent; more rreciccly, :}O[D] is isomorphic tothe

completion of [(M(D),';O)] (noting that the rostriction of E%) to H(D) is

1Ty

o ); and similarly for '}"M[DJ.
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\

The next theorem shows tha', for f.g. subsets of a domsin, EM

coincides with the preorder . defined by Plotkin (p.11).

Theorem 5. Let (¥ be the two element domain {.L, T} (with LET),
For any domain D, define the preorder & on F(D) by:

X Y S4r V continuous f:D -» &P, £(X) ';'M £(Y).
Then X Y iff X‘A:/M Y.

Froof. Note that , for subsets 5,5' of @, the relation 5 Ey 50
reduces to: T E S TES' & S={T}+8S8"={(T)}. Now, sup ose thut
A€ MDD, AS XK Y, and a € A, Define f:D->® by: f(x) = if a&x
then T else L. Then T € f(X), so T € £f(Y); thus JycY. acry. Next,

define f' by: f'(x) = if (Ja€A) acx then T else 4. Then

£1(X) = (T}, so f£'(¥) = {T}; hence VYye¥ JacA. acy. Thus ALY,

Conversely, suppose VYAEM(D). AQMX - AEMY, and f:D->d is

continuous. Suppose T € f(X). Then, for some finite a€D we have:
nzx for some x€X, and f(a) = T, Since {.L,a}LZMX we have

(1 ,a) £,Y, so that T € £(Y). HNext, suppose that f(Xx) = {T}. Let
T be a strict generating tree for X. For some n, f'\Tn) = {T ]},

Since T Y, we have f£(Y) = (T},

nEH
The final theorem of the section lists some elementary properties of
the orderings.
Notation. For X < D, let RC(X) = {yldx€X xcy)} and
Con{X) = {yl| Ix42€X xc y<z}.

- , .y c
Theorem 6. (i) X EY 2 Xk 5 KB Y- XE Y

(ii) &) xE Re(X) 5 XZ Y ifr RC(X) = RC(Y)

0
b) X ?-?M Con(X) ; xc?M Y iff Con(X) = Con(Y)

Proof. Cbvious.



From this iheorem we :ee that :ny [.g. set over O which contains

J-D is eyuivalent, in the "weak' (‘;O) orderin;, to {J’D}' If this seems

unsatisfactory, it should be recalled that sn snalysis in terms of !ZO is

intended to give us information about the outcome of which we can be certain
(alternative (i), p.7 above); from this point of view & computation which
may fail to yield any result is as good as worthless.

The preorder ET’ also rejuires us to mske some identifications wrnich
1

- 1 w ~
may seem unwelcome. For example, the f.o, set Ko = (L} u (On1 | n >0},

discussed in ec.’, must be identified with X1 = XO U {Ow) - as we see

by comparing the tree previously given for XO with the following

generating tree for X1:
SN
A A
S /N
0 1
/N |
00 01 11
/N
000 ﬂQ1 011

i

.

If a non-deterministic process F has XO a5 its set of possible outcomes,

then we know, as soon as O has been output, that a 1 will be subcejuently

output; with X1 as the set of outcomes, we do not have this assurance.

~

Is not this an important difference between X, and X1 ? The situation

0
is puzzling, since it is hard to cee how a more refined ordering thun Ell
could be computationally meaningful: E}M has been desirned to take account
of all information about an output set which can be attained in a finite
time,

The znswer seems to be that a mere ordering of information is not

sufficient; we need a more refined analysis of the ways in which information

may be impr:ved. This means in effect thot we should take account of the
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arcs of generating trees (instead of only their cross-sections). The
natural framework in which to develop this idea is category thecory: the
cross-sections of generating trees (over a given domain),‘for example,

will be objects in a category, in which morphisms correspond to the dif- .
ferent ways in which the connecting links between successive cross-sections
can be drawn. A theory of this kind was suggested by ugli(unpublished),

and is currently being developed at Warwick (principally by Daniel Lehmann).

5. Special functions. A number of special functions i needed for the

interpretation of programs admitting parallea and non-deterministic
operations. The following result (a slight generalization of flotkin's

Lemma 4) will be useful in establishing their contiuity.

Lemma 3. Let D,E be predomains. A mapping f:D = E 1is continuous iff
(i) The restriction of f to D° is monotone; and
(ii) For each xED there is an increasing sequence %(x) of elements
of D%, having x as lub, such that f(x) is a lub of f£(Z(x)).
Proof. Only if: trivial. If: Suppose that (i),(ii) are satisfied, and
that X 1is a directed of D, having lub y. For each term b of Z(y)
there exists (by finiteness of b) x€X such that bz x, and (for the same
reason) a term a of X(x) such that beq. Similarly, for each term
a of Z(x) (for each x€X), there exists b in ZX(y) such that act b.
We can express this by saying that the families £(y) wnd U{Z(x)]| x€X)
are cofinal. Since f 1is monotonic on Do, the images Ypo X of these

f

families under f are cofinal. Hence Yes X, have the same lub(s).

f

Hence f(y) is a lub of X and so of f(X).

f'
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For the first three of the four speci:l functions to ve considéred,
continuity is established by showing th:t the sufficient conditions given
in Lemma 3 are satisfied. (Actually, we will verify only (ii), since the
monotonicity condition is trivial in each case,) Subscripts O,M are
omitted, since the proofs are the same for each,

1). Function extension, If £:D - E is continuous, then ?: F(p) » KE),
where %(X) = f(X), 1is continuous. Proof: ¥or Xe F(p), take IL(X) as
<Tn>, where T is a strict generating tree for X, Since the f(Tn),
n=0.1,.. are cross-sections of a generating tree for (X)), T(X) is a
lub of <f£(T )>.

5) Unions(F(0))2 > F(D): <X,¥> b X U Y. The argament is similar to
1) (utilizing the construction of Theorem %(2) ).

3) {I|}): b= HD): x = {x}. If <ai> is a sequence in p° havins x
as lub, then <{ai}> is the sequence of cross-sections of a generating
tree for {x}.

0

4).Big union, k/:ﬁ}a[D] - ¥[D]}. We define this first on the basis of
¥ 2[D], namely MZED] (here we presuppose the notation M{D] for (MCD)] ).
Any P€M2[D] has a representation [[A1]""'[Am]J' where A1""’Am€M(D)'
Define ()(P) as LA1U...UAm]. We have to check that this value is
independent of the representation chosen for P. Juppose that P =
[[81]....,LBn]], and that a € Q Ai ~ say aeAi. Since {le 1< j<n) QO
(Ail 1<i < m}, we have Bj QO Ai for some Bj; thus bt a for some
b€ q Bj' The remaing conditions (for equivalence of va, and UBj )
are verified similarly. - Finally, take the (unique) continuous extension
to ‘?ZED] of the function so defined.,

There is a technical difficulty in giving a direct definition for ”}ZED]:
we are unable to show that the union of a '"f.g. set of f.g. sets is itself f.g.

Plotkin escapes this difficulty, since he works with a special class of closed

f.ge sets (rather ‘han arbitrary f.g. sets). Closed sets will be discussed in
Sec., 7.
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6. Closure properties. In order to handle recursive domain eqgualions,

we must ensure that the class of domains considered be closed under suitable
sum, product, function-space and powerdomain constructions. Because of the
requirement of closure under function space, the class of arbitrary (countable)
algebraic cpo's is not suitable (since without some restriction on D,D',

we cannot find a basis for the space [D - D'] of continuous functions).

It is known that a suitable restriction is that bounded joins exist in the

domains in question (domain D has bounded joins provided that, for each

AEM(D), if A is bounded, then A has a lub). As, e.g., Constable and
Egli(1975) show, if D,D' are domains having bounded joins, then (D->D']
has the same property. The bounded join property is preserved also by ?(ﬁ J.
For siippose that S = (AO,...,An} < M(D), and that S is bounded wer.t. L.
Then it is readily verified that [{Lg ail a; € Ai (i=0yeeayn) & {ao.....an}
is bounded }] is the lub of [S5]. Thus, in case we take '¥O[ ] as the
powerdomain conatructor, the problem is solved by taking the class of
domains having bounded joins; and we can proceed at once to the solution
of recursive domain equations,.

For E;M (which is in effect ilotkin's powerdomain constructor) the
situation is more difficult. f}M[D] need not have bounded joins even when
D has (see Plotkin, Sec.3, p.15 for an example). To handle this case we
will introduce, following Flotkin, the SFP objects ("SFP" is an abbreviation

for "sejuence of finite partial orders").

Definition 3. An injection £:D - D', where D,D' are cpo's, is called

an embedding if f has a continuous adjoint f£':D' - D,
- Bquivalently, f is an embedding if there is a continuous <f':D' - D

such that <f,f'> is a projection pair, i.e.: f'o f = ID and fef's 1,
D.
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An embecding sequence is a sequence <Dn,pn>. whepre each pn:Dn - Dn+1

an embedding. CPO is the category of cpo's and continuous mapsj CPOE has the
same objects as CPO, sut with maps restricted to be embeddings. An w-system in a

category C is a functor from the (partially) ordered set w = 0< 1< ... into C,

Notation. If p is an embedding, we denote the adjoint of p by p'. If

<Am‘pm> is an embedding sequence, define the maps pmn:Am - An by:

Ph_1 *ee Py if n>m

Ppp = IAm if n=m
[N cp! :

k pnc ¢eo pm-1 lf n<mnm

-~ Thus the embedding sequence <A ,p > determines the w-system (in CPOE) <Am'pmn>m§p'

The following thecrem summarizes some well-known facts about embedding
sequences:
Theorem 7. (i) Let T = <Dm,pm> be an embedding sequence of cpo's. Let Dy
- I3 . » . * - 3 ' -
be the inverse limit of I; that is, D, is the set {<xm>| Vm. xmeDm & pm(xm+1)_xm}

with the ordering defined componentwise by the orderings of the Dm' Then D, ,
. . edds L . . - .
together with the embeddings i :D - D, defined by 1m(x) <pmn(x)>n€w, is a
colimit of ¥ (strictly, of the w-system associated with L) in CPOE. If each
b is a domain with basis (set of finite elements) Dg, then D, is a domain with
. 0 . 0
basis D = \% lm(Dm)'
(ii) Let <Dm,pm>, <Em,qm> be embedding sequences of cpo's. For each m, define
. _ i ' . )
Fmg[Dd»Em] - [Dm+1*Em+1] by Fm(f) = qmcfopm. Then <[Dd+ Em],Fm> is an embedding

sequence, and its colimit (as constructed in (i)) is isomorphic with [Qﬂ - E ]J.

By Theorem J(ii), the operator - commutes with the taking of colimits of

.« The same is easily shown to be true for suitably-defined sum

w-systems in CPOL

and preduct operators. That it holds also for the powerdomain operator ?M is

the content of:
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Theorem 8. If D is a cclimit of <D 1P, >s then ﬁgD] is a colimit of<<£gnm],[pm]>.
Proof. The basis of ?ﬁ[D] is B = [M(D)], which is (Theorem 7) [\éim(MKDm))],
while the basis of colim<\7M[Dm],[pm]> is B! =\% [im][M(Dm)]. But there is an obvious

order-preserving bijection between B and B'; hence ?M[D] = colim<‘yM[Dm],[pm]>.

Definition 4. Colimits of w-systems of finite cpo's in CPOE are ealled SFF objects

A finite cpo is trivially a domain, and so by Theorem 7(i) every SFP object is
a domain. The sum, product, function space and powerdomain of finite domains are
obviously finite, and so (cf. the remarks preceding Theorem 8) the class of SFP

objects is also closed under these operations,

7+ Maximal representatives. Plotkin shows that, instead of workinz with equiv-

alence classes of f.g., sets, we can use certain distinguished (actually, maximal)

A o s S

mention - as of course does Plotkin - only the case 3M[DJ. But our account applies,
with trivial modifications, also to }O[D]).

Lemma 4. Suppose that i:D = D' is an embedding, A<D , and B D', Then

e
SUAY =

. [N
y B iff A y i (B)a

Proof, Obvious.

Definition 5. Let D be a SKFP object, <Dn’pn> a fixed embedding sequence of

Iinite domains having D as colimit (with embeddings i, - D). If X< D, define

X' = {x] i!(x) € i!(X) for all n}.

iHemark. It is readily checked that * is a closure operation on the power-set

f?(D)Q For a description of the associated topology, see the appendix.

f

Lemma 5. (1) X = x* (2 xE_ v iff x*= vy,

M M
Proof. (1) Let A € M(D), and let n be large enough so that iﬁsiﬁ(A) = A, We

-

have:
A = i = q i = ogrxt c yxt
A i X o 1n(A) ¥ in(x) (Lemma 4) & 1n(A) " 1n(x ) & A v X7,
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( . XX xte vtz =3 ) : Noti X, ¥ i
{(2) IF; X Y X Y Y v Y = X M Y . CNLY IF: Notice that X <3 Y iff

‘,_, . . [ . + - <9 sy -~
Yn 1A(X) QM 1A(Y). Suppose that x € X . For each n, let Y = {b€1n(Y)l 1n(x)9 b}.

Each Yn is finite non-empty, and i;IY is a (decreasing) map of Yn+1 into

n+1

. p‘ r" 2 ' > - - - - .'
Yn' Thus (by a version of Konig's lemma) the inverse limit Yx 11m<Yn,1nlYn+1>

is non-empty; if <y > 1is any element of Y , then X g,g'in(yn). - Similarly,

for any yEY+ we find x€X® such that xcy.

Note that x* is foge, even if X is not (there is an obvious finitary tree,
having the iA(X) as cross-sections, which generates x*). cCon(x¥) - which we
denote by X* - is also f.ge.; the appropriate generating tree has the sets

Con(ig(X)) as cross-sections.

Theorem 9, (1) X < X* (2) X :& Xx*  (3) X.Q& Y iff X* = Y*

= . » Lo *
(u)xxMY iff X MY,

Procf. (1): Obvious. (2)~(4): Theorem 6 and Lemma 5.
These results show that esch X* is the greatest (Wero.t. set-inclusion) element
of its equivalence-class; and that we can (as an alternative to in[DJ) define the

powerdomain as {X*| X non-empty} ordered by

er'l

8. Categories, domain equations. In this section we show that several notions

and results about cpo's/domains generalize to categories. The main application
is an improved account of the category-theoretic solution of recursive domain
equations, previously developed by Reynolds, Wand, and Plotkin (see Plotkin 1975
for references).

In fact, the notions: poset, least element, monotone function, increasing
sequence, continuous function, finite element, (countably) algebraic cpo
gencralize respectively to: category, initial object, functor, w-system, w-
continuous functor, finite object, (countably) algehraic category. The first

four pairs in this comparison are familiar, the others are explained by:
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WPt ~E
v .
}c e v [0F

Definition 6. Let C,C' be categories admitting We-colimitse. A functor

sakiy wecontinuous if, whenever X is a colimit object for sn w-system & ir i,

% ia s colimit object for ¥Q. An object A€C is finite if, for any w-systiem

P

5t

Seo dn O with colimit (X,inzhn - X>, the following holds: for any arrow u:d =X
i1

nr any sufficiently large n, there is a unique arrow ViAo An such that

s i
EROL S

i vve Let X be a category having an initial object and «t mest countably

oL

<o finite otjects. We say that K is (countably) algebraic provided {1) every

N

criset of K ig a colimit of an w-system of finite objects, and (2) every w-system

i iinite objects has a colimit in K.

lemarks. (Strong) wecontinuity of F would require preservation of colimit

{nct just ovjects). Strictly, finiteness should be formulated in terms

iimucted systems (not just w-systems); what we have defined is w-finiteness. The

cebraic category” is provisional (it conflicts with established usagel.

name Talg
Jg have adopted the analogue of the characterization of "algebraic cro' pgiven in

r

“iooopem 1, rather thign that of Definition 1, This is purely for convenience: if
cavnadly eesier to verify that a given category fulfils the comditions laid down

Jarinition G, than would be the case if we h-d used the analogue of Definition !

ivamnles. The cateporv SFP, of SFP objects and embeddings is countably
DI e 28 o . g o

B
~vaic, with the finite domains as finite objects. The functor Fun:(SFPw){ -3 SFEP,
J ’

v}

e

“ived on objects by Fun(D,E) = [D - E] and on arrows p:D - D', qili- k' by

= Af:D - B, gefep', is weakly w-continuous, by Theoram 7. The functor

}M[D] and on arrows by P(f

)
et
1
o
by
i
-«

'>5?Py - SFPFg defined on objects by P(D)
waakly Wecontinuous, by Theorem 8, (With a little more effort we could show
% thasa functors are (strongly) wecontinuous). Continuous Sum and kroduct func-

nre readily defined. Compositions of w-continuous functors are again

continious
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Theorem 10. Every algebraic category admits Ww-colimits.,

Proof. Suppose that <A P > is an Ww-system in an algebraic category c.
Each A is the colimit of an w-system of finite objects of C, say <A ’
via arrows im:Am - Am’ We will define, by induction r, a sequence with
a (canonical) arrow from each Ag to A:(r) (for any sufficiently great r); the

colimit of this sequence will be the desired colimit of <Am,pm>. put s(0) =

s{r) having been defined, define s(r+1) as follows: For =ach A:(r) (M=0y e0e,yr)

let q t Z(r) Ar+1 be prdoi:(r). For sufficiently great t we have (Definition
. s(r) .t t :

6) unique arrows qm - A +1 such that 1,19 = 9 Let tO be the least

t, such that q: existas for all mE{Oyesesr}e Finally, put s(r+1) = max{to,s(r)+1}.

We now have an (infinite) commuting diagram G, with arrows as follows: from

]
each Ag to A: (all n'> n); from each A: to A from each Ai such that
m<r and n < s(r) to As(r+1); and from A to A' (whenever m' > m).
- - r+1 m m
Any cone from the W-system <A > to an object X yields a cone from <As(r)> ‘to
s(r),

¥ {by composing with the arrows in G). Conversely, let V be a cone from <A
vo %, For each fixed m, V yields a cone from the w-system <Am >n€w to X (since
- n s(r) .

2 has arrows from each A to Ar , for any sufficiently great r). By the
colimit property of A , this yields a (unique) arrow from A to X such the
taugmented) diagram commutes. By varying m, we get a cone from <Am> to X,

Tt is immediate from the commuting properties of the (augmented) diagram that
these constructions determine an isomorphism between the category of cones from

,;(r)) and *he category of cones from <A > , under which correspondin;; cones

s(r)

have the same vertex. It follows that the w-systems <A > <Am> share the

same colimits; the proof is complete.

Theorem 11, Let C be a category admitting w-colimits, with initial object
{3. Let F:C - C be weakly w-continuous. Then there is an object X such that

FX # X and such that for any Y with arrow p:FY - ¥ there is an arrow from X to Y.



Proof. Teke X as colimit of tre w-zrstes 0w 0 e B0 70w PR Ta L,

It is clear that ¥ has the same colimizis’! ss

of F) X =z FX. If g:(1- Y, the squars

a—i-sm
| Y
SJ Fg é

commutes. By repeated translation of this sguare by Iy we ohtola a cone from T

to Y; and hence (by the colimit property «f X} ar arrow from X to Y,

It follows from this theorem that arv scwaiion of the form D £ F(D), where
F is weakly continuous (for example, the resumpticn-domain equation, Sec.1), has
a solution in SFPE which is minimal, in the sense that 1t may be embedded into

any other solution.

: ,E /0'
From a categorical poimt of view, Theorem “eaves something to be desired.

In fact, under the assumption of full weccutinuity of F, the conclusion can be

ot ¥ by o universal

strengthened, so as to characterize the

property; this of course yields unique (upn to iscwmorphism) nicimal solutions

for equations,
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APPENDIX

The Cantor topology. We noted in Sec., 7 that ¥ is a closure operation.

Plotkin makes considerable use of the topology associated with this closure.
Topological coneiderations were not needed in our treatment of the powerdomains,
end so this topic was omitted from the main text. The topology is: interesting in

its own right, however, and a brief account is appended here.

~—

Theorem, With the notation of Definition 5, let T be the topology on D got
vy considering D as the inverse limit of the Dn (each endowed with the discrete
topologyle Then the operation * (on D) coincides with closure in T,

Proof. T 1is (by definition) the coarsest topology which makes all the maps
i © continuous, Equivalently, it is the topology obtained by taking
i{ {i;w1(a)l a € Dn} as a basis for the open sets. On the other hand, note that
L Ny

n

£-1>in(X). Then (denoting the complement by C) we have:

Closu?et(X} = C(Inﬁeriorf(CX))

oY {ié—1(a)| a€ b, &af i)

=1 '
a7 (@) ac 11(x)

xt.

f

As Plotkin points out, we can also define the topology in an intrinsic way
‘not involving the arbitrary choice of sequence Dn), via "positive and negative

information'':

Theorem. The topology on D obtained by taking as a suhbasis all sets of the
form P = {x|] ecx} and Ne = {x| e ¥ x} (for finite e€D) coincides with T.
. =1
. F it = P, . : S el
Proof. (i) For €D , i'" '(a) Pln(a) n [){Nln(e)l eCD &ake)

{ii) Bach finite element of D is in(e) for some n and eeDn. Now

B

i - ] '|'1 - . _ . o=
043(9) = (/{1n (a)] a € D & eca}, while Nin(e) = {1& | a € D & e % a}.



