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1. Introduclryg. If the. rneaning of ei ,.1erj.r:rrninist.ic ]'ror ran na.y be

consj.dered. to be a funcLir.rl irom D tt-r D, 'rriLL're D ir; s;cme tiomiril" of

,,statesrr, tiren i t woulcl I]e,.m tlr;Lt the meaning of a non-determini.'tic

r,rogra;n i"s e, function from D to 2D, or ilerhraps from ?'D to 2u ' To apply

the methods of fixJroint semantics, t:.eft' we sh()uld find soine way to const-

rue the power-set of 3 domain aru itself a domainr wilh u.ruitable orderini;.

Actually the position is nore complex than ttris' Conr;iCer tire operiitit)n

.H., where ir 1 par 6, perfortns an errbitr+rry interleavinl crf the el-':mentirry

operrrti ons of the lrrogr;.rms fT, ;tnd -2. 11' we i.rre to rrt:l;c:rnt;<l;rf-e j'L\r ) !{e

cannot take t-he mea.ning; of a program to be a flrnct.i (iI] from ij to '2i'.

Iror, althou1,;ir the y,rogramr; Tj = (x:" O; x:= x + 1), lt, = (x:= 1) tlefine

the serme frinction, T1 par ff, anrl n, par T(, cle,rly do not. (The example

is riue to FliIner ). As I,loLkin intli, att'l;t fio cirn rrlodel tlre r;it.r-r,'rt.ion

better by t:iltinil meranirtl;r,i to be Iirsumptions, where the domain R of res'lmi-'-

! ic'ns sartisfi"es

R = s--| F[s*(sxR)]
rvhere il is a dc.rm:rin of states and PL ) is the powerdom:rin-forrning

operati on. 'llhe detaileii ProJ-re11i"" of R cio not concern us here I ''ahat is

im1.sy1.r,na ir; the fact that lue need to lte al:le to solve recursive dotn;:in

equirtions involving Ql ).

Tiri r; paper clerives its insJ'ir;rt'ion frorlt I'Iotl<in ( 197r) ' ln fact' our

rna.in 1,.urpor:e is to derive l'lotkints results in rr sjnple irnd concise way.

The si"ry,li f icl t.i rrn can be attribul-.etl mi,inl y to lite new api'roach to def i ning

the orrierings in the po,,erdomain (Sec.4 below). As to pontent; the nr: 'i n

innovations in the present viork are: th.e ciefinition of al 'rtveak" povter<lomain,

r^ihich iinl)earri t.o be adeqrrate for most purl)or-iq.'-i, irltd vrhicl'r itas a partict"tl,itrf y

simple theor1r; and the materi aL on categories in liec. $ (;i-L1,ebraic categoriesl

fixr',ri nt.s of ,,u-r:o1 i.mil presefvintl frrnctors) -
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2. Domainsr predomains. The following definition is standard:

Definition 1. A poriet (Pr g ) ir-; a gp provicled thert (i) I has

a least element' and (i)every <iirected subset X of F has a lub UX in I'.

An element a of a cpo P is finitg (= isolated = -gggpg.!.) provided that,

for every directed X c l', if a E [JX, then d. r X for sorne x€X, F' is

said to b. 
"nmt_gbly "lgub"ric if (i) ttre set of finite element.s of P

is countable, and (ii) every Lelement of P i.s the l-ub of a directed set

of finite elements of P.

We shall refer to countnbty atgebraic cpots simply as domainq (ttrey

the onJ.y domains with wiLich we are concerned). ff D ls a domain, the

of the finite elements of D will be denoted DO.

The criterion for'rdom:rinh<'od'r which we slral. l. use in prnctice is given

the following theorem. The proof of the theorem is routine, and is omitted:

Theorem 1. Let I' be a pcl,set, and B

are

set

1n

a countably algebraic cpo, with B as tlre

i f f the f ol lowinl:; condi ti ons are sati sf ied

a count;rbl-e subs:et of

sel of finit': elemenl.s

ISP

of' l)

(O) l' h;::'; a l-east element;

(1) Bvery increasing sequence in lJ har; a lub in P;

(2) Every element of P is:i lull of some increasinl, seruence in lJ;

(f ) l'or iiny i;e(luence S j-n B with l-ub xeP, iind any a€13, j-f a r x

t.hr.:n a q s. for some term {r. of S.1I

It wi Il r)e convenj,ent t.o have some special notirti on f <'r 1,re-ordered

sets (rno:-;t of thr: structtrres with "rhich we arc concerned ;rrise in the form

of nreorders rather than partial orders). If (trr<; is a rrcrrrder, we

denote by {-Pl the (rluotient) po';et (r/=r, g'=p). l'urtirermore: if x € I

then [x] is l,he e,luivalence-class of x,i if i 
= 

i', tiren l-s] : lp] is



({-xl I x € si; and if f :L' -r

tfl:[P] + [P'] is given by

domain if iPl is a domain.

Pt (PrPt preorders) is monotorre, then

tfltxl = [f(x)]. de say that P is a gg-

Any notion defined for domains yields automatically a correspondiag

notions for predonains. Thus: if PrPt are predomains, vie say tliat a€P

i.s finite if tfl is finite in tP]; a monotone function f:P + Pl

is continuouq provided If] is continuous; antl so on. Usu;lJ.]y, the:^e are

sigrple direct criteria as \{e.1. Ihe conclitions (O) - G) of Theorem 1,

for example, have been formulated uo th:rt they can be applied directly

to preorders: if I is 1're-ordered, with countable subset Br then

( P,B) satisfies (o)-(]) ifl ( [P], tlll ) does. (Proof trivial. )

]" F1n1tely gglrglqbfg__qClE. Not every su',:rset of an output domain

n can occur ar; the set of possible outcomes of a non-deterrninistic comput-

ertion. !'ollowing Plotki-n.' we restrict attention to processes iravi,ng only

finite non-det.erministic branching. 'I'hus the set of possible execution

se.iuences (for a given input) can be arranged in a finitary tree. If the

nodes of the tree are labelled wlth the intermediate results attaincd in

th() appropriate execution sequence, then the labels along; any branch form

an increasing serluenee of finite elements of D.

Uxamr,le. 'I']rere iollows irn example of ii flowchart pro;-rilffi with a

simple non-deterministic choice node ( V ), together with th,r r.rI jrropriute

tree of intermediate resr,rl l-s. The possible !'outputs'r of tht-- prograln are

strings in [Or1). (The outlrut dornain is the rlonrain 0 of finite and

infinite s'trinlls in {Orlj1 r,,ith the subse'luence ordering). A is the

nulI string.
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oul,comi.rs is; the seL of "l-imits" alon; ptrthr; r;f tl're treet

n > OJ. This suggestrr:

Definit.ion 2. Let l,r be ;, clomai.n, and 'I' I (node-)l.rnelled finitary

.t:ree s:rtisf;ring (i) fo| ei.rch noCe t thc, Iabel 1(t) e D; (ii) T iti:s rlo

t.er.niin,-rti.n6 brernches; ancl (iii ) if tt ir'; 'r clescenriant o1' t in T, t'!tt:n

then f (t) f 1(t t ). Lel. 1., i1s 1.ire f,rncl;j-c-,n wirich i,:;si r';tlrr t'o eacit (irrl-inLte)

path TT through ,' the lub of the labels ()cctrrrill[ atlon1; TT. !!e say th'rt

T is a geryratinn tr.ee over Dr which &enerat-es t.he set

s={L(n) Inisapaththrout:h Ti' Aset sgD is j'initelyr':enerabrs

(f.g") if it is generated by some tree T. The cllss of f.g. '';ubs;et's of

D is denot.ed ?(D).

If 1.1e.l 3beIs of ir gcnerating tree are l,ltou6ht ol:rr; (pcrssib-le) pr,lrLial.

results of ;r non-deterministic computatj.on; thesr-: labcls shoul-d b" [f!!

elements of the output dolnain D. Let rrr; cal,1 tire tree a sbric! generatirrg

tree if aI1 its labels al'e finit+-'. iihe nexb result shows th,"t requirirtg

trees to be strict wclulti not after tne <:I;.,r;e'of sets 1-erterated! '
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Theorem 2. Iror.rny genrlpating.tree T over D th.:re i.s a strict

generating tree Tr, which Senerates the same set as 'I.

Proof-outline. Let J. = cgrclr... be a:n enumeration of r.he finite

elements of D. l,et Tr be the tree wtth the sitme errc6;tnd nodes as Tt

but with labc.Iling It, del'ined by induction on the deptli n of rrode ti

as follows:

For D=o: 1'(t)=J

For n ) O : 1'(t) = ekr where k is the least integer such that

(i) I,(fatner(t)) e en,: 1(t), ana (ii) ! i(n. e, r: f (t) -r e. E ek.

Then Tf is strict, and lSenerates the same set as T.

Theore.$ ].(|If f:D -r Dr is continuous, ernd X is ar f.g. subset of u'

tiren f(X) is a f .g. subset of Dt. (2) If XrY are f .9. subsets of D'

tlien so is X U Y.

Proof. (t) l,et Tr be the tree obtained by applying f to all the

LabeLs of T, where T i.s any generating tree for X. Then Tr generates f(X)

(2) let TrTt be generating trees for XrY resp.s and let Trr be the

tree obtained byttgraftingil the treee TrTt onto a common root (Iabelled t).

Then Ttr generates X U Y.

Notation. If T is a generating treel we denote hy Tr, the cross-

section of T at depth n (tnat is, the set of labels of nodes at depth n)

4. Orderinns. Our approach is to ask: Vr/hat is a'rfin|te piece of

rrinformation rr about tire resuft of a non-deterministic co'nputation? Having

decided an ordering on the setfof such piecee (indicating, for arb€M,

whether b provides 'tat least as nuchtr'.infornation as a), we could then
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simplydefinetheporn,erdomainasthecompletionofl'1-thatis'the

(essentially unique) domain having l'i a$ basis. As a slight v.l.riant of

this, wd can say that we arlreaily know what the elernents of the povrerdomain

aro - the f.g. seto; and the ordering between then should be given by:

S E St =df every (finite) piece of information '"trat is true of the

result of a computation, 6iven that s is the set of possible outcomeso

is also true when Sr is t.he set of possible outcomes ... (t)

It will turn out that the two variants are equival.ent. l,ie shall tuke

the second vsriant as the trasic one, since it gives more insight into

ptotkinrs resul_ts (;rlthough it would have been technical.Ly rnore convenient

to formul;;te everything in terms of the first variant).

As a 'rfinite piece of information'r , it seems appropriate to take a

non-empty finite set of finite elements of the output donain Ll (that is'

;i 1.ogr;ible croos-eection of a generating tree); let t'i (U) be the collection

of such sete. What, exactly, is the information that is conveycd'iy an

element A of M(D) ? It appears that tfris may be construed in more thart

one way, and that (t) ls anbiguous. lipecificqlly' A may be considered

(i) a'; information about |-he outcome (that is, informat.i.on which must

be true of the arctual orrtcome)1 or

(ii) os information about the f.g. set S of all po:;sibl,e outcomes.

According to (i)r the information given by A is:

VxesJaeA aE x

which we abbreviats as .A EO S. Version (ii)

A Eo S & Va€A :Jx€S ai x

which is abbrevi;rted as A Elt S (tire "l'lil-ner

By way of further explanation of (J)t ute note:

can be formalized as:

ord.ering" ) .

if A is regarded as

(2)

( 1/
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cross-section of a generating tree at, say , depth nr tnen (6) gives all
/

the information whj.ch can be gleaned about the set s of outcomes by

analysing the computation to depth rlr

In accordance with this analysis, we h;lve two preorders Eo'Flt for

?tol, defined by:

sLos' =df Vrrell(O). ot,rt + Atrot'

t 5, t' =df vneu(l). A E 
I,1 

S '' A El, li'

Theorem 4. Under each of the preorders 50, 5pi, ltll is a predomain,

with M(D) as the set of finite elements.

Pr!gi.. The proof proceeds by way of two lemrnas:

!g!. Suppose that X is a f.g. set, generated by tree T' that

A e M(D), and A Eo X. Then A f O 
Tm for some cross-section Tr. The

same holds with EO rePlaced bY Er.

Ed. Choose.an integer- m so that for every node(-label) b of

T at depth Z rn there is an element a of A such that a f b. (Ttris is

possible, since if there are nodes b at arbitrary depth srrch that

VaeA. a+ b, then by Konigrs Iemma there is an infinite branch all of

whor;e nocles have this property - contradicting the fact t.hat A q 
O 

X ).

Then A E 
O 

Trn. For the second part of the lemmal w€ ?ssume that A g 
M 

X.

vJe choose m as before, then continue by choosing n Z m such that

Va€A Jc€Tn. aIc. fhen A EM Tn.

Lemma 2. If x is generated by tree Tr then X is,a Iub of the

set of cross-sections of I (with respect to e;ich of the preorders 5 O, i,.,).

hoof . Triviallyr each Tn E X (Subscripts Orl'{ are omitted, sinee the

Jrroof is the same in each case). Suppose that Vn Trrf Y, where Y € 7(tl).

rje have bo show that VngU(U). A E X -r A +* Y. But thie fotlows from Lemma 1:

AD-X + Jn"AETrr') AEY.
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Returning 1.o the proof of Titec.,retn 4, we show that Y(l) s;'tisfies clauses

(oi-(:) of Theorem 1; the result then follows iiy the remark at the end

of liec.2"

(o) The least element of 3(D) is (Ju).

( t ) t et (Ai)i=t 
r2r . . be an increasingj sequence in I"l(D) (under either

of the orders F 6r Eg ). Construct a tree T as followe. Label the root

with.lD.Ifvisanodeatdepthn,labelledwithbeD'takeasthe

successore (if any) of vr one node for each "€A.*1 ouch that bEc"

(Ttrue, the sete Oi are to be the successive cross-Eections of T)' Thent

let Tr be the tree which results from keeping only the nodes and arcs

of T which lie on infinite branches of T. (t has ert leaot one infinite

br.anch. If the gequence <A.> is F*,-ordererd, then T has no terminating

br.nches, ancl f = Tr). Tf is * ...eneratin1; tree; let X 
= 

D be the f.g.,

set generated by 'It. ,{e claim that x is a lub of <A'>. In case the

crtlerin6; r)f <A.> is Et"i , this is jirst Lemma 2. l'or tO wt) argue as

fL:llows. X i.s an upper bound. of the n' (trivially). By Lemma 2, X is

e lub of the Ti (cross-sections of Tr). tsut, by an pplication of Konigts

l-emma (;rs in l,he pr,rof of Lemma 1), each Ti E,, An rfor some n' Hence X

is a lut' of <A.>, -'the same r,rri.umcnt el;tablisslres (J), r;ince if r\ t X

(wht,:re r\ e M(D) ), tiren iry Lemma 1 A : Tr for sotne tlr and so A * 
^r,

for some l1o

(2) Lemna 2.

The domain i( 3(D), to)l (i'e' ( Y(u)'E/; ) ) wilr be rienoted y'olll];

similarr]y for 7n [O].

,lheorem 2 conllirms that the two'rvaritrnts" rnentioned at the beginning

of the "sr,"ction are e,luivalent; mrbre precis,'rIyr 7OInJ i-s isomorphic toihe

compJ-etion of i (M(D), EO)J (noting thart the r'-'striction of tr-o to i"i(D) is

io )1 and .sirnilarly for 'l*[l].
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Ihe next theoren shows thatr for f.g. subsets of a domain, EU,

coincides with the preorder :?. defined by Plotkin (p.11).

Theorem 5. Let dp be the two element domai.n [-t , TJ (wittr rE T ).

For any domain Dr define the preorder L on ?(tl) hy:

X F Y =of ! continuous f :D + O. f(X) E,, f(Y).

Then Xi Y iff XEN' I.

&g€. Note that , for subsets SrSt of @, the relation S FM 3t

reducesto: Te S+Te Sr & S=[T]tS'=[f]. NowrsLrpi osetiLi,.t

A€l"i(D), lqMXFY,and a€A. Define f:D+O by:f(x)=if aFx

then l- else L. Then l- € f(X), so T € f(Y); thus JyeY. aFy. I,lext,

defi"ne f' by: t'(x) = i! (ia€A) aEx then r else L.'llhen

f'(,() = (T), ,.:io f'(Y) = (r); hence lyeY JaeA. asy. Tirus oan,t.

Uonversely, 6uppo6e Vneli(p). A EIIX -r A 5*Y, and f :D -r @ is

continuous. Supposc -l-e f(X). Then, for some finite aeD we havtl:

a q x for riome xeX, and f(a) = T'. $ince ( r,a) EMX we have

i r ta) t= rY, so that l- e f(y). I'lext, suppose that f(x) = t r i. L,et

T be a strict generating tree for X. For some nr f i.Tn) = { r l.
Since T' El,Y, we have f (Y) = tl* ).

The final tlreorem of the r:;ection lists some elementary properties of

the orderi.np's.

Notation. l'or X c D, let RC(X) = (yl{xeX xtyj anrl

Con(X) = {yl lxrz€X xe yf z}.

Tlreorem 6. (i) X Eoy -r X foy ; X Ft.,y , X 61ly

(ii) a) x 5n Kc(x) ; * ?o r iff Rc(x) = &c(y)

b) x En, con(x) ; x Epi y iff con(x) = con(y)

Proof. L)bvious.
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F roui this rheorern w(r r:ee l-iru t r.'rry f .1;. r;et over i) rvilich iront:ti rts

{O is e,luivalent, in the tt14,,&k'r ( q-O) orderin;, t<.r { a;]. If tfij s seerns

unsatii;f:rctor.yr it sirould t-re recailletl th;rt ,'n rnalysit; j-n terms of FO is

intendecl to give us information about the orrtcorne of which we can l-re cert;rj-n

(alternatj.ve (i ), Jr./ above) ; from this point of view a com|ut;ri- on wirich

mgy faiJ- to yield any resrtlt is as good a's worthless'

,fhe 
1,y.r.o1.,1er E1n also re.luir.es us; to mnkc some i-ctentil'ic;ltions v/lich

m;iy rreen unl,relcorne. I'or exarnple, the f.;': , r;et XO = (L) u [onrol n ) f;i,

eliscusr,red jv1 iist;.J1 rnust, be identified witLr X1 = X() U lC)uJ) - nr:l we $iotj

iry comparing the tree previously given for xn with the fol1owin6

generating tree for Xt t

oo,/,
/\

OOO .rO1

I

I
I

t

tl

',

If 3 non-r.ieterministic process }j has XO a"; its set of pos;sible outcomes'

then vre know, a$ soon asj 0 har; been output, thirt a 1 ,1!l b* subi'e 1tlent.l.y

or.rtput; with X,, as the set of outcomes' we do not have this assurance.

Is not tltis an important difference between Xn and Xl ? Ihe situation

is puzzlini,; , since it is har:d to see how a more refined orclerinil t:rirn E,,

A

o

A

o1

i

011

coulcl be coml,utiltionnlly meaninp:ful :

of ?r1l irrforrnat.ion about an output set

t.1 me.

L: h::,. h,'on^ I'1

whi ch crin be

des'i- t,ned to take account

att.:in,:rl in :r ;'ini.t e

The answer seems to be thart a rnere ordering of information is not

sul'ficient; we need .r more refined ;-rnal.ysil; clf' tl't,,: w:rys irl whi ch itrft-'rni,iLion

may be impr, vecl . This means in effect thi,t we should take ac;count of tlre
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arc6 of generating trees (instead of only their croas-sections). Ttre

natural framework in which to develop this idea is category theory: the

cross-scctions of generating trees (over a given domain)1 for example,

will be objects in a categoryr in which morpbisms correspond to the dif-

ferent ways in which the connecting links between successive cross-sections

can be drawn. A theory of this kind was sug6ested by ligli(unpublished)r

and is currentl.y being devr:Ioped atrrirarwick (principally by Da:riel Lehmann).

5. Spedial functions. A number of special functionr; i,, needed for the

interpretation of programs adnitting parallea a-nd non-deterministj-c

operations. The following result (a slight generalization of llotkin's

Lemma 4) will be useful in establishing their contiuity.

Lemma J. Let DrE be rrredomains. A mapping f :D '+ E is continuous iff
(i) ttre restriction of f to Do is monotone; antl

(ii) For each x€ll there is; an increasini,l serluence X(x) of elements

qf Do, havin6; x as lub, such that f(x) is a lub of f(X(x)).

Proof. Only if: trivial. If: Suppose that (i),(ii) nre satisfiect, :rnd

that X is a directed of D, having lub $. For each term b of X(V)

there exists (by linitenees of b) x€X such that bE x, ancl (for bhe same

rea.fjon) er term a of X(x) such that b5q,. similarly, for each tarrn

a of X(x) ( for each x€X), there exists b in X(V) sucn ,'hat aG b.

We cam expre66 this by sayinl: rhat the families; X(y) ;,nd U{X(x) | x€X}

are cofinal-. Since f is monotonic on Do, the imageu yf, Xf of these

families under f are cofinaL. Ilence yf, Xf have the same lub(s).

Hence f(y) is a lub of Xf, and so of f(X).
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For t.he fir:st three of l.he four opeci.l fitnctions to be consideredl

continuity is established by showing th:t the sufficient conditione given

in Lemma ) are satisfied. (Actually, we will verify only (ii)' eince1he

monotonicity condition is trj.vial in each case') Subscripts OtM are

omitted, since the proofsi are the same for each'

1) Function extension. If f:D'r U is continlrous' tlten ft ?(U) - f(O),

,shere ?(x) = f (X), is continuous. L'roof : I'or xe 7(u) r take t(X) as

(Tr,), where T is a strict generating tree fnr X. SirLce the 1(tn)r

y1=Q.11.. ere cross-sections of a generating tree for f(X), ?CXt is a

lub of <f(Tr,)).

2)"Unioni(3(O))2 .r 10)t 4;1rD r-t X U Y. The argLrment is sinilar to

1) (utilizint- the construction of Theorern )(2) ) '

t) tt l): t-l -+ fiD): x r-.r (xi. If (a.) is a se<luence in Do ha'rin1" I

sr, lub, then <(a- )> is the sequence of cross-sections of a generating

1.t'*" for [x)" 
r,

4).Bie union, l), ]t;ll -r liDl. *te define this first on the basis of

] Zinl, namely lt2[tl] (irere bre presuppose the notation MiDl for tM(D)l ).

Any I-€i.12[D] has a representation ttAflr...ftAmlir where 41r...tAmeM(D).

Define Utf'l as [AtU...UAm]. We have to check that this value is

inclependent of the representation chosen f<>r P. ^iuppose t"hat P =

tttsflr..orlBnll, andth;rt ae {ii. -8aya€Ai. liince (Oil tSiSn)r-o

{oil 1 S i S ri, we have Uj fO O, for some Ojt thus bEa for some

he fi 8,. The remaing conclitions (for equivillence of UA, and UB{ )
1 -j- 1 J

are verified similarl.y. - FinaIIy, take the (unique) continuous extension

to AaLil of the function so defined.

There is a technical dijlficulty in g;ivin.1 a direct definition for ?ztpl,

we are unable to show that the union of a 'rf.g. set of f.g. sete" is itself f.g.

plotkin escapes tirir. difficulty, since he works with a special class of cl-osed

f.g. sets (rather l-han arbitrary f.g. sets)" Close<i sets will be discussed in

Sec. 7.
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6. Closure profrerties. fn order to handle recursirre clomain equ;rtions'

rve mu.st ensure that the class of tlornains considered be closed under suitable

i.rum, product, function-space and powerd'lmain const::uCtions' l3ecause of t'rre

recluirement of closure uncler function space, the class of arbitrary (countable)

algebr;iic cpofs is not suitable (since without aome reatriction on DrD',

rve cannot find a basis for tl',e space [D +.Dt] of continuous functions)'

ft is known that a ouitable restriction is th"t @!g1!-ig!gg exist in the

domains in qucotion (donain D hts.bg1!g!..jg$ provided thatl for each

A€M(D), if A, is bounded, then A has a lub). As, e.$o1 Constable and

Egfi( E?il showl if DrDt are donains having bounded joins, then [D + Dt]

has the 6eme property. The bounded join property is preserved also by ?O[ ]'

Fop.silppose that S = (Agr...rAo) c !1(D), and that S is bounded w.r.t. EO'

Then it is readily verified that i(? ". I ti € A. (i=O'...1D) & [a'r...r&n),

is bounded )l is thc 1ub of [s]. Thus, in case we take 7Ot I as the

powerdomain conatructor, the problem is solved by taking the cl'''ss of

domains having bounded joins; and we can proceed at once to the solution

of recursive clomain equations.

For f n, 
("ft:.ch is in effect i'lotkinf s powerdomain constructor) the

situatj.on is more difficult. ?r*tUl need not have bounded joins even when

D has (see Plotkin, iec.J, p.1J for an example). to handle this case ure

will introduce, following l--Iotkin, the SFI' ob.iects ("S!'P" is an abbreviation

for rrse,Iuence of finite partial orders't).

Definition a. An injection f:D.r Dl, where DrDr are cpof s,

an embgdding if f has a continuous adjoint frlDf -r D.

- Equivalenbly, f is an enbedding if there is a continuous

such that (frft) is a projection pairs i.e.i ft o f = ID and

is cal"Led

f r:Df -+ D

f ott E lrr.
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An embe_riding siguens? is a ce(llrence OrrrPn>t whefe each PrtD*

an embedding. CPO is the category of cpors and continuous naps; CFU

t Dn*1 i"s

has the

sarne objecte as CIJO, .rut with rnaps restricted to be enbeddings" An u,-systen in a

category C is a functor from the (partlalty) ordered set ut = QS 1( ... into C.

&!g!!9. If p is an

{Artpu,) is an embedding

n='nul

ding, we denote the

ce, define the maps

Prr-1 " oro cPt

to*
Prl u ... .:PJ-1

adjoint of p by p{. If

D :A +A by:^mnmn
if n)n
if n=n
if n(n

embed

sequen

(
l

1

$e({uenceS:

Theorem 7" (i) iet 5 - Orrp,n> be

be the inveree lj-mit of E; that ist D,

,,,riir the orriering defj-ned componentwise

lo6ether with the embe.idingu i*;D, '+ D*

col-imit of X (stricti.y, of the ut-systern

i.l is a donnin with basis (set, of finite
m

- Thus the embedding sequence (Arrpr) determines the ol-system (in CPOE) (Arrpnr,)ro<r,.

The following thecrem summarizes some well-known facts about embedding

an embedding seqttence of cpors. l,et Dy

is the set (cm>l Vr. *"€D" & pi(*r*r)=xr)

by the orderings of tlre D". Then De ,

defined by ir(x) = (prrr(x))n€u, in .

associated with X) in CPOE. If each

n
elements) D;t then d is a domain with

o r I r^OrLeeis Dj = V j. ',r, r"wtllnm

(ii) Let O*rpr>, Grr%) be embedding sequences of cpors. For each m1 define

F*r[DndrJ * [Dr*1.E**1] by rm(f ) = qn" fopr. Then ([D"-+ Em]rfm> is an ernbedding

sequence, and its colinit (an constructed in (i)) is iisomorphic with [D, -r E ].

By Theorem l(ii), the operator + commutes with the taking of colimits of

r$"-systems in CPO'. the same is easily shown to be true for suitably-defined sum

and product operatore" Thgt it holds also for the powerdomain operator yM ie

the content of:
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Theorem 8. ff D js a colimit of O*rp*>, ttien IO,[D] is a colimit of <70,[UrJr[p*J).

hgg. The basis of Trtill is B = [1"1(D)], wirich is (Theorem ?) [Umim(]'t(Dr))J,

rvhil.e the basis of colim(,/MtDmlr[n*J) is ut = V [im][M(Dm)]. But there is an otrvious

orrler'-preserving bijection between B and Brl hence Trtll 3 colim( ?M[Dm]r[p*]).

Definition 4-. Colimits of o-systems of finite cpors in CIrO, are saL]ed SFP objects

A finite epo is trivially :r domainl and so by Theorem 7(1) every StfP object is

a riornaajn. The srrrn, procluct, frrnction apace and powerdomain of finite domains are

obrriously finite, and so (cf. the remarks preceding Theorem 8) the class of SFP

objecte is also closed under these operations.

7" llaliinal rerrresentatives. Plotkin shows that, instead of workin3 with equiv-

.aieitc-e classes of f.g. sets, we can use certain distinguished (actually, maximal)

glTig3j-g. of these cl-asses. V/e present a simplifjed version of this theor.y. (We

'r.,r':f i.)n - a6 of course does Plotkin - only the case .7*tU3. But our account applies,

r.:-i i.h trivial modi fications, also to JO[11 1.

lemna 4. Suppose that i:D -+ Dr is an embedding, A c: D , and B 
= 

Dt. Then

.i ;J) 
= 

R iff ^ 
t' :r/D\:.'.,., -ll r: L.ll A - Il J.'\D/o

iYoof" Obvious.

I)efini-tjon 5. Let D be a St'P object, Onrpi a fixed embeciciing sequence of

ijnite domaine having D as colimit (with embeddings irrrDn + D). If Xc D, define

x* = txi i;(*l e i;(x) for atl n).

itetn"rk. It is readily checked that * io r closure oy:eration on the power-set

i'i;;), For a description of the associated topology, see the appen<lix.

.J,onlma 5. (r) x =* t* (2) xf n, t iff X* iM y*.

.I;lroof ' (r) Let A € M(D), and let n be rarge enough so that in" i;(A) = A. ue

harle;

i =l.i x <-' i;(A) =* r;tx) (Lemma 4) €) i;(A) E, i;tx*) a o[o,, ** .
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(2)Ir, xi,**E*t*=n,t .a xE*rv. cNLTIF: Noticetirat x\Y iff
.,r' i;tX) En, i;tV)" Suppose tlLat x e X+. For each n, let Yr, = (b€i;(y)l ii(x)! b)'

flach y- is finite non-empty, and irllYrr*t is a (decreasi-ng) map of Yn*1 into
n

yr.,." Thus (iry a version of Kon:i-g's lemma) the inverse limit Y* = 1i'n(YrtiilYrr*f)

is non-empty; if <yj is any elernent of Y*r then * ! hl ir.(vrr). - sirnitarlyl

f crr uny y€Y* we find x€X* such that X € trrr

Note tSat X+ is f.g.r even if X is not (there is an obvious fini.tary tree'

having the i,(x) as, cro{is-sections, which generates X+). con(X+) - which rve

denote by xo - is also f.g.; the appropriate generating tree has the sets

ilon(i t (X) ) as cros$-sections.
n

(4) x i, t iff x'L=M Y'"

tp-g{." (1): obvious. (e)-(4): Theorern 5 and Lemma 5'

?hese results show that ench Xr is the greatest (w.r.t. set-inclusion) element

.rf ii.s equivalence-clnss; and that we can (as an alternative to'YOtiU]) define the

pi;werclomain as {xn I X ncn-ernpty} ordered by E* .

8" Categoriesn douqtq_-99gq!ions-. In tlris section we show that several notj-ons

ancl resultc about cpots/domains generalize to categories. The main application

j s an improved account of the category-theoretic solution of recursive rlornain

eq1rationol previously developed by Reynolds, rriand, and Plotkin (see Plotkin '1975

for references).

In fact, the notions: poset, least element, ntonotone I'unctionr incre;rsing

sequence, continuoue function, finite element, (countably) algebraic cpo

p;encrnlize respectively to: category, initlal objectt functort tll-systefir ol-

c;pntinlous .functor, finite object, (countably) alge]raic category. The first

four pairs in this comparison a.re,fanitiarr the others are explained by:

Theslem 9n (1) X c Xr (2) X =M x' (,) xa Y iff xr = Y*
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i)ef,inr"Lion 6" Lei Crtl u be categories admi t-ting $*coiiriit,s. ,q. funct,'):' P;t; -' 1t

::9:$tu m-cr:ntinuous i"f, rorhenever X is a colimit object fr:r an 0i-rysten; q itr.-t

.: f'X i; r,. cclimit *b;ect for LiQ. An object A€C is linite iit for any rlJ*s)ELola

. j.ri [: wri;h soiimi'; gr]n:Ao "+ L)r the foll-owing ho]ds: for ruly {11'to!;: u:A -rX

i',:r' any sufficierrtJ-y Large n, there is a r.lnique arrow vlA + Ar. sullt Lh+t

,i".rri, Let K be a category having rin initia-l- object and i,. I' mos;t:,i'.ttil.abili

.1,-.,i finite nbjects, We say that K is k:or.rgtebly) alge.braic provi.<leri i1) ever'.-i

,:.,.ii-:rt.r ,,.f K is; 6 col j.nit of an tlt-oystem of finite objectsr and (2) every ui*;,yritetn

;:l i:.ni'i.e cbjects has a e r;limj t in K'

Lgg*g. istrong) ul*continuity of F woul-d require preservatioit of cclirni L

.::;.ig!ryg (nc;t just objects). strict]-yo finiteness shoul,d he forrnulatcrl in l.+rryt;

;3 i1.;r-:tod *ystems (not.;ust,J-systems); what we have defined is ut-finitentss.'l'he

,',',iirri! fti.rlg;ebr";ric ciltegory" is provisionat (it confLicts with establi'ilre,'l u;,a1;r+)"

-!r-. jri,rre u<1pp+;ed tire analogue .rf the characterization of ttirl.gebraic cto" [i veq in

i i: ;,':..)rr! i u nathei- t.[3n lhat oi' Definj-tion 1. This is pureJ-y j or cc;nv,.:rl]-*.rn ;ii j i I

;,.,,;,:ii.l-y i.ai;i,.rr to verify tirat a given category fulfils tire corrdition.': fir.:"j di'rtn

,.rli'i-n:i iion f;" tirrlr wryrilct be the case if we ir.c'l u:;ed the analo6lte t:f i)ef:,.rr i tioti

liaTp]"rq" Thc,eategory SfPr. of SFP objects and entberldinsis js coun'Lal'riy.ri).;,-

,rr-1 (:r w:'-th the finj.te domaine as finite objects. The functor lun: (,3!'P-)" '+ ,i'!',..n

.'r,ied :::r r::bjects by tr'un(DrE) = [D + E] and on arrowa p:D + Dir q:ii -+ lit t,:l

', i.i:n,] ) ', lf :u-r Il, eofopo, is weakly o)-cortinuous, by Theorem l. Tlte I'ttnci.,':,'

,:,i1:. --n $.FFgn clefined on objectr: by P(D) = ?O,il] and on ari'owi; by P(f) = ..i*,

-,,i:rk-tjr {u-c,-rntinuousn by Theoren B. (Wittr a 1itt1e more effort we ccu}l sir':.r,"'

' : lilr;:,iq fr:nctors are (strongly) (l)-continuous). Continuous Sum and lrriduci, r-ritr"e"'

:,.t^e r,Ersdil,v rlefined. Compositions of ul-continuous functors are again

r t i n'rous
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Theo:em_io" Every algebraic category admits ul-colimits"

Pnoof . Suppose that (Arrp6> is an t0-6y5tern in an al"gebraic category C"

ilsch A* is the colinit of an w-system of finite objects of Cr say <A*,#rrew,
m

n- ^n * A " We wil-l define, by induction rr a sequence aos(r), rvithv i-a arrowu t"t^r, m 
uurlrret pJ rrluue urv* I I q r'eYqvrtv* -- r

a (canonical) arrow from each A: to os(r) (for any sui'ficiently 6reat r); thernr
cclirnit of this sequence wi}l be the desired colimit of (ArrP,o). i}-r'L s(O) = 0"

u,{r) having been defined, define s(r+1) *u fol-lows: For each us(r) (m=or...1r)

o(r) - - r e(r). For sufficiently great t we have (Definitionlet qm:A"'- - A"*1 be P"r, ii

6) unique arrowE ol,oi'") . Al*r euch tnat il*ro ql = ,r. Let to be the least
+

t, such that { exiats for all n€tOr...1r}. Finallyr Put e(r+1) = nax(t.rs(r)+1}.

We ncw have an (infinite) comnuting diagran G, with arrowa as follow6! from

each Al to A;t (att atln); from esch A* to Ari fron each Al euch thqt

rn 1i r and n { s(r) to oili.')r and fron A, to Ai (whenever mr ) n).

"4.:ry cone from the Ul-system <fut to an object X yields a cone fron aOe(r)' 'tor
X {1r;-v comnnsi-ng with the arrovts in G). Converoely, let V be a cone fron aOs(r),r
;,; ]l* For each fixed m, V yields a cone from the tD-system 

"Ol 
t rg, to X (since

G has arro!{a from each Ail to oe(r)1 for any sufficiently great r). Ily the

rrl!.mit property of A*r thls yields a (unique) arrov from A, to X srrch the

lr,iup.'mented) diagrarn conmuten, By varying nnr we get a cone from <A*> to Xn

it is immediate from the commuting properties of the (augnrented) dirrgram that

'll-iene conetructions determj-ne an isomorphi.sm between the category of cones from

c:t F I<-'t""') and the category of cones from <A-> , under which correspondinl" conest'"-m
irarre the same vertex, It followe that the uj-systems aO:(")rr aOr, share tlie

e;'rne colimits; the proof is complete.

T!"*S- J . Let C be a category admit.ting tl-colimits, with initial object

li., Let F:C -+ C be weakly tl-continuous. Then there is an object X such that

fX 1X and such that for any Y with arrow p:i'Y -r Y there is irn arrow frorn X to Y.
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I*€. Take X as colimit r:il i..;r.' &'i.",t,',',,

It is clear that X has the sarme ca,]imi:'i, s,: ts ifl..; i."::r:e i i;;,' we rk continuit.y

of F) X : FX. If g:fl -r Y, the squar'.*

n f - *m
l--rgJ _ o'.1 

*
Yt P -- r;

comrnutes. By repeated tr;rnslation of thi-$ sqii;;r:r .r;r l , ,ue oirttij.n ei cone from X

to Y; and hence (Uy tire colimit property lj:'l{,J.i.i':;irrow from X to Y,

It follows from this theorem thart rr..rr\ rriri..rtr r;li of ti''e i. l,rm Il : 1.'(i)), wlrere

F is weakly continu.:us ( f or example, the i"esirrnlr'ui cn.-arrmair;. t':riuation, liec.1 ) , has

a solution in SFP, which is minimalt in ti're Eeri.ie tii:rt it m:ry ire embe,ided into

any other solution.
11y'

From a categorical poimt of view, 'ihcor"ern'l-i;a"res sometni.nli to 1-,r: riesired.

In fact, under the assumption of full r$-cc*t,inurty of Fu ihe conclusj..rn can be

strengthenedt so i-rri to characterize lhe *jlr:;,..l. .:'-,i;i,;,;.it r:,i' I L.",t ; i..::lj,';erolil

property; this of course yields uni,lue {.'r1,. 1'r' it;rirr.,r"!f:isrn,) r,tri:.int;il r,;':i.i;t,ions

for equi.rtions.
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APPENDIX

The Ca{rtor topology. lJe noted in Sec. ? that * iu " closure operation.

Flotkin nakes considerable use of the topology associated with this closure.

Topological coneideratlons were not needed in our treatment of the powerdomainst

gnfl so this topic was omdtted from the nain text. lhe topology ie; interesting in

itr; own right, hoviever, and a brief account is appended here.

Theoren. With the notation of Definition 5t 1et i be the topology on D got

by considering D as the inverse limit of the Dr, (each endowed with the discrete

lopology). Then the operation * (on D) coincides with closure in T.

B€. T is (by definition) the coarsest topology which makes all the maps

;i continuous. Ilquivalentlyt it is the topology obtai.ned by taking
*1 .

',] tii-'(a) | * € DrJ as a basis for the open sets. 0n the other hand' note that
..! ^ -1',i'' .= n i:-L i-(X). Then (denot5.ng ![s compl.ement by C) we ]rave:nnn

c;.o$ur-c;--(x] = ;(rnieriorr(cx)) = a( V ti;-1(")| a € Dn & a /. i'(x)))

=3tt;-1(*)la€ij(x)i
= X*.

As Plotkin points out, we can also define the topology in an intrinsic way

ii'rct involving the arbitrary choice of sequence Drr)r via'rpositive and negative

1n f ornationrr:

Theorem. The' topology on D obtained by taking as a subbasis a1l sets of the

e€D) coincides with r.

I e e D.. & aFe).
n

e€Dn. Now

4

ti; la€Drr&ets^).

fcrm P" = txl e f x) and. N" = [xl e F x] (for finite

Proof . (i ) l'or a€D

iii) Each finite element

. = tJfl ,_1(r)l a€:.(e) - -t'n

n, i;-1(a) = Pirr(r) n frtr,r,",
of D is i (e) for some n and

n

Dr, & e Ea)1 while Nlo(") =


