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$o. Introduction

A key feature of the so called fix-point approach for iheoretica..l- ri,::'r;.:'

science is the idea of abstract data types and continuous functions. Ii; i,,.

approach we treat the domains of computation as abstract data types wh,:i'i-L

are in fact cpors. Then every cornputable function is modeled as a fur;ri.i riii.

from a cpo to a cpo' which is continuous in the sense of directed linir;
preservation. Finally observing that continuous functions of the sane

functionality form an abstract data type, we specify every cornput,abls f'*nr:::

as a least fix-point of some continuous function. Substantiai deveropmeni *J'

this approach can be found in Scott [2].

This approach has been successfully used to prove sone inte:'esting prc,*

perties of computable objects with this continuity property, as oarl be stc,:

in Park [1], Manna & Vuillcmin [fZ], and Milner [Z]. Scott extendeu.ri:ie iiea
to the functions of domains rather than on objects. Then he developed the i:;r:

called retract calculus on a universal domain to provide soluti-ons *f srlt,il*

referential domain equations, as in scott [4] and plotkin [15J" Ale,: scoti;

suggested a categorical treatment for this kind of probl-em [j], alr fol,l r,^:.i.-::

his suggestion Reynold [8], ptotkin [20], wand [g], Lehrnann [rcr, anri sni-yf ir ,

developed a categorical theory of self-referential domain equations. ifh*sr

theories provided a mathematical model for denotational sema::..Lics [.iCj"
But from the birth of this approach, the reLevance of contj_nurt;,, 1o

computability has been a big question. Actually in the initial cieve-j-rpmerit

of this approach, Scott [22] tried. to answer this question by pointing 3,r;

which elements of a domain are cornputable, and gave an essenti.al !de;l r i
computability and effectively gj.ven algebraic domains.



But soon after that D'Scotb discovered that interval' Iattices could not

be treated as algebraic domains. Thence he started to work on more general

domains, namely continuous domainsr md tried to define computability in thent

as in scott [2]. Motivated from scottrs pioneer work on effectively given

continuorrs d.ornains, Tang [2J] obtained the first successful theory of effective-

J.y given continuous d.omains for restricterl basis. Also introducing algebraic

constraint to Scottrs idea of effectively given domains, Egli & Constable [1]l

and. l,lar.kowsky & Rosen [1J+] obtai.ned a successful theory of effectively given

algebrai.c domains. limyth [12] generalized all of these ideas and obtained the

mor,it general cl-ass of effectively given continuous rlomains' Actual-Iy Smyth

genera].izedTangIsideaofrecursivebasistor.e.basis.JustrecentlyScott

and Plotkin qulte inriepenrientl y obtained a universal clomain for ef fectively

given clomains as in [5]. For the purpose of simplicitYr w€ will talk about

only algebraic domains;.

The importance of effectively given domain is that we can distinguish

computable elements frorn non-conputable elements" one may claim thatt as lcng

as we have a concise criterion to check computabillty' we are O'K' But we nust

admi,t that we still have domains which are too big, i.e. most elements of an

effectively given rlomain are not effective at al}'

There have been several suggestions to exclude noncomputable objects for

special cases as can be seen in Scott [4] and Egli & Constable 111J. But so

far nobocly seems to have taken this problem seriously in a general setting'

Presumably for the purpose of making discussion simpler, effectiveness of the

construction was omitteri, oltti we got the problem of non-computable elements'

But now. with sharp distinction between computable elements and non-computable

e.Lernents, it is time to return hack to the beginning and rebuild the theory

tal<ing effectiveness into account throughout the construction of our theory.
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The following summarises our amendment to the basic assunnptions in the classiilrr,

theory [2] for this purpose.

( t ) fn the classical theory, the notion of computational- approximation was

treated simply in terms of directed sets. By doing so' we threw away the

effective feature of the computational approximation. Our clairn is that we

should take effective chains rather than directed sets for this purpose"

(2) Therefore data types;hould be effective chain complete rather tha:l

directed comp)-ete. Note that we are claiming that data tlrpes arb not cpo's

any more.

(f) Afso the continuity which is really required is not the directed limit

preserving continuity but the effective limit preserving continuity.

(4) Every data type rnust be effectively enumerable. Also the graph of every

function must be effectively enumerable.

One could suspect that if we took effectiveness in throughout the const*

ruction of theory, it would be extremely difficult or even impossible to

obtain a desirably strong theory. In this paper, we wil} see that nc vill not

fail to obtain a statisfactory theory of domains even if we take this effectiue

approach. In fact it will be observed that our ef,fective theory is at least

as strong as the classical theory of self-referential domain equationsr eJld

is just as conplicated as the classical theory. Furthermore there are several

points, due to effectiveness, which are stronger than the classical theory,

like the effective isomrophism and the notion of effective functors.

One interesting observation of this paper is a successful investigati.on

of the effectiveness of functors, i.e. domain constructors. So far all

classi-cal resul,ts essentially used 0!-continuous functors which do not adetluateri.,,

represent the effective nature of domain constructors. In facto Smyth has beer:

working on the computability of trFcontinuous functors for the category of

effectively given domains and more generally effectively given categories.
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He tord me, privately, the difficulty of doing so" But in our approach, since

every data type is effectively enumerabl.e and the effectiveness of functions
is treated i' terrns of effective chain preservation, we can

simplify the situation and can naturally introduce the effectiveness of
functors. This is one of the advantage of our theory of effective data types"

Also an effective completion theorem which is an effective version of
the tradj-tional completion theorem, and the construction of functional_

data types from data types which are not cpofs are of mathematical interest
by ihernselves, and suggest a relevant operational theory of domains.

S1" /rn overvj-ew of effqclively given domains

our theory c'f effctive data types is motivated mainly from the criticism
of redundancy of effectively given d.omains. Therefore we will- review the
theory of effectiirely given domains briefly here. For details see scott 12rzzr51,
Tans l?97, tlgri-constable r1j), Rosen-Markowsky [14], smyth Llz1,

A poset (DnD is a set D with a partial ord.eringE. A directed subset s
of a poset (Dr9 is a subset s 

= 
D s.t. every finite subset of s has a reast

upper bound (ruu) in5- A poset (o,g) is said to be rlirected complete iff
ev{jry directed subset of D has a lub in D. A directed cornplete poset with the
least element l- is called a cpg. Historicalty the initial discussion of
recu::sive domnin definition was carried out on cpor.s. But to investigate
effectiveness (r:r cornputability), recent theory invol-ves more sophisticated
structure than cpo.

our intuition tells us that a1] fi.nite objects shourd be comprtabl-e..So
the question which arises next concerns a proper mathematical characterization
of finiteness. Scott [2e] ana Egli_Constable Ifr] aAopted this idea from algebra.
we say that an element x of a poset D is filite iff for every directed subset
S 

= 
D s.t" the 1ub l_lS exists in D,

x'* i*lS i"mplies x E s for sone seS.
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We witi write EO to denote the set of all- finite elements in D. Then to mak'l;

the theory more interesting, we have to obtain some more interesting effectiv*

objects" Scott [2] claimed that for every effective object, there should be

arbitarily good finite appr"oximations. Following this claim' we admit that

every effective object must be a lub of some chain of fini.te s1srngnt,5" This

observati.on leads us to the idea of what algebraists call countably algebrair:

posets" A clireted complete poset (Dr€) is said to be countably Cfg*I"ii. if;

EO is countable and for every xeD, there exists a directed subset J c E"-. s"'i'

x = l-l.I*" We call such Eo a basis of D.

So far we have established that each data type should be a countably

algebraic poset with bottom, i.e. a countably algebraic cpo. As mentioned in

the introdilction, one of the crutial point of our theory is the data types

of functions. We have to be able to form a countably algebraic cpo for the set

of al1 continuous functions fl'om a countably algebraic cpo to a countably

algebraic cpo" Markowsky-Rose pointed out that for this purpose, for technical

reason, we had to introduce a bounded join condition to data types. We say

t.hat t" loset (prc-) has a bounded .ioin iff every finite bounded subset of D

ha-s a lub i-n !. l-lso if every bounded subset has a lub in D, we say that D is

bo.unded S12ryle!-g". The following can be readily seen.

iAUJ t. I

^ ".untabIy algebraic poset (DrE) is bounded cornplete iff D has a bound*:'.:

join iff EO has a bo,..rded join.

To capture the effecti-v,- nature of finite elements, we have to introduec:

some effective properties of finite objects. Hence we have the following

definition of effectively give domains.

DEFINITION 1.a (effectively Fiven domains)

An qIJS"lilB-Il given domain (n,E; is a bounded complete countably algek;:.,

cpo s.t. the following relations a-re recursive in indices:



(1) l_l[er_,...,e . i exists in Eo'
tn

(2) e .= l_l[€; r...re . ]
Lr ^1 -n

3) {e I -, . ..,e i } is bounded in Eo'
-1 -n

where [e.: lieN] is an enumeration of EO, We call EO an elfective basis of D.
'1

Note that by the previois fact (D,b effectively given implies that EO has

bounded. joins, therefore (t) is logically equivalent to (f). Also e:_Ee' is

recursive in indices by the above definition.

Now what is good about taking effectively given domains as data types?

Tire point is tirat we can point out which are computable. Roughly speakingt

we claim that the c,smputable elements of an effctively given domain are exactly

those which can be reached. by the limit of effective finite approxinatLon

sequences. The folloning is a mathematical formulation of this idea due to

Scott 122).

DEFINITION l-:f (computabtre elements)

An element x of an effctively given domain D is compulab1e iff there

exists a recursive function f :N--)N s.t. €f(rr) E €^n*1, for a1I n€N and

x = l-lt€J,,r, Inel'{}.

It is quite reasonable to call such kind of chain like [et,rr, In€Ni as an

eftggtivg chain and the least upper bound of it as arl effective }igi!. Actually

we can define these ideas more precisely in more general setting.

DEFINITIO.I'I 1.4 (effective chqi4q, effective limits)

(t) nn Lu-chain *oE *r E ... in a countable poset t'* {Iilietl;,

chain iff there exists a recursive function r:N --)N s.b.

x. =rY ,i\ for all ieN.1 /vr(1,.1

(e) let * - {fi lien} be a countable poset with the property s.t. every finite

join, if exists is recursive in indices. Let *OE *t E.... be an effective

chain in X. Then l=l*r, if exists in some superset X'oi x, is called an
I

effective limit (in Xr of an effect.j-ve chain in X)'

is an effective
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Therefore an element xeD is computable iff it is an effective limit of an

effective chain in EO.

Egli-Constable l1J) gave an alternative defintion of computability which

l-ooks odd but is usefull.

DEFINITIOI\I_1 "5 ( qimgle-valued r.e-.sets)

Given any effectively given domain. D with effective basis Et = {€i li€NJ,

and any r.e. set Wi = rar-g" 9i, where j is the recursive index of the r.e. set;

the singie-valued i*"*ion r-r., of W. with respect to E^ is defined by thesiJ; 
- 

.j 

- 

u

foliowing procedure;

--- enumerate W. t *1, *2,

-".* W^./ j\ is obtained by:S\,I J

Y'1 = *1

Jn*-1 = xn+1 if {€v- r... 'e v ,ev *1} is bounded in EO
"n "n

Yn otherwise.

Obviously W_r.r is recursively enumerable, since it is defined by the above
D\J,/

procedure" Also evidently Ws(j) is boudned in D. Furtherenore it can be readiiy

seen that W-r *, - Vrl. whenever W. is al-ready single-valued, i.e. i€- IngW, js\JJ J J ' n' J-

is bounded in D. AIso since the construction of Ws(j) in the above definition

is uniform in j, we can think of the s in !Vur..i ) as a recursive function" Thence

tlie Egli-Constablers versiern of computability is as follows:

THEOR.EM__]'O (ngti-Constable I s version of eomputablity)

xeD is computable iff x = | l(e, lieW^,-r1 for some j€N, where D is ant-. s\JJ-
effectively given domain and f,O = {eilien1.
proof (if part): Let -P. b" a recursive function enunerating W ..r. Define a-J " SIJ'
recursive function r .:N --)N bv:J"

r-"r.(o) - -P.(o)
1 J -r
UU

ll
"r.(n+i) -'r.(n) r-r -P'(n*1)'

1 'l J-l

Obviously er.(O) E ar. ()E ... is an effective chain in EO" Also obviously
JJ
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x is the }ub of this effective chain. Therefore x is computable.

(only if part): Let x - l=la.(r) for some recur-sive function r:N --)N s.t.
1

. t- . / ... " Then r;rnge r is obviously r.e. and single-valued.cr(o) 5 'r(1) =

But x = l_l[e, lierange r]. Q.E.D.

T5e technique used in the if part of the above proof will be repeatedly useci

throughout this paper.

The acivantage ol this alternative definition is that this definition

enables us to inrlex the set C^ of all computable elements of D by:
U

c-, = (filTi= l_lie,ljew",r;), ieN).

I'urtheremore r./e will observe that CO can be enumerated effectively in some

sense. But before examining the effectj,ve enumerability of CO' we have to

obtain an adequate nction of effective enuneration of such abstract objects"

To do this we will start tc examine an analogue in classical recursive function

theory, that is tlie wefl-known recursive eneumeration of partidl recursive

functinions and recursively enumerable sets.

In clas.sical recursive function theory, there is a hidden point in the

recursive enuneration of infinite objects like partial recursive functions

or r.e. sets. fn fact we have tr: observe the following:

(1) Eventually we recursively enumerate finite representations (i.e. programs)

of partia1 recursive functions rather than function themse.l-ves.

(e) From each program P, the corresponding partial recursive function is

obtained by the following eifective limiting process:

step 1 : execute the flrst step of P(O)

step n : execute the nth step of P(O)

execute the (n-1)trr step of F(1)

execute the first step of P(n-1 )

Once P(m) terminates output (m,P(rn) ).

a



Exactly the sane discussion can be done for the recursive enumeration of

r.e. sets. Actually the above (1) ana (2) are typical schema involved in the

effective enumeration of infinit;rry objects. AIso note that this schema

can be applied even for the effective enumeration of finite objects like

natural nunbers, because finite process can be considered as an effective

limiting process.

The above obserrration suggests the following notion of effective

enumeration in a general setting. A family of objects is said to be effectively

enumerabfg iff there exists a coresponding set of finitary representations

s't. there is a recursive function from N to the set of representations and

there is an effective limiting process which is an onto nap from the set of

representations to the family of objects.

By takin8 l-l{e.,lneld",g;) as the finitary representation or f.ecor and

using the effective limiting process described in the if-part of the proof of

1.5, we can easily observe:

THEOREM 1.7 
f,

For every effectivry given domain (DrE), the set cr., of al1 computable

el"ements of D is effectively enumerable.

We shall caII the effective enumeration:

cl = {t,lienl, Ti = l_l{e,rl.ew"(i))

as the standard enumeration of CO. Egli--Constable used this standard enumeration

for the purpose of establishing essential ecluivalence between cornputable

functions and operational functions. In this paper we wil-l use this indexing

for some other interesting purpose later.

The effectivety given domains enjoy much more interesting properties, some

of which will be listed in the following:

I'ACT 1"8 (product and disjoint union)

Let Lt' D' be effectively given d.onains with effective basis EO = {er lienj,
E^, = [€] I ieml respectively. Then we have:D' - t

-9-



(1) D {,D'is an effectively given domain with the effective basis

Et X o, = {(€xe t)*lm€N}

(2) D+D' is a.n effectively given domain with the effective basis

Err*D, = t(€ne ')rlmeNi

where (€*e t )^ = |
\,/

(e+e')^ --<e.o>.in+ | n'
(€+e ')rr, = (ej, 1>

FACT 1.9 (fuqctiqn space lheorem)

Let D and D' be effectir"ely given domains with effective basis EO and

E' respecti.vely. For every (ere')eE^:<x,.,,, d-rfine a step function [eret]:D --)Dt

lere'](a) = l: d; e then e' else _l-,.
Also let ts = i[e,e'Jle€Eo, e'eEo,]. Then the set [D -->D'] of all continuous

functi-ons from D to D' with point-wise ordering also is an effectively given

domain with effctive basis:

E[o --rn,1 = { l-lnl A is a finite subset of F, l_laeto -->D']}

= [ (e _->e, ), I ieru1

where (e -->€')i = rl 0'(i) has a tub in [l -->D'] then l_lA(i) else li' _-r',l
where flk) = i[€i 'ej"'] | (i'i)e p(k)] and p is the standard. enumeration of

finite subsets of NxN.

FtcT 1._10

Let Do D'be effectivety given domains then f€[D -->n,] is a computable

object iff the graph of f,

i"(r) = ((n'm)l e 'E f(€m))

is r.e. Note that since f is continuou", lt(f) precisely determines f.
FACT 1.11

(1) Every computable function sencis each computable element to a computable

el-ement., i.e. fe CrD __>D,, & xCCO irnplies f (x)e CO,. Furtehermore if the



index of f is j and the index of x is k then there exists a recursive function

t:NxN --)N s.t.: f(x) =fit:,n1.
AIso there exists a recursive function r:N --)N s"t.: f(x) =f (O)'

nameiy r(tc) = t(j,k).

(2) If fCCr^ --,-, and g€C.^, \n, ,-, then gofr/- F'rtheremore
LU --/u J ,Lu --/v , '"[D -->D|t]' 's

if the indices of f and g are i and j respectively then there exists a

recursive function v:NxN --)N s.t. v(irj) is an index of gof.

Park [21] discovered that for the cr:nstructi-on'of continuous lattices

from basis, we could use a generalization of Dedekind Cut. Using quite similar

idean Markowsky-Rosen [14] and Smyth ItZ] gave a more elegant specification

of effctively given domains. We will see this in the following:

DETINI?ION 1.12

Let (E,E) Ue a countable poset. By completion of (ErE), we mean a

poset (Erc; s"t. c is the set theoretical inclusion and E is the set of all

subsetsXcEs.t.:

(1) every finite subset of X has a lub in X (directed)

(2) xSy & y€X implies x€X (downward closed)

FACq 1.11 (the completiot theorem. I)

(1) Let (8, 
=) 

be the completion of a countable poset (n,E). Define ?:E -->E'
. 

-/ 
\ I Fr | ) diby 1(x) = ta€El aE x). ThenZis an isomorphic embedding of E to E.

(2) For every xeE-, J* = {1(a) | aeE,t(a) gx} is directed and x = UJ--,

3) l(ii) is exactly the finite elenents of E'.

(4) T satisfies the extension property s"t. for each monotone m:E --)Q

there exists a unique continuous extenstion f-:E- -->Q of m s.t.
m

t7
u-.u\/
m\ / t commutestQl m

where Q is an arbitary cpo.

Furtheremore if (ErE) has the least element l, then so does (F, c).



FACT '1.14 (the completion theorem 1I)

(t) Let (ErE) be a countable pr:set with bounded joins and the 1east elenent

s,t. the followi.ng relations are recursive in indices:

(i ) l_lte ,",. " ",e i J e'xists in E,
rm(ii) ej = i_l{er^,...,ei }.u -1 

m

Then E i-s an effectivety given domain with the effective basis T(E) and the

extension property described in ilre above theorem"

(2) Let (D,E) ue an effectively given domain with the effective basis (E,.,,H.

Then (E^, c) -: (D,E) and (E^,9 : (((ii), c).D' - D',-
This idea has been characterized. much more elegantly by Scott [5], using

algebraic closure operators. Also Scott [5] discovered a universal domain

for effectively given domairrs and developed a retract calculus for thj_s

doanin. But this theory is beyond the scope of this paper.

$e.

Even though the theory of effectively given domains looks,very

sati-sfactoryo there are quite odd things in it. First the way to extend

effective basis to an effectivel.y given domain does not have any effective
flavor at all- As can be seen in definition 1.2, we extend Eo to D using

iimits of directed sets, which is not effecti-ve. Secondly even though we

are rnainly interested in the computable elements, i.e. the effectively
enumerabl-e set Cpr we took the huge D as a data type. Thirdly we took the set

of a-Ll continuous functions as a functional data type, even though continuity

does not represent computability quite well.

On the other hand, the following observation of the nature of Cn will
convince us that Cn eould be a satisfactory data type.

TTMOREM 2.1

For every effectively given domain (DrE), the set of ar1 computable

From effectivel" ven domains to effective domains

-12-



elernents of D' (CD'9 is effecive chain complete, i.e. io closed under the

limit of effective chains.

prqs'f L"t tf,9(rry lnefVl be an effective chain in CO. For each n, we have

f,Jtrr) = l*l{€*lmeWu*(rr))}. Therefore by the proof of 1"5; there exists a

recursi.ve function ltrl:N --)N u.t. aar(n)(i), ieN is an effective chain and

{ttrI p r _t = l_le * ,. .,. Define e- by:J\n/ T "f(r,)tt/ :-

9n = €* (n\" j (n)'"'

", = t.J(o)(i) l-ltt/(1)(i-1) l-l "' l-l€tr,rrto)

since all possible finite joins a.re resursive in indices 
"t 

a (fp(rr; In€N) is
J

an effective chain, evidently eoE .lE,.. is an effective chain in Eo.

Therefore l_lfftrrl = l_len is a connputable element of D. q.E.L
n 't n

Note that if T! (rr) iu not an effective chain then e. o i€N fails to be an

effective chain" Therefore CO is not a cpo.

rsoREM 2.2

Let D and Dr be effectively given domains

with effective basis Eo = {erlieN} and t€ili€N} respectively. Then:

(1) COxCO, = CD*D,

(2) Co+Co, = CD*D,

pro_of ( r ) let (c, c ')e Cr.,xCr-r, . Then for some recursive functions rrr r ;N --)N:
(c,ct) = <l_l€r(n), l_le;,(n))

nn
= l_l(e"(,r), ei,(n)) = l_l(€xe ')t(n)

n 
1\r./ . 

n

where t(n) = (r(n)rr'(n)). Since rrr'and the pa.iring function are recursj-ve,

t evidently is recursi-ve. Therefore (crci)€CO*O,. Conversely let (crcr)€CO*gr.

Then for some recursive function r:N --)N,
(c, c r) = l;l (ex€ ' )"(r, )

= l_l<err(n), €'qr(r,

By recursiveness ot'ltf 
"ttd lta, obviously q" md l[Zr are recursj-ve. Therefore

-13-



we have:

(c,cr) - (l l€* / \. I lr- .)FC r
;,hr\n/'';''t%"(n)>€cD*cD,'

(2) Let (xri)eco+cor, where i = o or.1. rn case i = o, xeco. Therefore we have:

(x,i) = < l_le .(" r, o) = l_l(e.r-1r o) = l_l(e*e ,).,_r_
; r\n/ n r\*/ ,;"- " 'Zr(n)+j

for some recursive function r:N --)N. Therefore (xri)eCo*p,, Similarly for i = 1.

Converoel-y let {xri)€C'*p,. In case i = O* x€CO. Therefore (xri)€CO+COr.

Similarly for i = 1. 
Q.E.Dr,

The problem for function space is more difficult. ff we have a

computable function g:D '-->D' ' we are actualJ-y interested in only the restriction
I ol I to L;D. tsut does this sort of object have any interesting mathematical

property at all-'? fhe answer is positive. First, fact 1.11 tel1s us that I
has the functionalitr c, --t*r-r,. rn the next section we wirl observe that
for each such restricted function form co to cor, there is a unique computable

extension from D to Df - Therefore we can see that all ccimputable el-ements of
[D -->D'], i"t. C;p __>D,, is essentially equivalent to the set ICO -->CD,]
of all restriction of el-ements ot alo __>D! to co. Roughly speaking we have;

t[o --tool: [co -->cD'J'

These results will almost convince us that Co shoul.d be taken as a data

type rather than f. Because n.ot only the basis but also all elements are

effective, we shall- carl such data types as cr.,, effective data tJpes or

effectivq dgrnains.

$J. ntfective domains

One outstanding point in the privious section is that the notion of
effective domains i-s 161ttay dependant upon the notion of effectively given
domains- Fortunately we can solve this problenr quite satisfactory.

First we observe that both D and co share the same basis Eo. The difference
between them is the way to extendt ED. D is extendecl by taking di.rected limits
of Eo, while co is extended by taking the effective rimits of E^. (A1so this
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is why Cn is more favorable than D for computer scienctists

the introduction" ) Thus essentialty Cn does depend. not on D

observation wifl- lead us to the follor,uing effectively given

notion of effecti"ve clomains which is due to Smyth.

DEFINITION f"1 (effective domains)

A po.set (Xrg) is arr. ef&ctive domain iff
(1) E, is countable with an indexinpl E- = (e. lieili and MsAT
(Z) fne following relations are recursive in indices:

(i) | l(€, 1...1€. ) exists in E.,,
- 1-' L .,}('

(li) e,- - | l{e.o ,...,€; }.K '-' t1 rln

Every effective chain of E* has a lub in X.

Every element uf X is a lub of an effective chain of E*.

Evidently the fo1lr:wing enumeration of X is an effective enumeration and

will call i.t the standard enumeration of X:

t - {Ii liexi , Fi = l_lierrlnewrlrl}.

It is intuitively clear that an effective donain is the set of all computable

elements of the effectively given domain which is obtained by extendin6 the

effective basis of the effective domain using di.rected limit. This will be

formally observed in the following discussion"

DEFINLTIOI ].2 (effective compl-etion)

(f ) nn ef,fective poset (n,f-; is a countable poset E = ferrlneN] with bounded

joins s.t. the following rerations are recursi're in indices:

(i) ter., ,.."re,, ) is bounded in E,"1 "k
(:.i) e - = l-lte_ ,...,€- ]..) tL1 '.k

(2) Given an effective poset E, the relation ?!t among effective chains of E,

defined by: {x,rln€NJ 
" 

{t*lmet'i} iff sr}m.*r,E x*, is a pre-ordering. Let R be

the equivalence rerati.on defined bl'{xrr} n (y,r} iff {x,r} S trrr} & {y,r) ! {xrr}T

Then by the effective completion of an effective poset (n,e, in symbor (irEJ,

we mear the set of equivalent classes of effective chains of E w.r.t. the

as mentioned in

but on EO. These

domain independent

bounded. joins.

(])

(4)

we

-15-



equival-ence relati-on R, with the follow"ing partial ordering:

Ii*ni] tr t{rr}j irr vixiiet{x,riJ.}iv[ie[[v*]1. {*;) < (rj}.

By definition, obviously {"rr} ! ivr} irr [{*n)] E [(r*]J. Therefore

we car introduce the following convention: (t) identify [{xrr}] to {xrr}r i.€.
to its representative, (e) i<ientify ( to E . This convention al1ows us to

consider the pre-ordered set of effective chains of E as the effective

completion of E. Reminding this convention, we have the following theorem:

TIIEOREM- f.f (the effective completion theorem)

(r) f,et (EtB b,e the effective completion of an effective poset (er9.

Define't':E -->i by t,(e) = {e} (= [ie]l = iie]i). Then evidently T,is
an isomorphic embedriing of E to i.
(2) For every cei, t.here exists an effective chain Ja in tr(E) s.t. c = l_lJC.
(l) Let (E-, 

=) 
be the completion of (E,E) and Z:E -->E'be the natural

ernbedding Z(eJ = [xeElx E e]. Then evidently L(E) is the set of at-I finite
elements of (F, c-) and f(E) : Z'(E).

(5) (nrF) is an effective domain.

proof (t) triviat
(2)Letc= {co€ *iE ... }ei. sirr"ex€('(x), 1,(x)EcimpliesxEcnfor
some neN. Conversely x E c. obviously implies ar(x) r c. Thus 1r(x) $ c iff
x E- c., for some n. Depending on the indexing E = {€iliervi, we ind.ex tr(E) by

t'(E) = {t't=?(ei) lieu}- since enF c' is recursive in k for each n, tklt[eJ;i
is r'e. where .Il = {t'(x) lxeE, t'(x) E ci. since finite join is recursive in
indices in E, finite join is recursive in indices in tf(S). fherefore we have

the following effective chain:
+t - +l"r(o) - "p(o)

ti(r,*'t ) = ti(r,) l-l ti(r,*r 
)

where p is a recursi-ve enumeration function of {klti€J;}. But I,(a),-(,(b)€J,
implies t'(al_lu) = t,(a) l_lt'(b)eJ', since a E cn and b E c, impties
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al_lb E crrl-1"* E "k for .some cnec. Therefore .T" = [t',r,,In€.N) satisfies

I t-lI lv

(J) Evidently ll = 1'(E). Thereofre 1r(E) : Z(E) by 1.1J.

(4) Think of the following correspondence:

f :E -->06":IerrlneN] r+ Ui((err) In€N]

g,CE --t;:u{1(e,.) ineN) r+ te,rlneN}.

Note that since we index 1(E) by f(E) = [t.=Z(e. ) lien]1 we ltave' [enlneN] is

ein effective chain in E iff iz(en) Inelt) is an effective chain in ?(E).

Therefore f and I ale wetl-defined. Obviously f,oB = id and gof - id. Also

terr lnell) c- t",i,lm€N) implies vn.]m.T("n) 
= 

?(e[). Therefore f is rnrrnotone.

By fi.niteness of t(e,r), f(err) S $I(e*) 3 $t(e') implies T(err) c t(ej) for

sorne meN. Therefore en F "; for some meN" Therefore g also is monotone.

(5) ny (t), Z'(E) obviously is an effective poset. Therefore all we need to

show is that -t'(E) is the. set of all finite elements of (ir9. To do this ,

first note that since E is effectj.ve, given [errineNi I te[lm€N]' we can

effectively find rn for each n s.t. e' E em. Now 1et X 
= 

; be directed and

assume that l-lXei. Since i i" 
"orlrrtable, 

X also is countable" Therefore

using the following effective procedure, we can effectively enumerate the

effective chain l_lx" first we denote by rij, the function which' given
.i i.

{uil"ervi g (*jlmeN}, effectively gives us the minimal m s.t. "lf "j, for

every mei'I. Then l_lX i.s [xrrlneN] where

o*o="o
n*n = "r,,.,.-t )n(r(r,_ il.,'_il (... (ro., (n) )... ) )

llneni lienJ. Now assume 1'(e) c- l-lx. Then e Ex' for some n€N"

€ | fLl, ^*,r-.' -.r \ .E (ellkeNlex. Thus t'(e) is finite. conversely ret {e. lxewien

[{e

ie)

By

where X =

Therefore

be finite.

{eoE erE

tei€ei6

(2) ' ien lreu) = l-lJtun lte*1" By finiteness of

I E {ejE eia- i for some {ei! ei E ...
{eu lreN),

) for some

]eii*oE 
"r8... ,. But since
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(at E ot c, ieJ, r, we have:'"o "1 - "" ,'"{eo5 er g ... t'
{e6 

= 
ei g ... ) = -('(e) 5 {uoE e.c- ... }

for some eeE. Therefore {uoE e,,E ... J = Zt(e) for some e€E. Thus ?r(E)

is exactly the set of all finite elements of i. e.E"D"

Intuitive interpretation of this elaborate theoren is as follows. Given

an effective basis ?(n): Z'(n), the classi.cal directed limit completion gives

us the effecti.rely given domain (E", 
=) 

anrl the eff,ective chain completion

gives us the effective domain iir9. Furthermo"* (i.E): (C-- c). Thereforee \st r _ \vEt 
=.

this theorem justifies the intuitive argument following 3.j.
In the above discussion we have observed a relation between directed

cornpletion and effective chain complet"ion n star.ting from the sane (isomorphic)

effective basis. Now we uril-l examj-ne the other way around. That is, given an

effective doanin, what happens if we take the effective completion of its
basis "

n{EORqM }.,1 (alternative definition of effective domains)

(1) Let x be an effective domain with the effective basis Er. Then x:;x
and E,. is an effective poset.

(2) A poset is an effective domain iff it is isomorphic to an effecti-ve

compJ-etion of sone effective poset.

{1) A poset i-s an effective domain iff it is isomorphic to a set of a1l-

computable elernents of some effectively given domain.

proof (t) nefj.ne f:x -->ir, l=lent--;, ie,rlneN) where {e,rlneNj is an effective
-n

chain and g:tt* --)X:{enlneN}f-+ l_|"n. Evidently fog = id and gcf = ifl.
n

Let l-le' E l-le'- Then e' E l-le' for every neN. By compactness of errrnmm
e*E ej for some meN. Therefore {e*lneN} E [e]lm€N]. Thus f is monotone.n m '-n'--- / - lvm'r'.r

Now ret {e.^ ln€N} E {ej lmeN}. Then for each n, t}rere exists m s.t. \_n,--..-., _ . m _--_* ro' eacrr n, EJlere ex1sts m s.t. 
"n E ar.

therefore l_le- E l_lel. Thus g also is monotone.n--'mnm
(2-) (only if ) : by ( 1)-J.4

(if-part) : Let (i,x -->i, j,i -->x) be the isomorphism. Then (xr5 i"



an effective domain with EX = j(Z'(g)).

3) (only if ) : by (2)-theorem f .4 and (4)-ttreorem J.3.
(if-part) : Let (X,E) - (CO,E) rhere (DrE) is an effectively given d.omain.

,1, .r\ - t.Then (Eo,E-) = (co,Q : (x,E). Ttrus uy (2)-Theorem J.4. Q.E.D.

(J)-ttreorem J.4 tells us that our notion of effective d.omains defined

in 3.1 is exactly what we r*anted. Also this fact ensures us that we can safely

regard each effective domain as the set of all computable elenents of the

effectively given d.omain which is extended from the same effective basis

by directed completion. l'lore precisely, given an effective doanin (Xr9,

we can regarcl this as (%__, c) since (X,g = (i*r9: (CF, c). Thereforeox,'ox
discussing effective domains as the sets of all computable elements of

effectively given domains gives us techi-ncal simplification w:rthout harming

generality and the independence of the notion of effective domains on that

of effectively given doamins. Thus directly from theorem 2.1 and theorem 2.2,

we have:

TlnsoREM J.5

(1) Every effective data type is effective chain complete.

(2) The clas-s of effective data types is closed ond.er x and +.

Now what the functional data types are. As mentioned in the introduction,

effective functions must staisfy the following:

DEFINITION J.6 (effective functions)

Let COr arrd CO, be effective domains, then f:CO --)CO, is an effective
function iff
(1) f(f ) = {(n,m) | e; e f(em)i is r.e., and

(2) f is effectivery continuous i.e., for every effective chain {errln€N},

f( l. l",r) = l_lr(err)"
nn

ide will denote the set of all effective functions from Co to Co, with point-
wise ordering by ICD -->CD,].
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Now a question arises. Does [cD -->cD,] form an effective d.omain,

and what is the relevance of [cu --tct,,] to c[o __ror1? v,fe will see positive

answer in the following. First of all we will observe that each effective

function Cn --"Cn, is a restriction to CO of some computable function from

D to D'.

rlm_o8EM 1.7

A function f:CO --r0n, i-s s1f'tctive iff it is a restriction to CO of

some computable function from D to Dr.

proof (if part) :trivial

(on1y if part): Let f :Co --)Cor be effective and i tr" ti.,u restriction of

f to Eo. Then evidently i:Eo -->Cp, is monotone. By fact 1.13) i ir"" a unique

continuous extensio" 0;:D --)Dt s.t.:

t;( l-l*.,) = l-li(u,r).
nn

l3y (1)-3.6, 01 i" evidently computable, because:

f ir) = [(f;t.
Therefore f; i" the ur:iclue computable extension of f. Let E Ou the restriction
to Cr. of f;. Then for every c = l_le_r-.,eC'-, with r recursive function,D &i ,-'-r(n)--D -^-^

:7r \ f-l \Iitc) = [i(c) = l-ir(er,,.,.)
n

= f( l_le_,.-.') ( .,. e)a.5)
; r\n/

= f(c).

Therefore f is the restriction to Co of the computable function Eg: O -+D'.

Q.E.D.

The above proof has further implication which is crucial in the theorv

of effective domains. First define

i:[co --tCo,] -*>c[o -_>D,r:f rrili, ana

itt[O __>D,] --t[Cl --)Cn,J:frzthe restriction to CO of f.
Then evidently (irj) is an isomorphism. Therefore we have:
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r}r0OREM t-"j1

(1) CtD __>D'l = ICO -->CO'J

(2) ICO -->Co,] ir an effective domain.

proof (r) as above.

(2) by ()-1.8 and (l)-1.4 Q.E.D.

l{e can restate this rr{.thoiit ueing the conventional identification of (XrE) to
(C; ' S),-x

s89!!43t-2J
Givelr effective domains X and Xf, we have:

(1) otr,. --fr,l = [* -->x']

(?) [X -->X'] is an effective domain.

Note that (1)-J"B and 3.9 are claiming that as long as computable, or

equivalently effecti-ve functions are concernedrboth effectively given domains

and effective domains are essentialty the sanne. In other words, the theory

of effectively given domains does contain properly the theory of

effecbive domains. Thus we can regard the theory of effectively given domains

as a redundant theory of effective domains. This observation justifies the

clairn of effectively given domain theorists that as long as we have a concise

criterion to distingulish computable elements frorn noncomutable elements

we are O.K. But without our observation of f.B and J.9, their claim should

be hardly justified.

S4. Effective functions arrd operations

This section is essentially due to Egli-Constable l1jf. This is nothing

more than a simplification of their works. our main goal in this section is
to establish that a functj-on is effective iff it is operational in some

suitable aense, hence the equival-ence of descriptive power of denotational

semantics and operational, semantics.



Given arly r"e. s€t W', we can effectively single-value it r{.r.t. an

effective basis E* of an effective domain X and (n+1) tuples by:

-__ enumerate lV. ! X1 , x'r...

--- Y1 = xl

Yk*1 = Yk if *k*, - (p1'...'PrrrQ) and Ji--<<.xi=(pr r..rpn rgt)&

{aorao,) not bounded

*k*1 otherwise.

since {rt lieul is effectively enurnera.ble, there exists a recursive function

'l ".t. *.ltj) = {yilieN}.

FACT 4.1

(1) For each x.,r.o.1XrreN, l-lie,.l(x ,...rx ,u)et.l(3;i "*i"ts in x. Therefore
there is a function ,{:i,tr]-->N s.t.:

1Fr-- \ |,tj("1r...xn) = l_lteul (xr,...,xn,k)ewsx(j)).

Arso note that {rJ4lieN} is an effective enumeration of the famiry of such

functions.

(2) Sucn families satisfy S-rn-n property:

,{*"{*, " " 'xmrYl r ...,Y,r) = *1t1, j,x1 r ...,x*) (yr ,...,xrr).

,frt*l

Let X and X r be effective domains with effective
pectively. Then a functio" ,,13:N --)E' satisfying:

;f: = }r, = *tl =rt' i'mPries x,flt"l = ,.

(l) fn case n - o r *ol..n,rJt txl i lJLI\J Is an effective enumeration of X. we shall write
,t-90
tj * xrj'
DE}'TNTTION 4.2

basis E* and E* r res-

determines a unique function Lr:X -->X' O, ,.,tl
this *. the operation of the oprational index j.
of operational index is a nonpacursive subset of
is not, a recursive relation.

Note that 
{ ir operational in the sense that it is induced by the

= fi"(X"'f")' we shall call
T.hen evidently the set

N, because function equali"ty
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functj,on rvhich sends the text n or t ex into an element of xf . The next faet

due to Egli-Constable shows the equivalence (even recursive equj.valence) cf

operations and effective functions.

FACT 4"2

Let X and X' be effective domains with effective basis E* and E' rer.;*

pectiveLy. Let {, i€N be the effective enumeration of [x -->x']. Then :

(1) There exists a recursive function g:N --)N s.t.:

L- = [h-r.'.
]- rg\1/

{2) There exists a. recursive function h:N --}N s.t. for every operational

i.ndex j,

9nt:) = fj.
Ncte that 4"J is clainning that a function f:X --)X'is effective iff it is
operati onal.

!!. The categor.v of effective domains

So far we have obtained three major metho& of (effectively) constructihg

new effectj-ve domains from gi-ven effective domains, namely rxrt, r+rr, and

rr*->rt. t{hat is more interesting alnong (effective) constructions of effective
ucm;Lins is not any of these but rather self-referential definition of

:^eflexiblg domains. Ihere are twc_r known ways to handle self_referential
cj.efiniticirr in classical domain theory, namely the universal- domai-n approach

rlq:rrelopr*d by Scott [4'5] and Plotkin [15]; and the categorical approach pro*

poeed b*s ,5r:ott tll and developed by Reynolds t8l, b/and [9], plotkin [2o], tr,ehnra,nn

['io]'srnyth [tt]. rn this paper we will follow the latter approach. Therefore

we will stuciy the category of effective domains in this secti'n. We assume

that readers have basic knowl.edge of category theory throughout this paper.

Actuall-y only a small piece of category theory is needed and one of the

best introducticn to category theory mighL be frArrows, structuresi anrl

Functors" by Arbi.b & Manes tt8l"
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DEI'INITION 5.1

(1) t,et D and D' be posets. A pair of monotone functions (f:n -->Otrg:Dn-->Dr)

s.t. f"g E idor and gaf =ido is called an qrnbeddi-ng (pai.r)" occasionally we

call- f an embedding and g an a4joint of f.
(2) In case D and Dr are effectively gi-ven domains, a coryputable embedding

(p?ir) is arr. embedding pair (frg) s.t. both f and g ar.e computable.

(l) ln case D and Dr are effective domains, an eftggb:Lye embedrling (pair) is
a:t enbedding pair (frg) s.t" both f and g are effective.

Evi.dentiy if (f :D --)DtrS:D' --)D) and (f r:Dr --)D"rgr:D" -->Dr) are

embeddings then c;u is (f 'o f :D--)Dil,gogr:D" -->D). !/e sha1l cal-l this the

,cgmF,osition of embeddinss. Therefore the class of al1 ttr-chnln complete posets

wi ih boitorn and the cl.ass of all embeddings fonm a category which is usually

called the category of i,Fcpors, and denoted Uy klClOE. Historically the

frr-ct categorical work on the theory of domains took solutions for self-
referential ci.onrain equations within this category [Jr11]. But in this paper

we will use a category which is more desirable for computer science.

As for cornputable functions the composition of two conposable effective
iunctions is again effective and this composition is recursive in indices.

Therefore the composi-tion of two computabl-e embedciings is again a computabl-e

ernbeddi.ng, and the composition of two effective embeddings is again an

effective embedding" Thus we have:

TTiEOREM 5"2-

The class of effective domains and the class of

form a category. ife call such category the category
F

denote it b;r ED".

effective embeddings

of effective domains anr:l

In the classical categorical theory of dornains, tbe so called inverse
limit construction was proved to be the !).collmit construction in the category

tr
ui-Cpo*, and played a cruCial role in the solution of self_referentia] domain

definition [11]- Therefore we wit1 briefly outline inverse limit construction.
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DEFINITION 5.J
.pfln 14

Let ^ --d,. ,4 ^frU... lt^ l)., ..._t__- i_ a<__
oo a1

be an,J.Lsequence of embecklings. The inverse limit of this sequence is the

f ollowi.rrg poset:

F Di = I)*= {*o,x.l'.". >lxn = Brr(xrru,'))

with component-wise ordering. Define (frr*:Drr--;pdrgxn:D*'' -->Drr) Uy:

f.,*(*; = (BgBt...Bn_1(x), ".. rgn_1(x) rx, fn(x) rfn+1frr(x) r... )

*',((*orx1 r... >) = Xn.

Then evidently (fr-,rorn*) is an emberlding pair for every n€N.

rAqr_i"1.

Let f- f
on drr: o, I .q.

cn g1

be s.tr embedciing sequence.

(t) lrr case D.. are iri-chain complete cpors and (f. rg. ) are ir*'chain continuousI ^ r'"i'
embetltli-:rgs, bhen DFis also an i4ychain complete cpo.

(a) fn case D. are cpors and (firgi) ure continuous embeddings then Dais

also a cpo"

(.3) 'tn case D- are effecti,vely given dornains and (f.. rg: ) are computable1 " i,-i
embeddLngs then Drcis also an effectively given d.omain.

For {5) tfre effectlve basis of Dd is given by :

Eto = tef I neNl and El = t.;lmeN1

where eT = t^ regl 
n

i) -orc'''o'

t* -- r lrot''l *'oo,C-1'

^a€ ^ ,^1't2 = tloo\enl

-^oo - '-O'F - I tL I-1 - -r"^i.,?.,

-orJ o r.1r.4 = tlV,.,t,

cT= f (c''\-5 - '2oo"o'
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This fact can be restated as follows: The class ofUlchain cpors is closed

under the inverse limit of irj-sequence of irlchain continuous embeddings, the

class of cpors is closed under the inverse l-irnit of h,.-sequence of continuou.s

embeddings, and the cl.ass of effectively given domains is closed under the

inverse l-imit of ili.sequence of computable embeddings. But unfortunately, the

cl-ass of effective domains is not closed under the inverse l-imit cf [,$sequence

of effective embeddings' To obtain a desirable closure propertlr we ha.ve to
introduce the notion of effective inverse limit.
r$r'rNrrroN 5€

.An effecllve s-e*gqence gf effective embeddings is an rd-sequence of
effective embeddings fO ft

v -- .,. 
-z 

,,4''n 
-- 

nl <r* ^e eL'" " ' e

"o (r'l

c * r -&(iri+t) - tu(i*t,i)D.'.. .i '= At,ii) , 8i = ,&t(i)' for soite recursive functions r and t,

where irc:t'i+1) 1n€Ni i.s the sta:rdard enumeration of [x- -->x, .] and
,ni(i+1 ,i), 

1 1+-l

i'V '-'lneNJ is the standard enumeration of [ti*, __>X.].

The effecti.ve i-nverse limit of the above effective sequence is the set
{<'u --| -- il}1.'xo'x1 s-.. ) | *i ='Irti;, *i = gi(*i*t) for some recursive function u)

tuith the component-wise ordering where tX] l"erv1 is the standard enumeration of
Xi.. W" shall clenote it by ef-lim X,".

Renem'ner that by virture of the isornorphism x: $1.r we can regard each
xqffecti're domain as c,, f'rr some suitable effectively given domain D. This

convent:Lon drasLicaily reduces non-essential technical complications without
iitr'rming the generality" llherefore we will use this convention in the following.
T]{iroREM t.5

The crass of effective domains is closed unde:. the effective inverse
ri-mi-t of' effective sequences of effective embeddings.

rrroof Each effecti-ve sequence of effective embeddings can be consid.ered as

a restriction of an effective sequence of computable embeddings,
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T'-o -1
n-\'n'-n-u^ y^ u^

\_t<__? t? jG_

cooo o1

(- *+1) 
-(n+1.n)where t" = rI;[;';'" , Br, = fit,,)"" for sone recursive function r and t,

where {i'1"'rr*'l)1teN} "rru {t'1"*1'n)1keN} are the standard enumerations of

C.- \<h . and Crr., __\n -.1 respectively. More preci.sely each effectivr
'" --t',r-r1 J LUrr*1 --"r,.J

sequence of effective embeddings can be consitlered as the following effecti,,

sequence: f fo *1

16 '^t ,- a n .-i
vr vn v^u.-,G_o un * u^ <_t(

;;oo .'1

r+h'e::e t;, = flrli;T*", 4 =f:t;l'"' ror sorne recursive r and t, where

i 4"'n+1) ltenrl ana {{n*1rn) lkeN} are the standard. enunerations of [cr., --)cn :]
-r't- -' 

'1

anti [Cn --)C,, ] respectively. t'/e will sfrow ef-lln! Cp. = Cli* D.."n+l -n 1 .r- r
First of arlL assume 6 = (d.rd1r... > € ef-$I Co_. Then Ur, = J.l(rr, for some

I

recursive function t. Also d = l=lfrrro(urr). But since the sequence is effective,
(t 

'oC)tr' t" computable and fr,* = f;?;i for some recursive function r, where

1* m\
{fi"'""' I tCw} is the standard enumeration of ciorr__rot. Therefore we have:

d_= l_lrrr*(a,r)
n

= l-lr:?;i',4,n)) - i-lLe, ror some recursive u.
n 

r \rrl L\ 
n

Th*:refore d E Cfim ,.. Thus we have established ef-p ,O* S ali* 
O=.1<._l

Cc;rversel:l let c - (cO rc1s... > e Cr.i, O-. Then by computability of goqr,
<+1

"r = Q,n("" to' for every neN. Therefore 4(".r*t) = "., for every n. By

the effectiveness of the embedding sequence, %n =f l?;j, for some recursive

runction t, Let . = ff. rhen cr, = &r,("1 = Il?;ir,G, =Ctt(n),rc) =/ltnl
for some recursive function u. Therefore c e ef-rim c,. . Q-E_*..- ui
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Now the question is; rtwhat is the categoricar characterization of

ef-{is X. within the category of effective domains and effective embeddings?".

Classical results showed that the inverse limits were q)'colimits within
Ia

the ca.tegory {ACIO" f111. But the traditional- g}colirnt construction is not

strong enougir to characterize effective inverse limits. l^rhat r,re need is
ther idea of effective categories and effective colimits which we wj.l1 discuss

in the next section"

'.r b . E f f e c t i vg_cat e g?r:L B g jmd e f f qc! il'g r-ql imi ts

frr the previous section, we encountered a funny categ,or.;, iDE, subject

to constraints of rreffectiveness'?" Traditional category is not concerned

wjth this sort of category. we wil-L study this here in this section.

D$I'INITION 5._J. (E-cateeory)

An E-catpgcrX is a category K s.t. for al-1. K1,K2€OB(K), there exists

an associated. countable set E(K,,,*r) = telKr'Ke) l.,eNi s.t. Hom(Kt,Ke) 
=

E(K1 rK2) and the composition of morphisms is effective in indices.

Remember that [Xr-->xe] is countable, the composition of effective

furictions is recursive in indices, and the set of all embeddings from X,,, to

X- is a non-recursive subset of [X,,--rXrJ. Therefore the idea of E-category

ca.ptures quite well the effective nature of EDE. But to characterize more

interesting effective nature of EDr, namely effective inverse li.mits, we

need a stronger notion. we wi]l- study this in the forlowing.

DIIFINITJ_ON 6.2 ( ef fective categories)

(1) Wis the category of non-negative integers and (. pictorially:

o < 1 s 2 < .".
(e) nn effecLlve. sequence in an E-category K is a functor G: iil --)K s.t.

G(ndl+t, = gnrKn --)K.r*1

(K .i( -)_ c n' n+l c= Lr(n) I'or some recursive function r.
(i) civen an effective sequence G, an effectiye cocone of G i-s a cocone
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fo ft
n-\,Dn^tv, u^\)._.- t€ a &*

cuoo o1

(- -+1) n(n+1 -n)where fr, =,Irl[rr;.'', en = ]'i[i)"" for some recursive function r and t,

wnere t/'r:""'o1) ltett) "rru tl'1"*1'n) lkeN) are the standard enumerations of

cilr, --rl,r*.,J "tu t[orr*.,, --rorr] respectively' More preci'se1y each effectivi

$equence crf effective embeddings can be considered as the following effecti,

sequence t T^ T,0 '1
," 'fr r- ^) n '-9vh vn vn

'O€-- u1* '?-?
oo 01

r,,h.ere T -, t*tf 'T*1 )- ; - 7(n+1,n)n v r\nj ' 8n = / t(u) f'or sorne recursive r and t, where

{ 4"'n+1) ltelrl ana {{nn1rn) 1k€N} are the standard enurnerations of

and [c^ -->c,- ] respective]-y. r,/e wilr show ef-]!gr cp. = cli,n D..'n+1 'n f {- r
Fir:st of all assume d = (d6rd1r... > € ef-+!m CO.. Then Ur, = Jat(rr, for some

L
recursive function t. AIso d = l=ltn"o(drr). But since the sequence is effective,

(t 
'oC)tr" t" computable and fr* = f;(;i for some recursive function r, where

..(n"oo)r,-,rr .ttk--' 'l keNJ is the standard enumeration of a[o-__rot. Therefore we have:

d== l_l rrrr( ar, )

,t,-(tre)r.y'I \ | ,rN= l_ld 
"C"l 

(tr i(n) J = l;id,r(n) for some recursive u.

The'ef,ore u u alg or. tnr" we have estabrished er-J! to, 
= 

cp r..
C*nversely let c - (cOrc1s... > € Cli,n D.. Then by computability of goqr,

r1

"r = furr(*, a CD. for every neN. Therefore 4("r,*t) = "r, for every n. By

the effectiveness of the embeddins sequence. p - t (wrn) 
'^* ^-.n8 sequen"", %r, =, i(")- ror some recursivu.

r-rnction t, Let " = t;. rhen cr, = fur,("1 = fl?;ir,G, =4tt(n),k) =/lt'l

[cD -->c. .1n lJ.:.r !

for some r'ecursive frrnction u. Therefore c e ef-|im C,..
9.

1
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(r< .K ^)'! - n'n+lIr, = ett'I ^' ' for some recursive function t. Picborially'

go 81 82

G = Ko€ Kr. *I, *\^\V
^){\; K

(l+) We say that zur effective sequence G has an effectile colilli1, in sy,mbo^,,''

ef-colirn G, iff there exists an effective cocone 5rr:Krr--)ef-colim G of G

s.t. for every effective cocone \:Krr."->K of G, there exists a unique morphi.slli

fr:ef-colim G --)K $.t. the following diagrarn commutes

on o,l -1
---2. o oG=KO n ft*

K- ,- --,k-*t 7
We shalL call the effective 

"o"on" )., the effective colimiting cocone.

()) We say that an E-category i.s an effective category iff every effective

sequence in it has an effective coU.mit.

We will see that this abstract categoryr effective category, will capture
!a

the efi'ective nature of the concrete category ED" in the following discussj-on*

First note that given an effective sequence of effective embeddings,

.r

a_>...

commutes

for all n.

fr-colim G

t-n

,N\
we have:

ef-lim X.<-1

^noo- ^(n+1)ao-'n

qon = 8n'8xdn+t)

Therefore frrro, neN is an effective cocone. Thus we have the foll"owing theor.em:

TIIEORUY {:"=L

illery effective inverse limit is an et'fective colirnit in the cat,eg.cr.'i



EDE. Therefore by 5.6, EDE is an effective category.

proof Evidently an effective sequence of effective embeddings Xr, ieN,

fo ft fz
xo ? Xr ?. X, .----+
lr

Al u,r/
X q-- --ef-limX

Y "._* 
l

i-s an effective sequence in ED" and frrr: xn -*>ef*eg X. ,neN is an ef fective

cocone of this effective sequence. Think of an effective cocone }r,Xr, --)X,
nei{" Let r,. = rl?i;*,,, *,,, = f,l?;],'), f.,*= [l?;r,, 8r., =1,1i;j,,L =rl?;]]

^,(.1..n) -= '[w(n) l'or some recursive frrnctions rrsrtru,Vrand rr. where gn, gjrr*u

.tad.join"s of fr",, fnrd, fu respectively" Define f: ef-$g X. -_)X by:

tu

and i.

b,r **
.f = l_lln.A*, and 'lD: X --) ef -itu. X. by : f = l=itrr^n5rr. n u' evidently (t,+)

n

ii; an embedding pair. AIso:

t = l_i\ Bh", = l_
nsr I tl

.p '' l-lfrr;5n
n

ifli;P for some recursived

t_
n

l_
n

^ z,l ArI'herel'ore (Y,Y'J is an effective embedding pair" uniqueness of

evident , and obviously the above diagram commutes.

$7" Effective functors and initial solutions

Smyth showed that for each functor from an u.lcategorfr i"e. a category

with Ct*colimit for each its fulsequence, to itself, we could obtain initial
solutions of the isomorrrhic equation

X ; F(X)

within this i4v-category as long :,rs F preserves each {)-colimitng diagram itl1"

r4?;ilxi,fi'

fX!i;I) for some recursive 0, and

rd?;li(,t;i'

I

=l
;

t t',tl i"
o..E.D"

ZA



We are going to play quite similar game here rn this section. As

mentioned. repeatedly, the category UFCPOE is *tot relevent to compu,ter

science, and the Lricolimit preserving functor does not have an effective

flavor. lnJhat we are going to do is a.n effecti're version of Smythrs work.

The arrthor thinks that the idea of effective functors which wi.Il be ciiscusr,rt+t*

jn the following is original."

u$-g$IrIou_z-L

Let [r 5t bu effective categories. A functor

sffective iff the allrow functi-on of, l' is effective

p(e(Kr,Ka)) = e ,!l'Kl,Ke)
n '" / f(n) - for sorne recursive function f:N--)N.

anrl tr' pr"eserves effective colomiting diagrams.

Evidently the foll-owing properties about effective functors are t::ue,

and wi.11. convince us tb.e adequacy of the notion of effective functors.

I,EI{MA. 7.2

(1) I'or every effective sequence G of an effective category [r effective

functor F,K -->K' gives effective sequence trE of Kt. fn other words, effective

functo:'s map effective sequences to effective sequences.

(2) Every effective functor maps effective colimits and effective colimiting

cocones to effective colimits and effective colimitng cocones respectively.

PictoriallY' go g1 c2

F:K

in

-->Kf is said to be

the sense:

commutes

G-Ko Kt-K2- .!.
^\ -\ ^ \"o \llt3J""rr,n 

nimpl:i,es

Note Lhat

'd-sequences is

ef{ective case,

Fgo Fg., Fge

FG = trXo-r l'K,,, -r FK2-)

r"o \ F"\ F"J comnutes

\>r(ir-corim G) - er-corim FG.

the structure cf the diagram"s for 1g-continuous functors a-nd

exactly t;he same as this anri the only difference is that in
we irave to take care of effectiveness. More precisely,

-31 -



imG

for exampleo 3) -7 "?- for: an $)-continuous functor F is as follows:

iroc'o 01 0?

G- KO"* K1* K2 *

commutes

implien

commutes

where G' FG are not effective sequences but hlsequences, and crrr Fc' a-ne

not effective ccllimiting cocones but just ticolimiting cocones.

Therefore rde can proceed exactly as Smyth dirl for gLcontinuous f,unctoers;

t'he only extra requi-rement is the check of effectiveness which is tediou,s hut

easy. fhis f;rct can be recognized once we compare the proof of 5.J with the

Ai ro

t:y ;

srnythts proof of the similar claim that the category c+-cpoE is an (J-category,

Hence we can safel_y leave the proofs of the

readerg by refering them to Smyth [11].

DE_FINITTON 7.J

following dixcussions to the

al effective functor.

sequence Ar- , A\ :i, -->K\-t,rkrolJ = _

Let K be an effective category and F:K -->K b"

assume keK. ar:d. 0:k -->Fk. Defi_ne an effective

A,r,ok,g) = kErk 3 r'o I .".
since € i" an effective sequence in q0 and F is effective, A,\̂rrKr0) t" "tt
effective sequence. Therefo"u 4f ,4d)

well-defined. AIso by the effective-
nee-: of the categorlr [, ef-cr:lim 4(r,Ur0) uotd"ntly exi_sts" The next theorem

shows us the importance of {r,. ,.r.rxr0).

THnOREM 7.4

Let K be an effective category and F:K_-->[ be an effective functor.
fhen for er.ery k€K and $:k-->Fk we have:

ef-,-orim/\, ,3F(ef-col-imA. )s( F, k 
'9 

/ - ---'"ar (r,49 ) 
/'

1S
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Note that in the classical theory this sort of isomorphism is just

con.tinuous one besause the isomorphism is taken in $CPO". But j.n our theory

the isomcrrphism is taken in the category EDE''therefore it is an effectj.l'e

isomorphi.sm, which is moy'e desirable. This is one of the advantage of our

theory.

Now we can see the initiarity of ef-cofin l)r!'r- 6\ within some suilahr'*
\I ,K, Ul/

category i-nduced by the effective functor !'.

paFrNITroN 7"5

Lei F:5*->5 be a functor.

(1) xe{ i-s a po.st-fiv.-poin't of F via T iff f,:Fx--)x.

(;) n K-morphisrn l[.:x*-)y is a p_ost-fiE-arrorr iff both x eurd y are post-fix*

point of ir via Tand 5 respectively and,
-f,

x4-Fx
TLI I to&5!

]{- !}

DEFINITION 7"6

Let Fr[ -->[be a functor and0:k-->Fk be a K-morphism" Define a

cartegory gl post-fix-points € F, in symbols PF(K,F,0) as follows:

(1) the objects are the triples (d,xrD s.t.

,0*K-IIK

4l lr"., T I commutes.
X(- fX

Essenbially each object is a post-fix-point of F with associated K-morphism

'f' $"t. the abo're diagram comrnutes.

(:) a rnorphism betrseen (drxrp and (d'rxt,f') is a K-morphism ff:x--)r, s.t.

commutes.

commutes.

essential-Iy a fix-point-arrow from ? to tNote that each

-1'3-



Therefore essentiarl-y pF(rirl'r0) is the category of post_fix_points of
F and post-fix-arrows. Now we car show thatf :F(et_corrr\rrnrO)) __>

ef*colimA(arn,B; r which is an effective isomorphism estabrished in 2.4, is
the initial object of PF(K,tr'r$), i., case K and F are effective.
THrioREl.l 7.7

Let I be an effective category anci FtK -->K be an effective functor.
Let keK and u:k --)Fk" Also let crr,ner,r be the effective corimiting cocone

ot A{r,u,B). Thut (cooef-cotttA{r,n,6),f> is the initial- object in the
category PF(KrFr0) where f i" ," above.

with this thsorem, we have estabrished that for every effective
functor. F:K --)Kr ancl for every 0:k -_>!.k' ef_coli*Aro,_,rr is an initial\I rKr9l
solution to x !' F(X) within the effective category K. Therefore for every
effective functor ir:EDE --)EDE,

ef-colima(F,k,g; = ef{r d(r,t,o 
) 
(t)

-- ef-}im Fnk

is an initial solution to X : F(X) within the category EDE.

Now we shall observe that the d.omain construct6ls n;;rr, ,,*,,, and rr-->f,

are effective functors.

lg$!!!]!{-_7.9 ( eroduct catego_ry)

Let K and L be categories, then the produc! category KxI, is the
following category: ob(Kx!) = ou(K)xob(!), Kxl-morphisms are pairs
(f, g):(K, L) -->(tt'n Lr) where f:K --)L and g:Kr __)L,, id(K,L) =
(idK, idr):(t<, t) --t(t , u,), and (f,, g,)o(f, g) = (ffof, g,og).

DEFINITION 7.9 (arrow, product, and sum functors)
(r) tne arrow- functor e"->:EDExEotr-->noE is defined on objects by:o-*>(x,xr) -
[X -->X'] o arld on morp]risms by: for (prq) : (xr rX{ ) -_>(X2rXj), o__>(F,e) _

lfe[X, -->X'].Qcfapr where p, is the adjoint of p.
(z) rne piod,uct functor.6t :nuExnoE--rroE is ciefined on objects by: @ (x,x,) 

=
XxX f , and on rnorphisms by : for (pre); (X1rxi) __>(X2rXj),

-34-



@ (p,q) =!tr ,xr).(Fx,,,Qxr) -

(l) The surn functor O :eOil*mE-->EDE is defineci on objects by: I (Xf ,*Z) =

x1*x2n ancl on morphisms by: for (prq):(x,,'xi) -->(x?'xi)' @ (P,9) =

Arex,*xr" if x is in x,l then p(x) embeded in xi+xj else q(x) embeded in xi+x-1"

TI{EORI:I 7.1O- ("""o", pqq4u*to 
"nd 

utn thtor"*)

iihe arrowl product, and sum functors are effective functors.

TlmoREll ?"11

A functor l':KxL -*)l"i is effective iff it is effective in both K and Lt

where K, L, and M are effective categories.

:ruBq{ i.tl-a
l,eb I',5. -->L a_nri G:L -->{ be effective functorsn then ctF:K --)M also

i-s an efl'ective functor'.

Sumnarising these results, finally we ohtain the following very import'an*

result,

rryEoREY_7j11

E'rer:y self-referential domain equation has initial solutions within

the category of effective domains, as long as the equation inrrolves "xrr,

tt*tt, ard rt-->rt as domain constructors.

irl<lte that vre have presented effective (ttrus denumerable) solutions to

self-referential domain erluations which appear in denotational semantics. lttu.;

we harre gi.ren, in part, effective models tr: denotational semantics. The thing

whish is teft to be observed is the effectiveness of functions used in the

semarrt:i.c specification, This could be done easily for each cases returtli.ng t,,.;

to the definition of effectiveness. But the devel.opment of some Ianguage for

denoting effective functions is much more desirable.

{,18. Conclus:ion

The j.,:jea of e.ffective chains was adopted as a better model for"

conputational finite approximation processes than r.tlchains or directecl sets"

I{ence we obtained a notion of effective dornains which are the extensions of

7C



effective basis by means of effective limits rather than downward closed

directed limits as in the theory of effectively given domains. The important

fact that every element of each effective domain was computable was observed.

FurtherrnOre the effective nature Of domain constructors 'rxrtt tr+rr, rr--)rr was

stuciied as the effective inverse limit preserving f,unctors. Thence we showed

t.he existence of initial sofutions to each self-referential domain equations

involving "x", tr+il, rr-->fr as donain constructorsr within the category of

effective domains"

Park indicated to me that the notion of effective directed sets

couid be technicallv more.';ui.table than the idea of effective chains.

ActualJ-y an effective directed subset of an effective basis can be defined

as an r.e. subset of the effective basis. Thus evidently the effective

completion theorem and its proof can be technically simplified. Details of

this fact can be safely left to the readers as an exercise. The only advantage

of effective chains is intuiti.re clearness.

Even though not mentioned in this paper, the weak power domain

construction preserves the effectiveness of donains, and can be proved to

he an effective functor. fhus we can sol-ve self-referential domain equations

which involve power domain consLructors,

-ro-
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