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§0. Introduction

A key featufe of the so called fix-point épproach for theoretical compy
science is the idea of abstract data types and continuous functions. In . .
approach we treat the domains of computation as abstract data types which
are in fact cpo's. Then every computable function is modeied as a function
from a cpo to a cpo, which is continuous in the sense of directed limit
preservation. Finally observing that continuous functions of the same
functionality form an abstract data type, we specify every computable funui:
as a least fix-point of some continuous function. Substantial deveiopmen: of
this approach can be found in Scott [2].

This approach has been succeséfully used to prove some interesting pro-
perties of cohputable objects with this continuity property, as can be sc=w
in Park [1], Manna & Vuillemin [17], and Milner [7]. Scott extended this idea
to the functions of domains rather than on objects. Then he developed the so
called retract calculus on a universal domain to provide solutions of self-
referential domain equations, as in Scott [4] and Plotkin [15]. Alsc Scobt
suggested a categorical treatment for this kind of problem [37, and foll-wir-
his’suggestion Reynold [8], Plotkin [20], Wand [9], Lehmann (103, and Swmytn 7
developed a categorical theory of self-referential domain equations. Thess
theories provided a mathematical model for denotational semantics Li6].

But from the birth of this approach, the relevance of continuity to
computability has been a big question. Actually in the initial development
of this approach, Scott [22] tried to answer this question by pointing su:
which elements of a domain are computable, and gave an essential idea ¢

computability and effectively given algebraic domains.
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But soon after that D.Scott discovered that interval lattices could not
be treated as algebraic domains. Thence he started to work on more general
domains, namely continuous domains, and tried to define computability in them
as in Scott [2]. Motivated from Scott's pioneer work on effectively given
continuous domains, Tang [23] obtained the first successful theory of effective-
1y given continuous domains for restricted basis. Also introducing algebraic
constraint to Scott's idea of effectively given domains, Egli & Constable £13]
and Markowsky % Rosen [14] obtained a successful theory of effectively given
algebraic domains. Smyth [12] generalized all of these ideas and obtained the
most general class of effectively given continuous domains. Actually Smyth
generalized Tang's idea of recursive basis to r.e. basis. Just recently Scott
and Plotkin quite independently obtained a universal domain for effectively
given domains as in [5]. For the purpose of simplicity, we will talk about
only algebraic domains.

The importance of effectively given domain is that we can distinguish
computable elements from non-computable elements. One may claim that, as long
as we have a concise criterion to check computability, we are 0.K. But we must
admit that we still have domains which are too big, i.e. most elements of an
effectively given domain are not effective at all,

There have been several suggestions to exclude noncomputable objects for
special cases as can be seen in Scott (4] and Egli & Constable [13]. But so
far nobody seems to have taken this problem seriously in a general setting.
Presumably for the purpose of making discussion simpler, effectiveness of the
construction was omitted, and we got the problem of non-computable elements.
But now, with sharp distinction between computable elements and non-computable
elements, it is time to return back to the beginning and rebuild the theory

taking effectiveness into account throughout the construction of our theory.



The following summarises our amendment to the basic assumptions in the classicea:
theory [2] for this purpose.

(1) In the classical theory, the notion of computational approximation was
treated simply in terms of directed sets. By doing so, we threw away the
effective feature of the computational approximation. Our claim is that we
should take effective chains rather than directed sets for this purpose.

(2) Therefore data types should be effective chain complete rather thar

directed complete. Note that we are claiming that data types are not cpo's

any more.

{3) Also the continuity which is really required is not the directed limit
preserving continuity but the effective limit preserving continuity.

(4) Every data type must be effectively enumerable. Also the graph of every
function must be effectively enumerable.

One could suspect that if we took effectiveness in throughout the const-
ruction of theory, it would be extremely difficult or even impossible to
obtain a desirably strong theory. In this paper, we will see that we will not
fail to obtain a statisfactory theory of domains even if we take this effective
approach. In fact it will be observed that our effective theory is at least
as strong as the classical theory of self-referential domain equations, and
is just as complicated as the classical theory. Furthermore there are several
points, due to effectiveness, which are stronger than the classical theory,
like the effective isomrophism and the notion of effective functors.

One interesting observation of this paper is a successful investigation
of the effectiveness of functors, i.e. domain constructors. So far all
classical results essentially used W~continuous functors which do not adequatel s
represent the effective nature of domain constructors. In fact, Smyth has beer
working on the computability of w-continuous functors for the category of

effectively given domains and more generally effectively given categories.



He told me, privately, the difficulty of doing so. But in our approach, since

every data type is effectively enumerable and the effectiveness of functions

is treated in terms of effective chain preservation, we can

simplify the situation and can naturally introduce the effectiveness of

functors. This is one of the advantage of our theory of effective data types.
Also an effective completion theorem which is an effective version of

the traditional completion theorem, and the construction of functional

data types from data types which are not cpo's are of mathematical interest

by themselves, and suggest a relevant operational theory of domains.

$1. An overview of effectively given domains

Our theory of effctive data types is motivated mainly from the criticism
of redundancy of effectively given domains. Therefore we will review the
theory of effectively given domains briefly here. For details see Scott [2,22,5],
Tang [23], Egli-Constable [13], Rosen-Markowsky [14], Smyth [12],

A poset (D,E) is a set D with a partial ordering £E. A directed subset S

of a poset (D,5) is a subset 8 < D s.t. every finite subset of S has a least

upper bound (lub) in 5. A poset (D,E) is said to be directed complete iff

every directed subset of D has a lub in D. A directed complete poset with the
least element i’is called a Cpo. Historically the initial discussion of
recursive domain definition was carried out on cpo's. But to investigate
effectiveness (or computability), recent theory involves more sophisticated
structure than cpo.

Our intuition tells us that all finite objects should be computable. So
the question which arises next concerns a proper mathematical characterization
of finiteness. Scott [22] and Egli-Constable [13] adopted thi; idea from algebra.
We say that an elemsnt x of a poset D is finite iff for every directed subset
S& D s.t. the lub |_|S exists in D,

x= |_{S implies «x E s for some s€S.
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We will write ED to denote the set of all finite elements in D. Then to make
the theory more interesting, we have to obtain some more interesting effectivse
objects. Scott [2] claimed that for every effective object, there should be
arbitarily good finite approximations. Following this claim, we admit that
every effective object must be a lub of some chain of finite elements. This
observation leads us to the idea of what algebraists call countably algebraic

posets. A direted complete poset (D,£) is said to be countably algebraic iff

ED is countable =2nd for every x€D, there exists a directed subset J‘(EED Set

¥ = l_ij. We call such Ej a basis of D.
So far we have established that each data type should be a countably

algebraic poset with bottom, i.e. a countably algebraic cpo. As mentioned in

the introduction, one of the crutial point of our theory is the data types

of functions. We have to be able to form a countably algebraic cpo for the set

of all continuous functions from a countably algebraic cpo to a countably

algebraic cpo. Markowsky-Rose pointed out that for this purpose, for technical

reason, we had to introduce a bounded join condition to data types. We say

that a noset (D,Z) has a bounded join iff every finite bounded subset of D

has a lub in v. Also if every bounded subset has a lub in D, we say that D is

bounded compiete. The following can be readily seen.

FACT 1.1

A countably algebraic poset (D,=) is bounded complete iff D has a boundec

join iff ED has a bounded join.

To capture the effective nature of finite elements, we have to introduce
some effective properties of finite objects. Hence we have the following
definition of effectively give domains.

DEFINITION 1.2 (effectively given domains)

An effectively given domain (D,E) is a bounded complete countably algebrs: -

cpe s.t. the following relations are recursive in indices:



(1) |_J{€i1....,€in} exists in E,

(2) €= I_I(E vuunn€y )

1 n

(3) {€i1,...,€in} is bounded in Ej.

where {€i|i€N} is an enumeration of ED. We call ED an effective basis of D.

Note that by the previois fact (D,Eb effectively given implies that ED has

tounded joins, therefore (1) is logically equivalent to (3). Also Ei.EEEj is
recursive in indices by the above definition.

Now what is good about taking effectively given domains as data types?
The point is that we can point out which are computable. Roughly speaking,
we claim that the computable elements of an effctively given domain are exactly
those which can be reached by the limit of effective finite approximation
sequences. The following is a mathematical formulation of this idea due to

Scott [22].

DEFINITION 1.3 (computable elements)

An element x of an effctively given domain D is computable iff there
. . . N -
exists a recursive function f:N-->N s.t. gf(n)" €;Kn+1) for all néEN and
= € .
X l__l{f(n)‘neN]
It is quite reasonable to call such kind of chain like (;F(n)|n€N} as an

effective chain and the least upper bound of it as an effective limit. Actually

we can define these ideas more precisely in more general setting.

DEFINITION 1.4 (effective chains, effective limits)

(1) An W-chain XOQE X, C ... 1in a countable poset X'= {Xi|i€N}, is an effective
chain iff there exists a recursive function r:N -->N s.t.

X, :’Xr(i) for all i€N.

(2) Let X = {XiliEN} be a countable poset with the property s.t. every finite

join, if exists 1is recursive in indices. Let XO = quE .o« be an effective
chain in X. Then lujxi, if exists in some superset X' of X, is called an
i

effective limit (in X' of an effective chain in X).
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Therefore an element x€D is computable iff it is an effective limit of an
effective chain in ED.

Egli-Constable [13] gave an alternative defintion of computability which
looks odd but is usefull,

DEFINITION 1.5 (simgle-valued r.e.sets)

Given any effectively given domain D with effective basis ED = {Ei!i€N},

and any r.e. set W, = raw.ge ¢j' where j is the recursive index of the r.e. set:

the single-valued version ws(j) of Wj with respect to ED is defined by the
following procedure:
~—- enumerate wj: Kys Koy ewe

e ws(j) is obtained by:

Y1 = e if {€y ,....Ey ,Ey +1} is bounded in ED
1 n n
Y, otherwise.

Obviously Wc(j) is recursively enumerable, since it is defined by the above
procedure, Also evidently Ws(j) is boudned in D. Furtheremore it can be readily
seen that W ..y = W, whenever W, is already single-valued, i.e. {€ [n€W.)

s(3) 3 N n T
is bounded in D, Also since the construction of ws(j) in the above definition
is uniform in j, we can think of the s in ws,j) as a recursive function. Thence

A
the BEgli-Constable's version of computability is as follows:
THEOREM 1.6 (Egli-Constable's version of computablity)
x£ED is computable iff x = I_J{eiliews(j)} for some jEN, where D.is an

effectively given domain and Ej = {GiliEN}.

proof (if part): Let yj be a recursive function enumerating ws(j)’ Define a

recursive function rj:N -->N by:

€rj(O) " Sp0

= (e

Er.(n+’i) = €r.(n)
J J

Also obviously

. = . s L
Obviously Erj(O)“ er_(1)g; «ee 15 an effective chain in ED"
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x is the lub of this effective chain. Therefore x is computable.

(only if part): Let x = L—‘Er(i) for some recursive function r:N -->N s.t.
i
€r(o)!5 €r(1)E; ess o Then range r is obviously r.e. and single-valued.

The technique used in the if part of the above proof will be repeatedly used
throughout this paper.

The advantage of this alternative definition is that this definition
enables us to index the set CD of all computable elements of D by:

Cp = (1T = I_I{e l5eu 513, en).
Furtheremore we will observe that CD can be enumerated effectively in some
sense. But before examining the effective enumerability of CD’ we have to
obtain an adequate notion of effective enumeration of such abstract objects.
To do this we will start to examine an analogue in classical recursive function
theory, that is the well-known recursive eneumeration of partial recursive
functinions and recursively enumerable sets.

In classical recursive function theory, there is a hidden point in the
recursive enumeration of infinite objects like partial recursive functions
or r.e. sets. In fact we have to observe the following:

(1) Eventually we recursively enumerate finite representations (i.e. programs)
of partial recursive functions r&ther than function themselves.

(2) From each program P, the corresponding partial recursive function is
obtained by the following effective limiting process:

step 1 : execute the first step of P(0O)

step n : execute the nth step of P(0)

execute the (n-1)th step of F(1)
execute the first step of P(n-1)

Once P(m) terminates output (m,P(m)).



IS

Exactly the same discussion can be done for the recursive enumeration of
r.e. sets. Actually the above (1) and (2) are typical schema involved in the
effective enumeration of infinitary objects. Also note that this schema
can be applied even for the effective enumeration of finite objects like
natural numbers, because finite process can be considered as an effective
limiting process.

The above observation suggests the following notion of effective
enumeration in a general setting. A family of objects is said to be effectively
enumerable iff there exists a corresponding set of finitary representations
s.t. there is a recursive function from N to the set of representations and |
there is an effective limiting process which is an onto map from the set of
representations to the family of objects.

By taking l_J{€n|n€Ws(i)} as the finitary representation of T;GCD, and
using the effective limiting process described in the if-part of the proof of
1.6, we can easily observe:

THEOREM 1.7 ,

For every effectivly given domain (D,E), the set CD of all computable

elgments of D is effectively enumerable.
We shall call the effective enumeration:
Oy = (¥ leN), T, = I_I(e, Inew_ . ))

as the standard enumeration of CD. Egli-Constable used this standard enumeration

for the purpose of establishing essential equivalence between computable
functions and operational functions. In this paper we will use this indexing
for some other interesting purpose later.

The effectively given domains enjoy much more interesting properties, some
of which will be listed in the following:
FACT 1.8 (product and disjoint union)

Let D, D' be effectively given domains with effective basis ED = {EiIiEN},

Ej, = {Gi | i€EN} respectively. Then we have:



(1) D X D' is an effectively given domain with the effective basis

. o ,
By ¢ pr = ((€x€") |mEN)

] — ‘ >
where (€x€') = <em1(m), €1L2(m) .
(2) D+D' is an effectively given domain with the effective basis

- 1] 3
By pr = {(€4€ )mlmENj

. where (€+€’)O = |

. o
(€+€7), ., = <€, O>

1
' - '
(e+€ )2n = <€n' >

FACT 1.9 (function space theorem)

Let D and D' be effectively given domains with effective basis ED and

ED' respectively. For every (e,e')EEDxED,, define a step function [e,e']:D -->D!

by: [eye'](d) = if d 2 e then e' else

I
Also let F = {[e,e']IeGED, e'GED,}. Then the set [D =->D'] of all continuous

functions from D to D' with point-wise ordering also is an effectively given

domain with effctive basis:

Brp __>pry = U_IAl A is a finite subset of F, |_|A€[D -->D']}

fl

((€ -->€1), |ieN)
where (€ -->€'), = if 0(i) has a lub in [D -->D'] then |_|a¥(i) else I —>D']
where (k) = {[Ei,Ele (i,30€ p(k)} and p is the standard enumeration of
finite subsets of NxN.
FACT 1.10

Let D, D' be effectively given domains then f€[D -->D'] is a computable
object iff the graph of f

[7(£) = {(nym)] € & f(e))

is r.e. Note that since f is continuous, f«f) precisely determines f.
FACT 1.11

(1) Every computable function sends each computable element to a computable

element, i.e. fec: D] & xCC  implies f(x)ECD,. Furtehermore if the
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index of f is j and the index of x is k then there exists a recursive function
M -w>N H = ! . -

t:NxN -=>N s.t. £(x) Ttﬁhk)

Also there exists a recursive function r:N -=>N s.t.: f(x) = X;(k)'

namely r(k) = t(j,k).

(2) 1If fc Furtheremore

and g€C[ then geofeC

Crp ->p1] D' -->D''] [D -=>D'']"*

if the indices of f and g are i and j respectively then there exists a
recursive function v:NxN -->N s.t. v(i,j) is an index of gef.

Park [21] discovered that for the construction” of continuous lattices
from basis, we could use a generalization of Dedekind Cut. Using quite similar
idea, Markowsky-Rosen [14] and Smyth [12] gave a more elegant specification
of effctively given domains. We will see this in the following:

DEFINITION 1,12

Let (E,E) be a countable poset. By completion of (E,E), we mean a
poset (E}E) s.t. € is the set theoretical inclusion and E is the set of all
subsets X < E s.t.:

(1) every finite subset of X has a lub in X (directed)
(2) xZ y & yeX implies x€X (downward closed)

FACT 1.13 (the completion theorem I)

(1) Let (E}SE) be the completion of a countable poset (E,=). Define T:E -—>E
by Ux) = {a€E| a& x}. Thenlis an isomorphic embedding of E to E.

(2) For every x£E, Jx = {Wa)| a€E,T(a) =x} is directed and x = UJX.

(3) T(E) is exactly the finite elements of E.

() T satisfies the extension property s.t. for each monotone m:E -->Q

there exists a unique continuous extenstion fm:ﬁ'-—>Q of m s.t.

g\\\‘ ‘(/g commutes
m

where @ is an arbitary cpo.

Furtheremore if (E,E) has the least element |, then so does (E;fz)-

- 1] -



FACT 1.14 (the completion theorem II)

(1) Let (E,Z) be a countable poset with bounded joins and the least element
s.t. the following relations are recursive in indices:
(1) I_I{€. ,...4€, )} exists in E,
-1 i
1 m
(ii) €. = |_I{€. ,...,€. }.
B 3 i, i
Then E is an effectively given domain with the effective basis T(E) and the
extension property described in the above theorem.
(2) Let (D,5 be an effectively given domain with the effective basis (ED.ED.
Then (ED’ <) £ (D,E) and (ED,E) = (UB), 9.
This idea has been characterized much more elegantly by Scott [5], using
algebraic closure operators. Also Scott [5] discovered a universal domain

for effectively given domains and developed a retract calculus for this

doamin. But this theory is beyond the scope of this paper.

§2. From effectively given domains to effective domains

Even though the theory of effectively given domains looks-very
satisfactory, there are quite odd things in it. First the way to extend
effective basis to an effectively given domain does not have any effective

flavor at all. As can be seen in definition 1.2, we extend E_ to D using

D
limits of directed sets, which is not effective. Secondly even though we
are mainly interested in the computable elements, i.e. the effectively
enumerable set CD, we took the huge D as a data type. Thirdly we took the set
of all continuous functions as a functional data type, even though continuity
does not represent computability quite well.

On the other hand, the following observation of the nature of CD will
convince us that CD could be a satisfactory data type.

THEOREM 2.1

For every effectively given domain (D,%), the set of all computable
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elements of D, (CD,ED is effecive chain complete, i.e. is closed under the
limit of effective chains.

proof Let {fb(n)lneN} be an effective chain in CD. For each n, we have

7}(n) = I_J{Emlmews(P(n))}. Therefore by the proof of 1.5, there exists a
recursive function ﬁr<n):N -->N s.t. Etf(n)(i), i€N is an effective chain and
{k(n) = Ifjeﬁf(n)(i). Define e, by:

® = €tﬂn)(o)

%_=€540%1ﬂ~m3%1ﬁ14)LJ "'l—mgxi%o)

Since all possible finite joins are recursive in indices and {q}(n)lnEN} is
an effective chain, evidently eOE e, E ... 1is an effective chain in ED.
Therefore [Hl‘}(n) = IEjen is a computable element of D. .E.D.
Note that if Zf(n) is not an effective chain then ey i€N fails to be an
effective chain., Therefore CD is not a cpo.
TEOREM 2.2
Let D and D' be effectively given domains

with effective basis Ej = {€i|i€N} and (€£Ii€N} respectively. Then:

(1) CpxCpy = Cppe

(2) cpeCp, = Cp o,

proof (1) Let <c,c‘>€CDxCD,. Then for some recursive functions r,r':N -->N:

<c,c™ = <| €

It

|_I<e
- r
n

r(n)* Err(n)” = 'H'(e"‘i')t(n)

where t(n) = (r(n),r'(n)). Since r,r' and the pairing function are recursive,

t evidently is recursive. Therefore <c,c'>€C Conversely let <c,c'>€C

DxD'* DxD'*

Then for some recursive function r:N --DN,

<c,c'>

e
e S’ T I ) 6 r)”

By recursiveness of [, and IL,, obviously [ r and K.r are recursive. Therefore
J 1 2 2

- 13 -



we have:

>€CDXC

<c,c'> = <|;1_l€n-'!r(n)s I_n_lgmzr(n) D**

(2) Let <x,i>EC_+C s+ where i = O or 1. In case i = 0, x€C_.. Therefore we have:
D D! D

ri{n) 2r(n)+1

<x,i> = < _le_, ., 0> = '-'<€r(n)’ 0> = |_[(e+e)
n n
for some recursive function r:N -->N. Therefore <X’i>€CD+D" Similarly for i = 1,
Conversely let <x,i>€CD+D,. In case i = 0, x€CD. Therefore <x,i>€CD+CD,.
Similarly for i = 1. Q.E.D.

The problem for function space is  more difficult., If we have a
computable function g:D ~=>D', we are actually interested in only the restriction
g of g to CD' But does this sort of object have any interesting mathematical
property at all? The answer is positive. First, fact 1.11 tells us that'E
has the functionality CD -—>CD,. In the next section we will observe that
for each such restricted function form CD to CD" there is a unique computable
extension from D to D'. Therefore we can see that all computable elements of

CSPtT s . . . L
[D -=>D'], i.e. C[D _>pr] is essentially equivalent to the set [CD >CD,]
of all restriction of elements of C[D SD'] to CD' Roughly speaking we have:
°tp —>pry = [Cp =—=>Cpd.
These results will almost convince us that CD should be taken as a data

type rather than D. Because not only the basis but also all elements are

effective, we shall call such data types as CD effective data types or

effective domains.

§3. Effective domains

One outstanding point in the privious section is that the notion of
effective domains is totally dependant upon the notion of effectively given
domains. Fortunately we can solve this problem quite satisfactory.

First we observe that both D and CD share the same basis ED. The difference
between them is the way to extends ED. D is extended by taking directed limits

of ED‘ while CD is extended by taking the effective limits of ED. (Also this
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is why CD is more favorable than D for computer scienctists as mentioned in
the introduction.) Thus essentially CD does depend not on D but on ED. These
observation will lead us to the following effectively given domain independent
notion of effective domains which is due to Smyth.

DEFINITION 3.1 (effective domains)

A poset (X,B) is an effective domain iff

(1) E;, is countable with an indexing E, = {EiliQN} and his bounded joins.
(2) The following relations are recursive ir indices:
x’

(1) i_J(€i1,...,€i } ex1§ts in E

m

(li) ER = l_'(ci ?o-vtei }c
1 m

(3) Every effective chain of E, has a lub in X.
(4) Every element of X is a lub of an effective chain of EX'

Evidently the following enumeration of X is an effective enumeration and
we will call it the standard enumeration of X:

X o= (J; lieNy, %, = | _I(€ Inew . 4},

It is intuitively clear that an effective domain is the set of all computable
elements of the effectively given domain which is obtained by extending the
effective basis of the effective domain using directed limit. This will be

formally observed in the following discussion.

DEFINITION 3.2 (effective completion)

(1) An effective poset (E,E) is a countable poset B = (Enln€N} with bounded
joins s.t. the following relations are recursive in indices:

(i) {€_ ,...4€_ } is bounded in E,
n 1 nk

(ii)€.= | ’{6 ’-.0,6 }-
J " "

(2) Given an effective poset E, the relation "<" among effective chains of E,
defined by: {xnInEN}_S {ymImEN} iff un}m.xn!s Y, is a pre-ordering. Let R be
the equivalence relation defined by"{xn} R {yn} iff {xn} 5_{yn} & {yn} 5;{xn}ﬁ
Then by the effective completion of an effective poset (E,E), in symbol (é,EB,

we mean the set of equivalent classes of effective chains of E w.r.t. the
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equivalence relation R, with the following partial ordering:

[T E Ly, )] irr wixlel(x)1-30y06lly )10 (x1) < (30).

By definition, obviously {xn} S_{ym} iff [{xn}] = [[ym}]. Therefore
we can introduce the following convention: (1) identify [{xn}] to {xn}, ices
to its representative, (2) identify < to E . This convention allows us to
consider the pre-ordered set of effective chains of E as the effective
completion of E. Reminding this convention, we have the following theorem:

THEOREM 3,3 (the effective completion theorem)

(1) Let (E,%) bve the effective completion of an effective poset (E,B).
Define T':E ~->E by t'(e) = {e} (= [{e}] = ({e}}). Then evidently T' is
an isomorphic embedding of E to E.

-~

(2) For every c€E, there exists an effective chain JC in T(E) s.t. ¢ = I_JJC.
(3) Let (E, <) be the completion of (E,Z) and T:E -->E be the natural
embedding ((e} = {x€E|x Ee}. Then evidently T(E) is the set of all finite
elements of (E, <) and T(E) = 7'(B).
) (8, 9 = (C5, ©).
(5) (i,E) is an effective domain.
proof (1) trivial
(2) Let ¢ = {c, &= C;E ... }615. Since x€{'(x), UV (x) E ¢ implies x = ¢, for
some nEN. Conversely x &= ¢, obviously implies U (x) E c. Thus 7'(x) B ¢ iff
X &z c for some n. Depending on the indexing E = {€i|i€N}, we index T'(E) by
T'(B) = {tizfr(ei)lieN}. Since €kEE ¢, is recursive in k for each n, {klté€Jé}
is r.e. where Il = {T"(x) |x€E, T'(x) E ¢}. Since finite join is recursive in
indices in E, finite join is recursive in indices in T'(E). Therefore we have
the following effective chain:

*r(0) = *p0)

'

tr"(n+’l) = t;(n) || tp(n+1)

where p is a recursive enumeration function of {klt£€Jé}. But T'(a),TV(b)ed!
c

—

implies T'(al_lb) = 7'(a) l_l'('(b)eJé, since a & c, and b & ¢, implies
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Ec c ¢ . re J = (t! N isfi
al_Ib _uni_lcm C c, for some ¢ €c Therefore J [tr(n)lnF ) satisfies

-!dcq

(3) Evidently E = T'(E). Thereofre T'(E) = T(E) by 1.13.

c = |

(k) Think of the following correspondence:

£1E -_>(}§:{enlne:N} —> U(l(en) IneN)

g:05 -_>é:u{1(en) In€N} > (e [n€N}.
Note that since we index UE) by UE) = {tizl(ei)|i€N}, we have: {enlneN} is
an effective chain in E iff {Z(en)lnEN} is an effective chain in UE).
Therefore f and g are well-defined. Obviously feg = id and gef = id. A1so
(enlneN} = {e%!mEN} implies vn.}m.T(en) giZ(eé). Therefore f is monotone.
By finiteness of T(en). 'C(en) < gZ(em) < rLrll'l(en']) implies T(en) Et(er;l) for
some mEN. Therefore en§E e% for some méN., Therefore g also is monotone.
(5) By (1), T'(E) obviously is an effective poset. Therefore all we need to
show is that U (E) is the set of all finite elements of (ﬁ,EQ. To do this ,
first note that since E is effective, given (en]n€N}E {er;llmEN}, we can
effectively find m for each n s.t. enEE en” Now let X Eié be directed and
assume that l_jxeﬁ. Since é is countable, X also is countable. Therefore
using the following effective procedure, we can effectively enumerate the

effective chain I_IX. First we denote by rij’ the function which, given

{e;InGN} [ {e;ImGN), effectively gives us the minimal m s.t. erllE e[‘;}l, for

every m€N. Then |_I|X is {xnlnEN} where
x = el
0O~ 70
n
X = e

S ¢ FPS R GO N COPPIOD

where X = {{e:‘llneN}iieN}. Now assume T'(e) & |_|X. Then e Exn for some néEN.

Therefore {e} E {eilkeN}EX. Thus T'(e) is finite. Conversely let {ek!kEN}EE

inite. By (2 i _ . o
be finite. By (2), {eklkEN} i-—-‘J{eklREN} By finiteness of {ek|k€N),
- ' '
{eOE e ... } _.{eOE eis ... } for some {e(')[; e,']E eee } for some
1] !(:i T P
{eoc e,] — e e s }EU{G‘OE 61 E e }. But since
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{e' E e

=
3 e

) we have:

®

lenE e, 2
{eéEe%E ces } = ';('(e) E{eOE e, £ ...}

for some e€E. Therefore {e;= e, & ...} = T'(e) for some e€E. Thus 1'(E)

is exactly the set of all finite elements of é. E.D.

Intuitive interpretation of this elaborate theorem is as follows. Given
an effective basis ((E) £ T'(E), the classical directed limit completion gives
us the effectively given domain (E} gﬁ and the effective chain completion
gives us the effeétive domain (é,EQ. Furthermore (E,EB = (C§3 <). Therefore
this theorem justifies the intuitive argument following 3.1.

In the above discussion we have observed a relation between directed
completion and effective chain completion , starting from the same (isomorphic)
effective basis. Now we will examine the other way around. That is s given an
effective doamin, what happens if we take the effective completion of its
basis.

THEOREM 3.4 (alternative definition of effective domains)

X Then X = EX

(1) Let X be an effective domain with the effective basis E
and EX is an effective poset.
(2) A poset is an effective domain iff it is isomorphic to an effective
completion of some effective poset.
{(3) A poset is an effective domain iff it is isomorphic to a set of all
computable elements of some effectively given domain.
proof (1) Define f:X —->éxz l_jenl—_f> {en|n€N} where {enInGN} is an effective
chain and gzéx -->X:fen|n€N}:-—> l_len. Evidently fog = id and gef = id.
Let | le = | le'. Then e = | Ie'nfor every neEN. By compactness of e ,

— n = m n = om n

en?E eé for some mEN. Therefore {enlnEN} EE{e&ImEN}. Thus f is monotone.
Now let (enln€N} — {eéImEN}. Then for each n, there exists m s't“ﬂIE e
therefore |__|en E&l_Je&. Thus g alsoc is monotone.

n m
(2) (only if) : by (1)-3.4

(if-part) : Let (i:X -=>E, j:E -->X) be the isomorphism. Then (X,% is
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an effective domain witg E, = j(T'(E)).
(3) (only if) : by (2)-theorem 3.4 and (4)-theorem 3.3.
(if-part) : Let (X,B) = (CDJE) where (D,E) is an effectively given domain.
Then (E,,E) = (C,»E) = (X,E). Thus by (2)-Theorem 3.b4. .E.D.
(3)-theorem 3.4 tells us that our notion of effective domains defined
in 3.1 is exactly what we wanted. Also this fact ensures us that we can safely
regard each effective domain as the set of all computable elements of the
effectively given domain which is extended from the same effective basis
by directed completion. More precisely, given an effective doamin (X,5,
we can regard this as (C-fx, <) since (X,B) = (i}X,E) = (Ci,-x, <). Therefore
discussing effective domains as the sets of all computable elements of
effectively given domains gives us techincal simplification w%thout harming
generality and the independence of the notion of effective démains on that
of effectively given doamins. Thus directly from.theorem 2.1 and theorem 2,2,
we have:
THEOREM 3.5
(1) Every effective data type is effective chain complete.
(2) The class of effective data types is closed onder x and +.
Now what the functional data types are. As mentioned in the introduction,

effective functions must staisfy the following:

DEFINITION 3.6 (effective functions)

Let CD‘ and CD' be effective domains, then f:CD -->C, is an effective

D|

function iff

() T(£) = ((a,m)| €] & £(€ )) is r.e., and

(2) f is effectively continuous i.e., for every effective chain {en|n€N),

f(l__len) = I__|f(en).
n n

We will denote the set of all effective functions from CD to CD' with point-

wise ordering by [CD -->CD,].
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Now a question arises. Does [CD —->CD,] form an effective domain,
and what is the relevance of [CD -->CD,] to C[D ——>D']? We will see positive
answer 1in the following. First of all we will observe that each effective
function CD —->CD, is a restriction to CD of some computable function from
D to D',
THEOREM 3.7

A function f:CD -->CD, is effective iff it is a restriction to C_ of

p ©
some computable function from D to D',

proof (if part):trivial.

(only if part): Let f:CD ~~>CD, be effective and } be the restriction of
f to ED' Then evidently E:ED -—>CD, is monotone. By fact 1.13, % has a unique

continuous extension @}:D -->D' s.t.:

g0 _le ) = I_IfCe ).
n n

By (1)~3.6, QE is evidently computable, because:
ra =7@.
Therefore Q} is the unique computable extension of f. Let‘ig be the restriction

to CD of éf' Then for every ¢ = ’HJEr(n)ECD with r recursive function,

§~(C> = i}(C) = I_r_l'if(€r(n))

t

f( [_‘er(n)) ( ‘a‘ (2)_3-6)
n

f(c).

I

Therefore f is the restriction to CD of the computable function :(_7_}' :D -=2D',
-E.D.
The above proof has further implication which is crucial in the theory
of effective domains. First define
i:[CD —->CD,] ——~>C[D -->D’]Lfk*§§’ and
j:C[D —5D] -->[CD ——>CD,]:fwe>the restriction to Cy of f.

Then evidently (i,j) is an isomorphism. Therefore we have:
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THEOREM 3,8

(1) Crp ->pt] = (¢, -->Cp,1]

(2) [CD ~=>C is an effective domain.

D']
proof (1) as above.
(2) by (1)"‘3.8 and (3)‘3.4 .EoDo

We can restate this without using the conventidnal identification of (X,B) to

i

(C‘. [ E)'
X

COROLLARY 3,9

=

Given effective domains X and X', we have:

(1) = 2 [X -=>X"']

C[EX L xv] =
(2) [X ==>X'] is an effective domain.

Note that (1)-3.8 and 3.9 are claiming that as long as computable, or
equivalently effective functions are concerned,both effectively given domains
and effective domains are essentially the same. In other words, the theory
of effectively given domains does contain properly the theory of
effective domains. Thus we can regard the theory of effectively given domains
as a redundant theory of effective domains. This observation justifies the
claim of effectively given domain theorists that as long as we have a concise
criterion to distingulish computable elements from noncomutable elements

we are O.K. But without our observation of 3.8 and 3.9, their claim should

be hardly justified.

§4. Effective functions and operations

This section is essentially due to Egli-Constable [13]. This is nothing
more than a simplification of their works. Our main goal in this section is
to establish that a function is effective iff it is operational in some
suitable sense, hence the equivalence of descriptive power of denotational

semmantics and operational semantics.
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Given any r.e. set wj, we can effectively single-value it w.r.t. an
effective basis EX of an effective domair X and (n+1) tuples by:
--- enumerate wj : x1, xZ,...
R
Vipq = ¥, if X1 = (p1,...,pn,q) and }iSk.yiz(p1,..,gi,q')&
{eq,eq,} not bounded
X otherwise.

Since {yili€N} is effectively enumerable, there exists a recursive function

X
o loe . = . i ‘\‘f @
s, s t WSE(J) {yl|1€1)

FACT 4.1
(1) For each Xqveeerx EN, i_j{Ekl(x yeoesX ,k)€ws§(j)) exists in X. Therefore
there is a function 47 :N"—-->N Set.:

Xtj

n
i%j(x1,...xn) = 1_I{e, | (x1....,xn,k)€wsﬁ(j)}.

Also note that {X$§lj€N} is an effective enumeration of the family of such
functions.

(2) Such families satisfy S-m-n property:

Wm+n
x*? (XppeensXpoypaeensy) = £+22(j.x1,...,xm)(y1""’yn).

(3) In case n = 0, {£f§lj€N} is an effective enumeration of X. We shall write

% = o5

DEFINITION 4.2

Let X and X' be effective domains with effective basis EX and EX' res-

pectively. Then a function X'T?:N -->EX, satisfying:

X‘Tg = ‘Xn = XL*I'CH) :Xm implies X,T;(n) = x,‘{’?(m)

determines a unique function E%:X -=>X' by X'*; = §5°(&n.xg). We shall call

this I} the operation of the oprational index j. Then evidently the set
of operational index is a NoNrecursive Subset of N, because function equality
is not a recursive relation.

Note that 43 is operational in the sense that it is induced by the
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function which sends the text n of }%EX into an element of X', The next fact
due to Egli-Constable shows the equivalence (even recursive equivalence) of
operations and effective functions.
FACT 4.3

Let X and X' be effective domains with effective basis Ex and EX' res-
pectively. Let i%, i€EN be the effective enumeration of [X -->X']. Then :
(1) There exists a recursive function g:N -->N s.t.:

é‘i :‘f\g(i)'

(2} There exists a recursive function h:N -->N s.t. for every operational
index j,

ih(:;) =ty
Ncte that 4.3 is claiming that a function f£:X -->X' is effective iff it is

operational.

£5. The category of effective domains

So far we have obtained three major method of (effectively) constructing
new effective domains from given effective domains, namely "x'", "+", and
"-~>". What is more interesting among (effective) constructions of effective
domains is not any of these but rather self-referential definition of
reflexible domains. There are two known ways to handle self-referential
definition in classical domain theory, namely the universal domain approach
developed by Scott [4,5] and Plotkin [15]; and the categorical approach pro-
posed by Scott [3] and developed by Reynolds [8], Wand [9], Plotkin [20], Lehmann
{101 Smyth [11]. In this paper we will follow the latter approach. Therefore
we will study the category of effective domains in this section. We assume
that readers have basic knowledge of category theory throughout this paper.
Actually only a small piece of category theory is needed and one of the
best introduction to category theory might be "Arrows, Structures, and

Functors' by Arbib & Manes [18].
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DEFINITION 5.1

(1) Let D and D' be posets. A pair of monotone functions (f:D -=>D',g:D*=>Dt)

s.t. feg = id,, and gof =id; is called an embedding (pair). Occasionally we
call f an embedding and g an adjoint of f.

(2) In case D and D' are effectively given domains, a computable embedding

(pair) is an embedding pair (f,g) s.t. both f and g are computable.

(3) In case D and D' are effective domains, an effective embedding (pair) is

an embedding pair (f,g) s.t. both f and g are effective.
Evidently if (f:D -~>D',g:D' -->D) and (f':D’ ~=>D" g*:D" ~->D') are
embeddings then 5o is (f'e £f:D-->D",geg':D'" -->D). We shall call this the

composition of embeddings. Therefore the class of all Weechain complete posets

with bottom and the class of all embeddings form a category which is usually
called the category of w~cpo's, and denoted by uchoE. Historically the
first categorical work on the theory of domains took solutions for self-
referential domain equations withim this category [3,11]. But in this paper
we will use a category which is more desirable for computer science,

As for computable functions the composition of two composable effective
functions is again effective and this composition is recursive in indices.
Therefore the composition of two computable embeddings is again a computable
embedding, and the composition of two effective embeddings is again an
effective embedding. Thus we have:

THEOREM 5.2

The class of effective domains and the class of effective embeddings
form a catégory. We call such category the category of effective domains and
denote it by EDE.

In the classical categorical theory of domains, the so called inverse

limit construction was proved to be the Umcolimit construction in the category
E . 3 .
w-CPO”, and played a crucial role in the solution of self-referential domain

definition [11]. Therefore we will briefly outline inverse limit construction.

- 24 o



DEFINITION 5.3

fO f1
Let > T
b, _*p, 0] L.,
S
g 84

be an W-sequence of embeddings. The inverse limit of this sequence is the

following poset:

3im D = D™= (<xyixgpees 2lx =5 (x D)

1 n-+1

o0 o
i onent-wise ing. Defi D - : - :
with component-wise ordering. Define (fnm D -->D 18, i D Dn) by

fnw(X) = <gOg,l...gn__,'(X),...,gn__,‘(x),X,fn(x),fni_,‘fn(x),... >

%(<XO’X,‘).|. >) = xnn

Then evidently (fﬁm’Swn) is an embedding pair for every ntN.

FACT 5.4

Let fO f1
p. wp ™ p TV L.
0« "Megr 2<%

€q €4
be an embedding sequence,
(1) In case Di are w~-chain complete cpo's and (fi,gi) are {-chain continuous
embeddings, then D™ is also an i-chain complete cpo.
(2) In case D, are cpo's and (fi,gi) are continuous embeddings then D*is
also a cpo.
(3) In case Di are effectively given domains and (fi.gi) are computable
embeddings then D™¥is alsc an effectively given domain.
For (3) the effective basis of D™ is given by :

=53 - n
B oo = {en | neN} and EDn = {emlmem}

e 0
where €O = fokfto)
O

¢
fo«$€1)

| 1
= 1,460

"

1

oy

2

) 0
3 = f0m§€2)
oQ
A
5

it

1

i

f1x»€1)
2

= (€
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This fact can be restated as follows: The class of ~chain cpo's is closed
under the inverse limit of (~sequence of W-chain continuous embeddings, the
class of cpo's is closed under the inverse limit of W-sequence of continuous
embeddings, and the class of effectively given domains is closed under the
inverse limit of w-sequence of computable embeddings. But unfortunately, the

lass of effective domains is not closed under the inverse limit of W-sequence

O

of effective embeddings. To obtain a desirable closure property, we have to
introduce the notion of effective inverse limit.

DEFINITION 5.5

An effective sequence of effective embeddings is an w-sequence of

effective embeddings fO f1
LSS S S
O 1&.‘:—’ 2 e 0000 s

8o 84
s.t. f. = {,ie1) ~—‘%(i+1’i) for some recursive functions dt
she 40T eri> , & T Ry ‘ ons r and t,

where {%<"1+1)!n€N} is the standard enumeration of [X -—>X ] and

(«y1+1,1)ln€N} is the standard enumeration of [X ">xi]°

1

The effective inverse limit of the above effective sequence is the set

i
< ee O . = . .= g (%, i '
{ X61%X g0 I Xy Ku(l)’ X gl(xl+1) for some recursive function u)
with the componemnt-wise ordering where (X;lnEN} is the standard enumeration of

X.. We shall denote it by ef-lim X .
i ‘—— n

£

Remember that by virture of the isomorphism X = Qﬁ s We can regard each
X

effective domain as CD for some suitable effectively given domain D. This
convention drastically reduces non-essential technical complications without
harming the generality. Therefore we will use this convention in the following.
THEOREM 5.6

The class of effective domains is closed under the effective inverse
limit of effective sequences of effective embeddings.
proof Each effective sequence of effective embeddings can be considered as

a restriction of an effective sequence of computable embeddings,



fO f1

—— T~ ~
€0 €

- e .

(n,n+1) _ {n+1,n)

rln) , &y = Ti(u) for some recursive function r and t,

where fn = j

where {fin”n+1)lk€N} and {fﬁn+w'n){k€N} are the standard enumerations of

nd C
C ] an [D

respectively. More precisely each effectivs
] -->D ]
1+l n+1 n

D =D
n

sequence of effective embeddings can be considered as the following effecti:.

sequence: fO 1
R [ —
CD CD CD esacne
oSz 1D Ta~r
&y 84
where ?% = f??é?+1), Eg :jri?;;‘n) for some recursive r and t, where
12 W)

{ 5in’n+1)lk€N} and {?ﬁn+1'n)[k€N} are the standard enumerations of [CD -->CD ]

n e
and [CD _--)CD ] respectively. We will show ef-%ig CD. = Clim D °
n+1 n i “«— ]

- . N X —_— - + - n ~1
First of all assume & = <d0,d1.... > ¢ ef élm CD.' Then dn "'rk(n) for some
recursive function t. Alsc d = I—ana§dn)' But since the sequence is effective,

(n,%Q

f is computable and fnm:: ¥ for some recursive function r, where

na r(n)
L)
(f(n' >[ kEN} is the standard enumeration of C . Therefore we have:
k [Dn——>D |

d== |_If ,(a)
n

(n,“) i Go .
= IEJF¥(H> (f?(n)) = '—J];(n) for some recursive u.
erefl € C,. . > i ~-1i o
Therefore 4 € lim D, Thus we have established ef-lim CD.EE Clim D.
€« i i < i
Conversely let ¢ = &co,c1,... > € Clim Di. Then by computability of B ?
priatild
C = C = =
<, ng(c) € ¢ for every neN. Therefore gn(cn+1) c, for every n. By
the effectiveness of the embedding sequence, Bon =?’S?;?) for some recursive
. : ol (Wyn) n
function t. Let ¢ = . Th = = ! = =
et o =V Then o = g, () =Y VM) <Y =V
for some recursive function u. Therefore ¢ € ef-lim CDi. QBT
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Now the question is; '"What is the categorical characterization of
ef-lim Xi within the category of effective domains and effective embeddings?"L
Classical results showed that the inverse limits were ({-colimits within
the category QLCPOE [11]. But the traditional W~colimt construction is not
strong enough to characterize effective inverse limits. What we need is
the idea of effective categories and effective colimits which we will discuss

in the next section.

96. Effective categories and effective colimits

. . E .
In the previous section, we encountered a funny category ED, subject
to constraints of "effectiveness''. Traditional category is not concerned
with this sort of category. We will study this here in this section.

DEFINITION 6.1 (E-category)

An E-category is a category K s.t. for all K1,K2€OB(E), there exists
an associated countable set E(K1,K2) = {EiK1'K2)|n€N} S.te Hom(Kq,KZ)fE
E(K1,K2) and the composition of morphisms is effective in indices.

Remember that [X1——>X2] is countable, the composition of effectiv;
functions is recursive in indices, and the set of all embeddings from X1 to
X2 is a non-recursive subset of [Xq-—>X2]. Therefore the idea of E-category
captures quite well the effective nature of EDE. But to characterize more
interesting effective nature of EDE, namely effective inverse limits, we

need a stronger notion. We will study this in the following.

DEFINITION 6.2 (effective categories)

(1) %}is the category of non-negative integers and <. Pictorially:
0<1L2<L ...

(2) An effective sequence in an E-category K is a functor G: W -->K s.t.

G{n<n+1) = g 1K -->K
- n n n+1
(K ,K )
n n+1 . .
= Er(n) for some recursive function r.

(3) Given an effective sequence G, an effective cocone of G is a cocone




To £

—— o ~

- v .

go 51
where f = f(n,n+1) g = (n+1,n) for some recursive function r and t,
n r(n) ' t(u)

where {];n”n+1)lk€N} and {fﬁn+ﬁ'n)lk€N} are the standard enumerations of

and C respectively. More precisely each effectivs

(D -=>D 4 (D —->Dn]

n+1

sequence of effective embeddings can be considered as the following effectiv.

sequence: T 1
Cys) CD CD @ ° 8636
Pose Pye= Do
&g g4
— (1 - —
where fn = ﬁ;€;§+1), g, =: i?;;‘n) for some recursive r and t, where
£/

{ iin’n+1)lk€N) and {?ﬁn+1’n)lk€N} are the standard enumerations of [CD -->CD” ]

n
and [CD --->CD ] respectively. We will show ef—%ig CD. = Clim D *
n+1 n i « i
. , n
First of all assume d = <dy1d ... > € ef-lim CDi. Then d. _.fk(n) for some
recursive function t. Also 4 = l—ana£dn)' But since the sequence is effective,
(n,x

f is computable and f = § for some recursive function r, where
ny ng,  ‘r(n)

00
(f(n' )! kEN} is the standard enumeration of C . Therefore we have:
. [p_-->D%)

d== |_| noo(dn>
n

= | IJ(?n?) fn(n)) = iEJ];?;) for some recursive u.

Therefore 4 £ C, . . Thus we have established ef-lim C. < C
lim Di o Di -

é—’

1lim D, *°
<« i
Conversely let ¢ = CCH1Cqrees > € C%iﬂ D.* Then by computability of B,

c, = Smn(C) € CDn for every neN. Therefore gn(c ) = c, for every n. By

the effectiveness of the embedding sequence, Bon =]'5Tg?)

n+1

for some recursive

0 (K)Qn) n
i+ Then ¢ =g (c) “’rt(n) (T;) =?‘n(t(n),k) -

function t. Let ¢ =¥ ()
v uln

for some recursive function u. Therefore ¢ € ef-lim C. . eBol

<— D



Aﬁxz et(g) n+1 for some recursive function t. Pictorially,

gO g, 8>
\ — K R

Y-

(4) We say that an effective sequence G has an effective colimit, in symbe’ -

f-colim G, iff there exists an effective cocone S :K -->ef=colim G of G
s.t. for every effective cocone &n K -->K of G, there exists a unique morphiswm

G :ef-colim G -->K s.t. the following diagram commutes

o -7 g

We shall call the effective cocone Sn’ the effective colimiting cocone.

(5) We say that an E-category is an effective category iff every effective

sequence in it has an effective colimit.
We will see that this abstract category, effective category, will capture
the effective nature of the concrete category EDE in the following discussion.

First note that given an effective sequence of effective embeddings,

fO f f
AO-—-,b X .._..; X -
ﬁ\

ef-lim X.
= 1

we have:

f o f

noo QHH)W n
for all n.

&on = Bn’ Bx(n+)

Therefore fnx’ nEN is an effective cocone. Thus we have the following theorem:
THEOREM 6,7

Every effective inverse limit is an effective colimit in the category

- 29 -



5 E . .
ED”. Therefore by 5.6, ED  is an effective category.

proof Evidently an effective sequence of effective embeddings Xi’ i€N,

& .
X & ==~ - ef-1lim Xj
& —- i

is an effective sequence in ED” and fnw: Xn —->ef-lim Xi,nEN is an effective

cocone of this effective sequence. Think of an effective cocone ﬁn:Xn —-—>X,

o (n,n+1) (n+1,n) (n,) (&6yn) (n,X)
neli. Let f = X’r(n) ’ “% ’ fn<>o - “‘t(n) " Bun ~¢u(n) A‘n }'V(n)'
and 5 = K(K'n§ for some recursive functions r,s,t,u,v,and w,.where g g
Al n W(n) 12e beglas Vy . n’ l:"?n’

..t - i s . s L .
én are ad301§E of fn’ fnw' A respectively. Define ﬂﬁ ef-lim Xi >X by:
4 = ';J2n°gxn’ and P: X -=> ef-lim Xi by :(f: l;jfnnfsn' Then evidently (},9)

is an embedding pair. Also:
n,X)

y _ 1 a (%4n)
¥ = i;'%n Bos = Av(ny’“u(n)
_I%%?;§) for some recursive &, and

(n, w) (X,n)
’(ﬂn)  rae

w

i

m(x , 00)

(n) for some recursived .

Therefore (?}?) is an effective embedding pair. Uniqueness of (?ﬁ#) is

evident , and obviously the above diagram commutes. QeEDa

§7. Effective functors and initial solutions

Smyth showed that for each functor from an w-category, i.e. a category
with W-colimit for each its {J~sequence, to itself, we could obtain initial
solutions of the isomorphic equation

X = F(X)

within this yrcategory as long as F preserves each W-colimitng diagram [11].
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We are going to play quite similar game here in this section. As
mentioned repeatedly, the category urCPOE is not relevant to computer
science, and the Wr~colimit preserving functor does not have an effective
flavor. What we are going to do is an effective version of Smyth's work.

The author thinks that the idea of effective functors which will be discusseu
in the following is original.

DEFINITION 7.1

Let K, K' be effective categories. A functor F:K -->K' is said to be

effective iff the arrow function of F is effective in the sense:

,K )) €,(FK ,FK.)
- f(na 2" for some recursive function f:N-->N,

F(E

and I' preserves effective colomiting diagrams.
Evidently the following properties about effective functors are true,

and will convince us the adequacy of the notion of effective functors.
1EMMA 7.2
(1) For every effective sequence G of an effective category K, effective
functor F:K -->K' gives effective sequence FG of K'. In other words, effective
functors map effective sequences to effective sequences.

(2) Every effective functor maps effective colimits and effective colimiting

cocones to effective colimits and effective colimitng cocones respectively.

Pictorially,
G K o K —— K —— ews
O\\\\\\ \\\\32 ) commutes
implies ef-collm G

Fe Fe Fcéi commutes

F(ef-colim G) = ef-colim FG.

Note that the structure of the diagrams for w-continuous functors and

W=sequences is exactly the same as this and the only difference is that in

effective case, we have to take care of effectiveness. More precisely,
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for example, (3)-7.2 for an tW-continuous functor F is as follows:

G = K, —~» K1~» Kz—as eso
C
C & ‘L commutes
¢ colim G

implies

Fg, Fg, Fg,

0 7 2
;:\\:TL commutes
Fe. :

"(colim G) = colim FG

where G, FG are not effective sequences but w~sequences, and Cn’ Fcn are
not effective colimiting cocones but just ulcolimiting cocones.

Therefore we can proceed exactly as Smyth did for »~continuous functoers;
the only extra requirement is the check of effectiveness which is tedious but
easy. This fact can be recognized once we compare the proof of 6.3 with the
Smyth's proof of the similar c¢laim that the category'aFCPOE is an W-category.
Hence we can safely leave the proofs of the following dixcussionsto the
readers by refering them to Smyth [11].

DEFINITION 7.3

Let K be an effective category and F:K ~=->K be an effective functor.

W -->K

Also assume k€K and B:k --DFk, Define an effective sequence ZX(F K,8)
15

RE 8 P F%
JAYS g = K—>Fk = Fk —s ...

(F,k
Since W is an effective sequence ing& and F is effective,zﬁ(F K, 0 is an
7 b
effective sequence. Therefore,ﬂs(F KG) is well-defined. Also by the effective~
L

ness of the category K, ef_COlhnZMj’k ) evidently exists., The next theorem
y ] .

shows us the importance of Z&F K.B)°
b} 1

THEOREM 7.4
Let XK be an effective category and F:K-->K be an effective functor.
Then for every k€K  and 9:k——>Fk we have:

ef-colim A(F,k.G) E F<ef-COlimﬂ(F1k/e) ) ¢
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Note that in the classical theory this sort of isomorphism is just
continuous one because the isomorphism is taken in u}CPOE. But in our theory
the isomorphism is taken in the category EDE;'therefore it is an effective
isomorphism, which is more desirable. This is one of the advantage of our
theory.

Now we can see the initiality of ef-colim Ak(F,k,e) within some suitabie
category induced by the effective functor F.

DEFINITION 7.5

Let F:K-->K be a functor.

(1) x€K is a post-fix-point of F via Tiff T:Fx-->x.

(2) A K-morphism Tl:x-->y is a post-fix-arrow iff both x and y are post-fix-

point of ¥ via T and 3 respectively and,

x(—-—-Fk _
TLL L FIC
s . commutes.
Y& F

DEFINITION 7.6

Let F:K -->K be a functor and §:k-->Fk be a K-morphism. Define a

category of post-fix-points of F, in symbols PF(&,F,Q) as follows:

(1) the objects are the triples <&#,x, %> s.t.

8

k —» Fk

al Iw
T commutes.
X &— Fx

Essentially each object is a post-fix-point of F with associated K-morphism
¢ s5.t. the above diagram commutes.

(?) a morphism between <d,x,r> and <d',x',¥> is a K-morphism JL:x-->x' s.t.

'k —Q-»Fk.

E /."Fo&

x "ffaqt commutes.
X

Note that each PF-morphism is essentially a fix-point-arrow from T to ?”ﬁ
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Therefore essentially PF(X,F,8) is the category of post-fix-points of
F and post-fix-arrows. Now we can show that‘f:F(ef-colimZS(F’k’e)) -
ef-coliméh(F,k'a) » which is an effective isomorphism established in 7.4, is
the initial object of PF(E,F,Q), in case K and F are effective.

THEOREM 7.7

Let K be an effective category and F:K -->K be an effective functor.
Let k€K and B:k ~->Fk. Also let cn,n€N be the effective colimiting cocone
of ZS(F,k,Q)‘ Then <co,ef—colim£S(F’k’e),\V> is the initial object in the
category PF(K,F,8) where\f is as above.

With this theorem, we have established that for every effective
functor FiK -->K, and for every §:k -->Fk, ef-colimzﬂ(F’k’e) is an initial
solution to X = F(X) within the effective category K. Therefore for every

B

I™
effective functor F:ED”~ -->ED”,

ef-colim&)

1

ef—& A(F,k’e)(n)
ef-lim Fk

(F,k,6)

is an initial solution to X Z F(X) within the category EDE.
Now we shall cbserve that the domain constructors "x'", '"4+", and "->"
are effective functors.

DEFINITION 7.8 (product category)

Let K and L be categories, then the Product category KxL is the

following category: Ob(KxL) = Ob{K)x0b(L), KxL-morphisms are pairs

(fy, g):(K, L) ==>(K', L') where f:K -->L and g:K' -->L!', id(K Ly =
’

(h&,i%}ﬂK,L)-e%K,IJL and (f', g')o(f, g) = (f'of, glog).

DEFINITION 7.9 (arrow, product, and sum functors)

(1) The arrow functor o-->:EDExEDE—->EDE is defined on objects by: o-->(X,X") =

[X -->X'], and on morphisms by: for (p,q):(xq,X%) ‘—>(X2,Xé), 0-->(p,q) =
2f€[X1 ==>X,leqefap' where p' is the adjoint of p,

(2) The product functor ® :EDExEDE--—>EDE is defined on objects by: ® (X,X') =

XxX', and on morphisms by : for (p,q):(Xq,X%) -->(X2,X5),
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& (r,y9) =A-X1,X2).(px1,qx2).
(3) The EEE.EBEEEQEGD:EDLXEDE-->EDE is defined on objects by:@D(X1-X2) =
X1+X2, and on morphisms by: for (p,q):(xq,x%) -->(x?,xé)’ép (pyq) =

Ax€X1+Xq. if x is in X, then p(x) embeded in X}+X} else q(x) embeded in X3+X'.
[ _— Soeme— — <

THECREM 7.10 {(arrow, vproduct, and sum theorem)

The arrow, product, and sum functors are effective functors.

THEOREM 7.11

A functor F:KxL -->M is effective iff it is effective in both K and L,
where K, L, and M are effective categories.

THEQOREM 7,12

Let F:K ~->L and G:L -->M be effective functors, then GOF:K -->M slso
is an effective functor.
Summarising these results, finally we obtain the following very important

result,

THEOREM 7.13

Every self-referential domain equation has initial solutions within
the category of effective domains, as long as the equation involves 'x'",
et and "-->" as domain constructors,

Note that we have presented effective (thus denumerable) solutions to
self-referential domain equations which appear in denotational semantics. Thus
we have given, in part, effective models to denotational semantics. The thing
which is left to be observed is the effectiveness of functions used in the
semantic specification. This could be done easily for each cases returning bLao
to the definition of effectiveness. But the development of some language for

denoting effective functions is much more desirable.

$8. Conclusion
The idea of effective chains was adopted as a better model for
computational finite approximation processes than W-chains or directed sets.

Hence we obtained a notion of effective domains which are the extensions of
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effective basis by means of effective limits rather than downward closed
directed limits as in the theory of effectively given domains. The important
fact that every element of each effective domain was computable was observed.
Furthermore the effective nature of domain constructors 'x'", "+", "->" was
studied as the effective inverse limit preserving functors. Thence we showed
the existence of initial solutions to each self-referential domain equations
involving "x', "+'', "~->" as domain constructors, within the category of
effective domains.

Park indicated to me that the notion of effective directed sets
could be technically more suitable than the idea of effective chains.
Actually an effective directed subset of an effective basis can be defined
as an r.e. subset of the effective basis. Thus evidently the effective
completion theorem and its proof can be technically simplified. Details of
this fact can be safely left to the readers as an exercise. The only advantage
of effective chains is intuitive clearness.

Even though not mentioned in this paper, the weak power domain
construction preserves the effectiveness of domains, and can be proved to
he an effective functor. Thus we can solve self-referential domain equations

which involve power domain constructors.
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