
http://wrap.warwick.ac.uk/

Original citation:
Shamir, A. and Wadge, W. W. (1977) Data types as objects. Coventry, UK: Department
of Computer Science. (Theory of Computation Report). CS-RR-020

Permanent WRAP url:
http://wrap.warwick.ac.uk/46319

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/46319
mailto:publications@warwick.ac.uk

THEORY OF COMPUTATION

REPORT NO.20

The University of Wannrick

DATA TYPES

AS

OBJECTS

BY

Anr SHnlarn

l,ht-r-lpll l'1, flnper

Department of ConPuter Science
University of Wanwick
CO\IENTRY CV4 7AL
ENGLAND.

uune IY / /.

DATA TYPES AS O&]ECTS

Adi Shamir

Mathematics Department

MIT

Cambridgel Mass. USA

William W. Wadge

Computer Science DePartment

University of Warwick

Coventryt UK

Abstract

In this paper rde present a new approach to the semantics of data typest

in which the types themselves are incorporarted as elements of the domain of

data objects. The approach allows types to have subtypes, allows genuinely

polymorphic functions, and gives a precise semantics for recursive type

definitions, including definitions with parameters. In addition' the approach

yields simple and straightforward methods for proving type properties of

recursive pro8rams.

A slightly revised version of this paper appears in the proceedings of

the Fourth International Oonference on Automatal Languages and Programming

(ICAIP), held in Turku, Finland, 18-22 Julyr 1g?7. ': i ; I

-o-

O- Infornal Introduction

Most current type systems (e.g. that of

A. Church's 1!4O paper, frA simple theory of

there are a nunber of unrelated ground data

for forming function types of finite level.

The first problem with such aystds is
a unique type. Thus integersr for examplet

ial case of real nunbers, and in general one

another.

LCF, as in [1]) are based on

types" (t2l). In these systems

types and an an arrou operation

that each data object nust have

cannot be considered as a 6pec-

type cannot be a eubtype of

A second problen, related to the firsts is that polyrnorphisn is not

poosiblel each argunent of a function must be of 6ome specified single type.

For example, we cannot have a single addition operation capable of adding

both reals and integers; instead, ue need four functions of various types

for the varioue poeeible combinatione. Especially serious is the lack of

a general if-!hen-e16e. conditional whose domains are left unspecified.

The third problem is that in a Church system there are in fact two

Inetar-types, namely types and data objectst which cannot be mixed together.

For exampler the intuitively true identity

eveninteger + 1 = oddinteger

relating the types eveninteAer and oddinteger and the data object 1

makes no senere in a Church systen (except, perhaps, informally). Even un-

mixed recursive type equations are problematic because the types in such e

eyetem do not constitute a domain.

Our approach is to incorporate all the objects and data type together

in a single unified domain. Any element of the resulting donain then has

two roles:
(i) it is a data object, at which functions can be defined'

including of course functions which are least fixed points

of recursive definitions;
it is the jag of a1I objects which approximate it; the

'aesertions It x E Jr tt, It x is of type y tt and rrany

object of type x is of type y rf are therefore all
equivalent.

(ii)

Given an initial donrain D of data objects' and a collection of

intuitive data type', we form a new donain 0 (rhich we will calt a tJpe

extension of D) by adding the types as new data objects in the sense of

(i). The extended I relation on 6 is determinedby the equivarence in

part (ii): a type object is placed above the data objects of the type in

question, and above al1 its subtypes (so that
=

orders types by incru-

sion).

For exanple, if our originat (untyped) domain contains the real nunbers'

the truth values, and I (ordered as a flat domain), ild if we are inter-

ested in the types eveninteFer, oddintegerr]nteger, 4t boolean

and the universal type u, we get the following extended domain:

boolean
/\/\

eveninteAer

I

-2tt ff 4
I

I
J

Our system, unlike moet othersr does not associate particular types with

elenents of Dr and so a question like [what is the type of 2t| j's meaning-

less in our eystem. The relation E 'lets us answer only questions of

the forn ltis x of type y?tt. For exanple, the assertions rr 2 is of type

j!g," , " 2 is of type r.9,3L ", " !.g99ggl is of type real " and " J
is of type 2 rrare all true in 6. Note that the least element I is of

all typee, and that everything is of the universal type U'

Monotonic functions over the original domain D can be extended to

monotonic functions over 6 in many wayso Of particular interest are the

tightly extended functions (i.e. the least monotonic extensions) whose defi-

nitions are usually clear. For example, the tight extension of addition

-2-

/a(with t as above) Yielde

2+J=J
integer +1= inteFer

inteser+sjll=Xg
interer+tTsIStaI

oddinteser + gggiSjgggt = ggiglggg1'

certain functione in iir6l (the space of monotonic functions fron

; to 'i with the standard ordering) play the sane role as the type objects

added to D, 1.e. tbey embody intuitive types. Given x and y in 6

we define the a*ow function *+y to be the following eleraent of C0t6: t

l,z if zEx Lhet Y 9!g u '

This function naps objects of type x into the object y itself' and all

other objects into the object u. It is easily verified that for any f
.^

in tiltol, the following are eguivalent:

(i) f E*'v;
(ii) r(x)EYi

(iii) tzzCx { f(z)fr.
Thue x'y represents the set of functione whichr given an object of type x

as the argunent return an object of type y as the result'

For exanple, integerrreaL repreeents those functione which yield a
A

a real number when 6"iven an intc6cr. It lies (in tD{Dl) above intefer>

inteFer vhich in turn lies above real+lnleEr'

one of the nore important properties of the proposed systen is that

type properties of least fixedpointa of recursive definitions can be de-

duced fron the values of the leaat fixed pointe of appropiately extended

definitions.

More precisely, Iet r be a term, Iet b be a sequence of operations

over D and let ,b be the functional napping [D+D] into itself defined

by using b to interpret the baee fqnction syubols (such as rr+tr) occuging

in T. Then the least fixed point f of Tb can be considered as the

Ineaningr of the recureive progren F (= f[F]. Now]et I be forned by

nonotonically extending the operations of b to operations over D (e'g'

as addition uaa extended in the above exanple) and let T6 be the corr€a-

ponding functional mapping Cil6: into itselfr with least fixed point f'

-'t -

Then under certain conditions it can be shown that i is a monotonic ex-

tension of fr and thus information about the behaviour of f on the pos-

sibly infinite number of objects of type x can be deduced fron the single

value f(*). For exanple, if f(:.rrt"g"t) = reall and if i is a genuine

integer, then i tr inteser and so ftil E real by monotonicity. But

f̂ti) is equal to f(i), and so the latter must be a genuine real nunber

(or l).

In our syetem, at1 type properties of functions are expressed as in-
equalities (inclusions). In order to show that the least fixedpoint UTU

of the functional tt has certain type properties we show that Ur6 C g

for a euitable combination I of arrow functions. Such inclusions can

can often be handled by Parkts fixedpoint methodr i.e. by showing that
t6(t) E g . This check can be performed by direct evaluation of t6(S)

and does not require an inductive proof.

Parkrs method is sufficient for many simple recursive definitions
and properties, but it is too tuniformt for most treal lifer cases. In
order to analyse type properties of more complicated recursive definitionst
one muet proceed by case analysis. For exanple, in order to show that HTU

maps integers to strings, it may be necessary to consider separately the

values of UTt over natural numbers and over negative integers. Our adap-

tation of Park's nethod cannot handle such proofs by case analysisr and we

therefore develop a stronger variant of the method for use in such proofs.

An additional advantage of having a single unified domain is that re-
cursive definitions of objecte and types are handled in the sarne way. Sone

interesting possibilites can be realised by adding paraneters to recursive
definitions that rnix objects and types. Consider, for example, the follow-
ing type-generating recursive definition:

S(x,n) = if n(O then nil else xrS(xrn-1)

(yhere t is string concatenation). Then over an appropriate donain,

S(booleanr]) represents the type consisting of strings of booleans of
length 3, S(Ur5) represents the type of strings of arbitrary elenents

of length 5, and S(Orinteger) represents the type of strings of Ofs of
arbitrary length.

Another intereeting possibility is the use of type objects to handle

erors and exceptional situations. These new objects are essentially error
messages, and they may have an internal structure giving various degreee of

information about the nature of the error. For example, the general type

error may be above the typee divisionerror' g!lg' g!g9glPg,!9lt
and donainerror. The type subscripterror can itself be above glgllg3g.
and notinteRer. the last would also be located below the general

douainerorl which would be the result of meaninglees combinations such as

J+lt.

We can also have unions of standard (error-free) types and eruor mes-

sageB, which play the role of warning messagea. The distinction between

errors, uarnings and emor-free types is demonstrated by the identities:

integer/positive inteFer = rational
intecer/O = divisionerror

interer/inteser = rational U ct].vlsronerror

The last identity is a warning (which could be issued during type checking)

that division of an integer by an integer gg lead to an error.

We now procced to the formal development of the system just outlined'

together with more detailed examples. Because space is limited some proofs

will be omitted and others only outlined.

1. The Construction of 6

By a domain we mean a partially ordered set D such that

(i) D has a least elementl

(ii) any directed set of elements of D

has a least uPper bound.

uill use r$rrr ttlDt,, t,UDt' and tt$t to denote the ordering on Dt

Ieast element of D, the lub and the glb operations over D, respectively.

subscript D will be omitted when no confusion is likely.

By a data !1g over D we mean a nonempty subset x of D such that

(i) x is closed downwards, i.e. if do and dt are

in D' and if do E d,,, then d,,€x impliee do€x;

(ii) x is closed under lub, i.e. is s is a subset of x

and is a directed subset of D' then LIsex.

Sete with these properties are also called !!g}g.

We

the

The

-r-

C1aseical examples of types are the eets of all integers' of all realsr

of all strings, and so on. In addition, for purposes of type checkingl we

rnay consider unusual types such as rfintegers greater than or equal to 91rr or

I'strings of Ofs and 1ts onlYrf.

Not every set is a typei our methods require (i) and (ii) as above. In

particul,ar, J must be an element of every type and so the set of defined

integers; for examplet is not a type.

With every element d of D is associated the type a defined as

forlowst
e=(d,:d,Eai,

i.e. a is the set of all elements which approximate d.

The expanded domain 6 is forrned by adding (in effect) a collection of

types to D. Not any collection wiII do, however. By a.LYE Si@ over

D we nean a collection T of types over D satisfyin$ the following

conditions:

(i) ier whenever d€D;
(ii) the universal type U' the set of all

elements of Dr is in T;

(iii) the set intersection of the types in any

nonempty subcollection of T is again in T.
,\

The domain D is the set T together with set inclusion as the order.

ry I. For any domain D and any type structure T over D,
A

if D=(Ttc) then

(i) 6 is a complete lattice (and therefore a domain);
-A(ii) 1 is the least element of D;

(iii) lor rr,, do, dl in D' 'doEodr iff 6oEpdr;
(iv) if s is a trUairected subeet of D and e = Lb6l

then (i : d€s) is a tr 3 -directed oubset and 6 is
.A
its D-Lub.

Thus 0 contains an isomorphic copy of Dr and so can be considered an

extension of D (and we will often treat it as such).

-6-

property (iv) is particularly important when least fixedpoints are dis-

cussed because we do not want ihe structure of lubts in D to be changed in

fi. Note, however, that if s is an arbitrary nondirected set with a lub x

in Di then the lub in 6 of the corresponding subset of ij may not be i.
Note also that T may contain some sets whose sole purpose is to fill in the

gaps in the intersection structure of the elements of D.

A given domain may be extended in many waysr One way is to let T be

the collection of all possible data types over the domain in question. In

nost cases this turns out to be a highly undesirable extensionr since its
structure is so rich as to become unmanageable (for example' it may be extremely

difficult to extend a given operation). In practice, smaller extensions are

easier to handle than larger ones, and i.t seems best to restrict added types

as far as poesible to those actually needed.

2. Function Domains

The syetem developed in this paper is in a aense rrdata type free'r but not

'rfunction type freerr 6ince we preserve the separation between function domains

of different orders (e.g. between D and [DtD]).]-or the sake of simplicity

we consider only functione of a single argument; the extension to multiargument

functions presents no difficulty.

If D and E are any two domains, yre define tOtnl to be the collection

of aII monotonic functions from D to E,
,
together with the usual (pointwise)

ordering. That [D+E] is a domain is easily verified.

A function i in 1616l is
e = f(d) implies 3 = r(d) 'for

[D+D] is an extension of one in

an €xtension of a function f in [DtD] iff
any d arid e in I). Not everY

tO.O1; those that aret we caII
function in

conservati-ve.

A function I in [pto] is said to be !ig!! iff

s(:g) .=dU g(d)

for any x in 6. In other wordsr a tight function is determined by its
values over D. For exampte, if I is tight (irnd 0 is as in the introduction)

then g(integer) must be the 1ub of g(O)t g(t)' S(-1)' ..o . Given a function
A

h in ip+l we define the tightening h of h as follows:

fr(x) =#x h(a)

for any x in D.

-7-

THEOREIII II. For any h in [U+O] :
A

(i) t is the leaet function in [UO1 which aSrees

with h on D;

(ii) [is a tight function;
(iir) h is tight iiff h = f,.

Given any f in tD+Dl, we define the tight extension I of f in

tD$l as follous:
r(x) =#x f(a)

for any x in D. The tight extension of a function is that extension rhicht

in a sense, adds no neu poseibilities not already inherent in the function

itself. If, for exanplee f(i) = O for every integer if then l(interer)
nust alao be O.

TttEoRn'l III. For any f in [Uro]:

(i) f ie a tight function;
(ii) 7 is the leaet extension of f;

(iii) I = I for any extension f (to til6l) or f.

It might seem that nontight functions serve no purpoeer and could be

eliminated. There are three reason6 why thie is not the case:

(i) the composition of tight functione may not be tigttt;
(ii) the tight extension of a given function nay be very

conplex, while at the eane time sinple and adequate

nontight extensione exist;
(iif) the leaat fixcdpoint of tg nay not be tight' even

though 5 consiste of the tfgbt ertcnaions of thc

functione of b.

Finallys ue ehould nention why we define tD+8.l to consigt of all trotlo-

tonic functlons froo D to Er and not Jurt the continuou8 oll€8. Thc reason

is that it ia poseible to flnd exanplee of a donain Dr e typ. Grtsnsion 6

of D and a contl.nuous firnction f fro D to D rhich can not be ertcndcd

to a continuoue function fro 6 to 6. It ie poaeiblc that rcetrictln6 thc

notions of doain and type cxtonsion rould ellninate thia difficulty.

-8-

t. Arrow Functions

We now investigate more closely the properties of the arrow operator defined

in the introduction. Our first result justifies the claim that)ely represents

those functions which, given a'rr argument of type x, return a result of type ;l.

TliEoREM Iv. For any x and y in 6 and any h in fitfif , the follow-

ing are equivalent:

(i) h=
(ii) h(x)

(iii) h(z)
v
y whenever z C_ x

x+X

E
E

The anow operation is increasing in y but decreqellqg in x.

THEOREM V. For any xr xt' y and y'

if xr E x and y E y' then x+J f

in D:

xt-yt.

This brings out the crucial difference between the arroht operation and the

function domain constructor. The domain tD.E] is the collection of all mono-

tonic functions fron D to E, and the larger are D and Er the larger is

tDtEl. But the functions below py are functions which' given something in
x, return something in 1r. Increasing x makes the condition h t- x-ry more

restrictive, and decreasing it makes it less restrictive, because h f- *y says

nothing about nhat h does to argunents not of type x. Our arrow operation is
similar to Yeungrs construct (see [J]), but Scottrs arrow operation on retracts [4]

is really a domain construction operation. Of courset it is only the fact that

one type can be a oubtype of another that brings about this distinction; in most

systems, being of type x-ty is the 6ame as being an element of the domain [x.y1.

Compound function types can be formed by n-ing together (tat<:.ng glb's of)

arrow functions, and these combinations obey certain intuitively plausible rules.

THEoREl,M. For any xr xr, Jr y' and z in f't

(i) x+y l-t Jr+z f ,vrz
(ii) rry n x'ty' f_ (xnx') '+ (yny').

Thus Fl acts very much as would set intersection in a set based systemt

such as Yeung,s (indeed his has much in common with ours). On the other handt

LJ r since it works pointwise, is very different from set union; in factr unions

-9-

of arrow types give nothing new' because

(*t) U (x'+y') = (xnx') + (y [J y')

for gg;1 xt xt, Yr Yt.

Of special interest are compound types which result from splitting an

arrow type into case6. More precisely, a ggg analysis of the anow function

x+y is a function of the form

(xo+y) f-l (x,-y) fl ... 11 (xrr_,,,'rl)

such that the type x is the eet union of the types xot xl' o.. '
exanple, eveninteger>re4l n oddintegerrregl is a case analysis of

g!. Note that these last two functions are not equal; the first
to integer gives Uf whereas the second gives g!. If I is a

of FJ, it can be shown that x+y f I and that 1-y = !.

x ^. ForD-l
integep

when applied
case analysis

Our careful distinction between a function and its case analysis may seem

pointless to those who think about types in terns of sets. But as it turns

out, it is exactly the lack of such distinctions which inhibits proofs by case

analysis in simple type checLin6 eystemo. A special rule which handles the

problem will be developed in section 6.

4. Recursion Over the Extended Domain

We now give more details about the relationship between the meanings of

recursive prograrns interpreted over D and over f. As in the introduction,

we assume that T is a term in some pure recursive prograrnnring language (we

wiII not go into details on this point) and that we are interested in the

recursive program

F = r[F]

For exanplet if r is the term

),n if n(1 then 1 else o(F[n-1]

we are dealing with a progtan for the factorial function. In this exanplet

the base function slrnrbols are t!!-then-@', rr<rfr rXrr and rr-rf.

Our moet inportant result is that the

fined in the introduction) is an extension

We prove first the following result to the

an exteneion of Tb.

Ieast fixed point of r€ (as de-

of the least fixedpoint of Tb.

effect that Tt is' in a senset

-10-

LEMMA I. For any domain D, any type extension 6 of D' any term

r, any sequence6 b and 6 of operations over D and 6 respectively, and

any element g of tD+Dl with extension A in fitit t

16(6) is an extension of ro(8).

PRooF.(sketch).LetdbeinD.Thenintheprocessofevaluating
r6te)td), the extra elements added to D will never arise; thus the evaluation

oi r"(i)(d) will be completely analogous to that of r,(g)(d)' so that if the
o- o-

result of the latter is €1 the result of the former wiII be 6'

COROLLARY I. Let Tr bf t, I and A be as above, and let 6 be the

aequence of tight extensions of the operations in b' Then

"6Gt = ro(s) r- r5(E) E rrt0) E ti(!).
f and h are in tDrDl and fi*tf respectively, then h

f iff iErr.
Note that if

is an extension of

THEoRn"{ VII. Let D' 6', t, b and G be as in the previous lemma'

Then the least fixedpoint of T6 is an extension of the least fixedpoint of

Tb'

PROOF (sketch). Let fO =).x lO and for any positive ordinal E let
r - Ll ,r (t): define the oequence i; analogously. Then a simple induction
'E - vG 'b'^v" ,^ 5

o" $ shows that t is, for each Er an extension of tg. Since the two

Ieast fixedpoints arl the limits of the respective sequencest and since the

D-rub ana 6-ruu structures over D are simirarr our result forrows. The only

complication is that since the functions involved may not be continuou6' we

must consider infinite as well as finite ordinals'

The following corollary justifies our approach to type checkingl as

described in the next section.

A

COROLLARY I. Let Dr Dr b and b be as before, Iet x and y
^ types in t and let f and f be the least fixed points of tb and

/\
respectively. If either

-f
E *-y or i C- x-y then f(d) e y for any

in xo

There is also a refinement of theorem vii analogous to that of lemma i'

be

d

COROLLARY II. Let r1 br 6 and 6

ur6 = uib tr ur5 E

be as above. Then

IJT6.

-11 -

5. Type Checkins

In our system, type checking the recursive program F = t[F] is reduced

to proving an inclusion of the form

*a
=

(xo'+Vo) l*l (x,-rY1) n ... n (xrr-tJrr)

and, as we Bau in the last section, it is sufficient to prove the weaker version

in which UT6 replaces ilr'. For exanple' suppose that our progTam is

F(n) = if n=O then O else 3><F(n-1) r

and that we vish to show that its least fixedpoint maps even integers to even

integers and odd to odd. Then we must show

UTt E (evenintegerreveninteger) n (oddinteger>oddintpser).

The important point is that type checking is now just a case of the general and

weII studied problem of proving assertions about least fixedpoints, and so we

have at our disposal several useful methods.

One of the simplest of these is direct evaluation: we evaluate each term

F(x.) (usine the standard eubetltutioh/simplificationrnethod) and try to obtain
t-

something below the correeponding yi. Sonetimes this results in a set of n+1

nutually dependant equations for f(x.), F(xr), ... , F(xrr), which can be solved

by computing successive approximations. For exarnplet with the progran given

above, direct evaluation givee the equations

F(eveninteger) = o U]xF(oddinteger)+1
F(oddinteeer) = lxF(99!9gg)+1

and the approximations settle down after five steps to the pair of values

F(eveninteser) = g|g$!' f(@,) = 9@..

parkrs method is also (as was mentioned in the introduction) quite useful.

For the prograrn given above, we muot show 16(g) E S where I is the function

eveninteRer.+eveninteFer n oddinteger+oddinteger. This is equivalent to showing

the two inclusions
Ti(eveninteger) tr evenintegerb-
TS(-oaai"t"g"t) E oddinteger.

These calculations are straightforwardt e.g.

rr.(e)(eveniirteger) = i! eveninteger=O then O else 5xg(9g!Sg-1)+1o -
= if boolean then o g}g]xs(gggil!g-1)*1
= O Ll]Xg(eveninteger-1)+1

12

= O lJ Jxg(oddinteser)+1

= O Ll lxoddinteser*1

= O U eveninteFer

=ggi@,I'-

We might at this point comment briefly on a peculiar property of the order-
/\

ing on 'tjt the (vaguely defined) notion of 'rannount of informationrrchanges in

two opposing directions. If * E y in fi, then y is a more defined data

object than x, but a less precise (larger) type. In particular, the most

defined object, U, gives the least type information - none at all.

It might seemr then, that it would be a good idea to change the definition

of 'D by placing the types below the appropriate data objects (Iet us call this

alternative domain b). fhis is possible, and the analogs of the theorems we

have proved so far are also valid; in particular, the least fixedpoint i of

Tv is a monotonic extension of f. But the problem is that in most cases i
ov

givee us no type information at all, because f applied to any type is simply

J (ttris is thecase rtththe example given above). The reason we use b instead

of n is that for the purpo6e6 of type checking, we want the $! fixedpoint

to draw out the maximum type information from the progran - and this is possible

because k orders types by set inclusion.
-t)

5. Case Analysis

The type checking methods just discussed faII down when some sort of anal-

ysis by cases is required. As a very simple example, consider the following

proSran

F(n) = if n=O then n eLse

and suppose that we are trying to show that f applied

is futile to try to show that I is of type integer0
/\.\
f(integer) is integer (with D and D as in the

with least fixedpoint ft
to any integer is O. It
because it is not true:
introduction).

Now

and that

The right hand side is a

integer+O; thus

4
suppose that D has an extra type nonzerointeger (abbreviated nzi)

nzi=O is ff. Then simple calculation will show that

i r toro) (nzi-ro).

case analysis of integer*+O, and so its tightening i.s

f f integer'+O

and from this we can conclude that f applied to any integer is O.

-1t-

This type of case analysis extende the power of the system, but it usually

breaks down for more realistic, genuinely recursive programs. consider the

following program defining a function which flattens binary trees into strings:

p(u) = if isatom(u) u glg r(Ie.,{!(u)) *F(rieht(u)).then

Assume that the domain D has binarY

strings of atoms, that b interPrets
I'gigg'r and the predicate tt$!13q'' in

We are trYing to Prove that the

trees into stringF. If we construct

trees (some of which are atoms)

rrttr as string concatenationt and

the usual waY.

and
rrlef til r

strin* (and define
.i

appropriately) we will fail for reasona similar to those

in the previous example. But even if we add two more types, atom and nonatomt

both below @' and let

I = (atotlpstring) n (nonatornrstring)

we will sti1l not succeed. If we use Parkrs method, the evaluation of the

expression 16(S) (nonatom) gives us g(tree).S(iIg) and since g(tree) = U,

the result is U.

Neverthelees, it is still true that ? C- S and, as we have seenr this is

really aII we need. Fortunately, there is a variant of the Park fixedpoint

induction rule with which we can prove inclusions of, the form FrO ! S with-

out actually determining [n.
A

THEOREI{ VIII. Let D, D' T1 b

and let I be anY element of iil6: '

Ieast fixedpoint f of this program takes

6 simply by adding the types tree and

,\
and b be as in the previous theoremst

Then

ro([)Ee inplies *o=t
FROOF (sketch). For any ordinal $ define fe as in theorem vii' We

prove by induction on $ that i, E S.

The base step is straight foiward. Now let B !" a positive ordinal and

Iet \xq. By induction ne have i.' f- g' Thus i = i' tr E and so t6(iu) E

rc(E) f s. ,nt" ;;;r;;" tB--V
="*= ""u ffi,"= \q-i by coroirarv ii or

o-
theorem vii. Thus lrr*,' E U and since this is true of every v less than B'

we can conclude that f, E S. Our result follows easily.

we illustrate the method on our tree flattening example. since the function

S as defined above is a case analysis of -trgg+glfiJgg' we have [= treerstrinn'

Thus we need onIY show that

r6(.g+e!rl3g,) tr- (e!ortEgi-g8') (nonatorrrstrins)'

-14-

This is equivalent to showing that

rc(lree1slfine.) (atom) f strinq
rg(tree+Slr.ilg) (nonatom) f strinn

and the calculations are straight forward. With this method, as weII as with the

ordinary Park method, its actual use involves no induction.

As another example, consider the program

F(n) = if n>1o0 then n-1O else F(F(n+11))

for the well known 91-function. If 0 contains the type i'nteger and also the

types Aeal (of integers greater than or equal to 91), er1@ (of integers

greater than 1OO) and IeIOO (of integers less than or equal to 1OO) then our

method ehows that
f f inteseF&eq1

using the caee analYeis

(xr1oo+eeal) n (tetootgegl).

A natural question concerning thie method is how to find the appropriate par-

tition of a given type into complementary subtypes. Our experience indicates that

the teets of the if-!@-#.ts are a good guide'

AcknowledRements

We would like to thank Robin Milner and Lockwood Morris for a very useful

discussion which provided the original inspiration for this work. The research

was financed in part by a grant from the Science Research Council of the United

Kingdom.

References

1. R. Milner, L. l,torris and M. Newey, "A logic for computable functions with
reflexive and polymorphic typesrr, proceedings of the Symposium on Proving
and Improving Programs' Arc et Senans 19?5, pp171-194'

Z. A. Church, ItA formulation of the simple theory of types'r, Journal of Sym-

bolic Logic, v5 (1940)' PP55-58.

,. H. K. F. Yeung, "Type checking systems with particular application to
functional languagestr, PhD thesis, Royal Holloway College, University of
London' 1976.

4. Dana Scott, 'fData types as lattices", SIAM Journal on Computing, v! ?976),
ppJ22-J87.

-1r-

