THE UNIVERSITY OF

WARWICK

Original citation:
Shamir, A. and Wadge, W. W. (1977) Data types as objects. Coventry, UK: Department
of Computer Science. (Theory of Computation Report). CS-RR-020

Permanent WRAP url:
http://wrap.warwick.ac.uk/46319

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/46319
mailto:publications@warwick.ac.uk

The University of Warwick
THEORY OF COMPUTATION
~ REPORT NO. 20

NATA TYPES
AS
OBJECTS

BY

ADib SHAMIR
WiLLiam W, Wapce

Department of Computer Science
University of Warwick

J .
COVENTRY CV4 7AL e 1977
ENGLAND.

DATA TYPES AS OBJECTS

Adi Shamir
Mathematics Department
MIT

Cambridge, Mass. USA

William W. Wadge
Computer Science Department
University of Warwick

Coventry, UK

Abstract

In this paper we present a new approach to the semantics of data types,
in which the types themselves are incorporated as elements of the domain of
data objects. The approach allows types to have subtypes, allows genuinely
polymorphic functions, and gives a precise semantics for recursive type
definitions, including definitions with parameters. In addition, the approach
yields simple and straightforward methods for proving type properties of

recursive programs,.

A slightly revised version of this paper appears in the proceedings of
the Fourth International Conference on Automata, Languages and Programming

(ICALP), held in Turku, Finland, 18-22 July, 1977. cuee e]

¢
4

0., Informal Introduction

Most current type systems (e.g. that of LCF, as in [1]) are based on
A. Church's 1940 paper, "A simple theory of types" ([2]). In these systems
there are a number of unrelated ground data types and an an arrow operation

for forming function types of finite level.

The first problem with such systems is that each data object must have
a unique type. Thus integers, for example, cannot be considered as a spec-
jal case of real numbers, and in general one type cannot be a subtype of

another.

A second problem, related to the first, is that polymorphism is not
possible; each argument of a function must be of some specified single type.
For example, we cannot have a single addition operation capable of adding
both reals and integers; instead, we need four functions of various types
for the various possible combinations. Especially serious is the lack of

a general jif-then-else conditional whose domains are left unspecified.

The third problem is that in a Church system there are in fact two
'‘meta'-types, namely types and data objects, which cannot be mixed together.

For example, the intuitively true identity

eveninteger + 1 = oddinteger
relating the types eveninteger and oddinteger and the data object 1

makes no sense in a Church system (except, perhaps, informally). Even un-
mixed recursive type equations are problematic because the types in such a

system do not constitute a domain.

Our approach is to incorporate all the objects and data type together
in a single unified domain. Any element of the resulting domain then has
two roles:

(i) it is a data object, at which functions can be defined,
including of course functions which are least fixed points
of recursive definitions;

(ii) it is the type of all objects which approximate it; the
"assertions " xLC y ", " xis of type y " and 'any
object of type x is of type y ' are therefore all

equivalent,

Given an initial domain D of data objects, and a collection of
intuitive data types, we form a new domain 6 (which we will call a type
extension of D) by adding the types as new data objects in the sense of
(i)« The extended C relation on 6 is determined by the equivalence in
part (ii): a type object is placed above the data objects of the type in
question, and above all its subtypes (so that L[orders types by inclu~

sion).

For example, if our original (untyped) domain contains the real numbers,
the truth values, and | (ordered as a flat domain), and if we are inter-

ested in the types eveninteger, oddinteger, integer, real, boolean

and the universal type U, we get the following extended domain:

U

AN

real
inteég:/
/\
boolean eveninteger oddinteger
<L\
dobe 4

|
-2 2 2 cee 2eD eee € eae T ...

Our system, unlike most others, does not associate particular types with

elements of D, and so a question like 'what is the type of 2" is meaning-
less in our system. The relation E_ .lets us answer only questions of

the form "is x of type ¥?". For example, the assertions " 2 is of type
integer", " 2 is of type real ", " integer is of type real " and "

A
is of type 2 " are all true in D. Note that the least element 1l is of

all types, and that everything is of the universal type U.

Monotonic functions. over the original domain D can be extended to
A
monotonic functions over D in many ways. Of particular interest are the
tightly extended functions (i.e. the least monotonic extensions) whose defi-

nitions are usually clear. For example, the tight extension of addition

A
(with D as above) yields

2+ 3=D5
integer + 3 = integer

integer + real = real

integer + T = 525;
oddinteger + oddinteger = eveninteger

A A
Certain functions in [D»D] (the space of monotonic functions from
A A
D to D with the standard ordering) play the same role as the type objects
added to D, i.e. they embody intuitive types. Given x and y in ﬁ

we define the arrow function x2y to be the following element of [D»D]
Az if z £ x then y else U .

This function maps objects of type x into the object y itself, and all

other objects into the object U. It is easily verified that for any f
A A

in [DeD], the following are equivalent:

(i) fC »y ;
(ii) f(x)E y s
(iii) ¥2zCEx = f(z2)Cy.

Thus x»y represents the set of functions which, given an object of type x

as the argument return an object of type y as the result.

For example, integer-real represents those funct1ons which yield a

a real number when given an integer. It lies (in [D»D]) above integer—
integer which in turn lies above real-integer.

One of the more important properties of the proposed system is that
type properties of least fixedpoints of recursive definitions can be de-
duced from the values of the least fixed points of appropiately extended

definitions.

More precisely, let T be a term, let b be a sequence of operations

over D and let T, be the functional mapping [D»D] into itself defined

b
by using b to interpret the base function symbols (such as "+'") occurring

in T. Then the least fixed point f of T, can be considered as the

'‘meaning' of the recursive program F <= 7(F]. Now let b be formed by
Pal

monotonically extending the operations of b to operations over D (e.g.

as addition was extended in the above example) and let Ty be the corres-

b
ponding functional mapping [D»D] into itself, with least fixed point f.

~r
Then under certain conditions it can be shown that f is a monotonic ex-
tension of f, and thus information about the behaviour of f on the pos-
sibly infinite number of objects of type x can be deduced from the single

value f(x). For example, if f(integer) = real, and if i 1is a genuine

A
integer, then i C integer and so f(i) C real by monotonicity. But

?(i) is equal to f(i), and so the latter must be a genuine real number

(or |).

In our system, all type properties of functions are expressed as in-
equalities (inclusions). In order to show that the least fixedpoint uTb

of the functional . has certain type properties we show that uTSEE g

b
for a suitable combination g of arrow functions. Such inclusions can
can often be handled by Park's fixedpoint method, i.e. by showing that
T¢(g) E g . This check can be performed by direct evaluation of Te(g)

and does not require an inductive proof.

Park's method is sufficient for many simple recursive definitions
and properties, but it is too 'uniform' for most 'real life' cases. In
order to analyse type properties of more complicated recursive definitions,
one must proceed by case analysis. For example, in order to show that HTy
maps integers to strings, it may be necessary to consider separately the
values of “Tﬁ over natural numbers and over negative integers. Our adap-
tation of Park's method cannot handle such proofs by case analysis, and we

therefore develop a stronger variant of the method for use in such proofs,

An additional advantage of having a single unified domain is that re-
cursive definitions of objects and types are handled in the same way. Some
interesting possibilites can be realised by adding parameters to recursive
definitions that mix objects and types. Consider, for example, the follow-

ing type-generating recursive definition:
S(x,n) = if n<O then nil else x*S(x,n-1)

(where * is string concatenation). Then over an appropriate domain,
S(boolean,3) represents the type consisting of strings of booleans of
length 3, S(U,5) represents the type of strings of arbitrary elements
of length 5, and S(O,integer) represents the type of strings of O's of
arbitrary length.

Another interesting possibility is the use of type objects to handle
errors and exceptional situations. These new objects are essentially error

messages, and they may have an internal structure giving various degrees of

information about the nature of the error. For example, the general type

error may be above the types divisionerror, overflow, subscripterror,

and domainerror. The type subscripterror can itself be above outofrange
and notinteger. the last would also be located below the general ‘
domainerror, which would be the result of meaninglees combinations such as
3 + tt .

We can also have unions of standard (error-free) types and error mes-
sages, which play the role of warning messages. The distinction between

errors, warnings and error-free types is demonstrated by the identities:

integer/positive integer = rational

integer/0 = divisionerror

integer/integer = rational Ll divisionerror

The last identity is a warning (which could be issued during type checking)

that division of an integer by an integer may lead to an error.

We now proceed to the formal development of the system just outlined,
together with more detailed examples. Because space is limited some proofs

will be omitted and others only outlined.

N
1. The Construction of D

By a domain we mean a partially ordered set D such that

(i) D has a least element;
(ii) any directed set of elements of D

has a least upper bound.

s ' " " n " " ey 1t :
We will use Ci). lD ’ LJD and Fb to denote the ordering on D,
the least element of D, the lub and the glb operations over D, respectively.

The subscript D will be omitted when no confusion is likely.

By a data type over D we mean a nonempty subset x of D such that

(i) x is closed downwards, i.e. if dO and d, are
in D, and if dO E_d1, then d1€x implies do€x;
(ii) x is closed under lub, i.e. is s is a subset of x

and is a directed subset of D, then LIs€x,

Sets with these properties are also called ideals.

Classical examples of types are the sets of all integers, of all reals,
of all strings, and so on. In addition, for purposes of type checking, we
may consider unusual types such as "integers greater than or equal to 91" or

"strings of O's and 1's only".

Not every set is a type; our methods require (i) and (ii) as above. In
particular, l_ must be an element of every type and so the set of defined

integers, for example, is not a type.

With every element d of D is associated the type d defined as

follows: -
d={(4d' :4da'E a4},

i.e. d is the set of all elements which approximate d.

A
The expanded domain D is formed by adding (in effect) a collection of

types to D. Not any collection will do, however. By a type structure over

D we mean a collection T of types over D satisfying the following

conditions:

(i) d €T whenever d € D;
(ii) the universal type U, the set of all
elements of D, is in T;
(iii) the set intersection of the types in any

nonempty subcollection of T 1is again in T.

A
The domain D 1is the set T together with set inclusion as the order.

THEOREM I. For any domain D and any type structure T over D,
if D= (T,&) then

”~
(i) D is a complete lattice (and therefore a domain);

(ii) | is the least element of 6;
or 4, in D, 4 Cpd, iff dy Epdys
(iv) if s is a ED—directed subset of D and e =l)s,

(iii) for any d

then {d : dés } is a [_:_ﬁ-directed gubset and e is
its ﬁ-lub.

Thus ﬁ contains an isomorphic copy of D, and so can be considered an

extension of D (and we will often treat it as such).

Property (iv) is particularly important when least fixedpoints are dis-
cussed because we do not want the structure of lub's in D to be changed in
B. Note, however, that if s is an arbitrary nondirected set with a lub x
in D, then the lub in B of the corresponding subset of 3 may not be X.
Note also that T may contain some sets whose sole purpose is to fill in the

gaps in the intersection structure of the elements of D.

A given domain may be extended in many ways,‘ One way is to let T be
the collection of all possible data types over the domain in question. In
most cases this turns out to be a highly undesirable extension, since its
structure is so rich as to become unmanageable (for example, it may be extremely
difficult to extend a given operation). In practice, smaller extensions are
easier to handle than larger ones, and it seems best to restrict added types

as far as possible to those actually needed.

2. Function Domains

The system developed in this paper is in a sense ''data type free' but not
"function type free" since we preserve the separation between function domains
of different orders (e.g. between D and [D»D]). For the sake of simplicity
we consider only functions of a single argument; the extension to multiargument

functions presents no difficulty.

If D and E are any two domains, we define [D#E] to be the collection
of all monotonic functions from D to E, together with the usual (pointwise)

ordering. That [D#E] is a domain is easiiy verified.

”~ A
A function f 1in [ﬁaD] is an eéxtension of a function f in [DoD] iff

e = f(d) implies e = f(d) for any d and e in D. Not every function in

A A
[D»D] is an extension of one in [D»D]; those that are, we call conservative.

‘A function g in [D9D] is said to be tight iff

g(x)_=dg& g(d)
for any x in. D. In other words, a tight function is determined by its
A
values over D. For example, if g is tight (and D is as in the introduction)
then g(integer) must be the lub of g(0), g(1), g(=1)y ees « Given a function

’~ N -
h in [DD] we define the tightening h of h as follows:
h(x) =é€& h(d)

for any x in D,

~ AN
THEOREM II. For any h in [D9D]:

(i) h is the least function in [B»S] which agrees
with h on Dj;
(ii) h is a tight function;
(iii) h is tight iff h = h,

Given any f in [D»D], we define the tight extension T of f in
[ﬁ+6] as follows:
f(x) =4k £(d)
for any x in B. The tight extension of a function is that extension which,
in a sense, adds no new possibilities not already inherent in the function
jtself. If, for example, f(i) = O for every integer i, then I¥(integer)
must also be O.

THEOREM III. For any f in [D#D]:

(i) T is a tight function;
(ii) ? is the least extension of f;
(iii) T = # for any extension £ (to [DWD]) of f.

It might seem that nontight functions serve no purpose, and could be

eliminated. There are three reasons why this is not the case:

(i) the composition of tight functions may not be tight;
(ii) the tight extension of a given function may be very
complex, while at the same time simple and adequate
nontight extensions exist;
(i11) the least fixedpoint of T; may not be tight, even
though b consists of the tight extensions of the

functions of b,

Finally, we should mention why we define [D+E] to consist of all mono-
tonic functions from D to E, and not just the continuous ones. The reason
is that it is possible to find examples of a domain D, a type extension 6
of D and a continuous function f from D to D which can not be extended
to a continuous function from ﬁ to D. It is possible that restricting the

notions of domain and type extension would eliminate this difficulty.

%. Arrow Functions

We now investigate more closely the properties of the arrow operator defined
in the introduction. Our first result justifies the claim that x3y represents

those functions which, given an argument of type x, return a result of type y.

-~ A A
THEOREM IV. For any x and y in D and any h in [D»D], the follow-

ing are equivalent:

(i) hC xy
(ii) n(x)Cy

(ii1) h(z) Ly whenever zL x
The arrow operation is increasing in y but decreasing in x.

A
THEOREM V. For any x, x', y and y' in D:

if x'Ex and yLC y' then xyL x"y'.

This brings out the crucial difference between the arrow operation and the
function domain constructor. The domain [D»E] is the collection of all mono-
tonic functions from D to E, and the larger are D and E, the larger is
[D»E]. But the functions below x?y are functions which, given something in
x, return something in y. Increasing x makes the condition h C x>y more
restrictive, and decreasing it makes it less restrictive, because h E_x»y says
nothing about what h does to arguments not of type x. Our arrow operation is
similar to Yeung's construct (see [3]), but Scott's arrow operation on retracts (4]
is really a domain construction operation. Of course, it is only the fact that
one type can be a subtype of another that brings about this distinction; in most

systems, being of type x»y 1is the same as being an element of the domain [xsy].

Compound function types can be formed by m-ing together (taking glb's of)

arrow functions, and these combinations obey certain intuitively plausible rules.

o~
THEOREM VI. For any x, x's ¥y, y' and z in D,

(i) wmyn ypz C xz

(ii) »ynx-y'C (xnx') » (yny').

Thus ™ acts very much as would set intersection in a set based system,
such as Yeung's (indeed his has much in common with ours). On the other hand,

U, since it works pointwise, is very different from set union; in fact, unions

of arrow types give nothing new, because
(xoy) L (xy') = (xmx') » (yL y")

for any x, x's ¥, ¥Y'.

Of special interest are compound types which result from splitting an

arrow type into cases. More precisely, a case analysis of the arrow function

x¥y 1is a function of the form

(xo-ry) m (x,]—)y) N... N (xn ->y)

-1

such that the type x 1is the set union of the types Xpr Xq0 see s x For

n-1°
example, evenintegeroreal I oddintegersreal is a case analysis of integer-
integer

real. Note that these last two functions are not equal; the first when applied
to integer gives U, whereas the second gives real. If g 1is a case analysis

of x?y, it can be shown that x»y L g and that x»y = ge

Our careful distinction between a function and its case analysis may seem
pointless to those who think about types in terms of sets. But as it turns
out, it is exactly the lack of such distinctions which inhibits proofs by case
analysis in simple type checkimg systems. A special rule which handles the

problem will be developed in section 6.

L, Recursion Over the Extended Domain

We now give more details about the relationship between the meanings of
recursive programs interpreted over D and over 6. As in the introduction,
we assume that T is a term in some pure recursive programming language (we
will not go into details on this point) and that we are interested in the

recursive program
F = 7(F]

For example, if T is the term
An if n<1 then 1 else nXF[n-1]
we are dealing with a program for the factorial function. In this example,

the base function symbols are "if-then-else", "<", '"X" and "-",

Our most important result is that the least fixed point of % (as de-
fined in the introduction) is an extension of the least fixedpoint of Tb.
We prove first the following result to the effect that i is, in a sense,

an extension of Tb.

- 10 -

Val
LEMMA I. For any domain D, any type extension D of D, any term
T, any sequences b and G of operations over D and D respectively, and

any element g of [DsD] with extension g in [D»D]:
Tg(g) is an extension of Tb(g).

PROOF (sketch). Let d be in D. Then in the process of evaluating
¢B(§)(a). the extra elements added to D will never arise; thus the evaluation
of Ts(é)(a) will be completely analogous to that of Tb(g)(d), so that if the

result of the latter is e, the result of the former will be é&.

COROLLARY I. Let T, b, b, g and g be as above, and let b be the

sequence of tight extensions of the operations in b. Then

6@ = 7, (8) € 15(@) £ 15(® C (@)

N A
Note that if f and h are in [D®D] and [D®D] respectively, then h

is an extension of f iff T € h.

A 2

THEOREM VII. Let D, D, t, b and b be as in the previous lemma.
Then the least fixedpoint of % is an extension of the least fixedpoint of
'Tb.

PROOF (sketch). Let fy = Ax 10 and for any positive ordinal & let
fg = JZE Tb(fv); define the sequence f§ analogously. Then a simple induction
on E shows that fg is, for each g, an extension of f§° Since the two
least fixedpoints are the limits of the respective sequences, and since the
D-lub and B—lub structures over D are similar, our result follows. The only
complication is that since the functions involved may not be continuous, we

must consider infinite as well as finite ordinals.

The following corollary justifies our approach to type checking, as
described in the next section.

~

COROLLARY I. Let D, D, b and b be as before, let x and Yy be

™ A
types in D and let f and f be the least fixed points of o and 7
respectively. If either ?E x>y or fLC x>y then f(d) €y for any d

in X.
There is also a refinement of theorem vii analogous to that of lemma i.

COROLLARY II. Let T, b, b and b be as above. Then

——
———

HTg = MTy

1
I

MTg = MTE

- 11 -

5. Type Checking

In our system, type checking the recursive program F = 7(F] is reduced

to proving an inclusion of the form
ur. C n n,,.n
uTy c (xo-»yo) (x1->y1) (xn»yn)

and, as we saw in the last section, it is sufficient to prove the weaker version

in which uTB replaces ﬁ?;. For example, suppose that our program is
F(n) = if n=0 then O else 3»F(n-1) ,

and that we wish to show that its least fixedpoint maps even integers to even

integers and odd to odd. Then we must show

MTp E_(eveninteger*eveninteger)l1 (oddinteger»oddinteger).

The important point is that type checking is now just a case of the general and
well studied problem of proving assertions about least fixedpoints, and so we

have at our disposal several useful methods.

One of the simplest of these is direct evaluation: we evaluate each term
F(xi) (using the standard substitution/simplificationmethod) and try to obtain
something below the corresponding i Sometimes this results in a set of n+1
mutually dependant equations for F(xo), F(x1), cee 3 F(xn), which can be solved
by computing successive approximations. For example, with the program given

above, direct evaluation gives the equations
F(eveninteger) = O {1 3xF(oddinteger)+1
F(oddinteger) = 3xF(eveninteger)+1

and the approximations settle down after five steps to the pair of values

F(eveninteger) = eveninteger, F(oddinteger) = oddinteger.

Park's method is also (as was mentioned in the introduction) quite useful.
For the program given above, we must show Tg(g) C g where g is the function

eveninteger-eveninteger r oddinteger—soddinteger. This is equivalent to showing

the two inclusions

Tg(eveninteger) C eveninteger

TS(oddinteger) C oddinteger.

These calculations are straightforward, e.g.

,Té(g)(eveninteger) = if eveninteger=0O then O else 3xg(eveninteger-1)+1

if boolean then O else BXg(eveninteger-1)+1

0 L! 3xg(eveninteger=-1)+1

- 12 =

i

0 1 3xg(oddinteger)+1
0 LJ 3Xoddinteger+1

O LI eveninteger
eveninteger.

We might at this point comment briefly on a peculiar property of the order-
ing on D: the (vaguely defined) notion of "amount of information" changes in
two opposing directions. If xLC y in ﬁ. then y is a more defined data
object than x, but a less precise (larger) type. In particular, the most

defined object, U, gives the least type information - none at all.

It might seem, then, that it would be a good idea to change the definition
of 6 by placing the types below the appropriate data objects (let us call this
alternative domain B). This is possible, and the analogs of the theorems we
_ have proved so far are also valid; in particular, the least fixedpoint ; of
Tg is a monotonic extension of f. But the pioblem is that in most cases ;
gives us no type information at all, because f applied to any type is simply
] (this is the case with the example given above). The reason we use D instead
of 5 is that for the purposes of type checking, we want the least fixedpoint
to draw out the maximum type information from the program - and this is possible

because Es orders types by set inclusion.

6. Case Analysis

The type checking methods just discussed fall down when some sort of anal-
ysis by cases is required. As a very simple example, consider the following
program

F(n) = if n=0 then n else

with least fixedpoint f, and suppose that we are trying to show that f applied
A
to any integer is O. It is futile to try to show that f is of type integers0O
”~ A
because it is not true: f(integer) is integer (with D and D as in the

introduction).

A
Now suppose that D has an extra type nonzerointeger (abbreviated nzi)

and that nzi=0 is ff. Then simple calculation will show that
f C (000) (nzi=0).

The right hand side is a case analysis of integer-O0, “and so its tightening is
integer-»0; thus

£ C integer-0

and from this we can conclude that f applied to any integer is O.

- 13 -

This type of case analysis extends the power of the system, but it usually
breaks down for more realistic, genuinely recursive programs. Consider the

following program defining a function which flattens binary trees into strings:

F(u) = if isatom(u) then u else F(left(u))*F(right(u)).

Assume that the domain D has binary trees (some of which are atoms) and
strings of atoms, that b interprets "*" as string concatenation, and "left",

"pight" and the predicate '"isatom" in the usual way.
rignt isarom

We are trying to prove that the least fixedpoint f of this program takes
trees into strings. If we construct D simply by adding the types tree and
string (and define b approprlately) we will fail for reasons similar to those
in the previous example. But even if we add two more types, atom and nonatom,

both below tree, and let

= (atomstring) N (nonatomstring)

we will still not succeed. If we use Park's method, the evaluation of the

expression Tg(g)(nonatom) gives us g(tree)*g(tree) and since gltree) =

the result is U,

Nevertheless, it is still true that T'E.g and, as we have seen, this is
really all we need. Fortunately, there is a variant of the Park fixedpoint
induction rule with which we can prove inclusions of the form ﬁ?% E_g with-
out actually determining pr.

Ve ”n
THEOREM VIII. Let D, D, 7, b and b be as in the previous theorems,

AN
and let g be any element of [D»D]. Then
Tb(é) C g implies E'Fb Ceg
PROOF (sketch). For any ordinal & define f; as in theorem vii. We
- 2
prove by induction on & that fg C g.
The base step is straight forward. Now let €& be a positive ordinal and
let V<E. By induction we have f C g. Thus f\) = f\) C g and so 'r{)\(-fv) c
TA(g) C g. This implies Tg(f) C g and T (f) = ™ Zf) by corollary ii of
theorem vii. Thus fv+1 C g and since thls is true of every V 1less than §,
we can conclude that fg C g. Our result follows easily.
We illustrate the method on our tree flattening example. Since the function
g as defined above is a case analysis of treedstring, we have g = treesstring.

Thus we need only show that

Tg(tree»string) C (atomsstring) (nonatom»string).

-1 -

This is equivalent to showing that

Tg(treeastring)(atom) C string
Tg(treeﬁstring)(nonatom) C string

and the calculations are straight forward. With this method, as well as with the

ordinary Park method, its actual use involves no induction.

As another example, consider the program
F(n) = if n>100 then n-10 else F(F(n+11))

for the well known 91-function. If 8 contains the type integer and also the
types ge91 (of integers greater than or equal to 91), gr1oo (of integers
greater than 100) and 1e100 (of integers less than or equal to 100) then our
method shows that

f C integer-ge9

using the case analysis

(gr1002ge91) N (1e100ge91) .

A natural question concerning this method is how to find the appropriate par-
tition of a given type into complementary subtypes. Our experience indicates that

the tests of the if-then-else's are a good guide.

Acknowledgements

We would like to thank Robin Milner and Lockwood Morris for a very use ful
discussion which provided the original inspiration for this work. The research
was financed in part by a grant from the Science Research Council of the United

Kingdom,

References

1. R. Milner, L. Morris and M. Newey, "A logic for computable functions with
reflexive and polymorphic types", proceedings of the Symposium on Proving
and Improving Programs, Arc et Senans 1975, pp371-394,

2. A. Church, "A formulation of the simple theory of types", Journal of Sym-
bolic Logic, v5 (1940), pp56-68.

3, H., K. F. Yeung, "Type checking systems with particular application to
functional languages", PhD thesis, Royal Holloway College, University of
London, 1976.

4, Dana Scott, '"Data types as lattices', SIAM Journal on Computing, v5 (1976),

- 15 -

