
http://wrap.warwick.ac.uk/

Original citation:
Wadge, W. W. (1978) Away from the operations view of computer science. Coventry,
UK: Department of Computer Science. (Theory of Computation Report). CS-RR-026

Permanent WRAP url:
http://wrap.warwick.ac.uk/46322

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/46322
mailto:publications@warwick.ac.uk

The University of Warwick

TI{EORY OF COMPUTAI-ION

REPORT NO.26

Al^iAY FRO|vI THE OPERATIONAL VIEl^l OF

CO|\ilPUTER SCIEltCE
BY

l,lILLIAIl hl. }{AD(jE

Department of ComPuter Science
University of Warwick
CO\ENTF.Y CV4 7AL
ENGLA}'ID.

Novemben 19?8

Away frorn the operationar view of Computer Seience

liil-liam W, Wadge
Department of Computer Science
University of Warwick
Coventny England

Abstract

We argue that c1ass.'r-cal- prognamming languages are based on a

fundamentally mistaken emphasis on the operational aspeet of
eomputation. These languages are seen as the means by which the

p:3ogramner brings about panticutrar kinds of operational activity
(such as procedure call-ing or message passing).

We suggest an alternate philosophy which places the emphasis

on static, extensional (mathernaticaL) concepts such as that of
frrnction or? seguence. We cutiine a simple functional language

(Luswim) based on the principies. Tiie Luswim programmer specifies
the desir"ed output, and operational concepts such as data flowt
message passing on co::outj.ne linkage can be used to tevafuatet

the specification. Ope::ational activity occupies its ProPer

place, narnely as means to an end nather than an end in itself.

Preface

This paper is based on a talk the author gave to an SRC (tX)

sponsored wonkshop on J-anguages fon parallelism and distnibuted

computing. The wonkshop took place at The university of warwickr

25-26 September 19?8. The text has been drastically condensed and

edited, so that (for example) thene are no incornplete and garbled

sentences, o:r glaring examples of self contr"adiction. But I have

prese::ved the infor"rnal flavour. of the presentation - a good excuse

to avoio the wo::k involved in a propen papen. since the content

is pz,imar"ily philosophical, rathen than technical, I think this is

not such a bad idea. Also, at sevenal places r have added between

parentheses sentences or whole paragnaphs which we::e not in the

original tatrk, even in a garbled fonm. Funthermorer comments from

the audience have been paraphrased or omitted'

There i"s a short bibliography of impontant papers which have

been included because of gene::al r€levance, and not necessarily

because specific reference to them was made in the text'

}tytalkisonlyindirectlyconceIrlredwithLucid.Instead,Ilve
chosen the more hunble goal of telling you everything thatrs wrong

with everything yourre cioing. (much laughter)

itrn only partly jokingl These erl:ol:s are best discussed in

the context of everything that has been wrong with computer science

for the last twenty yeans, and thatfs ni-cely illustrateci by this

chart :

svntax semantics

efficiencY correctness

oPer:ationai denotational
notions notions

These are three pairs of related yet opposite (dual) eoncepts'

Now in each case it is necessary for us to study both concepts' But

in no case are the concepts equal; one is always nrore important than

the other; and what I'rn saying is that nany of aur troubies and

enrors result from a mistaken erirphasie on the wnong member of a pair.

Forexample,Ithinkwewouldatlagreethatforalongtimein
the study of plrs there was vast over emphasis on slmtax. Language

clefinitions were primar"ily specifications of slmtax, and whole volunes

were devoted to the pansing probiem'

But I woui-d argue that semantics (what you mean) is mone inportant

than sJmtax (how you say it). It is only recently that with the

systematic stuOy of sen.rantics that we are getting anywhene nean solving

the big Pnoblerns in our subject'

Nevertheless,theoverernphasisonsyntaxstillremains.Weal]
know what a Iegal Pascal type definition is, but what is a Pascal

type? Does anYbodY know?

Similarly,foralongtimepeoplehavebeenobsessedwithrnaking
pr€grams work quickly. Lately, however' it has become apparent that

the neal problem is cor::ectness (on reliability). Again' correctness

relatestowhatyouwant,andefficiencyrelatestohowyougetit.
As someone (Landin?) said, we should write correct Pr€grams and make

(o:: implernent) them efficientJ-y, nathen than wnite efficient Plsogramg

and make tbem (by debugging) correut'

-r-

The obsession with efficiency nemains (especially in North America,

under the name ftcomplexityrt) but at least our colleagues are awar:e of
the pr:obIem. Now what lrm saying is that thene is a third even deeper

misemphasis which is sti1l not widely nealised as such - the emphasis on

the d.ynamic ope::ational side of computation (in other wonds how a machine

computes something) rather than on the static, denotational side (what

the machine is computing). (Notice that each of the three emors is an

instance of emphasising means ove:: ends.1

The pr.imanily operational view of computation is reflected in many

branches of computer science, but it causes pa::ticularly serious tnouble

in the area of pr"ognarnming language design. The cunnent inte::est in
paralJ-elism has made these p::oblens very acute, but they existed befone,

when we wene satisfied with rron Neumann machines.

I want to explain now what it means in neference to PL design

methodolory. Thene is a lot of discussion a.bout pnogramming methodologr'

but not much about PL design methodofogy. Nevertheless, ther:e is a

standard methodolory (which I call the rtclassica.l-rr one) illustrated by

the following diagram :

formulate operational concePts
I

forrnulatevsvntax
| (Lptional)

formulatevdenotational semanti cs

Fon example, we night first formulate the openational notion of a

pr.ocedune call in which you rgo awayr taking arguments with you,

tperfoprnt the procedure (and this might effect the environnent) then
freturnr with the r"esults. Then we cook up some s]mtax for procedune

declar"ations and calIs, spend a lot of time and rnoney inplementing it
(and even more marketing it).

(It inevitably turns out that for mysterious reasons oul' openational

concepts werentt quite genenal enough. Fon example, we now want call by

name (and reference, and value nesult), we want static as well as d5mamic

binding, textual expansion (rnacros) vensus calling etc.r etc., etc.. We

inclu<le these all and afte:: a few itenations we ane dealing with a

monstnous coltection of openational concepts, each with its own syntax

and its own page in the manual. And yet thene always seems to be some

new concept left out, or Some sPecial caser ol? some combination')

-2-

I missed out the third step, which Ifve indicated as optional because

it is often omitted in pnactice. It consists of giving a denotational

semantics to the language resulting from the fir:st two stages. Of counse'

this is not a job fo:: your average computen scientist on the street; quite

the contrary, only the most highly skilleC senanticists steeped in the

scott-strachey approach ane up to it. often the language designer doesnrt

r:nderstand the semantics when itts denived; and often he doesntt want to

know, so that the whole exercise takes on a religious ffavoun - the

language tras been rblessedf by a semanticist. (much laughter)

This is not to say that the achievements of the Scott-Strachey school

a::e not valuabfe. But they ane so successful (and thein tools are so

powe::fui) that the value has been negated. Their problem is that they can

give a semantics to anything - no matter how eornplex and bizar::e the

openational eoncepts, no matten how baroque the sJmtaxr theyrll give it

a denotational semantics. Recently, they gave a semantics fon SNOBOL' Is

this really a useful achievement? It seems to ne they are just giving the

Ianguage designers a blank cheque.

(Rt ttris point Robin Mi.l-nen suggested that semanticists should and

do p::ovide feed.back to the designers with respect to what and what is

not a good idea.) Yes that happens, but itts not enough. (After all'

the advice to an operationally motivated designer must take the form of

saying that such and such an operational concept is bad. Yet itrs a

rare operational concept that canft have a case made for it, that one

canrt find a use fon.)

What Irm saying is that the present role of denotational semantics

(at best, advice giving) is inadequate. We need a qualitatively different

methodolory which gives extensional concepts pniority. I could illustnate

it with the following diagram :

formulate extensional concePts
.l

formulate syntax
v

investigate operational semantics

For example, we might start with the extensional concept of fr:nction

and then consid.er oper.ational concepts (such as calling and binding

conventions, etc.) which would be useful in implementing furrctional

languages. In this context we can now talk sensi-bly about these

different operational concepts being necessary, useful, efficient or

whatever (and very few will- be completely ruled out) '

-3-

Tony Hoare in his tal-k yester.day gave a classification of languages.

It was an operational classification, i.e. acconding to the operational

activity the programmen could bning about. Irm not saying this

classification is inco::rect or useless, but I donrt think itrs the most

cnucial one. The nost important <iistinction is between languages baseo

on operational concepts, and those based on denotational (Gondon Plotkin

suggested the wond frextensionaltt) concepts. On the one side we would

have EpL and CSp, along with l'4odula and the classical sequential languages

Algol, Fortran, etc.. On the othen side (a much thinner crowd),we have

Lucid (designed by the authon with Ed Ashcroft), Turne::fs sASL'

Kowalskirs predicate logic language, md Landints ISWIM. McCarthy tried

to nake LISp one of these, but didntt quite succeed (because of dynarnic

binding and replaca etc.).

(!$ message is that if we are eve:r going to be able to take

advantage of panallelism and distributed computing' it will have to be

with languages of the second type.)

To ill-ustrate the alterrrate rnethodolory, I will design you a

language (cal]ed Luswirn) fon panallelism before your very eyes. (This

Iarrguage is a d.isguised form of Lucid, and is based on ideas developed

with Ed Ashcroft.)

!{e begi-n with the extensional notion of operation (as in the

ad.dition operation) (as opposed to the operational notion of an oper"ation

rrwhich is performedtt). The simplest prograns a::e just expressions like

22\3+4-5

built up fnom constants and operation symbols. The meaning of such a

pnogram is the value of it as an exp::ession. Even at this trivial 1evel'

even when we are using the language of anithnetic, there stil-I exist

relevant operational concepts which are significantly different' Fon

example, we could use a straightfomard left-to-right sequential stack

algo::ithm to evaluate expressions (i.e. leftmost innerrnost); or
ilone-off dataflowtt(asynchronous panallel innermost). These are two

cornpletely different nethods, but they give the same answer.

We need only the extensional notion of a sequence of valueg to give

gs, in conjunction with the s]mtactic notion of variable, a much rore

powerful notion of progfan" We d.efine a Prognam to be a set of compatible

definitions. Each definition is an equation, with a variable on the,left

hand side and an e:<pression on the night. The fact that they are

compatible means that no variable has more than one definition' The

variabl-es defined are the output variables, while those which are used but

not defined are the inPut.

Here is a samPie Pnogram :

D : BZ-4AC
i.i : (-B+Vb) /.2A)
R2 = {-B*'vb)/(2A)

whose input va:riables are trA'r, ttBtt adc |tCtf , at:d whose output variables are

ilDrr, ftRlll and rrR2tl .

1'he semantics of progrrams are defined as follows: given any values for

the input varia-bles, the corresponding values of the output variables are

those determined by the equations, i.e. the solutions of the equations' Of

course in general there may be cir'cularities in the dependencies and as a

nesult the equations may have mone than one solution. In this case we must

be a-b1e to choose some tdistinguishedr solution - almost always the least'

if our coilec-siorr cf data objec'ts forms a cpo. in any event, we detennine a

fr.rnctionai ccrrespon<ience between values of input variables and valueS of

output variables, and this fr.rnction is the rneaning of our program"

This notion of prognam is very general and powerful and in introducing

new rfeaturresf we will make oniy ninor changes, rnainly e>panding the cfass

of aliowable exPressions.

(I shoul-d mention that I am using the word frvar"iablerr as logicians do -

a vaniable is a s5rntactic object n what compute:r scientists also call an

rridentifierr,. Unfortunately, computer scienti-sts often use the wo::d ilvariablerl

to refer to a Semantic concept, nameiy to mean a bucket o:r stor"age locatiOn

which holds a va1ue. This pecuiiar anci nonstandard use of the wond trvariablerl

causes enonmous confusion when one di"scusses issues such as rrvaniable-f:ree

pnogranmingtt).

Just in defining this simple notion of prognam we have ah:eady twice

made use of the fgndamental extensional notion of ftinction' CIearIyo we would

ljke to let the programmer specify his own functions. The syntactical changes

are rninon; we add a collection of function var:iables and al1ow equations to

define functions using othe:: variables as fonrna'I parameterst e'g':

F(xoy) = x + axy + G(x-i)zY
G(x) =sin(x)-cos(x)

(mucb as with Fontr.ants furiction definition statements). We can define the

meaning of a program just as before - the least sol-ution of the equations

(important results concerning function d,omains make this possible)'

-5-

when it comes to considening operational semantics, we definitely have

our work cut out for uso especially if the definitions are cincular (if

there is :..ecu::sion). We can adapt the left-most innenmost algorithm which

now copesponds to a left to right caj-I by value irnplementation' The only

problem is that it doesnrt always wonk, because it may hang up (fail to

terminate) when the maths (and even our intuitions) say othertrise' Even

if it doesnft hang up, itrs inefficient because it pe:rforms unnecessa::y

comptitation.

In shont, ea1l by value is simple and has its uses but is ve::y

restr:icted. If we want more conr:ect and mor"e efficient implementations we

must use some technique (1ike call by name) which delays evaluation - though

of counse there is no reason not to mix nethods'

A big problem with our language as defined so far is that ther"e is no

scope (rhidingf) - all variables, including interrnediate results' are

considened as output. Therefore we take the extensional notion of selection

(of a value fnom a sequence of values) and incorporate it syntactically as

follows. We allow rcompound expressi'onsr of the fornt

prodof

tt

VY
I

v
n

end

!,
l-

E
n

where the tbodyr is a pllogram one of whose

value of such an expllession is the value of

progran constituting the bodY'

This idea is really a trivial variation on Landinrs where-constnuct'

and (as Landin pointed out) it gives much the same seope :rules as AIgoI.

operationally, Algol-like methods can, in certain ci::cumstances' be used to

evaluate e><pressions containing such constructs: you allocate space for

locals, conpute thein values, deallocate the space and neturrr with the value

of routr. Also, for programs with functions, an Algol-fike display is

necessar5r to keep tr:ack of references - static binding is required' and

dynamic bi-nding gives the wrong answer'

A great var.iet5r of operational appnoaches can be used to implement the

language so far:, but none of them make significant use of iteration - which

is, after all, a very irpontant operational coneept. sur"pnisingly, this can

output variables is froutfr. The

rfouttf as detennined bY the

-6-

be nernedied by using the simple extensional concept of infinite sequence

(indexed by the natural nunbers). S5rntactically, we enlarge our language

by adding two unary openation symbols rrfirsttr and trnextrt, and a binary

operation symbol ttfbyrr (more are possible but these will do for now)'

Then pnograms have the same meaning as before but we interpnet them oven

the domain of sequences of data objects. AIso' our new operations ane

defined on sequences as foifows :

fir"st (.x0, *L, *2r. . .t) = '*0, *ot xot ' ' '>

next (.x0, *I , *2r...)) = '*1 , *2r Xrr"'>
.*Oo *1 , x2r...> fby <Ygr Y., t Y2t"'> : <xgr YgI ty Y21 "')

and all other operations work rpointwiset (these are of coul?se the basic

ideas behind Lucid).

Then the following eguations:

oefine J to be the seguence of squares'

There are many ways to inplement such pnograms; they could be tr"anslated

into an iterative imperative language; or into a data flow netl or run on a

call-by-need i.nterpreter. Aisoo ther"e is no harm in the programmer using one

of these operational semantj.cs as an (infornnal) guide, because it is correct -

gives the same answer (r:nden certain conditions)'

lty time is nea::ly up and Irve so far desenibed an applicative language

with its own form of expressions, assignments, scope, procedure declarations

and iteration; in other words with all the featunes of A1go1' It seems I

havenrt even started to talk about distributed computing which' after all'

is what this workshop is all- about'

Yet the::e is in fact no need to exterid the language just defined' In

particularrthereseemstobenoneedatthispointtofonmulatean
extensional notion of rrprocessrt. In considening operational interpretations

of programs in the language just as it is, a good many rdistributedt

operational concepts (such as dataflowr coroutinest message passing with o:r

without queueing, dynamic pracess genenation and so on) suggest thernselves

natu::ally and forcefully. This rich variety of possibilities results rrfree

of chargert from the intenaction of sequences and the other featu::es of the

language.

I:lfbyI+t
J=1fby'j+2I+i

-7-

As a finst example, consider this program which defines Y to be the

average of the:corr€sponding initial values of Y:

X = -----
| = prodof

N:IfbyN+1
S:XfbyS+nextX
out = S/N

end

The variables rrNrr and tfsrr are 10ca1 to the prodof phrase

but tbe phrase cannot be rrndEnstood operationally as an Algol

b]ock, because we rnust imagine that their values ane kept anound fnorn

one rinvocationt to the next (N is a counte:r, and S keeps a rr:nning

total of the vaiues of X so far). Instead, we have to see it as a

continuously operating rtprocessrr or ffactor'rt with local menonyt

nepeatedly taking in values of x and repeatedly producing (hence

rfpnodoflr, not trvaLoft) cornesponding values of Y.

Next we present a pregram in which we tabstnactt this block into a

function and then use it:

avg(X) : pnodof
N=lfbYN+i

il:flilt+nextX
end

I :0fbYIt1
52 = avg (I)
s3 = avg (r)
out =s2*s3

Then in implementing prognams like these we tneat the body of a

function definition like that of fravgrt as a template, caIls of which

pnoduce sepanate instances each with their own copies of the private

1ocal varia.bles. Notice that this is not the same as an A1go1 procedure

with local- own variabtes - when (as above) ttre function is used in two

different places, the internal values coruesponding to diffe::ent calls

would get tangled up with each othen, as a result of which we would get

the wrong answen.

Next, conside:: the fol-lowing pnogr"am (due to Gil1es Kahn) which

defines S to be the stream of all nurnbens of the form 2i
'j

5k 1in

incneasing onder):

S = 1 fby mergeq(S2,S3,S5)
32 = 2:tS
53 = 3*S
35 = 5*S

-8-

where merge3 is a 3-way merge (which exPects its input to be incneaaing

sequences and retunns their or<iered merge with nepetitions eliminated).

This program (and the menge3 function) are very easy to understand

operationaily from the data flow point of view but gueueing is required

i.f you want the ::ight answer.

This doesnrt mean thet all programs which can be implemented by

C.ata flow requir.e queueing. The need for queues a::ises because of

certain functions(tite menge3) which consume thei:: arguments at a

different (".g. slowez') rate than they pnoduce their nesults' Once

we know which functions to watch out for, we can, given a programr

isolate those arcs on which queueing might take place'

Fina1ly, consitj,er this pnime gener"ating pncgram which (in vanious

forms) is beconing a classic:

N:2fbyN+1
out = sieve (N)
sicve(M) : prodof

M0 = fir"st M

D = M wheneven r M0 divides M

:::
= M0 fbY sieve(1r)

Again, it can be understood in terms of dataflow provided you allow

nets which g:.ow d5lnamically (or in terms of processes and nessage Passing'

provided you allow the dlmamie cneation of pnocesses).

Again, we can pinpoint the reason for the need of dynamic creation -

the fact that sieve is necur:sively defineo. As befone, this knowledge can

be used in a ttst:ress analysisfr of Plognams'

I hope these examples at least indicate that the ideas I have been

discussing are very nelevant to distributed conputing. (I would add thatt

from my point of view, trlanguages fon distnibuted computingrr was not the

best title for the workshop because it implies that we use languages to

b::ing about such-and-such a mode of distributed computing. Rathen' we

shou.l-d be interested in languages (tike the one described) which can be

usefully implemented using distnibuted techniques - in other words, in

languages which can use distributed computation')

(The::e was a lengthy discussion after the talk the basic point of

which was that sometimes (e.g. in neal tirne systems) behaviour is part

of our ends, not just of meane. This is true (although exaggerated),

and would genuinely nequire extensions of the language defined hene -

-9-

e.g. sequences indexed by the realsr not the natural numbers. Howevert

the simple seguences mentioned above can be used to specify behaviour:

to a far gneater extent than is nealised (and also behaviour needs

specification to a much less extent than is widely realised). Fon

example, the behaviour of an inter:active eciitor can be specified as a

fr:nction relation between the sequence of user inputs and the sequence

ef computer outputs).

A short bibl-iograPhv

Ashcroft, E.A. and Wadge' W.W.

Lucid' a nonprocedural language with iteration,
CACM 20, NooT' PP. 519-526.

Clauses : scope st::uctures and defined finctions
i-n Lucid, Proc. POPL 77"

Kahn, G.
The semantics of a simple language for parallel
progranming, Proc. IFIPS 740 PP' 471-475'

Kowalski, R.
Predicate logic as a prognarnming language
Proc. IFIPS 74, PP. 569-574.

Landin, P.J.
The next 7OO prrcgrarrrning languages '
cAcM 9, 3(1966)r PP. 157-164.

Vuillernin ' J.
cornect and optimal implerrentation of recursion in a

simple prograrnrning language, 5th Annual ACM Symposiun

on theory of Computing, Austin, 1973'

-L0-

