THE UNIVERSITY OF

WARWICK

Original citation:
Wadge, W. W. (1978) Away from the operations view of computer science. Coventry,
UK: Department of Computer Science. (Theory of Computation Report). CS-RR-026

Permanent WRAP url:
http://wrap.warwick.ac.uk/46322

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/46322
mailto:publications@warwick.ac.uk

The University of Warwick

Department of Computer Science
University of Warwick

—r

HEORY OF COMPUTATION

REPORT = NO.20

AWAY FROM THE OPERATIONAL VIEW OF
COMPUTER SCIENCE

BY
WILLIAM W. WADGE

November 1978

COVENTRY CVu4 7AL
ENGLAND.

Away from the operational view of Computer Science

William W. Wadge

Department of Computer Science
University of Warwick

Coventry England

Abstract

We argue that classical programming languages are based on a
fundamentally mistaken emphasis on the operational aspect of
computation. These languages are seen as the means by which the
programmer brings about particular kinds of operational activity

(such as procedure calling or message passing).

We suggest an alternate philosophy which places the emphasis
on static, extensional (mathematical) concepts such as that of
function or sequence. We cutline a simple functional language
(Luswim) based on the principles. The Luswim programmer specifies
the desired output, and operational concepts such as data flow,
message passing or coroutine linkage can be used to 'evaluate'
the specification. Operational activity occupies its proper

place, namely as means to an end rather than an end in itself.

Preface

This paper is based on a talk the author gave to an SRC (UK)
sponsored workshop on languages for parallelism and distributed
computing. The workshop took place at The University of Warwick,
25-26 September 1978. The text has been drastically condensed and
edited, so that (for example) there are no incomplete and garbled
sentences, or glaring examples of self contradiction. But I have
preserved the informal flavour of the presentation - a good excuse
+o avoid the work involved in a proper paper. Since the content
is primarily philosophical, rather than technical, I think this is
not such a bad idea. Also, at several places I have added between
parentheses sentences or whole paragraphs which were not in the
original talk, even in a garbled form. Furthermore, comments from

the audience have been paraphrased or omitted.

There is a short bibliography of important papers which have
been included because of general relevance, and not necessarily

because specific reference to them was made in the text.

My talk is only indirectly concerned with Lucid. Instead, I've
chosen the more humble goal of telling you everything that's wrong

with everything you're doing. (much laughter)

I'm only partly joking! These errors are best discussed in
the context of everything that has been wrong with computer science

for the last twenty years, and that's nicely illustrated by this

chart :
syntax semantics
efficiency correctness
operational denotational
notions notions

These are three pairs of related yet opposite (dual) concepts.
Now in each case it is necessary for us to study both concepts. But
iq no case are the concepts equal; one is always more important than
the other; and what I'm saying is that many of our troubles and

errors result from a mistaken emphasis on the wrong member of a pair.

For example, I think we would all agree that for a long time in
the study of PL's there was vast over emphasis on syntax. Language
definitions were primarily specifications of syntax, and whole volunes

were devoted to the parsing problem.

But I would argue that semantics (what you mean) is more important
than syntax (how you say it). It is only recently that with the
systematic study of semantics that we are getting anywhere near solving

the big problems in ocur subject.

Nevertheless, the over emphasis on syntax still remains. We all
know what a legal Pascal type definition is, but what is a Pascal

type? Does anybody know?

Similarly, for a long time people have been obsessed with making
programs work quickly. Lately, however, it has become apparent that
the real problem is correctness (of reliability). Again, correctness
relates to what you want, and efficiency relates to how you get it,

As someone (Landin?) said, we should write correct programs and make

(or implement) them efficiently, rather than write efficient programs

and make them (by debugging) correst.

The obsession with efficiency remains (especially in North America,
under the name "complexity') but at least our colleagues are aware of
the problem. Now what I'm saying is that there is a third even deeper
misemphasis which is still not widely realised as such - the emphasis on
the dynamic operational side of computation (in other words how a machine
computes something) rather than on the static, denotational side (what
the machine is computing). (Notice that each of the three errors is an

instance of emphasising means over ends)

The primarily operational view of computation is reflected in many
branches of computer science, but it causes particularly serious trouble
in the area of programming language design. The current interest in
parallelism has made these problems very acute, but they existed before,

when we were satisfied with von Neumann machines.

I want to explain now what it means in reference to PL design
methodology. There is a lot of discussion about programming methodology,
but not much about PL design methodology. Nevertheless, there is a
standard methodology (which I call the "classical" one) illustrated by

the following diagram :

formulate operational concepts

formulat@'syntax
(optional)
formulate” denotational semantics
For example, we might first formulate the operational notion of a
procedure call in which you 'go away' taking arguments with you,
'perform' the procedure (and this might effect the environment) then
'return' with the results. Then we cook up some syntax for procedure

declarations and calls, spend a lot of time and money implementing it

(and even more marketing it).

(It inevitably turns out that for mysterious reasons our operational
concepts weren't quite general enough. For example, we now want call by
name (and reference, and value result), we want static as well as dynamic
binding, textual expansion (macros) versus calling etc., etc., etc.. We
include these all and after a few iterations we are dealing with a
monstrous collection of operational concepts, each with its own syntax
and its own page in the manual. And yet there always seems to be some

new concept left out, or some special case, or some combination,)

I missed out the third step, which I've indicated as optional because
it is often omitted in practice. It consists of giving a denotational
semantics to the language resulting from the first two stages. 0f course-
this is not a job for your average computer scientist on the street; quite
the contrary, only the most highly skilled semanticists steeped in the
Scott-Strachey approach are up to it. Often the language designer doesn't
understand the semantics when it's derived; and often he doesn't want to
know, so that the whole exercise takes on a religious flavour - the

language has been 'blessed' by a semanticist. (much laughter)

This is not to say that the achievements of the Scott-Strachey school
are not valuable. But they are so successful (and their tools are so
powerful) that the value has been negated. Their problem is that they can
give a semantics to anything - no matter how complex and bizarre the
operational concepts, no matter how baroque the syntax, they'll give it
a denotational semantics. Recently, they gave a semantics for SNOBOL. Is
this really a useful achievement? It seems to me they are just giving the

language designers a blank cheque.

(At this point Robin Milner suggested that semanticists should and
do provide feedback to the designers with respect to what and what is
not a good idea.) Yes that happens, but it's not enough. (After all,
the advice to an operationally motivated designer must take the form of
saying that such and such an operational concept is bad. Yet it's a
rare operational concept that can't have a case made for it, that one

can't find a use for.)

What I'm saying is that the present role of denotational semantics
(at best, advice giving) is inadequate. We need a qualitatively different
methodology which gives extensional concepts priority. I could illustrate

it with the following diagram :

formulate extensional concepts

{

formulate syntax

{

investigate operational semantics

For example, we might start with the extensional concept of function
and then consider operational concepts (such as calling and binding
conventions, etc.) which would be useful in implementing functional
languages. In this context we can now talk sensibly about these
different operational concepts being necessary, useful, efficient or

whatever (and very few will be completely ruled out).

Tony Hoare in his talk yesterday gave a classification of languages.
It was an operational classification, i.e. according to the operational
activity the programmer could bring about. I'm not saying this
classification is incorrect or useless, but I don't think it's the most
crucial one. The most important distinction is between languages based
on operational concepts, and those based on denotational (Gordon Plotkin
suggested the word "extensional") concepts. On the one side we would
have EPL and CSP, along with Modula and the classical sequential languages
Algol, Fortran, etc.. On the other side (a much thinner crowd) ,we have
Lucid (designed by the author with Ed Ashcroft), Turner's SASL,
Kowalski's predicate logic language, and Landin's ISWIM. McCarthy tried
to make LISP one of these, but didn't quite succeed (because of dynamic

binding and replaca etc.).

(My message is that if we are ever going to be able to take
advantage of parallelism and distributed computing, it will have to be

with languages of the second type.)

To illustrate the alternate methodology, I will design you a
language (called Luswim) for parallelism before your very eyes. (This
language is a disguised form of Lucid, and is based on ideas developed

with Ed Ashcroft.)

We begin with the extensional notion of operation (as in the
addition operation) (as opposed to the operational notion of an operation

"which is performed"). The simplest programs are just expressions like
2% 3 44 ~5

built up from constants and operation symbols. The meaning of such a
program is the value of it as an expression. Even at this trivial level,
even when we are using the language of arithmetic, there still exist
relevant operational concepts which are significantly different. For
example, we could use a straightforward left-to-right sequential stack
algorithm to evaluate expressions (i.e. leftmost innermost); or
"one-off dataflow"(asynchronous parallel innermost). These are two

completely different methods, but they give the same answer.

We need only the extensional notion of a sequence of values to give
us, in conjunction with the syntactic notion of variable, a much more
powerful notion of program. We define a program to be a set of compatible
definitions. Each definition is an equation, with a variable on the left
hand side and an expression on the right. The fact that they are

compatible means that no variable has more than one definition. The

-4 -

variables defined are the output variables, while those which are used but

not defined are the input.

Here is a sample program :

D = B2-uAC
R1 = (-B+¥D)/(24)
R2 = (-B-¥D)/(24)

. whose input variables are "A", "B" add "C", and whose output variables are

liDH’ "Rl" and HRQH.

The semantics of programs are defined as follows: given any values for
the input variables, the corresponding values of the output variables are
those determined by the equations, i.e. the solutions of the equations. Of
course in general there may be circularities in the dependencies and as a
result the equations may have more than one solution. In this case we must
be able to choose some 'distinguished' solution - almost always the least,
if our colilection of data objects forms a cpo. In any event, we determine a
functicnal correspondence betweern values of input variables and values of

output variables, and this function is the meaning of our program.

This notion of program is very general and powerful and in introducing
new 'features' we will make only minor changes, mainly expanding the class

of allowable expressioms.

(I should mention that I am using the word "variable" as logicians do -
a variable is a syntactic object, what computer scientists also call an
nidentifier". Unfortunately, computer scientists often use the word '"variable"
to refer to a semantic concept, namely to mean & bucket or storage location
which holds a value. This peculiar and nonstandard use of the word "variable"
causes enormous confusion when one discusses issues such as "yariable—free
programming").
Just in defining this simple notion of program we have already twice
made use of the fundamental extensional notion of function. Clearly, we would
like to let the programmer specify his own functions. The syntactical changes
are minor; we add a collection of function variables and allow equations to
define functions using other variables as formal parameters, e€.g.:
F(x,y) = x + axy + G{x~-1l)sy
G(x) = sin(x) - cos(x)
(much as with Fortran's function definition statements). We can define the
meaning of a program just as before - the least solution of the equations

(important results concerning function domains make this possible).

When it comes to considering operational semantics, we definitely have
our work cut out for us, especially if the definitions are circular (if
there is recursion). We can adapt the left-most innermost algorithm which
now corresponds to a left to right call by value implementation. The only
problem is that it doesn't always work, because it may hang up (fail to
terminate) when the maths (and even our intuitions) say otherwise. Even
if it doesn't hang up, it's inefficient because it performs unnecessary

computation.

In short, call by value is simple and has its uses but is very
restricted. If we want more correct and more efficient implementations we
must use some technique (like call by name) which delays evaluation - though

of course there is no reason not to mix methods.

A big problem with our language as defined so far is that there is no
scope ('hiding') - all variables, including intermediate results, are
considered as output. Therefore we take the extensional notion of selection
(of a value from a sequence of values) and incorporate it syntactically as

follows. We allow 'compound expressions' of the form

prodof
V. = E
0 0
= E
Vl . 1
v = E
n n
end

where the 'body' is a program one of whose output variables is "out". The
value of such an expression is the value of "out" as determined by the

program constituting the body.

This idea is really a trivial variation on Landin's where-construct,
and (as Landin pointed out) it gives much the same scope rules as Algol.
Operationally, Algol-like methods can, in certain circumstances, be used to
evaluate expressions containing such constructs: you allocate space for
locals, compute their values, deallocate the space and return with the value
of "out". Also, for programs with functions, an Algol-like display is
necessary to keep track of references - static binding is required, and

dynamic binding gives the wrong answer.

A great variety of operational approaches can be used to implement the
language so far, but none of them make significant use of iteration - which

is, after all, a very important operational concept. Surprisingly, this can

be remedied by using the simple extensional concept of infinite sequence
(indexed by the natural numbers). Syntactically, we enlarge our language
by adding two unary operation symbols "first" and "next", and a binary
operation symbol "fby" (more are possible but these will do for now).
Then programs have the same meaning as before but we interpret them over
the domain of sequences of data objects. Also, our new operations are

defined on sequences as follows

first (<x0, X x2,...>) = <Xgs X xo,...>

next (<X.s X.5 X_ sees?) T <Xy5 X 5 X >
2 1 2

0* "1 3’ "
<x0, xl, x2,...> fby <yo, yl, y2,...> = <X Yoo yl, y2,...>

and all other operations work 'pointwise' (these are of course the basic
ideas behind Lucid).
Then the following equations:

I
J

1t
"
g
4
+ +
N b

define J to be the sequence of squares.

There are many ways to implement such programs; they could be translated
into an iterative imperative language; or into a data flow net; or run on a
call-by-need interpreter. Also, there is no harm in the programmer using one
of these operational semantics as an (informal) guide, because it is correct =

gives the same answer (under certain conditionms).

My time is nearly up and I've so far described an applicative language
with its own form of expressions, assignments, scope, procedure declarations
and iteration; in other words with all the features of Algol. It seems I
haven't even started to talk about distributed computing which, after all,

is what this workshop is all about.

Yet there is in fact no need to extend the language just defined. In
particular, there seems to be no need at this point to formulate an
extensional notion of '"process". In considering operational interpretations
of programs in the language just as it is, a good many 'distributed’
operational concepts (such as dataflow, coroutines, message passing with or
without queueing, dynamic process generation and so on) suggest themselves
naturally and forcefully. This rich variety of possibilities results "free
of charge" from the interaction of sequences and the other features of the

language.

As a first example, consider this program which defines Y to be the

average of the :corresponding initial values of ¥:

X = e
¥ = prodof
N=1¢fyN+1
S = x fby S + next X
out = S/N
end

The variables "N" and "S" are local to the prodof phrase
but the phrase camnot be understood operationally as an Algol
block, because we must imagine that their values are kept around from
one ‘'invocation' to the next (N is a counter, and S keeps a running
total of the values of X so far). Instead, we have to see it as a
continuously operating "process' or "actor" with local memory,
repeatedly taking in values of X and repeatedly producing (hence

"prodof", not "valof™) corresponding values of Y.

Next we present a program in which we tabstract! this block into a

function and then use it:

avg(X) = prodof
N=1fbyN+1
S = X fby S + next X
out = S/N

end

I =0 fby I +1

s2 = avg (I)

S3 = avg (I)

out = 82 * S3

Then in implementing programs like these we treat the body of a
function definition like that of "avg" as a template, calls of which
produce separate instances each with their own copies of the private
local variables. Notice that this is not the same as an Algol procedure
with local own variables - when (as above) the function is used in two
different places, the internal values corresponding to different calls
would get tangled up with each other, as a result of which we would get

the wrong answer.

Next, consider the following program (due to Gilles Kahn) which

defines S to be the stream of all numbers of the form 2l 33 Sk (in

increasing order):

S = 1 fby merge3(S2,53,S5)
§2 = 2%8
§3 = 3%§
§5 = 5%S

where merge3 is a 3-way merge (which expects its input to be increasing
sequences and returns their ordered merge with repetitions eliminated).
This program (and the merge3 function) are very easy to understand

operationally from the data flow point of view but queueing is required

if you want the right answer.

This doesn't mean that all programs which can be implemented by
data flow require queueing. The need for queues arises because of
certain functions(like merge3) which consume their arguments at a
different (e.g. slower) rate than they produce their results. Once
we know which functions to watch out for, we can, given a program,

isolate those arcs on which queueing might take place.

Finally, consider this prime generating program which (in various
forms) is becoming a classic:
N =2 fby N +1

out = sieve (N)
sieve(M) = prodof

MO = first M

D = M whenever = MO divides M
out = MO fby sieve(D)
end

Again, it can be understood in terms of dataflow provided you allow
nets which grow dynamically (or in terms of processes and message passing,

provided you allow the dynamic creation of processes).

Again, we can pinpoint the reason for the need of dynamic creation -
the fact that sieve is recursively defined. As before, this knowledge can

be used in a "stress analysis" of programs.

I hope these examples at least indicate that the ideas I have been
discussing are very relevant to distributed computing. (I would add that,
from my point of view, "Languages for distributed computing" was not the
best title for the workshop because it implies that we use languages to
bring about such-and-such a mode of distributed computing. Rather, we
should be interested in languages (like the one described) which can be
usefully implemented using distributed techniques - in other words, in

languages which can use distributed computation.)

(There was a lengthy discussion after the talk the basic point of
which was that sometimes (e.g. in real time systems) behaviour is part
of our ends, not just of means. This is true (although exaggerated),

and would genuinely require extensions of the language defined here -

e.g. sequences indexed by the reals, not the natural numbers. However,
the simple sequences mentioned above can be used to specify behaviour
to a far greater extent than is realised (and also behaviour needs
specification to a much less extent than is widely realised). For
example, the behaviour of an interactive editor can be specified as a

function relation between the sequence of user inputs and the sequence

of computer outputs).

A short bibliography

Ashcroft, E.A. and Wadge, W.W.
Lucid, a nonprocedural language with iteration,
CACM 20, No.7, pp. 519-526.

Clauses : scope structures and defined functions
in Lucid, Proc. POPL 77,

Kahn, G.
The semantics of a simple language for parallel
programming, Proc. IFIPS 74, pp. 471-475,

Kowalski, R.
Predicate logic as a programming language
Proc. IFIPS 74, pp. 569-574,

Landin, P.J.
The next 700 programming languages,
CACM 9, 3(1966), pp. 157-164.

Vuillemin, J.
Correct and optimal implementation of recursion in a
simple programming language, 5th Annual ACM Symposium
on Theory of Computing, Austin, 1973.

- 10 -

