
http://wrap.warwick.ac.uk/

Original citation:
Ashcroft, E. A. and Wadge, W. W. (1979) Some common misconceptions about Lucid.
Coventry, UK: Department of Computer Science. (Theory of Computation Report). CS-
RR-032

Permanent WRAP url:
http://wrap.warwick.ac.uk/46325

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/46325
mailto:publications@warwick.ac.uk

The Univensity of Warwick

THEORY OF COMPUTA|ION

REPORT NO.32

SO|v1E COlvl14ON IlISCO1\|CEPTIONS

ABOUT LUCID

BY

E,ASHCR0FT AND hI,l,lADGE

Department of Qomputen Science
University of Wanwick
CO\TENTRY CV4 7AL
ENGLAND.

Decemben 1979

SOME COMMON MISCONCEPTIONS ABOUT LUCID

E.A. Ashcroft
Department of ComPuter Science

UniversitY of Waterloo
Waterloo, Ontario, Canada

W.W. Wadge

Department of ComPuter Science
UniversitY of Warwick

Coventry, England

Research RePort CS-79-38
December 1979

This wonk was supponted by the National Research Council of Canada

and the Science Research Council of the United Kingdom.

SOMT| COMMoN MISCONCIiYI'1ONS ABOUT LUCID

Ed Ashcroft
Computer Sclence Department
University of l,laterloo
l{aterloo, Canada

Abstract

Bill Wadge
Cornputer Science DePartment
University of Warwick
Coventry, England

This paper attempts to clear up several misconceptions about
the language Lucid. In the process we clairn that Lucid is in fact a

real progranrning lanugage, and indicate varlous ways in which implemen-
tations uright be feasible.

0. Introduction

Lucid t:] began to be developed five years ago' by the
authors, as a l-anguage in which it would be easy and straightforward
to prove assertions about programs. Rather than devote our efforts to
developing more powerful tools to verify programs in existing languages,
or attempt to modify existing languages to urake them more verifiable,
we concentrated our efforts on re-assessing what constitutes a Prograuming
language and on inventing a compl-etely new language based on mathematical
principles. This language, Lucid, has achieved a certain amount of
success, for example attracting some interest from people doing research
in parallel computation, but, in spite of this, Lucid is not real1-y taken
seriously as a practical prograurning language. Ttris is partly because
there i-s, as yet, no really practical implementation, and partly because
the language is sti1l being developed. l'loreover, the current lack of a
practical implementation is caused by the fact that standard compiling or
interpreting techniques cannot be used or are not relevant, and this had
led some to conclude that Lucid is so unusual that it is inherentiy itrr-
practical (although paradoxically, there are others who say that it adds
nothing newl). We feel that these views, while understandable, are wrong,
and are based on simple misconceptions, for which we ourselves are partly
to blame.

In this paper we therefore will try to clear up some of these
misconceptions, answering six of thern in detail. These are not just
misconceptions about Lucid, but are misconceptions about all nonprocedural
languages and irbout more general issues, particularly the relationship
(actual and desired) between operational and mathematical semantics.

We will list what we see as the main misconceptions, following
each one by a discussion which, hopefuLly, clarifies the issue. It is
assumed that the reader has some familiarity r^rith [+] ana [S].

1. Lucid is just another pureLg recursive language

Purely recursive languages have been around for a long tine,
for example Pure LISP [13] and ISWIM [ff], and, of course, Kleene's
recursive equations [tO]. A11 have the same power in that they can
compute (assuming the availability of arithrnetic operators) any partial
recursive function. they do this without using assignment statements
or indeed any forrns of conunand that cause changes in the valubs of
variables, and the languages are therefore referentially transparent.
(This means, to quote Stoy [fO], "The only thing which matters about
an expression is its value, and any subexpression can be replaced by
any other equal in value. Moreover, the value of an expression is,
within certain lirnits, the same whenever it occurs.") This gives such
languages very desirable mathematical properties. Lucid is such a
language, one in which expressions denote infinite sequences of data
obj ec ts .

Apart from the choice of the data domain, the difference
between Lucid and the others is purely a matter of forrn; but for pro-
grarmning languages, which are, of course, tooLs, form is very important.
The data obJects and operations in Lucid are such that many Lucid pro-
grams can be understood as programs using a general forn of iteration.
I.Ie feel that most progrzrmmers find iterative algoritlrms, when appropriate,
to be more understandable than recursive ones, and we feel that
implementations which use iteration (when approprtate) can be extremely
ef f ec ti.ve.

For exampl-e, compare the following ISWIM program for fast
exponentiation, to comput€ X' ,

trnw (ntx) = aux (n,Lrx)
wherec

aux Q<,g,p) = if * eq 0 then y

e'lse if even(.t) then

aux (k div 2,g ,p .p>

el se aux (rc di y 2,a. p, p. p)

end.

with the corresponding Lucid program:

val of

firp"!, k = n

Iir,t-t p = x

il-$"! s = t-

teJtt e = if even(k) then v else v'p
tleJgt_ k=kdiv2
[g$ p = p-p

{€:,RI*.=viI^Rkeqo
end.

(Thc opcration asa ls aS SoOn as
integer division.) It is obvious from the
iterative algorittun is being used, and the
clearer.

and the operatlon diV ts
Lucid program that an
nature of the algorithn is

a paradox here; Lucid claims to be a mathe-
its big advantages (iteration) is concerned

(The Lucid program can be wrltten more concisely using the
operation fhl o' Ipl-lpXed._hl:

va'lof
k=nft1 rdiv2
P=xI!^Y,p.p
v = I IU if even(k) then v else v'P

I€:sl-t,=YR-igkeqo
end.

Tkrere seems to
matical language but one

be
of

with operational matters. This is another nisconception - operational
thinking and can be very useful as a programming aid and iteration is
very useful, both conceptionally and practlcally. The nature of the
language is sti1l mathematical. The problem with purel-y recursive
1-anguages is that they are too generaL and use only a few basic, but
very powerful-, tools. Lucid is richer and all-ows one to express simpl"e
algorithms in a simPle way.

Purely recursive languages can imitate Lucid by defining a

separate function for each Lucid varlable, this function taking one

argument, a special "time parameterrr.:t Thus, correspondlng to the
previous Lucid program, we would have four functions, including

e(j) = if : eq 0 then I else if even (k(j-l)) then e(j-1)
el se e(i-1).p(i-1)

and

resul-t(i) = y(f (0)) wherec

t(j) = if *171 eq o then j
el se f(]Ft)

end.

This is clearly syntacticaLly more cornplicated than the Lucid
program and is using an unnecessarlly powerful tool (recursion) ro ex-
press a sinple idea (iteration). If this "time parameter" idea is used
only to model iteration then the function definitions will have restricted
syntactic forms, suggesting that they could be generated by a preprocessor
from some less clumsy notation. Lucid is exactly such a notation, and
it has the advantage that it has its own semantics and enjoys all the

A variant of the "tine parameter" idea is found in the work of Arsac

It], wtro independently developed a langpage based on recurrence
equat ions.

desirable properties that the recursive language has. I'toreover, if the
tttime parameEerst' are used in non-standard ways, for example to get at
the rrpast history" of variables, the same effects can usually be obtained
in Lucid by using new operations, like U$gf.tQ. In other riords' nel.'
operational features are obtained by extending a sirnple language rather
than weakening the restrictions on a more powerful one.

2. Lucid is just another singLe-assignment/data-flow/coroutine l-anquage

The idea of single-assignment languages I L7 ,21 predates
Lucld. Basically, single-assignment languages are conventional iterative
imperative languages with assignnent, in which syntactic restrictions
are imposed. These restrict the use of assigrunent statements so that
for each loop and each variable changed by the loop there can be only
one assignment to the variable before entry to the loop and only one
inside the body of the loop. There are also restrictlons on conditional
statements so that the same variables are assigned to in the two branches
of the conditional.

Single assignment languages vary, but in general each single-
assignment program corresponds to a simple Lucid program in a fairly
direct h'ay (especially if we write the Lucid program using [if:! and [9It
rather ttran fpf). These corresponding Lucid programs will themselves
obey certain restrictions (no Lucid operations on the right-hand-sides
of equations, restricted use of flFA, no defined functions, etc.) so both
these and single assignnent languages are special cases of more general
languages. In the case of single-assigrurent languages however, removing
these restrictions is a step backwards to general inperative Languages,
whereas with Lucid, renoving these restrictions retains the fundarnental
properties of the sirnple Lucid programs (for exanple, referential trans-
parency) and gives a more powerful language. New operations, such as
IpL, HPpJI and WhRRRIFI, (not corresponding to any imperative construct)
ean be added, as can user-defined functlons, even non-elennentary and
non-pointwise ones. Lucid is far more than a single-assignnent language.

Lucid functions can often be understood operationally as
defining coroutines, as indicated in [5]. Some inperative languages
(for example EPL [f2] ana Kahn & McQueen's language [9]) have been
designed to give the user the rfacilityr to establish coroutines, by
having ttactorstt pass ttmessagestt to each other. Sorne people have jumped
tc the conclusion that Lucid is just another such coroutine language.
The difference is that Lucid is defined mathematically and some form of
message passing can be used to implernent certain Lucid programs -
although other methods (e.g. compiling) could be used as well.

The coroutine languages were operatlonally rnotivated and the
user has the burden of creating actors and sending and receiving
messages. In Lucid these sinply correspond to defining functions and
using them in the conventional way, giving them expressions as arguments
and composing them to form other expressions. For exampl-e, we can write
two Lucid functions, €{g{ggg and cjj?f,{Rg, such thar consg,q,) gives us
an infinite stream of results, where X is an infinite stream oftresourcest (nany resources may have to be consumed to provide one

result, or one resource may provide many r:esults), and p:-jj;'lgg(Y) gives

uS an infinite stream of resources, where Y is an infinite stream of

external data items (once again, one data itenr may produce many resources'

or many data items may be neecled to produce one resource) ' These

functionscanbeinterpretedascoroutlnes'andtheexpression
gp$i,ijl''Jsj(IJ]]-o3y9l.().])) "ort""porrds

Eo linking thenr together in the usual

way. We can evei feed the results of consr:mption back as the data ite's
that determine the resources that are produced' as follows:

{ = Esg:Rr€(g*.s(I lhx {))'
Here the first daEa itern in y sets the whole thing off, subsequent inputs

to €{g€REg being the results-of gPXry3' 91:.tt1t this night give us

deadlock, which corresponds to tf,Iilii" of {, according to the maLhematical

semantics, being undefined (r) at sone point'

Many meaningful Lucid functions can not be viewed as coroutines'
unless we have a 'reslartt facility. Consider, for example, the
following function @PJ

W(X,M) = vdlof
s=?IAIs+ngl!r
! = (X-u)-

r=1![r+r
a€€g*"t = s/r
end

which is such that {oJgz(A,N) at time t is the second Doment' about

rhe value of Iv at tifril t, of the first t*l values of 4." (If we have

a function LW. that produces the stream of running averages of its input
stream, rtei-ilgy2(A,lKfl(A)) will be the stream of running variances of
rhe srream A.T-A2I3T;;N) can be interpreted as a coroutine, which is
being fed wi;h two streams A and IV, but only if for each value of w the
coroutine can internaLly restart the stream A in order to subtract this
latest value of N fron the latest and ail the previous values of a (and

square the results and take the average). Lucid is clearly more than a
normal- coroutine language.

Wadge Ig] has indicated how some sirnple Lucid Programs (whlch

are just sets of etuations) can be implemented as data-flow networks'
In fact all such networks correspond to such sirnple Lucid programs'
Ttre fact that there are Lucid programs that are not equivalent to such

simple ones means that Lucid is more than a language for prograrmting
data-flow machines. This subject is considered more in section 5'

3. Lucid l-acks features needed bY reaL ptoqtalwters

Basic Lucid as described in [:] is a very sPartan language,
there being no procedures, no data structures (in particular no arrays),
no control structures and no I/O.

*
The first value of A is, by convention, the value of A at time 0'

a) Procedures literally make no sense in Lucid, but lunctions do
make sense L5]. Procedures can be simulated by using functions which
return several values, just as blocks are simply phrases (conpound
expressions) which return several values. Functions, like phrases, can
refer to global variables, but cannot change them (that wouldntt make
sense semtntically). In other words, there are automatlcalLy no side-
effects.

b) Control structures nake no sense in Lucld. This does not mean
that the Lucid user has no control over execution of his or her program.
If a particular irnplementation uses varioua operational devices to run
programs then the user can, to a certaLn extent, determl-ne the behaviour
of the program by altering the form of the prograrn (for example, putting
it into a form with a sinple iterative interpretation). The user does
not need precise control of the programts behaviour because the semantics
of the program is independent of operational considerations. The Lucid
user specifies the meaning of the program exactly but only suggests (by
the form of the prograrn) its behaviour. This presupposes an implementa-
tion which selects the method of executing the prograrn by analysing the
form of the program. The rnathernatical nature of Lucid (1aek of side
effects, etc.) makes such analysis feasible.

Incidentally, some "control structures" have, in reaLity,
nothing to do with control and can be used in Lucid without any problerns
(e.g. conditional expressions, case expressions).

c) Data structures do make sense in Lucid, because Lucid was
defined independently of data objects. If you want lists, for example,
you Just have to base your version of Lucid on an aI-gebra of lists and
operations on them. (These operations must, of course, be rnathenratical
functions, i.e. without side-effects.) For arrays, the operatlons
could include an "update" operation U-, for each number of di.mensions
n, such that u^(A,i.t,i?,i-,k) ls the Srray sirnilar to the n-dimensional
array A o<cept"that*it5 iT,ir,...,i--th component is k. In this way,
Lucid could "handle" the fiorfial way"of using arrays in algorithrns, where
arrays are changed incrementally. Probably a better way to use arrays
is to use the APL approach of having operations which take whole arrays
as arguments and return whole arrays as results. This fits in better
with the Lucid philosophy of specifying the results of computations
rather than the details of how these results are to be achieved. Also,
the prograns tend to be sirnpler and more understandable.

An alternative approach to arrays, which requires sorne
extension of the semantics of Lucid, is to have functions which convert
histories into one-dimens,ional arrays, and vice versa. These arrays
are naturally infinite, and we call them "chains". Chains can only be
processed linearly, and are not |trandom accesstt, but are very natural
to use for certain problems.

Again there is no explicit control over the operatlonal
behaviour of programs, but implictt control is possible.

d) Lucid cannot have commands for inputting and outputting data.
A Lucid p)gram is a term whose val-ue is taken as the output of the
program, and whose free variables are the input variables. If the input

and output are streams, an implementation can be devised ln whlch input
is denanded when needed and output is produced when available. If the
input to the program depends, via the user' on previous outPuta' a
tdl-aloguef with the program is set up.

e) Another feature missi.ng in Lucid is error exits. Errors can
instead be handled by suitable use of "error objectsrt, 1-ike "integer
overflowtt, ttsubscript range errortt etc., which are the result of
operations applied to operands not in their normal domain. The basic
data algebra of the language must be extended to allow such objects.

f) Since there are no control structures, there is of course no
goto statesoent. Several languages nowadays do not have such a stat€ment'
but this was always the result of a conscious design decisl,on - transferg
make sense but are not permitted. In Lucld, goto statements would be
meaningless, since there is no concept of rexecutionr being at any particular
rpointf in the program anyrray. Llke slde-effects, the question of allowing
them or not does not arise. They Just have no place in Lucid.

The nain features lacking in Lucid are control structures, and
a Little practice ln progranuning in Lucld will reveal- thts lack to be a
positive asset. Not having to worry about control flow is ro"'"rkably
liberating.

4. Lucid is inherentl-g inefficient

This is probably the most connon misconception. It arises
naturally since most other languages have essentially one implementatlon,
determined by the semantics. Since the Lucid semantlcs of even the
sirnplest program involves infinite objects, the concluslon appears
inescapable.

The flaw in this argument ls that the Lucid semantlcs, belng
mathematical, specifies goals (or ends) of an implementatLon, not the
means. For example, the computation of the value of the program

val of
x=Ot[tx+r
Y=LfPXv'rz'x+3

r€ss/g -- x i:l r>il
end

at (external) tine t when N has the value 10 does not require the
computation of an infinite number of values of the variables X and y.
It requlres the value of I€FX]€ at (local) time t. This requires only
the values 0r1,2 and 3 and L,4,9 and 15 of X and y respectively at local
times 0,I,2 and 3, because at this last stage Y) l0 is true for the
flrst time and the corresponding value of x, namely 3, Ls the value of
X P:g v > 10 at any time, in particular at time t. Thus the value of
the program at time t is 3, the integer square root of L0.

i/lt/| .'1 t/, //\ Ut-('Vl| /l
{. _/

Y
{, ,)

, ,f\ irtA I
\-/) t/,*.L))L?rt4

\
__!

certain varlables at certain times:rnd ls lndependent of the values of
all other varlable/tlme eomblnarions, even undeflned valuee. The value
of a program ls lndependent of the results of irrelevant comPutations.
Any inplementation which attempts to evaluate a partLcular variable at
a particular time, without first belng certain that that value is
definitely needed for the value of the program, rune the rlsk of Setting
stuck in a non-terminating computatlon when, in fact, the value of the
program js defined, according to the senrantlcs. In Lucid it ls meaning-
ful for a sequence or stream or history to be ttintermittentr', that ls,
ir can contain undefined values (r) followed by defined ones' and these
later defined ones may be crucial- for determining the value of the pro-
gram.

In a "pure data-fIow" implementation of Lucid IfAJ tfte
sequences of data items flowing along the data lines should correspond
exactly to the histories of streams in Lucid. This is not possible if
the streams are intermittent since this would requlre the recognltion
of non-terninating computations ln order to produce an object corresPond-
ing to r.

This isnt t as unfortunate as lt seems, because pure data flow
is too restrictive to iurplement even conventional progratmlng languagee.
For example, in order to inplement condltionaL expresel.one, pure data
flow uses a 3-input node, these inputs correepondlng to the test and
the two values corresponding to the two branches of the conditlonal.
Wtren the node has received the value of the test and the value for the
appropriate branch, thls latter value is passed through. However, lt
is not possible to subsequently select the other branch until the value
of that branch, corresponding to the value that was passed through' has
arrived and been discarded. Even in cases where this produces the
right answer (1.e. it doesnft cause the program tc thang upt), it per-
forms more computation than necessary ln order to do so.

Pure data flow has to be npdifted to avoid doing unnecessary
computations, and this is exactly what Ls necessary ln order to correctly
implement Lucid. It seems that by using sophisticated analysis techniques,
data-f1ovr nets can be constructed for the programs in a large subset of
Luc id .

Sinilar problems occur with simple coroutine
and simple compilers into iterative programs. However,
sophisticated algorithms, both these techniques can be
subsets of Lucid.

Sinilar problens occur with simple coroutine
and sirnple compilers into iteratlve programs. However,
sophisticated algorithms, both these techniques can be
subsets of Lucid.

lnplementations
using rcre

extended to large

lnpl ernenta tions
using more

extended to large

Some people nay be tempted to tinker with the semnntics of
Lucid in order to avold things ll-ke internlttent streams, but the result
would be a language that didnrt have many of the nice properties of
Lucid. Anyway, since pure data fl-ow ls inadequate an)may there doesntt
seem to be nuch point in getting a language that can be inpl-emented ln
this way.

10

6. Luctd is too stra e for or-dirt.:r'r r ihDrrt'C fn

L)
LL)

]-l-1'
iv)

On first sight, Lucid does have many strange properties:
order of statements within phrases is irrelevant;
the values of variables are infinite sequences;
statemenEs are just equations;
there is no flow of control, no idea of where the execution
of the program is tat'.

The usual conclusion is that it is difficult to write Lucid programs.
This is certainly true for many people, but this is not because Lucid
is unreasonably weird but beeause it really requires a completely
different style of prograruning.

The question that should be asked is not which style is strange
compared to which, but rather which style is better. Prograrnners used
to the imperative style of programming usually see Lucid as a very
restrictive language but (as indicated earlier) the exact opposite is
true.

For one thing, the Lucid style is freer because it is not
corunitted to one particular operational viewpoint. An equation like

r=rlpXr+r
can be understood

a) as defining successive values of a loop variable
b) as defining an infinite sequence
c) as defining a module whlch spontaneously generates the numbers

L,2,3,.. .

or
d) as a coroutine which supplies the numbers on demand.

Some of these meanings a11ow for a more modular view of prograrmning than
is found in imperative programming. For exanple, we can understand
this first equation by itself and then add the equation

P = IiI:,! x IpX P.!g$ x .

P gives us the running products of the values of x, that is, the
factorials of the successive posiLive integers. In a conventional
language we would have various assignments to P and X intermingled in a

Ioop, and the order of these assignments coul-d be crucial. It would be
less obvious that the roles of p and X can be understood separately, and
the program would be harder to rnodify.

Above all, in Lucid the prog,:artrner is freed from having to
understand (and specify) exactly what is going on.

We have also seen how functions in Lucici can be thought of as
coroutines, and in fact Lucid programs using functions are much clearer
and easier to write than programs in existing co:outine languages.

Tongue-in-cheek conanent. It is qui:.. possible that prograrmers
of the future wiii look back at imperative la.rguages and find thern strange,
and won<ier at the fact that programners were able to write programs in then,
in nuch rie sa..,,, r^/ay thai we wonder at the ancients' ability to do arittmetic
':,rith Romail numerals. (zna of tongue-.in-cheek comment.)

l1

7. Lucid has no l-imitations

In spite of all we have said, we are forced to admit that there
are genrri-ne limi-tations in the use of Lucid as a prograrmning language.
We donr t consider this to be a failure because we never intended for
Lucid to be able to t'handlet' everything.

One very fundamental property of Lucid programs is that they
are definitional. If you want the value of a variable to be an integer
between I and 10 you have to specify exactly which one you nant. If
you are going to use a Lucid loop to calculate the sum of some numbers,
you have to specify the way in which the numbers are to be conbined.
Obviously these are examples in which the programner is required to
over-spec ify.

At first sight, this would seem to be an easy problern to fix,
by simply adding McCarthy's amb function Ifa]; anb(a,b) arbitrarily
returns a or b, and we cant t predict which. Unfortunately this destroys
the mathematical semantics, the rules of inference, and consequentJ-y
the whole of Lucid.

There may be another way to weaken the specifications, and
that is to make them general assertions rather than equations. This
means basing the language on predicate calcuLus rathet: than USWnt [4]
(which is a variant of ISIJIM, which is based on l-calculus). However,
to develop such a genuinel-y assertional progranmlng language is a large
project which we must leave to the future.

Lucid's main strength as a prograrmring language is that no
behaviour is specifi.ed, but this is also a weakness when control of
behaviour is the ajm of a program, as in real-time computing. We talk
about values at certain tttimesttfor interpreters, but these are not rea-l
times. To control behaviour we must consider particular implementations
or else modify the formal semantics t'o take account of real time, using
possibly a "clock pulse object" (which the second author has named atthiaton").

The fact that Lucid has limitations does not signify failure.
Trying Lo obtain too much general-ity in a single language has in the past
often led to failure. Moreover, although the particular language, Lucid,
is a product of the general philosophy of using mathematics as the basis
of language design, the fact that Lucid has some lirnitations should not
be taken as irnplying that there are Limitations to the mathematical
approach. Lucid is only one language that was designed this way. The
mathematical approach has also been used, to varying extents, to design
LISP, ISWIM, APL and PROLOG, and we certainly expect other new languages
to be designed this way, especially s_ince there are non m'ny powerful
new results in the theory of domains l15J that can be used.

I2

pFF!rptrrJ/-E c

Arsac , J. , "La Construction de prograruues structur5s", Duncd, ga:is (1977) .

Arvj_nd, Gostelow, K.p. and plouffe, w., "The (preliminary) Id Report,,,
Departmertr: of Information and CompuEer science (TRll4a) , University ofCalifornia at Irvine (1978).

Ashcroft, E.A- and wadge, w.w., "Luci-d, a Nonprocedurar Language withIteration", CACM, 20, No. 7 (L977).

Ashcroft, E.A. and Wadge, W.W., "A Logical prograrnming Langudg€",
cS-79-20, Computer Science Department, University of waterloo (1979).

Ashcroft, E.A. and Wadge, W.W., "Structured Lucid',, CS-79_2I, Compucer
Science Department, University of waterloo (19?9).

Cargill, T.A., "Deterministic Operational Semantics of Lucid" CS-76-19,
Computer Science Department, University of waterloo (1976).

Farah,Y!., "Correct Translation of Lucid prograns", in program Transformatj_ons,
Proceedings of the 3rd International Symposium on programming, Dunod,pp. 367-380 (1979).

Hoffman, C.M. "Design and Correctness of a Compiler for a Nonprocedural
Language", Acta Information 9.

9. Kahn, G. and Mceueen, D.B., "Coroutines and Net$rorks of Parallel Process€sr',tF].p 77, pp. 993-998 (L977).

10. Kleene, S.C., "Intrccuction to Meta Mathematics", Van Nostrand, princecon
(19s2).

11. Landin, p.J.,
G956).

1.

')

A=.

1

8.

"The Next 700 Programmj-ng Languages", CAC!,! 9, No. 3 pp. L57-I66

L2' May, Y'D., Taylor, R-J.B. and whi-tby-strevens , c., "EpL: an Experrnental
Language for Dis-.rj-buted computing", Proceedings of "Trends and Applications:Distributed Processing", National. Bureau of standards, pp. 6g-7L (ttay 197g).

13. McCar;hy, J. et ai., ,'LISP 1.5 programmer's Manual ,,, !.!.I.T. press (1962).

14' McCarthy, J. "A Bas:s for a l1a;hematical Theory of Computation,., in ComputerProgram.rniig and -cormal l4ethods, North Ho11and, Amsterdam pp. 33_70 (1963).

15. Scott, D., "Daca "iypes as Lacrices,', SIAI{ J. on Comput 5, No. 3, pp . 522_Sg7/'lO?:\
\LJ.vt

L6. stoy, J.E - , "De;:c;orio::ar- ssnantics: the scotr.-strachey Approach toProgranroi:_g Lang;age Tileorlz,', M.I.?. press (I977) .

L7' Tesler' L'G' alic Enga, H.J., "A Language Design for concurrent processes,,,
Spring Joint Cor.puter Conferencer pp. 403-4Og (;96g).

18' wadge, w'w. ".\r. ixtensicral Treatr,ent of Datafl0w Deadl0ck,,, Lecture Notes
ih r.ffiF1__.-r-.r. uuurp\.rLe_c Sc:e::ce., _\o. 74, Springer Verlag (L979).

