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ABSTRACT

This thesis describes the development of new methods for the synthesis of mono-, di-

and trihydroxylated tetrahydroxanthones which are structural elements of a range of

important natural products including the anti-cancer agents known as the kigamicins.

In Chapter One, work on the isolation, biological significance and chemical synthesis of

xanthones, dihydroxanthones, and tetrahydroxanthones is reviewed, with special focus

on the polycyclic tetrahydroxanthone natural products.

Chapter Two describes the development of methods for the synthesis of

tetrahydroxanthones mimicking the ABC rings of kigamicin A which contain a

hydroxyl group at C-3 of the saturated ring. A 5 step synthesis of 228 was achieved via

palladium catalysed assembly of tetrahydroxanthone nucleus, followed by

enantiocontrolled reduction of the C=O group via asymmetric transfer hydrogenation,

and glycosidation using a novel trichloroacetimidate donor 225.

In Chapter Three, a short route to the cis and trans1,4-diol functionality found in the

tetrahydroxanthone fragment of 1,3,5-trihydroxy-8-β-D-glucopyranosyl, puniceaside B,

puniceaside C, albofungin, and simaomicins is achieved. Excellent enantiocontrol (99%

ee) was realised through use of an asymmetric ketone transfer hydrogenation.

Subsequent enolate hydroxylation with the Davis oxaziridine facilitated installation of

the second hydroxyl group albeit with low levels of diastereocontrol. The structure of

cis-277 was verified by X-ray crystallography after conversion to the corresponding

diacetate 279. Similar enolate hydroxylations were used to access the triol substitution

patterns found in kibdelones and isokibdelones. Attempts to develop synthetic routes to

the fully functionalised A-ring fragments of the actinoplanones and kigamicins are

described. This culminated in the preparation of advanced synthetic intermediate 322 in

4 steps from hydroxyl selenide tetrahydroxanthone. In a key step in this sequence, an

unusual syn-selective dihydroxylation of a PMB-protected homoallylic alcohol (321)

was unearthed. Finally, the biological effects of the new dihydroxanthones, dihydroxy,

and trihydroxytetrahydroxanthones synthesised in the laboratory were evaluated against

human pancreatic cancer cell line (PANC-1), grown separately in nutrient rich medium

(NRM) and nutrient deprived medium (NDM).

In Chapter Four, detailed experimental and characterisation data for the new compounds

are described.
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1 Introduction

Xanthones and partially hydrogenated di- or tetrahydroxanthones are not only

widespread classes of natural products, but also occur as polyhydroxlated fragments of

the polycyclic natural products. This thesis describes the synthesis, structural studies

and functionalisation of simple di- and tetrahydroxanthones to probe the pharmacophore

in the natural products possessing these components.

1.1 Xanthones

The term xanthone (from the Greek ‘xanthos’ meaning yellow), designates the organic

compound dibenzo-γ-pyrone 1 (Figure 1).1 The basic xanthone skeleton is symmetric

and has a mixed biogenetic origin in vascular plants. Its carbons are often numbered

according to biosynthetic convention, in which carbons 1 to 4 are assigned to the acetate

derived ring and carbons 5 to 8 to the shikimate derived ring.2

Figure 1. Dibenzo-γ-pyrone 1

Xanthones are natural polyhydroxylated secondary metabolites that occur in higher

plant families, fungi and lichen. They also occur sporadically in the rest of the plant

kingdom. Most of the natural xanthones have been obtained from the four families:

Guttiferae, Gentianaceae, Moraceae and Polygalaceae. However, some of them have

also been isolated from other plant families such as Leguminosea, Loganiaceae,

Lythraceae and Rhamnaceae.3

1.1.1 Classification of Xanthones

Xanthones are generally classified into five major groups depending on the substituents

on their skeleton: simple oxygenated xanthones, prenylated xanthones, xanthone

glycosides, xanthonolignoids and miscellaneous xanthones.4

1.1.1.1 Oxygenated Xanthones

The oxygenated xanthones have been further divided into sub classes according to the

degree of oxygenation of the basic xanthone skeleton, which include the Mono-2-4, Di-

5, 6, Tri-7, 8, Tetra-9, and Penta-10, oxygenated xanthones (Figure 2).
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Figure 2

Only a small number of mono-oxygenated xanthones 2, 3, 4 have been isolated from

plants. Di-oxygenated xanthones 5 and 6 are relatively common, usually oxygenated in

1,5- or 1,7- positions of the xanthone nucleus. Tri 7, 8 and tetra-oxygenated xanthones 9

are the most common class of these natural products. However, penta-oxygenated

xanthones 10 are very rarely found in the plant kingdom.

1.1.1.2 Prenylated xanthones

Prenylated xanthones are polyhydroxylated xanthones having an isopentenyl group

attached to the basic xanthone skeleton. Mono, di and tri-prenylated xanthones have

been isolated, sometimes the prenyl groups have further modifications. The most

characteristic modification is the oxidative cyclisation of the prenyl group with an

ortho-hydroxyl group to the chromene ring. Structure elucidation and characterisation

of these natural products has been simplified by the characteristic NMR patterns that

these prenylated groups manifest. The mono-prenylated dihydroxyxanthones include

Guanandine (11) and iso-Guanandine (12) isolated from the family Clusiaseae (Figure

3). 5

O

OH

OHO

O

OH

OHO

11 12

Figure 3

In compounds 13 and 14, the prenyl group has oxidatively cyclised to the chromene

group. These compounds have been isolated from different generae of plants (Figure 4).
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Figure 4

1.1.1.3 Xanthone glycosides

Naturally occurring xanthone glycosides have been differentiated into C-glycosides and

O-glycosides. C-Glycosidic xanthones have a C-C bond linkage resistant to acidic and

enzymatic hydrolysis attached to the skeleton, where as O-glycoside xanthones present

a typical glycosidic linkage susceptible to such hydrolysis conditions.6 Mangiferin is

one of the first C-glycoside xanthones isolated. It was discovered from mangifera indica

in 1908 by Wiechowski,7 the structure being established as 2-C-β-D-glucopyranosyl-

1,3,6,7-tetrahydroxy xanthone (15) (Figure 5).8,9 Until 1969 only three O-glycoside

xanthones were known, including Swertianoline 16 (Figure 5). However, more than

twenty O-glycoside xanthones have been discovered in the last 20 years.10, 11

Figure 5

Guo et al have recently isolated 2,2-fused dimeric swertibisxanthone-1,8-O-β-D-

glucopyroanside 17 from swertia punicea and a carbon linked 3-O-

dimethylswertipunicoside 18 from the same species (Figure 6).12

Figure 6



Chapter 1: Introduction Samiullah

15

1.1.1.4 Xanthonoligonoides

Xanthonoligonoids are relatively rare and occur only in some generae of Guttiferrae.

These natural products are formed from the fusion of the xanthone nucleus with that of

a lignoid. Cadensin D 19 belongs to this class of xanthones and was isolated from

Guttifrae family (Figure 7) .13

Figure 7

1.1.1.5 Miscellaneous xanthones

These xanthones present a random type of substitutions and have been isolated from

different plants including lichens. 4-Chloro-3,8-dihydroxy-6-methoxy-1-

methylxanthone (20) isolated from H.ascyron and a sulphonated xanthone 21 from

H.sampsonii14 are illustrative examples (Figure 8).15

Figure 8

One of the significant features of most of the naturally occurring xanthones is the

presence of a hydroxyl group at C-1. This confers similar optical properties in all such

xanthones, namely a yellow colour, which turns green with ferric chloride in ethanolic

solution, and a more intense yellow colour when in contact with 2N NaOH solution.1

1.2 Isolation and structural elucidation of Xanthones

Xanthones are present in non-polar or medium-polar extracts of plants. They are

efficiently extracted using ultrasonic extractions or extraction with ethanol. An

increasing number of bioactive xanthones have been isolated by bioassay-guided

fractionation methods.16 They are usually separated by chromatography using different

mixtures of solvents17 and are also identified by comparison with known samples by
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TLC18 and purified by HPLC.19, 20 The structures of the simple xanthones have been

determined mainly from the ultraviolet,21 infrared,22 and nuclear magnetic resonance

spectroscopy.23

Since the occurrence of these natural products is limited due to their biosynthesis, there

is growing interest in the development of synthetic xanthones with varied substituent

positions. The classic methods used for the synthesis of xanthones include the Michael-

Kostanecki, Ullman, Robinson-Nishikawa, Ashina-Tanase and the Friedal-Crafts

methods.1

1.3 Biological Activities of Xanthones

Mono, di, and the polyhydroxylated xanthones are found to be tuberculostatic,

antibacterial, antihepatotoxic, and are active against ulcers.24 Prenylated xanthones have

been shown to have antibacterial, antifungal and antioxidative activities.25 Xanthone

glycosides have shown to be cytotoxic towards specific cancer lines and have also

shown interesting coagulant activity.26 Monoxanthone glycosides show less

tuberculostatic activities than those found in simple oxygenated xanthones, while

bisxanthone glycosides exhibit very high neuroprotective activities.12

Xanthonoligonoids display antifungal activity.27 Some sulfonated xanthonoids exhibit

significant cytotoxicity against the P388 cancer cell line.28

1.4 Introduction to partially hydrogenated di- and tetrahydroxanthones

Xanthones, and partially hydrogenated, di- or tetrahydroxanthones are classes of natural

products that are widely distributed in fungi29, lichenes30 and ferns.31, 32 Due to their

prominent activity they are classified as mycotoxins (myco meaning ‘fungus’).33

Mycotoxins are low molecular weight, non volatile secondary metabolic products.

Many mycotoxins are produced by a single species of fungi, however most of them are

produced by more than a single species. Some of these mycotoxins are also isolated

from higher plants and bacteria. 34
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1.4.1 Dihydroxanthones

1.4.1.1 Isolation and structural elucidation of Dihydroxanthones

In 1994, Nobuo et al reported the isolation of nidulallins A (22) the first member of the

dihydroxanthone class of natural products, from the dichloromethane extract of rice

culture Emericella nidulans (Figure 9).35

Electron impact ionisation mass spectrometry and elemental analysis gave molecular

formula C16H14O6 for nidulallin A (22). The IR absorptions bands at 3400, 1740, and

1650 cm-1 suggested the presence of hydroxyl, ester, and carbonyl functional groups

respectively. The 1H, 13C NMR and the decoupling experiments together with the UV

absorption maxima suggested a dihydroxanthone moiety. To determine the structure of

nidulallin unambiguously X-ray analysis was undertaken and the relative

stereochemistry of the dihydroxanthone 22 was confirmed as shown below (Figure 9).

The absolute configuration of nidulallin 22 was determined by 1H-NMR analysis of (+)-

R- and (-)-S-α-methoxy-α-trimethylphenyl acetates of 22 by a modified Mosher’s

method.36

O

O

22

Me

OH

CO2MeOH

Figure 9

1.4.1.2 Globosuxanthone A

Chaetomium is a large genus of the fungal family Chaetomiacaea comprising over a

hundred species.37 The ethyl acetate extract from the fungal strain chaetomium

globosum Ames isolated from the rhizosphere of the christmas cactus, opuntia

leptocaults DC, exhibited significant cytotoxicity against seven human cancer cell lines.

Bioactivity guided fractionation of this extract resulted in the isolation of a novel

dihydroxanthone named as globosuxanthone A (23) (Figure 10).38

Figure 10
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The structure of globosuxanthone A 23 was deduced as a basic xanthone skeleton

containing a methyl ester and trans vicinal diol with a characteristic hydroxyl group at

C-8. High resolution fast atom bombardment mass spectoscopy (HRFABMS) indicated

a molecular formula of C15H12O6, and characteristic IR peaks at 3440, 1734, and 1654

cm-1 suggested the presence of hydroxyl, ester and conjugated carbonyl group

respectively. 1H and 13C NMR indicated ten degrees of unsaturation suggesting a

dihydroxanthone. The complete structure and relative configuration of C-1 and C-2 of

23 were determined to by single crystal X-ray diffraction.

Prior to this discovery only two other 1,2-dihydroxanthones 24 and 25 have been

isolated from Aspergillus. The structures of 24 and 25 were established by NMR, IR,

and mass spectrometry (Figure 11).39

Figure 11

1.4.1.3 Biological Activities of Dihydroxanthones

Nidulallin 22 is a highly active anticancer dihydroxanthone. Globosuxanthone A 23 was

evaluated for in vitro cytotoxicity against a panel of human solid tumour cell lines and

was found to have significant activity. In an initial step of evaluating the potential of

this dihydroxanthone as a lead molecule for drug development, the reversibility of

cytotoxic acitivity was examined using a mouse cancer lines.38 The irreversible

cytoxicity of 23 was confirmed by clonagenic assays.40 Dihydroxanthone 24 has been

found to inhibit VEGF induced endothelial cell growth39 and 25 has been reported to

inhibit the myosin light chain kinase.41

1.4.2 Tetrahydroxanthones

Over 600 xanthones are known, of which more than 100 contain the basic

tetrahydroxanthone skeleton. These tetrahydroxanthones belong to the class of

mycotoxins that occur in many fungi.42

They are produced both as monomeric and dimeric units in natural products. The

monomeric tetrahydroxanthones include the globosuxanthone B 26 (Figure 12), α- and
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β- diversonolic esters (27 and 28 respecitvely), diversonol 29 (Figure 13) and the

recently isolated secalonic acids 31, 32 (Figure 15). 43, 44

A tetrahydroxanthone structurally related to the dihydroxanthone A 23 named

globosuxanthone B 26 (Figure 12) was isolated as a colourless gum from the ethyl

acetate extract of chaetomium globosum.38 HRFABMS indicated a molecular formula of

C16H16O6, showing nine degrees of unsaturation. This in combination with 1H NMR and

13C NMR showed the same methyl ester as in globosuxanthone A 23. The additional

methoxy group and the absence of two olefinic hydrogens instead suggested a

tetrahydroxanthone. Furthermore, the IR absorption bands of 3460, 1730, 1660 and

1590 cm-1 indicated the presence of hydroxyl, ester and conjugated carbonyl groups

respectively.

Based on the structural similarity of 26 to 23 the same relative configuration at C-1 and

C-2 was assumed. The coupling constants observed between H-2 and H-3 (9.1 Hz)

suggested a diaxial relationship between the two hydrogens. Thus, the structure of

globosuxanthone B 26 was deduced as depicted in (Figure 12).

Figure 12

These examples are representative of a growing family of monomeric

tetrahydroxanthone natural products (Figure 13).

Figure 13

The first O-glycoside monomeric tetrahydroxanthone was isolated from Gentiana

campestris. Its structure was elucidated as 1,3,5-trihydroxy-8-β-D-glucopyranosyl

tetrahydroxanthone (30) (Figure 14).45
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Figure 14

The occurrence of the monomeric tetrahydroxanthone glycoside 30 is of biogenic

importance because the corresponding xanthone glycoside, possessing the same

oxidation pattern and glycosidated at the same position is present in high quantities.

1.4.2.1 Dimers of Tetrahydroxathones

The ergochromes (ergoflavins, ergochrysin, secalonic acids) are an important class of

mycotoxins produced by a variety of microorganisms. Currently 22 members of the

ergochrome family have been isolated and structurally identified as dimers of

tetrahydro-monoxanthones. The natural products secalonic acids and ergochromes being

important examples.46

Secalonic acid B 31 and D 32 are 2,2’-fused symmetrical tetrahydroxanthone dimers

that differ only in the stereochemistry of functional groups in the partially saturated

rings (Figure 15).44

Figure 15

More recently, a number of new tetrahydroxanthones, such as rugulotrosin 33 and

xanthanol 34 were isolated from moulds.47

Rugulotrosin B 33 is an example of 2,4’-fused dimeric tetrahydroxanthone while

xanthonol 34 is a novel unsymmetrical dimeric xanthone that was isolated from the

fermentation broth of a nonsporulating fungal species (Figure 16).48
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Figure 16

An unsymmetrical O-glycoside tetrahydroxanthone dimer hirtusneanoside 35 was

isolated from the n-butanol extract of Usnea hirta.49 Its structure and the absolute

configuration was determined using extensive spectroscopic data (UV, IR, CD, 1D and

2D NMR) and chemical degradation. The tetrahydroxanthone dimer 35 has a unique

structure containing an L-rhamnopyranside (Figure 17).

Figure 17

In 2010, Guo et al isolated the unsymmetrical dimeric puniceaside B 36 and trimeric O-

glycoside puniceaside C 37 from Swertia punicea (Figure 18). 12

Figure 18

1.4.2.2 Biological Activities of Monomeric and Dimeric Tetrahydroxanthones

All the above monomeric tetrahydroxanthones show striking anticancer and antibiotic

activities.38 The dimeric tetrahydroxanthone O-glycosides showed highly potent

neuroprotective activity.12 The xanthone structure is a very interesting framework that
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has a large variety of pharmacological activities. The biological activity of xanthones,

dihydroxanthones and tetrahydroxanthones is due to their tricyclic scaffold but varies

depending on the nature and the position of the substituents. These natural products

possess antioxidant, anti-inflammatory, immunomodulatory, and antiviral effects.48 The

diversity of substituents and the heterocyclic nature of these natural products have made

them exhibit some important pharmacological properties, such as antioxidative,

antitumour, antiulcer, antimicrobial, antiheptotoxic and CNS depressant activities. 50

1.5 Xanthones, Dihydroxanthones, and Tetrahydroxanthones in Polycyclic Natural

Product Frameworks.

The polycyclic xanthones form a small but distinct family of more than twenty natural

products.51 The polycyclic xanthones are one of the largest subgroups of polyketides

being assembled by a type-2 polyketide synthase.52

The genus streptomyces is a prodigious source of structurally variegated secondary

metabolites. A new species Streptomycis cervinus in this genus was discovered and a

collaborative effort led to the isolation and structure determination of novel antibiotics

cervinomycin A1 38 and A2 39 (Figure 19).53

Cervinomycins 38 and 39 belong to a small but esoteric group of antibiotics all of which

possess xanthone and isoquinolone moieties fused angularly in a polycyclic framework

(Figure 19).54

Figure 19

The lure of novel structural features and their promising biological activities generated

considerable synthetic interest in these compounds. The first total synthesis of

cervinomycins 38 and 39 was reported in 1989 by Kelly et al, followed in the following

decade by several other syntheses based upon alternative synthetic strategies.55, 56

Lysolipin 40 which is a product of Streptomyces violaceoniger and immediate precursor

of the lysolipin I 41, formed after dehydration, is another member of the polycyclic
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xanthone natural product family (Scheme 1). 50 Lysolipins 40, and 41 were the second

group of polycyclic xanthone family of antibiotics to be discovered. 57

Scheme 1

Albofungin 42 is a tetrahydroxanthone containing polycyclic angularly fused metabolite

isolated from Actinomyces albus var fungatus.58 The basic framework of albofungin

was determined by Slovieva et al in 1972, while the absolute configuration and

stereochemistry were established by Gurevich et al two years later. The helicity of the

fused rings and hence the absolute configuration of methylenedioxy ring was

determined using CD spectroscopy conducted on albofungin and its degradation

products (Figure 20).59

Figure 20

Structurally related to albofungin 42 are actinoplanones 45 and 46 (Figure 22) and

simaomicins α-43 and β-44 (Figure 21), which are hexacyclic xanthones produced by

actinomadura madurae simaoensis.60 The structure of simaomicins α-43 and β-44 was

established using X-ray crystallography alongside spectroscopic methods. The structure

of simaomicins α-43 and β-44 are unique within the polycyclic tetrahydroxanthone

natural products in that the methylenedioxy ring is in line with the xanthone rather than

the pyridone unit. Such a heterocyclic ring is common to all these natural products with

the exception of the cervinomycins 38, 39 (Figure 19). 61
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Figure 21

Two polycyclic xanthones named actinoplanones A 45 and B 46 were isolated from the

culture broth of Actinoplanes actinoplanaceae by Kobayashi et al in 1988 (Figure 22).62

The structures of 45 and 46 were determined by a detailed study of 2D heteronuclear

correlation NMR experiments. The absolute configurations of the asymmetric carbons

being established by CD spectra alongside 1H and 13C NMR analysis of chiral Mosher

derivatives.

Figure 22

In a continued search for polycyclic xanthone antibiotics, a further five analogues of

actinoplanones were isolated from the culture broth of the same species Actinoplanes

species by the same research group later that year. The new analogues were named as

actinoplanone C 47, D 48, E 49, F 50, and G 51.63

All these (C-G) exhibited similar physico-chemical properties to those of

actinoplanones (A, and B). In the 1H and 13C NMR, similar spectral patterns were

observed between the newly isolated polycyclic xanthones and the actinoplanone A

(45), except in the region of the pyridone ring (Figure 23).
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Figure 23

During a search for new bioactive metabolites from Australian microorganisms, an

isolate of the rare actinomycete was examined by Capon and co-workers in 2007.

Bioassay profiling of the methanolic extract derived from a culture of

kibdelosporangium sp. (MST-108465) uncovered an unusual combination of potent

antibacterial, nematocidal and cytotoxic activities.64

HPLC analysis of the secondary metabolites showed the presence of a family of non-

polar metabolites displaying distinctive UV- visible spectra.

An electronic search of data sets comprising HPLC-DAD-ELSD profiles for over 1500

natural products and 6000 annotated microorganisms failed to identify these non-polar

metabolites, suggesting that these metabolites were novel.

A scaled up solid and liquid phase fermentation of the kibdelosporangium sp. optimised

for the production of cytotoxic metabolites yielded a family of 10 polycyclic xanthone

natural products exemplified by kibdelone A (52) (Figure 24). Kibdelones are

hexacyclic tetrahydroxanthone natural products featuring two fully substituted aryl

rings, two fully substituted heteroaryl rings, three stereogenic centres in the saturated

ring and a halogenated ring.
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Figure 24

The other isomers of kibdelones include oxokibdelone 59 which contains a ketone in the

saturated ring (Figure 25).64 Recently, two total syntheses of the kibdelone family

member have been reported, these are described in section 1.7.

Figure 25

An interesting property of these compounds is the facile equilibration of kibdelone B 54

and C 57 to a mixture of A 52 and C 57 through keto-enol tautomerism followed by

quinone-hydroquinone redox reactions proposed by Capon et al (Scheme 2).64
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Scheme 2 : A plausible mechanism for the equilibration of kibdelones 52-57.

On standing in MeOH, purified kibdelone A 52 or kibdelone B 54 evolves to an

equilibrium mixture of 52 : 54 : 57 in approximately 3 : 1 : 2 ratio.

Other kibdelone analogues discovered include the 25-methoxy-24-oxokibdelone C 60,

25-hydroxoxy-24-oxokibdelone C 61 and the hydroquinone 62 (Figure 26).

Figure 26

A family of biosynthetically related co-metabolites called the isokibdelones were

isolated from a mixed media fermentation of the kibdelosporangium sp. (MST-108465)



Chapter 1: Introduction Samiullah

28

by Capon et al subsequent to the isolation of the kibdelones.65 Isokibdelones possess the

same hexacyclic tetrahydroxanthones however, the isokibdelones feature an polyketide

heterocyclic skeleton unprecedented in traditional polyketide biosynthesis.

Isokibdelone A (63) comprises a tetrahydroxanthone angularly fused to a halogenated

quinone moiety where as isokibdelone A rhamnoside 64 contains a rhamnoside 56

attached through oxygen at C-11. The other members of the isokibdelone family include

the quinone isokibdelone B (65) and the corresponding hydroquinone isokibdelone C

(66) (Figure 27).

Figure 27

The isokibdelones are not as potent nematocidal, antibiotic or anticancer agents as the

kibdelones. However, this study does uncover structure activity relationships (SAR)

within this family of natural products.

One final class of polycyclic xanthones that have been isolated from natural sources are

the kigamicins. Since, these are the main focus of my thesis work, these are discussed

separately in section 1.6.

1.5.1 Biological Activities of Polycyclic Natural products

Cervinomycins 38 and 39 are antibiotics having strong inhibitory activities against

anaerobic bacteria and mycoplasma. Lysolipins 40 and 41 are antibacterial, antifungal,

as well as cytotoxic xanthone natural products.57 Albofungin 42 is a highly active

antibiotic against gram positive bacteria and yeasts.66 Simaomicins α-43 and β-44 are

primarily active against gram positive bacteria. It is however, the antiparasitic activity

of the simaomicins versus the single cell animal of the genus Eimeria that has generated

greatest interest. Simaomicin α-43 is the most potent natural anticoccidal agent for the

treatment of E.tenella infections ever reported.60 Actinoplanones 45 and 46 are strongly

cytotoxic against HeLa cells. These polycyclic xanthones also show antifungal and

antibacterial activities, with 45 active against gram negative bacteria. Actinoplanone 45
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is shown to inhibit DNA synthesis while RNA and protein inhibition was comparatively

weak. All the actinoplanones showed strong cytotoxicity against HeLa cells,

particularly actinoplanone C 47 and G 51 which exhibited IC50 values at less than

0.00004 µg/mL.63 Among all the other known polycyclic xanthones, only albofungin 42

has been reported to show cytotoxicity against HeLa cells and prolong the life of mice

into which Ehrlich ascites tumour cells have been transplanted.58 Kibdelones (52-62)

possess potent nematocidal and antibiotic activities. They are also impressive anticancer

agents displaying GI50 in the low nanomolar range against a panel of human cancer cell

lines.64

1.6 Kigamicins

The polycyclic tetrahydroxanthone natural products known as kigamicins (67-71),

named after ‘kiga,’ a Japanese word meaning starvation, were first extracted from the

culture broths of Amycolatopsis sp. ML630-mF1 during the course of screening for new

antitumor antibiotics by Kunimoto et al.67 Kigamicins (67-71) are potential antitumor

agents against pancreatic cancers. They selectively target pancreatic cancer cells

growing under nutrient starved conditions.68, 69 Most of the research so far conducted on

the kigamicins (67-71) has been on their isolation,67 determination of their structure, 70

absolute configuration, 71 and biological activities (Figure 28).72
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Figure 28 : Structure of Kigamicins A-E

1.6.1 Extraction and isolation of the kigamicins

The kigamicins (67-71) were first isolated from the culture broth of Amycolatopsis sp.

ML630-mF1 by Kunimoto et al in 2003.67 The culture filtrate (10,270 mL) from strain

Amycolatopsis sp. ML630-mF1 was adjusted to pH 2.0 and extracted with butyl acetate.

Silica gel column chromatography of the dried paste with different mixture of CH3Cl

and MeOH resulted in an active eluate which was further separated into two parts. Each

eluate was charged onto a reverse phase ODS column and developed with a mixture of

CH3CN and H2O. The first eluate provided three active fractions containing kigamicin

C (69), D (70), and E (71) respectively as the main components. Each fraction was

further purified by chromatography using reverse phase HPLC with the same solvent

system. Thus kigamicin C (69) (31.6 mg), D (70) (85.3 mg) and E (71) (19.4 mg) were

purified as yellow powders. The second eluate from the silica gel column

chromatography was applied on reverse phase ODS column resulting in the isolation of

kigamicin A (67) (25.8 mg). Kigamicin B (68) (4.1 mg) was purified from another

culture (3 litres) by almost the same purification steps along with some kigamicin C

(69) (14.9 mg), D (70) (46.6 mg) and E (71) (21.8 mg) subsequently.
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Tan et al also isolated kigamicins from a novel species of Actinomycete, the

Amycolatopsis regifaucium in 2007.73

1.6.2 Structure determination of kigamicins

The structural studies were first carried out for kigamicin D (70), the major component

of these antibiotics. The structures of other components were determined subsequently

by comparing their spectral data with kigamicin D.70

The molecular formula of kigamicin D was established as C48H59NO19 (MW 953 g/mol)

on the basis of HRESI-MS and NMR data. The UV spectrum of 70 showed

characteristic absorption maxima at 227, 253, 306, and 384 nm similar to that of

actinoplanones (45-51) suggesting the presence of polycyclic xanthone chromophore.

IR absorption bands showed the presence of hydroxyl (3450, 1062 cm-1), conjugated

carbonyl (1650 cm-1), and γ-pyrone (1620 cm-1) functions in the natural product. The

13C NMR, DEPT and HMQC spectra of 70 in CDCl3 revealed the presence of 48 carbon

signals comprising of six methyl, ten methylene, sixteen methine and sixteen quaternary

carbons. The 1H NMR spectrum indicated the presence of five deuterium exchangeable

hydrogens. The seven spin systems observed in 1H-1H COSY and the HMBC analysis of

70 revealed the presence of an aglycon moiety, a 2,3,6-trideoxyhexose (D-amicetose)

moiety and two 2,6-dideoxyhexose (oleandrose) moieties.

The aglycon was found to be similar to albofungin 42 (Figure 20). However, a five

membered nitrogen containing ring in kigamicin D was replaced by the six membered

heterocyclic rings in albofungin 42. The long range coupling in the HMBC spectrum

confirmed the glycosidic linkage.

The molecular formula of kigamicin A (67), B (68), C (69), and E (71), were

established to be C34H35NO13 (MW 665 g/mol), C40H45NO15 (MW 779 g/mol),

C41H47NO16 (MW 809 g/mol) and C55H71NO22 (MW 953 g/mol) respectively from the

HRESI-MS and NMR data. The UV and IR spectra of 67, 68, 69, and 71 were very

similar to those of 70. The 1H and 13C NMR data showed the presence of a common

aglycon in all the kigamicins, and the presence of one D-amicetose moiety in 67, two D-

amicetose moieties in 68, one D-amicetose and one oleandrose moiety in 69, and one D-

amicetose and three oleandrose moieties in 71.

Thus, the structures of kigamicins (67-71) have been determined to consist of fused

octacyclic aglycon and deoxy sugars. The absolute configuration of kigamicins A (67),
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C (69), and D (70), were determined a year later by Someno et al by NMR analysis,

chemical degradation studies and X-ray crystallographic analyses.71

Determination of the stereochemistry was first conducted for kigamicin A 67, because

other members of the class could not be crystallised in the solvents investigated.

Kigamicin A (67) was crystallised from hot MeOH/H2O to give yellow plate like

crystals. The relative stereochemistry of 67 was conclusively determined by X-ray

analysis (Figure 29).

In order to determine the absolute stereochemistry of kigamicin A (67), the

configuration of D-amicetose was examined by measuring its optical rotation after

acidic hydrolysis of the natural product (Scheme 30).

Scheme 3

Treatment of kigamicin A with 1N HCl in THF at room temperature for 18 hours gave

the aglycon 72 of fused octacyclic ring system containing seven six membered rings and

one oxazolidine in 76 % yield and amicetose 73 in 90 % yield (Scheme 3). The aglycon

part was spectroscopically identical with the octacyclic component found in the

kigamicins themselves. The optical rotation value for 73, [α]
D
22 = + 42.5 (c = 0.7,

Me2CO), was close to that reported for D-amicetose [α]
D
22 = + 43.6 (c = 1.0, Me2CO).

Therefore, it was concluded that kigamicin A possesses this sugar in the D-form. Taking

the configuration of D-amicetose into consideration, the absolute configuration of

kigamicin A was thus established as shown in Figure 29. In addition, the coupling

constants of anomeric hydrogen (J = 2.0, 9.0 Hz) indicated the presence of β-D-

amicetose, which is consistent with the results obtained from the X-ray analysis.

Kigamicin D (70) contains one amicetose and two oleandrose moieties. Since there are

discrepancies between the reported optical rotation values of oleandrose, and since the

complete separation of D-amicetose and oleandrose when kigamicin D was hydrolysed

was found to be difficult, attempts were made to obtain crystalline di- or tri-saccharides

containing D-amicetose and oleandrose. Mild acid hydrolysis of 70 yielded amicetose,
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oleandrose, as well as aglycon 72, kigamicin A 67, kigamicin C 69, disaccharide 74 and

trisaccharide 75 (Scheme 4).

Scheme 4

Compounds 74 and 75 were crystallised from EtOAc/n-hexane and ether/n-hexane to

give colourless crystals. The X-ray structural analysis of 75 revealed the presence of

anomeric mixture (α : β = 55 : 45). Since the absolute configuration of the D-amicetose

was known to be the D-form, the two oleandrose moieties were established to be also

the D-forms. On the basis of the above investigation, the absolute structure of kigamicin

D (70) was deduced as depicted in Figure 29 having an octacyclic aglycon, D-

amicetose, and two D-oleandrose moieties.
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1.6.3 Biological activity of the kigamicins

The biological activity of the kigamicins has been extensively studied by Lu et al.69

Masuda et al while determining the spectrum of activity of kigamicin D against various

human cancers, found kigamicin D to be a novel anticancer agent that targets the

tolerance of cancer cells to nutrient starvation.72 They have shown that kigamicin D

displays a preferential cytotoxicity to cancerous cells grown under nutrient deprived

conditions. Both tolerance to nutrient starvation and angiogenesis (development of new

blood capillaries) are essential for cancer progression because of the insufficient supply

of nutrients to tumour cells. Chronic nutrient starvation seldom occurs in normal tissue

therefore nutrient deficiency in tumours provides a novel cancer therapy for which the

phrase has been coined “anti-austerity.” Selective killing of pancreatic cancer cells in

nutrient starved conditions was determined by comparing cell survival after 24 hours

incubation in nutrient deprived medium (NDM), against that in nutrient rich medium

(NRM). Under nutrient starved conditions, kigamicin A, B, C, and D inhibited PANC-1

(pancreatic cancer cells) survival at 100 times lower concentrations than in normal

media. Kigamicins induced cell death in melphalan-resistant myeloma cells at very low

concentrations (0.004 nM). They also selectively killed the malignant plasma cells at

very low concentrations while sparing the normal lymphocytes.69 Kigamicins showed

antimicrobial activity against Gram-positive bacteria including methicillin resistant

staphylococcus aureus (MRSA). Kigamicin D 70 inhibited the growth of various mouse

tumour cell lines, with an IC50 of 1 μg/mL. 

Oral administration of kigamicin D showed a strong antitumor effect in human tumour

xenograft models of pancreatic tumours. It showed a weak effect against lung cancer,

and no effect against colon cancers. However, it has also been reported that kigamicin D

70 shows the same selective cytotoxicity against normal human cells such as lung

fibroblast and prostate stromal cells under nutrient starved conditions. Thus, these

natural products represent interesting molecules for further study.74

1.7 Synthetic strategies for the synthesis of dihydro and tetrahydroxanthones

natural products.

To date, there have been no synthetic studies reported concerned with the synthesis of

the kigamicins (67-71) or their analogues. This section provides a broader overview to

the field of tetrahydroxanthone synthesis.
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In 1954, Alexander et al suggested that the double bond in γ-pyrones 76 should allow

them to act as dienophiles in Diels Alder reactions thus allowing the synthesis of

xanthone derivatives. However, the formation of the zwitterion 77 by resonance

delocalisation reduces this reactivity somewhat (Scheme 5).75

Scheme 5

However, inactive dienophiles in the Diels-Alder reaction can be transformed into

reactive dienes such as 79 and 80, and these provide a simple route to

tetrahydroxanthone derivatives 81 and 82 when reacted with maleic anhydride 78 in

boiling xylene (Scheme 6).

Scheme 6

Letcher and Yue conducted a favourable Diels-Alder reaction using an electron rich

dienophile and electron deficient diene to obtain tetrahydroxanthone derivatives.76

Equimolar amounts of the enamine 83 and a variety of (E)-2-vinylchromene-4-ones (84-

88), gave tetrahydroxanthones (89-93) as Diels-Alder products in moderate yields

(Scheme 7).

Scheme 7
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A decade later, Paquette reported a novel route for the synthesis of

tetrahydroxanthones.77 He treated enamine 94 with salicylaldehyde 95 in an inert

solvent to promote intramolecular proton transfer driven by the difference in the

basicities of alkoxy and phenoxy anions. Subsequent nucleophilic addition of the

phenoxide ion to the iminium ion resulted in the formation of 97 in high yields. The

structure of 97 was confirmed by Sarett oxidation to tetrahydroxanthone 98 (Scheme 8).

Scheme 8

The generality of this reaction and the mechanism of formation of the

tetrahydroxanthone was detailed a year later when this chemistry was used in the

synthesis of valuable tetrahydroxanthones, chromones, flavones and isoflavones.78

Preliminary attempts to employ 2,5-dihydroxybenzaldehyde in this condensation

reaction proved unsuccessful. However, 2-hydroxy-3-methoxybenzaldehyde gave high

yields. Clearly, the presence of additional phenolic hydroxyl group interferes with the

addition process, as may be expected from the proposed mechanistic pathway (Scheme

8).

In 1975, Klutchko reported the synthesis of tetrahydroxanthone dione 103 from β-keto

sulfoxide 99 through condensation with glutaraldehyde 100 and subsequent thermal

elimination of methanesulfenic acid from 101 in poor yields (Scheme 9).79

Scheme 9

In 1977, Toshio et al described a novel synthesis of tetrahydroxanthones.80 They were

generated by treating the trimethylsilyl enol ether of various cyclic ketones with phenyl

lithium to regenerate the lithium enolate followed by quenching with O-acetoxybenzoyl

chloride at lower temperatures. The intermediate diketones without further purification
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were cyclised in the presence of HCl and AcOH to obtain the corresponding

tetrahydroxanthones (Scheme 10).

Scheme 10

In 1991, Singh et al disclosed a novel one step synthesis of tetrahydroxanthones in

excellent yields exploiting a thallium (III) nitrate (TTN) oxidation of 2-spirochromones

via 2,3-alkyl migration. The addition of Lewis or protic acids such as BF.OEt2, p-TSA

or HClO4 reduced the consumption of TTN and shortened reaction times. The generality

of this transformation was confirmed by treating several 2-substituted spirochromones

with TTN under similar conditions (Scheme 11).81

Scheme 11

A year later Letcher et al reported the reaction of enamine 118 with dione 119 leading

to the formation of xanthone 120 in high yields (scheme 12).82

Scheme 12

In an endeavour to investigate the mechanism of this transformation the reaction was

monitored by TLC. It was observed that a new nitrogen free product, different from the

final reported product 120, formed rapidly within few minutes. The structure of the new
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product was deduced by single X-ray crystallography to be 121. That

cycloalkanoxanthone 121 is an intermediate in the formation of 120 was confirmed by

heating 121 in pyrrolidine, leading to hydroxanthone 120 in quantitative yield (Scheme

13).

Scheme 13

In 1997, Luis et al reported a short and efficient synthesis of tetrahydroxanthone 104 by

initiating Fries rearrangement of 123 with two equivalents of aluminium chloride to a

mixture of the Fries rearranged product 124 and the cyclised product 104. Complete

cyclisation of 124 occurred during recrystallisation from ethanol with the loss of

hydrogen fluoride in good yields (Scheme 14).83

Scheme 14

In 2004, Brase et al conducted a Baylis-Hillman reaction of 2-cyclohexen-1-one (125)

with O-benzylated salicylaldehyde 126 to obtain the desired allylic alcohol 127 in very

poor yields (13%) (Scheme 15).84

Scheme 15
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In contrast the analogous reaction of unprotected salicylaldehyde 128 with

cyclohexenone 125 did not result in the Baylis-Hillman adduct, but rather the xanthone

129 in good yields (Scheme 16).

Scheme 16

Xanthone 129 may be formed by two different routes as formulated by Brase et al.84

The first route starts with a Baylis-Hillamn reaction followed by an oxa-Michael

addition and dehydration. In the second approach the reaction is initiated by the Michael

addition of the phenol on the cyclohexenone followed by aldol condensation providing

xanthone 129 (Scheme 17).

Scheme 17

A year later Shi et al reported a modification of the above reaction. They used salicyl N-

tosylamine 130 to react with cyclohexenone 125 in the presence of catalytic

dimethylphenyl phosphine to obtain the tricyclic compound 131 in good yield (Scheme

18). 85
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Scheme 18

Shi further envisioned the conversion of 131 to tetrahydroxanthone 129 with the

elimination of TsNH2 using a strong base. In a one pot reaction, after the consumption

of 130, DBU was added to obtain 129 in very good yield (Scheme 19).

Scheme 19

In 2006, Brase et al examined the reactivity of easily accessible tetrahydroxanthones by

oxa-Michael aldol condensation. The structure of tetrahydroxanthones offer various

possibilities for further functionalisations, many of which might be performed with

useful levels of diastereoselectivity hereby being of relevance to complex

tetrahydroxanthone containing natural products.86

Tetrahydroxanthone 129 gave allylic alcohol 132 as a single diastereomer on reduction

with sodium borohydride in good yield. The relative configuration of 132 was

determined by X-ray crystallography. The allylic alcohol 132 was then transformed into

the all cis-triol 133 by dihydroxylation. Tetrahydroxanthone 129 was also converted

into its bromohydrin 134 to facilitate base induced elimination to obtain 135 which was

then oxidised to tetrahydroxanthone dione 104 (Scheme 20).

Scheme 20
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In 2011, Porco et al developed a concise approach to tetrahydroxanthone natural

products employing a vinylogous addition of 2-trimethylsiloxyfuran to benzopyryllium

137 followed by a late-stage Dieckman cyclisation.87

The synthesis of benzopyrylium 137 was achieved by the treatment of 136 with

diisopropylsilyl ditriflate in the presence of 2,6-lutidine.88 Treatment of 137 with 2-

trimethylsiloxyfuran at lower temperature and subsequent desilylation with

triethylamine hydrogen fluoride led to the formation of chromone butenolides 138 and

139 (dr = 20:1). Conjugate reduction of the mixture using nickel boride gave access to

chromone lactone 140 and 141 (dr = 20:1) (Scheme 21).

Scheme 21

Dieckman cyclisation of 140 using sodium hydride in refluxing THF gave the

tetrahydroxanthone natural product epi-blenolide C 142 and blenolide C 143 in high

diastereoselectivity and good yield (Scheme 22).

Scheme 22

Similar transformations led to the formation of blenolide C 143 as the major product

from a 1:2 mixture of lactones 140 and 141 (Scheme 23).
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Scheme 23

The tetrahydroxanthones in the polycyclic natural products such as the actinoplanones,

simaomicin α, kigamicins, kibdelones and isokibdelones are polyhydroxylated. This

poses significant difficulties in relation to their synthesis due to facile aromatisation to

the corresponding xanthones under strong acidic conditions. In our group, Penny Turner

has recently developed a mild Pd(0) catalysed cyclisation method for the synthesis of

tetrahydroxanthones in good yields.89

Diketones (144-148) were obtained via simple C-alkylation of the enolates derived from

cyclic ketones with ortho-halo acid chlorides, then cyclised in the presence of Pd2(dba)3,

Xphos and Cs2CO3 to produce tetrahydroxanthones (149-153) in excellent yields. The

screening of a variety of phosphine ligands and solvent systems revealed Xphos and

dioxane as the most effective system giving products in excellent yields (Scheme 24).

Scheme 24

When dibromides (154-157) were subjected to this Pd catalysed cyclisation in the

presence of ArB(OH)2, 7-aryl tetrahydroxanthones (158-161) were obtained by

sequential C–O and C–C bond formation in very good yields (Scheme 25).
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Scheme 25

Synthetic efforts towards some polycyclic aromatic xanthones such as cervinomycins

have been undertaken (Figure 19).90 However, unsurprisingly there are few reports91 on

the synthesis of the most recently isolated hexacyclic tetrahydroxanthone natural

products. In part this is due to the challenging saturated polyhydroxylated A-ring in

these materials.

The first total synthesis of hexacyclic tetrahydroxanthone natural product kibdelone C

57 (Figure 25) was reported by Porco et al in 2011.92 The synthesis of the chiral AB

fragment was achieved by a diastereoselective, intramolecular halo-Michael aldol

reaction of 163, which was obtained in 30% yield over 10 steps starting from a

commercially available enantiopure alcohol 162. A further two step deprotection

reprotection sequence provided 166 in very good yield (Scheme 26).

Scheme 26

Pt(IV) catalysed arylation of quinone monoketal 169 with hydroxystyrene 170 provided

2-vinylbiphenyl 171, which on photoelectrocyclisation in cyclohexane yielded the

CDEF dihydrophenanthrene fragment 172 (Scheme 27).93
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Scheme 27

Regioselective oxa-Michael reaction of 166 and 172 afforded the sensitive vinylogous

carbonate precursor 173. Ester hydrolysis and a mild activation of derived carboxylic

acid with cyanuric chloride provided the tetrahydroxanthone ring system 174. Further

two steps of selective deprotections furnished kibdelone C 57 (Scheme 28).

Scheme 28

In the same year, a second successful convergent enantioselective synthesis of (-)

kibdelone C was reported by Joseph et al in the same issue of JACS.94

Joseph exploited the pseudo-C2 symmetry within the saturated polyhydroxylated ring.

Protected iodo-trihydroxy 177 was obtained as a single diastereomer and 95%

enantioselectivity over five steps in 36 % yield. Aldehyde 178 was obtained in good
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yield over three steps. Deprotonation and lithium iodine exchange of 177 with

methyllithium and tert-butyllithium generated a reactive dianion which added to

aldehyde 178 to give 179. Dess Martin oxidation of 179 generated an enedione which

on treatment with acidic acetone lost the methoxymethyl and silyl protecting groups and

cyclised to tetrahydroxanthone 180 protected as an acetonide (Scheme 29).

Scheme 29

Alkyne 183 was assembled in 46% yield over six steps starting from amino alcohol 181

(Scheme 30).

Scheme 30

Sonogashira coupling of alkyne 183 and the tetrahydroxanthone 180 led to a pentacyclic

184 containing all the carbons of kibdelones after palladium catalysed hydrogenation.

Next, a Cu-catalysed iodination led to a substrate for C-H arylation en route to the C-

ring of the kibdelones (Scheme 31)
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Scheme 31

1.8 Comparative study of substitution pattern and stereochemistry of A-rings in

the polycyclic natural products

One of the striking properties of all the polyketide assembled polycyclic xanthone

natural products is the high degree of oxygenation of the A-ring (Figure 31). All the A-

rings of the dihydro and tetrahydroxanthone containing polycyclic natural products are

oxygenated at C-12 and C-15 while in kigamicins and actinoplanones additionally C-14

is oxygenated. The A-ring of kibdelones are oxygenated at C-13 instead of C-14.

Simaomicins 43 and 44 are trans dihydroxylated at C-12 and C-15 while albofungin 42

is cis dihydroxylated at the same positions with the hydroxyl group at C-15 methylated

(Figure 29).



Chapter 1: Introduction Samiullah

47

Figure 29. Stereochemistries of A-rings of polycyclic natural products

The tetrahydroxanthone glycoside 30 is the enantiomer of puniceaside B (36), and C

(37) with respect to the stereochemistry of the hydroxyl groups in the A-ring. The

spatial arrangement of hydroxyl groups in the A-ring of puniceasides B and C and

albofungin 42, is the same. The only difference being the methylation of the hydroxyl

group at C-15 of albofungin 42 and glycosidation of hydroxyl groups of C-12 of

puniceasides B and C respectively. The spatial arrangement of hydroxyl groups in the

A-ring of actinoplanones and kigamicins are identical, and they differ only by the

methylation of hydroxyl groups at C-12 and C-15 in actinoplanones and glycosidation

of hydroxyl group at C-14 in kigamicins with D-amicetose (Figure 31). Clearly, it

would be desirable to be able to devise general strategies for the assembly of these

polyhydroxylated tetrahydroxanthones. From the work described in this chapter, it is

clear that such general methods do not currently exist.
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1.9 Conclusions

As we have seen, there are relatively few synthetic routes known for the synthesis of

tetrahydroxanthones and even fewer suitable for the construction of those containing a

polyhydroxylated A-ring. The research described in this thesis has focused on

developing novel routes to such materials with the primary focus being on methods

relevant for the construction of the kigamicin A-ring, but with broader applicability to

other member of this important class of natural products.
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2.1 Simple tetrahydroxanthone glycosides

The saturated A ring of kigamicin A (67) is highly functionalised and glycosidated.

Through the synthesis of simple analogues such as 238 it was hoped to probe the

importance of this ring system to the overall biological activity of these polycyclic

natural products. Moreover, the synthesis of these simple tetrahydroxanthone analogues

would help pave the way to the first total synthesis of the kigamicins themselves

(Figure 30).

Figure 30

The synthesis of the simple tetrahydroxanthone glycoside was anticipated to be

achieved by the chemoselective and enantioselective reduction of 3,9-diketo

tetrahydroxanthone 192 followed by coupling with a sugar donor in a stereocontrolled

fashion and final deprotection. Thus the first challenge was to develop a reliable and

scaleable route to the 3,9-diketo tetrahydroxanthone 192 (Scheme 32).

Scheme 32

2.2 Synthesis of 3,9-diketotetrahydroxanthone 192

Toshio et al have successfully constructed simple tetrahydroxanthones by reacting

lithium enolates of cyclohexanones generated from the trimethylsilylenol ethers, with

acid chlorides to obtain C-alkylated intermediates which, without further purification,

can be cyclised to the tetrahydroxanthones under acidic conditions (Scheme 33).80
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Scheme 33

To explore the use of this approach to 3,9-diketoxanthone 192, the trimethylsilylenol

ether 188 was made from 3-ethoxy-2-cyclohexenone (187) by reaction with

trimethylsilyl chloride and LDA in excellent yield.95 On further treatment with

methyllithium, the lithium enolate was regenerated which was reacted with 2-

(chlorocarbonyl) phenyl acetate (190) to give diketone 191. This intermediate without

further purification, was cyclised to xanthone 192 in 22% yield by treatment with

hydrochloric acid in acetic acid. Reasoning that the product 191 might quench enolate

189, the reaction was repeated using a two-fold excess of the trimethylsilylenol ether in

the acylation reaction. This resulted in a significant improvement in the yield from 22%

to 52% (Scheme 34).

Scheme 34

To see if the reaction could be further improved, the cyclisation of 191 was also

examined under basic conditions. Cyclisation of intermediates such as 191 under basic

conditions are not reported in the literature. The intermediate 191 on treatment with

sodium methoxide resulted in the formation of enol ether 193 alongside acetal 194 in

good overall yield. Evidence for the structure of 194 was provided by 1H NMR

spectroscopy which revealed the appearance of OCH3 peak and the disappearance of the

alkene hydrogen. A characteristic quaternary acetal carbon at 99.1 ppm, suggesting the
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addition of MeOH across the alkene double bond, was seen in the 13C NMR spectrum

(Scheme 35).

Scheme 35

The formation of 193 and 194 presumably involves the formation of phenoxide ion

which undergoes nucleophilic attack onto the ketone. Subsequent elimination of water

yields 193 which on further conjugate addition of methoxide ion and quenching of the

resulting enolate from the solvent results in the formation of 194 (Scheme 36).

Scheme 36

Additional evidence for this reaction course was obtained when the same process was

carried out in ethanol. Under these conditions, diethyl acetal 195 was produced by the

addition of EtOH across the double bond of alkene 193 (Scheme 37).

Scheme 37

A mixture of alkene 193 and acetal 194 was smoothly hydrolysed to the 3,9-

diketoxanthone 192 on heating in HCl and AcOH in excellent yield (Scheme 38).
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Scheme 38

Separately, a mixture of alkene 193 and acetal 195 was hydrolysed to the 3,9-

diketoxanthone 192 in 88% yield under the same conditions (Scheme 39). Using this

base induced ring closure method, the overall yield of 192 could be improved from 52%

to 70% overall.

Scheme 39

Within the Shipman group, Penny Turner has recently developed a mild Pd(0) catalysed

method for the construction of tetrahydroxanthones via selective C–O bond formation

from halo diketones.89 These compounds are readily accessed by simple C-alkylation of

ortho-halo acid chlorides by enolates derived from cyclic ketones. The key advantage of

this method is that ring closure is achieved under very mild conditions (Scheme 40).

Scheme 40

Encouraged by these results, it was decided to examine its use for the synthesis of

diketo xanthone 192. Treatment of trimethylsilylenol ether 188 with methyllithium then

O-bromobenzoyl chloride produced C-alkylated ketone 199 in good yield. This

intermediate was cyclised to alkene 193 containing a masked ketone using palladium

catalysis in 58% yield. No efforts were made to further optimise the reaction conditions

for this cyclisation. This new example of the metal mediated cyclisation nicely

illustrates the fact that acid sensitive functional groups are well tolerated. Further acidic

hydrolysis of 193 generated dicarbonyl 192 in excellent yield (Scheme 41).
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Scheme 41

2.3 Chemo- and enantioselective reduction of 3,9-diketoxanthone 192

Having access to the multi-gram quantities of diketoxanthone 192 via acidic, basic and

metal catalysed cyclisations, next it was set about establishing if chemoselective

reductions of the ketone group could be achieved. Simple chemoselective reduction of

192 to alcohol 200 was realised by treatment with sodium borohydride in excellent yield

(Scheme 42). The structure of alcohol 200 was unambiguously confirmed by single

crystal X-ray diffraction on crystals grown from ethanol (Figure 31).

Scheme 42

Figure 31 Single crystal X-ray diffraction structure of alcohol 200

Having easily achieved the chemoselective reduction of 192 in excellent yield, next

enantioselective reduction to this alcohol was examined.

High asymmetric induction is achieved in the reduction of carbonyl compounds when

the Si and Re faces of the carbonyl group offer different steric and/or electronic
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environments. Typically this necessitates the use of ketones bearing rather different

substituent patterns at the α-carbons. For example alkyl aryl ketones often undergo

enantioselective reductions in high ee’s.96 A survey of the literature suggested that the

stereocontrolled reduction of ketones having unsubstituted alpha methylene groups can

be best achieved using either the Corey-Bukshi-Shibata (CBS) reduction or catalytic

asymmetric transfer hydrogenation.97, 98 The CBS stereoselective catalytic reduction of

prochiral ketones to provide chiral alcohols has been extensively studied and excellent

enantioselectivities have been achieved. Catalyst (S)-3,3-diphenyl-1-

methylpyrrolidino[1,2-c]-1,2,3-oxazaborole (203) has been used to achieve over 80%

enantioselectivities in the stereocontrolled reduction of challenging dialkyl ketones

(Scheme 43).99

Scheme 43

Therefore, 203 was used to explore the reduction of 192. In this regard it was

anticipated that the reduction of 192 might be very challenging as both the α- carbons

are simple methylene groups. Indeed, the stereoselective reduction of xanthone 192 with

catalytic (S)-203 in 1M BH3
.THF solution at ambient temperature provided the chiral

alcohol 200 in good yield but very poor enantioselectivity. The enantioselectivity of this

and subsequent reduction was analysed by chiral HPLC using an ODH column (Scheme

44).

Scheme 44

The major enantiomer in this reaction was determined by HPLC retention times in

conjuction with further derivatisation experiments (vide infra). Since the asymmetric

reduction of 192 was very poor in the CBS catalysed enantioselective reduction, further

attempts with similar catalysts were not explored. Within the department, the Wills

group has extensive expertise in asymmetric transfer hydrogenation, and so it was



Chapter 2: Synthesis of Tetra- and Dihydroxanthones and their glycosides Samiullah

56

encouraging to explore the use of Noyori’s catalyst 206 and Wills’ catalyst 207 for

asymmetric transfer hydrogenation of 192. There is precedent for β- tetralone substrates

such as 204 being reduced in high enantioselectivity (Scheme 45). 100

Scheme 45

Figure 32

Encouraged by this precedent, the asymmetric transfer hydrogenation of dicarbonyl 192

was carried out using Noyori’s catalyst (1R, 2R)-206, triethylamine and formic acid at

ambient temperature over 2 days. This catalyst system provided alcohol 200 in very

good yield, and 33% ee (Scheme 46).101

Scheme 46

Better enantiocontrol was achieved using the tethered ruthenium catalyst (1R, 2R)-207

developed by Wills. Using this catalyst system, 200 was formed in 57% ee and 88%

yield. Interestingly, this tethered ruthenium catalyst 207 not only improved the

enantioselectivity, but also the rate of reduction was much faster as judged by the time

for complete conversion into product (Scheme 47).

Scheme 47
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Further efforts to enhance the ee of this reduction were not attempted at this juncture. It

was reasoned that the ee of (R)-200 could be further enriched through coupling to an

enantiopure sugar donor and separation of the resulting diastereomers.

(i) (ii) (iii)

10% ee with 203 33% ee with (1R, 2R)- 206 57% ee with (1R, 2R)-207

Figure 33. HPLC traces of enantiomerically enriched 200 using ODH column (10% isopropanol in

hexane) : (i) CBS reduction using (S)-3,3-diphenyl-1-methylpyrrolidino[1,2-c]-1,3,2-oxazaborole (203).

(ii) Asymmetric transfer hydrogenation with N-[(1R,2R)-1,2-diphenylethyl-2-amino]-4-

methylbenzenesulfonamide (p-cymene) ruthenium chloride (206). (iii) Asymmetric transfer

hydrogenation with N-[(1R,2R)-1,2-diphenyl2-3-(3-phenylpropylamino)-ethyl]-4-

methylbenzenesulfonamide chloro ruthenium (207)

The absolute configuration of the major alcohol produced in these reductions is the

same in all cases. By subsequent derivatisation, it was deduced that the (R)- enantiomer

has formed as the major isomer. This sense of asymmetric induction is consistent with

that seen in the reduction of β-tetralone. This can be understood if one imagines

overlaying the benzene ring of β-tetralone over the central ring of the xanthone (Figure

34).102

Figure 34
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2.4 Synthesis of D-Amicetose 214

With alcohol 200 in enantiomerically enriched form, the next goal was to synthesise a

suitable sugar donor to complete the synthesis of glycoside 238. D-Amicetose derivative

214 has been made previously from the alkene 211 in 3 steps in 91% yield by Spohr et

al.103

It was reasoned that 214 could be transformed into a variety of activated donors by

subsequent hydrolysis of the anomeric ether followed by activation. Rather than devise

new chemistry to 214 which might have been more direct, it was elected to repeat the

published synthesis of this material as felt it would be more expedient.

Commercially available β-methoxy D-glucose 208 was treated with dimethoxy

benzylidene acetal in the presence of catalytic iodine to give benzylidene acetal 209 in

excellent yield using the modified method developed by Rajib et al.104 To deoxygenate

209, it was converted to dimesylate 210, using methanesulfonyl chloride and

pyridine.105 This dimesylate was treated with the Tipson-Cohen reagent to give alkene

211 in good yield,106 which was hydrogenated in the presence of 5% palladium on

carbon and triethylamine to give crystalline 212 in excellent yield. Oxidative cleavage

of the benzylidene ring with NBS provided 6-bromo deoxysugar 213 in excellent yield.

Further catalytic reduction of carbon-halogen bond of 213 with palladium on carbon in

the presence of triethylamine gave β-methoxyamicetose 214 in 95% yield (Scheme

48).103

Scheme 48

β-Methoxyamicetose 214 was hydrolysed in excellent yield to a mixture of α- and β-

hydroxyamicetose 215 in 1.4 : 1 ratio respectively, using a 1 : 2 : 3 mixture of hot 2M
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HCl, AcOH and H2O. The α- and β-hydroxyamicetose 215 were established on the basis

of the chemical shift of the anomeric hydrogens. Fortunately the hydroxyl hydrogens of

α- and β-hydroxyamicetose 215 were also visible in 1H NMR spectrum at 2.91 ppm as a

singlet and 3.45 ppm as a doublet with 5.9 Hz of coupling constant respectively. The

mixture of α- and β- hydroxyamicetose 215 was further acetylated in excellent yield on

treatment with acetic anhydride and pyridine in the presence of catalytic DMAP to

obtain α- and β- acetoxyamicetose 216 in 1.4 : 1 ratio respectively (Scheme 49).107

Scheme 49

2.4.1 Synthesis of α-halogenated sugar donors

Most β-glycosidic bonds are constructed by SN2 type reactions of α-sugar donors with

the alcohol acceptor. Levels of stereocontrol also depend on the nature of the alcohol

and the substitution pattern at the adjacent carbon (C-2). For example, the glycosidation

of cholesterol 217 with α-bromo sugar 218 proceeds to give exclusively the β-glycosidic

bond as reported by Schneider et al (Scheme 50).108

Scheme 50

With this knowledge in hand, attempts were made to produce sugar donors with

exclusively the α-configuration. To the best of our knowledge, no examples of

exclusively α-halo sugar donors derived from 2,3,6-trideoxy sugars such as amicetose

216 have been reported. The synthesis of α-bromo anomer 220 from amicetose 216 was

attempted by treating it with 33% HBr in AcOH. However the substrate was unstable to

the strongly acidic conditions and this approach led only to degradation.
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Generating HBr in situ by treating acetyl bromide with methanol in acetic acid,

followed by the addition of 216 also gave a complex mixture of products (Scheme

51).109

Scheme 51

The synthesis of α-bromo sugar was also attempted under milder conditions by treating

216 with trimethylsilyl bromide in benzene at room temperature. The development of

two closely running new spots was observed on thin layer chromatography. However,

during the attempted isolation of 220 only α- and β-hydroxy amicetose 215 in 1.2 : 1

ratio respectively was recovered presumably as a result of hydrolysis of 220 (Scheme

52).110

Scheme 52

2.4.2 Synthesis of α-trichloroacetimidate donors

Since neither the α- or β-bromo derivatives of 220 could be produced, it was attempted

to convert the anomeric hydroxyl group of 215 into trichloroacetimidate. When

activated in the presence of Lewis acids, these are known to be excellent partners in the

glycosidation reactions.111 In a reversible activation step and with the help of kinetic

and thermodynamic reaction control both the α- and β-anomers could potentially be

accessed using this chemistry. The β-trichloroacetimidate 223 is generated from a

mixture of α- 221 and β- 222 tetra-O-benzyl-D-glucose preferentially in a very rapid and

reversible addition reaction using potassium carbonate in dichloromethane at room

temperature (Scheme 53). However, this product can be anomerised in the presence of

strong base such as sodium hydride through a retroreaction to form the

thermodynamically more stable α-trichloroacetimidate sugar donor 224 exclusively

(Scheme 53). 112
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Scheme 53

However, the synthesis of trichloroacetimidate derivatives of amicetose donors has not

yet been reported. Treatment of the α- and β- mixture of amicetose 215 in 1.2 : 1 ratio

respectively with excess trichloroacetonitile and catalytic sodium hydride (10mol%)

produced both α-225 and β-226 trichloroacetimidates within 30 minutes as evidenced by

thin layer chromatography. To shift the equilibrium to the thermodynamically more

stable α-anomer, namely 225, an excess of sodium hydride was added (Scheme 54). 113

Scheme 54

Crude 1H NMR analysis showed the presence of both the α-225 and β-226

trichloroacetimidate glycosyl donors in 3 : 1 ratio. This ratio of glycosyl donors

remained unchanged when the reaction mixture was left for longer times, and varying

amounts of sodium hydride were used. The major α-anomer was assigned on the basis

of 1H NMR chemical shifts and coupling constants of anomeric hydrogens. This

mixture of trichloroacetimidates was used in further glycosidation reactions as they

were unstable to storage or column chromatography on silica gel.

2.5 Glycosidations of alcohol 200

With both enantiomerically enriched alcohol 200 and a suitable activated sugar donor

namely 225/226 in hand, I was in a position to construct amicetose substituted

tetrahydroxanthones. Trichloroacetimidates 225/226 (3:1) were reacted with one

equivalent of alcohol 200 (57% ee) in the presence of BF3.OEt2 in dichloromethane.114

This reaction resulted in the formation of α-130 and β-131 anomeric glycosides in a

combined 60% yield (Scheme 62). No products derived from the minor enantiomer of

200 were observed (Scheme 55).
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Scheme 55

The stereochemistry at the anomeric positions of both the α-227 and the β-228

diastereomers was revealed by 1H and 13C NMR spectroscopy. The anomeric hydrogen

of α-227 is a multiplet at 5.05 ppm and the peak for anomeric carbon was at 95.0 ppm.

Similarly, the anomeric hydrogen of β-228 is a doublet of doublets at 4.76 ppm, with

coupling constants of 1.8 and 9.4 Hz, while the peak for the anomeric carbon was at

99.6 ppm. Since the equatorial hydrogen in α-227 is closer to the ring oxygen which

causes deshielding of it, the assignments at this centre can be tentatively made based

upon the 1H chemical shifts. The stereochemistry at C-14 was unambiguously

established by growing crystals of both the α-227 and β-228 diastereomers. Single

crystal X-ray diffraction revealed that both the diastereomers possessed (R)-

configuration at C-14 and are epimeric at the anomeric position (Figure 35). Since the

combined yield is 60% and the enantiomeric ratio 200 is 78.5 : 21.5 this must mean that

there is preferential reaction of the sugar donors with the major enantiomer of alcohol

200. These observations also enabled us to conclude that the absolute configuration of

the major enantiomer of alcohol 200 is (R).

α-227 β-228

Figure 35 Single crystal X-ray structures of 227 and 228.
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Ohmori et al have successfully achieved exclusively α-anomers while coupling a

mixture of α-and β-rhodinosyl acetate 229 (the diastereomer of amicetosyl acetate), with

(±)-230 at lower temperatures in the presence of BF3.OEt2 (Scheme 56).107

Scheme 56

To exclusively obtain the anomer 227 and attempt the separation of the enantiomers of

(±)-200, the acetoxy amicetose 216 was directly coupled with (±)-200 following

Ohmori’s procedure. However, this gave a mixture of four inseparable diastereomers

resulting from the coupling of both enantiomers of 200 and α- and the β- anomers of

amicetosyl acetate 216 in good yield (Scheme 57).

Scheme 57

2.6 Deprotection

To complete the synthesis of the tetrahydroxanthone analogue, removal of the ester

group was required. Deprotection of benzoyl group of α-227 was conducted in

methanolic sodium methoxide yielding 234 in 10% yield with the formation of methoxy

tetrahydroxanthone 235 as a major product. The use of both catalytic and stoichiometric

amounts of sodium methoxide did not have any appreciable effect on the product ratio

(Scheme 58).

Scheme 58
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The deprotection of benzoyl group of β-228 was also conducted with methanolic

sodium methoxide. In this case only methoxytetrahydroxanthone 235 was obtained

(Scheme 59).

Scheme 59

Glycoside 227 has relatively acidic hydrogens at C-15 and could lead to the production

of alkene 236 via an E1CB-type mechanism (Scheme 60). Dihydroxanthone 236

presumably undergoes conjugate addition of methoxide to give

methoxytetrahydroxanthone 235 in a manner analogous to that seen previously in the

conversion of 193 into 194 (Scheme 35).

Scheme 60

The formation of 235 was further investigated through the synthesis of the

dihydroxanthone 236 from alcohol 200. Activation of alcohol 200 as a mesylate was

achieved by treating it with methanesulfonyl chloride in the presence of

triethylamine.115 Further treatment of this mesylate with KOtBu induced elimination to

dihydroxanthone 236 in moderate yield over the two steps. Treatment of

dihydroxanthone 236 with methanolic sodium methoxide resulted in the conjugate

addition of MeOH to give methoxytetrahydroxanthone 235 (Scheme 60). This sequence

adds credibility to the idea that 236 is an intermediate in the conversion of 227 and 228

into 235 (Scheme 61).
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Scheme 61

Attempts to remove the benzoyl group from 228 by reduction with DIBAL116 or

LiAlH4
117 at low temperature gave only complex mixtures of products. The hydrolysis

of 228 with aqueous LiOH in THF also resulted in a complex mixture of products

(Scheme 62).

Scheme 62

The same reactions performed on glycoside 227 were also attempted. Again only

complex mixtures were produced. Exhaustion of the limited supplies of 227 and 228

prevented exploration of alternative cleavage conditions (Scheme 63).

Scheme 63

2.7 Conclusions and Future work

In this chapter an approach has been developed to amicetose substituted

tetrahydroxanthones 228 in 3 linear steps and 32% overall yield from 3-ethoxy-1,2-

dihydroxanthen-9-one (193). Key steps in the sequence include (i) palladium catalysed

assembly of tetrahydroxanthone nucleus; (ii) enantiocontrolled reduction of the C=O

group via asymmetric transfer hydrogenation; and (iii) stereoselective glycosidation

using a novel trichloroacetimidate donor. The gross structure and stereochemistry of

228 were deduced by single crystal X-ray diffraction. Final deprotection to the free
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amicetose systems proved problematic due to a competing elimination process (Scheme

64).
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Scheme 64

Future work should focus on the use of more labile protecting groups in place of the

benzoate group, and further efforts to improve the enantioselectivity of the asymmetric

reduction. It was imagined that the alternative benzyl protected donor could be made in

four steps from 214 (scheme 65).

Scheme 65

Further coupling and deprotection via catalytic hydrogenation could then yield the

target amicetose substituted tetrahydroxanthones in good yields.
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3.1 Introduction to di- and trihydroxy- tetrahydroxanthones

A variety of natural products including puniceasides B 36 and C 37, albofungin,

simaomicins, actinoplanones, kibdelones, isokibdelones and kigamicins, exist with

various hydroxylation levels in the tetrahydroxanthone A-ring (Figure 36). In this

chapter, new synthetic methods for the functionalisation of the A-ring of simple

tetrahydroxanthones with a view to developing general strategies to these classes of

natural products are reported.

Figure 36

A range of deoxyderivatives were also targeted (e.g. 1-deoxy and 4-deoxy kigamicins,

4-deoxykibdelones) (Figure 36). It was anticipated that through screening of such

analogues, new knowledge about how critical the extent of hydroxylation and the

stereochemistry of such functional groups is to the biological activity of the various

natural products could be obtained.

3.2 Dihydroxytetrahydroxanthones

3.2.1 Synthesis of 3,4-dihydroxylated tetrahydroxanthones

Having easy access to 3,9-diketoxanthone 192 (Chapter 2), further functionalisation of

the A-ring to install the trans-hydroxyl groups at C-3 and C-4 was investigated. It was

imagined that this might involve the reduction of the 3,9-diketoxanthone 192 followed
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by elimination of the resulting alcohol to provide dihydroxanthone 236, which could be

further epoxidised and opened by water to yield diol 240, or an alcohol nucleophile such

as methanol to yield differentially protected diols e.g. 241 (Scheme 66).

Scheme 66

In Chapter 2, a simple route to alkene 236 from 3,9-diketone 192 by reduction and

subsequent elimination was devised. Alternatively, tetrahydroxanthone 98 can be

selectively deprotonated using KOtBu at –15 °C in THF and subsequently quenched

with phenylselenyl chloride to give selenide 242 in good yield. This selenide upon

oxidation with mCPBA undergoes spontaneous 2,3-sigmatropic rearrangement to give

dihydroxanthone 236 in 80% yield (Scheme 67).

Scheme 67

With dihydroxanthone 236, accessible via two complementary routes, the epoxidation

step was next explored. With mCPBA, the expected epoxide 239 was produced in poor

yield. This epoxidation was also attempted with solution buffering in an attempt to

minimise acid catalysed ring opening of the product. However, no appreciable

improvement was observed when the reaction was performed in the presence of solid

NaHCO3 (Scheme 68).118

Scheme 68
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Further attempts to improve the yield of the epoxidation involved treatment of alkene

236 with the powerful, neutral oxidant dimethyldioxirane (DMDO).119 This again led to

the formation of epoxide 239 in low yield (Scheme 69).

Scheme 69

Next, attempts were made to epoxidise the more electron rich enol ether 193 produced

in two steps as described in Chapter 2 (Scheme 41). Enol ether 193 was treated with

mCPBA in dichloromethane, which surprisingly gave only starting material 193 after 24

hours. Using more reactive DMDO, a complex mixture of inseparable products was

obtained (Scheme 70).

Scheme 70

Dihydroxylation of enol ether 193 under Upjohn conditions was also attempted which

revealed the inertness of this substrate with complete recovery of 193 after 48 hours.120

Application of the Warren dihydroxylation conditions was also unsuccessful (Scheme

71).121

Scheme 71

The installation of trans-hydroxyl groups at C-3 and C-4 was explored by heating

epoxide 239 in methanol in the presence of para-toluenesulphonic acid. This resulted in

the formation of a single regio- and stereoisomer. It was anticipated that the C-4 of the
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epoxide should be more electrophilic due to the inductive effect of the carbonyl group

and the fact that this carbon is allylic. Since the hydrogens at C-3 and C-4 in

regioisomers 241 or 245 have nearly identical chemical shifts in the 1H NMR spectrum,

it was difficult to assign the regiochemical or indeed stereochemical outcome of this

reaction (Scheme 72).

Scheme 72

To help resolve this problem, epoxide 239 was opened with an amine nucleophile, such

that the hydrogen shifts at C-3 and C-4 would be less likely to be coincident in the

resulting products. Epoxide 239 was reacted with methylamine leading to the formation

of a single regioisomer 246 in 80% yield (Scheme 73). Analysis of 1H NMR spectrum

revealed an apparent doublet of triplets for H-3 at 3.90 ppm with coupling constants of

3.3 and 7.8 Hz, and a doublet of H-4 at 3.60 ppm with a coupling constant of 7.8 Hz

consistent with the formation of 246 as product. This amine 246 was converted to its

hydrochloride salt on stirring in 2M HCl in diethyl ether overnight. A single crystal X-

ray structure was obtained on crystals grown from diethyl ether (Figure 37), which

confirmed this regiochemical assignment. Moreover, it conclusively established the

trans-configuration of substituents at C-3/C-4 (Scheme 73).

Scheme 73

247

Figure 37 Single crystal X-ray structure of 247
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The use of the asymmetric epoxidations to control the absolute stereochemistry in these

reactions is discussed in Section 3.3.1.1. Having identified a potential strategy for

control of the stereochemistry at C-3 and C-4, our attention next turned to the

introduction of the C-1 hydroxyl group.

3.2.2 Attempted synthesis of 1,3-dihydroxytetrahydroxanthones

First, installation of syn-hydroxyl groups at C-1 and C-3 was investigated. The synthetic

strategy initially selected involved coupling of a prefunctionalised A-ring containing the

syn diols protected as a 1,3-benzylidene acetal with acid chloride 190 using enolate

chemistry followed by condensation to form the tetrahydroxanthone nucleus (Scheme

74). Previously, it has been demonstrated that such cyclisations can be performed under

either acidic or basic conditions (Section 2.2).

Scheme 74

To obtain silylenol ether 254, the synthesis of Honda et al was followed.122 The reaction

of commercially available cis and trans 1,3,5-trihydroxycyclohexane (250) with

trimethyl ortho-benzoate in the presence of boron trifluoride diethyl etherate in

dichloromethane at –15 °C provided the ortho ester 251 in moderate yield (Scheme 75).

Scheme 75

Partial reduction of ortho-ester 251 was conducted with borane in the presence of

DMPU. DMPU is less toxic then HMPA which was originally used in the literature for

this step.122 This provided the cis-3,5-O-benzylidenecyclohexanol 252 in 40% yield.

Next, the cis-3,5-O-benzylidene cyclohexanol (252) was subjected to oxidation with

IBX to provide ketone 253 in excellent yield (Scheme 76).
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Scheme 76

The deprotonation of ketone 253 with LDA in THF generated the lithium enolate which

on subsequent addition of trimethylsilyl chloride at low temperature gave silylenol ether

254 in good yield (Scheme 77).

Scheme 77

With 254 in hand, next attention was turned to the key C–C bond construction. To this

end, silylenol ether 254 was treated with MeLi at low temperature to regenerate the

lithium enolate and quenched with 2-(chlorocarbonyl)phenyl acetate (190).

Disappointingly, formation of the C-alkylated product was not detected. Further

attempts performing the quench at elevated temperatures (– 60 °C, – 50 °C, – 30 °C, – 20

°C, – 10 °C, – 0 °C, and rt), were equally unsuccessful with no detected C-alkylated

product (Scheme 78).

Scheme 78

However, the formation of 5-hydroxycyclo-2-enone (257), and benzaldehyde 258 via an

intramolecular β-elimination of the enolate was observed in the 1H NMR spectrum

(Scheme 79). The assignment of 257 was based on comparison with literature data (vide

infra).123
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Scheme 79

Toshio et al123 have previously shown that silylenol ether 254 can be used to generate

enantiopure 5-hydroxy-2-cyclohexenone 257 along with benzaldehyde 258. Since they

have reported that the yield of formation of 257 was decreased from 77% to 33% when

the temperature of the reaction was lowered from room temperature to – 78 °C, it was

hoped that the lithium enolate generated from 254 could be successfully quenched with

a highly reactive electrophile such as the acid chloride 190 at – 78 °C. However, this

proved incorrect, the deprotonation of 254 at lower temperature and slow elevation of

the temperature still resulted in the intramolecular elimination of 254 to form

hydroxycyclohexenone 257 and benzaldehyde 258. Presumably, this elimination is

encouraged by the antiperiplanar orientation of the enolate anion with the adjacent C–O

bond of the acetal (Scheme 80).

Scheme 80

To try to overcome these problems, a Mukaiyama aldol reaction of silylenol ether 254

with o-acetoxybenzaldehyde was attempted to make the β-hydroxy ketone 259 which

could be further oxidised to the required ketone. Using titanium tetrachloride as

activator, this reaction did not give the desired aldol products. To ensure the ester group

was not interfering, the Mukaiyama aldol reaction was also attempted with

benzaldehyde. A variety of Lewis acids were explored as promoters.124 In no instances,

could any of the desired products be detected (Scheme 81).
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Scheme 81

Attempts were also made to produce the boron enolate using triethylamine and

dicyclohexylboron chloride.125 However, further reaction with benzaldehyde to make

the β-hydroxy ketone 260 led to no identifiable products (Scheme 82).

Scheme 82

3.2.2.1 Synthesis of 267

Silylenol ether 254 was very much prone to elimination due to the very well aligned

orbitals of the generated lithium enolate. As an alternative, it was considered that the

non-tethered syn-benzyloxy substituents in 267 might prove less prone to the unwanted

β-elimination (Scheme 83).

Scheme 83

To obtain silylenol ether 267, to test this idea, the synthesis of Honda et al was

followed.126 The mono sodium salt derived from the commercially available all- cis

diastereomer of 1,3,5-trihydroxycyclohexane (262) on treatment with tert-

butyldimethysilyl chloride in THF yielded mono silyl ether 263 in 82% yield. Diol 263
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was further alkylated with benzyl bromide in the presence of sodium hydride and

tetrabutylammonium iodide to give dibenzyl ether 264 in 97% yield. The desilylation of

monosilylated dibenzyl ether 264 was achieved with tetrabutylammonium fluoride in

THF in 80% yield. Further oxidation of alcohol 265 with IBX gave crystalline ketone

266 in 90% yield. Dibenzyl ketone 266 was further converted into the corresponding

silylenol ether in 70% yield. The temperature was carefully maintained at – 78 °C to

avoid any β-elimination (Scheme 84).

Scheme 84

The lithium enolate was regenerated from 267 on treatment with MeLi at –78 °C.

Experiments were conducted at low temperatures to try to avoid elimination and favour

the intermolecular C-acylation of the enolate (Scheme 85).

Scheme 85
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The acylation of the silylenol ether of prefunctionalised A-ring 267 with the acid

chloride 190 was conducted at various temperatures to encourage the formation of the

C-C bond. Recovery of the dibenzyl ketone after conducting the reaction at –78 °C and

even up to –45 °C encouraged us to conduct the reaction at higher temperatures and for

longer periods of time. Although the molecular ion peak for 270 was clearly observed in

the electrospray mass spectrum when the reaction was conducted at –40 °C, NMR

analysis of crude product suggested isomeric ester 271 had been formed (Scheme 86).

Scheme 86

The quantification of 271 was difficult by NMR. Unfortunately, the formation of the

required C-C bond was again not achieved inspite of a number of changes to the

reaction conditions (Table 1). These results suggest that this more hindered enolate

prefers to react through oxygen rather than carbon.

Table 1. 1 eq of silylenol ether 267, 1 eq of MeLi and 1 eq of acid chloride 190 was

used in THF.

Entry
Temperature

(-78 °C – X °C)
Time

Results by
ES and NMR

1 -78 °C 30 min 267

2 -40 °C 40 min 267

3 -30 °C 10 min 266 and 271

4 -25 to -20 °C 30 min 266 and 271

5 -20 to -15 °C 30 min 266 and 271

6 -15 to -10 °C 30 min 266 and 271

7 -10 to -5 °C 30 min 266 and 271

8 rt (slowly) 30 min 266 and 271

9 rt (quickly) 30 min 266
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Mukaiyama aldol reaction of the same silylenol ether was attempted using o-acetoxy

benzaldehyde. However, in the presence of titanium tetrachloride, only a complex

mixture of products was produced (Scheme 87).127 Attempts with comparatively softer

Lewis acid ZnCl2, were also made but again only complex mixtures of products were

produced.124 Frustrated by our unsuccessful efforts to produce compounds containing

syn hydroxyl groups at C-1 and C-3 we decided to turn our attention towards 1,4-

dihydroxy tetrahydroxanthones instead.

Scheme 87

3.2.3 Synthesis of 1,4-dihydroxy tetrahydroxanthones

The 1,4-dihydroxy tetrahydroxanthone substitution pattern is found in the simaomicins

and albofungin among others (Figure 38). Both syn- and anti-substitution patterns are

known.

Figure 38

Our synthetic strategy for the installation of the cis and trans hydroxyl groups at C-1

and C-4 was based on using ketone 103 as the starting material. It was imagined that

chemo- and enantioselective reduction would give alcohol 102, which could be further

deprotonated and quenched with an electrophilic oxygen source to form the 1,4-

dihydroxytetrahydroxanthones 277 and/or 278. I hoped that conditions might be found

to control the facial selectivity of this process forming either 277 or 278

diastereoselectively (Scheme 88).
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Scheme 88

Ketone 103 was obtained by the condensation of cyclohexadione (273) and salicylic

acid (274) in the presence of polyphosphoric acid at high temperature in 62% yield.128

Further chemoselective Luche reduction of 83 provided the racemic alcohol 102 in 80%

yield (Scheme 89).129

Scheme 89

Next, enantioselective reduction of 103 was explored to obtain alcohol 102 as a single

enantiomer. Ketone 103 was subjected to asymmetric transfer hydrogenation with

ruthenium tethered catalyst 207 (Figure 32), developed by Wills in the presence of

triethylamine and formic acid to provide (R)-102 in 90% yield and 76%

enantioselectivity (Scheme 90).130

O

O

O

O

(R, R)-207, 1 mol%, Et3N, HCOOH, rt, 24h

90%, 76%ee

103 (R)-102

O OH

Scheme 90

The major enantiomer in this reaction was determined by the chiral HPLC retention

times, in conjunction with further derivatives experiments (vide infra). To further

improve the enantioselectivity in the reduction, Noyori’s ruthenium catalyst 206 (Figure

32), for asymmetric transfer hydrogenation was explored. The asymmetric transfer

hydrogenation of ketone 103 was conducted with 206 in the presence of triethylamine

and formic acid, and yielded alcohol (R)-102 in excellent enantioselectivity and 88%

yield (Scheme 91).
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Scheme 91

3.2.3.1 Determination of configuration of 102 by Mosher’s method

The models and mechanistic studies of ketone reduction by ruthenium catalysts reveal

that (R, R)- catalysts generally reduces the ketone to the R-alcohol. However, the

absolute configuration of the alcohol (R)-102 was determined by Mosher’s method.131

Treatment of the chiral alcohol (R)-102 with (S)-(+)-MTPA-Cl (derived from the R acid,

which gives the R configured ester) in the presence of triethylamine and catalytic

DMAP produced (R, R)-275 in good yield (Scheme 92).

Scheme 92

Using the notation from Mosher’s paper, the protons at position ‘L2’ will be upfield in

(R, R)-275 compared to protons at position ‘L2’ in (R, S)-276 (Scheme 93). The single

enantiomer from the reduction gave the R,R Mosher ester. In order to compare the

relative positions of the key peaks, the racemic alcohol was reacted with (S)-(+)-MTPA-

Cl to give a mixture of isomers (R,R)-275 and (R,S)-276. The Mosher model predicts

that these isomers will adopt the conformations shown below (Scheme 93).

Scheme 93
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Comparison of the 1H NMR spectrum of (R,R)-275 and a mixture of (R,R)-275 and

(R,S)-276 confirmed the R configuration of the alcohol (R)-102.

Further installation of a hydroxyl group at C-4 was achieved by formation of the

dianion of (R)-102 and subsequent quench with the Davies oxaziridine132 reagent. This

provided an inseparable mixture of cis and trans diastereomers of 1,4-dihydroxy

tetrahydroxanthones (R,S)-277 and (R,R)-278 in 1 : 1 ratio in 42% yield. Acetylation of

the cis and trans diastereomeric mixture of (R,S)-277 and (R,R)-278 led to the

separation of the diastereomers (Scheme 94). I was able to grow crystals of (R,S)-279 to

prove the relative stereochemistry of both diastereomers unambiguously (Figure 39).

Scheme 94

279

Figure 39 Single crystal X-ray structure of 279
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After the successful synthesis of (R,S)-279 and (R,R)-280 dihydroxy

tetrahydroxanthones, it was decided to couple a glucose donor with the single

enantiomer of alcohol (R)-102, then attempt the installation of the C-4 hydroxyl group

using the above chemistry. In this way, I hoped to produce the fully functionalised A-

ring fragment of puniceaside B 36 and C 37, and natural product 1,3,5-trihydroxy-8-β-

D-glucopyranosyl tetrahydroxanthone (30).

3.2.3.2 Glycosidation of alcohol (R)-102

Puniceasides B and C contain a β-linked glucose to the C-1 hydroxyl group of the

tetrahydroxanthone. Therefore, to construct the β-linkage between the D-glucose and

alcohol (R)-102, glycosidation of the alcohol was carried out with the commercially

available tetra-O-acetyl-α-D-glucopyransyl bromide 281 in the presence of silver

carbonate at room temperature. Interestingly, this resulted in an inseparable 2.8:1

mixture of α– 282 and β– 283 glycosides in 85% yield (Scheme 95).

Scheme 95

The formation of the β-glycosidic bond does not only depend on the configuration of

anomeric position of the sugar donor but also on the nature of the alcohol133, 134, 135 and

the glycosidation conditions.136, 137 To further encourage β-glycosidic bond formation

the glycosidation was repeated in the presence of silver triflate138, 139 and silver oxide.140

However, again no improved preference for the formation of the β-glycoside was

observed. Since the synthesis of exclusively β-283 was not achieved with tetra-O-

acetyl-α-D-glucopyransyl bromide 281 as sugar donor, and further installation of the

hydroxyl group at C-4 in the presence of acetate protection was problematic, the use of

an alternative sugar donor was explored. A mixture of α- and β-hydroxy tetra-O-benzyl-

D-glucose 284 and trichloroacetonitrile were stirred in the presence of catalytic sodium

hydride, which quickly resulted in the appearance of two close running spots of α- and

β- trichloroacetimidates observed on thin layer chromatography.141 Addition of excess

sodium hydride after 30 minutes initiated the retroreaction and allowed the formation of
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thermodynamically more stable α-trichloroacetimidate 285 in excellent yield (Scheme

96).142

Scheme 96

The α-trichloroacetimidate glycosyl donor 285 was quickly used in the glycosidation

after purification through a short column of silica. Coupling of the alcohol (R)-102 and

the glycosyl donor 285 in the presence of TMSOTf resulted in an inseparable 1:1

mixture of the α-286 and β-287 glycosides.143 Disappointingly, deprotonation of the α-

286 and β-287 glycoside mixture at C-4 with 2 equivalents of KOtBu or LDA and

subsequent quenching with the Davis reagent resulted in a complex mixture of products

from which none of the desired alcohol could be isolated (Scheme 97).

Scheme 97

3.2.4 Synthesis of 1,2-dihydroxy tetrahydroxanthones

Our synthetic strategy to install the cis hydroxyl groups at C-1 and C-2 of the A-ring of

kibdelones 52-59 (Figure 24, 25 and 26) was anticipated to involve elimination of

alcohol 102 to obtain dihydroxanthone 288 which could be further dihydroxylated to

synthesise diol 289 (Scheme 98).
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Scheme 98

Alcohol 102 obtained via Luche reduction of ketone 103 on treatment with

trifluoromethanesulfonic acid eliminated to give dihydroxanthone 288 in 82% yield.

Dihydroxylation of the dihydroxanthone 288 under Upjohn condition gave the diol 289

in 70% yield. To further improve the yield, the reaction was repeated under the Warren

conditions to obtain diol 289 in a slightly improved 76% yield (Scheme 99). No

attempts were made to conduct this dihydroxylation in an enantioselective manner.

Scheme 99

3.3 Trihydroxy tetrahydroxanthones

Next, attention was turned towards the synthesis of trihydroxy tetrahydroxanthones

found in the biologically active actinoplanones, kigamicins and kibdelones.

3.3.1 1,3,4-trisubstituted tetrahydroxanthones

To install the hydroxyl groups at C-1, C-3 and C-4 of the tetrahydroxanthones, a

synthetic strategy based upon acetal 290 was devised. This acetal could be made by

protection of ketone 103 followed by installation of double bond via oxidative [2-3]-

sigmatropic rearrangement of the corresponding selenide. Alkene 292 could be further

subjected to asymmetric epoxidation followed by regioselective opening, deprotection

and hydroxyl directed reduction of the ketone to yield the fully functionalised A-ring of

the kigamicins and actinoplanones (Scheme 100).
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Scheme 100

Ketone 103 was protected with ethylene glycol in the presence of trimethylsilyl chloride

in refluxing 1,2-dichloroethane in 90% yield (Scheme 101).144

Scheme 101

Ketal 290 was deprotonated with lithium diisopropylamide at the γ-position to make an

extended enolate which was quenched with phenylselenyl chloride to give selenide 291

in good yield (Scheme 102).

Scheme 102

The yield of this selenide was further improved when lithium diisopropylamide was

replaced with KOtBu and the temperature was warmed to – 10 °C before quenching

with phenylselenyl chloride (Scheme 103).
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Scheme 103

Oxidation of selenide 291 with mCPBA led to spontaneous [2-3]-sigmatropic

rearrangement to yield alkene 292 in good yield (Scheme 104).

Scheme 104

However, the epoxidation of alkene 292 with mCPBA did not show any epoxide

formation after 16 hours. Treatment with a more powerful oxidant dimethyldioxirane

(DMDO) provided epoxide 293 in 40% yield (Scheme 105). No further attempts to

improve this transformation were made, since we wished to achieve this conversion in

an enantioselective manner.

Scheme 105

3.3.1.1 Asymmetric epoxidations of dihydroxanthone 102 and alkene 161

The enantioselective epoxidation of dihydroxanthone 236 and alkene 292 were

investigated to find the best conditions in terms of chemical yields and

enantioselectivities. Jacobsen’s catalyst (R,R)-294 has been extensively explored for the

enantioselective epoxidation of alkenes (Figure 40).145 For example, the

enantioselective epoxidation of 295 with (R,R)-294 is reported to give very good

enantioselectivity in favour of the depicted enantiomer (Scheme 106).146

Scheme 106
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Epoxidation of dihydroxanthone 236 was conducted in the presence of Jacobsen’s

catalyst (R,R)-294 under buffered conditions. The epoxidation of alkene 236 in the

presence of Jacobsen’s catalyst (R,R)-294 using sodium hypochlorite as the

stoichiometric reoxidant, gave epoxide 239 in low yield along with over oxidised

xanthone 1. The enantioselectivity of the reaction as determined by chiral HPLC, was

quite good. Alternate stoichiometric reoxidants, namely NMO and mCPBA, were used

in attempts to improve the yield and enantioselectivity. However, no substantial

improvements were observed (Scheme 107).147

Scheme 107

Figure 40

Next, we directed our attention towards the chiral epoxidation of alkene 292. The use of

ammonium acetate as a ligand in such enantioselective epoxidations is reported to

decrease the Lewis acidity of the manganese leading to improvements in yields.148

Treatment of alkene 292 with hydrogen peroxide and ammonium acetate in the presence

of Jacobsen’s catalyst 294 in a mixture of methanol and dichloromethane gave epoxide

293 in a more respectable 45% yield and good enantioselectivity (Scheme 108). The

higher levels of conversion observed using this substrate may be because it can not

undergo over oxidation to the xanthone 1.

Scheme 108
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3.3.1.2 Attempted regioselective opening of epoxide 293

With the knowledge gained from the regioselectively opening of the epoxide 239

(Scheme 50), the opening of chiral epoxide 293 with benzyl alcohol was expected to be

straightforward. However, under acidic conditions, rearrangement of the epoxide 293 to

the allylic alcohol 297 was observed in 85% yield (Scheme 109).

Scheme 109

The opening of chiral epoxide 293 was also attempted under basic conditions. Reaction

of the sodium salt of benzyl alcohol, derived from reaction of one equivalent of sodium

hydride and benzyl alcohol in THF at 0 °C, with epoxide 293 again resulted in

formation of allylic alcohol 297 (Scheme 110). Changing the nucleophile MeONa or

EtONa did not show any change in the product formed.

Scheme 110

The opening of the chiral epoxide under more mildly basic aqueous conditions was also

attempted.149 However, the allylic alcohol 297 was still obtained with some starting

material 293 recovered (Scheme 111).

NaHSO4, CH2Cl2, H2O, rt, 4h

O

O
OO

OH

+
O

O
OO

O
90%

293 297

SM

1 : 2

Scheme 111

Since, the cyclic acetal group was rendering the adjacent methylene hydrogens acidic

enough to trigger rearrangement of the allylic alcohol, attempts were made to change

the acetal protecting group. Attempted protection of the ketone 103 as a dimethyl acetal

using p-toluene sulphonic acid in methanol was investigated. However, only the starting

material was recovered after 48 hours (Scheme 112).
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Scheme 112

Since replacement of the cyclic acetal was not achieved, a synthetic strategy was

devised based upon dihydroxylation. After conversion to diol 299, selective oxidation of

the allylic alcohol followed by diastereocontrolled reduction to trans-diol was

envisaged. Subsequent deprotection to 302 and further reduction would then provide the

fully functionalised A-ring of the kigamicins and actinoplanones (Scheme 113). An

additional feature of this strategy is that it could allow for selective introduction of the

carbohydrate moiety at C-3 of intermediate 300, in the context of kigamicin synthesis.

Scheme 113

The dihydroxylation of the alkene 292 under Upjohn conditions gave the corresponding

ketal diol 299 in 68% yield. However, special care was required during work up since

this diol readily eliminates to give allylic alcohol 297 when 0.2N HCl acid is used

(Scheme 93). To invert the stereochemistry of the allylic alcohol, the chemoselective

oxidation of the allylic alcohol was required. Allylic alcohol oxidation was initially

attempted with MnO2 resulting only in the recovery of the starting material. Moreover,

oxidation of this diol with Dess Martin periiodinane, IBX, or CrO3 gave only a complex

mixtures of products (Scheme 114).
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Scheme 114

3.3.1.3 Functionalisation of A-ring via hydroxyl directed epoxidation

A slightly modified strategy was thus required. As it has been seen, ketone 103 can be

reduced in excellent enantioselectivity to alcohol (R)-102. Installation of the double

bond via well developed selenide chemistry, hydroxyl directed epoxidation followed by

regioselective opening of the resultant enantiomer epoxide might yield a fully

functionalised tetrahydroxanthone (Scheme 115).

Scheme 115

For convenience, this synthesis was first tested with racemic alcohol 102 synthesised

via the Luche reduction of ketone 103 in 82% yield. Di-deprotonation of alcohol 102

was achieved using just over two equivalents of KOtBu followed by electrophilic

quench with a single equivalent of phenylselenyl chloride to obtain a 1 : 1 mixture of

selenide diastereomers 303 in 78% yield. Further oxidation of the selenium atom to

promote the [2,3]-sigmatropic rearrangement was carried out with mCPBA which

resulted in the formation of alkene 304 alongside xanthone 1 in a disappointing 4 : 1

ratio. Epoxidation of unstable alkene 304 (used without purification) with mCPBA in

dichloromethane resulted in the formation of xanthone 1 as the only product. It was

perhaps not surprising that, this alkene was acid sensitive and underwent elimination of

water under these acid oxidation conditions (Scheme 116).
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Scheme 116

The oxidation of the selenides 303 with mCPBA was therefore performed under

buffered conditions. Encouragingly, the crude 1H NMR showed the formation of more

alkene 304 relative to xanthone 1 under these conditions. The hydroxyl directed

epoxidation of alkene 304 with buffered mCPBA gave a single diastereomer of the

hydroxy epoxide 305 albeit in only 3% yield (Scheme 117). In view of the small

amounts of 305 produced, I was unable to deduce its stereochemistry.

Scheme 117

Since, alkene 304 was unstable to the epoxidation conditions, dihydroxylation of this

alkene was investigated. Under Upjohn conditions, a single diastereomer of
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trihydroxytetrahydroxanthone 306 was produced in 25% (over the 2 steps) (Scheme

118).

Scheme 118

The methylene hydrogens in tetrahydroxanthone 306 were multiplets in the 1H NMR

spectrum, making its stereochemical assignment using coupling constants difficult,

leaving the stereochemistry unresolved. To elucidate its structure, it was triacetylated

with acetic anhydride in the presence of catalytic DMAP and pyridine to obtain 307.

However, the methylene hydrogens of triacetoxy 307 were still multiplets, therefore, the

stereochemistry could not be determined (Scheme 119).

Scheme 119

Since the instability of alcohol 304 is due to rapid elimination of water to produce

xanthone 1, a revised strategy was devised to protect this alcohol before installation of

double bond. It was anticipated that the protection of 102 could be achieved directly

after the Luche reduction of 103, or alternatively, after the formation of hydroxy

selenide 303. The same sequence of [2,3]-sigma tropic rearrangement, dihydroxylation,

inversion of the allylic alcohol stereochemistry, and deprotection would provide triol

295 (Scheme 120). Clearly, a key use would be the diastereofacial selectivity of the

dihydroxylation reaction with the all syn diastereomer being required.
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Scheme 120

Attempted protection of 303 with tert-butyldimethysilyl chloride in the presence of

imidazole resulted only in the recovery of the starting material. Use of sodium hydride

followed by the addition of tert-butyldimethysilyl chloride in DMF, also resulted in

recovered starting material (Scheme 121).

Scheme 121

In stark contrast, protection of alcohol 102 with tert-butyldimethysilyl chloride in the

presence of imidazole proceeded smoothly in DMF to provide 308 in 90% yield.150

Deprotonation of silyl protected 308 with KOtBu or LDA could be easily observed by a

colour change from colourless to deep yellow upon addition of the base. However, the

electrophilic quench with phenylselenyl chloride only resulted in the recovery of

starting material 308 alongside quantities of alcohol 102 (Scheme 122).

Scheme 122
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The enolate formed after deprotonation of 308 could trigger migration of the silyl

protecting group, which after work up would account for the formation of alcohol 102

(Scheme 123).

Scheme 123

To avoid the migration of the silyl group, selenide 303 was treated with acetic

anhydride in the presence of catalytic DMAP to obtain a diastereomeric mixture of

acetoxy selenides 311 in good yield. Further oxidation of this selenide mixture with

mCPBA resulted in the exclusive formation of xanthone 1 (Scheme 124).

Scheme 124

This result suggested a protecting group less prone to act as a good leaving group was

required. Hence, a p-methoxybenzyl group was chosen to protect alcohol 102. This

protection was smoothly carried out using p-methoxy benzyl trichloroacetimidate in the

presence of catalytic trifluoromethane sulfonic acid in diethyl ether.151 However, further

transformation of p-methoxybenzyl protected tetrahydroxanthone 312 into the

corresponding selenide under the well developed conditions gave only the starting

material back (Scheme 125).

Scheme 125
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Alternatively, the protection of the diastereomeric mixture of selenides 303 was

achieved by treating it with para methoxybenzyl trichloroacetimidate using the same

proceedure. This selenide was oxidised with mCPBA to produce relatively stable alkene

321. The slow evaporation of dichloromethane from a solution of 321 overnight left

large crystals of the alkene whose structure was unambiguously deduced by X-ray

crystallography (Figure 41) (Scheme 127).

321

Figure 41 Single crystal X-ray structures of 321

Donohoe et al have reported selective syn dihydroxylations of 5 and 6 membered rings

of allylic and homo allylic alcohols in the presence of TMEDA and OsO4 (Scheme

126).152

Scheme 126

These workers obtained a single crystal structure of the osmate ester of 319 containing

TMEDA and the intact osmate ester OsO4. From the bond length seen in the complex, it

has been proposed that there is a hydrogen bond between the alcohol and the bound

TMEDA (Figure 42). Such H-bonding in the transition state, has been proposed to

account for the facial selectivity of this reaction.153, 154, 155

Figure 42
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Interestingly, the dihydroxylation of alkene 321 under Upjohn conditions provided only

a single diastereomer 322. The structure of this diol was deduced to be all syn by single

crystal X-ray diffraction (Figure 43). It was speculated that the syn selectivity could

result from the hydrogen bonding provided by a water molecule between the PMB ether

and the approaching OsO4 complex (Scheme 127).

Scheme 127

322

Figure 43 Single crystal X-ray structures of 322

To invert the allylic hydroxyl stereocentre, selective protection of the hydroxyl group at

C-3 of 322 was attempted. Treatment of diol 322 with one equivalent of tert-

butyldimethylsilyl triflate in the presence of lutidine, resulted in protection of the wrong

alcohol selectively in 30% yield (Scheme 128).156 However, this reaction might be

useful for the introduction of amicetose unit at this juncture.
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Scheme 128

Tosylation did not proceed in a selective manner rather 322 gave an inseparable mixture

of 324 and 325 on treatment with one equivalent of p-toluenesulphonyl chloride in the

presence of catalytic DMAP and pyridine in low yield (Scheme 129). The assignment of

324 as the major product was based on the downfield shift of the methine hydrogen at

C-3.

Scheme 129

As selective protection of the secondary alcohol at C-3 of diol 322 was not achieved, it

was decided to oxidise selectively the allylic alcohol instead. As before, use of

manganese dioxide only resulted in recovery of the starting material. Use of one

equivalent of Dess- Martin periodinane at room temperature gave a complex mixture of

products.157 Finally, the oxidation of 322 with half an equivalent of Dess Martin

periodinane at –78 °C slowly warmed overnight gave the ketone 326 along with the

recovery of the diol 322 in 78% yield based on recovered starting material (Scheme

130).

Scheme 130

It is known that α-hydroxy ketones can be reduced to trans diols with sodium

borohydride by delivery of the hydride from the face of the hydroxyl group through

complex formation.158 However, when ketone 326 was reduced with sodium
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borohydride both at low and ambient temperatures, only the syn diol 322 was obtained

in 90% yield (Scheme 131).

Scheme 131

Additional attempts to realise the required inversion with DIBAL and LiAlH4 at low

temperatures gave only complex mixture of products. Time and material constraints

prohibited us from exploring other methods for this reduction.

3.3.2 1,2,4-Trisubstituted tetrahydroxanthones

To make 1,2,4-trihydroxyl groups using the same general strategy, it was anticipated

that diol 289 could be deprotonated to the trianion and quenched with a single

equivalent of Davis reagent which would provide the fully functionalised A-ring of

kibdelones (Scheme 132). Conditions for achieving stereoselectivity in favour of the

desired diastereomer would need to be explored.

Scheme 132

Treatment of diol 289 with three equivalents of KOtBu at lower temperature, followed

by slow warming up to 10 °C before quenching with Davis reagent provided a mixture

of products which, without further purification, were subjected to acetylation by

treatment with acetic anhydride in the presence of DMAP. This led to the isolation of

330 in 25% over the two steps. No other identifiable products were isolated (Scheme

133). The stereochemical assignment of 330 was deduced through NMR analysis.

Scheme 133
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The structure of kibdelone C 57 is well established via the total syntheses by two

independent research groups.92, 94 Comparison of the coupling constants of the

hydrogens of the A-ring of 330 with literatures values for kibdelone C, revealed

substantial differences especially between H3a/H3b and H4 (Table 2). This assignment

was supported by consideration of the dihedral angles expected for 330 through

application of the Karplus equation (Table 2).

Figure 43

Table 2. Comparison of J values of A-ring hydrogens of Kibdelone C 57 and 330

57
J [Hz]

(lit)
188 J [Hz]

J(1, 2) 3.9 J(1, 2) 3.6

J(1, 3b) ≤1.0 J(1, 3b)

J(2, 3a) 12.0 J(2, 3a) 9.6

J(2, 3b) 3.0 J(2, 3b) 3.6

J(3a, 3b) 13.3 J(3a, 3b)

J(3a, 4) 4.5 J(3a, 4) 9.6

J(3b, 4) 1.8 J(3b, 4)

NOe studies were also conducted on 330. Key NOe’s are detailed in Table 3. Based on

this 330 was tentatively assigned as all syn-triacetoxy tetrahydroxanthone. The tri-

deprotonation of dihdydroxy tetrahydroxanthone 289 with three equivalents of KOtBu

resulting in a trianion interacting with counter ions on the same face resembling to a

metal surface followed by electrophilic quench could result in all the syn-selectivity.
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Figure 44

Table 3. NOe studies conducted on 330

Irradiated
1

(%)
2

(%)
3ab
(%)

4
(%)

1 - 3.3 0.9 0.0

2 3.6 - 3.4 1.9

4 0.0 2.2 2.8 -

3.4 Biological evaluation of synthesised hydroxy tetrahydroxanthones

With a range of dihydroxy and trihydroxytetrahydroxanthones in hand, it was sought to

test the biological activity of these compounds. I was especially interested in exploring

their activity in anti-austerity assays, the biological screens used to discover the

kigamicins themselves (Chapter 1).68

It was sought to understand the significance of the extent of unsaturation, oxygenation

and stereochemistry of the A-ring of the tetrahydroxanthones in relation to this

biological activity. The effects of all the dihydroxanthones, dihydroxy, and trihydroxy

tetrahydroxanthones synthesised in the laboratory were evaluated against human

pancreatic cancer cell line (PANC-1), grown separately in nutrient rich medium (NRM)

and nutrient deprived medium (NDM). These assays were kindly conducted by a

laboratory co-worker, Penny Turner at the Peninsula Medical School.

Previously, Turner et al have shown that 331 has considerable activity against PANC-1

cells89 hence it was interested to ascertain if materials containing functionality in the A-

ring, more closely resembling the structure of the kigamicins, might be more active. The

data represent the results of testing in triplicate. Compounds were initially tested at

three concentrations (in triplicate), to facilitate rapid screening. Retesting of actives

being repeated at a wider range of concentrations.
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A total of 9 compounds (102, 228, 234, 279, 280, 288, 299, 306, 330) produced in this

thesis were evaluated. The key findings are detailed below. However, it is clear that

these molecules at best display very weak activity.

Diol 299 when tested in nutrient rich medium (NRM) did not show any bioactivity

against the pancreatic cancer cells (PANC-1). Interestingly, in the nutrient deprived

medium (NDM) it selectively inhibited 10% of the pancreatic cancer (PANC-1) cells’

survival at the highest concentration tested (Figure 45).

Figure 45

Trans and cis 1,4-diacetoxy tetrahydroxanthone showed very contrasting bioactivities

against the pancreatic cancer cells (PANC-1) both in NRM and NDM. Trans (R, R)-1,4-

diacetoxy tetrahydroxanthone 280 did not show any activity either in NRM and NDM

against the pancreatic cancer cells (PANC-1) (Figure 46).
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Figure 46

However, the cis (R, S)-1,4-diacetoxy tetrahydroxanthone 279 in contrast showed good

selectivity, causing 36% cytotoxicity to pancreatic cancer cells (PANC-1) only in NDM

and no biological activity was observed in the NRM (Figure 47).

Figure 47

Dihydroxanthone 288 selectively killed PANC-1 cells under nutrient deprived

conditions (NDM), and was inactive in the nutrient rich medium (NRM) (Figure 48).
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Figure 48

The inhibition of PANC-1 cells survival was enhanced to 85% when 1mg/mL of

dihydroxanthone was used in the NDM. However, at such high concentration the

inhibition of PANC-1 cells survival in NRM was also raised to 22%. From this plot an

IC50 = 3.018 mM value was determined (Figure 49).

Figure 49
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3.5 Conclusions and Future work

I have developed a short enantioselective route to cis-277 and trans-278 bearing the diol

functionality found in the tetrahydroxanthone fragment of 1,3,5-trihydroxy-8-beta-D-

glucopyranosyl, puniceaside B, puniceaside C, albofungins, and simaomicins in 3 linear

steps from known ketone 103 and in 33% overall yield (Scheme 134). Excellent

enantiocontrol was achieved in this sequence using an asymmetric ketone transfer

hydrogenation as the key step. Improvements in the diastereoselectivity of the

dihydroxyltion are still needed and could be a focus of future work. Interestingly, only

279 displays weak activity against PANC-1 cells grown under nutrient deprived

conditions (Figure 47).

Scheme 134

A short route to the fully functionalised A-ring of the tetrahydroxanthone fragment of

kibdelones and isokibdelones has been developed which again exploits enolate

hydroxylation. However, in this instance, the wrong relative stereochemistry at C-4 was

produced. Future work could focus on selective inversion of this stereocentre, after diol

protection, or alternatively, diol protection before hydroxylation to overturn the facial

bias of the enolate quench i.e from top face (Scheme 135).
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Scheme 135

An attempt to develop a synthetic route to the fully functionalised A-ring of the

tetrahydroxanthone fragments of actinoplanones and kigamicins has also been

described. The use of PMB protecting group was essential for success in the sequence.

Most interestingly, a syn-selective dihydroxylation of alkene 321 was observed. Ketone

326 is potentially a useful intermediate in the synthesis of kigamicin analogues (Scheme

136).

Scheme 136

Future work might involve the synthesis of a fully functionalised A-ring of kigamicins

67-71 through glycosidation of ketone 326 followed by diastereoselective reduction of
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331 and deprotection. This chemistry might help pave the way to the total synthesis of

kigamicins themseleves (Scheme 137).

Scheme 137

Based on the biological results it would be of interest to synthesise analogues of syn

1,4-diacetoxy tetrahydroxanthones such as 334 bearing an aryl group. This might lead

to further improve the biological activities against PANC-1 cells grown under NDM

conditions (Figure 50).

Figure 50
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GENERAL

All reactions were performed under dry nitrogen atmosphere in flame dried glassware

unless otherwise stated. Anhydrous solvent were purchased from Aigma-Aldrich in

Sure/SealTM bottles. All the other solvents were used as received or purified by standard

protocols. Petroleum ether refers to the fraction which boils in the range 40-60 °C.

Commercially available starting materials were used without further purification. Thin

layer chromatography was performed on pre-coated aluminium-backed plates (Merck

Kieselgel 60 F254), visualised by UV254 nm then stained with potassium permanganate or

ceric ammonium molybdate solution. Flash chromatography was performed using

Matrex silica 60. Melting points were recorded on a Gallenkamp MPD350 apparatus

and are reported as observed. Single crystal X-ray diffraction data were obtained using a

Siemens SMART XRD system or an Oxford Diffraction Gemini XRD system. Optical

rotations were measured with a AA1000 polarimeter and are quoted in 10-1 deg cm2 g-1.

Nuclear magnetic resonance (NMR) spectra were recorded on Bruker DPX (300, 400,

500 or 600 MHz) spectrometers. Chemical shifts are reported in parts per million

relative to the standard tetramethylsilane for 1H NMR and to the centre line of the

chloroform triplet at 77.2 ppm for 13C NMR. The peak multiplicities were specified as

singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint). Multipet coupling

constants (J) are reported in Hertz. Low resolution mass spectra were recorded on an

Esquire 2000 platform with electrospray ionisation. High resolution mass spectra were

obtained using a Bruker MicroTOF spectrometer.
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(5-Ethoxycyclohexa-1,5-dienyloxy)trimethylsilane (188)95

To a flask containing lithium diisopropylamide (3.00 mL, 6.00 mmol) in

THF (15 mL) at – 78 °C was added 3-ethoxycyclohexenone (0.67 mL,

5 mmol). After 10 min, trimethysilyl chloride (0.75 mL, 6.00 mmol) was

added and the reaction mixture was stirred at – 78 °C for 1 hour. The reaction mixture

was then poured into a cold saturated solution of NaHCO3 (10 mL), extracted with Et2O

(20 mL), washed with H2O (3 × 10 mL) and brine (3 × 10 mL). The organic fraction

was dried over MgSO4 and concentrated in vacuo to give 188 (1.06 g, 100%) as a pale

yellow oil used without further purification. IR (thin film) 2883, 1657, 1610, 1380,

1252, 1158 cm-1; δH (400 MHz, CDCl3) 4.69 (1H, s, (=CHC(OEt)), 4.52 (1H, t, J = 1.7

Hz, CHCH2), 3.76 (2H, q, J = 7.0 Hz, OCH2CH3), 2.19 (4H, m, CH2CH2), 1.31 (3H, t, J

= 7.0 Hz, CH3CH2O), 0.18 (9H, s, Si(CH3)3); δC (100 MHz, CDCl3) 160.2 (EtOC), 149

(TMSOC), 95.1 (CH=C(OTMS)), 94.3 (EtOC=CH), 62.8 (OCH2CH3), 27.5 (CH2), 21.8

(CH2), 14.4 (CH2CH3), 0.2 (3 × CH3) ; MS (ES+) m/z = 212 ([M+H])+, 100%); HRMS

(ES+): calcd. for C11H21O2Si [M+H]+: 212.1231; found: 212.1231. The data agree with

that in literature.

1,2-Dihydro-4H-xanthene-3,9-dione (192)

To a solution of 188 (1.11 g, 5.23 mmol) at –78 °C in THF (10 mL)

was added methyllithium (3.26 mL, 5.23 mmol). The resulting solution

was stirred a – 78 °C for 1 hour, and then allowed to warm to room temperature over 2

hours. The reaction was cooled again to –78 °C before the addition of o-acetoxybenzoyl

chloride (490 mg, 2.61 mmol). The reaction mixture was stirred at –78 °C for 2 hours

and then gradually warmed to room temperature overnight. Saturated NH4Cl solution

(10 mL) was added and the reaction mixture was extracted with Et2O (3 × 10 mL). The

combined organic fractions were washed with brine (3 × 10 mL), dried over MgSO4,

filtered, and concentrated in vacuo. It was then dissolved in HCl and AcOH (1: 20, 18

mL) and heated to 60 °C for 1 hour. The mixture was poured into ice water and

extracted with toluene (3 × 10 mL). The combined organic layers were washed with

saturated NaHCO3 solution (3 × 10 mL), brine (3 × 10 mL), dried over MgSO4, filtered

and concentrated in vacuo to obtain an orange solid. Column chromatography (ethyl

acetate : petroleum ether, 30 : 70) furnished 192 (279 mg, 52%) as a yellow solid. M.p.

159 – 160 °C; IR (thin film) 2954, 1715, 1629, 1462, 1154, 773 cm-1; δH (300 MHz,

CDCl3) 8.06 – 8.04 (1H, m, Ar), 7.52 – 7.47 (1H, m, Ar), 7.26 – 7.21 (2H, m, Ar), 3.38

(2H, s, CH2CO), 2.81 (2H, t, J = 6.9 Hz, COCH2CH2), 2.48 (2H, t, J = 6.9 Hz,

O

OTMS

O

O

O
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COCH2CH2 ); δC (75 MHz, CDCl3) 204 (CO), 176.4 (CO), 159.0 (C, Ar), 156.2 (C, Ar),

133.6 (CH, Ar), 125.9 (CH, Ar), 125.1 (CH, Ar), 123.0 (CH, Ar), 117.8 (C, Ar), 117.7

(C, Ar), 41.7 (CH2), 38.2 (CH2), 18.2 (CH2) ; MS (ES+) m/z = 215 ([M+H])+, 100%);

HRMS (ES+): calcd. for C13H11O3 [M+H]+: 215.0708; found: 215.0705.

3,4-dihydro-2H-xanthene-1,9-dione from 194

To a mixture of HCl (conc.) and glacial AcOH (1: 20, 5.40 mL), was

added 194 (500 mg, 1.80 mmol). The reaction mixture was heated to

60 °C for 1 hour and the worked up as above (p 109) to give 192 (327

mg, 85%). Data as previously reported.

3,4-Dihydro-2H-xanthene-1,9-dione from 195

To a mixture of HCl (conc.) and glacial AcOH (1: 20, 3 mL), was

added 195 (250 mg, 1.02 mmol). The reaction mixture was heated to

60 °C for 1 hour and then worked up and purified as above (p109) to

give 192 (207 mg, 95%). Data as previously reported.

3-Ethoxy-1,2-dihydroxanthen-9-one (193) and 3-Ethoxy-1,2,3,4-

tetrahydroxanthen-3-methoxy-9-one (194)

Sodium metal (15.2 mg, 0.65 mmol) was dissolved in methanol

(5 mL) at room temperature. To this solution was added 191 (200

mg, 0.662 mmol) at 0 °C. The clear yellow solution slowly turned

dark yellow and was stirred for 16 hours. The reaction mixture was quenched with

saturated NH4Cl solution (5 mL) and extracted with ethyl acetate (3 × 5 mL). The

organic layers were washed with H2O (3 × 5 mL), dried over MgSO4 and concentrated

in vacuo to provide a thick yellow oil. Column chromatography (ethyl acetate :

petroleum ether, 10 : 90) furnished 193 as a white solid (64 mg, 40% ) and 194 as

yellow solid (56 mg, 35%). (193) M.p. 105 – 106 °C; IR (thin film) 2977, 1653, 1595,

1420, 1178, 780 cm-1; δH (300 MHz, CDCl3) 8.08 – 8.05 (1H, m, Ar), 7.47 – 7.40 (1H,

m, Ar), 7.25 – 7.17 (2H, m, Ar), 5.20 (1H, s, =CHCOEt), 3.87 (2H, q, J = 7.0 Hz,

OCH2CH3), 2.77 (2H, t, J = 9.0 Hz, EtOCCH2), 2.37 (2H, t, J = 9.0 Hz, EtOCCH2CH2),

1.28 (3H, t, J = 7.0 Hz, OCH2CH3); δC (300 MHz, CDCl3) 169.1 (CO), 162.2 (C, Ar),

154.9 (C, Ar),132.1 (CH, Ar), 125.1 (CH, Ar), 124.0 (CH, Ar), 123.0 (C, Ar), 117.8

(CH, Ar), 108.0 (C, Ar), 89.8 (CH=), 63.8 (OCH2CH3) 26.9 (EtOCCH2CH2), 17.9

O

O

O

O

O

O

O

O

O
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(CH2CH2C=), 15.0 (OCH2CH3); MS (ES+) m/z = 243 ([M+H])+, 100%); HRMS (ES+):

calcd. for C15H15O3 [M+H]+: 243.1021; found: 243.1018.

M.p. 110 – 111 °C; IR (thin film) 2954, 1610, 1466, 1096, 712 cm-1;

δH (300 MHz, CDCl3) 8.19 – 8.16 (1H, m, Ar), 7.61 – 7.56 (2H, m,

Ar), 7.36 – 7.30 (1H, m, Ar), 3.54 (2H, m, OCH2CH3), 3.28 (3H, s,

OCH3), 2.93 (2H, s, (OEt)(OMe)CCH2C=), 2.61 (2H, t, J = 7.2 Hz,

(OEt)(OMe)CCH2CH2), 1.98 (2H, t, J = 7.2 Hz, CH2CH2C=), 1.19 (3H, m, OCH2CH3 );

δC (75 MHz, CDCl3) 177.4 (CO), 169.7 (C, Ar), 160.5 (C, Ar), 132.2 (CH, Ar), 125.6

(CH, Ar), 124.4 (CH, Ar), 123.1 (C, Ar), 117.6 (CH, Ar), 117.4 (C, Ar), 99.1

(C(OMe)(OEt)), 64.5 (OCH2CH3), 48.5 (OCH3), 38.5 ((OEt)(OMe)CCH2C=), 28.5

((OEt)(OMe)CCH2CH2), 22.0 ((OEt)(OMe)CCH2CH2), 17.0 (OCH2CH3); MS (ES+)

m/z = 275 ([M+H])+, 100%); HRMS (ES+): calcd. for C16H19O4 [M+H]+: 275.1283;

found: 275.1274.

5-(o-Bromobenzoyl)-3-ethoxycyclohexenone (199)

To a solution of 188 (7.72 mL, 36.4 mmol) in THF (15 mL)

at  ̵  78 °C was added methyllithium  (1.6 M in THF), (22.7 mL, 

36.4 mmol) dropwise over 5 minutes. The solution was warmed to

room temperature over 2 hours and stirred for a further 2 hours before cooling to  ̵ 78 °C. 

To the yellow solution was added the acid o-bromobenzoyl chloride (2.52 mL, 18.2

mmol) and the reaction mixture was warmed to room temperature overnight. The

reaction was quenched with saturated NH4Cl solution (5 mL), slowly poured into H2O

(25 mL), extracted with ethyl acetate (3 × 15 mL) and washed with brine (3 × 10 mL).

This was dried over MgSO4, filtered and concentrated in vacuo to give yellow oil.

Column chromatography (diethyl lether : petroleum ether, 20 : 80) furnished 199 (5.0 g,

80%) as a thick yellow oil. IR (thin film) 2991, 1593, 1377, 1198, 761 cm-1; δH (400

MHz CDCl3) 15.55 (1H, s, OH), 7.51 – 7.49 (1H, m, Ar), 7.28 – 7.24 (1H, m, Ar), 7.22

– 7.19 (1H, m, Ar), 7.16 – 7.10 (1H, m, Ar), 5.30 (1H, s, =CHCO ), 3.86 (2H, q, J = 7.1

Hz, OCH2CH3), 2.25 – 2.16 (4H, m, 2 × CH2), 1.21 (3H, t, J = 7.1 Hz, OCH2CH3); δC

(75 MHz) 192.7 (=CHCOCH), 176.4 (CHCOAr), 170.8 (C, Ar), 136.5 (C, Ar), 132.4

(CH, Ar), 131.2 (CH, Ar), 129.6 (CH, Ar), 127.4 (CH, Ar), 121.3 (C, Ar), 103.8

(EtOC=), 100.8 (COCH=), 64.6 (OCH2CH3), 29.0 (=CCH2CH2), 22.6 (CH2CH2CH),

14.1 (OCH2CH3); MS (ES+) m/z = 345 [M(81Br)+Na]+, 50%), 343 [M(79Br)+Na]+, 50%);

HRMS (ES+): calcd. for C15H15O3
79BrNa (M+Na)+: 345.0097; found 345.0103.
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Synthesis of 3-Ethoxy-1,2-dihydroxanthen-9-one (193) using palladium catalysed

process.

To a solution of 199 (500 mg, 1.50 mmol) in dioxane (7 mL) were

added Pd2(dba)3 (34.0 mg, 0.03 mmol), Cs2CO3 (1.11 g, 3.30 mmol)

and XPhos (44.0 mg, 0.09 mmol). The mixture was heated to reflux

for 18 hours. After allowing the mixture to cool to room temperature, it was filtered

through celite washing with dichloromethane (3 × 15 mL). The organic fractions were

dried over MgSO4, filtered and concentrated in vacuo to provide a yellow solid. Column

chromatography (ethyl acetate : petroleum ether, 10 : 90) furnished 193 (217 mg, 58%)

as yellow solid. Data as previously described.

1,2,3,4-Tetrahydro-3-hydroxyxanthen-9-one (200)

To a stirred solution of 192 (2.32 g, 10.8 mmol) in ethanol and

dichloromethane (1:1, 20 mL) at 0 °C was added sodium borohydride

(479 mg, 12.9 mmol). The reaction mixture was stirred for 1 hour and

then diluted with saturated NH4Cl solution (10 mL). The reaction mixture was extracted

with dichloromethane (3 × 10 mL), washed with brine (3 × 10 mL), dried over MgSO4

and concentrated in vacuo to afford a white crystalline solid that was purified by

recrystallizations from methanol to yield 200 (2.20 g, 95%). M.p. 151 – 152 °C; IR (thin

film) 3390, 2950, 1603, 1466, 1163, 761 cm-1; δH (300 MHz, CDCl3) 8.06 – 8.05 (1H, m,

Ar), 7.52 – 7.46 (1H, m, Ar), 7.26 – 7.26 (2H, m, Ar), 4.18 (1H, m, CHOH ), 2.92 –

2.85 (1H, m, =CCHHCHOH), 2.72 – 2.44 (2H, m, CHHCH(OH)CHH), 2.08 (1H, d, J =

3.9 Hz, CHHCH(OH)CH2), 1.89 – 1.67 (2H, m, CH2CH2C=); δC (150 MHz, CDCl3)

177.3 (CO), 161.1 (C, Ar), 156.1 (C, Ar), 133.3 (CH, Ar), 125.7 (CH, Ar), 124.6 (CH,

Ar), 123.0 (C, Ar), 117.6 (CH Ar), 117.5 (C, Ar), 65.5 ((OH)CH), 34.3 (OHCHCH2C=),

29.7 (OHCHCH2CH2), 17.9 (CH2CH2C=); MS (ES+) m/z = 239 ([M+Na])+, 100%);

HRMS (ES+): calcd. for C12H12O2Na [M+Na]+: 239.0684; found: 239.0679.

Crystal Data. C13H12O3, M = 216.23, triclinic, a = 7.1242(6) Å, b = 7.7029(5) Å, c =

9.8422(8) Å, α = 82.210(6)°, β = 72.540(7)°, γ = 79.158(6)°, V = 504.22(7) Å3, T =

100(2), space group P-1 (no. 2), Z = 2, μ(MoKα) = 0.101, 6397 reflections measured, 

3317 unique (Rint = 0.0368) which were used in all calculations. The final wR2 was

0.1418 (all data) and R1 was 0.0591 (>2sigma(I)).
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Asymmetric reduction of (R)-1,2,3,4-Tetrahydro-3-hydroxyxanthen-9-one (200)

Using Noyori’s catalyst

A solution of Noyori’s catalyst monomer 206 (4 mg, 0.05 mmol) in

formic acid and triethylamine 5 : 2 (0.25 mL), was stirred at 28 °C for

30 min. 193 (107 mg, 0.50 mmol) was added and the reaction mixture

was stirred for 48 hours at the same temperature. The reaction mixture was filtered

through silica, washed with ethyl acetate and hexane 1 : 1 (3 × 15 mL) and concentrated

in vacuo to obtain a yellow solid. Column chromatography (ethyl acetate : petroleum

ether, 30 : 70) furnished 200 as a white solid. HPLC analysis on Chiracel OD+1 (90 : 10

hexane : isopropanol 1 mL/min) showed a major enantiomer at 20.3 min (66.9 A%) and

the minor one at 31.5 min (33.1 A%) ee 33%; Data as previously reported.

Using Wills catalyst

A solution of catalyst 207 monomer (6.20 mg, 0.01 mmol) in formic

acid and triethylamine 5 : 2 (0.50 mL) was stirred at 28 °C for 30 min.

193 (214 mg, 1.00 mmol) was added and the reaction mixture was

stirred for 48 hours at the same temperature. The reaction mixture was filtered through

silica, washed with ethyl acetate and hexane 1 : 1 (3 × 15 mL) and concentrated in

vacuo to obtain a yellow solid. Column chromatography (ethyl acetate : petroleum ether,

30 : 70) furnished 200 as a white solid. HPLC analysis on Chiracel OD+1 (90 : 10

hexane : isopropanol 1 mL/min) showed a major enantiomer at 15.0 min (78.51 A%)

and the minor one at 23.0 min (21.49 A%) ee 57.6%; Data as previously reported.

Using CBS reduction

To a stirred solution of 193 (511 mg, 1.05 mmol) in THF (5 mL) was

added (S)-3,3-diphenyl-1-methylpyrrolidino[1,2-c]-1,2,3-oxazaborole

(203) (792 µL, 0.792 mmol). The reaction mixture was cooled to –

15 °C followed by the addition of borane-dimethyl sulphide complex (528 µL, 1.05

mmol) dropwise. The reaction mixture was stirred for 3 hours before quenching with

methanol at – 20 °C. The reaction mixture was then poured into ethyl acetate (15 mL)

and washed with H2O and HCl (2 : 1, 5 mL), H2O (5 mL), saturated NaHCO3 (5 mL)

and saturated NaCl (10 mL). The organic fraction was dried over MgSO4, and

concentrated in vacuo to obtain a yellow oil. Column chromatography (ethyl acetate :

petroleum ether, 30 : 70) furnished 200 (136 mg, 60%) as a white solid. HPLC on

Chiracel OD+1 (90 : 10 hexane : isopropanol, 1 mL/min) showed the major enantiomer
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at 20.6 min (55.4 A%) and the minor one at 31.7 min (44.6 A%) ee 10%; Data as

previously reported.

Methyl-4,6-O-benzylidene-β-D-erythro-hexopyranoside (209)104

To a solution of methyl-β-D-glucopyranoside (208) (5.00 g, 25.7 mmol)

in dry acetonitrile (35 mL) was added benzaldehyde dimethylacetal

(4.25 mL, 28.2 mmol) followed by iodine (652 mg, 2.57 mmol). The

mixture was stirred for 1 hour before the evaporation of the solvent in

vacuo to provide pure 209 (6.52 g, 90%), as white needle like crystals. IR (thin film)

2981, 1452, 1388, 1038, 694 cm-1; δH (300 MHz CDCl3) 7.88 – 7.61 (2H, m, Ar), 7.51 –

7.26 (3H, m, Ar), 5.55 (1H, s, CHPh), 4.36 (1H, dd, J = 5.0, 10.5 Hz, H6a), 4.33 (1H, d,

J = 8.0 Hz, H1), 3.82 (1H, t, J = 9.0 Hz, H3), 3.80 (1H, t, J = 10.5 Hz, H6b), 3.59 (3H, s,

OCH3), 3.48 – 3.42 (3H, m, H2, H4, H5); δC (75 MHz) 137.5 (C, Ar), 129.2 (2 × CH, Ar),

128.2 (CH, Ar), 126.6 (2 × CH, Ar), 104.6 (PhCH), 101.9 (CHOMe), 80.6

((OH)CHCHOMe), 74.9 ((OH)CHCH(OH)), 73.6 (CHOCHPh), 68.9 (CH2), 66.5

(CH2CH), 57.4 (OCH3). MS (ES+) m/z = 305 ([M+Na])+, 100%). The data agree with

that in literature.

Methyl-4,6-O-benzylidene-2,3-dimethanesulfonate-β-D-erythro-pyranoside (210)105

To a solution of 209 (6.52 g, 23.1 mmol) in pyridine (20 mL) at 0 °C

was added methanesulfonyl chloride (5.33 mL, 69.3 mmol) drop wise

over 10 minutes. After stirring for 1 hour the solution was allowed to

warm to room temperature and was stirred for further 1 hour before

pouring into a separating funnel containing H2O (50 mL) and then extracted with ethyl

acetate (3 × 30 mL). The combined organic layers were washed with 0.5N HCl (3 × 20

mL), H2O (3 × 20 mL), saturated NaHCO3 solution (3 × 20 mL) and brine (3 × 15 mL).

The organic layers were dried over MgSO4, and evaporation of solvent in vacuo

provided a white crystalline solid which was recrystallised from EtOH to provide 210

(7.34 gm, 85%). IR (thin film) 1593, 1372, 1094, 826 cm-1; δH (300 MHz CDCl3) 7.85 –

7.60 (2H, m, Ar), 7.49 – 7.23 (3H, m, Ar), 5.59 (1H, s, CHPh), 5.15 (1H, d, J = 8.5 Hz,

H1), 4.97 (1H, t, J = 8.5 Hz, H3), 4.94 (1H, t, J = 8.5, Hz, H2), 4.45 (1H, dd, J = 5.0,

10.5 Hz, H6a), 3.86 (1H, t, J = 8.5 Hz, H4), 3.81 (1H, t, J = 10.5 Hz, H6b), 3.67 – 3.65

(1H, m, H5), 3.59 (3H, s, OCH3), 3.24 (3H, s, SO2CH3), 3.09 (3H, s, SO2CH3); δC (75

MHz) 136.2 (C, Ar), 129.8 (2 × CH, Ar), 128.5 (CH, Ar), 126.0 (2 × CH, Ar), 101.7

(PhCH), 99.6 (MeOCH), 80.6 ((MsO)CHCHOMe), 77.1 ((MsO)CHCH(OMs)), 76.7
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(CHOCHPh), 68.2 (CH2), 66.0 (CH2CH), 57.4 (OCH3), 39.8 (SO2CH3), 39.2

(SO2CH3). MS (ES+) m/z = 461 ([M+Na])+, 100%). The data agree with that in literature.

Methyl-4,6-O-benzylidene-β-D-erythro-hex-2-enopyranoside (211)106

A mixture of 210 (7.34 g, 19.6 mmol), sodium iodide (29.4 g, 196

mmol) and zinc (12.7 g, 196 mmol) in DMF (100 mL) was heated to

reflux for 5 minutes with stirring then diluted with H2O (100 mL),

chloroform (150 mL) and filtered. The chloroform layer was separated and the aqueous

layer was extracted with chloroform (2 × 50 mL), the combined organic layers were

washed with H2O (3 × 50 mL), dried over MgSO4 and evaporation of solvent in vacuo

provided a thick syrup which crystallised directly from MeOH to give 211 (3.83 g,

79%). IR (thin film) 2934, 1744, 1453, 1378, 1096, 693 cm-1; δH (300 MHz CDCl3)

7.87 – 7.61 (2H, m, Ar), 7.52 – 7.27 (3H, m, Ar), 6.15 (1H, br d, J = 10.5 Hz, H2), 5.66

(1H, ddd, J = 1.5, 2.5 Hz, H3), 5.59 (1H, s, CHPh), 5.27 (1H, dt, J = 1.5, 3.0 Hz, H1),

4.35 – 4.29 (2H, m, H4, H6a), 3.89 (1H, t, J = 10.0, Hz, H6b), 3.87 (3H, s, OCH3), 3.75

(1H, ddd, J = 8.0, 4.5 Hz, H5); δC (75 MHz) 137.3 (C, Ar), 131.6 (CH, Ar), 129.1

(=CHCHOMe), 128.3 (2 × CH, Ar), 128.0 (=CHCHOCHPh), 126.6 (2 × CH, Ar), 102.1

(PhCH), 99.3 (MeOCH), 75.0 (CHOCHPh), 70.4 (CHCH2), 69.1 (CH2), 55.0 (OCH3).

MS (ES+) m/z = 271 ([M+Na])+, 100%). The data agree with that in literature.

Methyl-4,6-O-benzylidene-2,3-dideoxy-β-D-erythro-hexopyranoside (212)103

211 (3.83 gm, 15.4 mmol) was hydrogenated in the presence of 5%

palladium on carbon (1.93 g) in MeOH (50 mL) containing

triethylamine (20 mL) at room temperature in hydrogen atmosphere for

8 hours. Filtration and then evaporation in vacuo left a syrup which was dissolved in

EtOAc (40 mL) and washed with H2O (2 × 20 mL). The organic layer was dried over

MgSO4 and evaporation of solvent in vacuo provided crystalline 212 (3.46 gm, 90%).

IR (thin film) 2864, 1452, 1369, 1097, 915 cm-1; δH (300 MHz CDCl3) 7.88 – 7.61 (2H,

m, Ar), 7.51 – 7.26 (3H, m, Ar), 5.55 (1H, s, CHPh), 4.67 (1H, d, J = 2.5 Hz, H1), 4.22

– 4.19 (1H, m, H4), 3.70 – 3.44 (3H, m, H5, H6a, H6b), 3.36 (3H, s, OCH3), 2.12 – 1.64

(4H, m, H2ax, H2eq, H3ax, H3eq); δC (75 MHz) 137.7 (C, Ar), 131.6 (CH, Ar), 127.3 (CH,

Ar), 127.0 (CH, Ar), 124.9 (CH, Ar), 101.6 (CH, Ar), 102.1 (PhCH), 96.9 (MeOCH),

67.6 (CHOCHPh), 67.0 (CHCH2), 64.0 (CH2), 55.3 (OCH3), 29.4 (CH2CHOMe), 23.9

(PhCHOCHCH2). MS (ES+) m/z = 373 ([M+Na])+, 100%). The data agree with that in

literature.
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Methyl-4-O-benzoyl-6-bromo-2,3,6-trideoxy-β-D-erythro-hexopyranoside (213)103

A mixture of 212 (3.46 g, 13.8 mmol), N-bromosuccinimide (2.97 g,

16.5 mmol) and barium carbonate (4.11 gm, 20.7 mmol) in carbon

tetrachloride (70 mL) was heated to reflux for 30 minutes. The solvent

was evaporated before diluting with dichloromethane (60 mL). The solution was

washed with saturated NaHCO3 solution (3 × 20 mL), H2O (3 × 20 mL), dried over

MgSO4, and evaporation of solvent in vacuo provided a white crystalline solid which

was recrystallised from MeOH to provide 213 (4.31 g, 95%). IR (thin film) 2944, 1718,

1446, 1360, 1062, 944 cm-1; δH (300 MHz CDCl3) 7.84 – 7.63 (2H, m, Ar), 7.57 – 7.39

(3H, m, Ar), 4.94 – 4.86 (1H, m, H4), 4.54 (1H, dd, J = 2.4, 8.4 Hz, H1), 3.87 – 3.71 (1H,

m, H5), 3.62 – 3.42 (2H, m, H6a, H6b), 3.39 (3H, s, OCH3), 2.13 – 1.69 (4H, m, H2ax,

H2eq, H3ax, H3eq); δC (75 MHz) 165.3 (CO), 133.2 (C, Ar), 129.7 (CH, Ar), 127.3 (2 ×

CH, Ar), 127.0 (CH, Ar), 124.9 (CH, Ar), 97.9 (CH3OCH), 70.9 (CHOC(O)Ph), 70.0

(CHCH2), 54.8 (OCH3), 32.9 (BrCH2), 28.7 (CH2CHOCH3), 24.1 (PhC(O)OCHCH2).

MS (ES+) m/z = 351 ([M+Na])+, 50%) (79Br). The data agree with that in literature.

Methyl-4-O-benzoyl-2,3,6-trideoxy-β-D-erythro-hexopyranoside (214)103

213 (4.31 gm, 13.1 mmol) was reduced by hydrogen in the presence of 5%

palladium-on-carbon (2.23 g) in MeOH (70 mL) containing

triethylamine (2.23 mL, 15.7 mmol) at room temperature under a hydrogen atmosphere

for 8 hours. Filtration and evaporation in vacuo left a syrup, which was dissolved in

EtOAc (40 mL) and washed with H2O (3 × 30 mL). The organic layer was dried over

MgSO4 and evaporation of solvent in vacuo provided syrup 214 (3.01 gm, 92%). IR

(thin film) 2944, 1715, 1440, 1363, 1060, 615 cm-1; δH (300 MHz CDCl3) 8.04 – 7.44

(5H, m, Ar), 4.79 – 4.72 (1H, m, H4), 4.47 (1H, dd, J = 2.2, 8.8 Hz, H1), 3.87 – 3.71 (1H,

m, H5), 3.53 (3H, s, OCH3), 2.33 – 1.69 (4H, m, H2ax, H2eq, H3ax, H3eq), 1.31 (3H, s,

CH3); δC (75 MHz) 165.3 (CO), 133.2 (C, Ar), 129.7 (CH, Ar), 127.3 (2 × CH, Ar),

127.0 (CH, Ar), 124.9 (CH, Ar), 97.9 (CH3OCH), 70.9 (CHOC(O)Ph), 70.0 (CHCH2),

54.8 (OCH3), 28.7 (CH2CHOCH3), 24.1 (PhC(O)OCHCH2), 20.1 (CH3). MS (ES+) m/z

= 273 ([M+Na])+, 100%). The data agree with that in literature.

(2R,3S)-tetrahydro-6-hydroxy-2-methyl-2H-pyran-3-yl benzoate (215)

To a solution of 216 (357 mg, 1.02 mmol) in THF (5mL) and AcOH (5

mL) was added 2M HCl (0.12 mL, 5.10 mmol). The reaction was heated
O

OH

BzO

O

OMe

BzO
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at 74 °C for 4 hours before pouring into a separating funnel containing H2O (10 mL),

then extracted with ethyl acetate (3 × 10 mL). The combined organic layers were

washed with saturated NaHCO3 solution (3 × 10 mL), H2O (3 × 10 mL) and brine (3 ×

15 mL). The organic layers were dried over MgSO4, and evaporation of solvent in

vacuo provided a colourless oil. Column chromatography (ethyl acetate : petroleum

ether, 15 : 90) furnished a mixture of α- and β- anomers 1.4 : 1 ratio (339 mg, 95%) as

colourless oil. IR (thin film) 2944, 1716, 1450, 1266, 1111, 1067, 996 cm-1; δH (400

MHz CDCl3) 7.98 – 7.93 (2H, m, Ar), 7.53 – 7.47 (1H, m, Ar), 7.38 (2H, t, J = 7.9 Hz,

Ar), 5.23 – 5.22 (0.59H, m, CH(OH)), 4.83 – 4.80 (0.41, m, CH(OH)), 4.71 – 4.61 (1H,

m, CHOBz), 4.18 (0.59, dq, J = 6.3, 9.4 Hz, CHCH3), 3.78 (0.41, dq, J = 6.1, 9.2 Hz,

CHCH3), 3.45 (0.41, d, J = 5.9 Hz, CHOH), 2.91 (0.59H, s, CHOH), 2.04 – 1.80 (3H, m,

BzOCHCH2CHH), 1.66 – 1.58 (1H, m, BzOCHCH2CHH), 1.21 (1.23H, d, J = 5.9 Hz,

CH3), 1.15 (1.77H, d, J = 5.9 Hz, CH3); δC (100 MHz) 165.8 (2 × CO, major and minor),

133.1 (CH, Ar, minor), 133.0 (CH, Ar, major), 130.2 (C, Ar, minor), 130.1 (C, Ar,

major), 129.66 (2 × CH, Ar, major and minor), 129.60 (2 × CH, Ar, major and minor),

128.44 (2 × CH, Ar, major and minor), 128.42 (2 × CH, Ar, major and minor), 95.9

(OCH(OH), minor), 90.9 (OCH(OH), major), 74.0 (BzOCH, minor), 73.6 (BzOCH,

major), 73.2 (OCHCH3, minor), 66.8 (OCHCH3), 31.8 ((OH)CHCH2, minor), 29.2

((OH)CHCH2, major), 27.5 (BzOCHCH2, minor), 23.5 (BzOCHCH2, major), 18.3 (CH3,

major), 18.2 (CH3, minor); (ES+) m/z = 359 ([M+Na])+, 100%); HRMS (ES+): calcd. for

C13H16O4Na [M+Na+] : 359.0941; found: 359.0940.

(2R,3S)-6-acetoxy-tetrahydro-2-methyl-2H-pyran-3-yl benzoate (216)

To a solution of 215 (500 mg, 1.48 mmol), was added acetic anhydride

(1.90 mL, 14.8 mmol) and catalytic 4–dimethylaminopyridine (25.0 g,

0.21 mmol) in dichloromethane (10 mL). The reaction mixture was

stirred for 16 hours before pouring into H2O (10 mL) and extracted with

dichloromethane (3 × 10 mL). The combined organic layers were washed with 0.5N

HCl (3 × 10 mL), H2O (3 × 10 mL), saturated NaHCO3 solution (3 × 10 mL) and brine

(3 × 15 mL). The organic layers were dried over MgSO4, and evaporation of solvent in

vacuo gave a colourless oil. Column chromatography (diethyl ether : petroleum ether,

10 : 90) furnished a mixture of α and β anomers 1.4 : 1 (578 mg, 98%) as colourless oil. 

IR (thin film) 2940, 1747, 1716, 1451, 1314, 1112, 1006, 945 cm-1; δH (400 MHz

CDCl3) 7.96 (2H, t, J = 7.5 Hz, Ar), 7.53 – 7.49 (1H, m, Ar), 7.38 (2H, t, J = 7.5 Hz,

Ar), 6.06 (0.59H, m, CHOAc), 5.74 – 5.72 (0.41H, m, CHOAc), 4.75 – 4.65 (1H, m,
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CHOBz), 3.98 (0.59H, dq, J = 6.1, 9.3 Hz, CHCH3), 3.78 (0.41H, dq, J = 6.1, 8.6 Hz,

CHCH3), 2.32 – 2.25 (0.41H, m, BzOCHCH2CHH), 2.06 (1.77H, s, OCOCH3), 2.05

(1.23H, s, OCOCH3), 1.98 – 1.59 (3.59H, m, BzOCHCH2CHH), 1.23 (1.23H, d, J = 6.1

Hz, CH3), 1.14 (1.77H, d, J = 6.1 Hz, CH3); δC (100 MHz) 190.2 (CO), 177.1 (2 × CO,

Ar, major and minor), 133.2 (2 × C, Ar, major and minor), 133.1 (2 × CH, Ar, major

and minor), 130.0 (2 × C, Ar, major and minor), 129.6 (4 × CH, Ar, major and minor),

128.4 (4 × CH, Ar, major and minor), 93.6 (CHOAc, minor), 90.9 (CHOAc, major),

74.2 (BzOCH, minor), 73.3 (BzOCH, major), 72.5 (CHCH3, minor), 69.1 (CHCH3,

major), 28.5 (BzOCHCH2CH2, major), 28.1 (BzOCHCH2CH2, minor), 26.5

(BzOCHCH2CH2, minor), 23.9 (BzOCHCH2CH2, major), 21.2 (2 × (CO)CH3, major

and minor), 18.3 (CH3, minor), 18.0 (CH3, major); MS (ES+) m/z = 301 ([M+Na])+,

100%); HRMS (ES+): calcd. for C15H18O5Na [M+Na+]: 301.1046; found: 301.1061.

(2R,3S,6S)-6-(R)-6,7,8,9-Tetrahydro-9-oxo-5H-xanthen-6-yloxy)-tetrahydro-2-

methyl-pyran-3-yl benzoate (228)

To a solution of 215 (60.0 mg, 0.25 mmol) in dichloromethane

(4 mL) were added trichloroacetonitrile (0.10 mL, 1.00 mmol) and

NaH (0.50 mg, 0.02 mmol). After 30 minutes tlc indicated the

formation of both the α and β anomers. For anomerization and

completion of the reaction further NaH (7.40 mg, 0.32 mmol) was

added. After 2 hours, the mixture was filtered through celite quickly, and the solvent

was concentrated in vacuo to provide 225 and 226. A solution of 225 and 226 and 200

(54.0 mg, 0.25 mmol) in dichloromethane (5 mL), was stirred for 30 minutes at room

temperature in the presence of molecular sieves (4Ǻ, 100 mg). After cooling to 0 °C a 

solution of BF3.OEt2 (0.1 M solution in Et2O (0.12 mL), CH2Cl2 (0.12 mL)), was added

dropwise over 10 minutes. When the starting material was completely consumed as

indicated by tlc in (30 minutes), saturated NaHCO3 solution (63.0 mg, 0.75 mmol), was

added and stirring continued for another 10 minutes. The reaction mixture was filtered

and the solid was washed with further dichloromethane (3 × 10 mL). The solvent was

evaporated in vacuo to leave a thick colourless oil. Column chromatography (diethyl

ether : petroleum ether, 05 : 90) furnished a mixture of inseparable α and β anomers in

1 : 0.7 ratio respectively, as colourless thick oil. Trituration with Et2O (5 mL), gave a

solid which was recrystallised (diethylether, and petroleum ether) to give the β anomer

(30 mg, 40%). The oil fraction on further trituration with cold Et2O gave another

portion of solid which was recrystallised from acetone and H2O to give α anomer (32
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mg, 20%). [α]D
30° + 72.3° (c 0.1, CHCl3) M.p. 194 – 195 °C; IR (thin film) 2914, 1728,

1471, 1175, 716 cm-1; δH (700MHz CDCl3) 8.21 – 8.20 (1H, m, Ar), 8.01 (2H, d, J = 7.5

Hz, Ar), 7.63 – 7.61 (1H, m, Ar), 7.59 (1H, t, J = 7.5 Hz, Ar), 7.46 (2H, t, J = 7.5 Hz,

Ar), 7.41 (1H, d, J = 8.5 Hz, Ar), 7.37 – 7.35 (1H, t, J = 7.5 Hz, Ar), 4.76 (1H, dd, J =

1.8, 9.4 Hz, H1), 4.73 (1H, td, J = 4.7, 10.4 Hz, H4), 4.33 – 4.29 (1H, m, OCH(CH2)2),

3.74 – 3.70 (1H, m, H5), 3.07 (1H, dd, J = 4.7, 18.9 Hz, OCHCHHC=), 2.91 (1H, dd, J

= 6.6, 17.9 Hz, OCHCHHC=), 2.76 – 2.72 (1H, m, OCHCH2CHH), 2.63 – 2.59 (1H, m,

OCHCH2CHH), 2.33 – 2.30 (1H, m, H3eq), 1.98 – 1.90 (3H, m, H2eq,OCHCH2CH2),

1.78 – 1.73 (1H, m, H2ax), 1.68 – 1.62 (1H, m, H3ax), 1.31 (3H, d, J = 5.6 Hz, CH3); δC

(75 MHz) 177.3 (CO), 165.7 (CO), 161.3 (C, Ar), 156.1 (C, Ar), 133.1 (CH, Ar), 133.0

(CH, Ar), 130.1 (C, Ar), 129.5 (2 × CH, Ar), 128.4 (2 × CH, Ar), 125.7 (CH, Ar), 124.5

(CH, Ar), 123.1 (C, Ar), 117.7 (C, Ar), 117.6 (CH, Ar), 99.6 (OCHO), 73.5 (CHOBz),

73.3 (OCHCH3), 71.1 (OCH(CH2)2), 35.5 (OCHCH2C=), 30.5 (CH3CHOCHCH2), 29.7

(BzOCHCH2), 27.5 (OCHCH2CH2C=), 26.3 (OCHCH2CH2C=), 18.3 (CH3); MS (ES+)

m/z = 457 ([M+Na])+, 100%); HRMS (ES+): calcd. for C26H26O6Na [M+Na+]: 457.1622;

found: 457.1619.

Crystal Data. C26H26O6, M =434.47, monoclinic, a = 13.7920(3) Å, b =

5.31169(13) Å, c = 14.3899(3) Å, β = 94.535(2)°, V = 1050.89(4) Å3, T = 100(2),

space group P21 (no. 4), Z = 2, μ(CuKα) = 0.795, 11589 reflections measured, 

3869 unique (Rint = 0.0357) which were used in all calculations. The final wR2

was 0.1029 (all data) and R1 was 0.0383 (>2sigma(I)).

(2R,3S,6S)-6-((R)-6,7,8,9-Tetrahydro-9-oxo-5H-xanthen-6-yloxy)-tetrahydro-2-

methyl-2H-pyran-3-yl benzoate (227)

 [α]D
30° + 182° (c 0.2, CHCl3); M.p. 156 – 157 °C; IR (thin

film) 2914, 1728, 1471, 1175, 716 cm-1; δH (500 MHz CDCl3)

8.25 – 8.23 (1H, m, Ar), 8.08 – 8.06 (1H, m, Ar), 7.63 – 7.66

(1H, m, Ar), 7.58 – 7.61 (2H, m, Ar), 7.48 (2H, t, J = 8.1 Hz, Ar), 7.41 (1H, d, J = 8.1

Hz, Ar), 7.40 – 7.36 (1H, t, J = 6.9 Hz, Ar), 5.05 (1H, m, H1), 4.81 – 4.76 (1H, m, H4),

4.27 – 4.23 (1H, m, OCH(CH2)2), 4.09 (1H, dq, J = 6.2, 9.7 Hz, H5), 3.00 (1H, dd, J =

4.4, 17.6 Hz, OCHCHHC=), 2.86 (1H, td, J = 6.6, 18.3 Hz, OCHCH2CHHC=), 2.78

(1H, dd, J = 5.8, 18.3 Hz, OCHCHHC=), 2.69 (1H, td, J = 6.6, 17.6 Hz,

OCHCH2CHHC=), 2.10 – 1.86 (6H, m, BzOCHCH2(3)CH2(2)CHOCHCH2CH2C=), 1.26

(3H, d, J = 6.6 Hz, CH3),; δC (75 MHz) 177.3 (CO), 165.8 (CO), 160.8 (C, Ar), 156.1

(C, Ar), 133.1 (CH, Ar), 130.1 (C, Ar), 129.6 (CH, Ar), 129.5 (CH, Ar), 128.4 (2 × CH,
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Ar), 125.8 (CH, Ar), 124.5 (CH, Ar), 123.2 (C, Ar), 118.0 (C, Ar), 117.67 (CH, Ar),

117.60 (CH, Ar), 95.0 (OCHO), 73.9 (BzOCH), 69.9 (OCHCH3), 67.3 (OCH(CH2)2),

33.8 (OCHCH2C=), 29.6 (CH3CHOCHCH2), 28.2 (BzOCHCH2), 24.2

(OCHCH2CH2C=), 18.3 (OCHCH2CH2C=), 18.1 (CH3); MS (ES+) m/z = 457

([M+Na])+, 100%); HRMS (ES+): calcd. for C26H26O6Na [M+Na+]:457.1622; found:

457.1619.

Crystal Data. C26H26O6, M =434.47, orthorhombic, a = 7.11230(10) Å, b =

11.6173(2) Å, c = 26.2941(4) Å, V = 2172.57(6) Å3, T = 100(2), space group

P212121 (no. 19), Z = 4, μ(CuKα) = 0.769, 23738 reflections measured, 4162 

unique (Rint = 0.0516) which were used in all calculations. The final wR2 was

0.1105 (all data) and R1 was 0.0409 (>2sigma(I)).

(R)-3-((2S,5S,6R)-Tetrahydro-5-hydroxy-6-methyl-2H-pyran-2-yloxy)-1,2,3,4-

tetrahydroxanthen-9-one (234)

Sodium metal (0.50 mg, 0.02 mmol) was dissolved in

methanol (5 mL) at 0 °C followed by the addition of 227

(100 mg, 0.23 mmol) and the transparent solution stirred at

room temperature until tlc showed complete consumption of the starting material

(16 hours). The reaction was quenched by the addition of saturated NH4Cl solution

(2 mL) and poured into a separating funnel containing H2O (5 mL). The reaction

mixture was extracted with ethyl acetate (3 × 5 mL) and the combined organic layers

were washed with brine (2 × 5 mL), dried over MgSO4, and evaporation of solvent in

vacuo provided a yellow solid. Column chromatography (ethyl acetate : petroleum ether,

40 : 60) furnished 234 (9 mg, 11%) as a colourless oil and 235 (46 mg, 60%). [α]D
30°

+ 117 (c 0.2, CHCl3) IR (thin film) 2927, 1633, 1609, 1467, 1118, 1044, 759 cm-1; δH

(700 MHz CDCl3) 8.21 – 8.20 (1H, m, Ar), 7.63 – 7.60 (1H, m, Ar), 7.39 – 7.35 (2H, m,

Ar), 4.97 – 4.96 (1H, m, H1), 4.28 – 4.17 (1H, m, OCH(CH2)2), 3.68 (1H, dq, J = 3.1,

5.7 Hz, H5), 3.31 – 3.28 (1H, m, H4), 2.97 – 2.93 (1H, dd, J = 5.7, 17.7 Hz,

OCHCHHC=), 2.82 – 2.78 (1H, m, OCHCH2CHHC=), 2.72 (1H, dd, J = 5.7, 17.7 Hz,

OCHCHHC= ), 2.64 – 2.62 (1H, m, OCHCH2CHHC=), 2.25 – 1.98 (1H, m,

OCHCHHCH2C=), 1.95 – 1.90 (1H, m, OCHCHHCH2C=), 1.89 – 1.75 (4H, m,

CH2(2)CH2(3)), 1.29 – 1.28 (3H, d, J = 6.3 Hz, CH3); δC (75 MHz) 177.3 (CO), 160.9 (C,

Ar), 156.1 (C, Ar), 133.0 (CH, Ar), 125.7 (CH, Ar), 124.5 (CH, Ar), 123.1 (C, Ar),

118.0 (C, Ar), 117.6 (CH, Ar), 94.5 (OCHO), 72.1 ((OH)CH), 70.0 (OCHCH3), 69.3

(OCH(CH2)2), 33.7 (OCHCH2C=), 29.9 (OCHCH2CH2CH(OH)), 28.0
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(OCHCH2CH2C=), 27.5 (OCHCH2CH2CH(OH)), 18.1 (OCHCH2CH2C=), 17.9 (CH3);

MS (ES+) m/z = 353 ([M+Na])+, 100%); HRMS (ES+): calcd. for C19H22O5Na [M+Na+]:

353.1359; found: 353.1364.

7,8-Dihydroxanthen-9-one (236)

To a mixture of 242 (2.25 g, 7.60 mmol) in dichloromethane (25 mL) at

0 °C was added mCPBA (1.90 g, 8.69 mmol). The reaction mixture was

allowed to warm up to room temperature slowly and was further stirred

for an hour. The reaction mixture was diluted with H2O (20 mL) and the solution was

extracted with dichloromethane (3 × 30 mL). The organic layers were washed with

saturated sodium thiosulfate solution (3 × 15 mL), brine (3 × 15 mL), dried over

MgSO4, filtered and evaporation of solvent in vacuo gave a white solid. Column

chromatography (ethyl acetate : petroleum ether, 10 : 90) furnished 236 (1.3 g, 59%) as

a white solid. M.p. 118 – 120 °C; IR (thin film) 2937, 1603, 1421, 1102, 899, 769 cm-1;

δH (300 MHz, CDCl3) 8.06 – 8.05 (1H, dd, J = 1.4, 8.1 Hz, Ar), 7.41 (1H, dt, J = 1.4,

8.1 Hz, Ar ), 7.21 – 7.12 (2H, m, Ar), 6.38 – 6.32 (1H, m, CH2CHCH), 6.10 (1H, td, J =

1.8, 2.1 Hz, CH2CHCH), 2.68 – 2.61 (2H, m, CHCH2CH2), 2.42 – 2.25 (2H, m,

CHCH2CH2); δC (75 MHz) 176.3 (CO), 158.3 (C, Ar), 154.7 (C, Ar), 139.5 (CH, Ar),

132.2 (CH, Ar), 125.9 (CH, Ar), 124.0 (CH, Ar), 123.4 (C, Ar), 121.1 (CH), 117.2 (CH),

113.4 (C, Ar), 23.2 (=CHCH2), 22.2 (CH2CH2C=); MS (ES+) m/z = 221 ([M+Na])+,

100%); HRMS (ES+): calcd. for C13H10O2Na [M+Na]+: 221.0578; found: 221.0573.

1,2,3,4-Tetrahydro-3-methoxyxanthen-9-one (235)

Sodium metal (5.00 mg, 0.21 mmol) was dissolved in methanol at

0 °C followed by the addition of 236 (47.0 mg, 0.23 mmol). The

clean solution was allowed to stir at room temperature for 16 hours.

The reaction was quenched by the addition of saturated NH4Cl solution (1 mL) and

poured into a separating funnel containing H2O (5 mL). The reaction mixture was

extracted with ethyl acetate (3 × 5 mL) and the combined organic layers were washed

with brine (2 × 5 mL), dried over MgSO4, and concentration in vacuo gave a yellow

solid. Column chromatography (ethyl acetate : petroleum ether, 10 : 90) furnished 235

(47 mg, 92%) as a white solid. M.p. 63 – 64 °C; IR (thin film) 3286, 1661, 1402, 1206,

1009, 616 cm-1; δH (300 MHz CDCl3) 8.10 (1H, d, J = 8.0 Hz, Ar), 7.54 – 7.50 (1H, m,

Ar), 7.30 – 7.26 (2H, m, Ar), 3.75 – 3.66 (1H, m, CH(OCH3)), 3.30 (3H, s, OCH3),

2.92 – 2.86 (1H, m, ((OCH3)CHCHHC=) 2.68 – 2.60 (2H, m,

O

O

O

O

MeO
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(CHH(OCH3)CHCHHC=), 2.53 – 2.45 (1H, m, CH2CHHCH(OCH3)), 1.92 – 1.76 (2H,

m, (OCH3)CHCH2CH2); δC (75 MHz) 177.2 (CO), 161.0 (C, Ar), 156.1 (C, Ar), 133.0

(CH, Ar), 125.7 (CH, Ar), 124.5 (CH, Ar), 123.1 (C, Ar), 117.8 (C, Ar), 117.6 (CH, Ar),

74.0 (OCH3), 56.1 (CH(OCH3)), 34.1 ((OCH3)CHCH2C=), 25.8 ((OCH3)CHCH2CH2),

17.7 (CH2CH2C=); MS (ES+) m/z = 253 ([M+Na])+, 100%); HRMS (ES+): calcd. for

C14H14O3Na [M+Na+]: 253.0837; found: 253.0837.

(1S*,9S*)-2,3-Dihydro-1-oxireno[2,3-c]xanthen-4(9)one (239)

A solution of 236 (50.0 mg, 0.25 mmol) in CHCl3 (5 mL) was charged

with mCPBA (85.0 mg, 0.37 mmol) at 0 °C . The reaction mixture was

stirred at 0 °C for 16 hours and then warmed upto room temperature. The

mixture was washed with 10% aqueous sodium thiosulfate solution (2 × 5 mL) and

saturated NaHCO3 solution (3 × 10 mL). The organic fraction was dried over MgSO4

and concentrated in vacuo to provide a pale yellow solid. Column chromatography

(ethyl acetate : petroleum ether, 20 : 80) furnished 239 (16 mg, 30%) as a yellow solid.

M.p. 150 – 151 °C; IR (thin film) 2930, 1608, 1466, 1148, 909, 697 cm-1; δH (300 MHz,

CDCl3) 7.91 (1H d, J = 8.1 Hz, Ar), 7.39 – 7.42 (1H, m, Ar), 7.22 (1H, d, J = 8.1 Hz,

Ar ), 7.14 (1H, t, J = 7.2 Hz, Ar ), 3.57 – 3.55 (2H, m, CHCH), 2.71 (1H, dd, J = 6.3,

16.3 Hz, CHCHHCH2), 2.22 (1H, dd, J = 7.2, 14.5 Hz, CHCH2CHH), 1.96 – 1.84 (1H,

m, CHCHHCH2), 1.54 – 1.41 (1H, m, CHCH2CHH ); δC (75 MHz) 175.8 (CO), 158.1

(C, Ar), 155.4 (C, Ar), 132.7 (CH, Ar), 125.3 (CH, Ar), 124.4 (CH, Ar), 122.9 (C, Ar),

117.2 (CH, Ar), 116.7 (C, Ar), 55.5 (CH2CHOCHC=), 48.2 (CH2CHOCHC=), 20.2

(CHCH2CH2), 13.9 (CHCH2CH2); MS (ES+) m/z = 237 ([M+Na])+, 100%); HRMS

(ES+): calcd. for C13H11O3Na [M+Na]+: 237.0528; found: 237.0518.

(1S, 9S)-2,3-dihydro-1-oxireno[2,3-c]xanthen-4(9)one (239)

Commercially available sodium hypochlorite (1 mL), was diluted to

approximately 0.55 M in sodium hypochlorite with 0.05 M Na2HPO4

(30 mL). The pH of the resulting buffered solution was adjusted to 11.3

by addition of a 1M NaOH solution (few drops). To this solution was added a solution

of Jacobsen’s catalyst (5.00 mg, 0.08 mmol) and 236 (80.0 mg, 0.41 mmol) in

dichloromethane (5 mL). The biphasic mixture was stirred at 4 °C and the reaction

progress was monitored by tlc. After 16 hours, dichloromethane (2 mL) was added to

the mixture and the brown organic phase was separated washed with H2O (3 × 5 mL),

brine (3 × 5 mL) and dried over Na2SO4. The organic fraction was concentrated in

O

O

O

O

O

O
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vacuo to obtain a yellow solid. Column chromatography (ethyl acetate : petroleum ether,

20 : 80) furnished 239 (23 mg, 28%) as a yellow solid. M.p. 150 – 151 °C; HPLC

analysis on Chiracel OD+1 (99 : 1 hexane : isopropanol, 1 mL/min) showed the minor

enantiomer at 37.8 min (14.7 A%) and the minor one at 41.4 min (85.3 A%) ee 70%. IR

(thin film) 2930, 1608, 1466, 1148, 909, 697 cm-1; δH (300 MHz, CDCl3) 7.91 (1H d, J

= 8.1 Hz, Ar), 7.39 – 7.42 (1H, m, Ar), 7.22 (1H, d, J = 8.1 Hz, Ar ), 7.14 (1H, t, J = 7.2

Hz, Ar ), 3.57 – 3.55 (2H, m, CHCH), 2.71 (1H, dd, J = 6.3, 16.3 Hz, CHCHHCH2),

2.22 (1H, dd, J = 7.2, 14.5 Hz, CHCH2CHH), 1.96 – 1.84 (1H, m, CHCHHCH2), 1.54 –

1.41 (1H, m, CHCH2CHH ); δC (75 MHz) 175.8 (CO), 158.1 (C, Ar), 155.4 (C, Ar),

132.7 (CH, Ar), 125.3 (CH, Ar), 124.4 (CH, Ar), 122.9 (C, Ar), 117.2 (CH, Ar), 116.7

(C, Ar), 55.5 (CH2CHOCHC=), 48.2 (CH2CHOCHC=), 20.2 (CHCH2CH2), 13.9

(CHCH2CH2); MS (ES+) m/z = 237 ([M+Na])+, 100%); HRMS (ES+): calcd. for

C13H11O3Na [M+Na]+: 237.0528; found: 237.0518.

(3S*,4R*)-1,2,3,4-Tetrahydro-3-hydroxy-4-methoxyxanthen-9-one (241)

To a solution of 239 (23.0 mg, 0.10 mmol) in methanol (5mL) was

added para-toluene sulfonic acid (10.0 mg, 0.05 mmol). The reaction

mixture was heated at 65 °C for 16 hours and was then cooled down

to room temperature, diluted with H2O (5mL). The aqueous layer was extracted with

ethyl acetate (3 × 5 mL). The organic fractions were collected washed with saturated

NaHCO3 solution (3 × 5 mL), H2O (3 × 5 mL), dried over MgSO4 and concentrated in

vacuo to give a white solid. Column chromatography (ethyl acetate : petroleum ether,

30 : 70) furnished 241 (27 mg, 60%) as a yellow solid. M.p. 151 – 152 °C; IR (thin film)

2930, 1608, 1466, 1148, 909, 697 cm-1; δH (300 MHz, CDCl3) 7.39 (1H, dd, J = 1.7, 8.0

Hz, Ar), 7.42 (1H, td, J = 1.7, 8.6 Hz, Ar), 7.25 – 7.11 (2H, m, Ar), 3.93 – 3.91 (2H, m,

(OH)CHCHOMe), 3.50 (3H, s, OCH3), 2.98 – 2.90 (1H, m, (OH)CHCHHCH2), 2.75 –

2.60 (1H, m, (OH)CHCHHCH2), 1.91 – 1.83 (1H, m, CH2CHHC=), 1.72 – 1.61 (1H, m,

CH2CHHC=); δC (75 MHz) 177.5 (CO), 159.4 (C, Ar), 155.8 (C, Ar), 133.1 (CH, Ar),

125.3 (CH, Ar), 124.5 (CH, Ar), 122.6 (C, Ar), 118.7 (C, Ar), 117.1 (CH, Ar), 80.1

(OCH3), 68.6 (CHOCHC=), 59.8 (CH2CHOCH), 25.1 ((OH)CHCH2CH2), 17.3

(CHCH2CH2C=); MS (ES+) m/z = 269 ([M+Na])+, 100%); HRMS (ES+): calcd.. for

C14H14O4Na [M+Na]+: 269.0779; found: 269.0784.
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(3S*,4R*)-1,2,3,4-Tetrahydro-3-hydroxy-4-(methylamino)xanthen-9-one (246)

To the solution of 239 (200 mg, 0.93 mmol) in ethanol (5 mL) at room

temperature was added para-toluene sulfonic acid (30.0 mg, 0.15

mmol). The reaction mixture was stirred for 5 minutes and then

methylamine (288 mg, 9.30 mmol) was added. The reaction was heated to 76 °C and

stirred for a further 16 hours. The reaction mixture was then cooled to room temterature,

diluted with water (5 mL) and the aqueous layer was extracted with ethyl acetate (3 × 5

mL). The organic fractions were collected, washed with saturated NaHCO3 solution (3

× 15 mL), H2O (3 × 15 mL) and dried over MgSO4 to obtain a pale yellow solid.

Column chromatography (methanol : dichloromethane, 10 : 90) furnished 246 (136 mg,

60%) as a pale yellow solid; M.p. 155 – 156 °C; IR (thin film) 2930, 1608, 1466, 1148,

909, 697 cm-1; δH (300 MHz, CDCl3) 7.99 – 7.96 (1H, m, Ar), 7.46 – 7.40 (1H, m, Ar),

7.21- 7.13 (2H, m, Ar), 3.90 (1H, td, J = 3.3, 7.8 Hz, (OH)CH), 3.63 (1H, d, J = 7.8 Hz,

CHNHMe), 2.92 – 2.81 (1H, dt, J = 4.6, 17.5 Hz, (OH)CHCHHCH2), 2.51 – 2.42 (2H,

m, (OH)CHCHHCHH), 2.53 (3H, s, NHCH3), 2.25 – 2.19 (1H, m, NH), 1.80 – 1.48

(1H, m, (OH)CHCHHCHH); δC (300 MHz) 175.8 (CO), 158.1 (C, Ar), 155.4 (C, Ar),

132.7 (CH, Ar), 125.3 (CH, Ar), 124.4 (CH, Ar), 122.9 (C, Ar), 117.2 (CH, Ar), 116.7

(C, Ar), 55.5 ((OH)CHCHNHMe), 48.2 ((OH)CHCHNHMe), 32.3 (CH3), 20.2

(CHCH2CH2), 13.9 (CHCH2); MS (ES+) m/z = 268 ([M+Na])+, 100%); HRMS (ES+):

calcd. for C14H15O3Na [M+Na]+: 268.0950; found: 268.0954.

(3S*,4R*)-1,2,3,4-Tetrahydro-3-hydroxy-4-(methylaminium) xanthene-9-one

chloride (247)

A 50 mL flask containing 246 (100 mg, 0.40 mmol) was charged with

commercially available 1M HCl (5.00 mL, 5.00 mmol) in Et2O. The

reaction mixture was stirred for 16 hours before the solvent was

evaporated in vacuo to obtain a yellow solid. The crude product was recrystallised from

Et2O to afford 247 (95 mg, 85%) as yellow crystals; M.p. 209 – 210 °C; IR (thin film)

2930, 1608, 1466, 1148, 909, 697 cm-1; δH (400 MHz, CDCl3) 7.97 (1H, d, J = 8.1 Hz,

Ar), 7.79 – 7.75 (1H, m, Ar), 7.53 (1H, d, J = 8.4 Hz, Ar), 7.47 – 7.43 (1H, m, Ar), 4.48

(1H, d, J = 8.4 Hz, (OH)CH), 4.28 – 4.22 (1H, m, CHNHMe), 2.79 (3H, s, NHCH3),

2.70 – 2.66 (1H, m, (OH)CHCHHCH2), 2.50 – 2.41 (1H, m, (OH)CHCH2CHH), 2.21 –

2.18 (1H, m, (OH)CHCHHCH2), 1.90 – 1.80 (1H, m, (OH)CHCH2CHH); δC (100 MHz)

179.5 (CO), 155.8 (C, Ar), 153.9 (C, Ar), 135.2 (CH, Ar), 126.1 (CH, Ar), 124.9 (CH,

Ar), 121.6 (C, Ar), 121.2 (CH, Ar), 118.0 (C, Ar), 65.0 (OH)CHCHNHMe), 60.8

O
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((OH)CHCHNHMe), 30.1 (NHCH3), 27.6 (CHCH2CH2), 18.4 (CHCH2); MS (ES+) m/z

= 246 ([M+H])+, 100%); HRMS (ES+): calcd. for C14H16NO3 [M+H]+: 246.1125; found:

246.1129

Crystal Data. C14H16NO3Cl, M =281.73, orthorhombic, a = 13.1707(3) Å, b =

12.0072(2) Å, c = 16.8408(4) Å, V = 2663.25(9) Å3, T = 100(2), space group Pbca (no.

61), Z = 8, μ(MoKα) = 0.290, 17479 reflections measured, 4554 unique (Rint = 0.0362)

which were used in all calculations. The final wR2 was 0.0906 (all data) and R1 was

0.0386 (>2sigma(I)).

1,2,3,4-Tetrahydro-1-hydroxyxanthen-9-one (102)

To a solution of 103 (2.20 g, 10.2 mmol) in methanol and

dichloromethane 5 : 1 (60 mL) was added cerium chloride heptahydrate

(4.20 g, 11.3 mmol) in one portion followed by the slow addition of

sodium borohydride (418 mg, 11.3 mmol) in 2 portions. The reaction mixture was

stirred for 1 hour before the addition of saturated NH4Cl solution (10 mL). The mixture

was poured into a separating funnel containing 1.5 M HCl (40 mL) and extracted with

dichloromethane (3 × 50 mL). The organic layers were washed with saturated NaHCO3

solution (2 × 50 mL), brine (50 mL× 2), dried over MgSO4, and concentration in vacuo

provided a yellow solid. Column chromatography (ethyl acetate : petroleum ether, 30 :

70) furnished 102 (1.71 g, 78%) as a white solid. M.p. 105 – 106 °C; IR (thin film) 2949,

1626, 1461, 1245, 1163, 1073, 848 cm-1; δH (300 MHz CDCl3) 8.05 (1H, d, J = 8.0 Hz,

Ar), 7.56 – 7.53 (1H, m, Ar), 7.31 – 7.25 (2H, m, Ar), 4.97 – 4.94 (1H, m, CH(OH)),

4.1 (1H, brs, 1OH), 3.61 – 3.58 (1H, m, CH2CHHC=), 2.68 – 2.50 (1H, m,

CH2CHHC=), 2.01 – 1.68 (4H, m, (OH)CHCH2CH2); δC (75 MHz) 178.8 (CO), 166.0

(C, Ar), 155.9 (C, Ar), 133.9 (CH, Ar), 125.4 (CH, Ar), 124.8 (CH, Ar), 123.3 (C, Ar),

120.0 (C, Ar), 117.5 (CH, Ar), 63.6 (CH(OH)), 29.6 (CH2CH2C=), 28.4 ((OH)CHCH2),

17.9 (CH2CH2CH2); MS (ES+) m/z = 239 ([M+Na])+, 100%); HRMS (ES+): calcd. for

C13H12O3Na [M+Na+]: 239.0679; found: 239.0678.

Enantioselective reductions

Using Noyori’s catalyst

A solution of Noyori’s catalyst 206 (43.0 mg, 0.07 mmol) in formic acid

and triethylamine 5 : 2 (2.3 mL) was stirred at 28 °C for 30 min. 103

(1.00 g, 4.67 mmol) was added and the reaction mixture was stirred for

48 hours at the same temperature. The reaction mixture was filtered through silica,

O
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washed with ethyl acetate and hexane 1 : 1 (5 × 15 mL) and concentrated in vacuo to

obtain a yellow solid. Column chromatography (ethyl acetate : petroleum ether, 30 : 70)

furnished 102 as white solid (806 mg, 80%). HPLC analysis on Chiracel OD+1 (90 : 10

hexane : isopropanol, 1 mL/min) showed only the major enantiomer at 17.2 min (100

A%) ee 99%; [α]D
30° – 117.5° (c 0.2, CHCl3).

Using Wills catalyst

A solution of Wills catalyst 207 (38.0 mg, 0.06 mmol) in formic acid

and triethylamine 5 : 2 (1.5 mL) was stirred at 28 °C for 30 min. 103

(850 mg, 3.97 mmol) was added and the reaction mixture was stirred for

48 hours at the same temperature. The reaction mixture was filtered through silica,

washed with ethyl acetate and hexane 1 : 1 (5 × 15 mL) and concentrated in vacuo to

obtain a yellow solid. Column chromatography (ethyl acetate : petroleum ether, 30 : 70)

furnished 102 as white solid (771 mg, 90%). HPLC analysis on Chiracel OD+1 (90 : 10

hexane : isopropanol, 1 mL/min) showed the major enantiomer at 16.0 min (88.8 A%)

and the minor one at 23.0 min (11.2 A%), ee 76.4%;

(2R)-(R)-6,7,8,9-Tetrahydro-9-oxo-5H-xanthen-8-yl-3,3,3-trifluoro-2-methoxy-2-

phenylpropanoate (275)

To solution of 102 (20.0 mg, 0.09 mmol) triethylamine (10.0 mg,

0.10 mmol) and catalytic 4-dimethylamino pyridine (1 mg, 0.009

mmol) in dichloromethane was added (R) (+)-α-methoxy-α-

trifluoromethylphenylacetyl chloride (25 mg, 0.10 mmol). The reaction mixture was

stirred for 6 hours then poured into ice cold H2O (2 mL), extracted with

dichloromethane (2 × 5 mL), washed with NaCl (2 × 5 mL), dried over MgSO4 and

filtered and concentrated in vacuo to give colourless thick oil. Column chromatography

(diethylether : petroleum ether, 25 : 75) furnished 275 (30 mg, 80%), as colourless oil.

[α]D
26° – 54.6° (c 0.2, CHCl3); IR (thin film) 2991, 1730, 1374, 1267, 1045, 752 cm-1;

δH (400 MHz CDCl3) 8.13 – 8.10 (1H, m, Ar), 7.59 – 7.54 (1H, m, Ar), 7.51 – 7.48 (2H,

m, Ar), 7.32 – 7.27 (5H, m, Ar), 6.36 – 6.34 (1H, m, CHOCO), 3.50 (3H, s, OCH3),

2.58 – 2.55 (2H, m, CH2C=), 2.18 – 2.14 (1H, m, OCOCHCHHCH2) 1.77 – 1.55 (3H,

m, OCOCHCHHCH2); δC (100 MHz) 175.9 (CO), 168.1 (COO), 165.8 (C, Ar), 155.8

(C, Ar), 133.7 (CH, Ar), 132.7 (C, Ar), 129.4 (CH, Ar), 128.3 (2 × CH, Ar), 127.7 (CH,

Ar), 127.4 (CH, Ar), 125.8 (CH, Ar), 125.1 (CH, Ar), 124.8 (CF3), 123.6 (C, Ar), 122.0

(C, Ar), 117.7 (CH, Ar), 115.5 ((Ph)(CO)C(CF3)(OCH3)), 66.1 (CH(COO)), 55.7

O

OOH
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(OCH3), 27.8 (CH2CH2C=), 27.1 (CH2CH2CHOCOCO), 16.4 (CH2CH2CH2C=); MS

(ES+) m/z = 433 ([M+H])+, 100%); HRMS (ES+): calcd. for C23H20F3O5 [M+H+]:

433.1257; found: 433.1256.

6,7,8,9-Tetrahydro-9-oxo-5H-xanthen-8-yl-3,3,3-trifluoro-2-methoxy-2-

phenylpropanoate (275, 276)

To a solution of 102 (20.0 mg, 0.09 mmol) Et3N (14.0 mg, 0.10

mmol) and catalytic 4-dimethylaminopyridine (1.00 mg, 0.009

mmol) in dichloromethane was added (R) (+)-α-methoxy-α-

trifluoromethylphenylacetyl chloride (25.0 mg, 0.10 mmol). The reaction mixture was

stirred for 6 hours, before pouring slowly into ice cold H2O (2 mL) and then extracted

with dichloromethane (2 × 5 mL), washed with brine (2 × 5 mL), dried over MgSO4,

filtered and concentrated in vacuo to give a mixture of diastereomers. Column

chromatography (diethylether : petroleum ether, 25 : 75) furnished a mixture of the

diastereomers 275 and 276 (22 mg, 60%) in 1 : 3 as an oil. IR (thin film) 2991, 1730,

1374, 1267, 1045, 752 cm-1; δH (400 MHz CDCl3) 8.13 – 8.11 (0.75H, m, Ar), 8.09 –

8.06 (0.25H, m, Ar), 7.58 – 7.48 (3H, m, Ar), 7.32 – 7.27 (5H, m, Ar), 6.44 – 6.42

(0.25H, m, CH2CHO(CO)), 6.36 – 6.35 (0.75H, m, CH2CHO(CO)), 3.50 (2.25H, s,

OCH3), 3.45 (0.75H, s, OCH3), 2.68 – 2.64 (0.5H, m, CH2CH2C=), 2.59 – 2.55 (1.5H, m,

CH2CH2C=), 2.22 – 2.20 (0.25H, m, CH2CHHCH2C=), 2.15 – 2.14 (0.75H, m,

CH2CHHCH2C=), 1.99 – 1.91 (2H, m, CHHCHHCH2C= ), 1.80 – 1.57 (1H, m,

CHHCH2CH2C= ),; δC (100 MHz) 175.9 (CO, Ar, major), 175.6 (CO, Ar, minor) 168.1

(CO, Ar, major), 167.7 (CO, Ar, minor), 165.8 (C, Ar, major), 165.5 (C, Ar, minor),

155.8 (2 × C, Ar, major and minor), 133.7 (CH, Ar, major), 133.6 (CH, Ar, minor),

132.6 (C, Ar, major), 132.2 (C, Ar, minor), 129.4 (CH, Ar, major), 129.3 (CH, Ar,

minor), 128.5 (CH, Ar, minor), 128.3 (CH, Ar, major ), 128.1 (CH, Ar, major), 128.0

(CH, Ar, minor), 127.4 (CH, Ar, major), 125.85 (CH, Ar, minor), 125.83 (CH, Ar,

major), 125.1 (CH, Ar, major), 125.0 (CH, Ar, minor), 124.3 (C, Ar, major), 124.2 (C,

Ar, minor), 123.6 (C, Ar, major), 123.5 (C, Ar, minor), 122.4 (C, Ar, major), 122.3 (C,

Ar, minor), 120.5 (2 × C, Ar, major and minor), 117.77 (CH, Ar, major), 117.74 (CH,

Ar, minor), 115.59 (C, Ar, minor), 115.51 (C, Ar, major), 66.1 (2 × CF3), 55.7 (OCH3,

major), 55.4 (OCH3, minor), 29.7 (=CH2, minor), 27.8 (=CH2, major), 27.6 (CHCH2,

minor), 27.1 (CHCH2, major), 16.9 (=CH2CH2CH2, minor), 16.4 (=CH2CH2CH2,

major ); MS (ES+) m/z = 433 ([M+H])+, 100%); HRMS (ES+): calcd. for C23H20F3O5

[M+H+]: 433.1257; found: 433.1256.
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(R)-1,2,3,4-Tetrahydro-1,4-diacetoxyxanthen-9-one (277, 278)

To a solution of 102 (100 mg, 0.46 mmol) in THF 5 mL) at – 78 °C was

added KOtBu (111 mg, 0.99 mmol) in 2 portions over 10 minutes. The

reaction mixture was allowed to warm to 10 °C, and stirred for 1 hour at

the same temperature. To the dark red solution was added Davies reagent (240 mg, 0.92

mmol) at the same temperature and warmed to room temperature to stir for a further 2

hours. The reaction was quenched with saturated NH4Cl solution (2 mL) and poured

slowly into a separating funnel containing H2O (5 mL). The reaction mixture was

extracted with ethyl acetate (3 × 5 mL) and the combined organic layers were washed

with brine (3 × 5 mL), dried over MgSO4 and evaporation of solvent in vacuo provided

a colourless oil. Column chromatography (methanol : dichloromethane, 2 : 98)

furnished a 1 : 1 mixture of 277 and 278 (43 mg, 41%) as a colourless oil. IR (thin film)

2912, 2835, 16507, 1509, 1242, 786 cm-1; δH (400 MHz CDCl3) 8.02 (0.47H, dd, J =

1.5, 8.0 Hz, 1H, min), 7.97 (0.53H, dd, J = 1.2, 8.0 Hz, Ar), 7.51 – 7.57 (1H, m, Ar),

7.32 – 7.35 (1H, m, Ar), 7.20 – 7.29 (1H, m, Ar), 4.81 – 4.95 (1H, m, Ar), 4.60 – 4.63

(0.47H, m, (CO)C=CH(OH)), 4.54 – 4.57 (0.53H, m, (CO)C=CH(OH)), 4.43 (0.53H,

brs, (CO)C=CH(OH)), 4.23 (0.47H, brs, (CO)C=CH(OH)), 3.76 (0.53H, m,

(O)C=CH(OH)), 3.61 – 3.63 (0.47H, m, (O)C=CH(OH)), 2.20 – 1.68 (4H, m, 1H,

CH2CH2); δC (100 MHz) 179.39 (CO), 179.34 (CO), 164.0 (C, Ar), 163.8 (C, Ar),

155.98 (C, Ar), 155.94 (C, Ar), 134.1 (2 × CH, Ar), 125.46 (CH, Ar), 125.42 (CH, Ar),

125.25 (CH, Ar), 125.23 (CH, Ar), 123.1 (C, Ar), 123.0 (C, Ar), 120.2 (C, Ar), 120.1 (C,

Ar), 118.08 (CH, Ar), 118.04 (CH, Ar), 66.1 ((CO)C=CH(OH)), 65.8

((CO)C=CH(OH)), 64.0 (CH(OH)), 63.6 (CH(OH)), 27.1 (CH2), 27.0 (CH2), 25.9

(CH2), 25.6 (CH2); MS (ES+) m/z = 255 ([M+Na])+, 100%); HRMS (ES+): calcd. for

C13H12O5Na [M+Na+]: 255.0628; found: 255.0630.

(1R,4R)-1,2,3,4-Tetrahydro-1,4-diacetoxyxanthen-9-one (280)

To a solution of 277, and 278 (40.0 mg, 0.17 mmol) in pyridine (5 mL)

was added acetic anhydride (0.16 mL, 1.70 mmol) and catalytic 4–

dimethylamino pyridine (2.00 mg, 0.01 mmol). The reaction mixture was

stirred for 24 hours before being poured into a separating funnel containing H2O (10 mL)

then extracted with ethyl acetate (3 × 10 mL). The combined organic layers were

washed with 0.5N HCl (3 × 10 mL), H2O (3 × 10 mL), saturated NaHCO3 solution (3 ×

10 mL) and brine (3 × 15 mL). The organic layers were dried over MgSO4, and

evaporation of solvent in vacuo provided a thick colourless oil. Column
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chromatography (diethyl ether : petroleum ether, 40 : 60) furnished 280 (25 mg, 47%)

as a white solid and 279 (27 mg, 50%) as a white solid. [α]D
34° + 94° (c 0.4, CHCl3);

M.p. 154 – 155 °C; IR (thin film) 2928, 1744, 1652, 1212, 1040, 727 cm-1; δH (400

MHz CDCl3) 8.12 (1H, dd, J = 1.6, 7.7 Hz, Ar), 7.63 – 7.59 (1H, m, Ar), 7.38 (1H, d, J

= 8.5 Hz, Ar), 7.33 (1H, t, J = 7.1 Hz, Ar), 6.15 – 6.14 (1H, m, CHOAc), 5.82 – 5.81

(1H, m, CHOAc), 2.23 – 2.12 (1H, m, CHHCH2), 2.07 (3H, s, CHHCH2), 1.98 (3H, s,

OCOCH3), 1.90 – 2.00 (3H, m, OCOCH3); δC (100 MHz) 176.3 (CO), 170.1 (CO),

169.9 (CO), 161.2 (C, Ar), 155.9 (C, Ar), 134.1 (CH, Ar), 125.9 (CH, Ar), 125.4 (CH,

Ar), 123.7 (C, Ar), 118.7 (C, Ar), 118.2 (CH, Ar), 66.1 (CHOAc), 63.0 (CHOAc), 23.9

(CH2), 23.0 (CH2), 21.1 (CH3), 21.0 (CH3); MS (ES+) m/z = 389 ([M+Na])+, 100%);

HRMS (ES+): calcd. for C17H16O6Na [M+Na+]: 339.0841; found: 339.0839.

(1R,4S)-1,2,3,4-Tetrahydro-1,4-diacetoxyxanthen-9-one (279)

[α]D
34° – 13.3° (c 0.3, CHCl3); M.p. 147 – 148 °C; IR (thin film) 2937,

1742, 1648, 1468, 1220, 1017, 756 cm-1; δH (400 MHz CDCl3) 8.12 (1H,

dd, J = 1.5, 8.2 Hz, Ar), 7.63 – 7.57 (1H, m, Ar), 7.35 – 7.31 (2H, m, Ar),

6.09 – 6.08 (1H, m, CHOAc), 5.87 (1H, dd, J = 5.8, 9.3 Hz, CHOAc), 2.15 (3H, s, CH3),

2.14 – 2.04 (3H, m, CHHCH2), 2.00 (3H, s, CH3), 1.90 – 1.80 (1H, m, CHHCH2); δC

(100 MHz) 176.1 (CO), 170.2 (CO), 170.1 (CO), 162.4 (C, Ar), 155.7 (C, Ar), 134.0

(CH, Ar), 125.9 (CH, Ar), 125.4 (CH, Ar), 123.4 (C, Ar), 118.3 (C, Ar), 118.0 (CH, Ar),

67.1 (CHOAc), 63.3 (CHOAc), 25.4 (CH2), 24.0 (CH2), 21.1 (CH3), 20.9 (CH3); MS

(ES+) m/z = 389 ([M+Na])+, 100%); HRMS (ES+): calcd. for C17H16O6Na [M+Na+]:

339.0841; found: 339.0839.

Crystal Data. C17H16O6, M =316.30, orthorhombic, a = 7.81730(10) Å, b =

11.96963(16) Å, c = 15.68901(18) Å, V = 1468.02(3) Å3, T = 100(2), space group

P212121 (no. 19), Z = 4, μ(CuKα) = 0.916, 13875 reflections measured, 2810 

unique (Rint = 0.0137) which were used in all calculations. The final wR2 was

0.0696 (all data) and R1 was 0.0270 (>2sigma(I)).
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(R)-1-((2S,3R,4S,5R,6R*)-3,4,5-Tris(acetoxy)-6-(acetoxy)methyl)-tetrahydro-2H-

pyran-2-yloxy)-1,2,3,4-tetrahydroxanthen-9-one (282) And (R)-1-

((2R,3R,4S,5R,6R*)-3,4,5-Tris(acetoxy)-6-(acetoxy)methyl)-tetrahydro-2H-pyran-2-

yloxy)-1,2,3,4-tetrahydroxanthen-9-one (283)

A solution of 102 (51.8 mg, 0.24 mmol)

and tetra-O-acetyl-α-D-glucopyransyl 

bromide (281) (50.0 mg, 0.12 mmol) in

dichloromethane (5 mL) was stirred at room

temperature in the dark for 16 hours in the

presence of Ag2CO3 (66.0 mg, 0.24 mmol).

The mixture was filtered and the solvent evaporated in vacuo to obtain colourless oil.

Column chromatography (ethyl acetate : petroleum ether, 15 : 85) furnished 282 and

283 (27 mg, 85%) as colourless oil in 2.8 : 1 respectively. IR (thin film) 2914, 1728,

1724, 1471, 1175, 716 cm-1; δH (400 MHz CDCl3) 8.14 – 8.12 (1H, m, Ar), 7.60 – 7.51

(1H, m, Ar), 7.35 – 7.25 (2H, m, Ar), 5.86 (0.65H, d, J = 5.2 Hz, H1), 5.17 – 5.15 (1H,

m, CH2CHO), 5.13 – 5.10 (0.65H, m, H3), 5.08 – 5.06 (0.35H, m, H3), 5.00 – 4.94

(0.35H, m, H1), 4.88 – 4.81 (1H, m, H4), 4.33 (0.65H, dd, J = 5.1, 2.5 Hz H2), 4.13 –

4.10 (2H, m, H6), 4.07 – 4.03 (0.35H, m, H2), 3.92 – 3.88 (0.65H, m, H5), 3.60 – 3.54

(0.35H, m, H5), 2.70 – 2.50 (4H, m, OCHCH2CH2CH2C=), 2.27 – 1.63 (14H, m, 4 ×

(OCH3), OCHCH2CH2CH2C=); δC (100 MHz) 176.8 (CO), 176.4 (CO), 170.7 (COCH3),

170.6 (COCH3), 170.2 (COCH3), 169.8 (COCH3), 169.7 (COCH3), 169.4 (COCH3),

169.2 (COCH3), 169.1 (COCH3), 166.9 (C, Ar), 166.8 (C, Ar), 155.8 (2 × C, Ar), 133.6

(CH, Ar), 133.4 (CH, Ar), 125.8 (CH, Ar), 125.7 (CH, Ar), 124.9 (CH, Ar), 124.7 (2 ×

CH, Ar), 123.8 (C, Ar), 123.5 (C, Ar), 121.7 (C, Ar), 118.2 (C, Ar), 117.7 (CH, Ar),

117.6 (CH, Ar), 101.4 (OCHO, min), 97.2 (OCHO, maj), 73.3 (AcOCH(CHOAc)2,

min), 72.6 (AcOCH(CHOAc)2, maj), 71.7 (AcOCHCHO, min), 70.1 (AcOCHCHO,

maj), 70.0 (AcOCHCHCH2, min), 68.38 (AcOCHCHCH2, maj), 68.30 (AcOCHCHCH2,

min), 66.8 (AcOCHCHCH2, maj), 63.8 (CH, min), 63.4 (CH, maj), 63.2 (OCH2, maj),

61.5 (OCH2, min), 29.6 (CH2CH2C=, min), 28.4 (CH2CH2C=, maj), 28.1 (OCHCH2CH2,

min), 27.8 (OCHCH2CH2, maj), 20.88 (COCH3), 20.85 (COCH3), 22.7 (COCH3), 22.66

(COCH3), 22.60 (COCH3), 22.56 (COCH3), 16.2 (OCHCH2CH2CH2, min), 16.2

(OCHCH2CH2CH2, maj),; MS (ES+) m/z = 457 ([M+Na])+, 100%); HRMS (ES+): calcd.

for C27H30O12Na [M+Na+]:569.1635; found: 569.1639.
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(R)-1-((2S,3R,4S,5R,6R*)-3,4,5-Tris(benzyloxy)-6-(benzyloxy)methyl)-tetrahydro-

2H-pyran-2-yloxy)-1,2,3,4-tetrahydroxanthen-9-one (286) And (R)-1-

((2R,3R,4S,5R,6R*)-3,4,5-tris(benzyloxy)-6-(benzyloxy)methyl)-tetrahydro-2H-

pyran-2-yloxy)-1,2,3,4-tetrahydroxanthen-9-one (287)

To a solution of trichloroacetimiate 285

(80 mg, 0.11 mmol) and the alcohol 102

(37.9 mg, 0.17 mmol) in dichloromethane

(5 mL) were added molecular sieves

(4 Ǻ, 100 mgs) and  stirred for 10 minutes 

at room temperature. Then TMSOTf (0.1M

in dichloromethane, 2 mg, 0.01 mmol) was added dropwise over 10 minutes and stirred

for an hour at 0 °C before treating with saturated NaHCO3 solution (5 mL). The aqueous

layer was further extracted with dichloromethane (3 × 5 mL) and the organic layers

were dried over MgSO4, and evaporation of solvent in vacuo provided a colourless oil.

Column chromatography (ethyl acetate : petroleum ether, 20 : 80) furnished 286 and

287 ( mg, 85%) in 1 : 1 ratio as colourless oil. IR (thin film) 2064, 1629, 1605, 1417,

1166, 754 cm-1; δH (400 MHz CDCl3) 8.15 – 8.13 (0.5H, m, Ar), 8.10 (0.5H, dd, J = 1.4,

7.9 Hz, Ar), 7.55 – 7.49 (1H, m, Ar), 7.30 – 7.11 (18H, m, Ar), 7.07 – 6.96 (4H, m, Ar),

5.86 (0.5H, d, J = 3.6 Hz, H1), 5.19 – 5.16 (0.5H, m, CH), 5.05 – 5.01 (0.5H, m, CH),

4.86 (0.5H, d, J = 8.0 Hz, OCHHPh), 4.83 (1H, d, J = 7.1 Hz, OCHHPh), 4.80 (0.5H, d,

J = 9.3 Hz, H1), 4.76 – 4.68 (1.5H, m, OCH2Ph, OCHHPh), 4.66 (0.5H, d, J = 4.6 Hz,

OCHHPh), 4.63 (0.5H, d, J = 10.8 Hz, OCHHPh), 4.56 (0.5H, d, J = 12.1 Hz,

OCHHPh), 4.38 – 4.35 (2H, m, OCH2Ph), 4.24 (0.5H, d, J = 12.4 Hz, OCHHPh), 3.96

(0.5H, d, J = 12.4 Hz, OCHHPh), 3.87 – 3.83 (0.5H, m, H3), 3.79 (0.5H, d, J = 9.3 Hz,

H3), 3.72 – 3.63 (1H, m, H4), 3.59 – 3.45 (2.5H, m, H2), 3.32 (0.5H, t, J = 8.3 Hz, H2),

3.28 – 3.25 (0.5H, m, H5), 3.18 – 3.15 (0.5H, m, H5), 2.68 – 2.47 (2H, m, CH2C=), 2.24

– 2.08 (2H, m, OCHCH2CH2), 1.77 – 1.74 (1H, m, OCHCHHCH2), 1.59 – 1.40 (1H, m,

OCHCHHCH2),; δC (100 MHz) 177.0 (CO), 176.7 (CO), 166.7 (C, Ar), 166.4 (C, Ar),

156.0 (C, Ar), 155.9 (C, Ar), 139.0 (C, Ar), 138.7 (2 × C, Ar), 138.4 (C, Ar), 138.2 (C,

Ar), 138.1 (2 × C, Ar), 138.0 (C, Ar), 133.5 (CH, Ar), 133.3 (CH, Ar), 128.6 – 125.8

(40 × CH, Ar), 124.7 (CH, Ar), 124.6 (CH, Ar), 123.9 (C, Ar), 123.8 (C, Ar), 119.1 (C,

Ar), 119.0 (C, Ar), 117.8 (CH, Ar), 117.7 (CH, Ar), 103.0 (OCHO, β), 98.6 (OCHO, α),

85.0 (BnOCH(CHOBn)2, β), 82.3 (BnOCHCHO, β), 81.8 (BnOCH(CHOBn)2, α), 80.3

(BnOCHCHO, α), 78.0 (CH, β), 77.8 (CH, α), 75.6 (OCH2, β), 75.5 (OCH2, α), 75.3

(PhCH2O, β), 74.8 (PhCH2O, α), 74.7 (PhCH2O, β), 74.5 (BnOCHCHCH2, β), 73.6
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(PhCH2O, α), 73.2 (PhCH2O, α), 72.4 (PhCH2O, β), 70.8 (BnOCHCHCH2, α), 69.4

(BnOCHCHCH2, β), 68.8 (PhCH2O, β), 68.3 (BnOCHCHCH2, α), 68.2 (PhCH2O, α),

29.2 (CH2CH2C=, β), 28.0 (CH2CH2C=, α), 27.9 (OCHCH2CH2, β), 27.8 (OCHCH2CH2,

α), 16.8 (OCHCH2CH2CH2, β), 16.3 (OCHCH2CH2CH2, α),; MS (ES+) m/z = 457

([M+Na])+, 100%); HRMS (ES+): calcd. for C47H46O8Na [M+Na+]:761.3085; found:

761.3076.

5,6-Dihydroxanthen-9-one (288)

To a solution of 102 (1.00 g, 4.62 mmol) was added trifluoroacetic acid

(0.7 mL, 9.2 mmol) dropwise in THF (15 mL). The reaction mixture was

stirred for 1 hour and then poured into a separating funnel containing H2O

(15 mL). The organic layer was separated and the aqueous layer was extracted with

ethyl acetate (3 × 10 mL). The combined organic layers were washed with saturated

NaHCO3 solution (3 × 10 mL) and brine (3 × 15 mL). The organic layers were dried

over MgSO4, filtered and evaporation of solvent in vacuo provided a yellow oil. Column

chromatography (diethyl ether : petroleum ether, 10 : 90) furnished 288 (731 mg, 80%)

as a yellow solid. M.p. 109 – 110 °C; IR (thin film) 1605, 1417, 1166, 894, 754 cm-1; δH

(400 MHz CDCl3) 8.16 (1H, dd, J = 1.5, 7.9 Hz, Ar), 7.56 – 7.51 (1H, m, Ar), 7.35 –

7.28 (2H, m, Ar), 6.38 (1H, dt, J = 1.9, 9.8 Hz, CH2CH=CH), 5.75 (1H, dt, J = 4.1, 9.8

Hz, CH2CH=), 2.79 (2H, t, J = 9.1 Hz, =CHCH2CH2), 2.49 – 2.42 (2H, m,

=CHCH2CH2); δC (100 MHz) 174.1 (CO), 164.2 (C, Ar), 159.2 (C, Ar), 132.9 (CH, Ar),

126.2 (CH, Ar), 124.9 (CH, Ar), 123.8 (C, Ar), 123.4 (=CHC), 119.2 (=CHCH2), 117.8

(CH, Ar), 116 (C, Ar), 26.2 (=CHCH2CH2), 22.6 (=CHCH2CH2); MS (ES+) m/z = 199

([M+H])+, 100%); HRMS (ES+): calcd. for C13H11O2 [M+H+]: 199.0754; found:

199.0753.

(1R*,2S*)1,2,3,4-Tetrahydro-1,2-dihydroxyxanthen-9-one (289)

Potassium carbonate (626 mg, 4.60 mmol), potassium ferricyanide

(1.50 g, 4.55 mmol), OsO4 (2.5 mg, 0.01 mmol), quinuclidine (31.0

mg, 0.27 mmol) and methanesulfonamide (143 mg, 1.50 mmol) were

added to water (6 mL) and tert-butylalcohol (6 mL). The mixture was vigorously stirred

until all the solids had dissolved. 288 (350 mg, 1.50 mmol) was added to the solution

and a vigorous stirring of the solution was continued for 42 hours. Anhydrous sodium

thiosulfate (567 mg, 4.50 mmol), was then added and the reaction mixture was stirred

for a further hour before the addition of dichloromethane (15 mL). The layers were
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separated and the aqueous phase was further extracted with dichloromethane (3 × 10

mL). The combined organic layers were washed with 2M KOH (5 mL), dried over

MgSO4 and concentrated in vacuo to obtain a colourless oil. Column chromatography

(ethyl acetate : petroleum ether, 30 : 70) furnished 289 (245 mg, 70%) as a white solid.

M.p. 139 – 140 °C; IR (thin film) 3357, 2919, 1627, 1465, 1105, 1061, 756 cm-1; δH

(400 MHz CDCl3) 8.08 (1H, d, J = 8.3 Hz, Ar), 7.58 (1H, t, J = 7.7 Hz, Ar), 7.34 – 7.29

(2H, m, Ar), 5.11 (1H, brs, OH), 4.91 (1H, d, J = 3.8 Hz, CH2CH(OH)CH(OH)), 4.06 –

4.01 (1H, m, CH2CH(OH)CH(OH)), 3.09 (1H, brs, OH), 2.95 (1H, dt, J = 5.0, 18.3 Hz,

CH2CHHC=), 2.54 (1H, dt, J = 5.0, 18.3 Hz, (CHHCH2C=), 2.21 – 2.13 (1H, m,

CH2CHHC=), 1.86 – 1.78 (1H, m, (CHHCH2C=); δC (100 MHz) 179.5 (CO), 165.9 (C,

Ar), 155.9 (C, Ar), 133.9 (CH, Ar), 125.4 (CH, Ar), 125.0 (CH, Ar), 123.0 (C, Ar),

117.8 (CH, Ar), 116.9 (C, Ar), 66.4 (OHCH), 66.2 (OHCH), 24.8 (CH2), 24.6 (CH2);

MS (ES+) m/z = 255 ([M+Na])+, 100%); HRMS (ES+): calcd. for C13H12O4Na [M+Na+]:

255.0628; found: 255.0630.

1,2,3,4-Tetrahydro-1-dioxa-spiro-4-(phenylselanyl)xanthen-9-one (291)

To a solution of 290 (2.09 g, 8.10 mmol) in THF (40 mL) at – 78 °C was

added lithium diisopropylamide 2M in hexane (4.65 mL, 9.30 mmol) in a

dropwise manner. The reaction mixture was stirred for 1 hour and

phenylselenyl chloride (1.78 g, 9.30 mmol) was added to the yellow solution at the

same temperature. The mixture was stirred for a further 2 hours. The reaction was

quenched with saturated NH4Cl solution (10 mL), diluted with H2O (20 mL) and then

allowed to warm up to room temperature. The reaction mixture was extracted with ethyl

acetate (3 × 30 mL), the combined organic layers were washed with brine (3 × 15 mL),

dried over MgSO4 and evaporation of the solvent in vacuo gave yellow oil. The impure

oil was purified by flash chromatography eluting with (ethyl acetate : petroleum ether,

40 : 60) to obtain a yellow oil (3.10 g, 90%). IR (thin film) 2954, 1617, 1463, 1393,

1023, 758 cm-1; δH (400 MHz CDCl3) 8.04 – 8.01 (1H, m, Ar), 7.61 – 7.58 (2H, m, Ar),

7.49 – 7.43 (1H, m, Ar), 7.26 – 7.18 (4H, m, Ar), 6.99 – 6.96 (1H, m, Ar), 4.51 – 4.49

(1H, m, OCHHCH2O), 4.35 – 4.27 (2H, m, OCHHCHHO), 4.08 – 4.02 (1H, m,

CHSePh), 3.97 – 3.90 (1H, m, OCH2CHHO), 2.36 – 2.38 (1H, m,

CH2CHHC(OCH2CH2O)), 2.13 – 2.11 (1H, m, CH2CHH(OCH2CH2O)), 2.09 – 2.00

(1H, m, CH2CHHCHSePh), 1.89 – 1.83 (1H, m, CH2CHHCHSePh); δC (75 Mz) 175.1

(CO), 166.3 (C, Ar), 154.3 (C, Ar), 135.2 (2 × CH, Ar), 132.7 (CH, Ar), 128.3 (CH, Ar),

128.1 (C, Ar), 128.0 (CH, Ar), 125.1 (CH, Ar), 124.3 (CH, Ar), 123.9 (CH, Ar), 123.7
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(C, Ar), 117.3 (C, Ar), 116.7 (CH, Ar), 106.2 (C), 66.0 (OCH2), 65.6 (OCH2), 40.4

(PhSeCH), 32.2 ((OCH2CH2O)CCH2), 25.9 (PhSeCHCH2); MS (ES+) m/z = 437

([M+Na])+, 100%); HRMS (ES+): calcd. for C21H18O4SeNa [M+Na]+: 437.0264; found:

437.0265.

1,2-Dihydro-1-dioxoa-spiro-xanthenes-9-one (292)

To a mixture of 291 (3.00 g, 7.22 mmol) and sodium hydrogen carbonate

(1.20 g, 14.4 mmol) in dichloromethane (35 mL) at 0 °C was added

mCPBA (1.90 g, 8.69 mmol). The reaction mixture was allowed to warm

up to room temperature slowly and was further stirred for an hour. The reaction mixture

was diluted with H2O (20 mL) and the biphasic solution was extracted with

dichloromethane (3 × 30 mL). The organic layers were washed with saturated sodium

thiosulfate solution (3 × 15 mL), brine (3 × 15 mL), dried over MgSO4, filtered and

evaporation of solvent in vacuo gave a yellow oil. The crude oil was purified by flash

chromatography eluting with (ethyl acetate : petroleum ether, 50 : 50) to obtain a white

solid (1.48 g, 80%). M.p. 120 – 121 °C; IR (thin film) 2972, 1638, 1597, 1462, 1235,

1064, 759 cm-1; δH (400 MHz CDCl3) 8.19 – 8.17 (1H, d, J = 8.0 Hz, Ar), 7.63 – 7.59

(1H, t, J = 8.0 Hz, Ar), 7.38 – 7.34 (2H, m, Ar), 6.59 – 6.54 (1H, dt, J = 4.2, 9.8, Hz,

CH2CHCH), 6.39 – 6.36 (1H, m, CH2CHCH), 4.47 – 4.43 (2H, m, OCH2CH2O), 4.11 –

4.08 (2H, m, OCH2CH2O), 2.87 – 2.85 (2H, m, CH2); δC (100 MHz) 175.6 (CO), 161.6

(C, Ar), 154.8 (C, Ar), 137.3 (CH, Ar), 133.3 (CH, Ar), 125.8 (CH, Ar), 125.4 (C, Ar),

125.0 (CH, Ar), 120.9 (CH2CHCHC=), 117.6 (CH2CHCHC=), 115.0 (C, Ar), 107.4

(C(OCH2CH2O)), 66.3 (OCH2), 60.4 (OCH2), 38.9 (CH2); MS (ES+) m/z = 279

([M+Na])+, 100%); HRMS (ES+): calcd. for C15H12O4Na [M+Na]+: 279.0628; found:

279.0621.

(1R, 9R)-2,3-Dihydro-3-dioxoa-spiro-1-oxireno[2,3-c]xanthen-4(9)-one (293)

To a solution of 292 (1.17 g, 4.57 mmol,), NH4OAc (138 mg, 1.82

mmol) and 294 (114 mg, 0.18 mmol) in dichloromethane – methanol (1 :

1) (7.2 mL) was added precooled (0 °C) 30 % aqueous H2O2 (4.9 M,

2.18 mL, 13.8 mmol) in 4 portions over 40 minutes at 0 °C. The reaction was stirred at

0 °C for 1 hour and then allowed to warm upto room temperature and stirred for 48

hours. The reaction was diluted with dichloromethane (20 ml) and transferred into a

separating funnel containing H2O (10 mL). The organic layer was separated and the

aqueous layer was extracted with dichloromethane (3 × 30 mL). The combined organic
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layers were washed with brine (3 × 15 mL), dried over MgSO4, and evaporation of

solvent in vacuo gave a yellow oil. The crude oil was purified by flash chromatography

eluting with (ethyl acetate : petroleum ether, 1 : 1) to obtain a yellow oil (646 mg, 44%).

[α]D
34° – 21° (c 0.4, CHCl3); HPLC analysis on Chiracel OD+1 (90 : 10 hexane :

isopropanol, 1 mL/min) showed the major enantiomer at 19.5 min (87.5 A%) and the

minor one at 23.2 min (12.5 A%) ee 75%; IR (thin film) 2963, 1645, 1464, 1334, 1151,

1007, 825 cm-1; δH (300 MHz CDCl3) 7.95 – 7.92 (1H, m, Ar), 7.46 – 7.40 (1H, m, Ar),

7.24 – 7.14 (2H, m, Ar), 4.39 – 4.30 (1H, m, OCHHCH2O), 4.13 – 4.07 (1H, m,

OCH2CHHO), 3.93 – 3.80 (2H, m, OCHHCHHO), 3.69 – 3.68 (1H, m, OCHC=), 3.61

– 3.58 (1H, m, OCHCHC=), 2.50 – 2.44 (1H, m, CHHC(O(CH2)2O), 2.17 – 2.08 (1H, m,

CHHC(O(CH2)O); δC (75 MHz) 174.2 (CO), 162.0 (C, Ar), 154.6 (C, Ar), 133.0 (CH,

Ar), 125.4 (CH, Ar), 124.9 (CH, Ar), 124.4 (CH, Ar), 117.9 (C, Ar), 117.0 (C, Ar),

103.7 (C(O(CH2)2O), 66.0 (OCH2CH2O), 65.7 (OCH2), 50.7 (OCHC=), 48.0 (OCH2),

35.2 (CH2), ; MS (ES+) m/z = 295 ([M+Na])+, 100%); HRMS (ES+): calcd. for

C15H12O5Na [M+Na]+: 295.0577; found: 295.0574.

1-Dioxoa-spiro-4-hydroxy-4H-xanthene-9-one (297)

To a solution of benzyl alcohol (0.03 mL, 0.30 mmol) in THF (5 mL) at

0 °C was added sodium hydride 60 % (8.00 mg, 0.20 mmol). The

reaction mixture was stirred at room temperature for 30 minutes. To the

cloudy solution was added 293 (55.0 mg, 0.20 mmol) and the stirring was continued for

6 hours. The reaction was slowly quenched with saturated NH4Cl solution (5 mL). The

reaction mixture was transferred to a separating funnel containing H2O (5 mL) and was

extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed

with brine (2 × 10 mL), dried over MgSO4 and evaporation of solvent in vacuo

provided a yellow solid. The crude material was purified by flash chromatography

eluting with (dichloromethane : methanol, 98 : 2) to furnish 297 (47 mg, 85 % ) as a

yellow solid. M.p. 120 – 121 °C; IR (thin film) 2918, 1652, 1599, 1464, 1279, 1072,

756 cm-1; δH (300 MHz CDCl3) 8.24 – 8.21 (1H, m, Ar), 7.82 – 7.76 (1H, m, Ar), 7.62 –

7.59 (1H, d, J = 8.3 Hz, Ar), 7.44 – 7.39 (1H, t, J = 8.3 Hz, Ar), 7.26 – 7.23 (1H, d, J =

9.2 Hz, CH=CHCH(OH)), 6.88 – 6.85 (1H, d, J = 8.8 Hz, CH=CHCH(OH)), 4.17 –

4.14 (2H, m, OCH2CH2O), 3.95 – 3.92 (2H, m, OCH2CH2O), 3.33 – 3.31 (1H, m,

=CHCH(OH)); δC (75 MHz) 181.4 (CO), 156.4 (C, Ar), 153.3 (C, Ar), 141.5 (C, Ar),

136.1 (CH, Ar), 127.3 (CH, Ar), 125.3 (CH, Ar), 123.5 (C, Ar), 122.1

(=CH=CHCH(OH)), 118.8 (CH), 109.6 (=CH=CHCH(OH)), 103.3 (C), 83 (CH(OH)),
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73.6 (OCH2), 61.6 (OCH2); MS (ES+) m/z = 295 ([M+Na])+, 100%); HRMS (ES+):

calcd. for C15H12O5Na [M+Na]+: 295.0577; found: 295.0574.

1-Dioxoa-spiro-4-hydroxy-4H-xanthene-9-one (297)

To a solution of 293 (50.0 mg, 0.19 mmol) in THF (5 mL) at 0 °C was

added benzyl alcohol (0.03 mL, 0.30 mmol) and para-toluenesulfonic

acid dihydrate (2.50 mg, 0.10 mmol). The reaction mixture was stirred

for 1 hour. The reaction mixture was diluted with H2O (5 mL) and extracted with ethyl

acetate (3 × 5 mL). The combined organic layers were washed with brine (2 × 10 mL),

dried over MgSO4 and evaporation of solvent in vacuo gave a yellow solid. The crude

material was purified by flash chromatography eluting with (dichloromethane :

methanol, 2 : 98) to furnish 297 (45 mg, 90 % ) as a yellow solid. Data as previously

reported.

(3S*,4S*)1-(1,3-dioxalane)-3,4-Dihydro-3,4-dihydroxy-2H-xanthene-9-one (299)

To a stirred solution of 293 (1.20 g, 4.68 mmol) in a mixture of

acetone (6.00 mL), H2O (6.00 mL) and tBuOH (2.40 mL) at room

temperature was added N-methylmorpholine-N-oxide monohydrate

(759 mg, 5.61 mmol) and a catalytic amount of OsO4 (20 µL, 0.02 gm/mL, tBuOH). The

reaction mixture was stirred for 48 hours, and then treated with sodium metabisulfite

(1.06 g, 5.61 mmol). The reaction mixture was stirred for 1 hour and extracted with

ethyl acetate (3 × 30 mL). The combined organic layers were washed with 1N HCl (20

mL), H2O (3 × 30 mL), brine (3 × 15 mL), dried over MgSO4 and evaporation of

solvent in vacuo provided a yellow oil. Column chromatography (methanol :

dichloromethane, 2 : 98) furnished 299 (720 mg, 60%) as a yellow solid. M.p. 230 –

231 °C; IR (thin film) 2928, 1628, 1536, 1160, 764 cm-1; δH (300 MHz CDCl3) 7.93 –

7.90 (1H, m, Ar), 7.44 – 7.38 (1H, m, Ar), 7.24 – 7.21 (1H, m, Ar), 7.14 – 7.11 (1H, m,

Ar), 4.30 (1H, d, J = 4.0 Hz, (OH)CHC=), 4.35 – 4.23 (2H, m, OCH2CH2O), 4.05 –

4.00 (1H, m, OHCHCH2), 3.95 – 3.82 (2H, m, OCH2CH2O), 2.11 (1H, dd, J = 8.1, 13.9

Hz, CHH), 1.90 (1H, dd, J = 2.7, 13.9 Hz, CHH); δC (75 MHz) 175.0 (CO), 162.8 (C,

Ar), 155.0 (C, Ar), 133.2 (CH, Ar), 125.2 (CH, Ar), 124.7 (CH, Ar), 123.7 (C, Ar),

117.7 (C, Ar), 117.2 (CH, Ar), 105.7 (C, Ar), 67.9 (OCH2), 66.0 ((OH)CH), 65.8

((OH)CH), 65.7 (OCH2), 37.5 (CH2); MS (ES+) m/z = 313 ([M+Na])+, 100%); HRMS

(ES+): calcd. for C15H12O6Na [M+Na+]:313.0683; found: 313.0675.
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(1R*,4S*) 1,2,3,4-Tetrahydro-1-hydroxy-4-(phenylselanyl)xanthen-9-one and (1R*,

4R*)1,2,3,4-Tetrahydro-1-hydroxy-4-(phenylselanyl)xanthen-9-one (303)

To a solution of 102 (1.00 g, 4.62 mmol) in THF (25 mL) at – 78 °C was

added KOtBu (1.10 g, 9.70 mmol) in two portions over 10 minutes. The

reaction mixture was allowed to warm up to 10 °C, and stirred for 1 hour

at the same temperature. To the dark red solution was added phenylselenyl chloride

(1.06 g, 5.08 mmol), at the same temperature and warmed to room temperature to stir

for a further 2 hours. The reaction was slowly quenched with saturated NH4Cl solution

(5 mL) and poured into a separating funnel containing H2O (15 mL). The reaction

mixture was extracted with ethyl acetate (3 × 30 mL), washed with brine (3 × 15 mL),

dried over MgSO4 and evaporation of solvent in vacuo provided a yellow oil. Column

chromatography (ethyl acetate : petroleum ether, 15 : 85) furnishedthe cis and trans

diastereomers of 303 (660 mg, 38%), and (710 mg, 41%) as yellow oils. IR (thin film)

3456, 2918, 1620, 1463, 1223, 1044, 759 cm-1; δH (400 MHz CDCl3) 8.16 – 8.14 (1H, d,

J = 8.0 Hz, Ar), 7.70 – 7.68 (2H, d, J = 7.4 Hz, Ar), 7.64 – 7.62 (1H, m, Ar), 7.40 – 7.30

(4H, m, Ar), 7.22 – 7.20 (1H, d, J = 8.6 Hz, Ar), 5.12 – 5.08 (1H, m, CH(OH)), 4.81

(1H, brs, OH), 4.34 – 4.33 (1H, m, CHSePh), 2.30 – 2.07 (4H, m, CHCH2CH2CH); δC

(100 MHz) 179.3 (CO), 164.7 (C, Ar), 155.7 (C, Ar), 137.5 (CH, Ar), 137.4 (CH, Ar),

135.7 (CH, Ar), 129.2 (CH, Ar), 129.0 (CH, Ar), 128.6 (C, Ar), 127.7 (CH, Ar), 125.4

(CH, Ar), 125.1 (CH, Ar), 123.1 (C, Ar), 119.6 (C, Ar), 117.8 (CH, Ar), 65.3 (CH(OH)),

40.7 (PhSeCH), 27.0 (CH2), 26.8 (CH2); MS (ES+) m/z = 395 ([M+Na])+, 100%);

HRMS (ES+): calcd. for C21H18O3SeNa [M+Na+]: 395.0158; found: 395.0173.

IR (thin film) cm-1 3456, 2918, 1620, 1463, 1223, 1044, 759 cm-1; δH

(400 MHz CDCl3) 8.16 – 8.14 (1H, d, J = 8.0 Hz, Ar), 7.68 – 7.66 (2H, d,

J = 7.4 Hz, Ar), 7.64 – 7.60 (1H, t, J = 8.0 Hz, Ar), 7.38 – 7.29 (4H, m, Ar), 7.20 – 7.18

(1H, d, J = 8.6 Hz, Ar), 5.05 (1H, m, CH(OH)), 4.3 (1H, m, PhSeCH), 3.66 (1H, brs,

OH), 2.57 – 2.51 (1H, m, PhSeCHCHHCH2), 2.09 – 2.00 (3H, m, PhSeCHCHHCH2);

δC (100 MHz) 178.6 (CO), 165.0 (C, Ar), 155.6 (C, Ar), 135.8 (CH, Ar), 135.5 (CH,

Ar), 133.8 (CH, Ar), 129.2 (C, Ar), 128.9 (2 × CH, Ar), 127.7 (CH, Ar), 125.5 (CH, Ar),

125.0 (CH, Ar), 123.3 (C, Ar), 119.3 (C, Ar), 117.8 (CH, Ar), 61.1 ((OH)CH), 40.6

(PhSeCH), 26.5 (CH2), 24.9 (CH2); MS (ES+) m/z = 395 ([M+Na])+, 100%); HRMS

(ES+): calcd. for C19H18O3SeNa [M+Na+]: 395.0158; found: 395.0173.
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(3S*,4S*)-1,2,3,4-Tetrahydro-1,3,4-trihydroxyxanthen-9-one (306)

To a stirred solution of crude 304 (500 mg, 2.33 mmol) in a mixture

of acetone (4.16 mL), H2O (4.16 mL) and tBuOH (1.68 mL) at room

temperature was added N-methylmorpholine-N-oxide monohydrate

(377 mg, 2.79 mmol) and a catalytic amount of OsO4 (20 µL, 0.02 gm/mL, tBuOH). The

reaction mixture was stirred for 48 hours, then it was treated with sodium metabisufite

(105 mg, 0.55 mmol). The reaction mixture was stirred for 1 hour and then extracted

with ethyl acetate (3 × 30 mL). The combined organic layers were washed with 1 N HCl

(15 mL), H2O (3 × 30 mL), brine (3 × 15 mL) and dried over MgSO4 and evaporation

of solvent in vacuo gave a yellow oil. Column chromatography (methanol :

dichloromethane, 5 : 95) furnished 306 (173 mg, 30%) as a colourless oil. IR (thin film)

3334, 2918, 1629, 1466, 1096, 1095, 762 cm-1; δH (300 MHz CDCl3) 8.11 – 8.13 (1H,

m, Ar), 7.67 – 7.62 (1H, m, Ar), 7.50 (1H, d, J = 8.2 Hz, Ar), 7.38 – 7.34 (1H, m, Ar),

5.03 (1H, t, J = 4.1 Hz, CH2CHOH), 4.52 (1H, d, J = 4.1 Hz, CH2HOCHCHOH), 4.20 –

4.00 (1H, m, CH2HOCHCHOH), 2.44 – 2.41 (1H, m, CHH), 1.99 – 191 (1H, m, CHH);

δC (75 MHz) 178.2 (CO), 161.8 (C, Ar), 156.5 (C, Ar), 134.1 (CH, Ar), 129.7 (CH, Ar),

125.5 (CH, Ar), 123.2 (C, Ar), 119.3 (C, Ar), 118.3 (CH, Ar), 68.9 (CH2(OH)CH), 67.5

(CH2CH(OH)CH(OH)), 62.9 (CH2CH(OH)CH(OH)), 32.1 (CH2); MS (ES+) m/z = 271

([M+Na])+, 100%); HRMS (ES+): calcd. for C13H12O5Na [M+Na+]: 271.0577; found:

271.0575.

(3S*,4S*)-1,2,3,4-Tetrahydro-1,3,4-triacetoxyxanthen-9-one (307)

To a solution of 306 (25.0 mg, 0.10 mmol) was added acetic

anhydride (0.10 mL, 1.00 mmol) and catalytic 4–dimethylamino

pyridine (1.20 mg, 0.01 mmol) in pyridine (2 mL). The reaction

mixture was stirred for 48 hours before pouring into a separating funnel containing H2O

(5 mL) and then extracted with ethyl acetate (3 × 5 mL). The combined organic layers

were washed with 0.5N HCl (3 × 5 mL), H2O (3 × 5 mL), saturated NaHCO3 solution (3

× 5 mL) and brine (3 × 5 mL). The organic layers were dried over MgSO4, and

evaporation of solvent in vacuo gave a colourless oil. Column chromatography (diethyl

ether : petroleum ether, 10 : 90) furnished 307 (35.0 mg, 94%) as white solid. M.p. 158

– 160 °C; IR (thin film) 3068, 2358, 1737, 1646, 1366, 1042, 759 cm-1; δH (300 MHz

CDCl3) 8.00 – 7.97 (1H, m, Ar), 7.53 – 7.48 (1H, m, Ar), 7.25 (2H, d, J = 7.7 Hz, Ar),

6.05 (1H, t, J = 5.8 Hz, AcOCHCH2), 5.92 (1H, d, J = 3.8 Hz, AcOCHCHOAcC=),

5.07 – 5.00 (1H, m, CH2AcOCHCHOAcC=), 2.25 – 2.12 (2H, m, CH2), 2.05 (3H, s,
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OCOCH3), 1.90 (3H, s, OCOCH3), 1.87 (3H, s, OCOCH3); δC (125 MHz) 175.1 (CO),

169.4 (CO), 169.3 (CO), 169.2 (CO), 158.0 (C, Ar), 155.1 (C, Ar), 133.5 (CH, Ar),

125.3 (CH, Ar), 125.0 (CH, Ar), 122.9 (C, Ar), 117.6 (C, Ar), 117.4 (CH, Ar), 65.9

(AcOCHCH2), 65.5 (CH2AcOCHCHOAc), 61.9 (CH2AcOCHCHOAc), 28.3 (CH2),

20.3 (CH3), 20.2 (CH3), 20.0 (CH3); MS (ES+) m/z = 397 ([M+Na])+, 100%); HRMS

(ES+): calcd. for C19H18O8Na [M+Na+]: 397.0894; found: 397.0896.

1-Tert-butyldimethylsilyloxy-1,2,3,4-tetrahydroxanthen-9-one (308)

To a solution of 102 (1.00 g, 4.62 mmol) in DMF (10 mL) was added

tert-butyldimethylsilyl chloride (900 mg, 6.00 mmol) followed by the

addition of imidazole (409 mg, 6.00 mmol). The reaction mixture was

stirred for 2 hours and then poured into H2O (20 mL). The biphasic

solution was extracted with ethyl acetate (3 × 15 mL) and the combined organic layers

were washed with H2O (3 × 15 mL), brine (3 × 15 mL), dried over MgSO4 and

evaporation of solvent in vacuo provided a yellow oil. Column chromatography (diethyl

ether : petroleum, ether 5 : 95) furnished 308 (1.45 g, 96%) as a white solid. M.p. 126 –

127 °C; IR (thin film) 2950, 1635, 1468, 1244, 1022, 775 cm-1; δH (300 MHz CDCl3)

8.06 (1H, dd, J = 1.4, 8.1 Hz, Ar), 7.49 – 7.43 (1H, m, Ar), 7.24 – 7.17 (2H, m, Ar),

4.90 (1H, t, J = 4.6 Hz, CH(OTBS)), 2.62 – 2.41 (2H, m, CH2CH2C=), 2.17 – 2.01 (1H,

m, CHHCH2CH(OTBS)), 1.77 – 1.75 (1H, m, CHHCH2CH(OTBS)), 1.73 – 1.66 (1H,

m, CHHCH(OTBS)), 1.46 – 1.35 (1H, m, CHHCH(OTBS)), 0.74 (9H, s, C(CH3)3), 0.12

(3H, s, SiCH3), 0.01 (3H, s, SiCH3); δC (75 MHz) 176.5 (CO), 165.9 (C, Ar), 155.9 (C,

Ar), 133.0 (CH, Ar), 125.8 (CH, Ar), 124.5 (CH, Ar), 124.0 (C, Ar), 120.5 (C, Ar),

117.6 (CH, Ar), 60.9 (CH(OTBS)), 31.0 (CH2CH2CH(OTBS)), 28.0 (CH2CH2C=), 25.9

(3 × CH3), 18.1 (C(CH3)), 15.9 (CH2CH2CH2), -4.3 (SiCH3), -5.2 (SiCH3); MS (ES+)

m/z = 353 ([M+Na])+, 100%); HRMS (ES+): calcd. for C19H26O3SiNa [M+Na+]:

353.1543; found: 353.1542.

1,2,3,4-Tetrahydro-1-acetoxy-4-(phenylselanyl)xanthen-9-one (311)

To a solution of 303 (770 mg, 2.06 mmol) in pyridine (10 mL) was added

acetic anhydride (0.60 mL, 6.20 mmol) and catalytic 4-dimethylamino

pyridine (25.0 mg, 0.20 mmol). The reaction mixture was stirred for 16

hours before pouring into a separating funnel containing H2O (10 mL) and extracting

with ethyl acetate (3 × 10 mL). The combined organic layers were washed with 1M HCl

(3 × 10 mL), H2O (3 × 10 mL), NaHCO3 (3 × 10 mL) and brine (3 × 15 mL). The

O

OOAc

SePh



Chapter 4: Experimental Samiullah

140

organic layers were dried over MgSO4, filtered, and evaporation of solvent in vacuo

gave a yellow oil. Column chromatography (ethyl acetate : petroleum ether, 15 : 85)

furnished 311 (539 mg, 70%) as a yellow oil. IR (thin film) 2922, 2338, 1634, 1465,

1236, 949, 738 cm-1; δH (400 MHz CDCl3) 8.11 (0.16H, dd, J = 1.2, 6.6 Hz, Ar), 8.08

(0.84H, dd, J = 1.7, 7.9 Hz, Ar), 7.57 – 7.59 (2H, m, Ar), 7.50 – 7.53 (1H, m, Ar), 7.19

– 7.33 (4H, m, Ar), 7.16 (0.16H, d, J = 8.6 Hz, Ar), 7.08 (0.84H, d, J = 8.4 Hz, Ar),

6.13 (0.16H, t, J = 3.1 Hz, CHOAc), 6.07 – 6.09 (0.84H, m, CHOAc), 4.33 – 4.34

(0.84H, m, CHSePh), 4.25 (0.16H, dd, J = 2.3, 6.3 Hz, CHOSePh), 1.9 (0.48H, s, CH3),

2.33 – 2.43 (1H, m, PhSeCHCHHCH2CHOAc), 2.01 – 2.12 (3H, m,

PhSeCHCHHCH2CHOAc), 1.9 (2.52H, s, CH3); δC (100 MHz) 176.2 (2 × CO, Ar,

major and minor), 170.0 (2 × CO, major and minor), 166.4 (2 × C, Ar, major and minor),

155.5 (2 × C, Ar, major and minor), 136.0 (2 × CH, Ar, major and minor), 135.9 (CH,

Ar), 133.7 (2 × CH, Ar, major and minor), 129.2 (2 × CH, Ar, major and minor), 129.1

(CH, Ar), 128.8 (CH, Ar), 128.6 (CH, Ar), 128. (C, Ar), 125.8 (2 × CH, Ar, major and

minor), 125.1 (2 × CH, Ar, major and minor), 123.5 (C, Ar), 117.7 (2 × CH, Ar, major

and minor), 115.6 (C, Ar), 64.0 (CHOAc, minor), 63.2 (CHOAc, major), 40.2

(PhSeCH, major), 39.0 (PhSeCH, minor), 24.8 (CH2, minor), 24.6 (CH2, major), 21.1

(2 × CH3, major and minor); MS (ES+) m/z = 437 ([M+Na])+, 100%); HRMS (ES+):

calcd. for C21H18O4SeNa [M+Na+]: 437.0267; found: 437.0264.

1-(4-Methoxybenzyloxy)-1,2,3,4-Tetrahydroxanthen-9-one (312)

To a solution of 102 (490 mg, 2.26 mmol) in Et2O (10 mL) was added

para-methoxybenzyl trichloroacetimidate (0.93 mL, 4.53 mmol)

followed by the addition of trifluoroacetic acid (1 mg, 0.006 mmol).

The cloudy reaction mixture was stirred for 2 hours. To drive the reaction to completion

a further 3 drops of trifluoroacetic acid was added and the reaction mixture was filtered

before evaporating the solvent in vacuo to provide a thick yellow oil. Column

chromatography (ethyl acetate : petroleum ether, 15 : 85) furnished 312 (625 mg, 77%)

as a yellow oil. IR (thin film) 2989, 1962, 1634, 1464, 1240, 1069, 756 cm-1; δH (300

MHz CDCl3) 8.10 – 8.06 (1H, m, Ar), 7.49 – 7.43 (1H, m, Ar), 7.24 – 7.18 (4H, m, Ar),

6.75 – 6.70 (2H, m, Ar), 4.78 (1H, t, J = 2.2 Hz, CH(OCH2)), 4.61 – 4.53 (2H, m,

OCH2), 3.63 (3H, s, OCH3), 2.60 – 2.42 (2H, m, CH2CH2C=), 2.07 – 1.99 (2H, m,

CHHCHHCH), 1.76 – 1.68 (1H, m, CHHCH), 1.41 – 1.29 (1H, m, CHHCH2CH); δC

(75 MHz) 176.4 (CO), 166.1 (C, Ar), 158.4 (C, Ar), 155.2 (C, Ar), 132.7 (CH, Ar),

130.5 (C, Ar), 128.9 (CH, Ar), 128.5 (CH, Ar), 125.2 (CH, Ar), 124.0 (CH, Ar), 123.2
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(C, Ar), 118.3 (C, Ar), 117.0 (CH, Ar), 113.5 (CH, Ar), 113.0 (CH, Ar), 71.4

(CHOPMB), 67.3 (CH2OC6H4OMe), 54.6 (PhOCH3), 27.3 (CH2C=), 26.2 (CH2CH),

15.7 (CH2CH2CH2); MS (ES+) m/z = 359 ([M+Na])+, 100%); HRMS (ES+): calcd. for

C21H20O4Na [M+Na+]: 359.1254; found: 359.1264.

1-(4-Methoxybenzyloxy)-1,2,3,4-Tetrahydro-4-(phenylselanyl)xanthen-9-one (320)

To a solution of 303 (3.00 g, 8.06 mmol) in Et2O (20 mL) was added

para-methoxybenzyl trichloroacetimidate (3.34 mL, 16.1 mmol)

followed by the addition of catalytic trifluoroacetic acid (3.60 mg,

0.02 mmol, 0.3 mol %). The dark red reaction mixture was stirred for 3 hours, followed

by the addition of further 3 drops of triflouroaceict acid to drive the reaction to

completion and then poured into a separating funnel containing H2O (20 mL). The

organic layer was separated and the aqueous layer was extracted with Et2O (3 × 15 mL).

The combined organic layers were washed with brine (3 × 15 mL), dried over MgSO4

and evaporation of solvent in vacuo provided a yellow oil. Column chromatography

(ethyl acetate : petroleum ether, 25 : 75) furnished a mixture of diastereomers in 1 : 3

(3 g, 76%) as a yellow oil. IR (thin film) 3456, 2918, 1620, 1463, 1223, 1044, 759 cm-1;

δH (400 MHz CDCl3) 8.21 (1H, d, J = 7.9 Hz, Ar), 7.72 – 7.58 (3H, m, Ar), 7.40 – 7.29

(6H, m, Ar), 7.17 (0.25H, d, J = 8.3 Hz, Ar), 7.14 (0.75H, d, J = 8.3 Hz, Ar), 6.89 –

6.85 (2H, m, Ar), 4.95 (0.25H, m, CHOPMB), 4.83 (0.75H, m, CHOPMB), 4.77 – 4.68

(1.5H, m, CH2C6H4OMe), 4.67 – 4.61 (0.5H, m, CH2C6H4OMe), 4.40 (0.75H, d, J = 4.3

Hz, PhSeCH), 4.37 – 4.32 (0.25H, m, PhSeCH), 3.81 (0.75H, s, OCH3), 3.70 (2.25H, s,

OCH3), 2.72 – 2.63 (0.75H, m, PMBOCHCHH), 2.48 – 2.38 (0.25, m, PMBOCHCHH),

2.48 – 2.22 (0.25H, m, PMBOCHOCHH), 2.14 – 2.09 (1.75H, m, PMOCHCHHCHH),

1.99 – 1.89 (0.75H, m, PhSeCHH), 1.65 – 1.56 (0.25H, m, PhSeCHH); δC (100 MHz)

177.1 (2 × CO, Ar, major and minor), 165.4 (2 × C, Ar, major and minor), 159.1 (2 × C,

Ar, major and minor), 155.5 (2 × C, Ar, major and minor), 135.9 (2 × CH, Ar, major

and minor), 135.5 (CH, Ar, minor), 133.5 (CH, Ar, minor), 133.4 (CH, Ar, major),

131.7 (C, Ar, minor), 130.9 (C, Ar, major), 129.7 (2 × CH, Ar, major and minor), 129.3

(CH, Ar, major), 129.1 (2 × CH, Ar, major and minor), 129.0 (CH, Ar, minor), 128.9 (C,

Ar, minor), 128.6 (2 × CH, Ar, major and minor), 128.3 (CH, Ar, minor), 125.9 (CH, Ar,

minor), 125.8 (2 × CH, Ar, major and minor), 124.9 (CH, Ar, major), 124.8 (2 × CH, Ar,

major and minor), 123.8 (C, Ar, minor), 118.0 (C, Ar, major), 117.7 (2 × CH, Ar, major

and minor), 113.7 (2 × CH, Ar, major and minor), 113.6 (CH, Ar, major), 72.4 (OCH2

C6H4OMe, major), 71.4 (OCH2C6H4OMe, minor), 67.8 (CHOPMB, major), 67.4
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(CHOPMB, minor), 55.2 (2 × OCH3, major and minor), 40.9 (CHSePh, major), 39.1

(CHSePh, minor), 28.2 (PMBOCHCH2, major), 25.4 (PMBOCHCH2, minor), 24.6

(PhSeCHCH2, major), 23.9 (PhSeCHCH2, minor); MS (ES+) m/z = 515 ([M+Na])+,

100%); HRMS (ES+): calcd. for C27H24O4SeNa [M+Na+]: 515.0734; found: 515.0733.

1-(4-Methoxybenzyloxy)-1,2-Dihydroxanthen-9-one (321)

To a solution of 320 (2.00 g, 4.06 mmol) in dichloromethane (20 mL) at

– 15 °C was added NaHCO3 (341 mg, 4.06 mmol) and mCPBA (77%)

(1.06 g, 4.87 mmol) over 2 minutes. The reaction mixture was allowed

to warm upto room temperature and stirring continued for 2 hours until tlc showed the

complete consumption of the starting material. The cloudy reaction mixture was poured

into a separating funnel containing H2O (20 mL) and extracted with dichloromethane

(3 × 15 mL). The organic layers were washed with saturated sodium thiosulfate solution

(20 mL), brine (15 mL) dried over MgSO4, filtered and concentrated in vacuo to obtain

a thick yellow oil, which on washing with petroleum ether (40 mL) left a white solid

that was quickly used in the next reaction. IR (thin film) 2836, 1609, 1426, 1245, 1026,

760 cm-1; δH (300 MHz CDCl3) 8.22 (1H, dd, J = 1.7, 7.8 Hz, Ar), 7.61 – 7.58 (1H, m,

Ar), 7.42 – 7.34 (2H, m, Ar), 7.26 – 7.24 (2H, m, Ar), 6.81 – 6.78 (2H, m, Ar), 6.59 –

6.54 (1H, m, CH2CH=CH), 6.38 (1H, dd, J = 3.0, 9.7 Hz, CH2CH=CH), 5.07 (1H, dt, J

= 1.3, 6.1 Hz, CHOPMB), 4.59 (1H, d, J = 11.4 Hz, OCHH), 4.51 (1H, d, J = 11.4 Hz,

OCHH), 3.71 (3H, s, OCH3), 2.81 – 2.89 (1H, m, =CHCHHCH), 2.44 – 2.54 (1H, m,

=CHCHHCH); δC (75 MHz) 176.3 (CO), 160.2 (C, Ar), 158.4 (C, Ar), 154.7 (C, Ar),

138.4 (CH2CH), 132.7 (CH, Ar), 130.4 (C, Ar), 128.9 (2 × CH, Ar), 125.3 (CH, Ar),

124.3 (CH, Ar), 124.0 (C), 120.2 (CH=CHC=), 117.4 (CH, Ar), 113.5 (C, Ar), 113.0 (2

× CH), 70.3 (MeOPhOCH2), 64.9 (PMBOCH), 54.6 (OCH3), 30.5 (CH2); MS (ES+) m/z

= 357 ([M+Na])+, 100%); HRMS (ES+): calcd. for C21H20O4Na [M+Na+]: 357.1097;

found 357.1095.

Crystal Data. C21H18O4, M =334.35, monoclinic, a = 8.5842(2) Å, b = 8.4818(2) Å, c =

23.5350(6) Å, β = 99.773(3)°, V = 1688.70(8) Å3, T = 296(2), space group P21/c (no.

14), Z = 4, μ(MoKα) = 0.091, 13335 reflections measured, 4135 unique (Rint = 0.0180)

which were used in all calculations. The final wR2 was 0.1184 (all data) and R1 was

0.0426 (>2sigma(I)).
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(1R*,3S*,4S*)-1-(4-Methoxybenzyloxy)-1,2,3,4-Tetrahydro-3,4-dihydroxyxanthene-

9-one (322)

To a stirred solution of 321 (1.20 g, 3.61 mmol) in a mixture of

(CH3)2CO (6.00 mL), H2O (6.00 mL) and tBuOH (2.40 mL), at room

temperature was added N-methylmorpholine-N-oxide monohydrate

(583 mg, 4.33 mmol) and OsO4 (20 µL, 0.02 gm/mL, tBuOH). The reaction mixture was

stirred for 48 hours, and then treated with sodium metabisulfite (820 mg, 4.31 mmol).

The reaction mixture was stirred for 1 hour then extracted with ethyl acetate

(3 × 30 mL). The combined organic layers were washed with 1N HCl (20 mL), H2O

(3 × 30 mL), brine (3 × 15 mL), dried over MgSO4 and vaporation of solvent in vacuo

provided a yellow oil. Column chromatography (ethyl acetate : petroleum ether, 60 :40)

furnished 322 (648 mg, 76%) as a yellow solid. M.p. 129 – 131 °C; IR (thin film) 2967,

1608, 1462, 1248, 1095, 755 cm-1; δH (300 MHz CDCl3) 8.10 (1H, dd, J = 1.3, 8.0 Hz,

Ar), 7.64 – 7.59 (1H, m, Ar), 7.40 (1H, d, J = 8.0 Hz, Ar), 7.37 – 7.32 (1H, m, Ar), 7.26

– 7.24 (2H, m, Ar), 6.82 – 6.76 (2H, m, Ar), 5.03 (1H, m, CHOPMB), 4.69 (1H, d, J =

10.5 Hz, OCHH), 4.65 (1H, d, J = 10.5 Hz, OCHH), 4.60 – 4.57 (1H, br s, =CCHOH),

4.41 (1H, d, J = 4.5 Hz, (OH)CH(OH)CHC=), 4.21 – 4.11 (1H, m, (OH)CHCH2), 3.70

(3H, s, OCH3), 3.52 (1H, br s, CH2CHOH), 2.52 – 2.59 (1H, m, CHH), 1.77 – 1.83 (1H,

m, CHH); δC (75 MHz) 176.1 (CO), 162.3 (C, Ar), 158.8 (C, Ar), 155.6 (C, Ar), 133.1

(CH, Ar), 129.05 (2 × CH, Ar), 129.01 (C, Ar), 124.6 (2 × CH, Ar), 124.4 (CH, Ar),

123.1 (C, Ar), 117.6 (CH, Ar), 117.5 (C, Ar), 113.2 (CH, Ar), 71.9 (OCH2), 68.5

(PMBCH2OCH), 68.2 ((OH)CHC=), 67.2 (CH2 (OH)CH), 54.6 (OCH3), 30.0 (CH2);

MS (ES+) m/z = 391 ([M+Na])+, 100%); HRMS (ES+): calcd. for C21H20O6Na

[M+Na+]:391.1152; found: 391.1155.

Crystal Data. C21H20O6, M =368.37, orthorhombic, a = 8.23140(10) Å, b =

8.81910(10) Å, c = 24.2007(2) Å, V = 1756.81(3) Å3, T = 100(2), space group Pna21

(no. 33), Z = 4, μ(CuKα) = 0.848, 10917 reflections measured, 1665 unique (Rint =

0.0469) which were used in all calculations. The final wR2 was 0.1013 (all data) and R1

was 0.0369 (>2sigma(I)).

(1R*,3S*,4S*)-1-(4-Methoxybenzyloxy)-2,3,4,9-tetrahydro-3-tert-

butyldimethysilyloxy-4-hydroxy-9-oxo-1H-xanthen (323)

Tert-butyldimethylsilyl trifluoromethanesulfonate (0.04 mL, 0.17

mmol) was added to a solution of 322 (64.0 mg, 0.17 mmol) and 2,6-

lutidine (0.06 mL, 0.52 mmol) in dichloromethane (5 mL) at 0 °C and

O

OPMBO

OH

HO

O

OPMBO

OTBS

HO



Chapter 4: Experimental Samiullah

144

the mixture was stirred for 1 hour. Saturated NaHCO3 solution (5 mL) was added and

the aqueous phase extracted with dichloromethane (3 × 5 mL). The combined organic

phase was dried over MgSO4, and evaporation of solvent in vacuo gave a yellow oil.

Column chromatography (ethyl acetate : petroleum ether, 20 : 80) furnished 323 (15 mg,

30%) as a white solid. M.p.138 – 140 °C; IR (thin film) 2361, 1440, 1230, 1081, 620

cm-1; δH (300 MHz CDCl3) 8.07 – 8.04 (1H, dd, J = 1.6, 8.0 Hz, Ar), 7.53 – 7.48 (1H, m,

Ar), 7.33 (1H, d, J = 7.7 Hz, Ar), 7.26 – 7.24 (1H, m, Ar), 7.22 (2H, d, J = 8.6 Hz, Ar),

6.71 (2H, d, J = 8.6 Hz, Ar), 4.68 (1H, t, J = 6.6 Hz, CHOPMB), 4.64 – 4.56 (2H, m,

OCH2), 4.33 (1H, br s, CHOTBS), 3.81 (1H, dt, J = 3.8, 8.0 Hz, CH(OH)), 3.64 (3H, s,

OCH3), 2.81 (1H, br s, OH), 2.10 – 2.00 (1H, m, CHH), 1.93 – 1.85 (1H, m, CHH), 0.75

(9H, s, C(CH3)3), 0.04 (3H, s, SiCH3), 0.01 (3H, s, SiCH3); δC (75 MHz) 176.7 (CO),

160.7 (C, Ar), 158.5 (C, Ar), 155.5 (C, Ar), 133.0 (CH, Ar), 130.2 (C, Ar), 129.3 (2 ×

CH, Ar), 125.2 (CH, Ar), 124.4 (CH, Ar), 123.4 (C, Ar), 119.3 (C, Ar), 117.4 (CH, Ar),

113.0 (2 × CH, Ar), 71.8 (OCH2), 68.3 (CHOPMB), 68.2 (OCH), 67.0 (OCH), 54.6

(OCH3), 31.6 (CH2), 25.1 (3 × CH3), 17.5 (C(CH3)3), -5.1 (SiCH3), -5.5 (SiCH3); MS

(ES+) m/z = 505 ([M+Na])+, 100%); HRMS (ES+): calcd. for C27H34O6SiNa [M+Na+]:

505.2017; found: 505.2033.

(1R*,3S*,4S*)-1-(4-Methoxybenzyloxy)-2,3,4,9-Tetrhydro-4-hydroxy-9-oxo-1H-

xanthen-3-yl-4-methylbenzensulfonate (324) and

(1R*,3S*,4S*)-1-(4-Methoxybenzyloxy)-2,3,4,9-Tetrhydro-3-hydroxy-9-oxo-1H-

xanthen-4-yl-4-methylbenzensulfonate (325)

To a solution of 322 (75.0 mg, 0.20 mmol) in

pyridine (5 mL) were added p-toluenesulfonyl

chloride (38.0 mg, 0.20 mmol) and 4–

dimethylamino pyridine (2.00 mg, 0.01 mmol).

The reaction mixture was stirred for 24 hours before pouring into a separating funnel

containing H2O (10 mL) and then extracted with ethyl acetate (3 × 10 mL). The

combined organic layers were washed with 0.5N HCl (3 × 10 mL), H2O (3 × 10 mL),

saturated NaHCO3 solution (3 × 10 mL) and brine (3 × 15 mL). The organic layers

were dried over MgSO4, evaporation of solvent in vacuo provided a thick oil. Column

chromatography (ethyl acetate : petroleum ether, 40 : 60) furnished an inseparable

mixture of regioisomers (35 mg, 47%) as a colourless oil in 2.2 : 1 ratio. IR (thin film)

2931, 1640, 1465, 1173, 1032, 728 cm-1; δH (300 MHz CDCl3) 8.09 – 8.07 (1H, d, J =

7.7 Hz, Ar), 7.87 – 7.85 (0.68H, d, J = 7.7 Hz, Ar), 7.70 (1.32H, d, J = 8.1 Hz, Ar), 7.57

O

OPMBO

OTs

HOO

OPMBO

OH

TsO

major minor



Chapter 4: Experimental Samiullah

145

– 7.53 (1H, m, Ar), 7.35 – 7.32 (0.68H, d, J = 8.5 Hz, Ar), 7.31 – 7.28 (1.68H, m, Ar),

7.20 (3.36H, dd, J = 8.5, 20.8 Hz, Ar), 7.07 (.32H, d, J = 8.5 Hz, Ar), 6.75 (2H, d, J =

8.1 Hz, Ar), 5.45 (0.32H, d, J = 3.2 Hz, TsOCHC=), 4.90 (0.32H, m, CHOPMB), 4.82 –

4.77 (1.36H, m, TsOCHCHCH2CHOPMB), 4.65 – 4.55 (2.68H, m,

(OH)CHCH(TsO)CH2CHOCH2PhOMe), 4.19 (0.32H, m, (OH)CHCH2), 3.69 (3H, s,

OCH3), 2.46 – 2.40 (1H, m, CHCHHCH), 2.38 (0.96H, s, SO2PhCH3), 2.33 (2.04H, s,

SO2PhCH3), 2.05 – 1.99 (1H, m, CHCHHCH); δC (75 MHz) 176.7 (CO, Ar, major),

176.4 (CO, Ar, minor), 160.6 (C, Ar, major), 159.2 (C, Ar, minor), 159.0 (C, Ar, major),

156.8 (C, Ar, minor), 155.8 (C, Ar, minor),145.1 (C, Ar, major), 134.1 (CH, Ar, minor),

133.9 (CH, Ar, major), 133. (C, Ar, major), 130.3 (C, Ar, major), 129.94 (2 × CH, Ar,

major), 129.91 (2 × CH, Ar, minor), 129.8 (2 × C, Ar, major and minor), 128.0 (CH, Ar,

minor), 127.9 (CH, Ar, major), 125.9 (CH, Ar, major), 125.5 (CH, Ar, minor), 125.4

(CH, Ar, minor), 123.8 (C, Ar, major), 123.4 (C, Ar, minor), 120.0 (C, Ar, major),

119.3 (C, Ar, major), 118.0 (2 × CH, Ar, major and minor), 113.8 (CH, Ar, minor),

113.6 (CH, Ar, major), 75.9 (CH(OTs), minor), 73.2 (MeOPhOCH2, minor), 73.2

(MeOPhOCH2, major), 68.4 (CHOPMB, minor), 67.6 (CHOPMB, major), 67.5

(CH(OTs), major), 67.0 (CH(OH), major), 55.2 (2 × PMBOCH3 major and minor), 31.0

(CH2CHOPMB, minor), 29.6 (CH2CHOPMB, major), 21.6 (2 × CH3, major and minor);

MS (ES+) m/z = 523 ([M+Na])+, 100%); HRMS (ES+): calcd. for C28H27O8SNa

[M+H+]: 523.1421; found: 523.1423.

(1R*,3S*)-1-(4-Methoxybenzyloxy)-2,3-Dihydro-3-hydroxy-1H-xanthene-4,9-dione

(326)

To a solution of 322 (100 mg, 0.27 mmol) in dichloromethane (5 mL)

at – 78 °C was added Dess Martin periodinane (57.0 mg, 0.13 mmol)

and the reaction mixture was allowed to warm to room temperature

overnight. To the yellow solution was added sodium thiosulfate (16.0 mg, 0.13 mmol).

The reaction mixture was stirred for 1 hour before pouring in H2O (10 mL) and

extracting with dichloromethane (3 × 10 mL). The combined organic layers were

washed with brine (3 × 15 mL), dried over MgSO4, filtered, and evaporation of solvent

in vacuo provided a yellow oil. Column chromatography (ethyl acetate : petroleum ether,

50 : 50) furnished 326 (35 mg, 35%) as a yellow oil and 322 (45 mg, 45%) as a yellow

oil. IR (thin film) 2934, 1717, 1644, 1611, 1464, 1245, 1051, 973 cm-1; δH (300 MHz

CDCl3) 8.59 – 8.56 (1H, dd, J = 1.6, 7.8 Hz, Ar), 8.14 – 8.09 (1H, m, Ar), 7.98 – 7.96

(1H, m, Ar), 7.84 – 7.79 (1H, m, Ar), 7.70 – 7.67 (2H, d, J = 8.9 Hz, Ar), 7.24 – 7.21

O

OPMBO

O

HO
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(2H, d, J = 8.9 Hz, Ar), 5.54 – 5.51 (1H, t, J = 4.6 Hz, CHOPMB), 5.19 (2H, s, OCH2),

4.68 – 4.67 (1H, m, CHOH), 4.10 (3H, s, OCH3), 2.82 – 2.80 (2H, d, J = 4.6 Hz, CH2);

δC (75 MHz) 191.9 (CO), 178.0 (CO), 159.5 (C, Ar), 155.4 (C, Ar), 150.1 (C, Ar), 135.2

(CH, Ar), 130.6 (CH, Ar), 130.0 (CH, Ar), 129.8 (C, Ar), 129.4 (C, Ar), 128.0 (CH, Ar),

125.9 (CH, Ar), 124.2 (C, Ar), 118.9 (CH, Ar), 113.9 (CH, Ar), 113.7 (CH, Ar), 73.5

(OCH2), 71.3 (CHOPMB), 68.1 (HOCH), 55.2 (OCH3), 34.1 (CH2); MS (ES+) m/z =

389 ([M+Na])+, 100%); HRMS (ES+): calcd. for C21H18O6Na, [M+Na+]:389.0996;

found: 389.0997.

(1R*,2S*, 4R*)1,2,3,4-Tetrahydro-1,2,4-triacetoxyxanthen-9-one (330)

To a solution of impure 329 (20.0 mg, 0.08 mmol) were added acetic

anhydride (0.08 mL, 0.80 mmol) and 4–dimethylamino pyridine

(1.00 mg, 0.008 mmol) in pyridine (2 mL). The reaction mixture was

stirred for 48 hours before pouring into a separating funnel containing H2O (5 mL) and

then extracted with ethyl acetate (3 × 5 mL). The combined organic layers were washed

with 0.5N HCl (3 × 5 mL), H2O (3 × 5 mL), saturated NaHCO3 solution (3 × 5 mL) and

brine (3 × 5 mL). The organic layers were dried over MgSO4, and evaporation of

solvent in vacuo provided a colourless oil. Column chromatography (diethyl ether :

petroleum ether, 10 : 90) furnished 330 (27 mg, 93%) as a colourless oil. IR (thin film)

2924, 1744, 1651, 1365, 1040, 727 cm-1; δH (400 MHz CDCl3) 8.12 – 8.09 (1H, m, Ar),

7.64 – 7.54 (1H, m, Ar), 7.36 – 7.33 (2H, m, Ar), 6.45 (1H, d, J = 2.7 Hz,

(AcO)CHCH(OAc)CH2), 6.00 (1H, t, J = 8.6 Hz, CH2(AcO)CHC=), 5.11 – 5.01 (1H, m,

(AcO)CHCH(OAc)CH2), 2.33 (2H, t, J = 2.3 Hz, CH2), 2.16 (3H, s, CH3), 2.02 (3H, s,

CH3), 1.98 (3H, s, CH3); δC (100 MHz) 175.6 (CO), 169.8 (CH3CO), 169.6 (CH3CO),

169.2 (CH3CO), 158.0 (C, Ar), 155.1 (C, Ar), 134.3 (CH, Ar), 126.0 (CH, Ar), 125.7

(CH, Ar), 123.2 (C, Ar), 118.1 (C, Ar), 116.2 (CH, Ar), 65.98 (CH2CH(OAc)CH(OAc)),

65.94 (CH2CH(OAc)), 62.1 (CH2CH(OAc)CH(OAc)), 28.7 (CH2), 20.8 (CH3), 20.7

(CH3), 20.6 (CH3); MS (ES+) m/z = 397 ([M+Na])+, 100%); HRMS (ES+): calcd. for

C19H18O8Na [M+Na+]: 397.0894; found: 397.0896.

O

OOAc

OAc

AcO
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Cytotoxicity Assays (Performed by Penny Turner at the University of Exeter)

Cell culture

PANC-1 cells were obtained from the European Collection of Cell Cultures (Porton

Down, UK) and maintained in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 20% (v/v) foetal bovine serum, 2mM glutamine and 0.1%

gentamicin. The medium was routinely changed every 3 days and cells were passaged

by trypsinisation at approximately 80% confluence. Nutrient deprived medium (NDM)

was prepared as follows: CaCl2 (1M) (0.6 ml), Fe(NO3)3.9H2O (0.5 mg), KCl (200 mg),

MgSO4.7H2O (100 mg), NaCl (3.2 g), NaHCO3 (350 mg), NaH2PO4 (62.5 mg), phenol

red (7.5mg), 1M HEPES buffer (12.5 ml) and MEM vitamin solution (5 ml) (Lonza UK)

were dissolved in ddH2O (final volume 500 ml). pH was adjusted to 7.4 using NaHCO3

(saturated solution). NDM was sterile filtered and stored at –4°C.

Lactate Dehydrogenase assay (LDH)

Cell death was assayed by determination of cellular release of LDH using assay kits

from Roche Diagnostics Ltd (Burgess Hill, UK). LDH is rapidly lost from dying cells

into the culture medium upon damage of the plasma membrane and can be quantified by

colourimetric changes in added assay reagent. Assays were performed according to the

manufacturer’s instructions.

Briefly, cells were seeded in 96 well plates (3 x 104 per well) and incubated in fresh

DMEM for 24 h at 37°C under 5% CO2 / 95% air atmosphere. Serial dilutions of the

relevant compound in both DMEM and NDM were prepared at 0.001, 0.01, 0.1, 5, 10,

50 and 100µg/ml. Blank controls (containing only media), low controls (containing

untreated cells) and high controls (containing cells lysed with 2% Triton X to determine

maximum cellular LDH levels) were included on each plate. DMEM was removed from

the wells and the cells were washed with warm phosphate buffered saline (PBS) before

adding the serial dilutions (100µl per well) of the compound. Each concentration was

assayed in triplicate. After 24 h incubation at 37 °C under a 5% CO2 / 95% air

atmosphere, the plate was centrifuged and 80 µl of supernatant from each well was

transferred to a new 96 well plate. The LDH assay catalyst (diaphorase and NAD+) and

dye solution (iodotetrazolium chloride and sodium lactate) were combined and 80 µl of

this reagent mix was added to each well. After 30 minutes at room temperature in the

dark to allow colour development, absorbance was measured at 490 nm. All

experiments were carried out in triplicate.
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X-Ray data for 200

Crystal Data. C13H12O3, M =216.23, triclinic, a = 7.1242(6) Å, b = 7.7029(5) Å, c =

9.8422(8) Å, α = 82.210(6)°, β = 72.540(7)°, γ = 79.158(6)°, V = 504.22(7) Å3, T =

100(2), space group P-1 (no. 2), Z = 2, μ(MoKα) = 0.101, 6397 reflections measured, 

3317 unique (Rint = 0.0368) which were used in all calculations. The final wR2 was

0.1418 (all data) and R1 was 0.0591 (>2sigma(I)).

Solid state structure of 200 showing atom numbering.

200

Table 1. Atomic coordinates (x 10^4) and equivalent isotropic displacement

parameters (A^2 x 10^3) for sam1. U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.

________________________________________________________________
x y z U(eq)

________________________________________________________________

C(1) 8311(2) 2515(2) 5445.2(19) 24(1)

C(2) 8093(2) 2348(2) 6891.5(19) 28(1)

C(3) 7399(2) 3828(2) 7676.7(19) 28(1)

C(4) 6925(2) 5482(2) 7025.5(17) 23(1)

O(5) 6695.0(14) 7311.3(13) 4940.8(11) 19(1)

C(5) 7155(2) 5631.5(19) 5555.2(16) 19(1)

C(6) 7831(2) 4180.8(19) 4743.2(17) 19(1)

C(7) 8041.7(19) 4409.6(18) 3201.1(17) 18(1)

O(7) 8633.9(15) 3145.9(13) 2451.2(12) 25(1)

C(8) 7537(2) 6221.3(18) 2629.4(15) 16(1)
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C(9) 6934(2) 7551.2(18) 3500.3(15) 16(1)

C(10) 6519(2) 9462.3(18) 3008.3(16) 20(1)

O(11) 7002(4) 11536(2) 867(2) 21(1)

C(11) 7593(3) 9758(2) 1394(2) 17(1)

C(12) 7069(4) 8482(2) 583(2) 19(1)

C(13) 7823(2) 590.9(19) 1043.7(16) 19(1)

C(10A) 6519(2) 9462.3(18) 3008.3(16) 20(1)

C(11A) 6267(11) 9778(9) 1510(7) 18(2)

O(11A) 6282(11) 11636(11) 983(9) 30(2)

C(12A) 7978(13) 8610(10) 583(9) 22(2)

C(13A) 7823(2) 6590.9(19) 1043.7(16) 19(1)

________________________________________________________________

Table 2. Bond lengths [A] and angles [deg] for 200.

_____________________________________________________________

C(1)-C(2) 1.376(2)

C(1)-C(6) 1.406(2)

C(1)-H(1A) 0.9500

C(2)-C(3) 1.392(3)

C(2)-H(2A) 0.9500

C(3)-C(4) 1.377(2)

C(3)-H(3A) 0.9500

C(4)-C(5) 1.398(2)

C(4)-H(4A) 0.9500

O(5)-C(9) 1.3671(17)

O(5)-C(5) 1.3765(17)

C(5)-C(6) 1.388(2)

C(6)-C(7) 1.469(2)

C(7)-O(7) 1.2344(18)

C(7)-C(8) 1.454(2)

C(8)-C(9) 1.349(2)

C(8)-C(13) 1.506(2)

C(9)-C(10) 1.489(2)

C(10)-C(11) 1.549(2)

C(10)-H(10A) 0.9900

C(10)-H(10B) 0.9900

O(11)-C(11) 1.430(2)

O(11)-H(11) 0.837(16)

O(11)-H(11C) 0.81(6)

C(11)-C(12) 1.507(3)

C(11)-H(11A) 1.0000
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C(12)-C(13) 1.513(2)

C(12)-H(12A) 0.9900

C(12)-H(12B) 0.9900

C(13)-H(13A) 0.9900

C(13)-H(13B) 0.9900

C(11A)-O(11A) 1.455(11)

C(11A)-C(12A) 1.507(10)

C(11A)-H(11B) 1.0000

O(11A)-H(11) 1.144(19)

O(11A)-H(11C) 0.84(2)

C(12A)-H(12C) 0.9900

C(12A)-H(12D) 0.9900

X-ray data for 247

Crystal Data. C14H16NO3Cl, M =281.73, orthorhombic, a = 13.1707(3) Å, b =

12.0072(2) Å, c = 16.8408(4) Å, V = 2663.25(9) Å3, T = 100(2), space group Pbca (no.

61), Z = 8, μ(MoKα) = 0.290, 17479 reflections measured, 4554 unique (Rint = 0.0362)

which were used in all calculations. The final wR2 was 0.0906 (all data) and R1 was

0.0386 (>2sigma(I)).

Solid state structure of 247 with atom labelling.

247
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Table 1. Atomic coordinates (x 10^4) and equivalent isotropic displacement

parameters (A^2 x 10^3) for 247. U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.

______________________________________________________________

x y z U(eq)
______________________________________________________________

Cl(1) 1236.9(2) 6302.7(2) 2630.1(2) 18(1)

C(1) 4730.9(11) 8675.1(10) 5507.1(7) 19(1)

C(2) 5618.3(10) 8117.2(10) 5354.3(8) 20(1)

C(3) 5802.3(10) 7679.6(10) 4595.0(8) 20(1)

C(4) 5108.5(10) 7815.1(9) 3992.7(8) 17(1)

O(5) 3542.9(7) 8498.8(6) 3536.9(5) 14(1)

C(5) 4213.0(10) 8386.6(9) 4157.8(7) 14(1)

C(6) 4001.3(10) 8822.6(9) 4907.5(7) 14(1)

O(7) 2811.6(8) 9821.3(8) 5691.4(5) 23(1)

C(7) 3046.8(10) 9420.3(10) 5039.0(7) 16(1)

C(8) 2380.2(10) 9513.5(9) 4353.8(7) 14(1)

C(9) 2659.6(9) 9058.7(9) 3651.8(7) 13(1)

N(10) 2561.5(8) 9240.5(8) 2164.5(6) 14(1)

C(10) 1997.1(9) 9039.2(10) 2928.4(7) 13(1)

O(11) 499.4(7) 9639.8(8) 2335.1(6) 21(1)

C(11) 1147.5(10) 9893.8(10) 2982.4(7) 15(1)

C(12) 633.2(10) 9816.2(10) 3787.0(7) 18(1)

C(13) 1381.0(10) 10113.6(10) 4443.4(8) 18(1)

C(14) 3146.5(10) 8292.6(10) 1818.7(8) 18(1)
_____________________________________________________________
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Table 2. Bond lengths [A] and angles [deg] for 247.
_____________________________________________________________

C(1)-C(2) 1.3715(19)

C(1)-C(6) 1.4051(17)

C(1)-H(1A) 0.9500

C(2)-C(3) 1.4035(19)

C(2)-H(2A) 0.9500

C(3)-C(4) 1.3750(18)

C(3)-H(3A) 0.9500

C(4)-C(5) 1.3926(17)

C(4)-H(4A) 0.9500

O(5)-C(9) 1.3575(14)

O(5)-C(5) 1.3750(14)

C(5)-C(6) 1.3948(17)

C(6)-C(7) 1.4644(17)

O(7)-C(7) 1.2390(14)

C(7)-C(8) 1.4543(17)

C(8)-C(9) 1.3533(16)

C(8)-C(13) 1.5079(18)

C(9)-C(10) 1.4986(17)

N(10)-C(14) 1.4928(15)

N(10)-C(10) 1.5053(15)

N(10)-H(10B) 0.935(7)

N(10)-H(10C) 0.949(7)

C(10)-C(11) 1.5210(17)

C(10)-H(10A) 1.0000

O(11)-C(11) 1.4177(15)

O(11)-H(11) 0.815(18)

C(11)-C(12) 1.5178(17)

C(11)-H(11A) 1.0000

C(12)-C(13) 1.5230(18)

C(12)-H(12A) 0.9900

C(12)-H(12B) 0.9900

C(13)-H(13A) 0.9900

C(13)-H(13B) 0.9900

C(14)-H(14A) 0.9800

C(14)-H(14B) 0.9800

C(14)-H(14C) 0.9800

X-ray data for 321

Crystal Data. C21H18O4, M =334.35, monoclinic, a = 8.5842(2) Å, b = 8.4818(2) Å, c =

23.5350(6) Å, β = 99.773(3)°, V = 1688.70(8) Å3, T = 296(2), space group P21/c (no.

14), Z = 4, μ(MoKα) = 0.091, 13335 reflections measured, 4135 unique (Rint = 0.0180)

which were used in all calculations. The final wR2 was 0.1184 (all data) and R1 was

0.0426 (>2sigma(I)).
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Solid state structure of 321 with atom numbering.

321

Table 1. Atomic coordinates ( x 10^4) and equivalent isotropic displacement

parameters (A^2 x 10^3) for 321. U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.

_____________________________________________________________

x y z U(eq)
______________________________________________________________

O(1) 2538.9(10) 8592.7(9) 215.9(3) 53(1)

C(2) 3150.6(13) 10087.3(13) 296.4(5) 47(1)

C(3) 4319.9(15) 10307.8(17) 773.5(6) 60(1)

C(4) 4986.3(15) 11772.2(19) 869.5(6) 66(1)

C(5) 4506.0(16) 13008.9(17) 497.3(6) 65(1)

C(6) 3347.8(15) 12778.7(14) 24.8(6) 56(1)

C(7) 2638.4(13) 11300.1(13) -83.9(5) 44(1)

C(8) 1426.4(14) 11003.8(13) -593.0(5) 47(1)

O(8) 876.6(12) 12065.3(11) -923.0(4) 72(1)

C(9) 968.6(12) 9368.5(13) -679.0(5) 43(1)

C(10) 1524.5(13) 8270.7(13) -280.0(5) 47(1)

C(11) 1109.3(17) 6620.3(15) -342.3(6) 61(1)

C(12) 34.7(18) 6151.7(15) -781.2(6) 65(1)
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C(13) -827.1(15) 7270.8(16) -1199.0(6) 62(1)

C(14) 17.0(14) 8840.0(14) -1240.9(5) 49(1)

O(15) 1124.1(10) 8691.0(10) -1635.9(3) 56(1)

C(16) 592(3) 9136(7) -2174.6(11) 65(1)

C(17) 1911(8) 9176(7) -2521(3) 50(1)

C(18) 3299(11) 9995(9) -2332(3) 64(2)

C(19) 4622(11) 10140(12) -2654(3) 62(2)

C(20) 4418(9) 9226(9) -3138(3) 52(2)

C(21) 2960(15) 8436(14) -3344(5) 48(1)

C(22) 1823(12) 8430(13) -3047(4) 53(1)

C(16A) 1077(8) 9972(7) -2053(2) 57(2)

C(17A) 2253(12) 9658(10) -2444(5) 44(2)

C(18A) 3679(18) 10425(11) -2345(5) 58(2)

C(19A) 4697(19) 9930(20) -2674(7) 87(5)

C(20A) 4459(17) 9105(16) -3175(6) 60(4)

C(21A) 3110(30) 8380(20) -3271(9) 70(5)

C(22A) 1894(16) 8637(19) -2899(5) 50(3)

O(23) 5537.8(13) 8967.3(15) -3499.5(4) 84(1)

C(24) 7085(2) 9536(3) -3299.4(9) 110(1)

________________________________________________________________

Table 2. Bond lengths [A] and angles [deg] for 321.

_____________________________________________________________

O(1)-C(10) 1.3601(14)

O(1)-C(2) 1.3730(14)

C(2)-C(7) 1.3853(16)

C(2)-C(3) 1.3859(18)

C(3)-C(4) 1.370(2)

C(3)-H(3A) 0.9300

C(4)-C(5) 1.384(2)

C(4)-H(4A) 0.9300
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C(5)-C(6) 1.3740(19)

C(5)-H(5A) 0.9300

C(6)-C(7) 1.3986(16)

C(6)-H(6A) 0.9300

C(7)-C(8) 1.4691(16)

C(8)-O(8) 1.2295(14)

C(8)-C(9) 1.4464(16)

C(9)-C(10) 1.3506(16)

C(9)-C(14) 1.5002(16)

C(10)-C(11) 1.4458(17)

C(11)-C(12) 1.324(2)

C(11)-H(11A) 0.9300

C(12)-C(13) 1.472(2)

C(12)-H(12A) 0.9300

C(13)-C(14) 1.5266(17)

C(13)-H(13A) 0.9700

C(13)-H(13B) 0.9700

C(14)-O(15) 1.4432(13)

C(14)-H(14A) 0.9800

O(15)-C(16) 1.328(3)

O(15)-C(16A) 1.460(4)

C(16)-C(17) 1.504(8)

C(16)-H(16A) 0.9700

C(16)-H(16B) 0.9700

C(17)-C(22) 1.383(8)

C(17)-C(18) 1.385(6)

C(18)-C(19) 1.473(14)

C(18)-H(18A) 0.9300

C(19)-C(20) 1.366(13)

C(19)-H(19A) 0.9300

C(20)-O(23) 1.404(7)

C(20)-C(21) 1.430(14)

C(21)-C(22) 1.293(16)

C(21)-H(21A) 0.9300

C(22)-H(22A) 0.9300

C(16A)-C(17A) 1.501(11)

C(16A)-H(16C) 0.9700

C(16A)-H(16D) 0.9700

C(17A)-C(22A) 1.370(12)

C(17A)-C(18A) 1.371(11)

C(18A)-C(19A) 1.33(3)

C(18A)-H(18B) 0.9300

C(19A)-C(20A) 1.36(2)

C(19A)-H(19B) 0.9300

C(20A)-C(21A) 1.29(3)

C(20A)-O(23) 1.302(13)

C(21A)-C(22A) 1.49(3)

C(21A)-H(21B) 0.9300

C(22A)-H(22B) 0.9300

O(23)-C(24) 1.416(2)

C(24)-H(24A) 0.9600

C(24)-H(24B) 0.9600
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C(24)-H(24C) 0.9600

X-ray data for 322

Crystal Data. C21H20O6, M =368.37, orthorhombic, a = 8.23140(10) Å, b =

8.81910(10) Å, c = 24.2007(2) Å, V = 1756.81(3) Å3, T = 100(2), space group Pna21

(no. 33), Z = 4, μ(CuKα) = 0.848, 10917 reflections measured, 1665 unique (Rint =

0.0469) which were used in all calculations. The final wR2 was 0.1013 (all data) and R1

was 0.0369 (>2sigma(I)).

Solid state structure of 322 with atom numbering showing the internal H bond.

322

Table 1. Atomic coordinates (x 10^4) and equivalent isotropic displacement

parameters (A^2 x 10^3) for 322. U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.

___________________________________________________________

x y z U(eq)
____________________________________________________________

C(1) 3857(3) 8321(3) 4442.4(11) 27(1)

O(2) 4545(2) 5734(2) 4561.7(8) 31(1)

C(2) 3808(3) 6717(3) 4291.5(11) 27(1)
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C(3) 2799(3) 6353(3) 3817.0(11) 27(1)

C(4) 2523(4) 4847(3) 3641.7(11) 31(1)

C(5) 1530(4) 4544(3) 3204.9(12) 35(1)

C(6) 788(4) 5733(3) 2916.3(12) 34(1)

C(7) 1032(3) 7222(3) 3072.0(11) 30(1)

C(8) 2028(3) 7511(3) 3521.9(10) 27(1)

O(9) 2217(2) 9009.0(19) 3667.5(8) 29(1)

C(10) 3062(3) 9356(3) 4130.4(11) 26(1)

O(11) 1449(2) 11642(2) 4130.5(8) 31(1)

C(11) 3002(3) 11040(3) 4254.3(12) 29(1)

O(12) 2218(2) 11077(2) 5225.4(9) 31(1)

C(12) 3516(3) 11371(3) 4850.5(12) 29(1)

C(13) 5047(3) 10486(3) 4988.0(11) 30(1)

C(14) 4761(3) 8768(3) 4955.7(11) 28(1)

O(15) 3782(2) 8237(2) 5409.1(8) 28(1)

C(16) 4695(4) 7945(3) 5904.0(11) 33(1)

C(17) 3948(3) 6604(3) 6198.1(12) 30(1)

C(18) 3712(3) 5260(3) 5908.0(12) 30(1)

C(19) 3038(3) 3994(3) 6164.4(12) 30(1)

C(20) 2613(3) 4066(3) 6714.8(12) 30(1)

C(21) 2854(3) 5403(3) 7015.3(12) 34(1)

C(22) 3516(4) 6657(3) 6751.7(13) 32(1)

O(23) 1923(3) 2887(2) 7003.7(8) 37(1)

C(24) 2008(4) 1421(3) 6750.8(14) 38(1)

________________________________________________________________
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Table 2. Bond lengths [A] and angles [deg] for 322.

_____________________________________________________________

C(1)-C(10) 1.354(4)

C(1)-C(2) 1.462(3)

C(1)-C(14) 1.501(4)

O(2)-C(2) 1.244(3)

C(2)-C(3) 1.453(4)

C(3)-C(8) 1.398(4)

C(3)-C(4) 1.413(4)

C(4)-C(5) 1.363(4)

C(4)-H(4A) 0.9500

C(5)-C(6) 1.400(4)

C(5)-H(5A) 0.9500

C(6)-C(7) 1.382(4)

C(6)-H(6A) 0.9500

C(7)-C(8) 1.387(4)

C(7)-H(7A) 0.9500

C(8)-O(9) 1.376(3)

O(9)-C(10) 1.354(3)

C(10)-C(11) 1.515(3)

O(11)-C(11) 1.416(3)

O(11)-H(11) 0.86(2)

C(11)-C(12) 1.532(4)

C(11)-H(11A) 1.0000

O(12)-C(12) 1.425(3)

O(12)-H(12) 0.84(2)

C(12)-C(13) 1.520(4)

C(12)-H(12A) 1.0000

C(13)-C(14) 1.535(3)

C(13)-H(13A) 0.9900

C(13)-H(13B) 0.9900

C(14)-O(15) 1.440(3)

C(14)-H(14A) 1.0000

O(15)-C(16) 1.437(3)

C(16)-C(17) 1.511(4)

C(16)-H(16A) 0.9900

C(16)-H(16B) 0.9900

C(17)-C(22) 1.387(4)

C(17)-C(18) 1.392(4)

C(18)-C(19) 1.393(4)

C(18)-H(18A) 0.9500

C(19)-C(20) 1.379(4)

C(19)-H(19A) 0.9500

C(20)-O(23) 1.376(3)

C(20)-C(21) 1.399(4)

C(21)-C(22) 1.389(4)

C(21)-H(21A) 0.9500

C(22)-H(22A) 0.9500

O(23)-C(24) 1.432(4)

C(24)-H(24A) 0.9800
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C(24)-H(24B) 0.9800 C(24)-H(24C) 0.9800

X-ray data for 228

Crystal Data. C26H26O6, M =434.47, monoclinic, a = 13.7920(3) Å, b = 5.31169(13) Å,

c = 14.3899(3) Å, β = 94.535(2)°, V = 1050.89(4) Å3, T = 100(2), space group P21 (no.

4), Z = 2, μ(CuKα) = 0.795, 11589 reflections measured, 3869 unique (Rint = 0.0357)

which were used in all calculations. The final wR2 was 0.1029 (all data) and R1 was

0.0383 (>2sigma(I)).

Solid state structure of 228 with atom labelling.

228

Table 1. Atomic coordinates (x 10^4) and equivalent isotropic displacement

parameters (A^2 x 10^3) for 228 U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.

________________________________________________________________
x y z U(eq)

________________________________________________________________

C(1) 2327.4(12) 10902(4) 3192.9(11) 22(1)

C(2) 1442.3(12) 9432(4) 2861.4(11) 20(1)

O(3) 1632.3(8) 7865(3) 2140.9(8) 22(1)

C(4) 928.9(12) 6204(4) 1811.0(11) 21(1)

C(5) 1186.3(13) 4519(4) 1125.5(12) 24(1)

C(6) 518.5(14) 2728(4) 800.3(12) 26(1)
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C(7) -401.7(13) 2608(4) 1144.1(12) 26(1)

C(8) -650.0(12) 4313(4) 1810.8(12) 24(1)

C(9) 11.2(12) 6143(4) 2152.4(11) 21(1)

O(10) -1043.1(9) 8059(3) 3165.6(9) 29(1)

C(10) -228.2(12) 7964(4) 2877.9(11) 22(1)

C(11) 574.9(12) 9564(4) 3226.3(11) 20(1)

C(12) 427.1(12) 11269(4) 4048.4(11) 22(1)

C(13) 1281.5(12) 13045(4) 4300.1(12) 23(1)

C(14) 2250.6(12) 11763(4) 4197.1(12) 21(1)

O(15) 2325.2(8) 9504(3) 4753.1(8) 22(1)

C(16) 2800.7(11) 9810(4) 5641.3(11) 19(1)

C(17) 2645.6(13) 7458(4) 6189.1(13) 27(1)

C(18) 3259.9(14) 7537(4) 7120.5(12) 27(1)

C(19) 4308.0(13) 8027(4) 6937.5(12) 22(1)

O(20) 3806.2(8) 10151(2) 5509.5(8) 20(1)

C(20) 4413.3(12) 10402(4) 6361.5(11) 20(1)

C(21) 5441.6(12) 10762(4) 6081.1(12) 28(1)

O(22) 4871.5(9) 8424(3) 7824.8(8) 24(1)

O(23) 5523.9(10) 4561(3) 7753.5(9) 31(1)

C(23) 5452.3(12) 6551(4) 8142.8(11) 20(1)

C(24) 6012.5(12) 7180(4) 9045.1(11) 19(1)

C(25) 6716.1(12) 5471(4) 9376.7(12) 23(1)

C(26) 7242.5(13) 5894(4) 10230.2(12) 25(1)

C(27) 7058.3(13) 8015(4) 10745.2(12) 26(1)

C(28) 6350.3(13) 9726(4) 10415.5(12) 24(1)

C(29) 5828.2(12) 9326(4) 9560.2(12) 23(1)
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________________________________________________________________

Table 2. Bond lengths [A] and angles [deg] for 228.

_____________________________________________________________

C(1)-C(2) 1.495(2)

C(1)-C(14) 1.527(2)

C(1)-H(1A) 0.9900

C(1)-H(1B) 0.9900

C(2)-C(11) 1.346(2)

C(2)-O(3) 1.371(2)

O(3)-C(4) 1.368(2)

C(4)-C(9) 1.394(2)

C(4)-C(5) 1.398(3)

C(5)-C(6) 1.380(3)

C(5)-H(5A) 0.9500

C(6)-C(7) 1.400(3)

C(6)-H(6A) 0.9500

C(7)-C(8) 1.382(3)

C(7)-H(7A) 0.9500

C(8)-C(9) 1.395(3)

C(8)-H(8A) 0.9500

C(9)-C(10) 1.479(2)

O(10)-C(10) 1.229(2)

C(10)-C(11) 1.454(2)

C(11)-C(12) 1.516(2)

C(12)-C(13) 1.530(2)

C(12)-H(12A) 0.9900

C(12)-H(12B) 0.9900

C(13)-C(14) 1.518(2)

C(13)-H(13A) 0.9900

C(13)-H(13B) 0.9900

C(14)-O(15) 1.441(2)

C(14)-H(14A) 1.0000

O(15)-C(16) 1.3992(19)

C(16)-O(20) 1.4260(19)

C(16)-C(17) 1.502(3)

C(16)-H(16A) 1.0000

C(17)-C(18) 1.529(2)

C(17)-H(17A) 0.9900

C(17)-H(17B) 0.9900

C(18)-C(19) 1.512(2)

C(18)-H(18A) 0.9900

C(18)-H(18B) 0.9900

C(19)-O(22) 1.4566(19)

C(19)-C(20) 1.523(3)

C(19)-H(19A) 1.0000

O(20)-C(20) 1.4351(19)

C(20)-C(21) 1.517(2)

C(20)-H(20A) 1.0000

C(21)-H(21A) 0.9800
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C(21)-H(21B) 0.9800

C(21)-H(21C) 0.9800

O(22)-C(23) 1.335(2)

O(23)-C(23) 1.204(2)

C(23)-C(24) 1.495(2)

C(24)-C(25) 1.386(2)

C(24)-C(29) 1.394(3)

C(25)-C(26) 1.395(2)

C(25)-H(25A) 0.9500

C(26)-C(27) 1.383(3)

C(26)-H(26A) 0.9500

C(27)-C(28) 1.390(3)

C(27)-H(27A) 0.9500

C(28)-C(29) 1.392(2)

C(28)-H(28A) 0.9500

C(29)-H(29A) 0.9500

X-ray data for 227

Crystal Data. C26H26O6, M =434.47, orthorhombic, a = 7.11230(10) Å, b =

11.6173(2) Å, c = 26.2941(4) Å, V = 2172.57(6) Å3, T = 100(2), space group P212121

(no. 19), Z = 4, μ(CuKα) = 0.769, 23738 reflections measured, 4162 unique (Rint =

0.0516) which were used in all calculations. The final wR2 was 0.1105 (all data) and R1

was 0.0409 (>2sigma(I)).

Solid state structure of 227.

227

Table 1. Atomic coordinates (x 10^4) and equivalent isotropic displacement

parameters (A^2 x 10^3) for 227. U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.
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____________________________________________________________
x y z U(eq)

____________________________________________________________
C(1) 4512(3) 2213.4(14) 1383.8(6) 31(1)

C(2) 4329(2) 1357.3(14) 964.6(6) 28(1)

O(3) 4205.1(18) 270.0(10) 1149.7(4) 31(1)

C(4) 4081(2) -631.0(14) 815.9(6) 29(1)

C(5) 4000(3) -1722.5(16) 1029.9(7) 35(1)

C(6) 3903(3) -2663.3(15) 714.1(8) 38(1)

C(7) 3858(3) -2522.2(16) 186.9(7) 39(1)

C(8) 3925(3) -1437.1(16) -21.4(7) 35(1)

C(9) 4051(2) -465.2(14) 291.9(6) 29(1)

C(10) 4149(2) 711.8(14) 83.9(6) 28(1)

O(10) 4116(2) 911.6(11) -375.2(4) 36(1)

C(11) 4284(2) 1617.9(14) 463.3(6) 27(1)

C(12) 4406(3) 2847.7(14) 283.8(6) 30(1)

C(13) 4082(3) 3715.4(14) 712.4(6) 32(1)

C(14) 5186(3) 3382.2(14) 1182.3(6) 30(1)

O(15) 4886.6(18) 4263.7(10) 1552.4(4) 32(1)

C(16) 6125(3) 4227.8(14) 1971.6(6) 33(1)

C(17) 5474(3) 5127.8(15) 2348.4(6) 36(1)

C(18) 5775(3) 6332.4(14) 2124.4(6) 31(1)

C(19) 7797(3) 6446.8(14) 1961.9(6) 30(1)

O(20) 8005.6(18) 4401.6(10) 1823.4(4) 33(1)

C(20) 8364(3) 5498.4(15) 1592.1(6) 32(1)

C(21) 10427(3) 5516.3(18) 1462.1(8) 43(1)

O(22) 8105(2) 7515.0(10) 1689.8(4) 31(1)
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O(23) 8440(2) 8458.8(11) 2430.3(5) 40(1)

C(23) 8455(2) 8454.5(14) 1973.4(6) 30(1)

C(24) 8830(2) 9489.3(15) 1652.8(6) 29(1)

C(25) 9091(3) 10540.3(15) 1893.6(6) 34(1)

C(26) 9415(3) 11527.2(15) 1615.3(7) 35(1)

C(27) 9492(3) 11464.1(15) 1086.6(7) 34(1)

C(28) 9255(3) 10414.1(16) 845.3(7) 35(1)

C(29) 8927(3) 9425.0(15) 1124.1(6) 32(1)

________________________________________________________________

Table 2. Bond lengths [A] and angles [deg] for 227.

_____________________________________________________________

C(1)-C(2) 1.490(2)

C(1)-C(14) 1.534(2)

C(1)-H(1A) 0.9900

C(1)-H(1B) 0.9900

C(2)-C(11) 1.353(2)

C(2)-O(3) 1.357(2)

O(3)-C(4) 1.369(2)

C(4)-C(5) 1.389(2)

C(4)-C(9) 1.391(2)

C(5)-C(6) 1.374(3)

C(5)-H(5A) 0.9500

C(6)-C(7) 1.396(3)

C(6)-H(6A) 0.9500

C(7)-C(8) 1.375(3)

C(7)-H(7A) 0.9500

C(8)-C(9) 1.401(2)

C(8)-H(8A) 0.9500

C(9)-C(10) 1.474(2)

C(10)-O(10) 1.229(2)

C(10)-C(11) 1.453(2)

C(11)-C(12) 1.507(2)

C(12)-C(13) 1.530(2)

C(12)-H(12A) 0.9900

C(12)-H(12B) 0.9900

C(13)-C(14) 1.514(2)

C(13)-H(13A) 0.9900

C(13)-H(13B) 0.9900

C(14)-O(15) 1.4286(19)

C(14)-H(14A) 1.0000

O(15)-C(16) 1.412(2)
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C(16)-O(20) 1.408(2)

C(16)-C(17) 1.513(2)

C(16)-H(16A) 1.0000

C(17)-C(18) 1.533(2)

C(17)-H(17A) 0.9900

C(17)-H(17B) 0.9900

C(18)-C(19) 1.506(3)

C(18)-H(18A) 0.9900

C(18)-H(18B) 0.9900

C(19)-O(22) 1.4490(19)

C(19)-C(20) 1.524(2)

C(19)-H(19A) 1.0000

O(20)-C(20) 1.435(2)

C(20)-C(21) 1.507(3)

C(20)-H(20A) 1.0000

C(21)-H(21A) 0.9800

C(21)-H(21B) 0.9800

C(21)-H(21C) 0.9800

O(22)-C(23) 1.3452(19)

O(23)-C(23) 1.201(2)

C(23)-C(24) 1.492(2)

C(24)-C(25) 1.388(2)

C(24)-C(29) 1.394(2)

C(25)-C(26) 1.379(3)

C(25)-H(25A) 0.9500

C(26)-C(27) 1.393(3)

C(26)-H(26A) 0.9500

C(27)-C(28) 1.385(3)

C(27)-H(27A) 0.9500

C(28)-C(29) 1.383(2)

C(28)-H(28A) 0.9500

C(29)-H(29A) 0.9500

X-ray data for 279

Crystal Data. C17H16O6, M =316.30, orthorhombic, a = 7.81730(10) Å, b =

11.96963(16) Å, c = 15.68901(18) Å, V = 1468.02(3) Å3, T = 100(2), space group

P212121 (no. 19), Z = 4, μ(CuKα) = 0.916, 13875 reflections measured, 2810 unique 

(Rint = 0.0137) which were used in all calculations. The final wR2 was 0.0696 (all data)

and R1 was 0.0270 (>2sigma(I)).
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Solid state structure of 279 with atom numbering.

279

Table 1. Atomic coordinates (x 10^4) and equivalent isotropic displacement

parameters (A^2 x 10^3) for 279. U(eq) is defined as one third of the trace of the

orthogonalized Uij tensor.

________________________________________________________________

x y z U(eq)
________________________________________________________________

C(1) 1924.2(15) 5439.4(10) 8802.6(7) 16(1)

O(2) 359.2(11) 5721.8(7) 9106.8(5) 17(1)

C(3) -199.5(16) 6803.1(10) 9011.0(7) 16(1)

C(4) -1835.9(16) 7029.5(11) 9312.9(8) 19(1)

C(5) -2502.2(16) 8087.9(11) 9191.2(8) 21(1)

C(6) -1535.3(17) 8917.4(10) 8788.6(8) 22(1)

C(7) 112.3(16) 8691.1(10) 8523.6(8) 20(1)

C(8) 806.3(16) 7624.3(10) 8635.6(7) 17(1)
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O(9) 3568.6(12) 8055.3(7) 8093.8(6) 22(1)

C(9) 2566.7(16) 7353.6(10) 8368.5(7) 17(1)

C(10) 3028.5(16) 6169.6(10) 8453.7(7) 16(1)

C(11) 4780.1(16) 5805.6(10) 8178.8(7) 17(1)

C(12) 5313.5(16) 4708.0(10) 8593.6(8) 20(1)

C(13) 3907.0(17) 3833.9(10) 8500.5(8) 20(1)

C(14) 2297.1(15) 4220.6(10) 8954.3(8) 18(1)

O(15) 821.4(12) 3613.1(7) 8652.5(5) 19(1)

O(16) 1069.0(13) 2399.8(7) 9741.5(5) 24(1)

C(16) 362.5(16) 2695.8(9) 9098.5(7) 18(1)

C(17) -1104.3(17) 2117.5(11) 8678.8(8) 23(1)

O(18) 4702.4(10) 5661.1(7) 7253.3(5) 17(1)

O(19) 7538.7(11) 5996.7(8) 7187.1(6) 23(1)

C(19) 6215.0(15) 5755.9(10) 6842.2(8) 18(1)

C(20) 6006.1(16) 5512.3(11) 5913.0(8) 22(1)

________________________________________________________________

Table 2. Bond lengths [A] and angles [deg] for 279.

C(1)-C(2) 1.490(2)

C(1)-C(14) 1.534(2)

C(1)-H(1A) 0.9900

C(1)-H(1B) 0.9900
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C(2)-C(11) 1.353(2)

C(2)-O(3) 1.357(2)

O(3)-C(4) 1.369(2)

C(4)-C(5) 1.389(2)

C(4)-C(9) 1.391(2)

C(5)-C(6) 1.374(3)

C(5)-H(5A) 0.9500

C(6)-C(7) 1.396(3)

C(6)-H(6A) 0.9500

C(7)-C(8) 1.375(3)

C(7)-H(7A) 0.9500

C(8)-C(9) 1.401(2)

C(8)-H(8A) 0.9500

C(9)-C(10) 1.474(2)

C(10)-O(10) 1.229(2)

C(10)-C(11) 1.453(2)

C(11)-C(12) 1.507(2)

C(12)-C(13) 1.530(2)

C(12)-H(12A) 0.9900

C(12)-H(12B) 0.9900

C(13)-C(14) 1.514(2)

C(13)-H(13A) 0.9900

C(13)-H(13B) 0.9900

C(14)-O(15) 1.4286(19)

C(14)-H(14A) 1.0000

O(15)-C(16) 1.412(2)

C(16)-O(20) 1.408(2)

C(16)-C(17) 1.513(2)

C(16)-H(16A) 1.0000

C(17)-C(18) 1.533(2)

C(17)-H(17A) 0.9900

C(17)-H(17B) 0.9900

C(18)-C(19) 1.506(3)

C(18)-H(18A) 0.9900

C(18)-H(18B) 0.9900

C(19)-O(22) 1.4490(19)

C(19)-C(20) 1.524(2)

C(19)-H(19A) 1.0000
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O(20)-C(20) 1.435(2)

C(20)-C(21) 1.507(3)

C(20)-H(20A) 1.0000

C(21)-H(21A) 0.9800

C(21)-H(21B) 0.9800

C(21)-H(21C) 0.9800

O(22)-C(23) 1.3452(19)

O(23)-C(23) 1.201(2)

C(23)-C(24) 1.492(2)

C(24)-C(25) 1.388(2)

C(24)-C(29) 1.394(2)

C(25)-C(26) 1.379(3)

C(25)-H(25A) 0.9500

C(26)-C(27) 1.393(3)

C(26)-H(26A) 0.9500

C(27)-C(28) 1.385(3)

C(27)-H(27A) 0.9500

C(28)-C(29) 1.383(2)

C(28)-H(28A) 0.9500

C(29)-H(29A) 0.9500
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