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Abstract

Investigation of turbulence response during constant temporal acceleration and
deceleration can assist in improving the understanding of turbulence evolution and
flow physics. Such flows have potential importance in engineering applications for
example the air flow through the main trachea during the breathing cycle experience
temporal acceleration and deceleration. The previous experimental and theoretical
investigations based on conventional computational fluid dynamics (CFD) modelling
could not provide the detailed information about turbulence response in the near-
wall region in such types of flows. In particular, the response of near-wall structures
has not been studied for turbulent flow with temporal acceleration and deceleration.
In the present study, turbulent flows involving temporal acceleration and decelera-
tion has been investigated using DNS and LES.

A fully implicit fractional step method is implemented in the present study. The
Navier-Stokes equations are discretised using finite volume method. Second-order-
implicit Crank-Nicolson method is used for temporal discretisation for the convective
and viscous terms. Second-order accuracy of spatial discretisation is achieved using
four neighbouring points to calculate velocity gradients. A uniform grid is used in
the streamwise and spanwise directions while a non-uniform grid is employed in the
wall-normal direction. The numerical implementation has been validated for three
test cases. The dynamic subgrid-scale model has been implemented for LES cal-
culations. The LES model implementation has been validated through comparison
with benchmark data available in literature.

As one of the first DNS of accelerating turbulent flow, this study has produced
a comprehensive database of turbulent statistics which can be used for unsteady
turbulence modelling and validation. The detailed investigation has substantially
enhanced the understanding of turbulence response for such flows. The flow physics
has been studied in detail using turbulent kinetic energy budget analysis, vorticity
analysis, anisotropy invariant maps and energy spectra. The evolution of new turbu-
lent structures during the acceleration has been investigated using low-speed streaks
and λ2 plots and many interesting flow characteristics have been found. The effect
of different acceleration rates has been studied using LES. The turbulence propaga-
tion in the core region has been studied for different acceleration rates. Turbulent
flow subjected to constant temporal deceleration has also been investigated using
LES. The effect of different deceleration rates has been also studied. The turbulent
flow response to temporal deceleration has been analysed using the rms velocity and
vorticity, kinetic energy budget and Reynolds stress anisotropy tensor analysis.
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1
Introduction

Unsteady turbulent flows are encountered in many engineering applications as well

as in natural systems such as nuclear and conventional power plants, blood flow in

large arteries, combustion engines, civil engineering, etc. For instance, the accurate

predication of the wall shear stress in the case of transient turbulent pipe flows is

a very critical parameter in the design of pipeline systems. There are many en-

gineering applications involving rapid changes in flow where understanding of the

flowfiled and correct prediction of unsteady wall shear stress are very important.

Another example is the flow through the main trachea where temporal acceleration

and deceleration occur during the breathing cycle. Determination of flow physics
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is crucial in understanding the development and propagation of turbulence in such

flows. Accurate prediction/modelling of flows undergoing transience requires a thor-

ough understanding of flow physics for the particular case. As it is shown later in

the literature review section of the thesis (Chapter 2), although many experimental

investigations and numerical modelling effort have been made in order to understand

underlying physics of turbulence in transient temporal flows, the information does

not provide complete insight into the flow physics due to lack of experimental data

in the very near-wall region and due to scarcity of discussion about the response of

near-wall turbulent structures.

The motivation of this study arises from the need for detailed investigation of tran-

sient turbulent flows by using direct numerical simulations (DNS) and large eddy

simulations (LES) in order to enhance understanding of flow physics in the very

near-wall region and as well as to study the response of near-wall coherent struc-

tures during temporal acceleration and deceleration.

1.1 Project overview

Understanding the transient turbulent flows subjected to unsteady acceleration and

deceleration is of primary importance in many engineering applications. From the

literature review presented in Chapter 2, it is clear that transient turbulent flows

can be categorised in the following types:

The first is periodic transient flows: These flows have two types namely oscillating

flow (having zero temporal mean) and pulsating flow (non-zero temporal mean).

The flow through a combustion engine, for instance, can be characterised as a pul-

sating flow. The second type is non-periodic transient flows: These kind of flows

involve flows undergoing temporal changes as a result of the mass flow rate or the

mean pressure gradient. The temporal acceleration and deceleration can be due

2
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to either a step change or constant change. Examples of flows with constant tran-

sience include blood flows through main arteries while a step change in pressure

gradient is encountered in a flow situation involving sudden opening and closing of

a hydraulic valve. Boundary layer flows subjected to favourable pressure gradient

(FPG) and adverse pressure gradient (APG) are non-equilibrium flows undergoing

spatial acceleration/deceleration. Previous studies have attempted to make compar-

isons between the boundary layer flows subjected to FPG/APG with the temporal

transient flows and several similarities between temporal and spatial non-equilibrium

flows have been found.

The present study focuses on the numerical investigation of transient turbulent

flow of non-periodic temporal acceleration and deceleration which has received, so

far, relatively little attention as compared to the periodic flows. DNS and LES

methods are employed for the numerical investigation for flows subjected to temporal

acceleration and deceleration, especially in the very near-wall region.

Aims and objectives

The aim of the present study is to investigate transient flows with temporal accelera-

tion and deceleration in order to enhance the understanding of turbulence dynamics,

flow physics and the wall shear stress response for these particular cases. Turbulent

channel flow is considered for the present numerical investigation. Unsteady turbu-

lent flow subjected to constant acceleration and deceleration has been investigated

by using DNS/LES calculations. The present study involves the study of turbu-

lence response subjected to constant acceleration and deceleration applied suddenly

to a fully-developed turbulent channel flow. The main focus of the study is the

transient response of turbulence and near-wall turbulent structures due to the the

imposed acceleration and deceleration. The effect of different acceleration and de-

celeration rates has been studied in comparison with the corresponding steady state

3



CHAPTER 1. INTRODUCTION

counterparts. Detailed turbulence statistics has been generated which provides a

clear understanding of the turbulence dynamics of such flows, and can be used as

a benchmark for the development of turbulence modelling. The following work has

been done in this study in order to complete the above mentioned

1. Implementation and validation of fully implicit fractional step method (FSM).

2. Detailed investigation of flow physics and turbulence response of unsteady

turbulent flow subjected to constant acceleration.

3. Characterisation of response of near-wall turbulence structures during constant

acceleration.

4. Investigation of different acceleration rates on turbulence response and prop-

agation during constant acceleration.

5. Investigation of flow physics and turbulence response during constant deceler-

ation.

1.2 Thesis road map

Chapter 1 : Introduction

A brief description of the objectives of the present study with the thesis outline is

presented.

Chapter 2: Literature review

This chapter presents a comprehensive literature review of experimental and numer-

ical studies of transient turbulent flows and discusses the major findings related to
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this study. A detailed literature review of non-periodic transient turbulent flows sub-

jected to constant/sudden acceleration and deceleration has been presented. This is

followed by a brief overview of research efforts made for turbulent boundary layers

subjected to FPG and APG. Finally, a literature review regarding periodic transient

turbulent flow studies is presented.

Chapter 3: Numerical methods

An overview of different numerical schemes developed for the solution of three-

dimensional incompressible Navier-Stokes equations has been presented with em-

phasis on fractional step method (FSM). The advantages and disadvantages of two

different types of FSM are discussed with brief numerical implementation. It is

followed by a description of different steps in the unsteady solution method with

spatial discretisation used. The validation is presented afterwards with a decaying

vortex test case. Turbulent statistics for fully-developed turbulent channel flow at

several Reynolds numbers are compared with the available DNS data found in lit-

erature. Then, a brief overview of research conducted in the field of LES modelling

is presented with the main focus on subgrid-scale (SGS) models. Mathematical

foundations and governing equations of LES are presented, which is followed by the

detailed mathematical description and numerical implementation of the dynamic

SGS model and the wall-adapting local eddy viscosity (WALE) SGS model. Finally,

the validation of LES models, implemented in the present study, is ascertained by

the comparison of turbulent statistics from LES of fully-developed turbulent channel

flow with the DNS results.
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Chapter 4: Preliminary simulations

This chapter provides a detail description of simulation parameters for the DNS/LES

of temporal acceleration. A domain size test is presented in order to determine the

suitable computational domain length for the present study. A time step size test

is also presented in order to ascertain the time accuracy of the present simulations.

Finally, a brief description of turbulent statistics later to be used for the analysis

of transient turbulent flows has been presented. These statistics include turbulent

kinetic energy budgets, anisotropy invariant map (AIM) analysis and vortex identi-

fication method.

Chapter 5: DNS of temporal acceleration

This chapter presents the results of DNS of constant temporal acceleration. Re-

sponse of the wall shear stress, mean velocity and turbulent Reynolds stresses is

discussed in detail, and the response times for each property are evaluated. Re-

sponse of rms velocity and vorticity fluctuations is discussed, and the time histories

of wall-normal locations of the maximum rms vorticity is also shown. Flow physics

for such a flow is investigated in terms of the kinetic energy budget analysis. Finally,

probability density function (pdf) analysis is presented to investigate the Reynolds

stress producing events.

Chapter 6: Effect of acceleration on turbulent structures

This chapter discusses the effect of temporal acceleration on the near-wall turbulent

structures during different phases of acceleration. Response of turbulent structures

has been studied using low-speed streaks and the λ2 vortex identification method

(which is discussed in Chapter 4). Two different types of flow structures have been
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found in the present study. Old turbulent structures are associated with the ini-

tial flow field, while new turbulent structures are generated during acceleration.

A novel procedure to identify regions of new turbulence has been developed, and

the conditionally-averaged statistics from both distinct regions have been presented

afterwards. Finally, anisotropy invariant analysis and turbulent kinetic energy spec-

tra have been presented to investigate the modification to the turbulence structures

with temporal acceleration.

Chapter 7: Effect of different acceleration rates

The effect of different acceleration rates on turbulence development and propaga-

tion is studied using LES. Moreover, the final Reynolds number is increased from

Re = 15000 used in DNS to Re = 22600 because only early response of turbulence

during temporal acceleration is studied in Chapter 5. Three different acceleration

rates are employed in the present LES study. First of all, validation of LES is pre-

sented by comparing the flow statistics with the DNS results in Chapter 5. The

effect of different acceleration rates on the wall shear stress, mean velocity and rms

fluctuations is discussed in detail. LES results clearly show the presence of pseudo-

steady state after Re = 15000. The turbulence propagation in the core region has

been investigated for three acceleration cases. The response of the near-wall struc-

tures is studied using the two-point correlations in the streamwise and spanwise

directions. New turbulence identification procedure developed in DNS (Chapter 6)

has been used to study the effect of acceleration rates on turbulence generation.

Chapter 8: LES of linear temporal deceleration

This chapter presents the results of LES of constant temporal deceleration. Two

deceleration rates are employed to investigate the effect of different deceleration
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rates on turbulence response. First of all, a domain size test is presented in order

to determine the suitable computational domain length. The response of the wall

shear stress and mean velocity is discussed in detail for different deceleration rates.

The rms velocity and vorticity fluctuations response is studied in detail. Turbulent

kinetic energy budgets are analysed to examine flow physics. The turbulent structure

variations are studied using anisotropy invariants maps (AIM).

Chapter 9: Conclusions

This chapter presents a brief summary of major conclusions drawn from all the

results presented in the previous chapters.
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2
Literature Review

Transient turbulent flows have been an area of interest for the last few decades due

to their frequent occurrence in various engineering applications. Extensive research

has been carried out in different types of transient flows. Owing to its complex tur-

bulent nature, however, the underlying physics is not completely understood. Flow

transience can be of several types which include constant acceleration/deceleration,

impulsive (step change) acceleration/deceleration, pressure-driven and shear-driven

transient flows, laminar to turbulent transition. The temporal transient flows can

be divided into periodic (oscillating and pulsating) flows and non-periodic (acceler-

ating/decelerating) flows.
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This chapter is organised as follows: First of all, a literature review of non-periodic

transient flows is presented, focusing on accelerating/decelerating flows, which is the

main area of interest in the present study. Afterwards, spatially evolving flows have

been discussed. Although, these flows are not transient flows, however they share

certain similarities with the accelerating/decelerating flows. Examples of spatially

evolving flows are boundary layer flows subjected to a favourable pressure gradient

(FPG) and an adverse pressure gradient (APG). Finally, the relevant studies in the

field of periodic transient flows are discussed.

2.1 Non-periodic transient flows

Non-periodic transient flows are encountered frequently in real life situations, for

instance, flow thorough turbo machines, swept-wings, blood flow through main ar-

teries, flows involving rapid changes in mass flow or pressure gradient due to the

opening/closing of a valve and flow over hulls of marine vehicles are a few to mention.

A brief overview of the relevant studies performed for these flows is presented in two

sections: Accelerating/decelerating flows and three-dimensional strained flows.

2.1.1 Accelerating/decelerating flows

These types of flows have received comparatively less attention as compared to the

other types of transient flows. In these flow situations acceleration/deceleration is

caused by either step change or constant change in pressure gradient or mass flow

rate. Flow through the main trachea is an example of where constant accelera-

tion/deceleration occurs during the breathing cycle, while a sudden opening/closing

of a hydraulic valve causes a step acceleration/deceleration.

Step acceleration/deceleration flows has been investigated experimentally by several

10
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authors in the past. The main emphasis of research in these studies was the effect

of temporal acceleration/deceleration on the laminar to turbulent transition in case

of acceleration and subsequent turbulence development. Start-up response to a step

change in flow rate for a laminar to turbulent transient pipe flow was studied by

Kataoka et al. (1975), where the step increase in flow rate is achieved by sudden

opening of a solenoid valve. It was found that the time taken to achieve laminar to

turbulence transition decreases with increase in Reynolds number. Maruyama et al.

(1976) studied the behaviour of transient pipe flow subjected to step increase and

step decrease in flow rate by using electrochemical technique. They observed that

the turbulence response starts near the wall for the step increase experiments and

it subsequently moves outwards as the newly generated turbulence is propagated

in the core region. Step decrease experiments exhibited the decay of turbulence

first in the near-wall region and showed a similar behaviour of lack of response of

core region turbulence as found for step increase experiments. It was shown that

the near-wall turbulence change propagates approximately in the similar fashion for

both types of transient flows.

Kurokawa and Morikawa (1986) performed a theoretical as well as an experimental

study, for a transient pipe flow with gradually increasing and decreasing flow rates.

Various flow rates were used during the study. They reported different patterns

of velocity profiles development during the laminar to turbulent transition for slow

and fast acceleration cases, and the critical Reynolds number for flow transition was

found to increases with the increase in the imposed acceleration. Wall shear stress

was found to be smaller than the steady corresponding value after the turbulent

transition for the accelerated flow case while it was found to be higher in deceler-

ated case. Experimental investigation of laminar to turbulent transition for linearly

accelerated pipe flow was performed by Lefebvre and White (1989) and Lefebvre

and White (1991). They found that the critical Reynolds number for transition

increased with the increase in acceleration rate.
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Greenblatt and Moss (2003) studied the rapid transition to turbulence for a pipe

flow initially at rest. The flow was subjected to rapid acceleration followed by sharp

deceleration towards the final Reynolds number. The transition was reported in the

deceleration phase and the time taken to achieve transition was significantly reduced

in comparison to the time, taken by a monotonically accelerated pipe flow. The tran-

sition time required for laminar to turbulent transition was found to decrease with

the increase in acceleration rate, in the more recent experimental investigations for a

start-up response of a laminar pipe flow subject to constant acceleration (Nakahata

et al., 2007; Annus and Koppel, 2011).

Fully-developed turbulent flow subjected to constant acceleration/deceleration has

been investigated experimentally by several authors in the past. Greenblatt and

Moss (1999) performed an experimental and numerical investigation of turbulent

pipe flow subjected to rapid temporal acceleration. The main objective of the

study was to investigate the complex behaviour of flow relaminarisation process.

It was found that the relaminarisation resulted in a significant reduction of turbu-

lent Reynolds stresses in the near-wall region (y+ ≤ 50). On the other hand, the

core region remained in a “frozen” state and was largely unaffected by the imposed

acceleration.

He and Jackson (2000) conducted a comprehensive experimental study of turbu-

lent pipe flow subjected to constant temporal acceleration and a few results from

constant deceleration were also presented. They employed two-component Laser

Doppler Anemometer (LDA) measurement system in their study. A new dimen-

sionless parameter for temporal acceleration/deceleration was defined as following

γ =
D

Uτ0

(
1

Ub0

dUb
dt

)
, (2.1)

where D is the diameter of the cylinder, Ub0 is the bulk-mean velocity at the initial

Reynolds number, Uτ0 is the friction velocity at initial Reynolds number and
dUb
dt

is
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the rate of bulk-mean velocity change. The Reynolds number based on initial bulk-

mean velocity was increased from Re = 7000 to 45200 in most of the experiments

while some experiments used higher initial Reynolds numbers to investigate the

initial Reynolds number effect. The same Reynolds number range was used for the

constant deceleration experiments

Mean velocity profiles during the initial stages of the acceleration showed significant

deviations from the steady corresponding mean velocity profiles, before reaching

the pseudo-steady equilibrium stage. Near-wall Reynolds stress terms exhibited a

certain delay in responding to the imposed acceleration with streamwise component

increasing first. The delay in response increased with increase in the distance from

the wall. Three distinct delays were reported namely: delay in turbulent produc-

tion, delay in radial diffusion and delay in energy redistribution among the three

components. The deviation of turbulence intensities from the pseudo-steady corre-

sponding values was found to reduce with decrease in acceleration rate. On the other

hand, the time taken by the newly generated near-wall turbulence to propagate at

the center line of the pipe, was found to be independent of the acceleration rate.

The delay in turbulence response was found to decrease with increase in the initial

Reynolds number.

Post transient analysis for the fastest acceleration case showed a considerable in-

crease in turbulent intensities because the flow was not adjusted to the imposed

acceleration completely at the final stage of the acceleration. Inertia was found to

be dominant in the initial stages of the acceleration. Turbulent intensities in the

pipe flow experiments, subjected to constant deceleration, was found to be greater

than the steady corresponding values.

Greenblatt and Moss (2004) conducted experiments for a turbulent pipe subjected to

rapid temporal acceleration at relatively higher initial Reynolds number and higher

acceleration rates, as compared to those used by He and Jackson (2000). The ini-

13



CHAPTER 2. LITERATURE REVIEW

tial and final Reynolds numbers for their study were Re = 31000 and Re = 82000

respectively and LDV technique was used for flow field measurements at 25 radial

locations. Three acceleration rates were considered to produce flow acceleration of

three types which include the acceleration involving maintenance of equilibrium,

breakdown of equilibrium and flow relaminarisation. One of the most significant

findings of their work, for the slowest acceleration case, was the simultaneous tur-

bulence generation in two distinct regions namely: the near-wall region and the

outer-layer region at y+
0 ≈ 300, where ‘0’ denotes the wall normalisation by using

initial uτ value. Moreover, there was a distinct kink in the mean velocity profile

at y+
0 ≈ 600 which was referred to as inflection region. This unusual behaviour of

turbulence generation in the outer region is not reported in any of the the previous

studies of transient turbulent flows and the authors attributed this phenomenon to

the higher acceleration rates and initial higher Reynolds number used. The propaga-

tion of the outer-layer new turbulence towards the wall, as observed for the slowest

acceleration case, was not found in the fastest acceleration case. Mean velocity pro-

files exhibited a shift towards the wall with increase in acceleration rate. The initial

delay in turbulence response was also reported and the propagation of turbulence

was found to be largely independent of the acceleration rate.

He et al. (2008) employed unsteady turbulence modelling to investigate the tur-

bulent pipe flow subjected to constant acceleration. The simulation parameters in

this study were selected to replicate the experimental conditions used by He and

Jackson (2000). The main objective of this study was to study the near-wall turbu-

lence behaviour during the constant acceleration which is difficult to study through

experiments. It was found that the wall shear stress overshoots in the initial stages

of the acceleration due to inertial effects, followed by a subsequent reduction of wall

shear stress below its steady value. Wall shear stress achieved the pseudo-steady

corresponding value after exhibiting a rapid increase during the later stages of the

acceleration. Similar wall shear stress response for constant acceleration is also

14
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reported in the LES study of Jung and Chung (2009).

Recently, Mehdi et al. (2011) performed a DNS study of a fully-developed tur-

bulent channel subjected to step acceleration/deceleration. It was found that the

turbulence intensities are more sensitive to step acceleration as compared to the

step deceleration of similar magnitude. The wall shear stress response for step ac-

celeration was found to be similar with the constant acceleration, with wall shear

stress exhibiting earlier response in terms of time. Turbulent intensities exhibited a

two-phase response in the decelerated case with an initial negligible reduction fol-

lowed by a faster reduction, however the intensities remain higher than the steady

corresponding values throughout the deceleration.

Coleman et al. (2003) performed a DNS of decelerating turbulent channel flow by

applying a mean streamwise negative strain. Slip boundary conditions were used

on channel walls to reproduce the effects of the inner and outer layers of turbulent

boundary layer subjected to APG. Flow separation at the wall was reported towards

the end of the deceleration. A reduction in turbulent intensities near the wall,

accompanied by a corresponding increase in turbulent intensities in the outer-layer

was found.

Chung (2005) performed a DNS of a fully-developed turbulent channel flow sub-

jected to step deceleration through sudden decrease in the mean pressure gradient.

Reynolds number ranges employed for flow deceleration were relatively low. The

Reynolds number based on wall friction velocity uτ and half channel hight, Reτ ,

was decreased from Reτ = 180 to Reτ = 150 in one experiment and to Reτ = 120

in the other experiment. Two different turbulence relaxations were found: a fast

relaxation in the beginning of the deceleration, followed by a secondary relatively

slow relaxation phase towards the steady state. The near-wall turbulence exhibited

an anisotropic response during the deceleration with the streamwise intensity first

to relax.
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Recently, Ariyaratne et al. (2010) studied the wall shear stress and turbulence re-

sponse for turbulent pipe flow subjected to constant deceleration. The unsteady

turbulence modelling approach of He et al. (2008) was employed in this study. The

experimental conditions of He and Jackson (2000) were replicated in this study.

The initial and final Reynolds numbers were chosen as Re = 45200 and Re = 7000

respectively, based on the initial bulk-mean velocity and the pipe diameter. Four

distinct regions of wall shear stress response were reported in this study namely: a

sudden reduction of wall shear stress below steady value due to inertial effect at the

beginning of the deceleration, followed by an increase of wall shear stress above the

steady value due to delay in turbulence response. This is followed by an increased

response of the wall shear stress in the third phase and finally the fourth phase

in characterised by a large reduction of wall shear stress below the steady corre-

sponding value. Flow separation towards the final stages of the deceleration was

reported for cases with relatively higher deceleration rates. Turbulence intensities

in the near-wall region exhibited certain delay in response to the deceleration while

the core region remained approximately in a frozen state.

In hydraulic systems involving flow acceleration/deceleration, the response of the

wall shear stress is a critical parameter for pipe design purpose due to its occurrence

in situations involving sudden opening or closing of hydraulic valve and flow passing

through contraction or expansion. The wall shear stress is normally divided into

two parts for one-dimensional modelling purpose as following

τw,u = τw − τw,s,

where τw, τw,s and τw,u are the total wall shear stress, steady and unsteady wall

shear stress respectively.

Extensive efforts have been put in order to model the unsteady part of the wall

shear stress (τw,u). Wall shear stress modelling efforts can be segregated in terms
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of modelling based on flow histories and/or the usage of instantaneous flow field

conditions. Zielke (1968) proposed first model for unsteady wall shear stress calcu-

lation based on the weighted sum of quasi steady value and a flow dependent term,

and this flow dependent term is calculated from the previous velocity history. This

model has been extensively used in the past due to its solid theoretical foundations.

Following the idea of Zielke (1968), Vardy and Brown (2003) and Vardy and Brown

(2007) developed the 2D weighing function models for unsteady pipe friction based

on instantaneous and past velocity profiles. One important assumption in construc-

tion of these models is ‘frozen eddy viscosity’ assumption which can lead to incorrect

prediction of the unsteady pipe friction due to lack of consideration of turbulence

dynamics during the flow transient (He et al., 2008). Vardy and Brown (2010a)

analytically investigated the influence of the the transient behaviour of kinematic

viscosity on the unsteady wall shear stress in a pipe. The unsteady component of

the total wall shear stress was found to be strongly influenced by the mean accel-

eration. The same authors have recently proposed an improvement to the Zielke’s

theoretical model (Vardy and Brown, 2010b).

2.1.2 Three-dimensional strained transient flows

These types of flows are encountered in situations where the flow is being strained

from its original two-dimensional characteristics to become three-dimensional, either

by the change of pressure gradient or by the application of mean shear via boundary

conditions. Turbulence characteristics of three-dimensional strained boundary layer

have been studied extensively by many researchers in the past. The important char-

acteristics of these types of flow include a reduction of drag and shear stress of the

resultant flow field (Moin et al., 1990; Coleman et al., 1996), a reduction in the ratio

of shear stress to turbulent kinetic energy (Schwarz and Bradshaw, 1994) and a sig-

nificant lag of turbulent shear stresses behind mean shear (Bradshaw and Pontikos,
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1985). Le et al. (2000) investigated the behaviour of near-wall turbulent structures

in three-dimensional strained transient flows. The mean three-dimensionality re-

sulted in the breakup of the symmetry and alignment of the near-wall structures.

This symmetry breakup results in a reduction of turbulent kinetic energy. Coleman

et al. (2000) presented the results from several cases of flow configurations subjected

to mean three-dimensionality (pressure driven and shear-driven and with as wall as

without adverse pressure gradient). The velocity-pressure gradient correlation term

Πij was found responsible for the energy redistribution and propagation in the core

region. Since the near-wall turbulence attenuates with the application of mean shear

in spanwise direction, extensive efforts have been made lately in investigation and

optimization of turbulent drag reduction by spanwise oscillations (Jung et al., 1992;

Quadrio and Ricco, 2004) and streamwise travelling waves in spanwise direction

(Quadrio et al., 2009).

2.2 Spatially evolving transient flows

Although spatially-evolving boundary layers flows are steady flows, however as men-

tioned earlier, boundary layers subjected to FPG and APG share several similar-

ities with the transient turbulent flows. Spatially-evolving boundary layers have

been investigated for more than five decades due to their rich occurrence in sev-

eral engineering applications. Flow past through an object having convex curvature

is equivalent to having a boundary layer subjected to FPG while objects having

concave curvature resembles to that of a boundary layer subjected to APG.

One of the most striking characteristics of boundary layers subjected FPG is the re-

version of turbulence to relaminarisation which was first reported by Launder (1964).

Flow relaminarisation has been studied extensively in the past. The boundary layer

flow tends to revert back to laminar flow in case if the acceleration parameter (K)
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is higher than critical value. This critical value is found to be in the range of

2.8× 10−6 ≤ K ≤ 3.4× 10−6. The acceleration parameter K is given as

K =
ν

U(x)2

dU(x)

dx
,

where U(x) is the streamwise velocity and ν is the kinematic viscosity. Kline et al.

(1967) found out that turbulent bursting events reduces in FPG boundary layers

while Narayanan and Ramjee (1969) observed the decrease in turbulent intensities

at the time of relaminarisation. Sreenivasan (1982) proposed a two-layer model to

explain the relaminarisation and argued that the relaminarisation is the result of the

“domination of pressure forces over the slowly responding Reynolds stresses in the

outer-layer, accompanied by the generation of a new laminar sub-boundary layer,

which itself is maintained stable by the acceleration”. It was also proposed that high

acceleration results in the decay of the inner-layer turbulence while the outer-layer

turbulent stresses remain largely unchanged.

Recent advancement in computer power and sophisticated experimental appara-

tus has made it possible to perform in depth numerical and experimental studies

in the past two decades. Piomelli et al. (2000) numerically investigated the tur-

bulent boundary layer flow subjected to FPG using LES. They found that the

low-speed streaks became elongated, accompanied with a reduction in number of

quasi-streamwise vortices. The mean spanwise spacing of low-speed streaks was

also found to reduce due to FPG. In the relaminarisation zone for strong accelera-

tion case, the streaks were reported to be even longer with a tendency of alignment

in the streamwise direction. The contributions from second quadrant, i.e., ejec-

tions was reduced and the structure parameter (a1) was also decreased implying a

reduction in turbulence intensity in the near-wall region.

Some of the recent studies for boundary layers subjected to FPG includes Ichimiya

et al. (1998), Fernholz and Warnack (1998), Warnack and Fernholz (1998), and
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Mukund et al. (2006). Boundary layers subjected to FPG exhibit distinct char-

acteristics (Bourassa and Thomas, 2009) which includes: a) thinning of boundary

layer, b) departure of mean velocity profile from the log-law and law of wake, c) an

initial decrease followed by a sharp increase in shape factor, d) an initial increase

in the wall shear stress followed by a significant decrease, e) a reduction in relative

turbulent intensity, f) a rapid decline of bursting events in the near-wall region, g)

spreading of turbulent intermittency from the outer-layer to the inner-layer and h)

the decay of turbulent Reynolds stress.

Turbulent boundary layers (TBL) subjected to adverse pressure gradient (APG)

are found in many engineering applications of interest which include a flow through

a diffuser, flow past the trailing edge of an aerofoil, flow past an object having

concave curvature like ramp. Earlier studies for the TBL subjected to APG reported

a tendency of flow separation near the wall, an enhancement in turbulent shear

stress and kinetic energy, and non universality of the log-law during deceleration.

Krogstad and Skare (1995) found in their experimental study of TBL subjected to

APG that the near-wall anisotropy reduces during the transient and APG results

in a reversal of direction of turbulent transport due to development of secondary

peak in turbulent kinetic energy approximately at half way through boundary layer.

Alving and Fernholz (1996) investigated the TBL subjected to APG having mild

separation with downstream reattachment. The location of maximum Reynolds

stresses was found to shift away from the wall significantly and the recovery process

in the near-wall region after the mild separation exhibited a considerable delay. The

authors attributed this phenomenon to the survival of outer-layer vortices during

separation.

Computational studies regarding the characteristics of separation bubble are con-

ducted by Na and Moin (1998), Manhart and Friedrich (2002), and Skote and Hen-

ningson (2002). Extensive efforts have been made to determine the appropriate
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scaling for the mean velocity and turbulent Reynolds stresses for TBL subjected

to APG. A very comprehensive literature review for the scaling efforts is given in

Aubertine and Eaton (2005). Lee and Sung (2009) investigated the coherent struc-

tures response for TBL subjected to APG. It was found that the strength of the

low-speed streaks decreased and the spacing between two adjacent streaks increased

four times of the normal spacing. Dominance of low momentum regions in the

buffer layer and the inner log-layer was found, moreover the enhancement of turbu-

lent kinetic energy in the outer-layer was attributed to the presence of large-scale

outer-layer hair-pin vortices.

2.3 Periodic transient flows

Pulsating flow is found in many practical applications, for example, the flow driven

by piston inside internal combustion engines. Mizushina et al. (1973) performed

experiments for pulsating flow in a tube. It was found from the instantaneous

velocity profiles and turbulent intensities that turbulence characteristics strongly

depend upon the pulsating period. Turbulence generation and propagation in the

core region was studied by Mizushina et al. (1975). The turbulence propagation

time, scaled using wall parameters, was found to be independent of the pulsating

frequency. Tu and Ramaprian (1983) and Ramaprian and Tu (1983) carried out a

detailed experimental investigation of fully-developed turbulent pipe. It was found

in these studies that the mean flow field and turbulence are largely dependent on the

pulsating frequency and mean flow-rate, while the effects of amplitude of oscillation

are relatively small.

Several non-dimensional similarity parameters have been proposed to characterise

the pulsating pipe flows i.e., Ramaprian and Tu (1983) used ωD/uτ to classify five

distinct regimes of turbulent pipe flow, where ω is pulsating frequency in radians, D
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is the piper diameter, and uτ is the wall friction velocity. Mao and Hanratty (1986)

used ω+ = ων/u2
τ in their experimental study of the wall shear stress in pulsating

pipe while Tardu et al. (1994) used Stokes-Reynolds number, l+s = lsuτ/ν, where

ls =
√

2ν/ω, in their experiments of turbulent channel flow. Tardu et al. (1994)

found that the time averaged velocity and wall shear stress is largely independent

of the imposed pulsating frequency for same pulsation amplitudes.

Scotti and Piomelli (2001) performed the first DNS and LES study of the pulsat-

ing channel flow driven by oscillating mean pressure gradient and reported detailed

turbulence statistics and typology of the near-wall coherent structures. Manna and

Vacca (2008) performed Reynolds stress tensor analysis and velocity spectrum anal-

ysis in their LES study to investigate the response of the near-wall coherent struc-

tures to the periodic pulsation. The reduction in turbulence structure parameter

was reported in the near-wall region due to the imposed unsteadiness. The energy

transfer from larger to smaller scales remained unaffected for the smaller oscillation

amplitudes while larger amplitude oscillations significantly reduced energy transfer

from large scale to smaller scales. The two-point correlation factor in the streamwise

direction exhibited an increase, indicating an increased coherence of the near-wall

vortical structures.

More recently, He and Jackson (2009) performed an experimental investigation of the

pulsatile turbulent pipe flow. They reported the measurements for streamwise and

wall normal velocity components using two-component Laser Doppler Anemometer

(LDA) system. Flow in the core region exhibited frozen slug like behaviour for high

pulsating frequencies. The response of turbulence to the imposed pulsation started

from the wall which then propagated into the core region. Considerable efforts have

been made in the development of near-wall models for pulsating turbulent flows

which includes Mankbadi and Liu (1992), Scotti and Piomelli (2002) and Cotton

(2007).

22



3
Numerical Methods.

3.1 Direct numerical simulation (DNS)

Direct numerical simulation (DNS) is the most accurate method of all turbulent

treatments. In DNS every scale of flow is resolved in both time and space. DNS

can be considered as a close realisation of flow field in a laboratory experiment.

The Navier-Stokes equations are directly computed in DNS calculations and the

smallest scales of motion in time and space are resolved. Solution methods for

the three-dimensional incompressible Navier-Stokes equations have been addressed

extensively in the past three decades (Chorin, 1967; Kim and Moin, 1985; Perot,
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1993; Kim et al., 2002). The major problem lies in the fact that the pressure is

coupled with velocity variables in the momentum equations and there is no time

dependent term in the continuity equation (Kim and Moin, 1985).

∂ui
∂t

+
∂

∂xj
uiuj = − ∂p

∂xi
+

1

Re

∂2ui
∂x2

j

, (3.1)

∂ui
∂xi

= 0. (3.2)

Harlow and Welch (1965) proposed an operator splitting method in which the pres-

sure is taken out of the momentum equations by taking the divergence of Equation

3.1, and the mass conservation constraint is satisfied in the sense that the pressure

at the current time step is calculated such that the continuity equation is satisfied at

the next time step. This method is fully explicit, which puts severe restrictions on

the time step size for flows with strong velocity gradients. Chorin (1967) proposed

a solution procedure by introducing an artificial compressibility in the continuity

equation to introduce time dependence in it so that semi-implicit and fully implicit

time advancement schemes such as alternating-direction-implicit (ADI) can be used.

The artificial compressibility effect must be minimised in this method making this

method highly stiff in certain cases.

Kim and Moin (1985) proposed a solution procedure for unsteady problems based

on a fractional step method (FSM), in which the pressure is taken out of the momen-

tum equations, and the momentum equations are solved for intermediate velocities.

The Poisson equation for the pressure is formulated by using the incompressibility

constraint, and the pressure calculated in the Poisson equation is used to update

the velocity field at the end of time advancement. In Kim and Moin (1985), de-

coupling of the Navier-Stokes equations was performed in semi-discrete form which

introduces two problems: the momentum equations require intermediate velocity

boundary conditions which are not physical and the splitting error, arising from the
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semi-discrete decoupling, makes it impossible to satisfy tangential and normal ve-

locity boundary conditions simultaneously for the Poisson equation (Gresho, 1990).

On the other hand, the semi-discrete decoupling has the advantage of being inde-

pendent of any particular spatial discretisation scheme. There have been several

studies to restore the second-order time accuracy of such semi-discrete decoupling

procedure either by modifying intermediate velocity boundary conditions, or the

boundary conditions for the Poisson equation or by both. These intermediate veloc-

ity boundary conditions lack physical justification, and they are generally regarded

as a source of error.

To avoid the use of intermediate velocity boundary conditions, Dukowicz and Dvin-

sky (1992) proposed a splitting approach based on approximate factorisation which

employs the splitting in matrix form after temporal and spatial discretisation. The

main advantage of this scheme lies in the fact that, since the time splitting is per-

formed after the temporal and spatial discretisation of the Navier-Stokes equations,

it eliminates the need to specify the artificial intermediate boundary conditions for

the momentum equations and pressure boundary conditions for the Poisson equa-

tion. Perot (1993) proposed a fully discrete form of FSM based on the Block LU

decomposition and clearly showed that the problem of first-order time accuracy for

its continuous counterpart arises from the method itself rather than the intermedi-

ate boundary conditions. Moreover, the issues of time accuracy and intermediate

velocity boundary conditions were fully resolved and a trapezoidal pressure advance-

ment scheme was introduced. He found that the discrete pressure solution is always

first-order in time irrespective of the time splitting scheme used, and it does not

affect the order of accuracy of velocity field.

When explicit or semi-implicit scheme is used, the time advancement of the un-

steady compressible Navier-Stokes equations is restricted by Cournat-Freidrichs-

Lewy (CFL) condition to ensure numerical stability. This time step size restric-
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tion makes the solution significantly more expensive in the regions with refined

meshes. Fully implicit treatment of the Navier-Stokes equations requires either it-

erative solvers such as Newton-iterative method (Choi and Moin, 1994) due to the

coupling of primitive velocity variables, or the linearisation scheme for velocity vari-

ables decoupling. A three time-level linearisation scheme was proposed by Rosenfeld

(1996) which is expensive in terms of memory because the velocity field at the pre-

vious and current time steps is employed to determine the velocity at the next time

step. Kim et al. (2002) extended the block LU decomposition method, and used

Crank-Nicolson temporal discretisation for both convective and diffusive terms. A

second-order accurate linearisation scheme (Beam and Warming, 1978) was em-

ployed to linearise the nonlinear convective term, and the momentum equations are

decoupled by a second block LU decomposition.

In summary, FSM can be categorised into two: In continuous or projection type

FSM, spatial discretisation is performed after the time splitting, which makes this

type of method independent of spatial discretisation. However, there are two major

problems with this type of methods regarding the intermediate velocity boundary

conditions and the degradation of the temporal accuracy. In discrete or splitting

type FSM, spatial and temporal discretisation is performed before the time splitting.

Therefore, there is no need to specify intermediate velocity boundary conditions

while temporal accuracy is also maintained during splitting. The DNS code based on

sem-implicit formulation (written in Fortran 77) was provided. In the present study,

Splitting FSM is implemented and WALE sub-grid scale model is implemented.

Moreover, FFTW subroutines were implemented for the Poisson equation solution.

A brief numerical detail of the projection FSM (Le and Moin, 1991) and the Splitting

FSM (Kim et al., 2002) is presented in Subsections 3.1.1 and 3.1.2, respectively.
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3.1.1 Projection FSM

Kim and Moin (1985) proposed a fractional step method to solve the three-dimensional

incompressible unsteady Naveir-Stokes equations. They employed the second-order

explicit Adams-Bashforth scheme for the convective terms and the second-order

implicit Crank-Nicolson for the viscous terms. Le and Moin (1991) made a modifi-

cation to Kim and Moin (1985) scheme to reduce the restrictions on the time step

size. They incorporated a low storage third-order Runge-Kutta scheme for time

splitting. The incompressible Navier-Stokes equations in Le and Moin (1991) can

be written as:

uki − uk−1
i

∆t
= αkL(uk−1

i ) + βkL(uki ) − γkN(uk−1
i )

− ζkN(uk−2
i ) − (αk + βk)

∂P k

∂xi
, i = 1, 2, 3 (3.3)

∂uki
∂xi

= 0, (3.4)

where k = 1, 2, 3 denotes the sub-step number. The coefficients αk, βk, γk and ζk

are constants selected such that the total time advancements between tn and tn+1

is third-order accurate for the convective terms and second-order accurate for the

viscous terms.

γ1 = 8/15, γ2 = 2/12, γ3 = 3/4,

ζ1 = 0, ζ2 = −17/60, ζ3 = −5/12,

α1 = β1 = 4/15,

α2 = β2 = 1/15,

α3 = β3 = 1/6.

L(u) and N(u) in Equation 3.3 represent second-order finite difference operators for

the viscous and convective terms, respectively. The numerical stability is restricted

by the explicit treatment of the convective terms. The stability limit, CFL, de-
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fined as max (|ui/∆i|) ∆t, is
√

3 based on the total time step (∆t). This allows a

larger time step than Kim and Moin (1985). After the application of fractional step

method, Equations 3.3 and 3.4 can be written as:

ûki − uk−1
i

∆t
= (αk + βk)

(
uk−1
i

)
+ βkL

(
ûki − uk−1

i

)
− γkN

(
uk−1
i

)
− ζkN

(
uk−2
i

)
− (αk + βk)

∂P k−1

∂xi
, (3.5)

uki − ûki
∆t

=− ∂φk

∂xi
, (k = 1, 2, 3). (3.6)

It is worth noting that in this FSM, the Poisson equation (Equation 3.6) is solved

for the pseudo-pressure (φ) rather than actual pressure, and the actual pressure can

be calculated from Equation 3.7:

∂φk

∂xi
= (αk + βk)

(
∂P k

∂xi
− ∂P k−1

∂xi

)
− βkL(uki − ûki ). (3.7)

The overall temporal accuracy of the fractional step method remains to be second-

order when it is used in conjunction with the Runge-Kutta method. The modified

momentum equations are solved after the application of a second-order accurate ma-

trix splitting to reduce the size of a large sparse matrix into smaller matrices, which

in turn, can be solved using efficient direct solvers such as TDMA or penta-diagonal

matrix solver depending upon the spatial discretisation used. This scheme suffers

from two drawbacks; firstly, it requires artificial intermediate boundary conditions

which can potentially require second-order or fourth-order accurate spatial deriva-

tives while solving them for unsteady boundary conditions. Secondly, the time step

size is limited owing to its semi-implicit temporal discretisation.
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3.1.2 Splitting FSM

The splitting FSM (Kim et al., 2002) is implemented and used in the present

study and its numerical implementation is discussed briefly here. Kim et al. (2002)

proposed the fully implicit version of the FSM in which both convective and vis-

cous terms are discretised using second-order-implicit Crank-Nicolson method. This

method uses a linearisation scheme to decouple the primitive variables in the mo-

mentum equations to avoid iterative solvers for the intermediate velocities solution.

After temporal and spatial discretisation, Equations 3.1 and 3.2 can be written as

uki − uk−1
i

∆t
=

1

Re
(αkLu

k−1
i + βkLu

k
i ) − γkNuki

− ζkNuk−1
i − (αk + βk)Gpk + mbc, (3.8)

Duki = 0 + cbc, (3.9)

where L,N,G and D are the discrete Lapalcian viscous, convective, gradient and

divergence operators respectively. It is very important to note that these operators

contain information only from interior points while the boundary points informa-

tion is stored in mbc and cbc matrices before the application of fractional step

method, which eliminates the intermediate velocity boundary condition application

as required in the case of projection FSM. The coefficients αk, βk, γk and ζk are

all equal to 0.5 in Crank-Nicolson temporal discretisation and time advancement

is single-step, which makes this method more efficient than those with three-step

time advancement due to the Runge-Kutta time discretisation for the convective

term. Equation 3.8 is nonlinear because of the implicit treatment of the convective

terms. The nonlinear terms are linearised using a second-order accurate linearisation

scheme (Beam and Warming, 1978),

uki u
k
j = uki u

k−1
j + uk−1

i ukj − uk−1
i uk−1

j + O(∆t2). (3.10)
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Writing Equations 3.8 and 3.9 after linearisation in matrix form

 A G

D 0


 uki

δp

 =

 r

0


 mbc

cbc

 , (3.11)

where

r = uk−1
i +

∆tαk
Re

Luk−1
i − ∆tG pk−1, (3.12)

A = I − ∆ tβk
Re

L + ∆ tγk N, (3.13)

δp = pk − pk−1. (3.14)

The linearisation of the nonlinear term Nuki results in the cancellation of Nuk−1
i term

and therefore there is no convective terms on the right hand side of the momentum

equation. Moreover, the momentum equation is written in δp formulation to make

block LU decomposition second-order accurate as explained later. By applying block

LU factorisation to Equation 3.11,

 A 0

D −∆tDG


 I ∆tG

0 I


 uki

δp

 =

 r

0


 mbc

cbc

 . (3.15)

The error term arising from the above LU decomposition is ∆tGδp which is second-

order in time because of δp = pk − pk−1. Equation 3.15 can be written as

 A 0

D −∆tDG


 ûki

δp

 =

 r

0


 mbc

cbc

 , (3.16)

 I ∆tG

0 I


 uki

δp

 =

 ûki

δp

 . (3.17)
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Writing Equations 3.16 and 3.17 into equation form

(I − ∆tβk
Re

L + ∆tγk N)ûki = uk−1
i +

∆tαk
Re

L(uk−1
i )

−∆t (αk + βk) G pk−1 + mbc, (3.18)

∆tDGδp = Dûki − cbc, (3.19)

uki = ûki − ∆tGδp. (3.20)

Equation 3.18 requires the inversion of matrix A, which is very expensive by consid-

ering the sparse nature of matrix A. Therefore, it is approximately factorised into

smaller matrices in each direction, which can then be solved by tri- or penta-diagonal

matrix solvers. In order to make this approximate factorisation second-order, Equa-

tion 3.18 can be rewritten in δûi as

(I − ∆tβk
Re

L + ∆tγk N)δûi =
1

Re
∆t(αk + βk)Lu

k−1
i

−∆tγkNuk−1
i − ∆tG pk−1 + mbc,

(3.21)

Aδûi = Auk−1 + r + mbc = R,

where

δûi = ûki − uk−1
i .

Rewriting Equation 3.21 in matrix form gives


I + ∆tM11 ∆tM12 ∆tM13

∆tM21 I + ∆tM22 ∆tM23

∆tM31 ∆tM32 I + ∆tM33




δû1

δû2

δû3.

 =


R1

R2

R3

 , (3.22)

where

M = N− αk
Re

L.

As three velocity components are coupled in Equation 3.22, Kim et al. (2002) ap-
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plied another second-order accurate approximate factorisation based on block LU

decomposition in order to decouple velocity variables. It is important to note that

this second approximate factorisation is another error in addition to the linearisation

error in Equation 3.10. After the secondary decoupling, the momentum equations

can be finally written as

(I + ∆tM11)δû∗1 = R1, (3.23)

(I + ∆tM22)δû∗2 = R2 −M21δû
∗
1, (3.24)

(I + ∆tM33)δû3 = R3 −M31δû
∗
1 −M32δû

∗
2, (3.25)

δû2 = δû∗2 −∆tM23δû3, (3.26)

δû1 = δû∗1 −∆tM23δû2 −∆tM13δû3, (3.27)

where the variables with “*” superscript are the variables resulting from second block

LU decomposition, and Equations 3.23-3.27 are the resulting momentum equations

to be solved for the intermediate velocity variables. The advantage of this scheme is

that boundary conditions are separated from the main solver before the the appli-

cation of FSM. This makes the numerical implementation easier. Furthermore, the

Poisson equation is solved for the actual pressure rather than the pseudo-pressure,

as in projection FSM, and this eliminates the need to solve another equation for the

pressure to update the actual pressure using Equation 3.7.
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3.2 Solution procedure

Figure 3.1 shows the flow chart of the main DNS/LES code. The code consists of an

initial setup module which contains the reading of input parameters, grid generation,

initial flow field generation and the determination of grid coefficients to be used

later in the computation of flow field gradients. The main unsteady calculations

start with the calculation of boundary conditions for the next time step, followed

by SGS viscosity calculation in case of LES. This is followed by the intermediate

velocities computations for the three velocity components. The divergence of the

intermediate velocity is fed into the Poisson equation to determine the pressure

gradient which would ensure mass conservation. Finally, the velocities are updated

using the pressure gradient calculated from the Poisson equation.

In Subsections 3.1.1 and 3.1.2, the numerical implementation of projection and split-

ting FSM is explained, however, it is important to note that the fully implicit code

based on splitting FSM is used for all the main simulations in the current work. In

Subsections 3.2.1-3.2.3, a brief introduction to the solution procedure is presented.

3.2.1 Momentum equations

Rewriting the modified momentum equations resulting from splitting FSM (Equa-

tions 3.23-3.25) in a generalised form as following

(I −∆tMii)δû
∗
i = Ri, (3.28)

(1− A1 − A2 − A3)δû∗i = Ri, (3.29)

where A1, A2, A3 contain the viscous and convective contributions in case of the

fully implicit formulation, while only the viscous contributions in case of the semi-

implicit formulation in the streamwise, wall-normal and spanwise directions respec-
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Figure 3.1: Flow chart of the main DNS/LES code.

tively. The solution of Equation 3.29 is significantly expensive because it needs the

inversion of a large matrix. Kim and Moin (1985) introduced a third-order accurate

approximation to split the above matrix into three one-dimensional matrices

(1− A1 − A2 − A3)δû∗i = (1− A3)(1− A2)(1− A1)δû∗i . (3.30)
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The momentum equations after the splitting become

(1− A3)(1− A2)(1− A1)δû∗i = Ri. (3.31)

Now, Equation 3.31 can be inverted directly by inverting three relatively small ma-

trices in each direction. The sparsity of matrices allows the use of efficient direct

solvers i.e. TDMA and penta-diagonal matrix algorithm depending upon the num-

ber of points employed to compute the velocity gradients. Let

δû∗∗i = (1− A2)(1− A1)δû∗i , (3.32)

then Equation 3.31 can be written as

(1− A3)δû∗∗i = Ri. (3.33)

Equation 3.33 is solved in the spanwsie direction for δû∗∗i . Now rewriting Equation

3.32

(1− A2)δû∗∗∗i = δû∗∗i , (3.34)

where

δû∗∗∗i = (1− A1)δû∗i . (3.35)

Equation 3.34 is solved in the wall-normal direction for δû∗∗∗i , and finally Equation

3.35 is solved in the streamwise direction for δû∗i as following

(1− A1)δû∗i = δû∗∗∗i . (3.36)
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3.2.2 Spatial discretisation

Cartesian coordinate system is used in the present study. It uses staggered grid

formulation (Harlow and Welch, 1965) for spatial discretisation to prevent artificial

pressure oscillations associated with pressure checker board problem. In staggered

grid formulation, the vectors (velocity components) are defined at the cell face while

the scalars (pressure) are defined at the cell center. The staggered grid does not

require any pressure boundary conditions, and conservation of mass, kinetic energy

and circulation are ensured (Kim and Moin, 1985). In a staggered grid, the control

volumes for u, v and w velocities are displaced by half control volume in each

direction as compared to the normal cell. Therefore, the standard control volume

can be called pressure control volume, and in the same context u control volume,

v control volume and w control volume can be generated by shifting the grid by

half cell in respective directions. Figure 3.2 shows the staggered grid formulation,

representing the pressure, u and v control volumes.

Figure 3.2: Staggered grid for spatial discretisation for primitive variables.
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Each momentum equation is discretised on the corresponding staggered grid result-

ing in a set of partial differential equations which need to be solved in time to obtain

flow field solution. Finite volume discretisation is employed and each momentum

equation is integrated on the corresponding staggered mesh. Spatial discretisation

procedure for u momentum equation, using four neighbouring points for the calcu-

lation of velocity gradients, is explained as following. Equation 3.34 is rewritten for

u momentum equation

(1− A2)δû∗∗∗ = δû∗∗, (3.37)

where δû∗∗∗ = (1−A1)δû∗. After integrating over the u-control volume and dividing

by the staggered u control volume (∆xs∆y∆z) :

∫
∆xs∆y∆z

(1− A2)δû∗∗∗ dxdydz/∆xs∆y∆z =

∫
∆xs∆y∆z

δû∗∗ dxdydz/∆xs∆y∆z,

where ∆xs is the length of the u control volume in x direction. Thus

(1− Ay2/∆y)δû∗∗∗ = δû∗∗. (3.38)

Here an overline indicates the integrated variable,

A
y

2 =

∫
∆y

A2 dy = B
y

2 + δcC
y

2, (3.39)

where B
y

2 and C
y

2 are the viscous and convective contributions, and δc is a constant

which is equal to 1 for Crank-Nicolson treatment of convective term while 0 for

Runge-Kutta discretisation.

B
y

2 = βk∆t

([
∂

∂y

]
j+1

−
[
∂

∂y

]
j

)
δû∗∗∗, (3.40)

C
y

2 = γk∆t
([
vk−1δû∗∗∗

]
j+1
−
[
vk−1δû∗∗∗

]
j

)
. (3.41)

The terms in Equations 3.40 and 3.41 are calculated by using finite difference second-
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order accurate discretisation. For viscous terms, the gradient is calculated by using

four neighbouring points to ensure second-order accuracy on a non-uniform mesh,

[
∂δû∗∗∗

∂y

]
j

= b1
jδû

∗∗∗
j+1 + b2

jδû
∗∗∗
j + b3

jδû
∗∗∗
j−1 + b4

jδû
∗∗∗
j−2.

Therefore, the total viscous contribution can be written as

B
y

2 = βk∆t
[
b1
j+1δû

∗∗∗
j+2 + b2

j+1δû
∗∗∗
j+1 + b3

j+1δû
∗∗∗
j + b4

j+1δû
∗∗∗
j−1

]
−βk∆t

[
b1
jδû

∗∗∗
j+1 + b2

jδû
∗∗∗
j + b3

jδû
∗∗∗
j−1 + b4

jδû
∗∗∗
j−2

]
.

Similarly, the convective contribution is calculated as following

C
y

2 = γk∆t
[
c1
jδû

∗∗∗
j+1 + c2

jδû
∗∗∗
j + c3

jδû
∗∗∗
j−1

]
,

where b1, b2, b3, b4 c1, c2 and c3 are the finite difference diffusive and convective co-

efficients calculated from grid information. Substituting the values of viscous and

convective terms into Equation 3.38, and writing the equation in matrix form gives

∆t

∆yj



−βkb1
j+1

βkb
1
j − βkb2

j+1 − δcc1
j

1 + βkb
2
j − βkb3

j+1 − δcc2
j

βkb
3
j − βkb4

j+1 − δcc3
j

βkb
4
j





δû∗∗∗j+2

δû∗∗∗j+1

δû∗∗∗j

δû∗∗∗j−1

δû∗∗∗j−2


= δû∗∗. (3.42)

Now Equation 3.42 can be solved by using penta-diagonal solver.

3.2.3 Poisson equation solution

The Poission equation is solved to determine the pressure for the next time step

which would ensure the divergence free velocity field at next time step. The Poisson
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equation is derived from the velocity update equation of FSM using the incompress-

ibility condition. The velocity update equation is given by

uki − ûki
∆t

=
∂δp

∂xi
, (3.43)

Taking the divergence of Equation 3.43 and using the continuity equation,

1

∆t

∂ûki
∂xi

=
∂2δp

∂x2
i

, (3.44)

∂2δp

∂x2
+
∂2δp

∂y2
+
∂2δp

∂z2
=

1

∆t

∂ûki
∂xi

= f(x, y, z). (3.45)

It is worth noting that no additional pressure correction is required at the end of

each time step for the implicit method. The Poisson equation can be solved by

iterative solvers like the multigrid method but this can be expensive in terms of

computing cost. Direct solvers such as Fast Fourier Transforms (FFT) can be used

for the Poisson equation solution in the homogeneous directions. In the present case,

a uniform mesh is used in the streamwise and spanwise directions which makes it

possible to apply FFT in the xz plane with TDMA used in the wall-normal direction.

Application of Fourier transform to Equation 3.45 in the x and z directions gives

−k2
xδ̂p+

∂2δ̂p

∂y2
− k2

z δ̂p = f̂(kx, y, kz), (3.46)

where kx = 2πfx and kz = 2πfz are the modified wave numbers in the x and z di-

rections respectively, and f̂(kx, y, kz) is the transformation counterpart of f(x, y, z).

The modified wave numbers are defined as

kx(l) = 2[1− cos(2πl/Nx)]/∆x
2, (3.47)

kz(m) = 2[1− cos(2πm/Nz)]/∆z
2. (3.48)
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Integration Equation 3.46 in the wall-normal direction results in

∫
∆yj

−k2
xδ̂p+

∂2δ̂p

∂y2
− k2

z δ̂p dy =

∫
∆yj

f̂(kx, y, kz) dy, (3.49)

1

∆yj− 1
2

δ̂pj−1 −

(
k2
x + k2

z +
1

∆yj− 1
2

+
1

∆yj+ 1
2

)
δ̂pj +

1

∆yj+ 1
2

δ̂pj+1 = f̂∆yj, (3.50)

where ∆yj± 1
2

are the staggered wall-normal gradients and are given as

∆yj− 1
2

= (∆yj−1 + ∆yj)/2, (3.51)

∆yj+ 1
2

= (∆yj + ∆yj+1)/2. (3.52)

Equation 3.50 is solved by using a direct solver (TDMA) in the wall-normal direction

and FFT is applied in the streamwise and spanwise directions to obtain the pressure

which guaranties the divergence free flow field at the next time step. FFTW library

is used for fast Fourier transformation in forward and backward directions. This

pressure field is then used to update the velocity field by using Equation 3.43.
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3.3 Validation

Three test cases are considered to validate the the fully implicit method implemen-

tation.

3.3.1 Decaying vortex test case

A two-dimensional decaying vortex flow has been chosen to validate the numerical

accuracy of the implicit method. This flow has an analytic solution (Brachet et al.,

1983).

u(x, y, t) = − cos(πx) sin(πy) exp−2π2t/Re, (3.53)

v(x, y, t) = sin(πx) cos(πy) exp−2π2t/Re, (3.54)

p(x, y, t) = −1

4
(cos(2πx) + sin(2πy)) exp−4π2t/Re . (3.55)

The flow is periodic in the horizontal (x, z) directions and periodic boundary con-

ditions are used in the simulation. The domain size used is 2 × 2. The Reynolds

number based on the initial maximum velocity and the vortex diameter is Re = 10.

Simulations were performed on a uniform mesh by keeping the CFL number con-

stant. Figure 3.3 verifies that the implementation is second-order accurate, and the

error in the fully implicit schemes is comparable with the error from semi-implicit

scheme. This is remarkable considering that additional approximate factorisation

was required in the fully implicit method to decouple velocities in the momentum

equations. The effect of convective boundary condition was also tested in Figure

3.3. Velocity and pressure contours are shown in Figure 3.4.
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a)

b)

Figure 3.3: Maximum error in u for the two numerical schemes at t = 0.3 using a)
periodic, and b) convective boundary conditions.
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Figure 3.4: Decaying vortices test case. Velocities and pressure contours at t = 0.3.
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3.3.2 Turbulent channel flow

The fully-developed turbulent channel flow was considered at Re = 2800 and Re =

6900 where the Reynolds number is based on the half-channel height and the bulk-

mean velocity. The mass flow rate is kept constant during the simulations allowing

slight variation of the mean pressure gradient. Simulation parameters used in this

study are shown in Table 3.1. DNS data of Moser et al. (1999) are also included in

the table for comparison. The Reynolds numbers based on the friction velocity Reτ ,

are summarised in Table 3.2.

Simulation Re Lx × Lz Nx ×Ny ×Nz ∆x+ ∆z+ ∆y+
min ∆y+

max

Present 2800 12× 4 128× 129× 128 16.8 5.6 0.4 5.8

Moser et al. (1999) 2800 4π × 4

3
π 128× 129× 128 17.7 5.9 - 4.4

Present 6900 6× 4 256× 192× 288 9.2 5.4 0.4 9.6
Moser et al. (1999) 6900 2π × π 256× 192× 192 10 6.5 - 6.5

Table 3.1: Simulation parameters used in the present simulations.

Re Dean’s formulae Moser et al. (1999) semi-implicit fully implicit

2800 182 178 179 180
6900 400 392 391 392

Table 3.2: Comparison of Reτ from both numerical schemes with values available
in literature.

The Reτ values from the fully implicit method exhibit very good agreement with the

values from semi-implicit method and available literature. It is important to note

that the simulations from the fully implicit code are approximately three time faster

than the semi-implicit method as the fully implicit method solves the momentum

equations once per time step as compared to three sub-steps solution in case of the

semi-implicit method. Figure 3.5 shows the comparison of the mean velocity and

the rms velocity fluctuation for the two Reynolds numbers. All the profiles from

fully implicit method are in excellent agreement with the semi-implicit method.
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Re = 2800

Re = 6900

Figure 3.5: The mean velocity and rms velocity fluctuations. The DNS data of
Moser et al. (1999) are included for comparison.
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3.3.3 Boundary condition implementation validation

Boundary conditions implementation of fully implicit scheme with mbc and cbc

formulations are tested for active blowing and suction flow control proposed by

Choi and Moin (1994). Simulation parameters are shown in Table 3.3. v velocity

is imposed on the walls exactly opposite to the v velocity on the detection plane.

Detection plane is chosen as y+
d = 15 which is found to be the optimal case of drag

reduction. Percentage drag reduction from the semi-implicit and the fully implicit

methods are 22.2 % and 22.5 % respectively. Results from the semi-implicit method

are published in Chung and Talha (2011). Time history of drag reduction after the

application of flow control and the rms velocity fluctuations are shown for the two

methods for the optimal case in Figure 3.6. The results from fully implicit method

are in very good agreement with the semi-implicit method. This test case verifies

the correct implementation of boundary condition matrices mbc and cbc for the

fully implicit method.

Re Lx × Lz Nx ×Ny ×Nz ∆x+ ∆z+ ∆y+
min ∆y+

max

2800 12× 4 128× 129× 144 16.9 5.6 0.2 6.9

Table 3.3: Simulation parameters for active flow control simulation.

Figure 3.6: Reτ time history, and rms velocity fluctuations for active flow control
simulation.
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3.4 Large eddy simulation (LES)

DNS has made a significant contribution to our understanding of the underlying

physics in many turbulent flows. However, its applicability has been restricted to

relatively low and moderate Reynolds number flows due to the computational cost.

DNS resolves the smallest scales of motion in time and space and the near-wall

turbulent structures become smaller as the Reynolds number increases. Therefore,

the spatial grid resolution becomes increasingly fine and the computational cost be-

comes prohibitively high for high Reynolds number flows of practical interest. The

number of grid points required to resolve all scales of turbulence is proportional to

the ratio between the largest and smallest eddies in the flow. This ratio is propor-

tional to Re
3/4
L (Reynolds, 1990), where L is the integral length scale of the flow.

This restriction necessitates the grid points required in three dimension to Re
9/4
L for

DNS calculations.

In large eddy simulation (LES), the spatial scales are divided into two categories:

the large scales which are computed directly by solving the Navier-Stokes equations

and the small scales which should be modelled by a subgrid-scale (SGS) model. LES

is an intermediate approach between DNS and RANS modelling as it can represent

instantaneous flow characteristics and can compute the large scales directly as DNS

while RANS modelling involves the computation of the averaged flow properties.

On the other hand, LES is not as accurate as DNS because the small scales are

not computed directly which, in turn, relaxes the grid resolution restrictions, and

this makes LES more feasible for relatively high Reynolds number flows. LES is

based on the assumption that most of turbulent energy is contained in the large

energy containing structures, while only a fraction of energy is contained in the small

unresolved scales. These small scales can be considered as universal and isotropic,

making it possible to model them by simpler models. In essence, LES has mostly

dissipative contribution to the Navier-Stokes equations accounting for the energy
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left over by overlooking the contribution from unresolved scales. However, in some

flow situations, energy is transferred back from the small scales to large scales, and

this phenomenon is called backscatter. A good LES model also needs to cater for

the possibility of backscatter.

The large scales are separated from the small scales by applying a filtering operation

to the Navier-Stokes equations. This filtering procedure can be thought of as a low-

pass filtering in which only the large energy carrying scales are considered, while the

effect of the small scales is included by SGS modelling term in the Navier-Stokes

equations. In mathematical terms, this decomposition of the two scales can be

written as

ui = ui + u′i, (3.56)

where an overbar denotes the filtered variable and u′i is the fluctuating component

which is filtered out during filtering operation. The low-pass filtering can be defined

by a filter function G (Leonard, 1974),

f(x) =

∫
D

G(x− x′)f(x′)dx′, (3.57)

where D is the integration domain. Most commonly used filters in LES are box

or top-hat filters, spectral or sharp cut-off filters and Gaussian filters. The sharp

cut-off filter (spectral) clearly separates the larger scales from the smaller scales

and therefore represents the effect of smaller scales on larger scales. The smooth

filter (Gaussian or top-hat) does not make a sharp distinction between the two

separated scales which also allows the small scales to affect the larger scales. Detailed

comparison of effects of using sharp cut-off filters versus the smooth filters, and the

selection of appropriate SGS models and filters, can be found in Stefano and Vasilyev

(2002).
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The top-hat filter is given by

G(x− x′) =

 (1/∆i), |xi − x′i| < ∆/2

0, |xi − x′i| > ∆/2
, (3.58)

where i = 1, 2, 3 and ∆ is the filter width.

The Gaussian filter in physical space is given by

G(x− x′) =

(
6

π∆2
i

)1/2

exp

(
−6(xi − x′i)2

∆2
i

)
. (3.59)

In the present study, the top-hat filter is used for the filtering operation as suggested

by Germano et al. (1991).

3.4.1 LES equations

Applying low-pass filtering to the incompressible Navier-Stokes equations and as-

suming that differentiation and filtering operations are commutable

∂ui
∂t

+
∂

∂xj

(
uiuj

)
= − ∂p

∂xi
+

1

Re

∂2ui
∂x2

j

, (3.60)

∂ui
∂xi

= 0. (3.61)

The nonlinear convective term on the left hand side of Equation 3.60 can not be

computed directly. Therefore, Equation 3.60 is modified as

∂ui
∂t

+
∂

∂xj
(uiuj) = − ∂p

∂xi
+

1

Re

∂2ui
∂x2

j

− ∂

∂xj
τij, (3.62)

where τij is the SGS stress term which includes the effect from unresolved smaller

scales and is given as

τij −
1

3
δijτkk = uiuj − uiuj = −2νsgsSij, (3.63)
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where νsgs is the SGS viscosity and Sij is the large-scale strain-rate tensor which is

given as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3.64)

Substituting τij from Equation 3.63 and Sij from Equation 3.64 into Equation 3.62

results in the modified momentum equations for LES.

∂ui
∂t

+
∂

∂xj
(uiuj) = − ∂p

∂xi
+

1

Re

∂2ui
∂x2

j

+
∂

∂xj

(
νsgs

∂ui
∂xj

+ νsgs
∂uj
∂xi

)
. (3.65)

3.4.2 Subgrid-scale (SGS) models

The SGS viscosity, νsgs, in Equation 3.65 is calculated using SGS modelling. SGS

modelling is the subject of interest for last four decades and extensive research has

already been performed in this area. A brief overview of SGS modelling efforts is

presented in Moin (2002). The effectiveness of SGS modelling involves the correct

asymptotic i.e. y3 near-wall behaviour of the SGS viscosity and the correct predic-

tion of the SGS dissipation i.e. εSGS = τijSij. A good SGS model should also be

able to cater for backscatter. Piomelli et al. (1990) reported some inaccuracies in

LES calculations for transitional flow because of the inability of their SGS model to

account for backscatter. A brief overview of the SGS models, implemented in the

present study, is given in the following subsections

Smagorinsky model

Smagorinsky (1963) proposed a linear relationship between the SGS viscosity and

the large-scale strain-rate magnitude (|S|). This model is based on the eddy viscosity

assumption which assumes that the energy production is in balance with the energy
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dissipation. This yields the expression for νsgs as following

νsgs = (Cs∆)2 |S|, (3.66)

where Cs is the Smagorinsky constant, ∆ is the filter width (which is proportional

to the grid spacing) and |S| =
√

2SijSij. This model has been successfully applied

to various simple turbulent flows. However, it had encountered several issues. First

major debatable issue is the choice of Cs and the filter width ∆. Lilly (1966)

proposed the value of Cs = 0.23 based upon the isotropic homogeneous turbulence

theory but this value is found to be excessively high (Deardorff, 1971; Piomelli et al.,

1988). The higher value of Cs results in excessive SGS dissipation in mean shear

flows and it was concluded that this value should be reduced to 0.1 for turbulent

channel flow. The value of Cs is found to be flow dependent. This model does not

produce the correct asymptotic near-wall behaviour of SGS viscosity and it does

not vanish at solid boundaries. These limitations necessitate the use of damping

function such as Van Driest damping to obtain the correct SGS viscosity near the

solid walls (Moin and Kim, 1982). In addition, this model is only dissipative and

can not account for backscatter.

Dynamic SGS model

Germano et al. (1991) proposed a dynamic procedure to calculate the Smagorinsky

constant. This procedure uses the Leonard identity (Germano, 1990) to calculate

the Smagorinsky constant. This model incorporates two levels of filtering: first

is the grid filtering and second is the test filtering. The test filtering is normally

applied at comparatively large scale (usually twice) as compared to the grid filtering.

Rewriting the grid-filtered Navier-Stokes equations.

∂ui
∂t

+
∂

∂xj
(uiuj) = − ∂p

∂xi
+

1

Re

∂2ui
∂x2

j

− ∂

∂xj
τij, (3.67)
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where

τij = uiuj − uiuj = − 2 C ∆
2|S|Sij. (3.68)

Please note that here C is the square of Smagorinsky constant i.e., C = C2
s . Now

applying test filtering to the Equation 3.67

∂ũi
∂t

+
∂

∂xj

(
ũi ũj

)
= − ∂p̃

∂xi
+

1

Re

∂2ũi
∂x2

j

− ∂Tij
∂xj

, (3.69)

where

Tij = ũiuj − ũi ũj = − 2 C ∆̃
2

|S̃| S̃ij. (3.70)

τij in Equation 3.68 and Tij in Equation 3.70 can be linked through Leonard identity

which is given by

Lij = Tij − τ̃ij = ũi uj − ũi ũj. (3.71)

Lij is representative of contribution of smaller resolved scales to the turbulent shear

stress i.e. the scales in between the test and grid filters. This contribution is used

to calculate C by exploiting the algebraic relationship between Lij, Tij and τ̃ij. Now

contacting this identity with Sij results in

(ũi uj − ũi ũj)Sij = − 2 C(∆̃
2

|S̃| S̃ij Sij − ∆
2|̃S|Sij Sij). (3.72)

Contraction with Sij has been performed in order to avoid ill-conditioned value of

C (Germano et al., 1991). Moreover this model requires spatial averaging to avoid

nonphysical local large C values. Therefore, spatial averaging is normally performed

in homogeneous directions and the resulting value of C is a function of time and
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inhomogeneous directions only. Constant C can be determined as

C = − 1

2

〈 ũi uj − ũi ũj 〉 Sij

〈 ∆̃
2

|S̃| S̃ij Sij − ∆
2|̃S|Sij Sij 〉

= − 1

2

〈 Lij Sij 〉
〈MijSij 〉

, (3.73)

Where “〈 〉” denote the averaging in homogeneous directions and Mij is given as

Mij = ∆̃
2

|S̃| S̃ij − ∆
2|̃S|Sij (3.74)

This procedure produces the correct asymptotic behaviour (y3) of SGS viscosity.

Another advantage of the dynamic SGS model is the ability to model backscatter

phenomenon. The only adjustable parameter in this model is the ratio of the test

filter to the grid filter i.e. ∆̃/∆. The optimum value of this ratio is found to be

equal to 2 (Germano et al., 1991). Explicit test filtering is recommended in only the

homogeneous directions because differentiation and filtering operations are found to

be incommutable in the inhomogeneous directions (Ghosal and Moin, 1995). Lilly

(1992) proposed an improvement to the calculation of C by contracting the Leonard

identity by Mij instead of original contraction by Sij which removes a source of

singularity from solution procedure and the new formulation for C can be written

as

C = − 1

2

〈 Lij Mij 〉
〈MijMij 〉

. (3.75)

The numerical implementation of dynamic SGS model involves following steps:

1. Calculate the grid-filtered velocity at the center location of the pressure control

volume.

2. Calculate the test-filtered velocity at the test grid level using second-order

accurate interpolation.
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3. Calculate strain-rate magnitude tensors at the grid filter and the test filter

level.

4. Calculate 〈 Lij Mij 〉 and 〈Mij Mij 〉 on the test grid level.

5. Apply the spatial averaging in the homogeneous directions for the terms cal-

culated in Step 4 and calculate C.

6. Interpolate C value from the test filter level back to the grid filter level.

7. Calculate SGS viscosity (νsgs) by using Equation 3.66.

This model has been successfully applied to various flow configurations. However, it

needs spatial averaging or ad hoc viscosity clipping procedure to avoid nonphysical

values of constant C. This constraint restricts its application to comparatively

simple flow geometries and it has been used extensively in the past for turbulent

boundary layer and turbulent channel flow simulations.

Many researchers have proposed various improvements and new model approaches

to make it suitable for complex geometries. Two early proposed models are the

dynamic localization model (Ghosal et al., 1995) and the Lagrangian dynamic model

(Meneveau et al., 1996). These models have been used successfully in turbulent flow

simulations for complex geometries. However, the implementation effort required

for these models is significantly higher as compared to the original dynamic SGS

model. Vreman (2004) proposed a new SGS model with fixed coefficient in space

which ensures the correct SGS dissipation for laminar and transitional flows. Park

et al. (2006) reported that the model coefficient of Vreman (2004) model is flow

dependent, and they proposed a new dynamic procedure to calculate the model

coefficient based on the assumption of global equilibrium between SGS dissipation

and viscous dissipation. You and Moin (2007) proposed a single-level filter dynamic

procedure for the model coefficient calculation as compared to the two-level filtering

procedure used by Park et al. (2006). This model removes the constraint of averaging
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or ad hoc viscosity clipping, and moreover it is suitable for low order discretisation

schemes and unstructured grid formulations.

Wall-adapting local eddy-viscosity (WALE) model

Nicoud and Ducros (1999) proposed a new SGS model for complex geometries with

single-level filtering. They proposed that the SGS viscosity is proportional to the

square of velocity gradient tensor.

νsgs = (Cw∆2)
(ðdijðdij)3/2

(SijSij)5/2 + (ðdijðdij)5/4
, (3.76)

where Cw is a constant and ðdij is the traceless symmetric part of the square of

velocity gradient tensor which is given by

ðdij =
1

2
(g2
ij + g2

ji) −
1

3
δijg

2
kk, (3.77)

where g2
ij = gikgkj and gij represents the velocity gradient of large resolved scales.

WALE model includes the effects of strain rate and rotation rate. Equation 3.77 can

be written in symmetric part of tensor g i.e S, and anti-symmetric part (rotation)

i.e. Ω as following

ðdij = Sik + Skj + Ωik + Ωkj −
1

3
δij[SmnSmn − ΩmnΩmn], (3.78)

where Ω is given as

Ωij =
1

2

(
∂ui
∂xj
− ∂uj

∂xi

)
. (3.79)

By using Cayley-Hamilton theorem of linear algebra, ðdijðdij can be written as

ðdijðdij =
1

6
(S2S2 + Ω2Ω2) +

2

3
S2Ω2 + 2IVSΩ, (3.80)
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where

S2 = SijSij, Ω2 = ΩijΩij, IVSΩ = SikSkjΩjlΩli.

Nicoud and Ducros (1999) calculated the value of Cw by using the isotropic homo-

geneous theory and suggested the the model coefficient Cw should be in the range of

0.50 ∼ 0.60. This model have shown promising features including the correct asymp-

totic near-wall behaviour (y3) of νsgs, the correct prediction of SGS dissipation and

relatively a straight forward implementation for unstructured grids.

Recently, Huang and Li (2010) combined WALE model with the one-equation model

proposed by Kajishima and Nomachi (2006). The one-equation model (Kajishima

and Nomachi, 2006) is based on the treatment of production of SGS kinetic energy

and energy loss in grid-scale portion with different mechanisms. This treatment is

claimed to be more reasonable as compared to the assumption of the local equi-

librium between the SGS production and the SGS dissipation, as employed by all

algebraic SGS models. The algebraic SGS model relates the SGS stress to the

strain-rate of large scales through a scaler quantity i.e. SGS viscosity νsgs.

3.4.3 LES validation

The fully-developed turbulent channel flow is simulated with two SGS models:

the dynamic Smagorinsky and WALE models. Run time memory requirement

for the WALE model is found to be 25% more than the dynamic model while

computational cost for both models is approximately the same. For the dynamic

model, the explicit test filtering is applied only in the homogeneous directions

(the streamwise and spanwise directions) in order to avoid any errors arising from

lack of commutativity of differentiation and filtering in the inhomogeneous (wall-

normal) direction. LES simulations were performed at four different Reynolds num-
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bers: Re = 2800, 6900, 11000 and 20720. These Reynolds numbers correspond to

Reτ = 180, 395, 590, and 1020 respectively. Simulation parameters detail is shown

in Table 3.4. Results from LES simulations were compared with the available DNS

data. The LES results give good agreement with the DNS data.

Simulation Re Lx × Lz Nx ×Ny ×Nz ∆x+ ∆z+ ∆y+
min ∆y+

max

Present 2800 20× 4 128× 64× 64 28.2 11.3 1.0 11.1
Moser et al. (1999) 2800 12× 4 128× 129× 128 16.8 5.6 0.4 5.8

Present 6900 7× 4 128× 128× 144 21.6 10.9 1.0 12.5
Moser et al. (1999) 6900 2π × π 256× 192× 192 10 6.5 - 6.5

Present 11000 6× 4 128× 128× 256 27.7 9.2 1.0 20.9
Moser et al. (1999) 11000 2π × π 384× 257× 384 9.7 4.8 - 7.2

Present 20720 6× 4 256× 192× 384 23.9 10.6 0.9 25.6
Abe et al. (2004) 20720 12.8× 6.0 2048× 384× 1536 6.38 4.25 0.15 7.3

Table 3.4: Simulation parameters for LES calculations

It is well known that the shear stress has a limiting behaviour of y3, and a good SGS

model should have the correct limiting behaviour of the SGS viscosity. The limiting

behaviour for the dynamic model and the WALE model is plotted in Figure 3.9.

Both models show approximately the correct behaviour of SGS viscosity. Nicoud

and Ducros (1999) suggested that the value of Cw should be constant for isotropic

turbulence. In the present study, different values for Cw were chosen to determine

its effect on correct wall shear stress prediction. It is found that at relatively high

Reynolds number (Reτ = 1020), the value of constant needs to be increased from

0.60 to 0.75 to produce correct wall shear stress prediction. For the turbulent channel

flow, a linear relation of Cw with Reτ can be calculated from the least square method

and is given as

Cw = c1Reτ + c2, (3.81)

where c1 = 2.4× 10−4 , c2 = 0.5 .

Test simulations were performed from both dynamic and WALE model for temporal

acceleration. Linear relationship in Equation 3.81 is used to increase Cw during the
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Re = 2800 Re = 6900

Re = 11000 Re = 20700

Figure 3.7: Comparison of log-law profiles for the dynamics and WALE models at
several Reynolds numbers for fully-developed turbulent channel. Data from Moser
et al. (1999) and Abe et al. (2004) are included for comparison.

acceleration. WALE model required approximately 8 Gigabytes of run time memory

as compared to 6 Gigabytes for dynamic model. The results from both models were

compared with the DNS data and are shown in Appendix A. Dynamic SGS model

exhibits a better agreement with the DNS data moreover the run time memory

requirement for dynamic model is less as compared to the WALE model. Therefore,

dynamic SGS model is selected for LES in the present study.
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Re = 2800 Re = 6900

Re = 11000 Re = 20700

Figure 3.8: Comparison of rms velocity fluctuations for dynamics and WALE models
at several Reynolds numbers for fully-developed turbulent channel. Data from Moser
et al. (1999) and Abe et al. (2004) are included for comparison.

a) b)

Figure 3.9: Limiting behaviour of the SGS viscosity at several Reynolds numbers
from a) the dynamic model, and b) the WALE model.
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Case-1 Case-2 Case-3
Reτ Cw Reτ Cw Reτ Cw Reτ Re

180 0.50 180 0.55 178 0.6 175 2800
395 0.55 394 0.60 392 0.65 389 6900
590 0.60 600 0.65 596 0.70 592 11000
1020 0.60 1042 0.75 1022 0.85 1006 20700

Table 3.5: Reτ variations for different values of WALE constant (Cw) for fully-
developed turbulent channel flow at several Reynolds number.

Figure 3.10: Relationship of Cw with Reτ .
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4
Preliminary Simulations.

4.1 Simulations details

Transient turbulent flow has been investigated in the past mainly by experiments.

There have been some CFD with turbulence modelling, but there is no DNS study

for temporal acceleration until now to study the near-wall turbulent structures re-

sponse. The present study uses DNS and LES to simulate turbulent channel flows

subjected to constant acceleration/deceleration. In the present chapter the details of

preliminary simulations performed for constant acceleration case is presented, while

the details of simulations for constant deceleration are presented in Chapter 8.

61



CHAPTER 4. PRELIMINARY SIMULATIONS.

4.1.1 Acceleration parameter

The non-dimensional acceleration parameter for the present study is given as:

f =
dU∗m
dt∗

, (4.1)

where U∗m and t∗ are the non-dimensional bulk-mean velocity and time respectively,

and f is the acceleration parameter. The experimental parameters of pipe experi-

ments conducted by He and Jackson (2000) are used in the present numerical cal-

culations. The acceleration parameter used by He and Jackson (2000) was defined

as:

γ =
D

uτ0

(
1

Um0

dUm
dt

)
, (4.2)

where, Um and D is the bulk-mean velocity and the pipe diameter respectively, and

the subscript 0 indicates the initial value. In this study, all the variables are non-

dimensionalised by the initial bulk-mean velocity (Um0) and the channel half-height

(h). With this non-dimensionalisation, Equation 4.2 can be rewritten as:

γ =
Um0

uτ0

2h

Um0

(
1

Um0

dUm
dt

)
,

= 2
Um0

uτ0

(
d(Um/Um0)

d(tUm0/h)

)
,

= 2
Rem0

Reτ0

(
dU∗m
dt∗

)
.

Finally, γ can be written as follows

γ = 2
Rem0

Reτ0

f. (4.3)

It can be easily shown that for γ = 6.1 used in experiments, the corresponding f

value is equal to 0.2 (Rem0 = 3500 corresponding to Rem0 = 7000 in the pipe exper-
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iments and Reτ0 ≈ 215). The corresponding reference time used in the simulations

is h/Um0 and this corresponds to 0.184 sec in the pipe experiment. The total time

taken for the acceleration in the experiment for γ = 6.1 was 5 sec, which corresponds

to the acceleration time of ξ = 27.2 in the present study, where ξ = t∗.

The Navier-Stokes equations for the temporal accleration are given as:

∂ui
∂xi

= 0, (4.4)

∂ui
∂t

+
∂

∂xj
(uiuj) = − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

− ∂

∂xj
τij + Pxδi1, (4.5)

where Px is the mean-pressure gradient (note that p contains only the fluctuating

component). Equations 4.4 and 4.5 are solved using a second-order accurate, fully

implicit method. Details of the numerical method are given in Chapter 3. The mean

pressure gradient was carefully updated at each time step so that the mass flow

rate changes according to the prescribed rate (determined by f). The acceleration

parameter is set to be f = 0 for a steady turbulent flow, and f has a positive value

when the flow is accelerated.

In fully-developed turbulent channel flow, either the mass flow rate or the mean

pressure gradient is kept constant. In case of constant mass flow rate calculations,

the mass flow rate is kept constant by allowing small variations in the mean pressure

gradient, Px, such that the instantaneous mean pressure gradient value fluctuates

around the time averaged mean pressure gradient value. The mean pressure gradient

Px, is calculated at each time step by the force balance between wall shear stress

and the total pressure gradient (∆P ). In case of temporal acceleration, the mean

pressure gradient is increased by adding f term. The inclusion of f term increases

the bulk-mean velocity linearly in time, resulting in a subsequent increase in uτ and

mean pressure gradient values.

Figure 4.1a shows the variation of the bulk-mean velocity during the temporal ac-

celeration for the three cases shown in Table 4.3. Constant linear acceleration was
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achieved for all the cases considered in the present study, whereas He and Jackson

(2000) reported some difficulties to achieve linear acceleration for the fastest acceler-

ation case (γ = 15.3 or f = 0.5 case) due to mechanical limitations of the hydraulic

valve. The time histories of the mean pressure gradient, during the temporal accel-

eration in Figure 4.1b, show that the mean pressure gradient increases all the time

during the acceleration, however the rate of change of the mean pressure gradient is

rather complex due to nonlinear response of uτ .

a) b)

Figure 4.1: Time histories of a) the bulk-mean velocity, and b) the mean pressure
gradient, during the constant acceleration for three f values tabulated in Table 4.3.
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4.1.2 Simulation parameters

DNS is performed by using approximately 190 million grid cells. The initial and final

Reynolds numbers of the simulation are Re0 = 3500 and Ref = 15000, respectively.

The final Reynolds number was chosen from the preliminary grid independence test.

Tables 4.1 and 4.2 show the simulation parameters and grid resolutions used for the

present DNS study. f = 0.2 was used in the present DNS and this value corresponds

to γ = 6.1 case used in the experiments by He and Jackson (2000).

Lx × Ly × Lz Re0 Ref f Te dRe/dξ γ

12h× 2h× 4h 3500 15000 0.20 16.4 700 6.1

Table 4.1: Simulation parameters used in DNS for temporal acceleration. Te, Re0

and Ref correspond the total time, the initial and final Reynolds numbers respec-
tively.

Lx × Ly × Lz Nx ×Ny ×Nz ∆x+ ∆y+
min ∆y+

max ∆z+

12h× 2h× 4h 768× 384× 640 12.5 0.4 9.7 5.0

Table 4.2: DNS grid resolutions used in the present study. Please note that the grid
resolution is calculated on the basis of the final uτ value for steady turbulent case
i.e., Reτ = 800 for Ref = 15000.

Simulation was started with the fully-developed turbulent channel flowfield at Re =

3500. The initial data are in very good agreement with the DNS of Kim et al.

(1987). Five temporally independent realisations were performed in order to take

ensemble averaging at each time instance. An increase in number of realisations

also increases the solution independence from the initial conditions. Total sampling

of data at each time location in the wall-normal direction comprises of information

from approximately 5 million grid cells. The spatial averaging is performed in the

streamwise and spanwise directions due to flow homogeneity, and as well as over top

and bottom halves of channel due to flow symmetry.
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The effect of various acceleration parameter values was studied using LES. Tables

4.3 and 4.4 show the simulation parameters for the present LES. The final Reynolds

number was increased to Ref = 22600 in LES, same as in He and Jackson (2000), as

compared to Ref = 15000 used in DNS. LES calculations were performed at three f

values in order to determine the effect of different acceleration rates. Approximately

40 million grid points were used in the present LES.

Lx × Ly × Lz Re0 Ref f Te dRe/dξ γ Maximum K

12h× 2h× 4h 3500 22600 0.20 27.3 700 6.1 1.42× 10−6

12h× 2h× 4h 3500 22600 0.33 16.3 1170 10.3 1.57× 10−6

12h× 2h× 4h 3500 22600 0.50 10.9 1750 15.3 1.73× 10−6

Table 4.3: Simulation parameters used in LES for temporal acceleration. Captions
same as of Table 4.1.

The LES grid resolution in the homogeneous directions were about twice the DNS

grid spacing. Please note that the grid resolution was calculated at the final Re

number and the grid resolution during acceleration would be always finer than this

final resolution. Dynamic subgrid-scale model (Germano et al., 1991; Lilly, 1992)

was used to account for unresolved SGS stresses. The test filtering was applied in

the homogeneous directions (the streamwise and spanwise directions) only.

Lx × Ly × Lz Nx ×Ny ×Nz ∆x+ ∆y+
min ∆y+

max ∆z+

12h× 2h× 4h 512× 192× 384 25.7 1.0 27.5 11.4

Table 4.4: LES grid resolutions used in the present study. Please note that the grid
resolution is calculated on the basis of the final uτ value for steady turbulent case
i.e., Reτ = 1100 for Re = 22600.

In order to study the differences between steady and unsteady flows, steady turbulent

channel DNS/LES calculations were performed at several Reynolds numbers. Table

4.5 shows the grid resolutions for steady simulations. For LES calculations, the same

grid is used for all the steady simulations.
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DNS/LES Re Reτ Nx ×Ny ×Nz ∆x+ ∆y+
min ∆y+

max ∆z+

DNS 6900 390 256× 192× 288 9.2 0.4 9.6 5.4
DNS 11000 590 384× 256× 480 9.2 0.4 11 4.9
DNS 15000 780 384× 384× 640 12.5 0.4 9.7 5.0
LES 7000 400 256× 192× 384 9.5 0.26 7.6 4.2
LES 9000 500 256× 192× 384 11.7 0.33 9.4 5.2
LES 12000 650 256× 192× 384 15.2 0.42 12.2 6.8
LES 15000 780 256× 192× 384 18.3 0.52 14.7 8.1
LES 17000 880 256× 192× 384 20.6 0.58 16.6 9.2
LES 20000 1015 256× 192× 384 23.8 0.67 19.1 10.6
LES 22600 1100 256× 192× 384 25.7 1.0 27.5 11.4

Table 4.5: Simulation parameters for steady turbulent DNS/LES. Domain size of
6h× 2h× 4h is used for all the simulations.
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4.2 Domain size test

The size of the computational domain is an important parameter in the turbu-

lent channel flow simulation. The size should be large enough in case of periodic

boundary conditions that there is no effect of periodicity of the domain on the flow

solutions. Jiminez and Moin (1991) studied the turbulent channel flow to deter-

mine the size of minimal flow unit in the streamwise and spanwise directions, which

would sustain acceptable turbulence level in the near-wall region (y+ ≤ 40). It was

found that the minimum size of the computational box should be in the range of

L+
x ≈ 250 ∼ 350 in the streamwise direction and L+

z ≈ 100 in the spanwise direc-

tion. Flow relaminarisation and decay of turbulence intensity was observed for sizes

below the critical sizes.

Table 4.6 shows the domain sizes used for the numerical investigations of turbulent

channel flow at several Reynolds numbers in the previous studies. It is clear from

the table that domain size of approximately 12 is used in streamwise direction for

Re = 2800, while relatively smaller domain size is employed at higher Reynolds

numbers calculations. This is partly due to the decrease in size of the near-wall

structures at higher Reynolds numbers.

Reference Lx × Lz Reτ L+
x × L+

z

Kim et al. (1987) 4π × 4π/3 180 2260× 750
Abe et al. (2001) 12.8× 6.4 180 2304× 1152
Rai et al. (1991) 4π × 4π/3 180 2260× 750

Chung (2005) 4π × 4π/3 180 2260× 750
Moser et al. (1999) 2π × π 395 2480× 1240
Abe et al. (2001) 6.4× 3.2 395 2528× 1264

Moser et al. (1999) 2π × π 590 3700× 1850
Abe et al. (2001) 6.4× 3.2 640 4096× 1280
Abe et al. (2004) 12.8× 6.4 1020 13056× 6528

Table 4.6: Computational domain sizes used for turbulent channel flow simulations.

A parametric study was conducted using LES to study the effect of length of com-
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putational domain for turbulent channel flow subjected to temporal acceleration.

Three lengths of the domain were selected as shown in Table 4.7. Computations

were performed for the three acceleration cases (cf. Table 4.3) to determine the

sensitivity of domain size with respect to acceleration rate.

Case Lx × Ly × Lz Nx ×Ny ×Nz ∆x+ ∆y+
min ∆y+

max ∆z+

Case-1 6h× 2h× 4h 256× 192× 384 25.7 1.0 27.5 11.4
Case-2 12h× 2h× 4h 512× 192× 384 25.7 1.0 27.5 11.4
Case-3 18h× 2h× 4h 768× 192× 384 25.7 1.0 27.5 11.4

Table 4.7: Domain sizes used in the domain size test.

Figure 4.2 shows the time histories of Reτ during the acceleration for the three

domains. It is clear that the sudden increase in Reτ value towards the middle stage

of the acceleration (Re ≈ 12000) for f = 0.20 is delayed for case-1 (the shortest

domain considered), while negligible difference is observed between case-2 and case-

3 domains. It is interesting to note that the difference between case-1 and case-2

domains increases with increase in acceleration rate, as clearly seen in Reτ history

graphs for f = 0.33 and f = 0.50 .

Figure 4.2: Comparison of Reτ histories for the domain sizes. Dashed lines denote
length case-1 results while solid lines denote case-2 and dashed-dot-dot lines denote
case-3 results.
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Figures 4.3 and 4.4 show comparison of the rms velocity fluctuations for the three

domains for f = 0.20 and f = 0.50 respectively. urms profiles show negligible differ-

ence between the three domains for f = 0.20, while vrms and wrms are significantly

smaller in the near-wall region for case-1 at Re = 12000. The suppression of vrms

and wrms is even more significant in the near-wall region for the fastest acceleration

(f = 0.5) case considered in the present study, as shown in Figure 4.4. It is clear

from this test that the small domain length (L = 6h) results in a significant sup-

pression of turbulent intensities in the near-wall region. This turbulence suppression

increases with increase in acceleration rate. Jiminez and Moin (1991) also reported

the turbulence decay for small domain size. Based on the results shown, domain

length of L = 12h is used in the present study.
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Figure 4.3: Comparison of the rms velocity fluctuations at several Reynold numbers
for f = 0.2. Dashed lines denote length case-1 results while solid lines denote case-2
and dashed-dot-dot lines denote case-3 results.
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Figure 4.4: Comparison of the rms velocity fluctuations at several Reynold numbers
for f = 0.5 case. For figure captions, see Figure 4.3.
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4.3 Time step size test

The time step size is an important parameter for the numerical simulation of un-

steady turbulent flows. The time step size has a dual effect namely; numerical

stability and numerical accuracy. Time step size restriction in terms of numerical

stability comes from the temporal discretisation scheme as well as the grid used in

the simulation. Flow configurations involving sharp velocity field gradients require

a very fine grid to capture flow physics accurately. This, in turn, restricts the time

step size considerably, if an explicit time advancement scheme is used. The numeri-

cal stability is associated with the viscous and convective terms in the Navier-Stokes

equations. The stability criterion associated with the non-linear term is known as

Courant, Friedrich and Lewy (CFL) condition, which is given as

∆t ≤
[
|U |
∆x

+
|V |
∆y

+
|W |
∆z

]−1

.

This condition should be satisfied for numerical methods using explicit time advance-

ment for the convective terms. The stability criterion associated with the diffusion

term is known as viscous stability and is given as

∆t ∝
[

1

∆x2
+

1

∆y2
+

1

∆z2

]−1

.

Most numerical methods commonly employ implicit treatment such as Crank-Nicolson

for the viscous terms due to its linearity while explicit treatment like Runge-Kutta

or Adams-Bashforth for the convective terms. Moin and Mahesh (1998) illustrated

the effects of time advancement on the error at different scales by the von Neu-

mann analysis and concluded that smaller scales are more sensitive to the time step

size. Fully implicit schemes are more useful in those situations where the discrete

equations represent frequencies significantly larger than those required by the flow
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physics. One example of such flow is the DNS study of flow over riblets (Choi and

Moin, 1993), where approximately 5 fold CPU savings were achieved using a fully

implicit solver.

The time step size for any turbulent flow is also restricted in terms of numerical

accuracy by the size of turbulent eddies. The time step size should be small enough

to capture the motion of the smallest turbulent scales. The smallest eddy scales

require a time step size to be of the order of Kolmogorov time scale (tk) which is

the ratio of the kinematic viscosity and the viscous dissipation and is given by:

tk =

[
ν

ε

] 1
2

,

where the viscous dissipation can be approximated as

ε ≈ u2
τUm
δ

.

Therefore, Kolmogorov time scale can be approximated as

tk ≈
δ

uτ
Re−1/2

m .

The time step size can also be determined by the flow physics. As the small-

est scales are usually present in the near wall region of the turbulent flow, this

time scale is defined in terms of wall units i.e., ν/u2
τ . A larger time step can

result in incorrect solutions as demonstrated by Choi and Moin (1994). They

used the fully implicit time integration scheme with Newton-Raphson iteration

method to decouple velocity variables and simulated unsteady turbulent channel

with ∆t+ = ∆t u2
τ/ν = 0.2, 0.4, 0.8, 1.2, 1.6 and 2. The flow relaminarisation was

observed for larger time step sizes. It was found that ∆t+ ≤ 0.4 gives accurate

prediction of velocity fluctuations. ∆t+ criteria provides the limit of time step in
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terms of numerical accuracy.

A few numerical studies of transient turbulent flows has mentioned about the time

step size used in their simulations. Howard and Sandham (2000) used a time step

size of 0.001 in global units i.e., ∆t = 0.001h/Um for their DNS of skewed turbulent

channel flow calculations. Coleman et al. (2009) used a time step size of 0.001

in initial wall units for their RANS calculations for laterally strained turbulent

channel flow. Holstad et al. (2010) used a time step size ∆t+ = ∆t u2
τ/ν = 0.013.

It is important to note that in all these numerical studies the bulk-mean Reynolds

number is constant and lies in relatively low range i.e., from Re = 2800 to Re = 7000

based on the half-channel height and the bulk-mean velocity.

In the present study, a parametric study of a time step size is performed to make

sure that the solution accuracy is not affected by the time step size. Table 4.8 shows

the details of the simulations performed. Test simulations were performed with LES

calculations for the slowest acceleration (f = 0.20) case considered in the present

study. As the near-wall structures become smaller at higher Reynolds numbers, the

time step size in global units should be reduced during the acceleration. In the

present study, three ranges of the time step size variations were identified in terms

of Reynolds number. Figure 4.5 shows the time histories for the turbulent kinetic

energy (k) and the turbulent shear stress (−uv). Please note that the time history

is shown for the maximum value and the centreline value. It can be seen that the

centreline time histories are largely insensitive to the different time step sizes used.

Based on the above test simulations, ∆t = 0.003 (or ∆t+ ≤ 0.1) was chosen for

Range-1 (3500 < Re < 11000), ∆t = 0.002 (or ∆t+ ≤ 0.1) for Range-2 (11000 <

Re < 17000) and ∆t = 0.001 (or ∆t+ ≤ 0.06) for Range-3 (17000 < Re < 22600).
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Range Re0 Ref Case-1 Case-2 Case-3

Range-1 3500 11000 0.001 0.003 0.005
Range-2 11000 17000 0.001 0.002 0.003
Range-3 17000 22600 0.0005 0.001 0.002

Table 4.8: Details of simulations for time step size parametric study.

Range-1

Range-2

Range-3

Figure 4.5: Time histories of the turbulent kinetic energy and turbulent shear stress
for different cases. Time histories of maximum and centreline values are plotted.
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4.4 Turbulent statistics

In case of turbulent channel flow, the turbulent statistics are averaged over the

homogeneous directions (the streamwise and spanwise directions) as well as across

the centreline due to flow symmetry. Turbulent statistics are averaged over time

for fully-developed turbulent statistics calculation to achieve statistical convergence

such that the averaged values does not change with the inclusion of new data. In

the case of the channel flow subjected to temporal acceleration, time averaging can

not be performed. Therefore, to improve the statistics and reduce the effect of

initial conditions, ensemble averaging is performed over 5 realisations for DNS and

10 realisations for LES. In the coming subsection, turbulent kinetic energy budget

analysis, Reynolds stress anisotropy tensor analysis and vortex identification method

used in this study are briefly discussed.

Turbulent kinetic energy (TKE) budgets

The transport equations for Reynolds stress can provide a thorough insight into the

turbulence behaviour for each stress component. The transport equations for the

incompressible turbulent flow are given as

∂uiuj
∂t

+ Cij = Pij + Tij + Πij + Φij +Dij + εij. (4.6)

Here

Cij = Uk
∂

∂xk
uiuj,

Pij = −
(
uiuk

∂Uj
∂xk

+ ujuk
∂Ui
∂xk

)
,

Tij = − ∂

∂xk
uiujuk,

Πij = −1

ρ

(
∂

∂xi
puj +

∂

∂xj
pui

)
,
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Φij =
1

ρ
p

(
∂ui
∂xj

+
∂uj
∂xi

)
,

Dij = ν
∂2

∂x2
k

uiuj,

εij = −2ν
∂ui
∂xk

∂uj
∂xk

,

where Cij, Pij, Tij,Πij,Φij, Dij and εij denote the turbulent convection, production,

turbulent transport, pressure-transport, pressure-strain correlation, viscous diffusion

and viscous dissipation terms. Mansour et al. (1988) referred the sum of pressure-

transport and pressure-strain as the velocity-pressure gradient term.

Figure 4.6 shows the turbulent kinetic energy budgets for uu, vv, ww and −uv. The

DNS results are in good agreement with Moser et al. (1999). The area of interest in

the case of turbulent budget terms is the near-wall region where most of turbulent

activities occur. For uu transport equation, the viscous dissipation at wall is bal-

anced by the pressure-strain term. The production term increases sharply near the

wall with maximum at y+ ≈ 15. The pressure-strain term decreases sharply from

the wall to become negative and increases after reaching a local minimum. The

turbulent transport term increases similarly as that of production initially before

following the trend of the pressure-strain term. The pressure transport term is zero

for uu and the viscous dissipation is balanced by the the production term in the

outer layer region.

The production term is zero in case of vv and ww transport equation as the energy

is transferred from the mean flow to the near-wall turbulent structures through the

uu production term. In vv budgets, the pressure transport and the pressure-strain

terms balance each other in the very near-wall region while the pressure-strain term

has positive contribution in the outer layer region and is balanced by the viscous

dissipation term. The pressure-strain term is largely responsible for energy transfer

from the streamwise component to the other two normal stress components. In ww
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transport equation, the pressure-strain term and the viscous dissipation term are

dominant terms making positive and negative contributions respectively. For off-

diagonal component −uv, the production term has negative contribution, which is

balanced by the pressure-strain term.

uu budget terms vv budget terms

ww budget terms uv budget terms

Figure 4.6: The Reynold stress budget profiles in wall units. Steady data (dashed
lines with symbols) of Moser et al. (1999) are also included. u4

τ/ν is used for nor-
malisation.
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Reynolds stress anisotropy tensor analysis

Turbulent anisotropy can be analysed through the use of the Reynolds stress anisotropy

tensor (τ ′ij) (Lumley and Newman, 1977) which is given as:

bij =
τaij
τkk

=
u′iu
′
j

2k
− δij

3
, (4.7)

where τaij and τkk is the anisotropic and isotropic parts of the Reynolds stress tensor

respectively and k is the turbulent kinetic energy. The non-dimensional anisotropy

tensor bij has zero trace and its second and third invariants are given as:

II = −1

2
bijbji, (4.8)

III =
1

3
bijbjkbki. (4.9)

In case of axisymmetric turbulence, b22 and b33 normal components becomes equal

and the off-diagonal component must vanish i.e., b12 = 0 and the invariants reduces

to an axisymmetric relationship (Krogstad and Torbergsen, 2000).

III = ±2

(
−II

3

)3/2

. (4.10)

Lee and Reynolds (1985) proposed a new parameter A to define the axisymmetric

turbulence

A =
III

2(−II/3)3/2
. (4.11)

Equation 4.10 can be deduced from Equation 4.11 by substituting A = ±1. Lee

and Reynolds (1985) proposed that A = 1 indicates the “rod-like” axisymmetric

turbulence state which is represented by the dominance of the streamwise component

b11 over the other two components. On the other hand, A = −1 indicates the “disk-

like” axisymmetric turbulence state, which is encountered in case if the sum of b22
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and b33 is greater than b11. Two invariant functions are given by

F = 1 + 9II + 27III, (4.12)

G = −(III/2)2/(II/3)3, (4.13)

where F and G are the two-component and axisymmetric turbulence state param-

eters respectively. F = 0 indicates the two-component turbulence while F = 1

represents the isotropic turbulence. The two-component turbulence usually occurs

in the viscous sublayer in case of fully-developed turbulent channel where the wall-

normal fluctuations are suppressed due to splashing effect (Chung et al., 2002).

Lumley and Newman (1977) proposed the anisotropy invariant maps (AIM) for

analysing the turbulent anisotropy. AIM are the cross plots of the invariant func-

tions defined above i.e., −II and III and the bounds of AIM are well explained

by Simonsen and Krogstad (2005), as shown in Figure 4.7 showing the different

states of turbulence. Turbulence must exist within the bounds of AIM surrounded

by three lines which defines the limits of all physically realizable turbulence. One-

component turbulence exists where the contribution of the streamwise component is

significantly higher than the sum of the other two components. Two-component tur-

bulence exists in the region where contribution from one component is significantly

smaller than the other two components. This turbulence state lies in the viscous

sublayer where the wall-normal component is suppressed. The rod-like axisymmet-

ric turbulence state exists in the outer layer region where the turbulent shear stress

contribution is negligible and contributions from b22 and b33 are non-trivial. The

isotropic turbulence state exists in the centreline region for the turbulent channel

where all three normal stress components are approximately equal and shear stress

is equal to zero.

Figure 4.8 shows the AIM for the fully-developed turbulent channel flow at several

Reynolds numbers, i.e., Re = 3500, 6900, 11000 and 15000. It is clear from the
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a) b)

Figure 4.7: Anisotropy invariant map showing the limiting states of turbulence (Si-
monsen and Krogstad, 2005). The arrows in a) represent the turbulent fluctuations
that correspond to each of the limiting states

figure that the near-wall turbulence in viscous sublayer exists in the two-component

state due to suppression of the wall-normal stress component. The right hand corner

value where the turbulent field is closest to the one-component state is indicative

of viscous sublayer boundary (Chung et al., 2002). Turbulence shifts from two-

component turbulence to the rod-like axisymmetric state in the buffer layer, and

remains a little away from pure axisymmetric line (left lower line) due to the non-

trivial turbulent shear stress contribution. As the distance from the channel wall

increases and the contribution from the turbulent shear stress component decreases

in the outer layer, turbulence becomes more axisymmetric and subsequently, acquires

nearly an isotropic state at the channel centre. It is worth noting that the near-wall

region becomes more isotropic with an increase in Reynolds number due to smaller

near-wall structures at higher Reynolds numbers, resulting in a reduction in the

viscous sublayer thickness (in global units). It is also worth mentioning that the

distance from the axisymmetric line increases with an increase in Reynolds number

which is indicative of an increase in turbulent shear stress contribution in the buffer

layer at higher Reynolds numbers.
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Figure 4.8: AIM for fully-developed turbulent channel flow at several Reynolds
numbers.
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Vortex identification

Vortex dynamics plays a crucial part in governing the turbulence physics. Substan-

tial efforts have been put in order to define the vortex. Lugt (1979) proposed that

a vortex is a multitude of material particle rotating around a common centre while

Chong et al. (1990) proposed a more mathematical interpretation of a vortex as a

region of complex eigenvalues of velocity gradient tensor (∆u). A comprehensive

literature review of vortex identification methods is given in Jeong and Hussain

(1995). It is well known that the turbulent shear flow contain spatially-coherent,

temporally-evolving structures called coherent structures and that the evolution of

these coherent structures is governed by the vortex dynamics. Many efforts have

been made in the past to identify the coherent structures in turbulent shear flows

which include pressure minimum, closed streamlines, and iso-vorticity as discussed

by Jeong and Hussain (1995). They proposed a new method to identify coherent

structures for the incompressible turbulent flow by using eigenvalues of the sym-

metric tensor S2 + Ω2 where S and Ω are the symmetric and antisymmetric part

of the velocity gradient tensor. It was suggested that the negative value for second

eigenvalue of S2 + Ω2, i.e λ2, gives the correct representation of the vortex core. λ2

represents the local pressure minimum in a plane when the contribution of unsteady

irrotational strains and viscous terms are discarded. Vortex geometry and topology

are obtained by interconnecting the negative λ2 values. This method is valid for

low as well as high Reynolds numbers due to its ability to successfully capture the

pressure minimum and the vortex core.

Jeong et al. (1997) used the λ2 criteria to study the topology of coherent structures

in the fully-developed turbulent channel. Figure 4.9 shows the near-wall coherent

structures for the fully-developed turbulent channel at several Reynolds numbers.

The iso-surfaces are plotted at the corresponding maximum value of λ′2. Here “′”

denote the rms fluctuations. The size of the near-wall structures decreases consid-
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erably with the increase in Reynolds number. Figure 4.10 shows the λ′2 profiles for

the fully-developed turbulent channel flow cases at several Reynolds numbers. The

maximum λ′2 in wall units is approximately 0.015 and its maximum wall-normal

location is y+ ≈ 20.

Re = 2800 Re = 6900

Re = 11000 Re = 15000

Figure 4.9: λ2 plots for fully-developed turbulent channel flow at several Reynolds
numbers.

Figure 4.10: Profiles of rms λ2 fluctuations at several Reynolds numbers.
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5
DNS of Temporal Acceleration.

In this chapter, DNS results of a fully-developed turbulent channel subjected to

constant temporal acceleration are presented. The effect of the imposed acceleration

is clearly shown by comparing the results with the corresponding fully-developed

turbulent flow statistics at four Reynolds numbers. The fully-developed turbulent

flow simulations were performed at four Reynolds numbers: Re = 3500, 6900, 11000

and 15000. The wall shear stress, mean velocity, rms fluctuations, turbulent kinetic

energy budgets and quadrant analysis are discussed in detail.
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5.1 Simulation parameters

DNS was performed for a fully-developed turbulent channel flow subjected to con-

stant acceleration. The initial Reynolds number based on the bulk-mean velocity,

Um0, and the half-channel height, h, was Re0 = 3500 (or Reτ ≈ 215 based on the fric-

tion velocity), and the final Reynolds number was Ref = 15000 (or Reτ ≈ 800). He

and Jackson (2000) conducted experimental investigation of a turbulent pipe flow

subjected to constant temporal acceleration, in which the initial Reynolds num-

ber was Re0 = 3500 and the final Reynolds number used was Ref = 22600 (or

Reτ ≈ 1100). The acceleration parameter (f) was set equal to 0.2 in this study

which is analogous to γ = 0.61 in the pipe experiment. Ensemble averaging was

taken over 5 independent realisations to improve the flow statistics. The separation

between each realisation is approximately 100 (tu2
τ0/ν). Simulation parameters used

in the present DNS study are shown in Table 5.1.

Lx × Ly × Lz Nx ×Ny ×Nz ∆x+ ∆y+
min ∆y+

max ∆z+

12h× 2h× 4h 768× 384× 640 12.5 0.4 9.7 5.0

Table 5.1: Simulation parameters used in DNS based on Reτ = 800.

Initial condition

First, a DNS of steady channel flow at Re = 3500 was performed to provide the

initial conditions for the main simulations. The mean velocity (U) and rms velocity

fluctuations (ui,rms) compared very well with the DNS results of Kim et al. (1987) for

Reτ = 180. In Kim et al. (1987), Cf = 8.18× 10−3 at Re = 2800; the displacement

and momentum thickness are δ∗/δ = 0.141 and θ/δ = 0.087, and the shape factor

is H = 1.62. As shown in Table 5.2, these are very close to the initial values used

in this study. The fully-developed turbulent state is confirmed by ensuring a linear
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total shear stress profile.

The flow rate of the channel flow was increased linearly in time from the initial

value of Re = 3500 to the final value of Re = 15000 over a total excursion time of

Te = 16.43h/Um0. The rate of change of Re during the acceleration is constant:

dRe

dξ
=

(Ref −Re0)

Te
. (5.1)

In this study, dRe/dξ = 700, where ξ = t h/Um0. Note that the local Reynolds

number is equivalent to the time elapsed after the onset of the acceleration since the

mass flow rate increases linearly in time:

Re = Re0 + (Ref −Re0)ξ/Te. (5.2)

Present Kim et al. (1987)

Re 3500 2800
Reτ 210 180
Cf 8.18× 10−3 7.98× 10−3

δ∗/δ 0.140 0.141
θ/δ 0.089 0.087
H 1.56 1.62

Table 5.2: Initial mean flow variables of the simulation.

5.2 Wall shear stress

Dean and Bradshaw (1976) proposed an experimental correlation between Cf and

Rem:

Cf = 0.073Rem
−0.25, (5.3)

where Rem is based on the channel height (H = 2h), so Rem = 2Uh/ν = 2Re.
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Equation 5.3 can be rewritten in terms of Re:

Cf = aRe−0.25, (5.4)

where a = 0.073× 2−0.25 ≈ 0.061. Then, the rate of change of Cf can be calculated

using Equation 5.1:

dCf
dξ

=
dCf
dRe

dRe

dξ
, (5.5)

= −0.25aRe−1.25dRe

dξ
,

= −10.7Re−1.25. (5.6)

Similarly, Equation 5.4 can be rewritten for Reτ :

Reτ = cRe7/8, (5.7)

where c =
√
a/2 ≈ 0.175. The rate of change of Reτ can be calculated using

Equation 5.1:

dReτ
dξ

=
dReτ
dRe

dRe

dξ
, (5.8)

=
7

8
cRe−1/8dRe

dξ
,

= 107.4Re−1/8. (5.9)

dReτ/dξ is about 38.7 at Re0 = 3500, and reduces to 32.3 at Ref = 15000. From

Equation 5.7, U+
m can be calculated:

Um/uτ =
1

c
Re1/8. (5.10)

Figure 5.1 shows the variations of Reτ during the acceleration. Four distinct stages
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a) b)

Figure 5.1: Variation of the wall shear stress during the acceleration. a) Reτ , and
b) duτ/dξ, the rate of change of Reτ . Steady DNS data and Dean and Bradshaw
(1976) correlation from Equations 5.7 and 5.9 are included for comparison.

of near-wall turbulence response can be observed here: the initial transient (IT)

stage (stage I), the weak time-dependence (WT) stage (stage II), and the strong

time-dependence (ST) stage (stage III). In chapter 7, it is found that the ST stage

is followed by the pseudo-steady (PS) stage (stage IV). The similar response of the

wall shear stress was reported in the previous LES study of a pipe flow subjected to

temporal acceleration (Jung and Chung, 2007).

At the onset of acceleration, uτ increases rapidly in the stage I (3500 < Re < 4300,

or 0 < ξ < 1). Initially, duτ/dt is several times larger than the steady corresponding

value, and this is due to a uniform increase in the mean velocity across the channel.

As a result, uτ is significantly larger than the steady corresponding values at the

same Re numbers. duτ/dt decreases sharply and the stage I range is defined where

the rate of change of uτ is larger than the steady value calculated in Equation 5.9.

In the stage II (4300 < Re < 12000, or 1 < ξ < 12), the rate of change of uτ is

much smaller than the steady values. In the middle of the stage II, duτ/dt is smaller

than half of the steady value. For ξ ≥ 9, the wall shear stress begins to increase,

and at the end of the WT, duτ/dt is the same as the steady value. In the stage

III (12000 < Re < 16000, or 12 < ξ < 17), the wall shear stress increases rapidly.
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The largest duτ/dt is observed at ξ = 13.9 with its value approximately an order of

magnitude smaller than the imposed acceleration rate (f = 0.2). The rate of change

of uτ starts decreasing towards the end of the stage III, and Reτ has almost the

steady value at the end of the stage III (Re = 15000). In the PS stage (Re > 15000,

or ξ > 17), the near-wall turbulence approaches the pseudo-steady state (this is

shown in Chapter 7).

Figure 5.2 shows the variation of the ratio of the bulk-mean velocity to uτ i.e.,

(Um/uτ = U+
m) and the skin friction coefficient, Cf = τw/(

1
2
ρU2

m). In the steady

flow, the skin friction coefficient decreases with the Re number: Cf = 0.061Re−0.25

as in Equation 5.4. Cf decreases by 30% from Cf = 7.98 × 10−3 at Re = 3500 to

Cf = 5.54×10−3 at Re = 15000. As the bulk-mean velocity increases linearly during

the acceleration, U+
m decreases sharply at the start of acceleration and lowest value

is reached during the stage I at Re = 3950. It starts to increase afterwards due to

the subsequent near-wall flow adjustment to the imposed acceleration until the end

of the stage II (Re = 11800). Finally, U+
m decreases towards the steady value during

the stage III (Equation 5.10). Cf exhibits exactly the opposite trends as observed

for U+
m, showing an initial increase during the stage I followed by a reduction in

the stage II at exactly the same time as that for U+
m during acceleration. This

phenomenon of an initial increase and a subsequent reduction in the skin friction

coefficient is reported in previous studies of the boundary layer subjected to the

acceleration by favourable pressure gradient (FPG) (Sreenivasan, 1982; Fernholz

and Warnack, 1998).

Figure 5.3 shows the variation of boundary layer parameters during acceleration.

The displacement thickness (δ∗) and the momentum thickness (θ ) decrease after

the onset of acceleration in an identical manner until both reach a minimum level

at Re = 11350 and Re = 11100 respectively. It is followed by a subsequent increase

during the stage III. It is worth noting that the timing for the minimum values of
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a) b)

Figure 5.2: Variation of a) Um/uτ = U+
m, and b) Cf during acceleration. Dean and

Bradshaw (1976) correlation from Equation 5.10 is included for comparison.

Cf , δ
∗ and θ occur approximately at the end of the stage II. On the other hand,

the shape factor exhibits a different trend; it decreases from the start and reaches

its minimum value at Re = 5500 and a subsequent gradual increase is observed

during the stage II with a local maximum at Re = 10850. This two-stage behaviour

of shape factor has been reported in several studies of boundary layer subjected to

FPG (Blackwelder and Kovasznay, 1972; Fernholz and Warnack, 1998; Bourassa and

Thomas, 2009). It is suggested that the flow depicting the two-stage shape factor

variation accompanied with a significant reduction in Cf value is representative of

a laminar-like mean velocity profile.

Figure 5.3: Variation of mean flow properties during the acceleration.
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5.3 Mean velocity

The wall shear stress and boundary layer parameters provide the velocity informa-

tion only in the very near-wall region. The mean velocity profiles are plotted at

several Reynolds numbers during the acceleration in Figure 5.4. The corresponding

steady profiles are also included for comparison. During the stage II at Re = 7000,

the mean velocity in the near-wall region is larger than the steady value while an

opposite trend is observed in the core region. The similar trend was also observed in

the pipe experiments of He and Jackson (2000). The flatness of the mean velocity

profile is more evident at Re = 11000, indicating the lack of response of the near-

wall turbulence to the imposed acceleration. Blackwelder and Kovasznay (1972)

attributed the flatness of mean velocity profile for boundary layer flow to the rapid

acceleration in their FPG study. The mean velocity profile at Re = 15000 shows that

the near-wall mean velocity has adjusted itself to the acceleration while the centre-

line mean velocity is still under-predicted. This slow response of the mean velocity

in the core region was also found in boundary layer subjected to FPG (Fernholz and

Warnack, 1998). In their case, this effect was attributed to strong upstream history

effect affecting the larger structures in outer region while in the present case it is

due to the dominance of mean pressure gradient in the core region.

The difference of the mean velocity can be seen more clearly, when plotted in local

wall units. The U+ profiles deviate significantly from the log-law profile during

the acceleration. The log-law profile is shifted downward at Re = 5000 due to a

significantly higher uτ value during the initial stages of acceleration. A lower value

of the wall shear stress during the stage II results in an upward shift of the log-law

profile and this upward shift is most prominent at Re = 12000. A similar upward

shift of the log-law profile was also reported in several turbulent boundary layer

experiments subjected to FPG (Escudier et al., 1998; Fernholz and Warnack, 1998).

The U+ = y+ relationship in the viscous sublayer remains valid for y+ ≤ 2 at
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a) b)

Figure 5.4: Mean velocity profiles at several Re numbers during the acceleration in a)
global units, and b) wall units. The local friction velocity (uτ ) is used to calculate
U+ and y+. Solid lines indicate the unsteady profiles while symbols indicate the
steady profiles.

Re = 5000. It is interesting to note that the log-law does not hold at Re = 7000

even when the unsteady uτ is equal to its steady counterpart (cf. Figure 5.1). This

is partly due to the delay in turbulence response in the near-wall region resulting

in relatively lower velocity gradient and a slug like uniform response of the mean

velocity in the core region. The standard log-law profile is approximately recovered

towards the end of the stage III at Re = 15000.

Figure 5.5: Log-law profiles during the stage III. Solid lines denote the unsteady
profiles while dashed line with symbols denote the steady profile at Re = 15000.

Log-law profiles are plotted in Figure 5.5 at several Re during the stage III to
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demonstrate the recovery process. The velocity profile is furthest from the log-law

profile towards the end of the stage II (Re = 11000), and the log region has a much

smaller gradient, indicating that the mean velocity field still has the characteristics

of the initial turbulence. The new log-law region begins to develop from Re = 12000

with an increase in the friction velocity. The velocity gradient recovers first from

the wall region, and then moves outwards as near-wall turbulence is adjusted to the

acceleration.

a) b)

Figure 5.6: Variation of the defect law profiles during the acceleration in a) entire
acceleration, and b) the stage III only. The initial friction velocity (uτ0) is used to
calculate defect law profile.

The deviation of the mean velocity from the steady corresponding values in the core

region can be clearly seen in the velocity defect law profiles during the acceleration

in Figure 5.6. It shows that the mean velocity in the core region increases more

uniformly at Re = 7000, resulting in significantly lower values than the steady

corresponding values. The lower values of defect law were also reported in boundary

layer subjected to FPG (Blackwelder and Kovasznay, 1972; Fernholz and Warnack,

1998). The mean velocity gradient in the core region remains largely unchanged

during the stage II, and starts to adjust itself rapidly with the generation of new

turbulence during the stage III.

Figure 5.7 shows the variation of the mean velocity at several y locations across the
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Figure 5.7: Variations of the mean velocity during the acceleration at several y
locations across the channel.

channel. It is again evident that the core region velocity is unaffected by the wall

effect and increases almost linearly during the acceleration while in the near-wall

region this linear increase occurs only at the beginning of the acceleration as the wall

effect increases. In the region of y/h ≤ 0.01, the wall constraint is more prominent

and it does not allow the linear increase in the mean velocity. This relatively lower

increase of the mean velocity in the near-wall region results in the under-prediction

of the wall shear stress towards the end of the stage II and this subsequently results

in an abrupt increase in the near-wall mean velocity during the stage III. Similar

trends were observed in the pipe flow experiment of He and Jackson (2000). It is

interesting to see that the mean velocity increases by the same amount at all y

locations in the stage I. Near the wall, the velocity increase soon becomes weaker

due to the no-slip condition. On the other hand, the linear increase of the mean

velocity away from the wall (y > 0.3) is observed throughout the acceleration.

Figure 5.8 shows 2D variation of the wall-normal gradient of the mean velocity,

dU/dy, in the near-wall region. Please note that the wall dU/dy value increases

14.5 times during the acceleration. The velocity gradient increases only in the near-
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a)

b)

c)

Figure 5.8: Variations of a) the mean velocity, b) the wall-normal gradient of the
mean velocity, dU/dy, and c) the rate of change of the mean velocity, dU/dξ, during
the acceleration.

wall region during the stage II due to the no-slip condition while it remains largely

unchanged in the core region. The near-wall high shear region grows in size with

time. This process is mainly due to viscous diffusion and can be approximated by

Stokes’ first problem. The Stokes layer thickness for u/U = 0.9 is δs ≈ 2.32
√
νt

(White, 2006, pp 131). The Stokes layer thickness at the end of the stage II is

roughly δs = 0.07. This is very close to the size of the high shear region in Figure

5.8b. At the end of the stage II, the majority of the core region is still insensitive to

the acceleration, and dU/dy increases substantially only in a small near-wall region

(y ≤ 0.07). The mean velocity gradient at wall increases rapidly during the stage

III, resulting in subsequent change in the mean velocity in the core region. This
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indicates that another mechanism other than the viscous diffusion is responsible for

the response of turbulence during the stage III.

2D variation of dU/dt during the acceleration is also shown in Figure 5.8c. This

shows that the mean velocity changes monotonically in the core region for most

part of the imposed acceleration. However, the velocity in the near-wall region

remains largely unchanged due to wall constraint, and it increases at a relatively

smaller rate during the stage II. There is an abrupt increase in the near-wall mean

velocity in the stage III (13 < ξ < 16). This abrupt change in the near-wall mean

velocity results in a subsequent readjustment of the mean velocity profile in the

outer region (as shown in the mean velocity profile at Re = 15000 in Figure 5.4).
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5.4 RMS velocity fluctuations

The rms velocity fluctuation profiles are shown in Figure 5.9 at several Reynolds

numbers during the acceleration. The response of the streamwise fluctuations is

delayed at the start, and there is no increase in urms above the initial steady values

at Re = 5000. As the acceleration proceeds, urms starts to increase only in the near-

wall region (can be clearly seen in urms profile at Re = 7000), but the response is

confined only to the near-wall region. The y location for the maximum urms remains

largely unchanged during the stage II, and it moves much closer to the wall during

the stage III. The maximum urms almost recovers the steady value at Re = 15000.

The delay in response is even increased in the wall-normal and spanwise fluctuations

with a considerable increase only observed during the stage III. vrms and wrms are

frozen until Re = 7000 and increase very little at Re = 11000. Moreover, the

maximum vrms and wrms values always remain substantially smaller than the steady

corresponding values throughout the acceleration. It is interesting to note that the

turbulence intensity is largely unchanged in the core region during the acceleration,

and only start to increase after the initiation of the near-wall turbulence propagation

in the core region. The insensitivity of core region fluctuations is also reported

in the experimental study of boundary layer subjected to FPG (Blackwelder and

Kovasznay, 1972).

Figure 5.10 shows the time development of the rms velocity fluctuations at several

y locations during the acceleration. It is again clearly seen that urms responds first

only in the near-wall region (y ≤ 0.3) after an initial delay of approximately 2ξ

while it remains unchanged in the core region throughout the acceleration. vrms

and wrms exhibit much slower response, and their delay is much longer (ξ ≤ 8) as

compared to the initial delay in urms response. Similar trends were also observed

in the pipe experiment of He and Jackson (2000). The response time of rms fluctu-

ations increases with the distance away from the wall, indicating that the delay in
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Figure 5.9: RMS velocity fluctuation profiles during the acceleration. Steady profiles
(dashed lines with symbols) are included for comparison.

turbulence propagation in the core region. This is consistent with the findings re-

ported in turbulent boundary layer subjected to FPG (Piomelli et al., 2000). There

is a noticeable decrease in urms at y = 0.05h in the near-wall region towards the
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end of the stage III. This can be explained by the fact that the energy is extracted

from the mean flow by the streamwise component of velocity fluctuations which is

subsequently redistributed to the lateral components.

RMS fluctuations normalised by the local mean velocity in Figure 5.10 show inter-

esting trends. Steady data at several time instances are included for comparison.

One clear effect of the acceleration is the breakdown of equilibrium of turbulence

with the mean flow during the stage I and the stage II. In the very near-wall region

(y = 0.005h), there is an abrupt decrease in the turbulence intensity, during the

stage I and the stage II of the acceleration. This equilibrium breakdown can be

attributed partly to the sudden increase in the near-wall mean velocity and partly to

the lack of turbulence response at the onset of the acceleration. Similar reduction of

urms,i/U was also reported in FPG experimental study of (Blackwelder and Kovasz-

nay, 1972). urms/U increases above the corresponding steady value in the near-wall

region (y ≤ 0.1 ) towards the end of the stage III. The reduction of urms,i/U below

the steady value becomes smaller with an increase in the distance from the wall, and

it remains below the steady corresponding values throughout the acceleration. This

trend implies the dominance of the acceleration over turbulence in the outer region.

On the other hand, the inner layer first regains this equilibrium and it propagates

subsequently in the outer region. This behaviour is consistent with the two-layer

model proposed by Sreenivasan (1982) for boundary layers subjected to FPG. He

suggested that the outer layer flow is largely driven by mean pressure gradient in the

initial stages of acceleration while the inner layer flow becomes insensitive (evident

from the delay in response) to the imposed acceleration. Moreover, the flow tends to

be laminar but does not necessarily always become laminar and this stage of flow was

referred as Laminarescent. The flow reversion to the fully laminar state is depen-

dent upon the acceleration rate. If the acceleration rate is below the critical value

required for relaminarisation, the flow reverts back to the pseudo-steady turbulent

state during the acceleration.
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Figure 5.10: Variation of velocity fluctuations at several y locations across the chan-
nel during the acceleration.
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It is clear from the rms velocity profiles and time histories that turbulence responds

first in the near-wall region after exhibiting an initial delay during the stage I and

the stage II. This delay in response can be clearly seen in the 2D variation of rms

velocity fluctuations, normalised by the local uτ value, as shown in Figure 5.11. All

three components decay at the start of the acceleration due to abrupt increase of uτ

in the stage I as shown in Figure 5.1. This is followed by a subsequent increase of the

rms values in an anisotropic manner. The similar variations of normalised turbulent

intensities were also reported in boundary layer subjected to FPG (Fernholz and

Warnack, 1998). Figure 5.11 clearly shows that the streamwise component responds

first in the near-wall region while the other components remain unchanged at that

time and starts to respond much later. The pseudo-steady state is achieved only by

u′+ at Re = 15000. The delay in the near-wall turbulence response is similar for the

wall-normal and spanwise components.

A parameter is introduced in this study to make comparison of different flow vari-

ables easy.

qN = (q(t)−Ms)/(Mf −Ms), (5.11)

where Ms and Mf are the steady values of flow property “q” at the initial and

final Reynolds numbers, and the superscript “N” denotes the normalisation by the

corresponding steady value difference. The normalisation by steady value difference

is performed in order to determine to what extent a flow properly has recovered

during the acceleration. The response criterion is denoted by ξ%n, where ξ%n is the

time required for a flow property to reach n percent of the steady values difference.

In addition, a parameter Rp is defined to quantify the total recovery with respect

to the final steady value.

Table 5.3 shows the time taken by the maximum values of rms velocity fluctuations

to reach 50 percent of the respective steady difference. It clearly shows that u′max
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Figure 5.11: Variations of velocity fluctuations in wall units during the acceleration.
Initial steady values are included for comparison. The local friction velocity (uτ ) is
used for scaling in wall units.

achieves 50 percent of the steady difference first at ξ = 10.7 while the response

of the other two components is delayed further. The value of Rp shows that only

the streamwise component has recovered its maximum intensity towards the final

stage of the acceleration. Please note that this quantification of delay in only for the

near-wall region. The recovery time of turbulent intensities increases as the distance

from the wall increases (cf. Figure 5.9).

The earlier response of u′Nmax is also clearly seen in Figure 5.12a showing the variations

for maximum rms velocity fluctuations u′Ni,max . It is interesting to note that u′Nmax

overshoots the final steady value towards the end of the stage III (Re ≈ 13500, or

ξ = 14.4) and returns below the final steady value afterwards. This behaviour can

be clearly seen in urms profiles in Figure 5.12b where the u′max value at Re = 15000
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is smaller than the Re = 14000 value. This overshooting is indicative of a sudden

response of the near-wall turbulence after an initial delay. The subsequent reduction

of the maximum streamwise intensity indicates that the energy redistribution from

the streamwise component to the other two components becomes more dominant

than the energy extraction by urms from the mean flow. A sharp change in the y

location for u′max towards the wall can be clearly seen in Figure 5.12b indicating the

production of new turbulence during the stage III.

Flow Property ξ∗%50 Rp Ms Mf/Ms

u′Nmax 10.7 0.98 0.160 3.7
v′Nmax 13.9 0.88 0.053 4.6
w′Nmax 14.0 0.86 0.070 4.6

Table 5.3: Response times for maximum values of rms velocity fluctuations during
the acceleration.

a) b)

Figure 5.12: Variations of a) maximum velocity fluctuation as defined by Equation
5.11, and b) urms profiles during the stage III.

The time histories of wall-normal locations for maximum velocity fluctuations are

shown in Figure 5.13. The y location for u′max exhibits a decrease in two separate

stages. Upon the onset of acceleration, the peak y location remains approximately

constant for a short period (ξ = 1) in the stage I, followed by a first significant

decrease in the stage II (2 < ξ < 6). It stops decreasing during the later part

of the stage II (6 < ξ < 11), followed by a second sharp decrease towards the
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corresponding steady value during the stage III. On the other hand, v′max location

remains approximately constant, followed by a monotonic decreases towards the

steady value during the stage III. It is interesting to note the v′max location moves

nearer the wall as compared to the corresponding steady value during the stage III.

A similar trend is observed for the w′max location; a long delay followed by a gradual

decrease towards the steady value, apart from a small initial increase.

a) b) c)

Figure 5.13: Variation of y locations for maximum rms velocity fluctuations. a)
u′max, b) v′max and c) w′max.

It is clear from the above results that turbulence starts to increase in the near-wall

region first where most of the turbulence production occurs. This newly generated

turbulence propagates into the core region afterwards. Please note that the new

turbulence is generated after an initial delay (cf. Figure 5.1) and this delay is a

function of the initial Reynolds number and the acceleration parameter (this is shown

in Chapter 7). He and Jackson (2000) proposed that the characteristics speed of

turbulence propagation in the core is proportional to the initial uτ value. Greenblatt

and Moss (2004) used the following criterion in their turbulent pipe experiment

subjected temporal acceleration, to characterise the turbulence regeneration and

propagation

[φ(t)− φ(0)]/φ(0) > aφ (5.12)

where φ(0) is the initial steady value and aφ is a constant chosen as 0.15 in their

study. The same criterion is applied in the present study to determine the character-
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istic propagation speed of urms into the core region as shown in Figure 5.14, which

shows that urms propagates at a speed of initial uτ value (uτ0) in the core region.

The effect of different acceleration parameters on the propagation of turbulence is

discussed in detail in Chapter 7.

Figure 5.14: The speed of propagation of urms in the channel core region. x axis
is the time taken for urms during transient process to increase by 15 percent of its
initial steady value. i.e., [urms(t)− urms(0)]/urms(0) > 0.15] (Greenblatt and Moss,
2004)
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5.5 Reynolds stresses

The turbulent shear stress profiles at several Reynolds numbers are plotted in Figure

5.15. The shear stress also exhibits a similar initial delay in response as found

for rms velocity fluctuations in Figure 5.9. The turbulent shear stress in the core

region is largely unchanged during the acceleration, and its increase from the initial

value is observed only in y < 0.2 and y < 0.4 at Re = 7000 and Re = 11000

respectively. The maximum value of −uv at Re = 15000 is approximately 80%

of the corresponding steady value. Moreover, the turbulent shear stress decreases

sharply away from maximum y location at Re = 15000. These trends are also

evident from the variations of the turbulent shear stress at several y locations. The

lack of increase in the turbulent stress in the core region again shows the lack of

turbulence response in the core region. The lack of turbulent shear stress response

in the core region was also reported by Fernholz and Warnack (1998). The response

times for various terms of Reynolds stresses (as calculated using criterion introduced

in Equation 5.11) are tabulated in Table 5.4. This table shows that the turbulent

shear stress responds after the uu component and before the vv and ww components.

a) b)

Figure 5.15: Variation of turbulent shear stress (−uv) during acceleration a) y
profiles, and b) time histories at several y locations across the channel. Steady data
are also included for comparison.
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Flow Property ξ∗%50 Rp Ms Mf/Ms

uuNmax 11.8 0.97 0.0270 13.8
−uvNmax 13.9 0.92 0.0026 16.5
vvNmax 14.6 0.81 0.0029 21.1
wwNmax 14.7 0.78 0.0049 21.6

Table 5.4: Response times for maximum values of Reynolds stresses using ξ%50

criteria (cf. Table 5.3).

Figure 5.16: Variation of the turbulent shear stress, −uv/U2
m, during the accelera-

tion.

2D variation of the turbulent shear stress is shown in Figure 5.16. This supports the

earlier findings (in Subsection 5.4) of break down of the local equilibrium between

turbulence and mean flow during the stage I and the stage II. The ratio, −uv/U2
m,

decreases gradually after the onset of the acceleration and reaches a minimum value

during the stage II. It starts to increase in the stage III towards the steady values

due to generation of new turbulence. However, the value Re = 15000 is still smaller

than the steady value. This figure clearly indicates that the flow is derived largely

by the imposed mass incursion in the stage I and the stage II while turbulence takes

a subdued role in affecting the flow field characteristics. It is only when the new

turbulence is generated during the stage III that the flow recovers the pseudo-steady

turbulent state.

Figure 5.17 shows the variation of the Reynolds stress structure parameter (a1 =

−uv/2k) at several wall-normal locations. Steady data are also included for com-

parison purpose. −uv/2k ratio decreases in the near-wall region significantly as

compared to its steady corresponding value, due to the early response of the turbu-
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lent kinetic energy over the turbulent shear stress. Schwarz and Bradshaw (1994)

found the similar reduction of structure parameter in their experiment of a turbulent

duct flow subjected to a mean spanwise strain. They suggested that this decrease is

due to the fact that turbulence becomes less efficient in extracting energy from the

mean flow due to the applied strain. This argument is also relevant to the present

case, indicating that the additional streamwise pressure gradient weakens the ability

of turbulence to extract energy from the mean flow.

Figure 5.17: Variation of −uv/2k at several wall-normal locations across the channel
during the acceleration. Legends are the same as in Figure 5.10.

Figure 5.18 shows the variation of the structure parameter and the ratio of the eddy

viscosity to the kinematic viscosity. The 2D variation of the structure parameter

shows the reduction of the turbulent shear stress to turbulent kinetic energy ratio

after the onset of the acceleration. This ratio decreases in the stage II through-

out the channel cross section before reaching its minimum value at the end of the

stage II. This indicates the inability of near-wall turbulent structures to extract

Reynolds shear stress during the WT stage. The reduction in structure parameter

was also reported in numerical investigation of turbulent boundary layer subjected

to FPG (Piomelli et al., 2000). This is, then, followed by a relatively sudden in-

crease first in the very near-wall region. The 2D variation of the turbulent viscosity

νt/ν = [−uv/(dU/dy)]/ν shows a similar reduction until the end of the stage II.
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This implies that the turbulent shear stress is not extracting enough energy from

the mean velocity field. This results in higher dU/dy values in the near-wall region

originating from the no-slip wall constraint. This higher velocity gradient moves

away from the wall as the acceleration proceeds (cf. Figure 5.8b), resulting in a

subsequent reduction in turbulent viscosity. νt/ν increases during the stage III as

the mean velocity gradient adjust itself to the new turbulence generation.

a)

b)

Figure 5.18: Variation of a) the Reynolds stress structure parameter, a1 = −uv/2k,
b) the ratio of the turbulent viscosity to the molecular viscosity (νt/ν), during the
acceleration.
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5.6 RMS vorticity fluctuations

Although the rms velocity fluctuations provide comprehensive information about

turbulence response during acceleration, yet the understanding of near-wall vortical

structures response can be best understood by rms vorticity fluctuations analysis.

Figure 5.19 shows the rms vorticity fluctuation profiles at several Reynolds numbers

during the acceleration. A log scale is used for abscissa to demonstrate near-wall

variations more clearly. ω′x profile appears to be completely frozen at Re = 7000.

ω′x remain largely unchanged until the end of the stage II and it starts to increase

during the stage III, only in the near-wall region. This delay indicates the delay in

response of near-wall turbulent structures in the stage I and the stage II. On the

other hand, ω′y and ω′z profiles show relatively early increase in comparison to ω′x and

recover the maximum steady corresponding values at Re = 15000. The rms vorticity

fluctuations in the core region are largely unchanged during the acceleration again

supporting the earlier findings in Subsection 5.4.

The time histories of local minimum and maximum values for rms vorticity fluctua-

tions (as calculated using Equation 5.11) are shown in Figure 5.20. ω′x,wall value was

also included. These time histories are consistent with the trends observed in Figure

5.19 that ω′y,max and ω′z,wall increase earlier than ω′x,max during the stage II after a

delay of ξ ≈ 3. On the other hand, all three values for ω′x show an initial delay

of ξ ≈ 10. These values, afterwards, begin to increase at a similar rate as that of

ω′z,wall during the stage III. Maximum rms vorticity values of the three components

recover almost 90% of the corresponding steady values at Re = 15000.

It is well known (Kim et al., 1987) that the center of streamwise vortices is located

at y+ ≈ 20 for a fully-developed turbulent channel flow, which is represented by

the local maximum in the ω′x profile. The y location of the edge of the streamwise

vortices, represented by local minimum in the ω′x profile, is located at y+ ≈ 5. The
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Figure 5.19: Vorticity fluctuation profiles during the acceleration. a) ω′x, b) ω′y and
c) ω′z. Steady values are included for comparison. For legend see Figure 5.9.

y location of maximum ω′y lies in the vicinity of y location of maximum turbulent

kinetic energy production i.e., y+ ≈ 15. All these y locations move towards the wall

as the Reynolds number increases for fully-developed turbulent channel flow, due to

the scaling of near-wall structures in wall units.
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Figure 5.20: Time histories of local minimum, local maximum and wall values of
rms vorticity fluctuations.

Figure 5.21 shows the time variations of these three vorticity y locations during the

acceleration. The corresponding y locations from fully-developed steady turbulent

channel flow at several Re numbers are also included. The three y global locations

remain significantly higher than the steady corresponding locations in the stage I

and the stage II. These y locations decrease sharply towards the steady y locations

during the stage III with the generation of new turbulence. The variations of y

locations are more prominent in the graphs plotted using wall units.

All three y locations show a two-stage reduction during the acceleration. The ω′x,min

and ω′x,max wall-normal locations decrease slightly until ξ ≈ 3. These locations cease

to decrease during the stage II (3 ≤ ξ ≤ 8), and exhibit a sharp decrease towards the

steady y locations during the stage III. Time history of ω′y,max wall-normal location

in global units shows the similar two-stage trend as for u′max (cf. Figure 5.13). These

two-stage changes in vorticity maximum and minimum locations can be explained

that the temporal acceleration only changes the mean velocity gradient in the wall

region without affecting the near-wall structures significantly during the stage I.

The generation of new turbulence is delayed in the stage II, resulting in constant

locations for the vorticity maximum and minimum. Finally, these y locations move
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rapidly towards the wall during the stage III with the generation of new turbulence

and approximately attain the steady corresponding values at Re = 15000.

a) ω′x,min in global units b) ω′x,min in wall units

c) ω′x,max in global units d) ω′x,max in wall units

e) ω′y,max in global units f) ω′y,max in wall units

Figure 5.21: Time histories of y locations of ω′x,min, ω′x,max and ω′y,max during the
acceleration.
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5.7 Turbulent kinetic energy (TKE) budgets

Turbulent kinetic energy budget analysis is very helpful in investigating the flow

physics. As it is shown in Chapter 4, the kinetic energy budget terms have significant

contribution in the near-wall region only where most of the turbulent production

occurs. Time histories of maximum values for several budget terms (the turbulent

production, the pressure-strain and the dissipation terms), calculated using Equation

5.11, are shown in Figure 5.22a. Please note that log scale is used for ordinate in

order to clearly see the response in the beginning of acceleration. The transport

equation terms for uu respond first of all. The production term for uu increases

first, followed by the dissipation and pressure-strain terms respectively. It is worth

noting that all transport terms increase at a similar rate during the stage III as

shown in 5.22b. All the budget terms in the near-wall region recover the final

steady value at Re = 15000. The production term for uu overshoots the steady

value and the overshoot of production term explains the overshoot of u′max during

the stage III (cf. Figure 5.12a).

a) b)

Figure 5.22: Time histories of maximum values of several budget terms. a) in log
scale for ordinate, and b) in normal scale. Solid lines show the budget terms of
uu transport equation, dashed lines for vv and dashed lines with symbols for ww
transport equation.

2D time variations of turbulent kinetic energy budget terms for uu transport equa-
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tion are shown in Figure 5.23. Steady initial profiles are included in the plots and

the local uτ is used for normalisation (ν2/u4
τ ). It is clearly evident from the plots

that all transport terms exhibit an initial delay in adjusting to the imposed acceler-

ation, and the production term is the first one to acquire the pseudo-steady state.

The increase in the production term results in a subsequent increase in urms. The

dissipation term is delayed further as compared to the production term as shown

clearly in 5.23f, with the production term dominating the dissipation term during

the stage II. The pressure-strain term shows a sudden increase towards the end of

the stage III, indicating the initiation of the newly generated turbulence propaga-

tion in the core region. Generally, all other terms lag behind the production term

to certain extent in the stage II and increase at a similar rate during the stage III.

Wall-normal profiles of the several budget terms in the near-wall region are shown in

Figure 5.24. Steady data at Re = 15000 is also included for comparison. All budget

terms achieve the corresponding steady maximum values in the near-wall region at

Re = 15000. The rapid increase in the uu production term during the stage III is

evident, and the production term does not increase in the region of 0.04 ≤ y ≤ 0.08

at Re = 15000. This trend explains an unexpected reduction of urms intensity at

Re = 15000 below Re = 14000 at the same y location (cf. Figure 5.12b). This

behaviour is due to a rapid increase in pressure-strain terms for all three transport

equations in this region. This sharp increase in the pressure-strain terms during the

later part of the stage III is an indication of energy redistribution to the lateral

components and subsequent turbulence propagation in the core region.

117



CHAPTER 5. DNS OF TEMPORAL ACCELERATION.

a)

b)

c)

d)

e)

f)

Figure 5.23: Budget terms of uu transport equation during the acceleration. a)
the production, b) viscous dissipation, c) pressure-strain, d) turbulent transport e)
viscous diffusion terms, and f) the ratio of the turbulent production to the viscous
dissipation term. Local uτ is used for normalisation
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a) the production uu b) the pressure-strain uu

c) the viscous dissipation uu d) the pressure-strain vv

e) the viscous dissipation vv f) the pressure-strain ww

Figure 5.24: Variation of the various transport budget terms profiles in the stage III
from Re = 11000 to Re = 15000.
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5.8 Probability density function (pdf) analysis

Probability density function (pdf) analysis for the streamwise and wall-normal ve-

locity fluctuations (u′, v′) is performed to investigate instantaneous Reynolds stress

producing events during the acceleration. Please note that “′” denote fluctuations

in this section. Robinson (1991) suggested that these Reynolds stress producing

motions are actually the consequence of the dynamics of the near-wall coherent

structures. These events are divided into four different quadrants according to the

different signs of (u′ and v′) (Lu and Willmarh, 1973). The first quadrant (Q1),

u′ > 0 and v′ > 0, represents the outward motion of high speed fluid, the second

quadrant (Q2), u′ < 0 and v′ > 0, represents the outward motion of low speed fluid,

the third quadrant (Q3), u′ < 0 and v′ < 0, represents the inward motion of low

speed fluid and finally the fourth quadrant (Q4), u′ > 0 and v′ < 0, is associated with

events related to inward motion of high speed fluids. The second quadrant events

are generally referred as ejection, while the fourth quadrant events are referred as

sweep. Both of these events account for positive production in turbulent flows. Ejec-

tions are considered as the events responsible for the occurrence of turbulent bursts

(Kim et al., 1971). These turbulent bursts, in turn, are mainly responsible for the

turbulent kinetic energy production.

The pdf contours at several y+ locations are shown in Figure 5.25 for a fully-

developed turbulent channel at Re = 3500 (Reτ ≈ 215) and the corresponding

number of events (in percentage) for each quadrant is tabulated in Table 5.5. Please

note that all the pdf data presented in this section are prepared from approximately

4 million points of velocity information for each y+ location. The 2D bin size to cal-

culate the probabilities is kept constant in wall units as 0.1. Since the wall-normal

fluctuations are significantly small in the near-wall region due to its limiting be-

haviour, the bin size for v′ is reduced to 0.05 for the pdf at y+ = 3. The pdf graphs

and quadrant contributions for fully-developed channel are in very good agreement
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with the data in literature (Kim et al., 1987). In the very near-wall region (y+ = 3),

the magnitude of sweep events is much larger than the ejection events. Contribution

from Q2 quadrant becomes equal to the Q4 quadrant contribution in buffer layer and

Q2 contributions become large in the outer layer. On the other hand, the frequency

of ejection events is greater than the sweep events in the viscous sublayer. Number

of Q2 events reduces in the buffer layer and number of Q4 events increases in the

outer layer region. The number of events from all quadrant becomes approximately

equal in the core region.

Magnitude Frequency
Location (y+) Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

3 −22.1 45.5 −19.0 95.6 15.0 33.7 22.2 29.1
10 −10.3 52.6 −8.9 66.6 14.3 34.8 16.2 34.7
20 −12.4 68.0 −10.3 54.7 18.2 32.5 13.5 35.8
50 −13.8 75.7 −14.0 52.1 18.2 30.1 15.9 35.8
100 −12.1 74.9 −12.3 49.5 17.3 29.4 16.0 37.3
200 −96 209 −132 119 25.2 24.4 22.5 27.9

Table 5.5: Percentage contribution of magnitude and frequency in the quadrant
analysis at several wall normal locations for a fully-developed turbulent channel
flow at Re = 3500.
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a) y+ = 3 b) y+ = 10 c) y+ = 20

d) y+ = 50 e) y+ = 100 f) y+ = 200

Figure 5.25: PDF of u′ and v′ at several y locations for a fully-developed turbulent
channel flow at Re = 3500.
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Figure 5.26 shows the time histories of number of quadratic events (in percentage)

at several wall-normal locations during the acceleration. The number of Q4 events

starts to decrease considerably after Re = 8000 in the very near-wall region at y+ =

3, accompanied with an increase in Q3 events. Q4 events reduce below Q3 events

during the stage III and recovers approximately its initial value at Re = 15000.

This reduction implies the reduction in number of sweep events during the stage

III. It is interesting to note that this reduction of Q4 events, in the present case,

happens towards the end of the stage II, where the local uτ value is significantly

smaller than the steady value (cf. Figure 5.1a). It is worth noting that Q1 events

also increase during the stage III with corresponding reduction in Q2 at y+ = 3 and

y+ = 10. The deviation of frequency of quadratic events from the initial values is

also evident at y+ = 10 and y+ = 20. The quadratic contributions are less effected

by acceleration at y+ = 50 as shown in Figure 5.26d.

This increase in the number of Q3 events at the expense of Q4 events is also reported

by Bourassa and Thomas (2009) in their experiment of boundary layer subjected to

acceleration. They suggested that the decrease in the Q4 events is due to effective

aliasing of Q4 events. This effective aliasing occurs due to large near-wall streamwise

mean velocity, which may make the inward moving high speed fluid Q4 event as a

Q3 event. This large near-wall streamwise velocity occurred in their experiments

because of relatively large positive streamwise mean velocity gradients in the near-

wall region due to relaminarisation of boundary layer. In the present study, an

abrupt increase in the mean velocity results in large near-wall streamwise mean

velocity as clearly seen in Figure 5.8c during 13 < ξ < 16 (or 12600 ≥ Re ≤ 14700).

They also suggested that in case of mild acceleration, this increase in the Q2/Q4

ratio (as ejections events are largely insensitive to acceleration in the present study)

would result in more vigorous wall-normal transport of fluid in order to satisfy mass

conservation. It implies that the reduction in the number of Q4 events results in
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less frequent, highly energetic inrush of fluid having large amplitude of fluctuations,

resulting in a subsequent increase in the skin friction (this can be seen in pdf graphs

during the stage III in Figures 5.29 and 5.30) .

a) y+ = 3 b) y+ = 10

c) y+ = 20 d) y+ = 50

Figure 5.26: Frequency of quadratic events at several y locations (in percentage)
during the acceleration.

The time histories of quadratic contributions at several y locations are shown in

Figure 5.27. The deviation of quadratic contributions from the initial values in-

creases as the distance from the wall reduces, which can be clearly seen from the

time histories at y+ = 3 having maximum deviation and y+ = 50 having minimum

deviation. Contributions from Q1 and Q4 events increase while Q2 and Q3 contri-

butions decrease in the range of (8000 < Re < 14000) before returning towards the

steady quadratic contributions at Re = 15000. The contribution of sweep events

increases significantly at y+ = 3 during the stage III, resulting in subsequent in-

crease in the wall shear stress. It is interesting to note that the number of sweep
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events decrease in the start of the stage III as shown in Figure 5.26a, while the

quadratic contribution from sweep events increases. This implies the occurrence of

less frequent, strong sweep events during the stage III.

a) Q1 b) Q2

c) Q3 d) Q4

Figure 5.27: Time histories of magnitude of quadratic contributions y+ = 3 (in
percentage) during the acceleration.

The increase in quadratic contributions from Q1 and Q4 events accompanied with

corresponding reduction in Q2 and Q3 in the near-wall region is clearly seen in Fig-

ure 5.28. This increase implies an increase in positive streamwise fluctuations. The

increase in the contribution of the positive streamwise fluctuations can be explained

by the fact that the mean velocity in the very near-wall region remains relatively

low during the initial part of the stage III due to the imposition of no-slip constraint

(cf. Figure 5.7). The rapid increase in the near-wall turbulence results in a subse-

quent abrupt increase in the near-wall mean velocity. This explains the decrease in

magnitude of Q1 and Q4 and the corresponding increase in the number of Q1 and
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Q4 events towards later part of the stage III (Re > 12000). It is worth noting that

the quadratic contributions from Q1 and Q2 becomes approximately equal during

the stage III at y+ = 10 in Figure 5.28b .

a) y+ = 3 b) y+ = 10

c) y+ = 20 d) y+ = 50

Figure 5.28: Magnitude of quadratic contributions (in percentage) at during the
acceleration.

PDF contours are helpful in analysing the individual contributions from u′ and v′

separately in each quadrant. Figure 5.29 shows the weighted pdf in the viscous

sublayer at y+ = 3 at several Reynolds numbers during the acceleration. The pdf

are produced by using the same contour levels for all graphs and fluctuations are

normalised by the rms velocity fluctuations at each y location. PDF contours in

the stage II show a reduction of high amplitude v′ events while the number of

strong u′ events remain largely unchanged. Large number of weak v′ events occur

at Re = 12000 to Re = 14000 contour plots in the third quadrant in Figure 5.29f-h

which supports the variations of frequency of Q3 events in Figure 5.26a. On the
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a) b) c)

d) e) f)

g) h) i)

Figure 5.29: Weighted pdf of u′ and v′ at y+ = 3 at several Reynolds numbers during
the transient. For captions, From top left row wise: a) Re = 3500, b) Re = 5000,
c) Re = 7000, d) Re = 9000, e) Re = 11000, f) Re = 12000, g) Re = 13000, h)
Re = 14000 and i) Re = 15000. Same contour levels are used for all the figures.

other hand less frequent, high amplitude sweep events also occur during the stage

III (Re = 11000 and onwards). It is interesting to note that the occurrence of these

strong sweep events is coincident with the rapid increase in the wall shear stress (cf.

Figure 5.1). The increase in contribution from less frequent, strong v′ events during

the later part of the stage III, indicates a vigorous wall-normal transport of the fluid

through highly energetic v′ events. The pdf contributions approximately attain the

steady pdf shape as the initial pdf at Re = 3500.

Figure 5.30 shows the pdf contours at y+ = 10 to study quadrant analysis in the

region of maximum turbulent production. There is no significant suppression of v′

during the stage II as found in the viscous sublayer in Figure 5.29. The amplitude of
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a) b) c)

d) e) f)

g) h) i)

Figure 5.30: Weighted pdf of u′ and v′ at y+ = 10 at several Reynolds numbers
during the acceleration. For captions, see Figure 5.29. Same contour levels are used
for all the figures.

positive u′ events increases gradually during the stage II and there is a rapid increase

in less frequent, strong sweep events at Re = 11000. These pdf again supports the

observation of vigorous wall-normal transport of fluid through less frequent, strong

sweep events during the stage III. It is interesting to note that the pdf contour at

Re = 14000 almost acquire the initial pdf contour values at Re = 14000 whereas

the steady pdf shape is acquired at Re = 15000 indicating the earliest response of

this region during the acceleration. Figure 5.31 shows the similar variations of pdf

contours at y+ = 50. Less frequent, strong v′ events increase during the stage III.

This increase is more prominent at Re = 11000 and Re = 12000. It is interesting

to note that the strength of u′ and v′ increase significantly in the second quadrant

indicating an increase in the ejection events during the acceleration.
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a) b) c)

d) e) f)

g) h) i)

Figure 5.31: Weighted pdf of u′ and v′ at y+ = 50 at several Reynolds numbers
during the acceleration. For captions, see Figure 5.29. Same contour levels are used
for all the figures.
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5.9 Conclusions

Comprehensive turbulent statistics for DNS of temporal acceleration are presented

in this chapter. Response of the wall shear stress, mean velocity and rms veloc-

ity fluctuations has been discussed in detail. The rms vorticity profiles has been

presented with a detailed discussion of time histories of vorticity maximum values

and wall-normal locations. The turbulent kinetic energy budget analysis has been

presented. Finally, the quadrant analysis is presented to investigate the dynamics

of energy producing Reynolds stress events. The findings of this chapter are as

following

1. Four distinct stages of the wall shear stress response are found: the initial

transient (IT) stage (stage I), the weak time-dependence (WT) stage (stage

II), the strong time-dependence (ST) stage (stage III) and the pseudo-steady

(PS) stage (stage IV). But, the PS stage is not included in the DNS. The IT

stage is representative of tendency of uniform increase of the mean velocity

across the channel after the onset of acceleration, the WT stage is the stage

where rate of change of wall shear stress is lower than the steady value and

finally the turbulence responds rapidly to the acceleration during the ST stage

which is characterised by a sharp duτ/dt increase over the steady value.

2. The displacement and momentum thickness reduce in the stage I and the stage

II and recover in the stage III. The shape factor shows a two-stage variation:

an initial reduction in the stage I is followed by a subsequent sharp increase

during the stage II and a monotonic reduction during the stage III.

3. The mean velocity increase linearly in the core region due to flow inertia while

it remains below the steady corresponding values in the near-wall region during

the stage II. The near-wall mean velocity increases rapidly, afterwards, during

the stage III resulting in adjustment of the mean velocity profile across the
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channel.

4. The relation of the mean velocity and the wall shear stress (log-law) is broken

during the acceleration exhibiting an under-prediction in the stage I and an

over-prediction during the stage II before reverting back to the standard log-

law profile at Re = 15000.

5. The rms velocity fluctuations exhibit a two-layer response to the imposed

acceleration. Inner layer fluctuations respond first in the near-wall region

after an initial delay, while the outer region intensities remain largely frozen

for extended period of time.

6. uu responds first in the near-wall to the acceleration, followed by −uv while

vv and ww respond in the last.

7. The local equilibrium between turbulence and mean flow shows a distinct

deviation from the steady values during the stage I and the stage II due to

inability of turbulence to extract energy effectively from the mean flow during

this period.

8. The rms vorticity fluctuations exhibit the similar delay in response as re-

ported for rms velocity fluctuations. Wall-normal locations of ω′x,min, ω′x,max

and ω′y,max show a two-stage decrease towards the steady y location due to an

initial delay in response for the near-wall turbulent structures.

9. The turbulent production term for uu transport equation extracts kinetic en-

ergy from mean flow in the near-wall region. Turbulent kinetic energy is

redistributed among the lateral components by the pressure-strain term.

10. The number of events from fourth quadrant (Q4) decreases during the stage

II which is balanced by a corresponding increase in number of third quadrant

events (Q3) in the very near-wall region during the stage III. This deviation
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of quadratic contributions from initial values reduces as the distance from the

wall is increased and the outer layer region remains largely unchanged.

11. The quadratic contributions from Q1 and Q4 quadrants increase in the near-

wall region during the stage III while vice versa is true for the Q2 and Q3

quadratic contributions.

12. The amplitude of v′ fluctuations reduces significantly in the near-wall region

during the later part of the stage II and increases rapidly afterwards during

the stage III.
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6
Effect of acceleration on turbulent

structures.

Detailed turbulence statistics for turbulent channel flow subjected to temporal ac-

celeration has been presented in Chapter 5. It was found that the near-wall region

responds first during the acceleration, so it is imperative to analyse the response

of near-wall structures. The effect of acceleration on the near-wall structures dur-

ing the acceleration is analysed in detail with the help of low-speed streaks and λ2

plots. Conditionally-averaged statistics are presented to clearly show two distinct

flow regions during the acceleration and the new turbulence generation is discussed.
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Turbulent structure response during the acceleration is determined with the help of

Reynolds stress anisotropy analysis.

6.1 Low-speed streaks

It is well known that high- and low-speed streak patterns exist in the near-wall

region of turbulent wall bounded flows. The low-speed streaks are the result of the

counter-rotating streamwise vortices (Robinson, 1991). Extensive efforts have been

made in the past to investigate the characteristics of the low-speed streaks. Kim

et al. (1971) proposed that the turbulent kinetic energy is produced by “bursting”,

which involves uplifting, oscillations and subsequent breakdown of the low-speed

streaks. It is generally accepted that the near-wall mean spanwise spacing (λ+
z ) of

these streaky structures is approximately 100 in wall units (Kline et al., 1967), and

the streamwise extent of these streaks is reported to be approximately 1000 in wall

units (Blackwelder and Eckelmann, 1979). λ+
z is found to increase linearly with the

distance away from the wall in the buffer region (2 ≤ y+ ≤ 30) (Smith and Metzler,

1983). Kim et al. (1987) used the two-point spanwise correlation of the streamwise

fluctuations to determine the mean streak spacing in the log-layer. They verified

the experimental observation of Smith and Metzler (1983) that the streak spacing

increases linearly in the log-layer.

Figure 6.1a shows the variation of the mean streak spacing in y direction for a

fully-developed turbulent channel at Re = 3500. The data in the present study

are in good agreement with the data in literature, and it shows that the mean

low-speed streak spacing increases linearly in the log-layer as the distance from

the wall is increased. Figure 6.1b shows the two-point correlation coefficient for

u′u′ in the spanwise direction at y+ = 10 for several Reynolds numbers during the

acceleration. The location of a local minimum at Re = 3500 is approximately at 50.
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The streak spacing is generally taken as twice the distance to the local minimum of

R<u,u>. Therefore, λ+
z is approximately equal to 100 at the initial Reynolds number

(Re = 3500). The location of the local minimum of two-point correlations is shifted

away from the wall at Re = 7000 and Re = 10000, indicating a slight increase in the

mean streak spacing in the stage II. The mean streak spacing recovers the steady

value at Re = 15000. It is very interesting to note that the local minimum shifts

above zero during the stage III (Re = 12000 and Re = 13000).

a) b)

Figure 6.1: a) Variation of low-speed streak spacing in y direction for fully-developed
turbulent channel flow at Re = 3500, and b) two-point spanwise correlation for
< u, u > at several Reynolds numbers during the acceleration. The DNS data of
Kim et al. (1987) and experimental data of Smith and Metzler (1983) are included
for comparison.

Figure 6.2 shows the instantaneous 2D contours of low-speed streaks in the near-wall

region at several Reynolds numbers during the acceleration. It clearly shows that

the low-speed streaks exist in two distinct length scales during the stage III (for

example, Re = 13000). The streak patterns with smaller length scale are evolved

during the stage III (Re = 11000 and onwards) as the new turbulence seems to

scale with the local Reynolds number. The existence of low-speed streaks in two

distinct length scale explains the shifting of two-point correlation during the stage

III in Figure 6.1b. The streaks become slightly weaker in the early stages of the

acceleration (Re = 5000), due to relatively higher corresponding mean velocity in the
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near-wall region. It is worth noting that the streaks are elongated and straightened

in the streamwise direction in the stage II (Re = 7000 and 9000). The streamwise

elongation of low-speed streaks is also reported in the LES of accelerating boundary

layer (Piomelli et al., 2000).

It is very interesting to note that these small-scale streaks have high amplitude

u′ (this can be clearly seen in Figure 6.14b), again supporting the already made

observation that these streaks are from newly generated turbulent structures during

the acceleration. It implies that there is a significant delay in the generation of the

new turbulent structures in the near-wall region during acceleration, resulting in

a subsequent delay in turbulence response. The large-scale streaks reduce rapidly

during the stage III with the evolution of the new small-scale streaks. It is worth

noting that the new streak patterns evolve in form of patches during the stage III.

At Re = 15000, almost the entire wall is filled with the new streaks.
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Re = 3500 Re = 5000

Re = 7000 Re = 9000

Re = 11000 Re = 13000

Re = 14000 Re = 15000

Figure 6.2: Instantaneous low-speed streak plots at y+ = 5 during the acceleration
for a realisation.
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6.2 Structures visualisation

Jeong and Hussain (1995) proposed the λ2-criterion to visualise the near-wall turbu-

lent structures. RMS of λ2, λ′2, gives an indication of the strength of the turbulent

structures. λ′2 profiles for fully-developed turbulent channel flow at several Reynolds

numbers are already shown in Chapter 4 (cf. Figure 4.10). The y location of the

maximum λ′2, λ′2,max, lies in the near-wall region at y+ ≈ 20 (Jeong et al., 1997).

Figure 6.3a shows the variation of λ′2,max at several Reynolds numbers during the

acceleration. Please note that the λ′2,max is non-diminsionalised based on the initial

bulk-mean velocity for the steady values. This figure clearly shows that the near-wall

turbulent structures exhibit an initial delay in the stage II. λ′2,max increases initially

at relatively smaller rate until Re = 8000 and starts to increase rapidly afterwards,

with the initiation of new turbulence generation. The rate of increase of λ′2,max

is highest during the stage III. This trend indicates that turbulence generation is

strong during the stage III. It is worth noting that the rate of increase for λ′2,max

acquires the pseudo-steady value towards the end of the stage III (Re = 15000).

The breakdown of equilibrium between the near-wall turbulent structures and the

mean flow is clearly seen by replotting the λ′2,max values normalised by the local

bulk-mean velocity. The ratio λ′2,max/U
2
m decreases in the early part of the stage II

and starts to increase afterwards rapidly during the stage III.

The generation of new turbulence during the acceleration can be better visualised

using iso-surface contour plots of λ2 as shown Figures 6.4 and 6.5. Please note that

the λ2 contour value increase with increase in Re during the acceleration. λ′2,max

is chosen as the λ′2 contour values as suggested by Dubief and Delcayre (2000).

The λ2 contour plot at Re = 3500 contains familiar turbulent structures for the

fully-developed turbulent channel flow. After a substantial initial delay, the new

turbulence generation is clearly seen at Re = 10000. The newly generated turbulent

structures are much smaller than the initial structures. On the other hand, the
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a) b)

Figure 6.3: Time histories of a) λ′2,max, and b) λ′2,max/U
2
m during the acceleration.

Steady DNS data are also included for comparison.

corresponding λ2 contour value at Re = 10000 is significantly higher than the value

at Re = 3500, indicating that the the new turbulence structures are much stronger

than the initial structures. This is consistent with the observations made in the low-

speed streak plots in Figure 6.2. The newly generated turbulent structures result in

the small-scale streaks during the stage III.

The turbulent structures remain largely unchanged during the stage I of the ac-

celeration, and are slightly elongated in the streamwise direction during the stage

II (Re = 6000 and onwards). The streamwise elongation of turbulent structures is

also reported in turbulent boundary layer subjected to FPG studies (Warnack and

Fernholz, 1998; Piomelli et al., 2000). The local equilibrium between turbulence and

the mean flow is weakened in the stage II with the mean flow being dominant. This

results in a substantial initial delay in the generation of new turbulent structures

during the stage II. The flow field can be though of existing in laminarescent state

during the stage I and the stage II, as suggested by Sreenivasan (1982).

The turbulence generation process becomes stronger during the stage III as shown in

Figure 6.5. The new turbulent structures cover approximately the entire wall area at

Re = 15000. The rapid generation of new structures results in a sharp increase of the

λ′2,max value during the stage III (cf. Figure 6.3). It is worth noting that the strong
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Re = 3500 Re = 5000

Re = 6000 Re = 7000

Re = 8000 Re = 9000

Figure 6.4: λ2 iso-surfaces during the acceleration during the stage I and the stage
II.

turbulence evolves in the form of patches during the stage III, while weak large-scale

streaks are found in the rest of the wall area. This evolution trend for the stronger

structures can be clearly seen in Figure 6.6, which shows the 2D instantaneous

streamwise vorticity contours at several instances during the acceleration. The size

of the turbulent structures remain largely unchanged in the stage II at Re = 7000

while it reduces sharply at Re = 12000. The new turbulent structures are evolved

in the very near-wall region. It is clearly seen at Re = 15000 that the new turbulent

structures have much smaller length scales as compared to the initial turbulence. It

is interesting to note that the wall shear stress at this Reynolds number is the same

as the steady value while τw is significantly lower than the steady values for much

of the acceleration (cf. Figure 5.1a).
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Re = 10000 Re = 11000

Re = 12000 Re = 13000

Re = 14000 Re = 15000

Figure 6.5: λ2 iso-surfaces during the acceleration during the stage III.

The new turbulent structures evolution in distinct patches during the stage III is

clearly seen in Figure 6.5. Figure 6.7 shows the iso-surfaces for four realisations at

Re = 11000. Two contour levels are used: the local λ′2,max (red, dark contour lines)

and the initial λ′2,max (blue, bright contour lines). Please note that the red contour

lines show turbulent structures approximately 12 times stronger than the initial

structures at Re = 3500. The stronger structures in all the plots are significantly

smaller in size again supporting the earlier observation that these structures are

generated during the acceleration. It is interesting to note that the smaller struc-

tures generation is accompanied with the breakdown of the relatively large weaker

structures, indicating the possible evolution of the smaller structures from the larger

structures.
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a) Re = 3500 b) Re = 7000

c) Re = 12000 d) Re = 15000

Figure 6.6: Contour plots of the instantaneous streamwise vorticity at several in-
stances during the acceleration.

Flow visualisations presented in this subsection have revealed many interesting

trends for the near-wall structures response during the acceleration. Turbulent struc-

tures are elongated in the streamwise direction during the stage II. New turbulence

is generated during the stage III in forms of distinct patches while the rest of the

wall area remains at significantly less turbulent intensity. The relatively weak tur-

bulent structures in the stage III have a size comparable to the initial structures.

The new turbulent structures are probably evolved from within the old turbulent

structures.
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Figure 6.7: Iso-surfaces of λ2 at Re = 11000 for four different realisations. Blue
(bright) contour lines denote the iso-surfaces at the initial λ′2,max value while red
(dark) contour lines denote the iso-surfaces at the local λ′2,max.
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6.3 Active area quantification procedure

Figure 6.7 show the evolution of the new turbulence in form of distinct patches

during the stage III. It is worth noting that only a fraction of wall area is filled with

the new turbulence during the initial part of the stage III (Re = 11000) while the

rest of the area can still be characterised by the initial turbulent flow. This particular

observation motivates to quantify and study the characteristics for these two distinct

regions using conditional averaging. The terms active and non-active areas are used

to indicate the new turbulent area and the less turbulent area respectively. The

conditionally-averaged statistics are then used to characterise the turbulence in the

active and non-active areas.

λ′2 is used for this active area quantification procedure (AAQP), where “′” indicates

the absolute fluctuations. Jeong et al. (1997) used the absolute fluctuations of λ2

in their turbulent structures eduction scheme for determining the size and shape of

the coherent structures in the near-wall region. They argued that the λ′2 is a better

choice for eduction of coherent structures than λ2 because of the cancellation of

positive λ2 values with the negative counterpart in the buffer region (10 ≤ y+ ≤ 30).

PDF of λ′2 is shown in Figure 6.8 for steady turbulent channel flow at Re = 3500 and

for accelerating channel flow at Re = 7000, 11000 and 15000. Please note that the

pdf is constructed using fluctuations data four realisations (top as well as bottom

halves). Figure 6.8 shows that the negative and positive fluctuations are symmetric

for steady equilibrium turbulence as well as for the present acceleration case.

As new turbulence is generated in form of patches during the stage III, the criterion

for AAQP should be capable of separating the active areas from the non-active

areas as a whole rather than an individual control volume. Therefore, the criterion

is based on the comparison of 3D average λ′2 value around each control volume with

a base value (this is discussed later). The size of this window in xz plane is chosen
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Figure 6.8: PDF of λ2 fluctuations at the y location for the maximum λ′2 at several
Re numbers during the acceleration. Steady data at Re = 11000 are also included.

as (∆x+,∆z+) = (150, 40). Jeong et al. (1997) used the same window size for the

cross-correlation calculations in their structures eduction scheme. It is important

to note that the averaging in xz plane is performed in order to separate regions

of active area rather than individual control volumes in the near-wall region, and

the averaging in the y direction is also performed. Jeong et al. (1997) employed a

wall-normal window size of 0 ≤ y+ ≤ 40 for the eduction of the near-wall structures.

Stanislas et al. (2008) found in their experimental study of turbulent boundary layer

that the near-wall region is richly populated with the eddy structures in the range

of y+ ≤ 150. Therefore, the wall-normal integral window size of y+ = 150 is chosen

in the current study.

The base value is chosen as the xz plane-averaged λ′2 value i.e., λ′2, plane, for com-

parison with the 3D local-averaged value i.e., λ′2,l at each control volume in the

near-wall region. The relationship of λ′2,l to the λ2, plane is determined from the

fully-developed channel flow at several Reynolds numbers. The near-wall region in

the fully-developed turbulent flow is assumed to be completely filled with structures

(suppose 99%). Therefore, pdf for λ′2,l are produced at several Reynolds numbers

for fully-developed turbulent cases in order to determine relation between λ′2,l and

λ′2, plane. The 3D window size used for λ′2,l is (∆x+,∆y+,∆z+) = (150, 150, 40) as

145



CHAPTER 6. EFFECT OF ACCELERATION ON TURBULENT STRUCTURES.

discussed previously. Data sampling convergence is ensured by taking data from ap-

proximately two million control volumes for the pdf at Re = 3500, 6900 and 11000,

as shown in Figure 6.9. Please note that all λ′2 values are in local wall units. The

respective ratio of the cut-off λ′2,l to the corresponding λ′2, plane are tabulated in

Table 6.1. The cut-off λ′2,l value is chosen as the λ′2,l value comprising 1% of pdf.

The ratio of the cut-off λ′2,l to λ′2, plane is in the range of 0.14 to 0.2. Based on this

ratio, the criterion for active area is formulated as follows: if λ′2,l value for a control

volume is greater than 10% of the corresponding λ′2, plane value, the control volume

would be regarded as part of active area. It can be mathematically written as

λ′2,l ≥ 0.1

Ny

N∗
y∑

j=1

λ′2, plane ⇒ Active area,

λ′2,l <
0.1

Ny

N∗
y∑

j=1

λ′2, plane ⇒ Non-Active area, (6.1)

where N∗y are the number of control volumes in the the wall-normal direction.

Re λ′2, plane cut-off λ′2,l Ratio

3500 8.0× 10−3 1.1× 10−3 0.14
6900 8.5× 10−3 1.7× 10−3 0.20
1100 1.0× 10−2 1.5× 10−3 0.15

Table 6.1: Ratio of cut-off λ′2 to the λ′2, plane. 3D integral λ2, plane and cut-off λ′2 are
shown in Figure 6.9. All values are in local wall units.

a) Re = 3500 b) Re = 6900 b) Re = 11000

Figure 6.9: PDF of λ′2 for fully-developed turbulent channel flow at several Reynolds
numbers.
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Figure 6.10 shows an instantaneous 3D snapshot of λ2 iso-surfaces during the ac-

celeration at Re = 12000. It clearly shows that the local xz plane averaging indeed

plays a smoothing role in the AAQP and facilitates the core objective of separat-

ing the patches of turbulent areas from non-active ones. A parametric study was

conducted by increasing the window sizes separately in each direction with no sig-

nificant change found from the base window size, i.e., (∆x+ = 150, ∆z+ = 40)

for several realisations. Figure 6.10b shows that there is very little change beyond

y+ ≥ 150. This trend is consistent with the findings of Stanislas et al. (2008) that

the near-wall region is richly populated with structures in the region y+ ≤ 150.

a) b)

c) d)

Figure 6.10: Instantaneous iso-surface contour plot of λ2 during the acceleration
at Re = 12000. b) effect of wall-normal integration window on the AAQP for the
snapshot shown in a), c) the AAQP without xz plane averaging, d) the AAQP with
xz plane averaging. Red contour lines show the active area while the blue lines
represent non-active area.

The size of near-wall structures decreases during the acceleration at high Reynolds

numbers. Therefore, the local uτ value is used to determine the 3D test window size.

The conditionally-averaged uτ value from the active area is employed in the current
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study because of the high uτ value in the active area. Since, the conditionally-

averaged uτ value is unknown at the start of the AAQP, the following iterative

procedure is used to update uτ .

1. Use plane-averaged uτ value.

2. Determine the physical size of the test window i.e., 150×150×40 in wall units

based on the uτ value from Step 1.

3. Calculate λ′2,l and λ′2, plane.

4. Identify the active areas by using the criterion in Equation 6.1.

5. Calculate conditionally-averaged value of uτ for each region.

6. Repeat the procedure until the convergence of uτ is achieved.

Less than ten iterations were needed to achieve the convergence of the conditionally-

averaged uτ value. Based upon the formulated AAQP, the active area has been

quantified at several Reynolds numbers during the acceleration. Please note that

this procedure is applied to five realisations with both bottom and top halves of

the channels used. Figure 6.11 shows the variation of active area during the accel-

eration. At Re = 11000, almost 75% of the wall area still contians old turbulence.

The active area increases rapidly with the generation of new turbulence exhibiting

approximately an exponential trend during the stage III, and it achieves the pseudo-

steady value at Re = 15000. This is consistent with the turbulence generation shown

using iso-surfaces for λ2 in Figure 6.5. The rapid increase in active area during the

stage III shows the generation of new turbulence.

It is important to note that the criterion introduced in Equation 6.1 separates the

non-active area from the active area based on the assumption that almost the entire

wall area is active in case of fully-developed turbulent channel case. Therefore,
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Figure 6.11: Active area at different stages of acceleration.

this criterion separates the weak turbulent regions effectively. The conditionally-

averaged statistics for both active and non-active areas are presented in Subsection

6.4.
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6.4 Conditional average statistics

Turbulence statistics are calculated for the active and non-active areas in order to

investigate flow characteristics for active and non-active areas. Figure 6.12 shows the

conditionally-averaged λ′2 profiles at Re = 11000 for the two flow regions. The log

scale is used for the abscissa to show the statistics in the near-wall region clearly.

The difference between the λ′2 levels in the near-wall region is very large for the

two areas. It is worth mentioning that the ratio of the maximum λ′2 for the active

and no-active areas is almost 12, which is consistent with the ratio of higher λ2

contour value (red lines) to the lower λ2 contour value (blue lines) in Figure 6.7. It

is interesting to note that the strength of near-wall structures in the non-active area

is approximately similar to the initial turbulence. This implies that the turbulent

structures in approximately 75% of the near-wall region at Re = 11000 (cf. Figure

6.11) are comparable to the initial structures at Re = 3500 .

Figure 6.12: Conditionally-averaged λ′2 profiles at Re = 11000 for the active and
non-active areas. λ′2 profile at the initial Reynolds number (Re = 3500) is also
included for comparison.

Figure 6.13a shows the time histories of maximum λ′2 in the two areas. Correspond-

ing steady profiles are also included in each graph for comparison. Please note that

the time histories are shown from Re = 9000 where the active area has reduced to
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80% of the whole near-wall region (cf. Figure 6.11). The difference between the

strengths of turbulent structures can be clearly seen. It is interesting to note that

the rate of increase of λ′2 is similar for both areas, when they are plotted using log

scale. The uτ variation for both areas in Figure 6.13b clearly demonstrates that the

active area has higher wall shear stress values as compared to the non-active area.

It is worth noting that the rate of increase of the wall shear stress in the active area

is higher than in the non-active area.

a) b)

Figure 6.13: Time histories of conditionally-averaged a) maximum λ′2 b) uτ at several
Reynolds numbers during the acceleration.

Figure 6.14 shows the conditionally-averaged profiles for the mean velocity and rms

velocity fluctuations at Re = 11000. Steady DNS profiles are also included for

comparison. The mean velocity in the near-wall region is higher for the active area

in Figure 6.14a. This near-wall trend of the mean velocity in the active area is

consistent with the higher uτ value in Figure 6.13. It is interesting to note that

the mean velocity in the active area is still less than than the steady value in the

near-wall region. The mean velocity in the core region is quite similar for active and

non-active areas which indicates that the effect of the new turbulence is only confined

to the near-wall region. The rms velocity fluctuation profiles exhibit much significant

difference between the active and non-active areas while the outer layer intensities

are again similar for both areas. The significant level of difference between the
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turbulent intensities during the acceleration supports the earlier observation of new

turbulent generation in form of patches during the stage III. It is interesting to note

that the urms maximum value for the active area is greater than the corresponding

steady value in Figure 6.14b indicating much stronger response of turbulence after

initial delay. The y locations of all three fluctuations is nearer to the wall for the

active area indicating the existence of newly generated turbulence nearer to the wall.

a) b)

c) d)

Figure 6.14: Conditionally-averaged profiles for a) mean velocity, b) urms, c) vrms
and d) wrms during the stage III at Re = 11000. Local plane averaged uτ is used
for y+ calculation.

The effect of conditional averaging on the rms vorticity fluctuations is shown in

Figure 6.15 which shows conditionally-averaged rms vorticity profiles. A log scale

is used for the abscissa to clearly see the near-wall trends. The much higher values

for all three vorticity components in the active area again confirms the earlier ob-

servation of turbulent structures of two different strengths during the acceleration.
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Please note that the vorticity fluctuations in the active area is still less than the the

corresponding steady values in the very near-wall region at this stage. The strength

of ω′y and ω′z for active area is comparable with the corresponding steady vorticity

values in the buffer layer indicating the new turbulence generation.

It is interesting to note that the y locations for ω′x,min and ω′x,max in the active area

are nearer to wall as compared to the non-active area as shown in Figure 6.15. This

behaviour indicates that the new turbulence stays nearer to the wall while the non-

active area contains turbulent structures further away from the wall. The location

of ω′x in the non-active area can be seen more clearly in Figure 6.16. The initial ω′x

profile at Re = 3500 is also included for comparison. Figure 6.16 shows that the y

locations of ω′x,min and ω′x,max at Re = 9000 in the non-active area is approximately

the same as those y locations at initial Reynolds number (Re = 3500). It is also very

interesting to note that the vorticity level for the non-active area is less than the

initial level in the near-wall region, indicating the weakening of turbulent structures

in the stage II. The similar near-wall vorticity values also indicate that the turbulence

in the non-active area has the characteristics of the initial turbulence.

The near-wall vorticity value increases in the non-active area during the stage III,

and ω′x,min and ω′x,max locations move towards the wall as well. The time histories

of ω′x,min and ω′x,max are shown for the active and non-active areas in Figure 6.17.

The y location of the streamwise vorticity decreases sharply in the stage III and the

non-active mean vorticity y location remains away from the wall as compared to the

active area value. The higher y location for ω′x,min indicates that the thickness of

the viscous sublayer in the non-active area is greater, as ω′x,min location represents

the edge of the viscous sublayer (Kim et al., 1987).
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Figure 6.15: Conditionally-averaged rms vorticity profiles during the stage III at
Re = 11000. Local plane averaged uτ is used for y+ calculation.
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Figure 6.16: ω′x profiles for the non-active area at several Reynolds numbers during
the acceleration.

a) b)

Figure 6.17: Time histories of a) ω′x,min, and b) ω′x,max for the conditionally-averaged
data.
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6.5 Reynolds stress anisotropy tensor analysis

The response of the Reynolds stresses during the temporal acceleration has been

investigated using the response times and rms velocity fluctuations profiles and time

histories for each component in Chapter 5. The earlier response of uu component

is observed in the near-wall region, followed by −uv, vv, and ww. In this section,

the anisotropic response of turbulent flow is investigated using the Reynolds stress

anisotropy tensor analysis.

Figure 6.18 shows the time histories of the anisotropy tensor at several y locations.

The streamwise component of the anisotropy tensor, b11, exhibits an initial increase

in the near-wall region, followed by a significant decrease during the stage III. The

initial increase of b11 is consistent with the fastest response time for uu (cf. Table

5.4). b33 also becomes more anisotropic during the stage II in the near-wall region.

The wall-normal component b22 is largely unchanged at y = 0.005h and it is at-

tributed to the suppression of v′ in the viscous sublayer (Kim et al., 1987). The

near-wall anisotropy for b22 and b33 decreases during the stage III with the rapid

increase in v′ and w′. The absolute value of b12 exhibits an initial decrease in the

stage II followed by a subsequent increase in the stage III. The initial decrease in

b12 indicates the unresponsiveness of turbulence in the stage II. Time histories of

b12 are consistent with the time histories of the structure parameter a1 (cf. Figure

5.17) with shear stress lagging behind the kinetic energy.

The anisotropy remains largely unaffected in the channel core during the accelera-

tion as observed in Figure 6.18. Therefore, the anisotropy tensor profiles are plotted

in the near-wall region in Figure 6.19 to study the near-wall variations of turbulence

structure. The increase in anisotropy is clearly seen in the stage I and the stage II.

On the other hand, the turbulent isotropy exhibit an increase during the stage III

with the initiation of turbulence generation, and attains approximately the steady
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a) b11 b) b22

c) b33 d) b12

Figure 6.18: Time histories of anisotropy stress tensor terms at several y locations
during the acceleration.

isotropy values at Re = 15000. Chung et al. (2002) reported an increase in the

turbulence anisotropy due to suppression of transverse (v′ and w′) fluctuations in

case of a localised suction in a DNS study of turbulent channel flow whereas an in-

crease in isotropy was found in case of a localised blowing due to enhanced turbulent

motions. The same reasons may be attributed to explain the turbulence anisotropy

increase during the stage I and the stage II, and a subsequent reduction during the

stage III.

Figure 6.20 shows the 2D variation of the second (II) and third (III) invariants

of anisotropy tensor. The data at the initial Re are also included. A substantial

increase in the anisotropy can be seen more clearly during the stage I and the stage

II. The turbulence anisotropy increases until approximately Re = 10000. Turbulent
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a) b11 b) b22

c) b33 d) b12

Figure 6.19: Profiles of anisotropy anisotropy stress tensor terms at several stages
during the acceleration. Steady profiles (lines with symbols) at initial and final
stages are also included for comparison.

structures become more isotropic during the stage III and the y location of the

maximum anisotropy moves towards the wall (clearly seen from Re = 12000 onwards

in Figure 6.20).

Figure 6.21 shows the profiles of F and G invariant functions, representing the two-

component turbulence and axisymmetric turbulence states respectively. F invariant

profiles show that the turbulence stays in two-component state during the stage I

and the stage II of the acceleration which again supports the already made obser-

vation of the suppression of wall-normal fluctuations. The reduction in F below the

initial profile in the near-wall region is maximum during the later part of the stage

II at Re = 10000. Turbulence moves away from the two-component state during

the stage III. Figure 6.21b shows that turbulence becomes more axisymmetric in the
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a) II b) III

Figure 6.20: Variations of anisotropy invariants during the acceleration.

inner-layer region during the stage II. This behaviour is due to the lack of response

of the turbulent shear stress during the stage II. It is worth noting that G invariant

profile at Re = 15000 remains significantly towards the axisymmetric state in the

outer region (y = 0.4h) as compared to the corresponding steady value. This can

be explained by the earlier propagation of urms in the outer region, while the trans-

verse velocity fluctuations and turbulent shear stress remain largely unchanged in

the outer region during the stage III.

a) F b) G

Figure 6.21: Wall-normal profiles of anisotropy invariants during the acceleration.
Legend are the same as that for Figure 6.19.

The turbulent structures can also be analysed using anisotropy invariants maps

(AIM) analysis (Lumley and Newman, 1977) as described in Chapter 4. Figure 6.22

shows several interesting variations of the turbulence structure during the accelera-

tion. The turbulence structure shifts towards the one-component state in the stage

I and the stage II (as clearly seen by the rightwards shift of the right top corner
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point on the two-component line). This shift is due to the dominance of urms over

the other components in the stage II. The one-component turbulence is maximum

at the edge of the viscous sublayer (Chung et al., 2002). The one-component turbu-

lence state decreases with the rapid response of v′ and w′ fluctuations in the stage

III, and the top right point moves leftwards (this can be clearly seen in AIM from

Re = 11000 to Re = 13000).

The shift of turbulence towards the one-component sate can be seen more clearly by

following the time histories of maximum values of II and −III as shown in Figure

6.23a. The wall-normal location for the maximum II are shown in initial and local

wall units in Figure 6.23b. The variation of this location is similar to the two-stage

variation of ω′x,min (cf. Figure 5.21).

The lower right line of the AIM represents the axisymmetric state of turbulence.

The turbulence usually stays away from axisymmetric state due to non-trivial con-

tributions from all the Reynolds stress components in the buffer-layer and log-layer

for fully-developed turbulent channel flow. It is very interesting to note that the

turbulence becomes completely axisymmetric at Re = 11000 and Re = 13000 in

Figure 6.22, again supporting the observation of earlier increase in the streamwise

fluctuations in the near-wall region. The turbulence axisymmetry reduces in the

near-wall region during the stage III and turbulence shifts substantially away from

the axisymmetry line at Re = 15000. The core region remains largely isotropic

during the acceleration
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Figure 6.22: Anisotropy invariant maps at several Reynolds numbers during the
acceleration.
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Figure 6.23: Time histories of a) the maximum values of −II and III at right top
corner for AIM, and b) the wall-normal location for the maximum −II.
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6.5.1 Energy spectra analysis

Energy spectra analysis is being performed in this section to study the energy trans-

fer between large and small scales during the acceleration. Figure 6.24 shows the

energy spectra at several Reynolds numbers in the near-wall region (y+ = 5). Please

note that these spectra are constructed from 5 realisations. The energy spectra

clearly demonstrate the adequacy of the grid resolutions employed for the present

DNS as there is no energy pile up towards the higher frequency modes. The en-

ergy spectrum in the streamwise direction at Re = 7000 shows a substantial initial

reduction for the energy of smaller scales below the initial values (Re = 3500).

This clearly indicates that the temporal acceleration results in weakening of the

smaller scales. As acceleration proceeds, the energy starts to build up in relatively

larger scales throughout the acceleration and energy in the large scales is highest

at Re = 13000. The energy in the large scales starts to decrease afterwards but

still there is substantial difference between the energy levels of steady and unsteady

large scales at Re = 15000. It indicates that the temporal acceleration disturbs the

energy cascade.

a) b)

Figure 6.24: Variations of energy spectra at y+ = 5 of turbulent kinetic energy in a)
the streamwise direction, and b) the spanwise direction at several Reynolds number.

Figure 6.24b shows the energy spectra in the spanwise direction. There is an initial
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reduction in the energy level for the low frequency modes at Re = 7000 whereas

there is no reduction below the initial steady values for the high frequency modes.

The energy build up of the low frequency modes in the spanwise direction is similar

as observed in the streamwise energy spectra. Figure 6.25 shows the energy spectra

at the channel centreline. The streamwise spectrum at Re = 700 also exhibits an

initial decrease in the energy for the smaller scale. However, the weakening effect is

not as prominent as in the near-wall region. The energy builds up in large scales until

the final stage of acceleration, indicating that the core region is largely dominated

by the flow acceleration.

a) b)

Figure 6.25: Variations of energy spectra at y = h of turbulent kinetic energy in a)
the streamwise direction, and b) the spanwise direction at several Reynolds number.
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6.6 Conclusion

The effect of acceleration on the near-wall structures has been investigated in this

chapter using low-speed streaks and λ2 iso-surfaces. The new turbulence is found

to evolve in distinct patches after showing a substantial delay. The conditional

averaging has been performed on the newly generated turbulent region to study its

characteristics. Finally, the response of turbulent structures during the acceleration

has been analysed in detail with the help of Reynolds stress anisotropy analysis and

AIM analysis. The major findings of this chapter are as following,

1. The low-speed streaks exist in two distinct length scales during the stage III

of the acceleration. The larger streaks are from the old turbulence while the

smaller patterns are from the new turbulence.

2. The new turbulence generation process exhibits a substantial initial delay dur-

ing the stage II.

3. The near-wall structures are elongated in the streamwise direction during the

stage II.

4. The generation of new turbulent structures starts to occur during the later

part of the stage II and it increases rapidly during the stage III.

5. The rapid new turbulence generation results in a sharp increase of the wall

shear stress during the stage III.

6. The new turbulent structures evolve in form of distinct patches during the

acceleration.

7. The turbulence characteristics in the areas devoid of new turbulence are com-

parable to the initial turbulence during the stage II.
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8. The newly generated turbulent structures remain closer to the wall as com-

pared to the weaker structures.

9. The turbulence anisotropy increases in the viscous sublayer during the stage

II. The turbulence structure shifts towards one-component state due to the

dominance of urms.

10. Flow in the buffer layer and some part of the log-layer becomes completely ax-

isymmetric during the early part of the stage III due to the early propagation

of urms in this region, and the core region remains largely isotropic during the

acceleration.

11. Temporal acceleration results in a substantial turbulent kinetic energy build-

up in low frequency modes in the near wall region during the stage II.
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7
Effect of Different Acceleration Rates.

The DNS of temporal acceleration has shown many interesting aspects of turbulence

response during the acceleration, but the computational cost of performing DNS is

very high due to stringent grid resolutions. At the final stage of DNS calculations

at Ref = 15000, the wall shear stress has not fully recovered while the rms velocity

fluctuations are in the process of recovery after exhibiting an initial delay, and hence

the turbulence propagation in the core region has not completed. Therefore, LES

investigation is performed to study the effect of different acceleration rates as well

as the turbulence response after the ST stage (stage III) and turbulence propagation

characteristics in the core region. The final Reynolds number for DNS was restricted
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to (Ref = 15000) due to stringent grid resolution requirements and approximately

190 million computational cells were required to perform the DNS. In LES, the final

Reynolds number of the calculations is increased to Ref = 22600.

7.1 Simulation parameters

Three f values are used in this chapter to investigate the effect of acceleration rate on

the turbulence development during the acceleration. The details of LES performed

in the present study are tabulated in Table 7.1. The Dynamic SGS model (Germano

et al., 1991; Lilly, 1992) is used to account for unresolved SGS scales, and the test

filtering is applied in the streamwise and spanwise directions only. An LES of the

fully-developed turbulent channel flow was performed at the initial Reynolds number

(Re = 3500) in order to obtain the initial conditions for the temporal acceleration

simulations. The initial data are in good agreement with the steady DNS data (Kim

et al., 1987).

Case Re0 Ref f Te dRe/dξ γ Experiment time

Case-1 3500 22600 0.20 27.3 h/Um0 700 6.1 5
Case-2 3500 22600 0.33 16.3 h/Um0 1170 10.3 3
Case-3 3500 22600 0.50 10.9 h/Um0 1750 15.3 2

Table 7.1: Details of LES calculations performed. Captions are same as of Table
4.1.

LES validation

It is imperative to validate the LES results before any results would be presented.

There are a few studies for transient turbulent flows using LES. Piomelli et al.

(1997) studied the SGS stresses response to the imposed impulsive transition for two

separate cases for channel flow with a priori test. It was found that the SGS stresses
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are less sensitive to flow transient as compared to the large resolved scale. Moreover,

the dynamic SGS model is found to be suitable for their transient calculations. Since

in the present study, the flow field is subjected to temporal acceleration, LES results

are compared with the DNS data presented in Chapter 5 for f = 0.2 case to validate

the accuracy of the present LES.

Figure 7.1 shows the comparison of Reτ time history, showing an excellent agreement

between DNS and LES results. It is worth noting that the LES grid resolution is

comparable to DNS grid resolution in the initial stages of the acceleration with the

negligible contribution of the SGS viscosity. The SGS contribution increases towards

the later stages of the acceleration.

Figure 7.1: Reτ time history comparison for DNS and LES calculations during the
acceleration for f = 0.2 case.

Since the wall shear stress provides the data comparison only adjacent to the wall,

the mean velocity and rms velocity fluctuation profiles at several Reynolds number

during the acceleration are shown in Figure 7.2. All profiles show good agreement

with the corresponding DNS data. Figures 7.1 and 7.2 demonstrate that the present

LES produce reliable results for the temporal acceleration case.
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a) b)

c) d)

Figure 7.2: Comparison of a) the mean velocity, b) urms, c) vrms, and d) wrms profiles
for DNS and LES at several Reynolds number during the acceleration.

170



7.2. WALL SHEAR STRESS

7.2 Wall shear stress

Figure 7.3 shows the time history of the wall shear stress for three f values during

the acceleration. The wall shear stress attains a pseudo-steady equilibrium state (PS

stage or stage IV) at the end of the stage III and increases monotonically afterwards

as the acceleration proceeds. This behaviour was also reported in pipe flow LES by

Jung and Chung (2007). The offset of the Reτ value from the pseudo-steady Reτ

value increases at higher acceleration during the stage I and the stage II. This

increase in deviation is due to an increase in the inertia at higher acceleration rate.

The stage IV is achieved for f = 0.2 and f = 0.33 cases only at Re = 22600. The

wall shear stress for f = 0.5 case is in the stage III of acceleration at Re = 22600.

Figure 7.3: Variation of the wall shear stress during the acceleration for the three
cases. Steady LES values are included for comparison.

The comparison of ratios of final values to the initial steady values, for the three

acceleration cases with the corresponding steady values for Reτ , Rec and Cf is tab-

ulated in Table 7.2. Here Rec denotes the Reynolds number based on the centreline

velocity. All the properties for f = 0.5 case are considerably smaller than the steady

corresponding values.
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Flow Property Steady f = 0.2 f = 0.33 f = 0.5

Reτ 5.18 5.15 5.15 5.03
Rec 6.38 6.39 6.18 5.97
Cf 0.645 0.630 0.638 0.608

Table 7.2: The comparison of ratio of final values to the initial steady values for
different flow properties.

The final Reynolds numbers and the time for the different stages of acceleration

are tabulated in Table 7.3. It is worth noting that the final Reynolds numbers

for the first two stages i.e., the stage I and stage II, increase for higher f values.

A similar increase in critical Reynolds number at higher acceleration rates is also

reported in the experimental studies of laminar to turbulent transition (Lefebvre and

White, 1989, 1991). Please note that the final Reynolds number and time ranges are

determined where the unsteady duτ/dξ crosses the steady duτ/dξ value in Figure

7.4, and the steady duτ/dξ is calculated from Dean and Bradshaw (1976) correlation

(cf. Equation 5.9). It is clear from Table 7.3 that the time for all the three stages

reduces with increase in the f value, implying the quicker response of the wall shear

stress for higher acceleration rates. The reduction of transition time is also found in

laminar to turbulent transition studies (Nakahata et al., 2007; Annus and Koppel,

2011).

Stage ξcase-1 ξcase-2 ξcase-3 Recase-1 Recase-2 Recase-3

stage I 1.0 0.85 0.7 4200 4500 4800
stage II 11.4 9.5 8.6 11500 14600 18500
stage III 16.2 13.8 - 14900 19700 -

Table 7.3: Reynolds number and time ranges for different stages of wall shear stress
variations. “ξ” and “Re” indicates the final time and Reynolds number for each
stage.

Figure 7.4 shows the time histories of dReτ/dξ for the three cases, and the corre-

sponding steady dReτ/dξ time histories are also included. The wall shear stress

response during the stage II and Reτ recovery rate during the stage III increase for
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higher f values. The maximum overshoot of dReτ/dξ above the steady value during

the stage III also increases with increase in acceleration rate. It is worth noting

that the maximum duτ/dξ value during the stage III is approximately 10 % of the

corresponding f values which are shown by 3 dashed lines in 7.4b.

a) b)

Figure 7.4: Variation of rate of change of wall shear stress during the constant
acceleration for the three cases. a) dReτ/dξ and b) duτ/dξ, the rate of change of
Reτ and uτ . Steady values from Dean and Bradshaw (1976) correlation are included
for comparison.

Figure 7.5 shows the time histories of boundary layer parameters. During acceler-

ation, the boundary layer thickness and displacement thickness decrease below the

steady values and this deviation increases at higher f values. It is interesting to

note that the boundary layer thickness and displacement thickness exhibit a slow

recovery as compared to the wall shear stress (cf. Figure 7.3). The shape factor

shows the similar two-stage behaviour as reported in DNS case in Chapter 5. The

pseudo-steady equilibrium values for the shape factor is only achieved for the two

lower f values. All the above results and statistics indicate that the mass flow in-

cursion dominates the initial stages of acceleration. Higher acceleration rates result

in earlier adjustment of the near-wall mean velocity to the imposed acceleration.
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a) δ∗

b) θ

c) H

Figure 7.5: Variation of boundary layer parameters during the acceleration for the
three cases.
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7.3 Mean velocity

Figure 7.6 shows the mean velocity profiles at several Reynolds numbers for f = 0.2

and f = 0.5 cases. The corresponding steady profiles are also included to clearly

show the difference of acceleration from the fully-developed equilibrium state. As

the mean velocity response until Re = 1500 for f = 0.2 case is discussed in detail in

Chapter 5, the main focus of attention here is the variation of the mean velocity in

the stage IV. It is clearly seen in Figure 7.6a that the mean velocity profiles revert

back to the steady profiles during the stage IV and achieves the steady profile values

at Re = 22600.

It is interesting to note that the mean velocity deviation from the steady values

increases with an increase in f during the stage II and the stage III. This behaviour

is evident from Figure 7.6b where the departure of mean velocity profiles from the

steady profiles for f = 0.5 case is significantly larger as compared to f = 0.2 case

in Figure 7.6a. The mean velocity profile at Re = 22600 for f = 0.5 case is still

different from the steady profile implying a much longer delay in the mean velocity

profile adjustment.

a) b)

Figure 7.6: Variation of the mean velocity profiles during the acceleration for a)
f = 0.2, and b) f = 0.5. Dashed lines with symbols are steady LES profiles.

Figure 7.7 shows the mean velocity profiles in wall units for f = 0.2 and f = 0.5
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cases. Please note that the local uτ is used for calculation of U+. The effect of

different acceleration rates on the variation of the log-law is clearly evident in the

figure. The deviation of the log-law increases with f . As discussed earlier in Chapter

5, the mean velocity profile shifts downwards during the stage I while it moves

upwards during the stage II. The mean velocity profile starts to recover the log-

law profile during the stage III with the generation of the new turbulence, and

subsequently achieves the log-law profile in the stage IV for f = 0.2 case as shown

in Figure 7.7a. It is worth noting that the log-law profile first starts to recover in

the near-wall region. The log -law profile has not recovered for f = 0.5 case at

Re = 22600.

a) b)

Figure 7.7: Variation of the log-law profile during the acceleration for a) f = 0.2
case, and b) f = 0.5 case. The log-law profile at Re = 22600 is included.

Figure 7.8 shows the time histories of the mean velocity at several wall-normal

locations for the three acceleration cases. It is interesting to note that the effect

of the no-slip wall constraint in the stage II weakens with increasing acceleration

rate. Moreover, the near-wall mean velocity adjustment delay time in the near-wall

region (y = 0.005h) is decreased with increase in f . This earlier adjustment of the

near-wall mean velocity is consistent with the time histories of the wall shear stress

(cf Figure 7.3) and this is indicative of earlier response of the near-wall turbulence.

Figure 7.9 shows the 2D contour plot for the variation of rate of change of mean
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Figure 7.8: Variation of the mean velocity at three y locations during the accel-
eration. Lines with symbols indicates f = 0.2 case, solid lines without symbols
indicates f = 0.34 case while dashed lines represent f = 0.5 case.

velocity i.e., dU/dt. The adjustment of the mean velocity in the near-wall region,

during the stage III is clearly seen for the three cases. The increase in acceleration

rate results in the earlier adjustment of the near-wall mean velocity. It was found

in the DNS analysis in Chapter 5 that this rapid adjustment of the mean velocity

is an indicator of near-wall turbulence generation and this figure implies that the

delay in the near-wall turbulence generation decreases with increase in f . The effect

of different acceleration rates on the near-wall turbulence generation is discussed in

detail in Subsection 7.4.
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a) f = 0.2

b) f = 0.33

c) f = 0.5

Figure 7.9: Variations of rate of change of mean velocity (dU/dt) during the accel-
eration.
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7.4 RMS velocity fluctuations

Figure 7.10 shows the rms velocity profiles for f = 0.2 case and f = 0.5 case. The

rms velocity is frozen on the centreline at y = h even during the earlier part of

the stage IV at Re = 17000 for f = 0.2 case (Figure 7.10a). The maximum urms

values in the stage IV are comparable with the steady values while the core region

intensities are significantly smaller. This trend indicates the delay in turbulence

propagation in the core region. The maximum vrms and wrms values in the stage IV

are significantly smaller than the steady maximum values, indicating the delay in

turbulence redistribution.

RMS velocity profiles for f = 0.5 case shows that the turbulence intensity remains

largely unchanged from its initial value even at the final stage of calculations. It is

interesting to note that the maximum urms value at Re = 22600 in Figure 7.10b is

greater than the steady maximum values. This overshoot of maximum urms signifies

a sudden response of turbulence after a period of dormancy. Moreover, maximum

urms value at Re = 22600 decreases sharply in the core region indicating lack of

turbulence propagation in the core region. The maximum vrms value also exhibits a

rapid increase during the stage III, and it remains below the steady corresponding

value at Re = 22600 . The changes in vrms and wrms are very similar to each other

during the acceleration.

Figure 7.11 shows the 2D contours of urms and vrms in wall units. It clearly show

the effect of acceleration rate on the near-wall evolution of rms velocity. Steady

equilibrium contour values at the initial Reynolds number Re = 3500, are also

shown. The stage IV of the acceleration is clearly seen in u′+ for f = 0.2 and

f = 0.33 cases. All v′+ plots show higher turbulence activity in extended region in

the outer layer. This effect is due to the fact that the v′+ has relatively smoother

profile distribution around the maximum location and the location for the maximum
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f = 0.2 f = 0.5

Figure 7.10: Variation of the rms velocity fluctuations during the acceleration.
Dashed lines with symbols denote the steady LES data.

is located away from the wall as compared to u′+. This extended region of higher

turbulence activity is also evident during the stage III for u′+ contour plots for all

three cases. The delay in response for rms velocity, in terms of Reynolds number,

increases with f .

The response of turbulence in the near-wall region for the three acceleration cases

is investigated using the time histories of the maximum values of rms velocity. The
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f = 0.2

f = 0.33

f = 0.5

Figure 7.11: 2D contours of u′+ and v′+ for the three cases. The local uτ is used for
normalisation. The steady initial data are also included.

criterion introduced in the DNS analysis in Chapter 5 (cf. Equation 5.11) is used.

Figure 7.12 shows the variations of urms and vrms maximum values. Their steady

values (calculated using LES) at several Reynolds numbers are also included. The

deviation (reduction) from the steady values is increased during the stage II for

large f , due to a delay in turbulence response. u′max overshoot over the steady value

during the stage III is clearly seen for all cases in Figure 7.12a which is consistent

with the increase of maximum urms value at Re = 22600 in Figure 7.10b. The

amount of overshoot increases with f . The overshoot of maximum urms is also

evident in Figure 7.10b. It is interesting to note that u′max increases at the same

rate as its steady rate in the stage IV. However, urms for acceleration cases remains

relatively low as compared to the corresponding steady values, due to the delay in

turbulent kinetic energy production as shown in Figure 7.13.

v′max time histories, in Figure 7.12b, also exhibit the similar patterns of delay and

sudden response during the acceleration as observed for u′max. It is interesting to
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note that the difference between the steady and unsteady v′max values in the stage IV

is greater than the corresponding difference of u′max values. This greater difference

during the stage IV is due to an additional delay in turbulence redistribution from

the streamwise component to the other two components.

a) b)

Figure 7.12: Variation of maximum values of a) urms, and b) vrms.

Figure 7.13: Time history of maximum value of production term in uu budget
equation. Legends are the same as in Figure 7.12.

Figure 7.14 shows the turbulent kinetic energy profiles in the near-wall region (y ≤

0.4) at ξ = 5 and at ξ = 10 for the three cases. It is clearly seen that the delay

in turbulence response in early stages decreases with increase in acceleration rate.

It is interesting to note that the turbulent kinetic energy profiles at ξ = 10 exhibit

greater increase of kinetic energy in the outer region for higher acceleration rates,

implying the earlier turbulence propagation in the core region at higher acceleration
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rates.

Figure 7.14: Turbulent kinetic energy profiles at two time instances during the
acceleration. Solid lines correspond to f = 0.2 case, dashed to f = 0.33 case and
dash-dott-dott to f = 0.5 case.

Table 7.4 shows the delay time of maximum values for different Reynolds stress terms

using criterion introduced in Chapter 5 (cf. Equation 5.11). This table clearly shows

that turbulence responds earlier at higher f values.

f = 0.2 f = 0.33 f = 0.5
Flow Property ξ∗50 Rp × 100 ξ∗50 Rp × 100 ξ∗50 Rp × 100 Ms Mf/Ms

uuNmax 18.8 94.5 10.7 93.9 8.9 121 2.7× 10−2 30.9
vvNmax 20.5 89.2 12.6 80.9 10.1 77.3 2.9× 10−3 42.5
wwNmax 20.3 89.2 12.6 80.0 10.1 76.5 4.9× 10−3 40.2
−uvNmax 18.9 94.1 11.8 90.6 9.6 95.0 2.8× 10−2 32.8

Table 7.4: Response times for maximum values of Reynolds stresses.

In Chapter 5, the breakdown of the local equilibrium between turbulence and the

mean flow was reported (cf. Figure 5.10). Figure 7.15 shows the variations of the

ratio of the turbulent kinetic energy to the mean velocity at several y locations.

The steady ratios at several Reynolds number are included. At the onset of the

acceleration, the k/U2 ratio decreases significantly across the channel due to imposed

mass incursion. This ratio remains below the steady value during the stage II,
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followed by an abrupt increase during the stage III only in the near-wall region.

This ratio remains below the steady ratio during the stage IV. The deviation from

steady ratio increases with f during the stage II. In the outer region, k/U2 exhibits

an extended period of delay due to the dominance of the mean flow, and it only

starts to increase with the propagation of new turbulence from the near-wall region.

a) b)

c) d)

Figure 7.15: Time histories of kinetic energy normalised by the corresponding mean
velocity at a) y = 0.005h, b) y = 0.05h, c) y = 0.3h and d) y = h for the three
cases. Steady values are included for comparison.

Propagation of new turbulence can be clearly seen in Figure 7.16, which shows the

2D contour graphs of the rate of change of rms velocity fluctuations for f = 0.2

case. The newly generated turbulence during the stage III propagates subsequently

into the core region after approximately ξ ≈ 10. It is interesting to note that the

turbulence starts to increase at a relatively smaller rate during the stage II for urms.
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The significant turbulence generation, redistribution and propagation occurs during

the stage III and the stage IV. urms increases first during the stage III, resulting in a

subsequent increase in vrms and wrms and these findings support earlier observation,

as reported in Chapter 5, about the anisotropic response of turbulence during the

acceleration.

a)

b)

c)

Figure 7.16: Rate of change of rms velocity fluctuations a) durms/dξ, b) dvrms/dξ,
and c) dwrms/dξ for f = 0.2 case.

The effect of different acceleration rates on turbulence propagation in the core region

is investigated using the same criterion as introduced in Chapter 5 (cf. Equation

5.12). The characteristic speed for urms propagation in the core region was found

proportional to the initial uτ value using aφ = 0.15 criterion (Greenblatt and Moss,

2004). However, turbulence propagation in the core region could not be studied in

detail due to the relatively low final Reynolds number (Ref = 15000). The choice of

aφ is arbitrary, therefore it is important to study the effect of different values of aφ on
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turbulence propagation. Figure 7.17 clearly shows that this criterion is independent

of the value of aφ. aφ = 0.5 is used in the present study to investigate the effect of

different acceleration rates on turbulence propagation in the core region.

a) b)

Figure 7.17: Propagation of a) urms, and b) vrms for several aφ values for f = 0.2
case.

Figure 7.18 shows the propagation of the rms velocity fluctuations and the turbulent

shear stress in the core region. It shows that the propagation speed of all properties

investigated here, is proportional to the initial uτ value. The turbulence propagation

is limited in only part of the core region for the two higher f values. This is due to

relatively extended delay in turbulence response in terms of Reynolds number (cf.

Table 7.3). The turbulence propagation speed is found to be largely independent of

the acceleration rate.
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a) b)

c) d)

Figure 7.18: Comparison of turbulence propagation of a) urms, b) vrms, c) wrms and
d) −u′v′ in the core region for the three acceleration cases.
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7.5 RMS vorticity fluctuations

RMS vorticity fluctuations analysis is helpful in investigating the response of near-

wall structures. In the DNS of temporal acceleration presented in Chapter 5, it was

found that like rms velocity fluctuations, rms vorticity fluctuations respond first

in the near-wall region. The effect of different acceleration rates on the near-wall

structures response can be investigated using the time histories of the maximum rms

vorticity fluctuations. Figure 7.19 shows the variation of ω′x,max, ω
′
y,max and ω′z,wall

with time for the three f cases. ω′x,max and ω′y,max for f = 0.5 case have not achieved

the stage IV of acceleration at Re = 22600. On the other hand, ω′z,wall exhibits a

significant overshoot for f = 0.5 case, and a similar overshoot was also reported in

u′max history graph (cf. Figure 7.12a). It is worth noting that a sudden increase

is evident for all three cases, and rate of change appears to be independent of f ,

suggesting that the turbulence response during the stage III is largely independent

of the acceleration rate. It is also interesting to note that ω′x,max remains below

the steady values during the stage IV indicating that the strength of streamwise

vortices during the stage IV is less than the steady strength. This is due to the

delayed production of turbulent kinetic energy during the stage IV (cf. Figure 7.13).

In Chapter 5, the rms vorticity y locations of ω′x,min, ω′x,max, and ω′y,max exhibited

interesting trends during the acceleration (cf. Figure 5.21) although the trends

in the stage IV were not be presented. Figure 7.20 shows the time variations of

the y locations from LES. Steady LES data are included to elaborate the effect of

acceleration on vorticity locations in comparison with the steady locations. The

LES results exhibit similar trends as the DNS study, again validating the accuracy

of LES calculations. The monotonic decrease of all three vorticity locations during

the stage IV is clearly seen in the figure.
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a) ω′x,max

b) ω′y,max

c) ω′z,wall

Figure 7.19: Maximum values of rms vorticity fluctuations variations during the
constant acceleration for the three cases. Steady value are included for comparison.

Figure 7.21 shows the 2D contour plots of ω′+x and ω′+y for the three acceleration

cases. The delay in response for these two vorticity components is evident. Please

note that the local uτ value is chosen for the normalisation. This delay decreases

with increase in the acceleration rate. The strength of the near-wall structures

during the stage II remains approximately the same as the initial strength. The
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a) ω′x,min

b) ω′x,max

c) ω′y,max

Figure 7.20: Variation of y locations for rms vorticity fluctuations during the accel-
eration for the three f values.

turbulent structures exhibit an abrupt response in the near-wall region during the

stage III.
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a) f = 0.2

b) f = 0.33

c) f = 0.5

Figure 7.21: ω′+x and ω′+y contour plots for the three cases. Local uτ value is used
for the normalisation.
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7.6 PDF analysis

The DNS of temporal acceleration revealed many interesting trends for the quadrant

contributions (cf. Subsection 5.8). Quadratic contribution analysis is performed

for the three acceleration cases in order to study the effect of acceleration rate

and variations of quadratic contributions during the stage IV. Figure 7.22 shows

the quadratic contribution (in percentage) for the four components at y+ = 3.

Approximately 2 million grid cell information from 5 realisations is used to collect

this quadratic contribution at each time instant, represented by symbols in the time

history graphs. Time history from the DNS for f = 0.2 case is also included and

there is good agreement between DNS and LES. The deviation from the steady

values increases with f .

Figure 7.23 shows 2D pdf contours during the stage II in the very near-wall region

(y+ = 3). Steady pdf results at Re = 3500 are included to show the differences

between the steady and acceleration cases. It clearly shows that the v′ contributions

are reduced significantly during the stage II, and the suppression of wall normal

fluctuations increases with f .

The suppression of wall-normal fluctuations in the stage II of the acceleration, is

more prominent at y+ = 20 in Figure 7.24. It is interesting to note that the pdf

contributions for positive u′ in the fourth quadrant increase in the later stage II,

shown in Figures 7.24a, 7.24c and 7.24e. This indicates an increases in number of

large amplitude positive u′ events at higher acceleration rates. The pdf contours in

the stage III are shown in Figure 7.24b, 7.24d and 7.24f. It is worth noting that

the majority of events in the fourth quadrant, in the steady pdf at Re = 3500, shift

significantly towards the second and third quadrant during the acceleration. This

indicates an increase in the number of negative u′ events. This can be attributed to

the commencement of the abrupt adjustment of the mean velocity profile towards

192



7.6. PDF ANALYSIS

a) Q1 b) Q2

c) Q3 d) Q4

Figure 7.22: Time histories of quadratic contribution (in percentage) for the three
acceleration cases at y+ = 3.

the start of the stage III. The amplitude of v′ recovers first in the first and fourth

quadrants in the stage III.
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a) b)

c) d)

Figure 7.23: Joint pdf of u′ and v′ at y+ = 3 at a) Re = 3500 (steady), b) Re =
12000, f = 0.2, c) Re = 15000, f = 0.33, and d)Re = 18000, f = 0.5 in the stage
II. 2D bin size is kept constant as 0.1urms for u′ and 0.05vrms for v′. Same contour
levels are used for all figures.
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Re = 3500 (steady)

a) Re = 10000, f = 0.2 b) Re = 14000, f = 0.2

c) Re = 15000, f = 0.33 d) Re = 18000, f = 0.33

e) Re = 18000, f = 0.5 f) Re = 22600, f = 0.5

Figure 7.24: Joint pdf of u′ and v′ at y+ = 20 at several Reynolds numbers in the
stage II and the stage III during the acceleration.
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7.7 Turbulent structures

In this subsection, the two-point correlation coefficients analysis is employed to

study the near-wall structures during various stages of acceleration. Please note

that, for this analysis the correlations are constructed with velocity information from

10 xz planes, comprising of approximately 2 million data points. The variation of

correlations is shown at y+ = 20 and y = h.

Figure 7.25 shows the two-point correlation coefficient variation of u for f = 0.2 case

and f = 0.5 case. There is an increase in the coefficient value during the stage II at

y+ = 20 in Figure 7.25a. This increase implies the elongation of near-wall structures

in the streamwise direction. The increase in coherence of the near-wall structures was

also reported in the pulsating turbulent pipe LES investigation (Manna and Vacca,

2008). The correlation value decreases below the initial value after the generation of

new turbulence in the stage III and the stage IV. A large acceleration rate enhances

the coherence of near-wall structures in the stage II in the near-wall region. The

core region also show an increase in correlation coefficient during the acceleration.

Two-point correlation coefficient of v, in Figure 7.26, also shows a similar increase

during the stage II. It is interesting to note that the increase in correlation is not as

significant as for u, and this increase is limited in the range of x 6 2 for f = 0.2 case

and x 6 3 for f = 0.5 case, respectively. The correlation value decreases sharply in

the stage III (at Re = 120000 and Re = 18000 for f = 0.2 case and f = 0.5 case

respectively). This sharp decrease may indicate the occurrence of highly energetic

wall-normal transport in the near-wall region with the advent of new turbulence

generation in the stage III. The correlation coefficient of w exhibits similar trends

as for v and is not shown here.

In Chapter 6, the existence of low-speed streaks with two distinct length scales

during the acceleration has been reported. The effect of different acceleration rates
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a) b)

c) d)

Figure 7.25: Two-point correlation variation of < u, u > in the streamwise direction
during the acceleration at a) y+ = 20, f = 0.2 case, b) y+ = 20, f = 0.5 case, c)
y = h, f = 0.2 case, and d) y = h, f = 0.5 case.

and as well as the low-speed streak patterns in the stage IV can be studied using

the correlation coefficient of u in the spanwise direction. Figure 7.27 shows the two-

point correlation variations for f = 0.2 case and f = 0.5 case at y+ = 20. The local

minimum value in the near-wall region increases in the stage III, which is consistent

with the DNS results in Chapter 6. This increase in local minimum value is very

clear in Figure 7.27b at Re = 21000. The increase of two-point coefficient above

zero increases with f values. Afterwards, the local minimum value decreases in the

stage IV for f = 0.2, as clearly seen at Re = 17000 and Re = 22600 in Figure 7.27a.

In the DNS study, the low-speed streak patterns could not be examined in the

stage IV. Figures 7.28 and 7.29 show the instantaneous low-speed streak contours

at y+ = 5 at several Reynolds numbers for f = 0.2 and f = 0.5 cases, respectively.
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a) b)

Figure 7.26: Two-point correlation variation of < v, v > in the streamwise direction
during the acceleration for a) y+ = 20, f = 0.2 case, and b) y+ = 20, f = 0.5 case.

a) b)

Figure 7.27: Two-point correlation variation of < u, u > in the spanwise direction
at y+ = 20 during the acceleration for a) f = 0.2 case, and b) y+ = 5, f = 0.5 case.

Please note that both figures are from the same initial conditions, therefore these

figures also show the effect of acceleration rate clearly. Same contour levels are used

in the first three plots to show the changes in the streamwise velocity fluctuations

strength in the stage II. Low-speed streaks at Re = 7000 for both cases show that

the strength of streamwise fluctuations reduces with f . Moreover, the elongation

of low-speed streaks is clearly seen in the stage II. The reduction in low-speed

streak strength is recovered during the stage III. The generation of new low-speed

streaks with smaller length scales in terms of distinct patches is evident in the

stage III, at Re = 13000 and Re = 14000 for f = 0.2 case in Figure 7.28 and
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at Re = 20000, 21000 and 22600 for f = 0.5 case in Figure 7.29. Similar streak

patterns were also found in DNS of temporal acceleration.

Figures 7.30 and 7.31 show the iso-surfaces of λ2 for f = 0.2 case and f = 0.5 case

respectively. Please note that the iso-surfaces are plotted for the same data as used

for low-speed streak plots in Figures 7.28 and 7.29. Maximum rms λ2 values are

chosen as threshold values for the iso-surface plots. The generation of new structures

in the stage III is clearly seen from the plots at Re ≥ 10000 and Re ≥ 15000 for

f = 0.2 case and f = 0.5 case respectively. The new structures are generated in form

of patches in the stage III as observed in DNS case in Chapter 6. The entire wall

is filled with the newly generated structures in the stage IV as shown for f = 0.2

case in Figure 7.30 at Re = 17000 and Re = 22600. The final Reynolds number

(Re = 22600) for f = 0.2 case lies in the stage III, therefore, the new turbulence

generation is not completed at Re = 22600 in Figure 7.30.
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Re = 3500 Re = 7000

Re = 10000 Re = 12000

Re = 13000 Re = 14000

Re = 15000 Re = 17000

Re = 22600

Figure 7.28: Low-speed streaks at y+ = 5 during acceleration at several Reynolds
numbers for f = 0.2 case.
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Re = 3500 Re = 7000

Re = 10000 Re = 13000

Re = 15000 Re = 18000

Re = 20000 Re = 21000

Re = 22600

Figure 7.29: Low-speed streaks at y+ = 5 acceleration at several Reynolds numbers
for f = 0.5 case.
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Re = 3500 Re = 7000

Re = 10000 Re = 12000

Re = 13000 Re = 14000

Re = 15000 Re = 17000

Re = 22600

Figure 7.30: λ2 iso-surfaces at several Reynolds numbers for f = 0.2 case.
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Re = 3500 Re = 7000

Re = 10000 Re = 13000

Re = 15000 Re = 18000

Re = 20000 Re = 21000

Re = 22600

Figure 7.31: λ2 iso-surfaces at several Reynolds numbers for f = 0.2 case.
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The active area quantification procedure employed in the DNS study is applied for

the three acceleration cases. The percentage of the area filled with new turbulent

structures is shown in Figure 7.32. Five LES realisations are used for averaging and

data from top and bottom halves are also averaged. LES data for f = 0.2 case

show good agreement with the DNS data. The rate of new turbulence generation

is similar for the three cases as shown in Figure 7.32. This may imply that the

turbulence generation process appears to be largely independent of the acceleration

rate.

Figure 7.32: Percentage of new turbulent area during acceleration for the three
cases. DNS data for f = 0.2 case are also included.

Figure 7.33 shows the variation of ω′x in the non-active flow regions (as introduced

in Subsection 6.3) for three acceleration cases. The initial steady ω′x profile is added

for the comparison. It shows that the strength of streamwise vorticity in non-active

regions reduces below the initial at ξ ≈ 5, followed by an increase in the later part of

the stage II. ω′x,max responds earlier than ω′x,min and the streamwise vorticity attains

the same strength as that of initial value in the later stages of the stage II.
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Figure 7.33: Conditionally averaged ω′x profile in non-active area at different stages
of the acceleration for the three f values. Conditionally averaged profiles are plotted
at Re = 7000 (or ξ = 5), Re = 10000 (or ξ = 9.3) and Re = 12000 (or ξ = 11.9)
for f = 0.2 case, while for f = 0.33 case Re = 10, 000 (or ξ = 5.5), Re = 13, 000
(or ξ = 8.1) and Re = 15, 000 (or ξ = 9.8), and for f = 0.5 case, the graphs are
plotted at Re = 13000 (or ξ = 5.4), Re = 15, 000 (or ξ = 6.5) and Re = 18, 000 (or
ξ = 8.3).
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7.8 Conclusions

The results presented in this chapter demonstrate that the turbulence returns to

the pseudo-steady equilibrium state after exhibiting a certain delay during temporal

acceleration. Although the imposed acceleration is linear, its tendency to produce

of a uniform increase in the mass flow rate throughout the entire cross-section in the

initial stages of acceleration results in streamwise elongation of near-wall turbulent

structures and hence causes a certain delay in their response. This initial delay

results in subsequent rapid turbulence response until turbulence achieves pseudo-

steady state. The findings of this chapter are as following

1. The wall shear stress increases monotonically in the PS stage (stage IV) after

exhibiting a significant deviation from the steady values in the first three

stages.

2. The deviation of the wall shear stress and the mean velocity from the corre-

sponding steady values increases with f while the duration of the IT stage

(stage I), the WT stage (stage II) and the ST stage (stage III) decrease with

the increase in the acceleration rate.

3. The delay in response for the rms velocity and vorticity fluctuations decreases

with the increase in acceleration rate.

4. The characteristic speed of turbulence propagation in the core region is similar

to the initial uτ value and it is largely independent of the acceleration rate.

5. Degree of breakdown of local equilibrium between turbulence and mean flow

increases with f .

6. The pdf analysis supports the findings in the DNS study (Chapter 5), and

exhibit an increase in quadratic contribution from first and fourth quadrant
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and a corresponding reduction in second and third quadrant contribution in

the stage III. This trend becomes more prominent with f .

7. The suppression of wall-normal fluctuations in the near-wall region increases

with increase in acceleration rate value while the pdf contours show similar

trends during the stage II and the stage III for the three cases.

8. The two-point correlation coefficient in the streamwise direction indicates an

increase in coherence of near-wall structures. The enhanced coherence in-

creases with f .

9. Low-speed streaks show that the two length scale behaviour of low-speed

streaks increases with increase in acceleration rate.

10. Iso-surfaces of λ2 supports the DNS findings i.e., emergence of new turbulence

in form of patches during the stage III. Turbulence generation process is found

to be largely independent of the acceleration rate.
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8
LES of Temporal Deceleration.

In the previous chapters, the turbulent channel flow subjected to temporal acceler-

ation has been investigated in detail, which has revealed many interesting results.

However, turbulent flows subjected to temporal deceleration has received little at-

tention as compared to its acceleration counterpart. He and Jackson (2000) reported

the time histories of rms velocity fluctuations for the turbulent pipe flow subjected

to temporal deceleration in their experimental study. Chung (2005) investigated

the turbulent channel subjected to sudden deceleration at a relatively low Reynolds

number range. Coleman et al. (2003) studied the fully-developed turbulent chan-

nel flow subjected to a mean streamwise strain. More recently, Ariyaratne et al.
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(2010) investigated the temporal deceleration in turbulent pipe by using unsteady

RANS approach. LES of turbulent channel flow subjected to temporal deceleration

is performed for two deceleration rates in order to study turbulence response during

temporal deceleration.

8.1 Simulation parameters

LES was performed for the fully-developed turbulent channel subjected to temporal

linear deceleration. The initial and final Reynolds numbers, based on the bulk-

mean velocity and the channel half-height (h), are Re0 = 22600 (Reτ ≈ 1100) and

Ref = 3500 (Reτ ≈ 215) respectively and these ranges are the same as in Chapter

7 for LES of temporal acceleration. Two deceleration rates were employed in the

present study to investigate the effect of different deceleration rates (f = −0.2 and

f = −0.5). Table 8.1 shows the simulation details used. Ensemble averaging was

taken over 10 independent realisations to improve the flow statistics. The separation

between each realisation is approximately 100 (tu2
τ0/ν). Please note that f and ξ

are calculated based on the final Reynolds number (Re = 3500) same as used for

temporal accleration. The bulk-mean velocity is decreased linearly from 6.46 to 1

based on this scaling.

Case Lx × Ly × Lz f Te dRe/dξ Realisations

Case-1 12h× 2h× 4h -0.20 27.3 -700 10
Case-2 12h× 2h× 4h -0.50 10.9 -1750 10

Table 8.1: Details of LES performed for temporal deceleration.

Table 8.2 shows the grid resolution used in the present study. The LES grid reso-

lution in the homogeneous directions were about twice the DNS grid spacing. The

Dynamic SGS model (Germano et al., 1991; Lilly, 1992) was used to account for
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unresolved SGS stresses. Test filtering was applied in the homogeneous directions

only.

Lx × Ly × Lz Nx ×Ny ×Nz ∆x+ ∆y+
min ∆y+

max ∆z+

12h× 2h× 4h 512× 192× 384 25.7 1 27.5 11.4

Table 8.2: Simulation parameters based on Reτ = 1100.

First, an LES of steady channel flow at Re = 22600 was performed to provide the

initial conditions for the main simulations. The mean velocity and rms velocity

fluctuations are in good agreement with the DNS data of Abe et al. (2004) at

Reτ = 1020 (cf. Figures 3.7 and 3.8).

Domain size independence test

It was found in the domain size independence test for temporal acceleration that a

small domain size, L = 6h, caused suppression of turbulence response in the near-

wall region, and very little difference was found between L = 12h and L = 18h

domains. The effect of the domain size in the near-wall region depends upon the

size of near-wall structures. This domain size effect was significant for temporal

acceleration due to the fact that the initial Reynolds number of the calculations,

Reτ ≈ 215, was in relatively a low Reynolds number range. The size of the near-wall

structures at this Reynolds number is significantly large as shown in λ2 iso-surface

plots in Chapter 6.

In the present case, a parametric study was conducted to study the effect of the

length of the computational domain for turbulent channel flow subjected to temporal

deceleration. Two different lengths of the domain were selected as shown in Table

8.3. Computations were performed for two f values (cf. Table 8.1) to determine the

sensitivity of the domain size with respect to deceleration rate.

210



8.1. SIMULATION PARAMETERS

Case Lx × Ly × Lz Nx ×Ny ×Nz Realisations

Len-1 6h× 2h× 4h 256× 192× 384 20
Len-2 12h× 2h× 4h 512× 192× 384 10

Table 8.3: Details of simulations for the present study.

a) b)

Figure 8.1: Reτ time history for a) f = −0.2 case, and b) f = −0.5 case.

Figures 8.1 and 8.2 show a comparison of the wall shear stress and rms velocity fluc-

tuations during the deceleration. The effect of the computational length is found to

be less critical for the temporal deceleration, as compared to the temporal accelera-

tion (cf. Figures 4.2 and 4.4). This is not unexpected because the size of near-wall

structures is significantly smaller at the initial Reynolds number for flow decelera-

tion (Re = 22600), than the initial size for temporal acceleration (Re = 3500). The

domain length of L = 12h is selected for the present study.

211



CHAPTER 8. LES OF TEMPORAL DECELERATION.

f = −0.2 f = −0.5

Figure 8.2: The rms velocity fluctuations profiles at several Re numbers during the
deceleration. Dashed lines denote ‘Len-1’ case while solid lines denote ‘Len-2’ case.
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8.2 Wall shear stress

Figure 8.3 shows the time histories for Reτ during the deceleration for the two de-

celeration cases. Steady LES data at several Reynolds numbers are also included

for comparison. Reτ time histories indicate that the initial reduction in Reτ is in

good agreement with the corresponding steady Reτ values. The wall shear stress

decreases in a monotonic fashion and its value reduces below the steady value to-

wards the final stages of the deceleration. Coleman et al. (2003) also reported a

similar monotonic decrease of the wall shear stress below the steady value in a DNS

study of decelerated turbulent channel flow. Ariyaratne et al. (2010) reported a

four-stage response of the wall shear stress during the temporal deceleration. They

found a rapid reduction of the wall shear stress in the initial stage of deceleration.

The rapid decrease of the wall shear stress in the initial stage of deceleration is more

likely to happen in case of turbulent flows involving sudden deceleration, as reported

by Chung (2005).

The difference between the steady and unsteady wall shear stress values increases

towards the final stages of the deceleration, with this deviation greater for f = −0.5

case in Figure 8.3b. It is interesting to note that Reτ value reaches its minimum

(Reτ ≈ 65) at Re ≈ 3800 for f = −0.5 case in Figure 8.3b, followed by a subsequent

increase during the final stages of the deceleration.

Time history of skin friction coefficient (Cf ) in Figure 8.4a shows a reduction in

Cf value from the steady value more clearly towards the end of deceleration. Cf

value for f = −0.5 decreases at a similar rate as compared to the steady value

until Re = 9000, while on the other hand, the deviation is more prominent for

f = −0.5. It is interesting to note that Cf starts to increase towards the final

stages of the deceleration for f = −0.5 which is indicative of flow separation. Time

history graph for the mean pressure gradient during the deceleration in Figure 8.4b
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a) b)

Figure 8.3: Time variations of a) Reτ , and b) the difference of Reτ between the
steady and unsteady values i.e., ∆Reτ = Reτ,steady −Reτ,unsteady for the two cases.

shows the evidence of flow reversal. The mean pressure gradient drives the flow

and is balanced by the wall shear stress in turbulent channel flow. A positive mean

pressure gradient towards the end of deceleration clearly shows a reversal of the

mean flow. Flow reversal at wall is also reported by Coleman et al. (2003) towards

the final stages of the deceleration.

a) b)

Figure 8.4: Time histories of a) Cf and, b) the mean pressure gradient during the
deceleration.

Time histories of boundary layer parameters are plotted in Figure 8.5 to show the

variation of the mean velocity in the very near-wall region during the deceleration.

The displacement thickness and the boundary layer thickness show a large decrease

in the mean velocity. The increase in δ∗ and θ becomes larger for f = −0.5 case. All
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boundary layer parameters exhibit a significant deviation from the steady values at

Re = 3500. The similar trends of boundary layer parameters are also reported in

experimental and as well as numerical investigation of boundary layers subjected to

adverse pressure gradient (Sparlart and Watmuff, 1993).

a)

b)

c)

Figure 8.5: Variation of boundary layer parameters during the deceleration for the
two cases.
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8.3 Mean velocity

The mean velocity profiles at several Reynolds numbers are plotted for f = −0.2

and f = −0.5 cases in Figure 8.6 to investigate the mean velocity trends during

the deceleration. The mean velocity reduces below the steady value in the near-wall

region (y ≤ 0.5) at Re = 17000, while it increases in the core region. It is worth

noting that the opposite trend has been reported in the initial stages of temporal

acceleration case in Chapter 5. A higher deceleration rate increases the deviation of

the mean velocity from the corresponding steady value.

Figure 8.6: Mean velocity profiles during deceleration at several Reynolds numbers
for the two cases. Steady values (lines with symbols) are included. Solid lines
correspond to the f = −0.2 case, and dashed-dott-dott lines correspond to f = −0.5
case.

Figure 8.7 shows the variation of the mean velocity gradient dU/dy at several

Reynolds numbers during the deceleration for f = −0.2 and f = −0.5 cases. The

mean velocity gradient at the wall for f = −0.2 is similar to the corresponding

steady values for most part of the deceleration, and this trend is consistent with

the wall shear stress plot in Figure 8.3a. On the other hand in the core region,

the velocity gradient is larger than the steady values, and this trend is also evi-

dent in Figure 8.6. The gradient value at wall decreases below the steady value at
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Re = 3500 indicating a considerable reduction in the wall shear stress. The effect

of deceleration is more clearly seen for f = −0.5 case in Figure 8.3b. Please note

that the velocity gradient becomes negative in the near wall region at Re = 3500,

which is not shown due to the choice of log scale for this plot. The deviation from

the steady values becomes larger with increase in deceleration rate.

a) f = −0.2 b) f = −0.5

Figure 8.7: dU/dy profiles during the deceleration. Steady values (dashed lines with
symbols) are included.

Figure 8.8 shows the variation of the mean velocity in the viscous scales. The law of

the wall is followed quite closely for f = −0.2 except Re ≤ 5000. The deviation from

the log-law is more prominent for f = −0.5. The wake region component increases

gradually towards the end of the deceleration due to the smaller local uτ values.

a) f = −0.2 b) f = −0.5

Figure 8.8: Mean velocity profiles in wall units during the deceleration.
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Figure 8.9 shows the mean velocity profiles at several Reynolds numbers for f = −0.5

case towards the end of the deceleration. It is worth noting that the mean velocity at

Re = 5000 is approximately equal to the steady value at Re = 3500 in the near-wall

region (0.0005 ≤ y ≤ 0.005) indicating an excessive reduction in the mean velocity

during the later stage of deceleration.The mean velocity keeps on decreasing after

Re = 5000 and occurrence of back flow in the near-wall region is clearly seen at

Re = 3500.

Figure 8.9: Near-wall profiles of the mean velocity for f = −0.5 during the final
stages of the deceleration.
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8.4 Turbulence intensities

Figure 8.10 shows the rms velocity fluctuation profiles at several instants for the two

cases. urms exhibits reduction first in the near-wall region in the initial stage of the

deceleration (Re = 17000) for both cases. On the other hand, the urms intensity is

largely unchanged in the core region at this stage and remains frozen in the core

region, for y ≥ 0.9 and y ≥ 0.5 for f = −0.2 and f = −0.5 cases, respectively. The

frozen state of rms velocity fluctuations in the core region is also observed for the

temporal acceleration. It is interesting to note that the peak values for vrms and

wrms profiles stay above the corresponding steady value at Re = 17000 indicating

an earlier relaxation of urms in the near-wall region during the deceleration. The

anisotropic relaxation of turbulence is also reported in Chung (2005).

As the deceleration proceeds, the peak value of urms also starts to remain above the

corresponding steady value in Figure 8.10a. This trend shows that turbulence in the

near-wall region exhibits a relatively slow relaxation during the later stages of the

deceleration. The lack of turbulence response during the later stage of deceleration

is also evident in the core region, and the the near-wall peaks in each profile start

to diminish towards the final stage of deceleration. This results in flat rms velocity

profiles at Re = 3500. The deviation of turbulence form the corresponding steady

values increase with f .

Figure 8.11 shows the time histories of various flow properties at several wall-normal

locations during the deceleration for f = −0.2 case. All three components decrease

sharply in the very near-wall region (y = 0.005), while away from the wall (y = 0.1),

the velocity fluctuations show little reduction immediately after the deceleration is

applied. The delay becomes longer in the core region. This trend supports the

findings from the wall-normal profiles of rms velocity fluctuations in Figure 8.10.

The development of velocity fluctuations with respect to mean velocity is shown in
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f = −0.2 f = −0.5

Figure 8.10: The rms velocity fluctuation profiles during the deceleration. Corre-
sponding steady profiles (dashed lines with symbols) are included for comparison.

Figure 8.11. The steady data are also included for comparison. The time histories

of ui,rms/U clearly show the delay in turbulence relaxation with respect to the mean

velocity. This deviation from the steady values is larger in the near-wall region. The

departure from the steady values is larger for f = −0.5 (not shown here).

Figure 8.12 shows the profiles of the turbulent shear stress and the structure pa-

rameter for f = −0.2 case. The turbulent shear stress is frozen in the core region
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a) b)

c) d)

e) f)

Figure 8.11: Time histories of a) urms, b) urms/U , c) vrms, d) vrms/U , e) wrms, and
f) wrms/U at several y locations during deceleration for f = −0.2 case.

(y > 0.7) at Re = 17000 in Figure 8.12a. The turbulent shear stress decreases more

rapidly in the near-wall region as compared to the outer region, resulting in dimin-

ishing of the turbulent shear stress peak. It is interesting to note the turbulent shear

stress is larger in the outer region at the final stage of calculations. An increase in

the outer layer turbulent shear stress is also reported in the DNS study of Cole-

man et al. (2003). The ratio of the shear stress to kinetic energy (a1 = −uv/2k)
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in Figure 8.12b shows the effect of temporal deceleration on the structure of the

Reynolds-stress tensor. The structure parameter remains largely unchanged in the

core region (y ≥ 0.6h) during the early stages of the deceleration due to similar

delay in response for the turbulent shear stress and kinetic energy. It is interesting

to note that a1 remains higher than the steady value in the near-wall region indi-

cating an earlier relaxation of the turbulent kinetic energy over the turbulent shear

stress while it drops below the steady value in the outer region at Re = 3500 due to

relatively smaller reduction of turbulent kinetic energy.

a) b)

Figure 8.12: Variation of the a) −uv, and b) −uv/2k during the deceleration for
f = −0.2 case. Steady LES data (dashed lines with symbols) are also included.

Response times for the different terms of Reynolds stresses in the near-wall region

are quantified using the criterion introduced for temporal acceleration in Subsection

5.4. Table 8.13 shows the response times for the Reynolds stress tensor terms.

Please note that for temporal deceleration, Ms and Mf denote the maximum values

at Re = 22600 and Re = 3500 respectively. uu terms is affected first from the

deceleration followed by −uv, vv and ww and the similar pattern of response was

found for temporal acceleration. The turbulence relaxation for all terms increases

with f . It is important to note that turbulence relaxation is delayed for f = −0.5

case in terms of Reynolds number as shown in Figure 8.10 while the turbulence

relaxation is higher for this case in terms of time as clearly seen in Table 8.13. This
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is because of relatively smaller time taken for temporal deceleration for f = −0.5

case (cf. Table 8.1).

f = −0.2 f = −0.5
Flow Property ξ∗50 Rp × 100 ξ∗50 Rp × 100 Mf Ms/Mf

uuNmax 9.5 96.9 3.9 92.0 2.7× 10−2 30.9
vvNmax 12.4 88.1 6.9 71.2 2.9× 10−3 42.5
wwNmax 12.6 88.7 6.4 75.4 4.9× 10−3 40.2
−uvNmax 11.3 90.8 5.7 75.8 2.8× 10−2 32.8

Table 8.4: Response times for maximum values of Reynolds stresses calculated using
criterion introduced in Chapter 5 (cf. Equation 5.11).

Figure 8.13 shows the time histories of the maximum values of urms and vrms during

the deceleration. w′max time history is similar to v′max and is not shown here. Figure

8.13 shows that higher deceleration rate results in earlier turbulence relaxation in

the near wall region. Moreover, the anisotropic response of turbulence is clearly

seen with extended delay for v′max. One of the major difference between turbulence

response in the acceleration and deceleration cases is that, in the temporal accelera-

tion all fluctuation components show an initial delay in response due to acceleration

and then recovers in the ST and PS stages. On the other hand, urms exhibits no

significant delay in the near-wall region in the early stage of the deceleration, while

vrms and wrms exhibit a considerable initial delay in the near-wall region due to delay

in energy redistribution. Turbulence relaxation in the near-wall region slows down

during the later stages of the deceleration resulting in a large deviation from the

steady value at the final stage of the deceleration. This trend indicates a two-stage

turbulence relaxation process in the near-wall region during the deceleration with

turbulence undergoing fast reduction in the first phase followed by a slow relaxation

phase. This two-stage turbulence relaxation is also reported by Chung (2005).

It is obvious from the response of rms velocity fluctuations that deceleration affects

first the near-wall region, and the effect propagates gradually in the core region. This

behaviour implies that the turbulence response to the temporal deceleration can be
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a) b)

Figure 8.13: Variation of a) the streamwise and b) the wall-normal maximum rms
velocity fluctuations calculated using Equation 5.11.

separated into two regions namely: the inner layer response and the outer layer

response. Turbulence responds to the deceleration first in the near-wall region while

the outer layer exhibits largely negligible change in the turbulence intensity during

the early stage of deceleration. It was first proposed by Smits and Wood (1985), that

the outer layer dynamics are largely unaffected by the sudden change in the mean

pressure gradient and it remains unchanged until the near-wall turbulence changes

propagate in the core region. The propagation speed of the the turbulence reduction

from the near-wall region to the core region for the rms velocity fluctuations and the

turbulent shear stress is calculated using the same criterion employed in Subsection

7.4 (cf. Equation 5.12). The propagation speed for the rms velocity fluctuations

and the turbulent shear stress is plotted in Figure 8.14. It shows that turbulence

propagation is largely insensitive to the deceleration rate. It is worth noting that the

propagation speed is smaller than the initial uτ value calculated from fully-developed

turbulent channel flow at Re = 22600, indicating relatively gradual relaxation of the

core region turbulence.
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a) b)

c) d)

Figure 8.14: Comparison of turbulence relaxation of a) urms, b) vrms, c) wrms and
d) −uv in the core region for the two deceleration cases.
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8.5 RMS vorticity fluctuations

The response of turbulence during temporal deceleration is investigated in detail

in Subsection 8.4, and in this subsection the vorticity analysis is performed to in-

vestigate the response of near-wall structures during temporal deceleration. Figure

8.15 shows the rms vorticity fluctuations at several Reynolds numbers during the

deceleration for f = −0.2 case. The rms vorticity fluctuations exhibit the similar

delay in response as the rms velocity fluctuations. ω′y responds first out of the three

components with reduction confined only in the near wall region. While away from

the wall, ω′x remains at significantly higher level than the steady values. This trend

indicates that the streamwise vortical structures strength does not decrease con-

siderably during the temporal deceleration, and vortices remain more energetic as

compared to the vortices in fully-developed flow. It is interesting to note that in the

initial stage of the deceleration at Re = 20000 and Re = 17000, the wall value of ω′z,

is slightly higher than the steady value. On the other hand, the ω′z values are quite

similar for steady and the deceleration cases in the region of 0.001 ≤ y ≤ 0.01, which

is the region of maximum turbulent kinetic energy production. As the deceleration

proceeds, ω′z value in 0.001 ≤ y ≤ 0.01 region also exhibits a delay in response in

the slow relaxation phase.

Figure 8.16 shows the time histories of the maximum values of the rms vorticity fluc-

tuations. All three components exhibit a monotonic decrease in the near-wall region

during the deceleration. ω′x,max shows a delay from the start of the deceleration and

stays below the steady value, supporting the trends observed in vorticity profiles

in Figure 8.15. It indicates that the strength of streamwise vortices remains higher

compared to the fully-developed flow. The evidence of existence of more energetic

structures during the temporal deceleration can be clearly seen in iso-surfaces of λ2

for both deceleration cases at Re = 3500 in Figure 8.18. It is interesting to note that

the sizes of the near-wall structures remain significantly small in the deceleration
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Figure 8.15: Profiles of RMS vorticity fluctuations during deceleration for f = −0.2
case.

flow. This indicates that the near-wall structures exhibit a considerable delay in

responding to the temporal deceleration. A large delay is found with increase in

deceleration rate.
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The other two components of vorticity also exhibit monotonic reduction in the near-

wall region as shown in Figure 8.16. The deviation from the corresponding steady

values increases towards the final stages of the deceleration indicating a slower relax-

ation phase. It is worth noting that ω′y,max is rather insensitive to the deceleration

rate. The time histories of ω′x,min, ω′x,max and ω′y,max locations in Figure 8.17 show

that the maximum vorticity locations stay nearer to wall during the deceleration.

These trends are consistent with the fact that the size of turbulent structures during

the deceleration does not increase significantly as evident from Figure 8.18.

a) ω′x,max b) ω′y,max b) ω′z,wall

Figure 8.16: Time histories of normalised maximum values of rms vorticity fluc-
tuations during the deceleration for the two cases. Steady value are included for
comparison.

a) ω′x,min b) ω′x,max b) ω′y,max

Figure 8.17: Time histories of locations for rms vorticity fluctuations during the
deceleration for the two cases. Steady value are included for comparison.
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a)

b)

c)

Figure 8.18: Iso-surfaces of λ2 at Re = 3500 for a) a fully-developed channel, b)
f = −0.2 case and c) f = −0.5 case.
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8.6 TKE budgets

The near-wall response of uu, vv and ww budget terms can be better understood by

analysing the time histories of their maximum values. Figure 8.19 shows the time

histories of the maximum values of the turbulent production, viscous dissipation

and pressure transport terms. The viscous dissipation term for uu responds earliest

to the deceleration. This earlier response of εuu can be explained due to the early

response of the wall-normal gradient of the streamwise fluctuations, ∂u′/∂y. The

turbulent production of uu responds after εuu, followed by the velocity pressure

gradient terms for the three budget equations. The viscous dissipation terms for vv

and ww decreases in the last. It is interesting to note that the budget terms show

relatively rapid response in the early stage of the deceleration, followed by a slow

response. This trend again supports the earlier observation of two-stage turbulence

relaxation in the near-wall region during temporal deceleration.

Figure 8.19: Time histories of maximum values of various budget terms for uu, vv
and ww transport equation. Maximum values are calculated using Equation 5.11.

The response time for the budget terms of uu, vv and ww transport equations is

quantified using the criterion defined in Subsection 5.4. Budget terms of the uu

equation generally respond first during the deceleration, while vv and ww budget
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terms exhibit approximately similar response times. The near-wall response times

for all budget terms decrease with the increase in deceleration rate.

Flow Property f = −0.2 f = −0.5 Ms Mf/Ms

Puu,max 6.0 2.5 2.2× 10−2 784
Tuu,max 5.5 2.4 4.1× 10−3 1614
Tuu,min 6.1 2.5 −6.2× 10−3 679
Φuu,min 7.2 3.2 −2.8× 10−3 686
Duu,wall 5.5 2.5 1.4× 10−3 1301
Duu,min 5.7 2.5 −1.4× 10−3 978
εuu,wall 5.5 2.4 1.3× 10−2 1235

Table 8.5: Response time (ξ%50) for uu budget terms. ξ%50 is the time taken for each
property during deceleration to reach 50% of the difference between corresponding
initial (Ms) and final (Mf ) steady values.

Flow Property f = −0.2 f = −0.5 Ms Mf/Ms

Tvv,max 6.0 3.1 2.1× 10−4 1254
Πvv,max 7.4 3.7 1.2× 10−3 955
Φvv,min 7.4 3.5 −1.2× 10−3 1008
Φvv,max 7.6 3.6 1.2× 10−3 538
Dvv,max 7.4 3.5 1.3× 10−4 858
εvv,min 8.7 4.0 −8.0× 10−4 375

Table 8.6: Response time (ξ%50) for vv budget terms.

Flow Property f = −0.2 f = −0.5 Ms Mf/Ms

Φww,max 7.1 3.4 1.6× 10−3 935
Dww,wall 7.5 3.7 −8.9× 10−3 419
εww,wall 7.6 3.7 −8.0× 10−3 375

εww,local,max 7.6 3.6 −1.1× 10−3 901

Table 8.7: Response time (ξ%50) for ww budget terms.

The turbulent kinetic energy budget terms are plotted at three Reynolds numbers

in Figure 8.20 in order to show core region variations. Steady LES data are also

included for comparison. All budget terms exhibit approximately an equivalent

decrease, as compared to the steady data, in the initial stage of the deceleration

(Re = 20000), indicating instant initial turbulence response. It is only after a
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substantial time, the turbulence relaxation starts to slow down as clearly seen in

the profiles at Re = 12000 and Re = 3500. The production and dissipation terms

exhibit a significant delay across the channel during final stage of the deceleration.

On the other hand, the turbulent transport and viscous diffusion terms are delayed

only in the near-wall region.
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Re = 20000

Re = 12000

Re = 3500

Figure 8.20: Turbulent kinetic energy budget terms profiles in near wall region at
several Reynolds number. Solid lines with symbols is for denote profiles. Dashed
lines and dashed-dotted-dotted lines denote profiles from f = −0.2 and f = −0.5
respectively.
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8.7 Reynolds stress anisotropy tensor analysis

The response of different terms of Reynolds stress can be studies in terms of anisotropy

tensor analysis. The near-wall behaviour of different terms is analysed in Figure 8.21.

Figure 8.21 shows the profiles of the second invariant of the anisotropy tensor (II),

and two invariant functions, F and G for f = −0.2 case. Steady LES data at the ini-

tial and final Reynolds numbers are also included. It is clear from Figure 8.21a that

the near-wall anisotropy decreases during the temporal deceleration. The profiles

at Re = 3500 show the clear difference in the isotropy of the deceleration from the

steady profile. This increase in isotropy can be attributed to the relatively larger

reduction of the streamwise intensity as compared to the other two components.

The anisotropy of outer layer region is largely unaffected during the deceleration.

The invariant function F shows the degree of two-component turbulence state and

F = 0 indicates a two-component turbulence state of flow. The two-component

turbulence state usually occurs in the viscous sublayer for turbulent channel flow

due to the suppression of the wall-normal intensity. The F profiles shift towards

right in the near-wall region with the reduction of flow Reynolds number as shown

in Figure 8.21b. This shift is due to an increase in the viscous sublayer thickness.

It is interesting to note that F profile shows the opposite trend in the near-wall

region from Re = 7000 to Re = 3500 during deceleration indicating the significant

reduction in the two-component state in the viscous sublayer. The invariant function

G shows that the flow axisymmetry reduces considerably during the deceleration in

the logarithmic region due to relatively slow relaxation of turbulent shear stress as

compared to the the streamwise intensity. It is interesting to note that the G value

increases rapidly at Re = 3500 indicating an increase in axisymmetry in the viscous

sublayer.

The effect of deceleration on the turbulence structures isotropy can also be analysed
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a) II

b) F

c) G

Figure 8.21: Variations of a) II, b) F and c) G at several Reynolds numbers for
f = −0.2 case during the deceleration. Steady LES profiles (dashed lines with
symbols) are also included for comparison.

235



CHAPTER 8. LES OF TEMPORAL DECELERATION.

using anisotropy invariant map (AIM) analysis. Figure 8.22 shows the AIM at

several Reynolds numbers during the deceleration for f = −0.2 case. Turbulence

in the viscous sublayer shifts from the one-component turbulence towards the two-

component state in the initial stages of deceleration. This shift is due to slower

relaxation of vrms and wrms in comparison with urms. This trend is maintained

in the viscous sublayer until turbulence becomes two-point axisymmetric (left top

corner of the AIM) at the final stage of the deceleration (Re = 3500). This state

indicates the dominance of the overall contribution from b22 and b33 over b11 in

the viscous sublayer. The turbulence shifts away from the axisymmetric state in

the outer layer region. This trend is due to the increase in contribution from the

off-diagonal component b12 during the later stages of the deceleration.

Re = 22600 Re = 20000 Re = 17000

Re = 14000 Re = 11000 Re = 9000

Re = 7000 Re = 5000 Re = 3500

Figure 8.22: Anisotropy invariant maps (AIMS) for f = −0.2 case at several
Reynolds numbers during deceleration.
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8.8 Conclusions

1. Wall shear stress remains similar to the steady value during the initial stages

of temporal deceleration. It starts to reduce below the steady value in the

later stages of the deceleration.

2. The reduction below the steady value increases with f and rapid deceleration

results in flow separation at the wall.

3. The mean velocity exhibits two-layer behaviour in the deceleration. The mean

velocity in the inner layer remains below the steady value during the deceler-

ation while the vice versa is true for the outer layer. The law of wall holds

good for most parts of the deceleration.

4. Turbulence also exhibits a similar two-layer response, and decreases first in the

near wall region with the outer layer virtually frozen during the initial stages

of the deceleration.

5. In the near-wall region, turbulence exhibits a two-stage relaxation with an

initial fast reduction followed by a slow relaxation.

6. Local equilibrium between the mean flow and turbulence is disturbed during

the later stages of the deceleration with turbulence being at higher level. The

deviation from the corresponding steady value is more prominent in the near-

wall region.

7. RMS vorticity fluctuations in the near-wall region remains at higher level than

the corresponding steady values, indicating the existence of high strength near-

wall vortices.

8. The viscous dissipation term in uu transport equation decreases first of all,

followed by the turbulent production and pressure strain terms.
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9. The budget terms of vv of ww transport equations decrease after a further

delay.

10. The one-component turbulence state is reduced during the deceleration due to

higher decrease in urms than the other two components, and flow becomes two-

point axisymmetric towards the final stage of the deceleration. This behaviour

shows that the contribution from b11 falls below the overall contribution from

b22 and b33 in the viscous sublayer.

11. In the buffer layer and some part of the log layer, flow shifts away from the

axisymmetry because of relatively slower relaxation of the turbulent shear

stress.
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9
Conclusions.

In the present study, a fully-implicit, fractional step method based on Crank-Nicolson

temporal discretisation (Kim et al., 2002) has been implemented. Three test cases

have been employed to validate the accuracy of the code. Two SGS models namely,

the dynamic SGS model (Germano et al., 1991; Lilly, 1992) and the wall-adapting

local eddy viscosity (WALE) SGS model (Nicoud and Ducros, 1999) are considered

in the present study. LES results validated by the comparison with the correspond-

ing DNS data at several Reynolds numbers for fully-developed turbulent channel.

The domain length of L = 12h is found to be appropriate for temporal acceleration.

Calculations using domain length of L = 6h exhibited a suppression of the near-wall
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turbulence response during the acceleration. On the other hand, the turbulence

response for domain lengths L = 6h and L = 12h for temporal deceleration is found

similar.

DNS of temporal acceleration has revealed many interesting trends for response of

the wall shear stress, the mean velocity and turbulence. The turbulent statistics are

generated using approximately 190 million grid cells and can be used as benchmark

for unsteady turbulence modelling. The wall shear stress response during temporal

acceleration can be divided into four distinct stages namely: the initial transient

(IT) stage (stage I), the weak time-dependence (WT) stage (stage II), the strong

time-dependence (ST) stage (stage III), and the pseudo-steady (PS) stage (stage

IV). The delays in turbulence production and redistribution are quantified in the

near-wall region, and the streamwise velocity component is found to respond first

during acceleration. The structure parameter (a1) reduces during the WT stage

and increases rapidly in the ST stage. The rms vorticity fluctuations also exhibit

an initial delay in responding to the acceleration, and wall-normal locations of the

maximum vorticity are found to exhibit a two-stage reduction trend. The production

term for uu increases first of all in the near-wall region resulting in a subsequent

increase in urms, and the turbulent kinetic energy is redistributed among the other

two components by the velocity pressure gradient term. The quadratic contributions

from Q1 and Q4 increase in the near-wall region during the ST stage, accompanied

with a corresponding reduction of contributions from Q2 and Q3.

The near-wall structures also exhibit an initial delay in responding to the temporal

acceleration. Two different types of flow structures have been found in the present

study. Old turbulent structures are associated with the initial flow field, while new

turbulent structures are generated during acceleration. A novel procedure to iden-

tify regions of new turbulence has been developed, and the rate of new turbulence

generation occur approximately at an exponential rate. The conditionally-averaged
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statistics from active and non-active areas clearly indicate the emergence of new tur-

bulence in distinct patches. The turbulence anisotropy is found to increase during

the IT and WT stages while it decreases in the ST stage.

LES of temporal acceleration is performed to study the turbulence response after

the ST stage and to investigate turbulence propagation in the core region. The

effect of acceleration rates on turbulence evolution is also studied. LES results show

good agreement with the DNS results in Chapter 5, validating the accuracy of the

present LES. The deviation of the wall shear stress and the mean velocity from the

corresponding steady values increases while the delay in turbulence response decrease

at a high acceleration rate. The characteristic speed of turbulence propagation in the

core region is found to be similar to the initial uτ value, and it is largely independent

of the acceleration rate. An initial increase in coherence of near-wall structures has

been found and this enhanced coherence increases at higher acceleration rates.

LES of temporal deceleration has been performed to study turbulence response.

Two deceleration rates are employed to investigate the effect of different decelera-

tion rates. The wall shear stress decreases monotonically during the deceleration.

The mean velocity exhibits a two-layer response with the inner layer flow decreasing

below the steady corresponding values, and the outer layer mean velocity remains

higher then the steady mean velocity. Turbulence also shows an earlier decrease in

the near-wall region while the core region remains in a frozen state. Near-wall turbu-

lent structures remain at relatively smaller size during the deceleration as compared

to the corresponding steady structures. The turbulence anisotropy decreases in the

near-wall region during the deceleration.
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Figure A.1: Comparison of Reτ histories for the two models with the DNS data.

Figure A.2: Comparison of mean velocity and rms velocity fluctuations at several
Reynold number for the two models with the corresponding DNS data.
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