THE UNIVERSITY OF

WARWICK

Original citation:
Ashcroft, E. A. and Wadge, W. W. (1980) Structured Lucid. Coventry, UK: Department of
Computer Science. (Theory of Computation Report). CS-RR-033

Permanent WRAP url:
http://wrap.warwick.ac.uk/47206

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/47206
mailto:publications@warwick.ac.uk

The University of Warwick
THEORY OF COMPUTATION

REPORT NO.33

STRUCTURED LUCID

BY

EEASHCROFT Ao W.WADGE

Department of Computer Scienc

Revised
University of Warwick
COVENTRY CV4 7AL

A March 1980
ENGLAND. '

STRUCTURED LUCID

Ed Ashcroft
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

and

Bill wWadge
Department of Computer Science
University of Warwick
Coventry, England

June 1979, Revised March 1980

Cs-79-21

This work was supported by the National Research Council of Canada

and the Science Research Council of the United Kingdom.

STRUCTURED LUCID

Ed Ashcroft
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

and

Bill Wadge
Department of Computer Science
University of Warwick
Coventry, England

Abstract

Structured Lucid is an ISWIM-like language formed by combining
Basic Luid and USWIM. Structured Lucid is almost a member of the USWIM
family, except that a distinction is made between two kinds of function
variables: those which denote functions mapping streams (histories)
of data objects to streams of data objects, and those which denote
streams of functions mapping data objects to data objects. The in-
ference and manipulation rules of Structured Lucid combine Basic Lucid's
facility for implicit reasoning about time with the modular or nested
reasoning of USWIM.

The distinction between stream functions and streams of
functions is inherent in the ideas of Basic Lucid and has a natural
operational interpretation. On one hand, a module which computes a
stream of functions can be thought of a defining a subcomputation which
is carried out while the main computation 'waits' or is 'frozen'; on
the other hand, some modules which compute stream functions can be

thought of as defining separate computations carried out in parallel

with the main computation (a form of coroutine). In general, though,
a module may freeze some but not all of its parameters or globals, and

for these various combinations of the two interpretations are appropriate.

0. INTRODUCTION

In [3] we introduced a family of logical programming
languages called USWIM, which was based on Landin's ISWIM [5]. USWIM
was designed to be semantically simple and yet provide a general way of
allowing scope and defined functions in programming languages. A
particular language is obtained by supplying an algebra A consisting
of a data domain and operations on that domain. The particular language
is then called USWIM(A).

Basic Lucid, as described in [2], is a general way of allow-
ing iteration in a logical or mathematical way. It is natural to try to
combine these two approaches in a single language {(or family of
languages), so that the resulting language provides iteration, defined
functions and scope of variables in a logical, semantically simple way.
The result of doing this we shall call Lucid (or, strictly speaking,
Lucid (A)).

There are several similarities between USWIM and Basic Lucid.
USWIM (like ISWIM before it) is a general way of allowing structured,
modularised recursion and recursive definitions, whereas Basic Lucid
is a general way of allowing iteration. 1In both cases the languages are
mathematically simple, denotationally specified and referentially trans-
parent. 1In fact both languages are based on equations, and they both depend
upon a given data algebra A. USWIM forms constructs from the equations
(phrases, function definitions) whereas Basic Lucid stays with simple
equations but works with a modified data algebra Lu(A) , the universe

of which consists of infinite sequences of elements from the universe of

A , and the opcrations of which are the "pointwise extensions" of the
operations of A, together with some new "Lucid operations"™. Thus USWIM
and Lucid achieve their goals in somewhat 'orthogonal' ways and it should
be possible to combine the languages quite cleanly.

One simple way of combining them is to consider the language
USWIM(Lu(A)) , which we will call ULU(A) for simplicity. ULU is a
perfectly well-defined family of languages which has an interesting
operational interpretation: the iterations within phrases are synchronized
with the iterations in enclosing phrases, which results in the language
having the flavour of a data-flow language,with the defined functions
behaving like coroutines. Unfortunately, this synchronization means that
in ULU it is not possible to define subcomputations.

Another way of combining them is to extend the meaning of USWIM
phrases in a pointwise fashion. The resulting language, which we call
LUSWIM 1is, in many ways, a conventional Algol-like language but
not a member of the USWIM family because the same variable means different
things inside and outside a phrase, the inner occurrence being “frozen".
As a result, phrases can be interpreted as defining subcomputations which
return a result.

Lucid is the result of combining ULU and LUSWIM, giving a language
which is a superset of both sublanguages and is generally better than
either of them individually. The features of the two sublanguages do
interact, but constructively, not destructively. This is a direct result

of the fact that both sublanguages are mathematically defined.

We should point out that, because Lucid is based on USWIM, it is
not a "higher-type" language, that is, the defined functions can neither
take functions as arguments nor return functions as results. To remove
this restriction in Lucid would first require the investigation of the
consequences of relaxing the restrictions in USWIM that the variable
result and the formal parameters of a function definition be individual
variables. These consequences may not be too dire, but some complications
are almost bound to result, so this extension of Lucid is not considered

in this paper.

- -

1. THE LANGUAGE ULU(A)

Given a continuous algebra A , Lu(A) is the continuous
algebra of A-valued 'histories' together with the Lucid operations and
the pointwise extensions of the operations of A i @ formal definition
appears in Section 3. When confusion might occur, we will say "data
functions" when we mean functions on A ,» and "history functions" when

mear. functions on Lu(A) . (Lu(A) is similar to Loop(S) in [1].

il

The 'histories' are simple infinite sequences, and the Lucid operation
latest is not used.)
The language ULU(A) is simply USWIM(Lu(A)) . (It is assumed
throughout this paper that the reader is familiar with both [3]and [2].)
Here is a sample programT in ULU(Y) , wnere { consists of the

rationals together with the usual arithmetic operations:

valof
L=1fby I
=31
result = valof
2= L Mg+ next g
N =1 fby y+1
result = S/y
end
end.

T In this and subsequent papers, we use fby for followed by and asa
for as_soon as

The semantics of USWIM tells us that (since there are no global
variables) the meaning of the outer phrase is the value of result in the
least environment El satisfying the three definitions in the phrase.

It is easy to see that El(£) is the history <1, 2, 3, ...> and El(i)
is the history <3, 6, 9, ...> . The value of El(result) is the value
of the inner phrase in the environment El , which is the value of result
in the least environment E2 , differing from El only in the values of
the locals (S, N and result) of the inner phrase, which satisfies the
definitions in the inner phrase. Thus Ez(i) is <3, 6, 9, ...>, Ez(g)
is <3, 9, 18, ...> , E(is <1, 2, 3, ...> and E (result) is
<3, 4.5, 6, ...> . Thus the meaning of the program is

{3, 4.5, 6, 7.5, ...>

Notice that what the inner phrase is doing is maintaining a
running average of the values of J . We can use this inner phrase as

the body of function called A4vg , as we do in the following example:

valof

Avg (X) = valof

=X fby 5+ nextx
7 =1 fby 41

result = g/g

end
M= Avg(®) 253 I eq 10
I=1 fby I+1
result = Avg ((5-°) asa I eq 10

end.

Since this program has a frece variable S , we can only talk
of the value of this program in an environment L which gives a value
to § . Let us suppose that E(S) is some history O . 1In the inner
environment, 4vg will be the "running average" function, so that M is
the constant history which is everywhere the average of the first ten

through © T Since the

values of E(S) , that is, the average of O 9 °

0
value of result will be the average of the first tem values of (g-@)z,
we see that the value of the program in E will be the constant

sequence which is ewerywhere equal to the variance (the second moment
about the mean) of the first ten values of S in E .

Probably the best way of viewing the previous program in an
operational way is to consider Avg as a coroutine, with two invokations,
Avg (§) and égg(Qg—y)z) . These invokations are considered as running
from time 0 , but only the value of Avg (S) at time 9 and the value of
ézg((g-%)z) at time 9 are "used". The coroutine activations have to
be considered as running from time 0 so that they can keep running sums
of § and (§-M)2 until they are needed at time 9.

Suppose we wished to generalise this program to compute
arbitrary higher moments about the mean. We would need a function Pow
where Pow(X, N) gives us the running J-th powers of the values of X.

We might try to define this as follows:

T Here we are using the convention that, if ¥y is a history, its
elements are YO' Yl’ Y2’ cee o

Pow(X, N) = valof

I=o0fbyn
P=1fby XE

result = P asa ITeq X

A~

end.

Now, Pow(5, 2) is <25, 25, 25, ...> and Pow(6, 3) is

<216, 216, 216, ...> but if, say, the value of 4 is <1, 2, 3, ...>
then the value of Pow(4, 2) is <2, 2, 2, ...? ! Moreover, the value
of Pow(5, 4) is <5, 5, 5, ...> and the value of Pow(5, 4+1) is
{L, L, L, ...”> ; if the second argument N is changing with time, the
variable [in the definition of Pow is chasing a moving target?

Similarly, if we tried to generalise the variance program to
give the variance of the first N values of the history X , we would
get rubbish if N varies with time.

The reason for all this is that globals have the same meaning
inside a phrase as outside and so phrases are synchronised with their
environments. We can have no subcomputations in ULU (but we can have
one computation following another, as in the variance example). We have

nesting of scope but we can not have nesting of computations, i.e. there

are no subloops.

- 10 -

2. THE LANGUAGE LUSWIM(A)

The reason that the definition of Pow is considered to be
wrong is that we expect it to work pointwise. If A had an explicit
exponentiation operator, say 4 , then, according to Lu(A) , if o and
B are histories otf would be <a0+60, al+81, .+.? . This is exactly

how we would expect Pow to work, but in ULU it clearly doesn't.

The root of the problem is that phrases are not defined
pointwise. The value at time t of a phrase, in which G appears as a
global, depends on the value of G not just at time t but at other
times as well. For example, at any time t , the phrase computing the
average of the first t+l values of x depends on xb, Lyv eees Ty
as well as xt . This is exactly what we wanted in the "average"
example, but it is disastrous in examples like the one to compute the
N-th power of x .

What is required is some way of ensuring that the value of a
phrase, in environment E , at time t depends only on the values of
the globals at time t . We can ensure this by freezing E at time t:
given a sequence O and a time t , we define at to be the sequence
<at,at,at,...> ; then the value the frozen environment Et assigns to
nullary variable G is E(G)T . (The value E° assigns to non-nullary
variables will be discussed later.) The value of the phrase at time t
is then the value at time t of result in the least environment,

differing from Et only in the values of the locals, which satisfies

all the definitions in the phrase.

- 11 -

LUSWIM(A) 1is the language obtained by using this pointwise
interpretation of phrases, i.e. it is the "pointwise extension" of
USWIM(A) . Programs in LUSWIM and ULU have the same form, and we
could allow the classes of programs to be the same, but we distinguish
them by requiring that the intersection of the sets of variables they
use contains only the individual variable result. In our examples,
variables except result, in ULU programs, will be written in bold
face italics, while all variables except result, in LUSWIM programs,
will be written in light face italics. (In this way, ULU and USWIM
can be disjoint subsets of Lucid.)

Here is an example of a simple LUSWIM program:

valof
I=1 fby I+1

S =1 fby 5 + next M

Ao

M = valof
K =1 fby k+1
P =1 fby I°P
result = P asa X eq I
end

result = S asa T eq 6

end.

This program has no global variables, so the difference between ULU

and LUSWIM is not apparent until we consider the inner phrase, which has

global variable I . In the (single) environment E inside the outer

- 12 -

phrase, the value of [<clearly is <1, 2, 3, ...> . The value of Y

in E is determined separately at each time step. E(M)o is the value

of result at time O in E' where E' is the environment obtained by
freezing € at time O and then choosing values for X, P and result
which satisfy the definitions in the inner phrase. Clearly E'(P) is

<1, 1, 1, ...> and E'(result) is <1, 1,1, ...> . E(), is the

value of result at time 1 in E" where E" is the environment

obtained by freezing E at time 1 and then choosing values for the
locals. So E"(P) is <2, 4, 8, ...> and E"(result) is <4, 4, 4, ...>.

Continuing this process, we see that E(WM) is <ll, 22, 33, ...> . The

value of the program at any time will be ll + 22 + 33 + 44 + 55 + 66.
In LUSWIM then, a single outer environment, like E in the
example, does not determine a single inner environment, but rather a
sequence of environments, like E' , E" etc. , one for each outer time
step.
Suppose now that a non-nullary variable M is defined by a

phrase, for example suppose that £ is an environment satisfying the

definitions

M(X, Y) = valof

I =0 fby I+1
S=Xfbys+vy
result = S asa I eq G+1

end

G = 0 fby G+1

- 13 -

and that Y 1is the history function which £ assigns to M . Given
any histories a and B , we know that Y(a, B) is the meaning of

~

M(X, Y) 1in an environment £ differing from E (at most) in that

g(X) = 0, and E(Y) = B8 . The value oé M(X, YY) at time t 1is the
value of the phrase at time t . We have defined this to be the value of
result at time t in the inner enviromment E' ; but in this inner

environment the values of X and Y are frozen, i.e.

P . This means

Ertn = <o, o, a, ...> and E'(Y) = <B, B.r B

t t
that there is no 'access' inside the phrase to other than the 'current'
value at and Bt of X and Y respectively. As a result Y has the
property that Y(a, B)t = y(a', B‘)t for any o' and B' for which

= - ; : t Lt
at = aé and Bt = Bé , 1n particular w(a,B)t = Y@ ,B)t .
We will say that any history function ¢ is elementary if,
. . : t t
for all histories a,B,... and times t, ll)(OL,B,...)t =Y ,B ,...)t .
All functions which are the pointwise extensions of data functions are
elementary, but not all elementary functions are of this form.
t
)

An elementary function Y is pointwise if Y(a,B,...
Y@ ,8,...) for all a,B,... and t. Pointwise functions are
especially simple because they have the property that the value at a
given time depends only on the values of the arguments at the given time,
whereas with elementary functions the value can also depend on the time

itself.

The function | described above is an example of an elementary

function which is not pointwise. If

a=¢<2,3,4,2,7,9, ...
a' =<6, 7,1, 2, 9,1, ..
B=<, 3,5,1, 8, 6, ...”
B* =<7, 2,8, 1, 0, 0, ...

- 14 -

then
Yla, B) = <3, 9, 19, 6, 53, 45, ...>
Y(a', B') = <13, 11, 25, 6, 9, 1, e
At time 3, o and B agree with o' and f' because a3 =2 = aé and
63 =1 = Bé . As predicted, the values of yY(a, B) and Y(a', B")

agree at this time, because Y(a, 8)3 =6 = Pla’', B')3 . The function ¥
is not pointwise, however, since ao = a3 and Bo = 83 but Y(a, B)O==l3
and Y(a, 8)3 = ¢ . (Generally, Yy, G)t =Y +(t+l)'6t .)

Suppose now that ¢ is an elementary function. At any time ¢t ,
the value of ¢(o, B, Y, ...) depends only on t and the values

at, Bt, Yt' ... of the arguments. This means there must be a data

function Gt such that

d(a, B, Y, TR 6, (@, Br Ypr o) -
for any o, B, Y, The elementary history function ¢ is therefore
completely determined by the sequence <90, 61, 62, .> of data

functions (and any such sequence, in turn determines an elementary
function). This means we can think of elementary functions as histories
of data functions, with pointwise functions corresponding to constant
histories of data functions. From this point of view, application of
elementary functions works pointwise: the value of ¢(a, B, Y, ...) at
time t is the 'value' of ¢ at time t (Gt) applied to the values
of a, B, Y, ... at time t.

This view of elementary functions as histories of data functions

now explains what it means to freeze a function (if it is elementary).

- 15 -

u
The value O of an ordinary history o frozen at time u 1s the

. . u
history <au, au, au, ...> . We define the frozen value ¢ of an

elementary function ¢ determined by the sequence <80, 81, 62, e

to be the elementary (in fact pointwise) function corresponding to the

sequence <8 , 6 , 6 , ...> . 1In other words
u’ u’ Tu
¢)u(a BI YI —--) =6 (aIBIYI -0~)
! t u t’ et
t t t
=005, 85 v5, Loy
for any o, B, Y, ... and any t.

This definition of ¢u allows us to give a meaning to phrases
which have, as globals, variables denoting elementary functions. Notice
that for any elementary function {, UY(a, B, Y, ...)t = wt(at, Bt, Yt).
(Compare this with the definition of pointwise functions.)

Function definitions in LUSWIM are, therefore, syntactically
restricted in such a way as to ensure that all functions are elementary.
The simplest way of ensuring this is to require the definiens of a
function definition to be a phrase. We can weaken this requirement by
requiring the definiens to be elementary in the formal parameters

which means we allow occurrences of formal parameters outside phrases as

long as they are not within the arguments of Lucid functions. For example,

M(X, Y) = X + Yenext G

LNV

is a valid definition, and in fact this definition of M is equivalent
to the previous one in the context of the previous definition of G .

As a result of this restriction, LUSWIM 1is, in a sense, the
pointwise extension of USWIM , with both phrases and function application

being extended pointwise.

- 16 -

Although the mathematical semantics of LUSWIM is more
complicated than that of ULU , simpler and more conventional operational
interpretations are possible. Function evaluation as well as evaluation
of phrases can be thought of as subcomputations which take place while
the enclosing computation is suspended. Functions without global variables
can be thought of like data functions, while functions with global
variables are like Algol function procedures whose globals have different
values at different times. When a function is defined outside a phrase
but used inside, the evaluation of the function uses the current "frozen"
global, so that inside the phrase the function is pointwise.

This freezing of globals by phrases is one of the main reasons
why we chose to define USWIM rather than base Lucid on ISWIM. If we used
ISWIM, to get the analogue of LUSWIM we would have to define a pointwise
extension of where phrases. This is clearly possible, but then we would
have to distinguish between E and E where end, the second being a
where phrase with an empty body. This is essential because in the first
case the globals (free variables) would not be frozen, whereas in the

second they would. 1In particular,

next X where end = X # X .

3
[0}
>
t

Rather than have these aesthetically displeasing empty bodies, we chose

to use valof phrases.

- 17 -

3. THE LANGUAGE LUCID

It is apparent that these are two very different ways of adding
iferation to USWIM, both potentially useful, and both having natural if
radically differing operational semantics. It seems very unlikely that
one is the right interpretation and the other the wrong one; in fact it
is easy to imagine programs which (operationally speaking) use both
coroutines and nested computation. An example would be a coroutine which
computes a running AN-th moment (average of N-th powers) but uses an
inner, nested loop which computes the N-th power in a subcomputation.

Clearly the two 'facilities' should be combined in the same
language, but it is not immediately obvious howito do this. The two
languages are superficially very different in the way they give a meaning
to a phrase. In ULU the entire value of the phrase is determined all
at once in terms of the entire values of the globals, whereas in LUSWIM
it 1s put together instant by instant in terms of the instantaneous
values of the globals. The difference, however, is not as great as it
seems, once it is realized that the ULU semantics can also be given
in a pointwise manner: the value of a ULU phrase inan environment E
at time t 1is the value of result at time t in the least environment
satisfying the definitions in the phrase and differing from E at most
in the values assigned to the locals. This definition is, of course,
equivalent to the general USWIM definition but makes it clear that the
difference between ULU and LUSWIM is that, on each time step, LUSWIM
freezes the values of the globals before determining the inner environment.

In ULU , the inner environments corresponding to different times are all

- 18 -

the same. To combine the two semantics of phrases we need only distinguish
between two classes of variables (elementary and nonelementary), one of
which (the elementary) consists of variables which are subject to freezing
inside phrases. 1In this way it should be possible to mix up elementary
and nonelementary variables in definitions almost at will. (Another
method is to have only one kind of variable, but require the program to
specify at the head of phrase those variables which are to be frozen. Wwe
will not use this method here.)

The language which results from combining LUSWIM(A) and
ULU(A) in this way is the language Lucid(A) . The Lucid semantics
requires that the meanings of elementary variables must, as in LUSWIM,
be elementary (so they can be frozen). Lucid therefore carries over the
LUSWIM restriction on the definitions of elementary variables, namely
that the formal parameters must be elementary and the definiens must be
elementary in the formal parameters (in the definition of "elementary in
the formal parameters", for "Lucid functions" we now read "Lucid functions

or non-elementary variables").

We assume therefore that we have two disjoint sets of variables
(elementary variables and nonelementary variables) each containing a
countably infinite number of variables of each arity, with vresult an
elementary variable. In our examples elementary variables are lightface,
and nonelementary variables are boldface. Programs in the languages discussed
all have the form of ULU programs and differ only in the ways in which
the two kinds of variables are used.

To make this more precise, let us define ULU*(A) to be the
most general language, i.e. it is USWIM(Lu(A)) in which there are both
kinds of variables without distinction (we are defining here only a set

of syntactic objects, and will not attempt to assign meanings to all

- 19 -

these objects). The syntax of the USWIM family has been described

elsewhere, so that to specify the syntax of Lucid and its two subsets it

is sufficient to specify exactly the restriction on the form of
definitions of elementary variables. Since the restriction is that the
formal parameters be elementary and that the definienda be elementary

in the formal parameters, it is, in turn, enough to specify what it means

for a term to be elementary in a set of elementary variables.

Suppose then that V is a set of elementary variables. The
set EL(V) of terms elementary in the variables in | is the least set
of ULU* terms such that
(1) any term with no free occurrences of any variable in V is in

EL(V) ;

(ii) a term consisting of a constant from I (the signature of A) and
an appropriate length sequence of operands is in E£Z(V) if all
the operands are;

(iii) a term consisting of an elementary variable together with an
appropriate length sequence of arguments is in E£Z(V) if all the
arguments are;

(iv) any phrase is in EZ(V) .

We will say that a term is elementary in a particular variable
m iff it is elementary in {m} , and that a term is elementary iff it

is elementary in all of its free elementary variables.

- 20 -

For example

A+ H(B) + valof

P = next(4 +) fby P + M(4)

result = B + first(p)
end
is elementary in {4, ¢, P} , but not in {B} because there is an

occurrence of B inside a nonelementary function. The variables A and
¢ also occur inside the range of a nonelementary constant but these are
occurrences inside a phrase, and these occurrences are allowable since
they refer to the frozen values (in a sense a phrase can be considered as
the application an ‘'anonymous' elementary function to its globals). The
variable P also occurs in the scope of a nonelementary constant but
this also is allowable because the occurrence is not a free occurrence in
the term as a whole (because P is a local of the phrase). If £ is

the above term we see that a definition of the form

M4, ¢ =%
is allowed but one of the form
MB, D) = %

is not, because 1t is not elementary in B .

Lucid programs are therefore ULU* terms having the property
that the formal parameters of any elementary variable definition occurring
in the program are elementary individual variables, and the definiendum is
elementary in the set of formal parameters of the definition. The sets of

ULU and LUSWIM terms are also as described earlier.

- 21 -

Before proceeding to the semantics of Lucid it is necessary
first to define precisely the algebra Lu(A) , the class of elementary
history functions, the operation of freezing, and so on.

Suppose then that we are given a continuous algebra A with
signature I . The set I 1is usually considered to be a set of ranked

operation (constant) symbols but we will assume (for simplicity) that ¥
contains two extra symbols, namely the sort symbol U for the universe of
A and the relation symbol £ for approximation in A . This assumption
allows us to consider A to be simply a function with domain I , one
which assigns to U a nonempty set, which assigns to &£ a partial order on
A) which makes <A(U), A(5)> a cpo, and which assigns to each n-ary
operation symbol an A(E)-continuous operation over A(U) . We also
assume that I contains the nullary symbols true , false and Q |,
with A(Q) the A(S)-least element of A(U)

We require that I be 'normal' in that it does not contain the
special Lucid operation symbols, which for our purposes we take to be
the unary symbols first and next and the binary symbols asa and
ng . This allows us to define Lu{(Z) to be the result of adding these
symbols to Z , and to define Lu(A) to be the function H with domain

Lu(Z) such that

(i) H(U) 4is the set of all infinite sequences of elements of A(l) ,
i.e. the set of all functions from the set {0, 1, 2, ...} of
natural numbers to A(U) (elements of H(U) will be called

A-histories or simply histories).

- 22 -

(ii) H(S) is the pointwise extension of A(%) , i.e. given any
A-histories a and B , <a, B> e H(=) iff <ai, Bi> e A(S)
for all i ;

(iii) for any operation symbol £ in I , H(kR) 1is the pointwise

extension of A(k) , i.e.

(H(R) (o, B, ¥, ---))t = A(k)(at, B ees)

£’ Yer
(a function over H(U) will be called an A-history function, or
simply a history function);

(iv) H(first), H(next), H(fby) and H(asa) are the unary history
functions first and next and the binary functions fby and

asa where

(a) first(a) = <a

(b) next(a) = <a1, s Gy >
(c) fby(a, B) = <uo, BO’ Bl' e
(d) asa(a, B) = <ai, Y ce where i is the least
number for which Bi = A(true) and
Bj = A(false) for all j < i
= <A@, A, A@, .. (= H(®))

if no such i exists

for all histories o and B and all natural numbers ¢t .

We can now proceed to give the semantics of Lucid. A Lucid
environment is a function from the set of variables (of both types) to the
set of history functions which assigns n-ary history functions to n-ary
variables, and which in particular assigns elementary history functions
to elementary variables. Given a Lucid environment E and a time s ’
the frozen environment E° is the unique Lucid environment such that

ESm = Em® for any elementary variable m , and Es(ﬁ) = E(§) for

any nonelementary variable

- 23 -

We now define the meaning of a Lucid term £ in a Lucid
environment E , by induction on the structure of £ ;
(i) if % consists of the Lu(E) operation symbol Rk together with

operands WU, WU ., ...y un

o 1 -1 then the meaning of £ in E is

the result of applying H(R) (i.e. Lu(A)(R)) to the meaning of
the u, in E ;
i
(ii) if % consists of a variable g (of either kind) together with

actual parameters U, U., «u., un

o' 4 , then the meaning of £ in

-1
E is the result of applying £(g) to the meanings of the ui in

E

(iii) if L is a phrase then the meaning of £ in E is o where at
any time s, 0O is the meaning of result in E; at time s
where E; is the least environment which satisfies the definitions
in the phrase and agrees with E® except possibly for the values

Eé assigns to the locals of 1 .
Finally, given a definition d of the form

X) = a

gXgr Xyp wenr X4 ’

we say that d is satisfied by E iff the meaning of g(xo, X)

1 e
in E is equal to the meaning of a in E for any environment €

agreeing with E except possibly for some of the values assigned to the

formal parameters XO' xl,

Notice that the definition differs from the USWIM definition
only in part (iii), which makes use of the special structure of Lu(A)

In particular, notice that no special evaluation rule (calling mechanism)

- 24 -

is required for the elementary variables.

A Lucid program is simply a term, the free variables of which

are called the input variables. An input to a program is simply an
association of input values with input variables, and the meaning (or
"output") of the program is its value in the appropriate environment.
For example, suppose that A , B and C are the input variables of a
program; then the meaning of the program given input o , B and Y is
its meaning as a term in an enviromment in which E(A) = a , E@B) = 8,
and E(C) =v .

The above is not strictly speaking a valid definition, because
an assumption is made which is not obviously true; namely, that a least
Lucid environment E; always exists. It is possible to give a more
indirect but obviously valid definition, and then to prove that the above
1s a true statement about the meaning so defined. We will not do this
here.

We mentioned that the set of LUSWIM programs is syntactically a sub-
set of the set of Lucid programs. The semantics of LUSWIM is determined by
specifying that this inclusion hold semantically as well, in other words,
the meaning of a LUSWIM program is its meaning considered as a Lucid
program. It is apparent that this definition of LUSWIM conforms with the
informal one given earlier because in a LUSWIM program all the globals
of a phrase, being elementary, are frozen inside the phrase.

We do not have the choice of defining the semantics of ULU in
this way because ULU 1is a member of the USWIM family and its meaning

is determined by the 'generic' semantics of USWIM. Nevertheless, the

- 25 -

inclusion is still valid, i.e. the meaning of a ULU program is its
meaning considered as a Lucid program; since all the globals of a ULU
phrase are nonelementary, none will be frozen.

If we consider the USWIM variables to be elementary, then
USWIM itself is a sublanguage of Lucid (or, to be more precise, USWIM(A)
is a sublanguage of Lucid(A)). The same is true even if we consider the
USWIM variables other than resylt to be nonelementary. In the absence
of Lucid operations, freezing is pointless and every variable denotes a

pointwise history function.

- 26 -

4. OPERATIONAL INTERPRETATIONS OF LUCID

We will illustrate possible operational views of Lucid by look-
ing at several examples of Lucid programs,

The first example combines the two forms of iteration. The
phrase has one nonelementary 'input' (free) variable £ and the program's

value at time t is the 10th moment of the first t+1 values:

valof
5 =P fby 5 + next P
X=X
P = valof
Y =1 fby Xev
I=0fbyIr+1
result = Y asa I eq 10
end
J=1FfbyJ+1
result = S/J
end.

The definition X = X allows the inner phrase to freeze each
particular value of X in order to compute the 10-th power of that
particular value. Using the nonelementary variable X instead of X
inside the inner phrase would give a completely different result. 1In

general the value of the altered phrase

- 27 -

valof
Y =1 fby ¥ex
I=0fbyr+1
result = ¥ asa I eq 10
end

at any time is the value of the product of the first 10 values of X
If this phrase were used in the previous program its value would also be
at any time the product of the first 10 values of X .

In writing the above program we could, if we wanted, define a
general elementary function Pow and just 'call' it to give the 10-th

power of X . This program

valof
S =P fby S + next P
P = Pow(X, 10)
N=1fFfbynv+1
result = s/n

Pow(B,K) = valof

Y =1 fby By
I=1fby1r+1
result = Y asa T eq X

end

end

has the same value. Notice that it is not necessary to apply Pow to

a lightface version of X . The restriction that the formal parameters

- 28 -

of an elementary function definition be elementary is not a type
restriction, i.e. it does not restrict the class of possible actual
parameters; nor is it an indication that elementary functions use some
different 'calling conventions'. Elementary functions are simply history
functions possessing a special property that makes them freezable, and the
restrictions on the form which the definition of an elementary variable
may take ensure that the denoted value will be elementary.

The examples just given used both kinds of iteration, but
separately: the outer phrase had only a nonelementary function as its
global and could be thought of as a ULU phrase, while the inner one
had only an elementary variable as its global and could therefore be
thought of as an ordinary LUSWIM phrase. Here is an example where the
features are combined in one (the inner) phrase. The program computes
the running variance of its input variable X , i.e. its value at time t

is the variance of the first t+1 values of X :

~

valof

Avg (V) = valof

S =Y fby s+ nexty
I=1fbyI+1
result = 5/T
end
M = Avg(X)
result = valof
result = Apg((X - M) 2)
end

end.

- 29 -

The outermost phrase is a pure ULU phrase because its only
global is nonelementary, and the same is true of the phrase defining the
function A4yg (whose value is the running average of its argument). The
second inner phrase, however, is quite different: one of its globals is
the elementary variable M , but the other is the nonelementary variable
X . The result is that the value of M inside this phrase is always its
frozen outer value, whereas that of g depends on the inner time.

The value of this 'mixed' phrase at time 2, for example, depends
on the value of M at time 2 only, but on the values of X at times O,
1, and 2. If the value of X begins <6, 8, 10, ...> then the value
of M begins <6, 7, 8, ...> and the value of the phrase at time 2 is
((6 - 8)2 + (8 = 8)2 + (10 - 8)2)/3 which is 8/3 , as required. A
mixed phrase is used because this (admittedly naive) algorithm implements
directly the definition of variance which requires that the present
average be subtracted from all previous values.

There are two conceptually different ways of giving an
operational interpretation to 'mixed' phrases with both elementary and
nonelementary globals. One way is to consider such a phrase as 'basically'
an ordinary LUSWIM phrase which has additional special (nonelementary)
variables which can be thought of as being 'restarted' at the beginning
of every subcomputation. The phrase just discussed can be understood

in this way, as can the phrase defining <sprime in the program

- 30 -

valof
P = 2 fby nxprime(P)
nxprime () = valof
N=a+1fbywn+1
result = ¥ asa <sprime(N)
end
isprime (M) = valof
result = P2 <Masa P°2MVP | M
end
result = P
end
whose value is the sequence <2, 3, 5, ...> of all primes. The function

i8prime can be thought of as testing its argument for primeness using a

simple loop which runs through all the primes starting with the first and

checks whether one whose square is less than M actually divides M .
The other way of viewing a mixed phrase is to consider it as

a parameterised set of ULU phrases, with each "freezing”

of the global elementary variables yielding a ULU phrase. For example

the following program

valof
5 =P fby S + next P
P=X+40N
I=1fbyI+1
result = S/I

end

- 3] -

has as its value at time t the N-at-time-t-th moment of the values of
X wup to time t (assuming the data function 4 is exponentiation). The
variable N is the parameter, and each numeric value of N yields an
ordinary ULU phrase. 1In an environment in which N is constantly 2,

the phrase is equivalent to the ordinary ULU phrase

valof
5 =P fby S + next P
P=X +2
I=1fbyr1+1
result = 5/T
end.

In an environment in which ¥ 1is constantly 3, it is equivalent to an
ordinary ULU phrase which computes the third moment. In an environment
in which the value of N changes irregularly with time between 2 and 3,
the phrase can be considered as sampling the appropriate outputs of two
different simultaneously running ‘'coroutines' computing running 2nd and
3rd moments respectively.

The same interpretations can be applied to nonelementary
functions, the definitions of which use both elementary and nonelementary

formal parameters and globals. For example, given the definition

- 32 -

Mom2(X, M) = valof

S=17fby S+ nextr

7= (x-m?

I=1fbyIr+1
result = /T

end

the value of Mom2(A, N) (in an appropriate environment) at time t is
the 2nd moment of the first t+1 values of A about the value of N at time
t . This function can be understood as an ordinary elementary function
except that its special first argument is restarted every time the
function is called.

It is, of course, possible to use two different viewpoints of
the same object. We could, for example, also regard MomZ as an

ordinary ULU function with a parameter M , so that
MomZ (A, 0O)
is the running second moment, and
MomZ2(A, Avg(A))

is the running variance. (MomZ2(A, Avg(A)) can be viewed as a possibly
infinite set of simultaneously running coroutines, one for each different
value of the running average of 4 . The value of Mom2(A, Avg(A4))

at time t is the value, at time t , of the coroutine corresponding to
the running average of A at time t .)

These operational interpretations may be of help in visualising

- 33 -

the "running" of Lucid programs, but an actual implementation may work

completely differently.

5. PROGRAM MANIPULATION RULES

The program manipulation rules of Lucid are exactly analogous
to those of USWIM, allowing modular or nested proofs in the same way.
The use of the manipulation rules must be restricted because of the way
in which elementary variables are frozen inside phrases, and because of
the way in which elementary and nonelementary variables are treated
differently, the latter being 'immune' to freezing. (The restrictions
given in this section do not just "seem to work” -~ they have all been
justified from the formal semantics of Lucid.)

To understand the nature and necessity of these restrictions,

consider the following simple Lucid program

valof
I=0fby I +1
G=H+1T
result = valof
P =1 fby PG
K=0fbyK+1
result = p asa K eq T
end
end,

It is easy to see that if an environment £ assigns the value n to H,

then the value of the term in [at time t is (nt +t) +t.

Let us consider the USWIM import rule which, together with
the addition and deletion rules, effectively allows us to move definitions
in and out of phrases whenever no clashes of variables result. If we were
to consider the above as a USWIM phrase, the rules would conclude that
the definitions of I and G could be added to the inner phrase, and
that the definitions of P and KX could be moved outside to the enclos-
ing phrase. 1In fact only one of these changes preserves the meaning of
the program, as we shall see.

Suppose first that the definition of I were added to the inner
phrase. The result is that I, inside the phrase, would no longer be a
frozen variable; in fact it would change in step with XK , the test of
the asa would be true at time O , and the value of the whole term
would be constantly 1.

Similarly, if the definition if (¢ were moved inside the
phrase, it too would no longer be constant because H would be considered
to be 'restarted' in each inner subcomputation. A little calculation

shows that the value of the whole term at time t would be

(no + t)-(nl + t)e...*(n + t) .

t-1
In the same way, if the definition of P were moved outside,
P would be the running product of the expression H + I and the value

of the whole term at time t would be

(Mg +0)e(my + L)ecnne(n_; + (£-1)) .

-~ 35 -

Of these four the only change which preserves the meaning of
the program is the moving of the definition of X to the outer phrase.
Since % is a nonelementary variable, it is 'restarted' inside the
inner phrase and the result is the same.

Unrestricted use of the USWIM import rule is obviously not
safe, and the problem is to specify simple restrictions which define
special circumstances in which it is valid.

The first restriction we will impose is that the definiendum of
the definition to be moved must be elementary in its free elementary
variables that are not formal parameters, for otherwise ‘'inner' and 'outer'

times will get confused. For example, if the definition A = next B is

outside a phrase, then it is not necessarily true as an assertion inside
the phrase (because both 4 and B are constant inside). What is true
inside the phrase is that the current (constant) value of A is equal to
the (constant) value B will have on the next invocation of the loop.
Since the definition may not be true as an assertion inside the phrase
(i.e. may not be true in the inner environments), moving it inside could
clearly change the meaning of the phrase.

The restriction that a definition be elementary in its free
elementary variables prevents us from moving the definition of I and P
(in the sample program) but not the definitions of ¢ and K. Moving the
definition of (G causes changes because the definition mixes elementary
and nonelementary variables. When it is moved some are frozen while

others are not, and the result is that the values of variables being

combined come from different times.

- 36 -

The second restriction we impose on the import rule, therefore,

is that the definition be uniform , that is, it does not have free

occurrences of both elementary and nonelementary variables.

Since the definiendum always occurs free in a definition, the

combined effect of the two restrictions can be restated as follows:

(1) a definition of an elementary variable can be imported if the

definiens has no free occurrences of nonelementary variables and

is elementary (recall that it is required to be elementary in its

formal parameters anyway);

(ii) a definition of a nonelementary variable can be imported if the
definiens has no free occurrences of any elementary variables
other than formal parameters.

Definitions of nonelementary variables can of course (as
indicated) be imported even if the definiens are not elementary in their
formal parameters. This means, for example, that the definition

F(X, N) = X + next ¥ can be imported.

Most of the remaining USWIM rules involve substitution and
therefore include the implicit restriction that the required substitutions
be permitted. USWIM forbids substitutions which cause a clash of
variables (scope), but Lucid must also prevent a 'clash' of inner and
outer times. The required additional restriction is that a substitution
cannot be applied to a phrase unless the assignments satisfy exactly the
same requirements {(just described) that definitions must satisfy if they
are to be imported. Thus the substitution
{F(X) « X + next H, M(Y) « A + B*Y} can be applied to a phrase (assuming

the ordinary USWIM requirements are satisfied) but one that contains one

- 37 -

of thc assignments H <+« K+ A, B+ (C + next 0, or P« @+R

cannot.

We can now run through the remaining USWIM rules, indicating

when they are valid Lucid rules.

The calling rule can be applied in Lucid whenever the substitu-
tions are permitted (i.e. subject to the additional Lucid restrictions on
substitution).

The local renaming rule is subject only to the USWIM
restrictions provided the new variables are of the same type (elementary
or nonelementary). (If a local does not occur free inside an inner phrase,
the type may be changed in a renaming.)

The formal parameter renaming rule is also subject only to the
USWIM restrictions if the types remain the same. (In a definition of a
nonelementary function, formal parameters not appearing free in any phrase
in the definiens may change type.)

The amalgamation rule requires the additional restriction that
the expression e be elementary and that the Ui be elementary.

The definition addition rule requires no extra conditions
(the definitions must of course be valid Lucid definitions).

The basis rule is valid without extra restrictions (the
equations can use Lucid symbols if the equations are true in Lu(A)).

One consequence of the fact that the USWIM manipulation rules
carry over almost directly to Lucid is that binding and calling "work"
just as they do in USWIM . The "parameter passing mechanism", therefore,

is not call by value, and binding is static, not dynamic.

- 38 -

6. INFERENCE RULES

In [3] we described how a first order language based on I
could be used to make assertions about and annotate terms in USWIM(A) .

In the same way a first-order language based on Lu(I) can be used to
annotate ULU programs, with all variables denoting histories. The same
language could be used to annotate Lucid programs, but the rules for
manipulating annotations (like those for manipulating programs) require
extra restrictions. For example, an assertion about the globals of a
phrase which is an annotation of an enclosing phrase can be added to the
inner phrase if it is elementary and uniform (we should define what these
terms mean for assertions).

Such a system is, however, very unnatural because of the
radically different logics used in the program and in the annotation
language. In the language itself a term like X < Y denotes a history
of truth values, while in the annotation language a formula like X < Y
must denote a single truth value. Assertions in the annotation language
must explicitly refer to whole histories of program truth values as
single truth values.

A more natural approach is to modify the logic of the annotation
language and let the truth of formulas themselves also depend on time,
i.e. adopt a form of modal or tense logic. Such a logic was developed in

[1] and could be adapted to Structured Lucid, but we will not enter into
details here.

We can, for the time being, avoid the difficulties connected

with three-valued and modal logic by using an equational assertion

language (as described in [3]). The assertions are universally

- 39 -

quantified equations between Lucid terms, the equation

Wiy VXp LWk (g = 4)

being true (in Lu(A)) in an environment E iff tl and £2 have the
same value in any environment differing from E at most in the values
given to some of the xi

The equational rules of substitution and replacement (as
described in [3]) are sound (provided of course that the extra
restrictions on permission are taken into account). Any equation in the
language of A that is true in A is also true in Lu(A) , as are
equations concerning the Lucid functions such as the following

vxvy(first(x fby v) = first x
vxvy(next (x fby v) = Y1)

I
>

vx(first x fby next X
VXVYP(X asa (true fby P) = first X)
VXVP(X asa P = if first P then first x else

next X asa next P)

oraears T T T T ooy

From these many others may be deduced using only the equational rules;

for example,

vx(first(first x) = first x
Quantified variables may be renamed whenever the required substitutions
are permitted.

There is one special rule which captures the idea that the

elementary globals of a phrase are "frozen" inside the phrase. The freez-

- 40 -~

ing rule says that if elementary variable § is an n-ary global of a

phrase, we can add

Yxo Vxpo..ovx o fiest foxg, x, . x)

-1

= f(first X first X[r veer first X)

-1
as an annotation of the phrase.

Special rules of inference (like the mathematical induction
rule) valid in A are not necessarily valid in Lu(A) , although they

can usually be reformulated. For example, in Lu(N) the following rule

is valid : to prove an equation of the form
Vv e[{v « first v}]

from a set of assumptions, one first proves e[{v « 0}] and e[{v + Q}]
and then proves e[{v « fi£§£ v + l}] from the assumptions plus the
equation e[{v « first v}] (the variable v must not occur free in any
cf the assumptions). This version of the rule is valid in Lu(N) because
it is essentially restricted to constants. It can be used, for example,

to prove the equation KX = first ¥ from the equations

I=0fbyI+1
K=1Iasaleqfirstws

and various equations true in Lu(N), by proving the equation

VML (first ¥ + first L = I + first L asa I eq first M)

by induction on first M .

Lu(A) itself also has a special rule, the (computation)

induction rule. In order to prove the equation uo = ul one proves the

equation

- 41 -

0] 1
and then the equation
next Uy = next Uy
from the assumptions together with the equation u._ = U itself (as the

0 1

induction hypothesis). It is required that the latter derivation use only

the elementary substitution rule, i.e. only instances of the rule in

which tl and 12 are elementary in v . For example, the rule can

. 2 .
be used to prove the equation J = I from the equations

I=0fbyr+1
J=0fby J+ 2T +1.

Lucid terms can be annotated exactly like USWIM terms, and the
USWIM rules for manipulating annotated USWIM terms can be applied to
annotated Lucid terms provided extra restrictions are imposed which avoid
clash of times. These extra restrictions involve extending the notion
"elementary" to apply to annotated Lucid terms as well, but we will only
give here the details for the import rule.
The Lucid annotation import rule says that the equation
on Vxl “ee Vxn_l(t1 = tz)
can be imported provided
(1) there are no free occurrences in the above assertion of locals
of the inner (receiving) phrase, or of formal parameters of
the definition within whose definiendum the inner phrase

occurs; (this is the USWIM restriction);

- 42 -

(1i) the equation is elementary, i.e. Il and tz are elementary
in all their elementary free variables which are not among
the X. ;

i
(iii) the equation is uniform, i.e. does not have free occurrences

of both elementary and nonelementary variables.

Thus the equation

VX F(X, Ay =next X + 4

can be imported into a phrase if F and A are not locals or formal

parameters, but the equations

VX F(X, A) = next X + A-H
and
VX F(X, 4) = next X + G(4)
cannot.
For the export rule, the first two restrictions are retained
but the third is dropped : it is sufficient that the assertion be ele-

mentary. All but the third example can (barring clashes of scope) be

exported from a phrase.

7. AN EXAMPLE OF PROGRAM TRANSFORMATION

As an example of the rules for the manipulation of program and

annotations, consider the following program

- 43 -

valof

égggg) = valof

S5 =% fby s+ next X
N=1fbyrV+1
result = S/N
end
M = Avg(4)
result = valof
result = dvg((4 - M)
end

end

interpreted in the algebra Q whose universe is the set of rational
numbers plus 1, and which interprets the arithmetic operation symbols in
the usual way (with division by 0 vielding 1). The program calculates
a running variance of the input variable A using a naive algorithm which
(operationally speaking) involves going all the way back to the beginning
at each step. We will outline how our rules could be used to show the
program equivalent to one which is more 'efficient’.

Our first step is to prove that that Ayg 1is linear and that
Avg is the identity function when applied to constants,i.e. to attach

to the outer phrase the equations

VGVH Avq (G + B) = Avg (@) + Apg ()

VGVK Avg(first k-G = first K-Avg(Q)

~

vk 4vg (first &) = first

I~

- 44 -

We begin by using the definition rule which allows us to attach
the quantified definition of Avg to the phrase. Then we apply the
substitution rule twice to give equations for Avg(G) and Avg(Hd) .

Then replacement applied to the identity

Avg (@) + ABq(D) = Avq(Q) + Avg(UD) gives

Avg (@) + Avg(H) =

valof valof
5 =g fhy 5 + pext ¢ =8 fhy s+ nextd
N=1fbynv+1 + N=1fhynv+1
result =.s/N result = s/N
end end

Two applications of the local renaming rule and one of the

amalgamation rule (taking ¢ to be Rl + R2) plus replacements gives

£29(@) + Avg(#) = valof

S1 =G fby S1+next G
N1 =1 fby N1 + 1
Rl = S51/N1
52 = § fby 52+ next &
R2 = S52/N2

result = Rl + R2

end.

- 45 -

To this amalgamated phrase we add the definitions

N=1fby N ¥+1 and S = (¢+H fby S+ next(G + H), then add the

~ ~

definitions of N, N1, N2, 5, 81, S2 as annotations, and three
applications of the Lucid induction rule give us the equations N = N1 ,
N=PN2, S =251+ 82 . The variables N and N1 do not depend on (are
not defined directly or indirectly in terms of) Kl , and so with the
modification rule we can use the equation N = N1 to modify the
definition of Rl to make it K1 = S1/N . Applying a similar change

to the definition of K2 , the annotated phrase we are working with

becomes {after discarding useless annotations)

valof
51 = G fby S1 + next G
N1 =1 fby M +1
Rl = S1/N
S2 = H fby 52 + next H

N2 =1 fby N2 + S =81+ 82
R2 = S1/N
result = R1 + R2

N=1fFfbyn+1

S = (G+H fby S+next(G + &)

end

We can now begin to clean up the phrase. Two applications of

the calling rule turns the definition of result into

result = S1/N + S2/N and with the modification rule and the equation

- 46 =~

YOYVYW (U/W + V/W = (U + V) /W)
which is true in Q the definition of result is

result = (S1 + S2)/N .

None of the variables S, S1 or 52 depend on result so that the
modification rule can be applied to give result = S/N . The variables
S1, S2, N1 and N2 are no longer used (occur free only in their
definitions) and so can be eliminated using the deletion rule. As a

result our original program now has the annotation

- 47 -

4vg (Q) + Avg(H) = valof

S=(G+H fby S+ next(G + H)
N=1fbyn+1
result = S/N

end.

We can now use the definition of 4yg and apply it to G+ H to find

that the above phrase is equal to Avg (G + H) ; replacing equals gives us

Avg(©) + Avg () = Avg(G + B)

~

and since no assumptions were made about G and H , we may quantify
over these variables.

Similar manipulations yield the second desired equation.

These two equations have only 4vg as a free variable, and it
is nonelementary. The equations are therefore elementary and uniform
and so can be imported into the inner phrase. Since M is an elementary
global, using the freezing rule we can add the annotation M = first ¥
to the inner phrase. In this phrase the two equations together with
certain arithmetic laws like

2

VIVZ (Y - 2)% = Y2 = 2:7e2 + 29

give us (after discarding annotations)

- 48 -

valof
Avg (X) = valof
S =X fby 5+ next X

A~

N=1fbyn+1

result = S/N
end
M = Avg(4)
result = valof
result = éggcgz) - 2-M-gggcgz)‘+kﬂ
end

end.

These manipulations have allowed us to move the elementary vari-
able M out of the range of the nonelementary variable A4vqg . The

result is that result is now defined by the elementary term
Avq(4%) - 2:M-dug Q) + 1
and so the result rule can be applied to make the definition of result
in the main phrase |
result = dvg4%) - 2+Medpg(4) + M2,

We can now use the definition of M , the calling rule, the modification

rule and some properties of Q to transform the program into

- 49 -

valof

Avg (X) = valof

S =X fby S+ next X
N=1fbynv+1
result = s/¥

end
2 2
result = 4vg(4%) - 4pg(4)

end

which (assuming Apg yields averages) clearly has the running variance
of 4 as its values. (These last manipulations could not have been
performed inside the inner phrase because the definition of M » though
elementary, was not uniform, and so could not be imported.)

To obtain a more 'efficient' version we use the calling rule

twice to yield

- 50 -

valof
Avg(X) = valof
S =% fby 5+ next x
N=1fbynv+1
result = S/N
end
result =/ valof valof 2
§ = 4% fby 5 + next 4° S =4 fby S + next 4
N=1 fbywv+1 + N=1fbynv+1
result = S/N result = S/N
end end

end.

Since Avg no longer appears free in the definition of result,
its definition can be discarded. The local renaming and amalgamation

rules give us (much as before)

valof
result = valof

S1 = A fby S1 + next 4

N1 =1fbywv+1
Rl = S1/N
2 2
52 = A" fby 52 + next 4
R2 = 52/N
result = R1 + R2°

end

end.

- 51 -

The amalgamation rule allows us to eliminate the enclosing phrase, and
then manipulations essentially the same as those already performed yield

the final form of the program

valof
S1 =4 fby 51 + next 4
52 = 4% fby 52 + next 47
N=1fby~ny+1
result = (Ne52 - 51%)/n?
end

which computes the running variance of A by the more sensible method of
keeping (internally) running totals of the values of A and 42
We gave an outline only of the transformation from one form to
the other, but it should be apparent that every step can be justified
by one of our rules. A completely formal justification in which every
step is made explicit could be very long, but generating and checking it
involves for the most part exactly the sort of bookeeping and trivial
manipulations that computers excel in, no more difficult than that
performed by existing proofcheckers for imperative languages.
It is well within the 'state of the art' of mechanical theorem proving

to construct a system which could run through the entire transformation

described aided only by a few vital hints from a human.

- 52 -

8. CONCLUSION

We have shown that it is feasible to combine Basic Lucid and
USWIM in a single language, called (Structured) Lucid, without sacri-
ficing the fundamental properties of either. This is possible because,
while both lanquages are based on equations, their particular features
are almost completely orthogonal. The few changes to the syntax and
semantics of USWIM are the result of distinguishing between inner and
enclosing local time, and it is exactly the possibility of such a
distinction that makes Structured Lucid the expressive language that
it is.

We have explained or at least mentioned that Lucid programs
can be interpreted operationally in several ways, for example as
defining conventional loops, dataflow networks, or systems or coroutines.
This last possibility is especially significant because with conventional
imperative languages the addition of coroutine facilities usually com-
plicates enormously the problems of semantics and verification. Structured
Lucid, however, has a simple semantics and powerful inference/manip-
ulation rules, and we were able to illustrate the latter on a nontrivial
'coroutine' program.

We believe that Structured Lucid is a good example of the

power and potential of the denotationally prescriptive approach [4].

9.

[1]

£2]

(3]

[4]

£s]

- 53 -

REFERENCES

Ashcroft, E.A. and Wadge, W.W., "Lucid - A Formal Theory for
Writing and Proving Programs", SIAM J. Comput. 5, No. 3, pp. 336-354.

"Lucid, A Nonprocedural Language with Iteration",
CACM 20, No. 7; PpP. 519-526.

"A Logical Programming Language", CS-79-20,
Computer Science Department, University of Waterloo. June, 1979.

"Rx for Semantics", CS-79-37, Computer Science
Department, University of Waterloo. August, 1979.

Landin, P.J., "The Next 700 Programming Languages", CACM 9,
pp. 157-164.

