
http://wrap.warwick.ac.uk/

Original citation:
Ashcroft, E. A. and Wadge, W. W. (1980) Structured Lucid. Coventry, UK: Department of
Computer Science. (Theory of Computation Report). CS-RR-033

Permanent WRAP url:
http://wrap.warwick.ac.uk/47206

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/47206
mailto:publications@warwick.ac.uk

The Univensity of Warwick

THEORY OF COMPUTA|ION

REPORT NO.33

STRUCTURED LUCID

BY

E,AStl CR0FT ACI l,l,l,{AD(iE

Depantment of Qopputer Science Revised
Univensity of Warwick Ma::ch 1980, COIENTRY CV4 7AL
ENGLAND.

STRUCTURED LUCID

Ed Ashcroft
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

and

Bill Wadge
Department of Computer Science

University of Warwick
Coventry, England

June 1979, ReVised March ls8o

cs-79-2L

This work was supported by the National- Reseal?ch Council of Canada

and the Science Research Council of the United Kingdom.

STRUCTURED LUCID

Ed Ashcroft
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

^.:alru

BiIl wadge
Department of Computer Science

University of Warwick
Coventry, England

Abstract

Structured Lucid is an ISWIM-Iike language formed by combining

Basic Luid and USWIM. Structured Lucid is almost a member of the USWIM

family, except that a distinction is made between two kinds of function

variables: those which denote functions mapping streams (histories)

of data objects to streams of data objects, and those which denote

streams of functions mapping data objects to data objects. The in-

ference and manipulation rules of Structured Lucid combine Basic Lucid's

faciJ-ity for implicit reasoning about time with the modul-ar or nested

reasoning of USWIM.

The distinction between stream functions and streams of

functions is inherent in the ideas of Basic Lucid and has a natural

operational interpretation. On one hand, a moduLe which computes a

stream of functions can be thought of a defining a subcomputation which

is carried out while the main computation'waits'or is 'frozen'; on

the other hand, some modules which compute stream functions can be

thought of as defining separate computations carried out in parallel

'2-

with the main computation (a form of coroutine). In general, though,

a modure may freeze some but not arl of its parameters or globals, and

for these various cornbinations of the two interpretations are appropriate.

-3-

0. INTRODUCTION

In [:] we introduced a farnily of logical progranming

languages called USWIM, which was based on Landinrs ISWIM tS l. UswIM

was designed to be semantically simple and yet provide a general way of

allowing scope and defined functions in programming languages. A

particular language is obt,ained by supplying an algebra A consisting

of a data domain and operations on that domain. The particular language

is then called USWIM(A).

Basic Lucid, as described in lZl, is a general way of al-low-

ing iteration in a logical or mathematical way. It is natural to try to

combine these two approaches in a single language (or fanily of

Ianguages), so that the resulting language provides iteration, defined

functions and scope of variables in a logical, semantically simple way.

The result of doing this we sha1l call Lucid (or, strictly speaking,

Lucid (A)) .

There are several similarities betvreen USW$,! and Basic Lucid.

USWIM (like ISWIM before it) is a general way of allowing structured,

modularised recursion and recursive definitions, whereas Basic Lucid

is a general way of allowing iteration. In both cases the languages are

mathematically simple, denotationally specified and referentially trans-
parent' rn fact both languages are based on equations, and they both depend

upon a given data algebra A. USWIM forms constructs from the equations

(phrases, function definitions) whereas Basic Lucid stays with simple

equations but works with a modified data algebra r,u(A) , the universe

of which consists of infinite seguences of elements from the universe of

-4-

A , and the opcrat-ions of which are the "pointwise extensions" of the

operations of A, togeLher with some new "Lucid operations". Thus USI.JIM

and Lucid achieve their goals in somewhat torthogonal' ways and it should

be possible to combi-ne the languages quite c1eanly.

One simple way of combining them is to consider the language

USWM(Lu(A)) , which we will caII ULU(A) for simpticity. ULU is a

perfectly well-defined family of languages which has an interesting

operational interpretation: the iterations within phrases are synchronized

with the iterations in enclosing phrases, which results in the language

having the flavour of a data-flow language,with the defined functions

behaving like coroutines. Unfortunately, this synchronization means that

in ULU it is not possible to define subcomputations.

Another way of combining them is to extend the meaning of USWIM

phrases in a pointwise fashion. The resulting language, which we call

LUSWIM is, in many ways, a conventional Algol-Iike language but

not a member of the USWIM family because the same variable means different

things inside and outside a phrase, Lhe inner occurrence being "frozen".

As a result, phrases can be interpreted as defining subcomputations which

return a result.

Lucid is the result of combining ULU and LUSWIM, giving a language

which is a superset of both sublanguages and is generalry better than

either of them individually. The features of the two sublanguages do

interact, but constructively, not destructively. This is a direct result

of the fact that both sublanguages are mathematically defined.

-5-

we shourd point out that, because Lucid is based on uswrM, j_t is
not a "higher-type" ranguage' that is, the defined functions can neither
take functions as arguments nor return functions as results. To remove

this restriction in Lucid would first require the investigation of the

consequences of relaxing the restrictions in USWrM that the variatrle

result and the formal parameters of a function definition be ind.ividual
variables' These consequences may not be too dire, but some comprications

are almost bound to result, so this extension of Lucid is not considered

in this paper.

I. THE I,ANGUAGE ULU (A)

Given a continuous algebra A , lu (A) is the continuous

algrebra of A-valued 'histories I together with the Lucid operations and

the pointwise extensions of the operations of A ; . formar definition
appears rn secti-on 3. when confusion might occur, we wilr say "data

fr:nctions" when we mean functions on A , and ',history functions,, when

',,'? ;leai: lunctions on Lu(A) (Lu(A) is simirar to Loop(s) in I r].
The 'histories' are simpre infinite sequences, and the Lucid operation

Le.Ugs-,t is nor used.)

The language ULU(A) is simply uswrM(r,u(A)) (rt is assumed

throughout this paper that the reader is familiar with both [3] and t z).) t

Here is a sample nront"*f 1r, uLU ({) , where I consists of the
rationaLs together with the usual arithmetic operations:

val of

{=tIUJ+l
{= 3'!

result = valof

Q = { IH g + !g$ /
{=rlut{+r

resul t = E/A

end

end.

r rn this and subsequenr papers, we use IU for lgllry.q{,pJ and asafor gs_*:go*0*q:,. * ;;,.^::.r::-:{

-7-

'-fhc scmantics of USWIM tolls us th.tt (sincc there are no globat

variables) the meaning of the outer phrase is the value of F€SUlt in the

least environment E, satisfying the three definitions in the phrase.

ItiseasytoseethatE1(J)isthehistory(f,2'3,...>

is the history <3, 6, 9,

of the inner phrase in the environment E,_ , which is the value of reSul t

in the least environment Er, , differing from Er- only in the values of

the locals (S, { and result) of the inner phrase, which satisfies the

definitionsintheinnerphrase.ThusE2q)is(3,6,9,...>

is <3, 9, f8,

(3, 4.5, 6,

(3, 4.5, 6,7.5,

Notice that what the inner phrase is doing is maintaining a

running average of the values of {, . we can use this inner phrase as

the body of function calred {pg, , as we do in the folrowing example:

val of

*g"t{) = valof

g={IU g*te-{,tI

{=rIlI{*r
resul t = s/N

end

y = &g"q) g:g { eq 10

f=LfbyZ+r

resul t = Ml($l!)") Sg i eq to

end.

-8-

since this program has a frce variablc g , we can only tark

of the value of this progran in an environment E which gives a varue

to € Let us suppose that E€) is some history o . rn the inner

environmenE, {pg, wiII be the ',running average', function, so that U is

the constant history which is everlmhere the average of the first ten

values of E(g) , that is, the average of oo through ort. since the

varue of result will be the average of the first ter values of (E-y)2,

we see that the value of the progran in E wirl be the constant

sequence which is everlmhere equal to the variance (the second moment

about the mean) of the first ten values of € in E

Probably the best way of viewing the previous program in an

operational way is to consider {Pg, as a coroutine, with two invokations,

&gQ) and *lLt|2-l!)21 . These invokations are considered as running

from time 0 , but only the value of Apg,q) at time 9 and the value of

ia(Q-O') at tine 9 are "used". The coroutine activations have to

be considered as running from time 0 so that they can keep running sums

of g and Q-A)2 until they are needed at ti-ne 9.

Suppose we wished to generalise this program to compute

arbitrary higher moments about the mean. we would need a function

where ruq, Y) gives us the running {-th powers of the varues

We might try to define this as follows:

Pou

of x.

t Here we are using the
elements are y6, y1,

convention that, if y is a history, its
\2,

-9-

P*oll([' !) = valof

J=oIUJ+l
E=t!ry{'e

result=EgggJeqg
end.

Now, PJ]!6, 2') is (25, 25, 25,

<2L6'2L6,2L6,...)butif,say,theva1ueofAis<L,2,3,...>

then the value of gZ!(A,2') is (2,2,2,...): Moreover, the value

of P&(5, L) is <5,5,5,
(L, L, L,

variable { in the definition of W is chasing a moving targetl,

Sfunilarly, if we tried to generalise the variance program to

give the variance of the first N values of the history L , we would

get rubbish if A varies with tirne.

The reason for all this is that globals have the sane meaning

inside a phrase as outside and so phrases are synchronised with their
environments. We can have no subcomputations in ULU (but we can have

one computation following another, as in the variance exanple). We have

nesting of scope but we can not have nesting of computations, i.e. there

are no subloops.

-10-

2. THE IJANGUAGE LUSWIJ.{ (A)

The reason that the definition of W is considered to be

r.rrong is that we expect it to work pointwise. If A had an explicit
exponentiation operatorr say t , then, according to r,u(A) , if q and

B are histories ofB woutd be (oOtBO, crltBl, ...) . This is exactly

how we would expect Pou to work, but in uLU it clearry doesnrt.

The root, of the problem is that phrases are not defined

pointwise. The value at time t of a phrase, in which g appears as a

grobal, depends on the value of g, not just at time t but at other

times as werl. For example, at any time t , the phrase computing the

average of the first t+l values of a depends on cO, cl, ..., ,E_L

as well as *t . This is exactly what we wanted in the ,,average,,

exampre, but it is disastrous in examples like the one to compute the

N-th power of & .

what is required is some way of ensuring that the varue of a

phrase, in environment E , at time t depends only on the varues of

the globals at time t . we can ensure this by freezing E at time t:
given a sequence o, and a time t , r^re define ot to be the sequence

<o;roa,oar -..) ; then the value the frozen environment Et assigns to

nullary variable G is E tG)
t (The value Et assigns to non-nullary

variables will be discussed later.) The value of the phrase at time t
is then the vaLue at time t of result in the least environmenr,

differing frorn Et only in the values of the locals, which satisfies

all the definitions in the phrase.

-rr-

LUSWIM(A) is the language obtained by using this pointwise

interpretation of phrases, i.e. it is the "pointwise extension" of

USWII{(A) . Programs in LUSWfM and ULU have the same form, and we

could allow the classes of programs to be the same, but we distingruish

them by requiring that the intersection of the sets of variables they

use contains only the individual variable result. rn our exampres,

variables except result, in uLU progrirms, wirr be written in bord

face italics, while arl variables except result, in LUswrM progr.rms,

will be written in right face italics. (rn this way, ULU and uswrM

can be disjoint subsets of Lucid.)

Here is an example of a si:npJ.e LUSWIM progran:

val of

r= I fU r+r

,5=1lUUs+ng5!M

M = valof

x=l!!yr+r
P=IfHr'P

result = P a_s_a. ,K eq f
end

resul t = .9 i€i f eq O

end.

This program has no global variables, so the difference between uLU

and LUSWIM is not apparent until we consider the inner phrase, which has
global variable r . rn the (single) environment E inside the outer

-12-

phrase, the value of I clearly is (lr 2, 3,

in E is determined separately at each time step. E(M)O is the value

of Fesult at time 0 in Et where Er is the environment obtained by

freezing E at time 0 and then choosing values for K, P and F€SU1 t

which satisfy the definitions in the inner phrase. Clearly E, (P) is
(lr l, l,

value of f€SUlt at time I in E" where E" is the environment

obtained by freezing E at time l- and then choosing values for the

locals. so E" (P) is <2 , 4 , 8 ,

Continuingthisprocess,weseethatE(M)is<I1,22,33,...>

vaLue of the program at any time will be IL * z2 + 33 + 44 + 55 + 66.

In LUSWIM then, a single outer environment, like E in the

exarnple, does not determine a single inner environment, but rather a

seguence of environtnents, like E' , E" etc. , one for each outer time

step.

suppose now that a non-nurlary variabre M is defined by a

phrase, for exampre sup;nse that E is an environment satisfying the

definitions

M(X, Y) = valof

-r=ozur+1
s=xflXs+r

result = .9 Ol-A. .r eq G+l

end

ozu C*L

13 -

and that l) is the history function which E assigns to M . Given

any histories o and B , we know that U(o, g) is the meaning of

M(X, y) in an environment i differing from E (at most) in that

t<Xl = c! and ttyl - B The value of M(X, y) at time t is the

value of the phrase at time t . We have defined this to be the value of

result at time t in the inner environment Et ; but in this inner

environment the values of X and y are frozen, i.e.

E'(X) = (0., d., ct,,
EEETt,t

that there is no raccess' inside the phrase to other than the tcurrent'

value o. and B- of X and y respectively. As a result tf has thet 't

property that tf (4, B)a = {i(o', B')a for any ot and B, for which

o- = o: and B. = Bj , in particular rl(a,B). = g(ot-Rtt
t t ..t Pt ' --- r-- E Y\y ,u ,t

We will say that any history function t, is e-Zernentatg if ,

for all histories o,8,... and times t, 0tc,g,...)t = U(*t,Bt,...)t .

AII functions which are the pointwise extensions of data functions are

elementary, but not all elementary functions are of this form-

An elementary function U is lrcintwjse if V(o,B,...)t =

ft
U(a-,8',...) for all o,8,... and t. Pointwise functions are

especially sirnple because they have the property that the value at a

given time depends only on the values of the arguments at the given time,

whereas with elementary functions the value can also depend on the time

itself.

The function tl described above is an example of an elementary

function which is not pointwise. If

o, = (2, 3, 4t 2, 7, 9,

ctt = (6, 7, L, 2, 9, 1,

B = (1, 3, 5, !, 8, 6,

B' - (7, 2,8, l, o, o,

-14-

then

rl(c, B) = (3, 9, 19, 6, 53, 45,

U(s', B') = (13, 11, 25, 6,9, l,

At time 3, o and B agree with or and g' because cr, = 2 = af and

B^ = I = Bl . As predicted, the values of V(o, B) and tf(c', B')
J5

agree at this time, because f (o, B): = 6 = tp(cr'r B'), The function U

is not pointwise, however, since oO = o3 and BO = B: but U(o, B)O=13

and tf (o, B)^ = 6 (Generally, il("f , 6)- = Y. +(t+I)'6. -)'"3 t c E

Suppose now that 0 is an elementary function. At any time t ,

the value of Q(o, B, \, ...) depends only on t and the values

o. r 8., Y. , ... of the arguments. This means there must be a datactc
function 0a such that

Q(o, $, y, ...)t = 0a(oa, Ba, ya, ...)

for any o, B, "Y, The elementary history function 0 is therefore

completely determined by the sequence (00, 0t, 02 ' ...) of data

functions (and any such sequence, in turn determines an elernentary

function). This means we can think of elementary functions as histories

of data functions, with pointwise functions corresponding to constant

histories of data functions. From this point of view, application of

elementary functions works pointwise: the value of 0(c, B, \, ...) at

time t is the rvalue' of 0 at time t (0*) applied to the values

of c[, 9, \, at time t.

This view of elementarv functions as histories of data functions

now explains what it means to freeze a function (if it is elementary).

-15-

The value ou of an ordinary history cl frozen at time u is the

hi-story <0rr, 0rr, 0rr,

elementary function Q determined by the sequence too, 0I, 02, "')

to be the elementary (in fact pointwise) function corresponding to the

sequence<0,0r0-uuu

Ot(q, B, y,...)t = g,r(o,a, Ba, Ya, .--)

= O(0t, BE, \t, ...)u

for any c!, B, '(, and anY t-

his definition of Ot allows us to give a meaning to phrases

which have, as g1obals, variables denoting elementary functions' Notice

that for any erementary function {, U(4, 3, \, ".)t = tpt{c't, Bt, Yt)'

(compare this with the definition of pointwise functions.)

Function definitions in LUSWIM are, therefore, syntactically

restricted in such a way as to ensure that all functions are elementary-

The simplest way of ensuring this is to require the definiens of a

function definition to be a phrase. We can weaken this requirement by

requiring the definiens to be eLementary in the forTnal parameters

whrch means we allow occurrences of formal parameters outside phrases as

J,ong as they are not within the arguments of Lucid functions. For example'

M(X,Y\=X+Y'lgllG

is a valid definition, and in fact this definition of M is equival-ent

to the previous one in the context of the previous defj-nition of G

As a result Of this restriction, LUswIl4 is, in a sense, the

pointwise extension of USWII4 , with both phrases and function application

being extended pointwise.

-16-

Although the mathematicaL semantics of LUswrM is more

complicated than that of ULU , simpler and more conventional operational

interpretations are possible. Function evaluation as well as evaluation

of phrases can be thought of as subcomputations which take place while

the enclosing computation is suspended. Functions without global variables

can be thought of rike data functions, whire functions with global

variables are like Algol function procedures whose globals have different

values at dj-fferent times. When a function is defined outside a phrase

but used inside, the evaluation of the function uses the current "frozen"

grobal, so that inside the phrase the function is pointwise.

This freeztng of globals by phrases is one of the main reasons

why we chose to define USWIM rather than base Lucid on ISWIM. If we used

ISWIM' to get the anaLogue of LUSWII'I we would have to define a pointwise

extension of where phrases. This is clearly possible, but then we would

have to distinguish between E and E where end, the second being a

where phrase with an empty body. This is essential because in the first

case the globals (free variables) would not be frozen, whereas in the

second they would. In particular,

[.9$ X where Bhd = X I rcX! X .

Rather than have these aestheticalry displeasing enpty bodies, we chose

to use valof phrases.

-17-

3. THE LANGUAGE LUCID

It is apparent that these are two very different ways of adding

iteration to USWIM, both potentially useful, and both having natural if

radically differing operational semantics. It seems very unlikely that

one is the right interpretation and the other the wrong one; in fact it

is easy to imagine prollrams which (operationally speaking) use both

coroutines and nested computation. An exampl-e would be a coroutine which

computes a running /V-th moment (average of fr-th powers) but uses an

inner, nested roop which computes the il-th power in a subcomputation.

Clearly the two 'facilities' should be combined in the same

language, but it is not immediately obvious how to do this. The two

languages are superficially very different in the way they give a meaning

to a phrase. In ULU the entire value of the phrase is determined all

at once in terms of the entire values of the globals, whereas in LUSWIM

it is put together instant by instant in terms of the instantaneous

values of the gJ-obars. The difference, however, is not as great as it

seems, once it is realized that the ULU semantics can also be given

j-n a pointwise manner: the varue of a ULU phrase inan environment E

at time t is the value of P€Sult at time t in the least environment

satisfying the definitions in the phrase and differing from E at most

in the varues assigned to the locals. This definition is, of course,

equivalent to the general USWIM definition but makes it clear that the

dj-fference between ULU and LUSWTI{ is that, on each time step, LUSWTM

freezes the values of the globals before determining the inner environment.

In ULU ' the inner environments corresponding to different times are all

-lB-

the same ' To comb j-tltr the two semantics of phrases we need only ciistinguish
between two classes of variables (elementary and nonelementary), one of
which (the elementary) consists of variables which are subject to freezing
inside phrases. rn this way it shourd be possibre to mix up erementary

and nonelementary variables in definitions almost at will. (Another

method is to have onry one kind of variable, but require the program to
specify at the head of phrase those variables which are to be frozen. we

will not use this method here.)

The language which results from combining LUSWIM(A) and

ULU(A) in this way is the language r,ucid(A) . The Lucid semantics

requires that the meanings of elementary variables must, as in LUSwrM,

be elementary (so they can be frozen). Lucid therefore carries over the
LUSWTM restriction on the definitions of elementary variabres, namery

that the formal- parameters must be elementary and the definiens must be

eLementary in the formar parameters (in the definition of ,,elementary in
the formal parameters", for "Lucid functions" vre now read',Lucid functions
or non-eLementary variables") .

we assume therefore that we have two disjoint sets of variabres
(elementary variables and noneLementaty variables) each containing a

countably infinite number of variabres of each arity, with result an

erementary variable. rn our examples elementary variables are lightface,
and nonerementary variables are boldface. programs in the ranguages discussed
all have the forrn of ULU programs and differ only in the ways j-n which
the two kinds of variables are used.

To make this more precise, let us define ULU* (A) to be the
most general language, i.e. it is USWfM(Lu(A)) in which there are both
kinds of variables without distinction (we are defining here only a set
of syntactic objects, and wirl not attempt to assign meanings to all

-19-

these objects), The syntax of the USWIM farnily has been described

elsewhere, so that to specify the syntax of Lucid and its two subsets it

is sufficient to specify exactly the restriction on the form of

definitions of elementary variables. Since the restriction is that the

formal parameters be elementary and that the definienda be elementary

in the formal parameters, it is, in turn, enough to specify what it means

for a term to be elementary in a set of elementary variables.

Suppose then that t/ is a set of elementary variables. The

set EL(V\ of terms elementary in the uariables in t/ is the reasr set

of ULU* terms such that

(i) any term with no free occurrences of any variable in u is in

EL(V) i

(ii) a term consisting of a constant from I (ttre signature of A) and

an appropriate length sequence of operands is in Et-(V) if all
the operands are;

(iii) a term consisting of an elementary variable together with an

appropriate length sequence of arguments is in EL(VI if all the

arguments arei

(iv) any phrase is in EL(V)

We will say that a term is elementary in a particular variable

m iff it is elementary in {m} , and that a term is elementaty iff it
is elementary in all of its free elementary variables.

-20-

For example

A+H(B)+Valof

P = [gI*Q + c) !8J P + M(A)

result=B+liCs_ltr)

end

is elementary in {A, C, p} , but not in {A} because there is an

occurrence of B inside a nonelementary function. The variables A and

C also occur inside the range of a nonelementary constant but these are

occurrences inside a phrase, and these occurrences are allowable since

they refer to the frozen values (in a sense a phrase can be considered as

the application an 'anonymous' elementary function to its globals). The

variable P also occurs in the scope of a nonelementary constant but

this also is allowab1e because the occurrence is not a free occurrence in

the term as a whole (because P is a local oi the phrase). If t is

the above term we see that a definition of the form

M(A, C) _ t

is allowed but one of the form

M(8, D) = t

is not, because t is not elementary in B

Lucid programs are therefore ULU* terms having the property

that the formal parameters of any elementary variabJ-e definition occurring

in the program are elementary individual variables, and the definiend,um is

el-ementary in the set of formal parameters of the definition. The sets of

ULU and LUSWIM terms are also as described earlier.

-2L-

Before proceeding to the semantics of Lucid it is necessary

first to define precisely the algebra Lu(A) , the class of elementary

history functions, the operation of freezing, and so on.

Suppose then that we are given a continuous algebra A with

signature E The set I is usually considered to be a set of ranked

operation (constant) symbols but we will assume (for simplicity) that I

contains two extra symbols, namely the sort symbol U for the universe of

A and the relation symbol E for approximation in A . This assumption

allows us to consider A to be simply a function with domain I , one

which assigns to U a nonempty set, which assigns to E a partial order on

A(U) which makes <A(U), A(=)) a cpo, and which assigns to each n-ary

operation symbol an A(=)-continuous operation over A(U) . We also

assume that I contains the nullary symbols true , false and fl ,

with A(e) rhe A(s)-teasr element of A(U)

We require that I be Inormal' in that it does not contain the

special Lucid operation symbols, which for our purposes we take to be

the unary symbols tint and [gX! and the binary symbols Rl.g and

IpJ . This allows us to define Lu([) to be the result of adding these

symbols to I , and to define r,u (A) to be the function H with domain

Lu(I) such that

H(U) is the set of all infinite sequences of elements of A(U) ,

j-.e. the set of all functions from the set {0, l, 2, ...} of

natural numbers to A(U) (elements of H(U) will be called

A-histories or sinply histories).

(i)

22-

(ti) H(9) i.s the poi.ntwise extc-nsion of At=) , i.e. qrven any

A-histories o, and 3 , (cr, B) e H(=) if f (or, B.) e A(=)

for all i ;

(iii) for any operation symbol lz in L , H &) is the pointwise

extension of A(h) , i.e.

(f/(h) (a, g, \, ...)). = A(h) (a., Bt, yt, ...)

(a function over il(u) wirl be carled an A-history function, or

simply a history function);

(iv) HttiSll , H([gLt) , H(IIX) and H(R:g) are the unary hisrory

functions fi rst and next and the binary functions fby and

aSa where

(a) f i rst (o) = (oo, 00, 0o,

(b) next(o) = (ot, 0 r, c)'r,

(c) fby(o, B) = (oo , Bo, Bt,

(d) asa (0., B) = (oi, 0. , 0. ,

number for which B, = A(true) and

B. = A(false) for atl j < il
(A(CI) , A(Q), A(Q),

if no such i exists

for all histories 0 and $ and all natural numbers t .

we can now proceed to give the semantics of Lucid. A Lucid

environment is a function from the set of variabres (of both types) to the

set of history functions which assigns n-ary history functions to n-ary

variables, and which in particular assigns elementary history functions

to elementary variables. Given a Lucid environment E and a time s ,

the frozen environment Es is the unique Lucid envj-ronment such that

E"(m) = E(m)" for any erementary variabre m , and gstdl = E(d) for
any nonelementary variable 6

-23-

We now define the meaning of a Lucid term t in a Lucid

environment E , by induction on the structure of t i

(i) if t consists of the r.u(E) operation symbol h together with

operands tr', trl , un_l , then the meaning of t in E is

the result of applying H(b (i.e. Lu(A) (h)) to the meaning of

thetiinEt

(ii) if t consists of a variable I bf either kind) together with

actual parameter" 40, uL, ..., 4n_l , then the meaning of t in

E is the result of applying E(gl to the meanings of the 4i in

Ei

(iii) if t is a phrase then the meaning of t in E is o where at

any time s , o" is the meaning of result in Er at time s

where E' is the least environment which satisfies the definitions
s

in the phrase and agrees with Es except possibly for the values

Er assiqns to the locals of ts-

Finally, given a definition d of the form

g(x}, xL, ..., Xn_l) = & ,

we say that d is satisfied by E iff the meaning of g(x', XI, ..., Xrr-l)

in € i" equal to the meaning of a in e tor any environment e

agreeing with E except possibly for some of the values assigned to the

formal parameter" *0, XL, ..., Xr,_t

Notice that the definition differs from the USwfM definition

only in part (iii), which makes use of the special structure of f,u(A)

In particular, notice that no special evaluation rule (calling mechanism)

-24-

is required for the elementary variables.

A Lucid program is simply a term, the free variables of which

are called the input variables. An input to a program is simply an

association of input values with i.nput variables, and the meaning (or

"output") of the program is its value in the appropriate environment.

For example, suppose that A , 8 and C are the input variables of a

programr then the meaning of the program given input Cr , 3 and y is

its meaning as a term in an environment in which E(A) = o , E(8) = B ,

and E(C) = y

The above is not strictly speaking a valid definition, because

an assumption is made which is not obviously true; namely, that a least

Lucid environment Er always exists. It is possible to give a more

indirect but obviously valid definition, and then to prove that the above

is a true statement about the meaning so defined. we will not do this

here.

We mentioned that the set of LUSWIM programs is syntactically a sub-

set of the set of Lucid programs. The semantics of LUSWIM is determined by

specifying that this inclusion hold semantically as well, in other words,

the meaning of a LUSWTM progran is its meaning considered as a Lucid

Program. It is apparent that this definition of LUSWIII conforms with the

informal one given earlier because in a LUSWIM program all the globals

of a phrase, being elementary, are frozen inside the phrase.

We do not have the choice of defining the semantics of ULU in

this way because ULU is a member of the USWIM family and its meaning

is determined by the 'generic' semantics of uswrM. Nevertheless, the

-25-

inclusion is stilr valid, i.e. the meaning of a uLU program is its
meaning considered as a Lucid program; since arl the grobals of a uLU

phrase are nonel_ementary, none will be frozen.

rf we consider the uswrM variabres to be erementary, then

USwfM itself is a sublanguage of Lucid (or, to be more precise, USWIM(A)

is a sublanguage of Lucid(A)). The same is true even if we consider the
uswrM variabLes other than FgSuJt to be nonelementary. rn the absence

of Lucid operations, freezing is pointless and every variable denotes a

pointwise history function.

-26-

4. OPERATIONAL INTERPRETATIONS OF LUCID

We will illustrate possible operational views of Lucid by look-

ing at several examples of Lucid programs.

The first example combines the two forms of iteration. The

phrase has one nonelementary 'inputr (free) variable I and the programrs

value at time t is the 10th moment of the first t+l values:

val of

s=PlQJs+lgllP
x=x
P = valof

.Y=1!Ux'Y

-r=otPJr+r
result=Iff.gIeqlo

end

J=L![y./+r
resul t = S/J

eno.

The definition X = X allows the inner phrase to freeze each

particular value of X in order to compute the l0-th power of that

particular value. Using the nonelementary variable X instead of X

inside the inner phrase would give a completely different result. fn

general the value of the altered phrase

-27-

valof

I=tlpry.X
r=ollyr*r

result = y g:g / eq to

end

at any time is the varue of the product of the first 10 values of X :

rf this phrase were used in the previous program its value would also be

at any tine the product of the first lO values of X

rn writing the above program we courd, if we wanted, define a

generar elementary function pow and justrcarlrit to give the lo-th
power of X This progr;Lm

val of

s=pIU.s+[gI!p
P = Pou(X, f0)

/y'=rlUr+r
resul t = S/N

Pou (B ,K) = va I of

Y=1i[ya.v
/=1flX-r+r

result = I asa .I eq .(

end

end

has the same varue. Notice that it is not necessary to appry pou to
a ligthtface version of X The restriction that the formal parameters

-28-

of an elementary function definition be elementary is not a type

restriction, i.e. it does not restrict the class of possibre actual

parametersi nor is it an indication that elementary functions use some

different 'calling conventionsr. Elementary functions are simply history

functions possessingaspecial property that makes them freezable, and the

restrictions on the form which the definition of an elementary variable

may take ensure that the denoted value will be elementary.

The examples just given used both kinds of iteration, but

separately: the outer phrase had only a nonelementary function as its

global and could be thought of as a ULU phrase, while the inner one

had only an elementary variable as its globa1 and could therefore be

thought of as an ordinary LUSWIII{ phrase. Here is an example where the

features are combined in one (the inner) phrase. The progr€rm computes

the running variance of its input variable {, , i.e. its value at time t

is the variance of the first t+l values of X z

val of

!Pg.(y) = valof

s = ! fU s + rcI! Z

r=1I0fr+1
resul t = S/f

end

M = fip([)
result = valof

result = Mg.tt4 - ul2l

end

end.

-29-

The outermost phrase is a pure ULU phrase because its only

globa1 is nonelementary, and the same is true of the phrase defining the

function {Pg, (whose value is the running average of its argument). The

second inner phrase, however, is quite different: one of its globals is

the elementary variable M , but the other is the nonelementary variable

L . The result is that the value of M inside this phrase is always its

ftozen outer value, whereas that of X depends on the inner time.

The value of this rmixedr phrase at time 2, for example, depends

on the value of M at time 2 on1y, but on the values of {, at times O,

1, and 2. If the value of { begins <6, 8, I0,

of M begins (6, 7, 8,

((6 - g)2 + (a - e)2 + (ro - 8)2)/3 which is g/3, as reguired. A

mixed phrase is used because this (adrnittedly naive) algorithm implements

directly the definition of variance which requires that the present

average be subtracted from all previous values.

There are two conceptualty different ways of giving an

operational interpretation to 'mixed' phrases with both elementary and

nonelementary globals. One way is to consider such a phrase as 'basically'

an ordinary LUSWIM phrase which has additional special (nonelementary)

variables which can be thought of as being rrestarted' at the beginning

of every subcomputation. The phrase just discussed can be understood

in this way, as can the phrase defining ispnime in the program

-30-

val of

E = z lhx n'rPtime (!)

rrcpn'Lme(Q) = valof

N=Q+tzud+l
result = fi i,Lg, isprine(N)

end

isprine(M) = valof

result = E2 . M g,:g p2 > M v p I M

end

result = P

end

whose value is the sequence (2, 3, 5,

isp?Lme can be thought of as testing its argument for primeness using a

simple loop which runs through aII the primes starting with the first and

checks whether one whose square is less than M actuarly divides M

The other way of viewing a mixed phrase is to consider it as

a parameterised set of ULU phrases, with each "freezingil

of the globar elementary variables yielding a ULU phrase. For example

the following progran

val of

s=PIpJs+[g$p
P=XtN

-r=lfpy-r+r
resul t = S/f

-31 -

has as its value at time t the /t/-at-tine-t-th moment of the values of

I up to time t (assuming the data function f is exponentiation). The

variable N is the parameter, and each numeric value of N yields an

ordi-nary ULU phrase. In an environment in which N is constantLy 2,

the phrase is equivalent to the ordinary ULU phrase

val of

s=PIpXs+[gIlP
p = X +2

r=lflyr+r
resul t = S/f

end.

In an environment in which N is constantly 3, it is equivalent to an

ordinary ULU phrase which computes the third moment. In an environment

in which the value of N changes irregularly with time between 2 and 3,

the phrase can be considered as sanpling the appropriate outputs of two

different simultaneously running 'coroutines' computing running 2nd and

3rd moments respectively.

The same interpretations can be applied to nonelementary

functions, the definitions of which use both elementary and nonelementary

formal parameters and globals. For example, given the definition

-32-

W([, M) = valof

s=rIUs+n€Ilr
)!= q-M)-

-r=r!!Ir+r
resul t = S/f

end

the value of AW@, N) (in an appropriate environment) at time t is

the 2nd moment of the first t+l values of A about the value of lV at time

t This function can be understood as an ordinary elementary function

except that its special first argument is restarted cvcry time the

function is called.

It is, of course, possible to use trro different viewpoints of

the same object. We could, for example, also regard 4ogZ as an

ordinary ULU function with a parameter M , so that

WuA|G ' o')

is the running second moment, and

W,v, Mru)')

is the running variance. Wg&U, AlltIU), can be viewcd as a possibly

infinite set of simultaneously running coroutincs, onc for each different

value of the running average of A . The value of W?,U, l2gTl)

at time t is the value, at time t , of the coroutinc corresponding to

the running average of A at time t .)

These operational interpretations may bc of hclp in visuelising

- 33 -

the "running" of Lucid programs, but an actual implementation may work

completely dif ferently.

5. PROGRAM MANIPULATION RULES

The program manipulation rules of Lucid are exactly analogous

to those of USWII'!, allowing modular or nested proofs in the same htay.

The use of the manipulation ruLes must be restricted because of the way

in which elementary variables are frozen inside phrases, and because of

the way in which elementary and nonelementary variables are treated

differently, the latter being rimmune' to freezLng. (The restrictions

given in this section do not just "seem to work't - theY have all been

justified from the formal semantics of Lucid.)

To understand the nature and necessity of these restrictions,

consider the following simple Lucid program

val of

f=ofbyf+r
G=H+f

result = valof

P=LI!.fP'C

{,=oLIY{*r
result = p g:g { eq r

end

end.

It is easy to see that if an environment E assigns the value n to H,

-34-

then the value of the term in E at time t is (na + t) t t

Let us consider the USWIM import rule which, together with

the addition and deletion rules, effectively allows us to move definitions

in and out of phrases whenever no clashes of variables result. If we n€re

to consider the above as a USWIM phrase, the rules would conclude that

the definitions of f and G could be added to the inner phrase, and

that the definitions of P and { could be moved outside to the enclos-

ing phrase. In fact only one of these changes preserves the meaning of

the program, as we shall see.

Suppose first that the definition of f were added to the inner

phrase. The result is that -f, inside the phrase, would no longer be a

frozen variable; in fact it would change in step with L , the test of

the n:g would be tfUe at tine 0 , and the value of the whole term

would be constantly 1.

Sirnilarly, if the definition if G were moved inside the

phrase, it too would no longer be constant because H would be considered

to be rrestarted' in each inner subcomputation. A litt.le calculation

shows that the value of the whole term at time t would be

(n^ + t).(n, + t).....(n. . + t)
UIE-I

In the same way, if the definition of P were moved outside,

wourd be the running product of the expression H + I and the value

the whole term at time t would be

(no + 0).(nr + 1).....(na-, + (t-r))

P

of

-35-

Of these four the only change which preserves the meaning of

the program is the moving of the definition of X to the outer phrase.

Since X is a nonelementary variable, it is 'restarted' inside the

inner phrase and the result is the same.

Unrestricted use of the USWIIT{ import rule is obviously not

safe, and the problem is to specify sinple restrictions which define

special circumstances in which it is valid.

The first restriction we will impose is that the definiendum of

the definition to be moved must be elementary in its free elementary

variables that are not formal parameters, for othenrrrise tinnert and touter'

times will get confused. For example, if the definition .q = ngl! B is

outside a phrase, then it is not necessarily true as an assertion inside

the phrase (because both A and B are constant inside). What is true

inside the phrase is that the current (constant) value of A is equal to

the (constant) value B will have on the next invocation of the loop'

Since the definition may not be true as an assertion inside the phrase

(i.e. may not be true in the inner environments), moving it inside could

clearly change the meaning of the phrase.

The restriction that a definition be elementary in its free

elementary variables prevents us from moving the definition of I and P

(in the sample program) but not the definitions of G and K. Moving the

definition of G causes changes because the definition mixes elementary

and nonelementary variables. When it is moved some are frozen while

others are not, and the result is that the values of variables being

combined come from different times.

-36-

The second restriction we impose on the import rule, therefore,

is that the definition be uni,forrn , that is, it does not have free

occurrences of both elementary and nonelementary variables'

Sincethedefiniendumalwaysoccursfreeinadefinition,the

combinedeffectofthetworestrictionscanberestatedasfollows:

(i)adefinitionofanelementaryvariablecanbeimportedifthc

definiens has no free occurrences of nonelementary variables and

is elementary (recall that it is required to be elementary in its

formal parameters anln*ay) ;

(ii) a definition of a nonelementary variable can be imported if the

definiens has no free occurrences of any elementary variables

other than formal parameters.

Definitions of nonelementary variables can of course (as

indicated) be inported even if the definiens are not elementary in their

formal parameters. This means, for example, that the definition

!(X, N) = L + rcI! /l/ can be imported.

Most of the remaining USWIM rules involve su.bstitution and

therefore include the implicit restriction that the required sr:bstitutions

be permitted. USWIl,l forbids substitutions which cause a clash of

variables (scope), but Lucid must also prevent a 'clash' of inner and

outer tines. The required additional restriction is that a substitution

cannot be applied to a phrase unless the assignments satisfy exactly the

same requirements (just described) that definitions must satisfy if they

are to be imported. Thus the substitution

{gtyl * L+ !g$€, M(y') +A+B.I} canbe applied to aphrase (assuming

the ordinary USWIM requirements are satisfied) but one that contains one

-37-

ofthcassignments p<-4+A, B* C+nextD, or p<-Q+R

cannot.

We can novt run through the remaining USWIM rules, indicating

when they are valid Lucid ru1es.

The calling rule can be applied in Lucid r*henever the substitu-

tions are permitted (i.e. subject to the additional Lucid restrictions on

substitution) .

The local renaming rure is subject onry to the uswrM

restrictions provided the new variahles are of the same type (elementary

or noneLementary). (rf a local does not occur free inside an inner phrase,

the type may be changed in a renamirrg.)

The formal paraneter renaming rule is also sr:bject only to the

Uswil.{ restrictions if the types remain the same. (In a definition of a

nonelementary function, formal parameters not appearing free in any phrase

in the definiens may change type.)

The amalgamation rule requires the additional restriction that

the expression e be elementary and that the ui be elementary.

The definition addition rure requires no extra conditions
(the definitions must of course be varid Lucid definitions).

The basis rule is valid without extra restrictions (the

equations can use Lucid symbols if the equations are true in r,u(A)).

one consequence of the fact that the USwru nanipulation rules

carry over almost directly to Lucid is that binding and carring "work,'

just as they do in uswrM The "parameter passing mechanism',, therefore,
is not call by value, and binding is static, not dynarnic.

-38-

6. INF'ERENCE RULES

Ir [:] we described how a first order language based on I

could be used to make assertions about and annotate terms in USWII{(A)

In the s€rme way a first-order language based on tu(I) can be used to

annotate ULU programs, with all variables denoting histories. The same

ranguage could be used to annotate Lucid programs, but the rules for

manipulating annotations (Iike those for manipulating programs) require

extra restrictions. For example, an assertion about the globals of a

phrase which is an annotation of an enclosing phrase can be added to thc

inner phrase if it is elementary and uniform (we should define what these

terms mean for assertions).

Such a system is, however, very unnatural because of the

radically different logics used in the program and in thc annotation

language. rn the language itself a term likc x < y dcnotes a history

of truth values, while in the annotation languagc a formura like x < y

must denote a single truth value. Assertions in the annotation language

must expricitly refer to whole histories of program truth values rs

single truth values.

A more natural approach is to modify the logic of the annotation

language and let the truth of formulas themselvcs also depend on time,

i.e. adopt a form of modal or tense }ogic. Such a logic was developcd in

[I] and could be adapted to Structured Lucid, but we will not enter into

details here.

we can, for the time being, avoid the difficulties connected

with three-varued and modal logic by using an equational assertion

language (as described in [3]) . The assertions are universallv

-39-

quantified eguations between Lucid terms, the equation

Vx^ Vx, ...Vx -(t^ = t.)UIn-IUJ-

being true (in l,u(A)) in an environment E iff t, and t, have the

same value in any environment differing from E at most in the values

given to some of the *i

The equational rules of substitution and replacement (as

described in [3]) are sound (provided of course that the extra

restrictions on permission are taken into account). Any equation in the

language of A that is true in A is also true in tu(A) , as are

equations concerning the Lucid functions such as the following

vxvv(IilUl(x IpI v) = fiI:! x)

vxvv(gg& (x IpI v) = v)

vx(Iif:,! x IpJ !S5! x = 11

vxuP(x RIA (true lpx, P) = lit,s*t xl

vrvPT gs*e P = if IiI:! P then tlnt x else

ng$ x asa nglg P)

From these many others may be deduced using only the equational rules;

for example,

vx([inltfintg xr = fiI$ x

Quantified variables may be renamed whenever the required substitutions

are permitted.

There is one special rule which captures the idea that the

elementary globals of a phrase are "frozen" inside the phrase. The freez-

-40-

ing z'ule says that if erementary variabre d i" an n-ary globar of a

phrase, we can add

vxo vxr v.r,-, Il,$! ((xo, xr, ..., rrr-1)

= d(Lir$ xo, fi5! xr, ..., fiI:! xr,_r)

as an annotation of the phrase.

Special rules of inference (like the mathematical induction

rule) varid in A are not necessarily valid in Lu(A) , although they

can usually be reformulated. For exanple, in f,u(l/) the following rule

is valid : to prove an equation of the form

Vv e[{u * first u}]

from a set of assumptions, one first proves e[{v * O}] and e[{u * O}J

and then proves e[{u * tiCS_t u + f}] from the assumptions plus the

equation e[{u * fir* u}l (the variable u must not occur free in any

cf the assurnptions). This version of the rule is valid in f,u(N) because

it is essentialty restricted to constants. rt can be used, for exampre,

to prove the equation .K = f_i6! d from the equations

f=0ft-Vf+r
K = r gge .r eq tj-r:! //

and various equations true in r,u(N), by proving the eguation

vrlvr(fic* M * lif:! L = r * !!;:! , g5g / eq ti-tF,,t ur

by induction on [ifs_,t lt .

r,u(A) itserf arso has a speciar rure, the (computation)

induction rule. In order to prove the equation uO = ul one proves the

equation

-41 -

Li_€! uo = tirt.! ur

and then the equation

!€L! (o = L,gI! u,

from the assumptions together with the equation *O = 4l itself (as the

induction hypothesis). It is required that the latter derivation use only

the eLementary substituLion rule, i.e. only instances of the rule in

which t. and t^ are elementary in v . For example, the rule canLZ
)

be used to prove the equation J = I- from the eguations

r=oflyr+r
J=oIUJ+2'r+L

Lucid terms can be annotated exactly like USWIM terms, and the

USWfM rules for manipulating annotated USWfU terms can be applied to

annotated Lucid terms provided extra restrictions are inposed which avoid

clash of times. These extra restrictions involve extending the notion

"elementary" to apply to annotated Lucid terms as well, but we willonly

give here the details for the import rule.

The Lucid annotation import rule says that the equation

Vx^Vx....Vx -6.-=t^)UJ.N-ILZ

can be imported provided

(i) there are no free occurrences in the above assertion of locals

of the inner (receiving) phrase, or of formal parameters of

the definition within whose definiendum the inner phrase

occurs; (this is the UswIM restriction) ;

-42-

(ii) the equation is elementary, i.e. t, and t, are elementary

in all their elernentary free variables which are not among

the *i i

(iii) the equation is uniform, i.e. does not have free occurrences

of both elementary and nonelementary variables.

Thus the equation

VX F(x, A,t = IgI! x + A

can be imported into a phrase if F and A are not locals or formal

parameters, but the equations

UX F(X, A) = !gI! X + A.H

and

VX F(X, A) = tt€Xt X + G(Al

cannoE.

For the export ru1e, the first two restrictions are retained

but the third is dropped : it is sufficient that the assertion be ele-

mentary. A11 but the third example can (barring clashes of scope) be

exported from a phrase.

7. AN EXAMPLE OF PROGRAM TRANSFORMATION

As an example of the rules for the manipulation of program and

annotations, consider the following program

_43-

val of

Hgq, = valof

s = I JUJ s +
"0C^& J

lv=rJly/u+r
resul 1 = f/N

end

M = Pg(A)

result = valof
)

result = &9.(q - n-l

end

interpreted in the algebra a- whose universe is the set of rational

nurnbers plus r, and which interprets the arithmetic operation sYmbols in

the usual way (with d.ivision by O yielding r). The prograrn calculates

a running variance of the input variable A using a naive algorithm which

(operationally speaking) involves going all the way back to the beginning

at each step. We will outline how our rules could be used to show the

program equivalent to one which is more 'efficient"

our first step is to prove that that &9, is linear and that

ypg is the identity function when applied to constants,i.e. to attach

to the outer phrase the equations

ugu| &9.(G + H) = &9j9, + Pg{fll

ug{ H1.(I1,1:! 5'g) = flr:! {'&e.q)
VK Auq tf irst (l = first /(

^44-

We begin by using the definition rule which allows us to attach

the quantified definition of {pg to the phrase. Then we apply the

su-bstitution rule twice to give equations for &9,{g) and {pg,q)

Then replacement applied to the identity

&g.Q) + #tlZ{fl) = &9.(g) + lpg(fl) sives

&as,(g) + AJ4s,@) =

val of

s

N

resul t

e ft.u

r fbv

S/N

oe,[t

I Ir

resul t

s ftrx

I ThJ

S/N

mxl

Id+

,g+

N+

(::

end

Two applications

amalgamation rule (taking

gg.(g) + ,%lt!) =

renaming rule and one of the

+ R2l plus replacements gives

=gI!;51+nextG

=rIPXntl+1
= SL/NI

=gfu,52+ne$,?

= S2/N2

=RI+R2

of the local

O to be .Rl

val of

,5r

l/1

F1

S2

R2

resul t
end.

-45-

To this amalgamated phrase we add the definitions

/V =]_ IU ro * r and g = l8+ fl) zu ^9 + !gI!e+ H), rhen add the

definitions of N, NL, N2, S, SL, 52 as annotations, and three

applications of the Lucid induction rule give us the equations /V = tVl ,

N=N2, S=,Sl+^92. Thevariables N and /yI donotdependon(are

not defined directly or indirectly in terms of) Ff , and so with the

modification rule we can use the equation 0 = dI to modify the

definition of FI to make it RL = SL/N Applying a similar change

to the definition of R2 , the annotated phrase ne are working with

becomes (after discarding useless annotations)

val of

sl =€IUsr+!g1!€
ilI=lflJur+r
RL = SL/N

s2 = H IEI s2 + rc$ g

N2=LIhJluz+r
R2 = SL/N

result = .Rl + F2

S=SL+52

il=1fp1ru+r
$= Q+H) tlJ€+!gI!Q+H)

end

We can now begin to clean up the phrase. Ivo applications of

the calling rule turns the definition of result into

resul t = SL/N + S2/N and with the nodification rule and the equation

-46-

UWWht (U/W + V/r/ = (U + V) /rl)

which is true in a- the definition of fesult is

f€Sult = (,91 + S2l/N

None of the variables S, ,91 or 52 depend on result so that the

modification rule can be applied to give resul t = S/N . The variables

SL, 52, ill and il2 are no longer used (occur free only in their

definitions) and so can be eliminated using the deletion rule. As a

result our original progran now has the annotation

-47-

ApgQ)+#tgtil=valof
s- Q+p !rys+ISIge+El
il=I,thJ{+r

resul t = S/N

end.

we can now use the definition of {pg, and apply it to I * H to find

that the above phrase is equal to {pg$ + E) ; replacing eguals gives us

{ps.Qt + {Hg {fl) =,Apg.g + H)

and since no assumptions were made about g, and H, , we may quantify

over these variables.

sinilar manipulations yield the second desired equation.

These two eguations have only Lpg as a free variable, and it
is nonelementary. The equations are therefore eLementary and uniform

and so can be imported into the inner phrase. Since M is an elenentary

global, using the freezing rule we can add the annotation M = fi.lilj rr1

to the inner phrase. rn this phrase the two eguations together with

certain arithmetic laws like

UYUZ ((I - Z)2 = Y2 - 2'Y'Z + 22)

give us (after discarding annotations)

-48-

val of

Apg.q) = valof

s = {. !U ^e + !g1! {
il=1!!Jd+r

resul t = S/N

end

M = fip(A)

result = va]of

resul t = Apg(A2) - ,.y.!pg,rA2l *pf

end

end.

These manipulations have allowed us to move the elementary vari-
able 14 out of the range of the nonerementary variabre Apg . The

result is that result is now defined by the elementary ternr

2')
Apg.Q-) - 2.M.Apg(A, + tt'

and so the resul-t rule can be applied to make the definition of resu'lt

in the main phrase

resul 1=Apgt42t - z.M.&g.t{t+tF.

we can now use the definition of M , the calling rule, the nodification
rule and some properties of A to transforn the program into

-49-

val of

{pg.q) = valof

s = I lUU s + re1! I
/tl=r![r+r

resul t = S/N

end

resutt = &g1A2) - Apg,(ilz

end

which (assuming Apg, yields averages) clearly has the running variance

of 4 as its varues. (These rast manipurations courd not have been

performed inside the inner phrase because the definition of M , though

elementary, $ras not uniform, and so could not be imported.)

To obtain a more refficientr version rre use the calring rure
twice to yield

-50-

val of

{Pg.q) = valof

s=XIpJs+[g${
d=1flJfr+r

resul t = S/N

end.

Since Apg, no longer appears free in ttrc dcfinition of fesult,
its definition can be discarded. The local renaning and arnalgamation

rules give us (much as before)

val of

result = valof

sL=AlUsI+!gI!4
/vl=1!Q1 r+r
RL = SL/N

s2 = 42 tpJ s2 * !"gI! 42

R2 = S2/N

result=FI +RZ2

end

end

result=1va1of \
I

t=42lpxs*osx!42
\

t "=r lUu+r / -

\..:""
t = s/N

I

{'"* s = A'w s * o*ur r\'
{ "=rlQr,n+r

)

\.no"tt''t
= s/N

I

-51 -

The analgamation rule allows us to elininate the

then manipulations essentially the s€rme as those

the final form of the program

enclosing phrase, and

already performed yield

val of

5r

S2

N

resul t
end

a fbv ,91 + next .4tu*

l' lLU sz + next A2

rIUltl+l
aa

(N.52 - SL')/N'

which computes the running variance of A by the more sensible rnethod of

keeping (internally) running totals of the values of A and 42

We gave an outline only of the transformation from one forn to

the other, but it should be apparent that eoe"A step can be justified

by one of our rules. A completely formal justification in which every

step is made expricit courd be very long, but generating and checking it
involves for the most part exactly the sort of bookeeping and trivial

manipurations that computers excel in, no more difficult than that

performed by existing proofcheckers for imperative languages.

It is well within the rstate of the artr of mechanical theorem proving

to construct a system which could run through the entire transformation

described aided only by a few vital hints from a human.

-52-

q CONCLUSION

We have shown that it is feasiblc to combine lasic Lucid and

USWIM in a single J-anguage, called (Structured) Lucid, without sacri-

ficing the fundamental properties of eithcr. This is possible because,

while both languages are based on equations, their particular fcatures

are almost completely orthogonal. The few changes to the syntax end

semantics of USWIM are the result of distinguirhing botwoen inncr and

enclosing loca1 tirne, and it is exactly thc possibility of such a

distinction that makes Structured Lucid thc c:rprossive languago that

it is.

We have explained or at lcast mentioncd th:t Lucid programs

can be interpreted opcrationelly in several weys, for orample as

defining conventional loops, dataflow networks, or systorns or coroutines.

This last possibility is especially significent bcceuse with conventional

imperative langruages the addition of coroutinc fecilities usuelly com-

plicates enonnously the problems of semantics end verification. Structured

Lucid, however, has a sj:nple semantics and powerful Lnfercnce/manip-

ulation rules, and rde \,rere able to illustrate thc latter on a nontrivial
rcoroutine' program.

We believe that Structured Lucid is a good rxample of the

power and potential of the dcnotationally prercriptivc approach [4].

-53-

9. REFERENCES

tll Ashcroft, E.A. and Wadge, w.lf., "Lucid - A Formal Theory for
WritinE and Proving Prograns", slAlll J. comput. 5, No. 3, PP. 336-354.

tzl

t3l

"Lucid, A Nonprocedural Langruage with Iteration",
CACM 20, No. 7r pp. 519-526.

"A Logical Progranming Langudg€", cs-79'2o,
Computer Science Department, University of Waterloo. June' L979.

t4] "R* for Semantics"' cS-79-37, Computer Science
Department, University of Waterloo. Augrust, L979.

t5] Landinr P.iI ., "The Next 700 Programning Languag€s", cAc!,! 9,
pp. L57-L64.

