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Abstract

This thesis discusses the creation, acquisition and processing of digital holograms.

Several techniques to improve the optical resolution have been investigated and

developed. The optical resolution of numerically reconstructed digital holograms

is restricted by both the sampling frequency and the overall sensor-size of the

digital camera chip used. This thesis explores the limitations on the optical res-

olution of the holograms obtained. A typical sensor-size and sampling frequency

for digital holograms is 10 mm and 100 lp/mm, respectively, whereas holographic

plates used for optical holography can be more than a meter in size and have a

sampling frequency of 3000 lp/mm. In order to take full advantage of the benefits

digital holography offers, such as fast image acquisition and direct phase accessi-

bility, the problem of reduced resolution needs to be overcome. Three resolution

improvement methods have been developed in the scope of this PhD thesis. Prior

to implementing the resolution improvement methods, different holographic se-

tups have been analyzed, using the Space-bandwidth product (SBP) to calculate

the information distribution both in the recording and reconstruction process.

The first resolution improvement method is based on the synthetic aperture

method. In this manner an increased sensor area can be obtained resulting in

a larger numerical aperture (NA). A larger NA enables a more detailed recon-

struction. The problem encountered in doing this is that an increased optical
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resolution results in a smaller depth of field. This has been overcome in this the-

sis by applying the extended depth of field method. As a result a high resolution

in focus reconstruction of all longitudinal object regions is obtained. Moreover,

the extended depth of field method allows a topological mapping of the object.

The second resolution improvement method is based on sampling the inter-

ference pattern with sub-pixel accuracy. This was carried out on a CMOS-sensor

and implemented by moving the light sensitive pixel-area into the dead zone in a

4x4 grid to cover whole the pixel-area. As a result the sensor’s sampling frequency

is doubled. The increased sampling frequency permits a reduction of the record-

ing distance which results in an increased optical resolution of the reconstructed

hologram.

The third and novel approach described in this thesis has been to increase

the optical resolution stored in a digital hologram by the combination of the syn-

thetic aperture and the sub-pixel sampling methodBy analogy with the Fresnel-.

The resolution improvement methods have been demonstrated both for lens-less

digital holography and digital holographic microscopy.

Keywords: digital holography, space-bandwidth product, high-resolution, syn-

thetic aperture, sub-pixel, Fourier-hologram, lens-less holography, digital holo-

graphic microscope
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CHAPTER 1

Introduction

1.1 Historic Context

(a) (b)

Figure 1.1: (a) Dennis Gabor taken from Nobel− prize. (2010), (b) Joseph W. Good-
man taken from Stanford University. (2010)

In 1948 the Hungarian born British scientist Dennis Gabor shown in Fig. 1.1(a)

developed the theoretical concept of holography [Gabor (1948) and Gabor (1949)].

He coined the word holography from the Greek word ‘holos’- whole and ‘graphein’

to write. Holography is based on a light source of sufficient coherence. It consists

of two stages, the recording of the hologram and reconstruction of the image.

1
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Figure 1.2: (a) Recording and , (b) reconstruction of a hologram

The recording process is schematically shown in Fig. 1.2(a). The light is

split into an object and a reference-wave. The object scattered light overlaps

with the reference-wave in the hologram plane, where it is recorded on a light

sensitive media such as a photographic plate. The object’s amplitude and phase

is encoded in the recorded interference pattern. The hologram acts as a diffrac-
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tion grating, which when illuminated with the reference-wave reproduces the

object-wave, see Fig. 1.2(b). The validity of Gabor’s idea could be confirmed

by a number of scientists Rogers (1952), El-Sum and Kirkpatrick (1952) and

Lohmann (1956). However, the interest in optical holography declined after a

few years due to poor image quality. The low image quality was caused by two

effects. Firstly, the lack of a sufficient coherent light source and secondly, the

overlap of the desired image with the twin-image and the undiffracted light re-

sulting in the DC-term in the reconstruction. The invention of the pulsed Ruby-

laser by Maiman (1960) and the separation of the reconstructed image-terms

by an off-line setup developed by Leith and Upatnieks (1962) gave holography

the necessary tools to emerge as one of the most promising optical techniques

of the 20th century. This can be confirmed by various publications made there-

after such as Thompson (1978), Hariharan (1984) and Ostrovsky et al. (1991).

Different holographic applications could be established such as holographic par-

ticle image velocimetry by Trolinger et al. (1969), holographic tomography by

Sweeney and Vest (1973) and its most important application in interferometry

by Powell and Stetson (1965). In holographic interferometry two or more object

states are compared interferometrically. Whereas at least one object state must

be holographically recorded and reconstructed according to Collier et al. (1965).

Various applications of holographic interferometry were developed such as vi-

bration analysis [Powell and Stetson (1965)], deformation measurement [Haines

and Hildebrand (1966)] or determination of refractive index changes caused by a

change of pressure or temperature [Horman (1965)]. The fringe counting, initially

performed manually, could soon be replaced by computer algorithms Osten et al.

(1987). This algorithm included digitizing and quantizing the photographed op-

tical reconstruction, calculating the phase distribution by utilizing the geometric

setup arrangement, determining the desired physical property distribution and
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displaying the result. The introduction of phase shifting by Kreis et al. (1981)

was a significant step forward in the computer aided fringe analysis. It was

now possible to measure and not to estimate the interference phase. Moreover,

the phase sign ambiguity could be resolved utilizing phase shifting algorithms.

Although the fringe analysis was left to the computer, one still needed to wet

chemically process the holographic plate. The focus was now set on replacing the

holographic plate by digital means. Two solutions for the digital recording of in-

terferograms could be developed namely Electron-Speckle-Pattern-Interferometry

(ESPI) and digital holography. The first is based on in-focus recording of the

object under investigation by a digital camera. Diffusely scattering object were

investigated which resulted in the recording of the in-focus image covered with

speckle. The grainy speckle pattern could easily be recorded by existing analog

cameras. Adding the intensity of two recorded speckle pattern under different ob-

ject states results in the creation of correlation fringes similar to the one observed

with holographic interferometry. This technique became known as Electronic-

Speckle-Pattern-Interferometry (ESPI) and enabled the computerised recording

and processing of interferograms. ESPI today is a well established measurement

tool for metrology and used in many applications. The major drawback of ESPI

is the phase ambiguity which could just be resolved by the introduction of phase

stepping by Creath (1985) and Stetson and Brohinsky (1985). Another disad-

vantages of ESPI is the quality demand on the optics involved in order to avoid

the introduction of any kind of aberrations to the recorded speckle field, which

otherwise will decrease the accuracy of the interferometric measurement. Con-

trary to ESPI, digital holography enables lens-less recording, which reduces the

cost of the optical setup. Moreover, it permits phase determination by record-

ing a single off-line hologram. This results in less experimental effort and offers

the analysis of high speed events. The first digital hologram was recorded and



1. Introduction 5

reconstructed utilizing computer aided methods by J. W. Goodman, shown in

Fig. 1.1(b), and R.W. Lawrence Goodman and Lawrence (1967). Hence dig-

ital holography is older than ESPI. A lens-less Fourier-hologram was recorded

on a vidicon-detector, consisting of a photoconductive surface scanned by an

electron-beam. The output of the vidicon was sampled in a 256x256 array with

a quantization of eight grey levels. This was the starting point of digital holog-

raphy, but it still took some decades until results of sufficient resolution became

available. Only in the last two decades digital holography has received more and

more importance which is strongly linked with the rapid development of digital

recording devices such as Charge-Coupled-Devices (CCD) and Complementary-

Metal−OxideSemiconductor (CMOS) cameras.

1.2 Benefits of Digital Holography

Digital holography offers a higher degree of freedom for data acquisition and

processing than optical holography does. Moreover, it enables the direct recon-

struction of the phase without the need to apply phase stepping. This property

is beneficial for the investigation of dynamic events. It was first demonstrated

by Schnars (1994). Moreover, due to the numerical focusing a lens-less setup

is enabled, which reduces the cost and accuracy demand for an optical sys-

tem. On the contrary, in digital interferometry an optical system is needed,

which focuses on the object in order to record the phase correctly. A comparison

of digital holographic interferometry with various techniques applied in optical

metrology is shown in Table 1.1. Digital holographic interferometry can cover

a larger measurement range in the lateral dimension and likewise in the lon-

gitudinal dimension. If one wanted to cover the same range a combination of

several measurement techniques needed to be applied. A high lateral resolution
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Table 1.1: Measurement techniques for optical metrology (λ=632.8 nm), adapted from
Braunecker et al. (2008)

Method Range lateral resolution RMS height resolution

Interferometry 1 µm - 1000 mm 0.2 nm - 200 nm

Macroscopic fringe
projection

10 µm -2 m 10 µm - 1 mm

Microscopic fringe
projection

1 µm - 30 mm 0.1 µm - 10 µm

Confocal micro-
scope

0.5 µm - 30 mm 10 nm - 10 µm

White light inter-
ferometry

0.7 µm - 5 mm 1 nm - 10 µm

Stylus instrument 100 nm - 100 mm 0.5 nm - 10 µm

Scattering 100 µm - 100 mm 0.5 nm - 10 nm

Digital holographic
interferometry

500 nm - 1 m 1 nm - 50 mm

can be obtained by combing digital holography with microscopy demonstrated

in Osten (2006a). Kuehn et al. (2008) demonstrated a height resolution in the

sub-nanometer regime utilizing digital holography. A large range of measured

object height can be obtained applying holographic multi-wavelength contouring

demonstrated by Wagner et al. (2000). Moreover, the numerical reconstruction in

digital holography enables one to reduce wave-aberration effects as demonstrated

in Colomb et al. (2006). Additional benefits of digital holography are discussed

in Section 4.7.
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Nevertheless, digital holography still suffers from low spatial resolution typ-

ically (100 lp/mm) in comparison to a photographic film (3000 lp/mm) used in

optical holography. This restricts the angle between object and reference-wave

and hence the object-size and resolution obtained.

1.3 Outline of Thesis

This thesis focuses on the image quality and resolution improvement of dig-

ital holograms. The lateral resolution improvement will be demonstrated on

the USAF 1951 test-target, whereas the phase resolution improvement will be

demonstrated utilizing the standard deviation, which corresponds to the phase

measurement uncertainty. Double exposure phase maps will be used to prove the

phase improvement. The image quality improvement will be demonstrated by a

reduced Signal to Noise Ratio (SNR) applied to intensity reconstruction.

In Chapter 2 the optical foundation in order understand the concept of dig-

ital holography is represented. The relevant optical terminologies to describe the

recording and reconstruction process of digital holograms are explained. Terms

which refer to the recording process such as coherence, interference, intensity

and the working principle of digital recording devices are explained. The most

commonly applied diffraction models used for the numerical reconstruction of

digitally recorded holograms are discussed.

Chapter 3 represents the digitized numerical reconstruction methods. Ap-

proaches to suppress the DC-term and the twin-image are introduced and illus-

tratively demonstrated by examples. Novel numerical methods developed by the

author, which improve the accuracy and the performance are represented.
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In Chapter 4 optical parameters of the reconstructed hologram are discussed.

Rayleigh’s and Abbe’s resolution criteria including their valid application is rep-

resented. The derivation of optical parameters is presented, which is intended to

improve the readers understanding. Moreover, properties of digital holography

are represented, which in comparison to optical holography and other optical

techniques outline the benefits of digital holography.

Chapter 5 is devoted to the Space-bandwidth-product (SBP), which repre-

sents an important parameter for the evaluation of optical systems. The required

SBP in the recording process and the SBP obtained in the reconstruction process

in respect to the hologram type is calculated. The work conducted by Lohmann

(1967) and Xu et al. (2005) was extended to cover in-line and off-line config-

urations of Fresnel-hologram, Fourier-hologram and Image-plane hologram. A

comparison of the performance of the three hologram types is conducted, which

reveals important information for the correct choice of hologram-type in respect

to the requirement.

Chapter 6 represents the main work conducted during the PhD period. Res-

olution improvement methods are represented and applied to digital holography.

The first resolution improvement approach is based on the synthetic aperture

method. Difficulties in conjunction with the recording of the object’s phase is

pointed out and possible solutions to overcome these difficulties are given. More-

over, the extended depth of field method is applied to the synthetic aperture

method, which to the author’s knowledge is novel. In addition to the synthetic

aperture approach, the novel sub-pixel sampling method in combination with

phase stepping is represented. The sub-pixel sampling method is based on sub-

pixel movement of the camera sensor to result in a smaller pixel-size. Last but
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not least, both resolution improvement methods, synthetic-aperture and sub-

pixel sampling method, are combined.

In previous chapters all holograms described are recorded by a lens-less setup.

The holograms in Chapter 7 are recorded in combination with a microscope-

objective to improve the resolution in order to investigate object details in the

sub-micrometer region. Important steps for the recording process are highlighted

and the optical parameters obtained in the reconstruction are represented. Fur-

thermore, the resolution improvement methods discussed in Chapter 6 are applied

to prove their validity in conjunction with a lens system. Moreover, a proof of

principle to obtain the two dimensional refractive index contribution of the object

in conjunction with the extended depth of field method is shown.

Chapter 8 concludes this thesis and discusses the implication of this work

for future research.

Each chapter consists of an introduction, main body and conclusion. This

offers the reader the option to read them separately.



CHAPTER 2

Fundamentals of Optics and

Interferometry

Presented in this chapter are the physical principles to understand the recording

and reconstruction process in holography. The recording process, in which co-

herent light beams are superimposed, is presented. Requirements will be demon-

strated and terms like coherence and laser will be explained. The reconstruction

process based on different diffraction models and their validity will be discussed

in the second part of this chapter. The fundamental knowledge presented is in

close correspondence with Goodman (1996), Saleh and Teich (1991) and Kreis

(2005).

2.1 Light Waves

Light is a transverse, electromagnetic wave characterized by a time-varying elec-

tric and magnetic field. The nature of light can be mathematically described

by Maxwell’s equations. Maxwell’s equation for a homogenous, isotropic, non

10
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T

tE

B

Figure 2.1: Propagation of electromagnetic light wave

conducting medium is:

∇× ~E = −µ∂
~H

∂t

∇× ~H = ε
∂ ~E

∂t

∇ · ε ~E = 0

∇ · µ ~H = 0

(2.1)

Where ~E is the electric field strength and ~H the magnetic field strength. t

indicates time and ∇ is the Nabla-operator which can be described according to

Goodman (1996) by:

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂ (2.2)

ε and µ denote the permittivity and the permeability of the medium in which

the light wave propagates. The permittivity can be described by the product

of the relative permittivity and the permittivity in a vacuum (ε = ε0εr). The

permeability can be calculated in an analogous manner (µ = µ0µr). Both, electric

and magnetic field, are perpendicularly orientated to each other, as shown in Fig.

2.1. A detailed derivation from Maxwell’s equation to the wave equation can be

found in Goodman (1996). The wave equation obtained is:

∇2~u− 1

c2

∂2~u

∂t2
= 0 (2.3)
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The wave-equation for the electric field strength ~E and the magnetic field strength

~H are identical. Both, ~E and ~H, have therefore been replaced by the symbolic

vector ~u, as shown in Eq. 2.3. c is the speed of light in the medium. c can be

calculated using:

c =
c0

n
(2.4)

Where the refractive index n can be expressed by a combination of relative per-

mittivity εr and relative permeability µr. For most materials µr at optical fre-

quencies is close to one.

n =
√
µrεr ≈

√
εr (2.5)

Therefore, the electrical field can be considered to be the predominant interaction

component of the electro-magnetic wave with the material. Thus ~u can be treated

as a replacement for the electric field strength ~E. Light waves are transverse

waves oscillating perpendicular to the direction of propagation and are therefore

described in vector notation. For most applications it is not necessary to use

the full vector description of the field. A light wave oscillating in a single plane,

namely a linearly polarized light wave, which propagates in the z-direction can

be described in scalar notation as:

u (z, t) = A0 cos (kz − ωt+ ϕ0) (2.6)

Eq. 2.6 is also known as the harmonic wave equation. k is the wave number,

which depends on the wavelength of light λ.

k =
2π

λ
(2.7)
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ω is the angular frequency, which is related to the frequency of light ν by

ω = 2πν =
2π

T
(2.8)

with

ν =
c

λ
(2.9)

The time for a whole 2π cycle is called the period T. Taking into account the

substitutions made in Eq. 2.7 and Eq. 2.8 results in a harmonic wave-equation:

u (z, t) = u0 cos

(
2π

λ
z − 2π

T
t+ ϕ0

)
(2.10)

The harmonic wave equation can be expressed in complex notation by applying

Euler’s formula.

exp (iα) = cosα + i sinα (2.11)

It is important to consider that only the real or imaginary part matches with Eq.

2.6 and hence makes physically sense.

u (z, t) = Re {A0 exp [i (kz − ωt+ ϕ0)]} (2.12)

This complex notation offers some advantages in terms of expressing the phase or

to modulate the phase as we will see in Chapter 3. An alternative waveform often

used to describe the nature of light is the spherical wave. In mathematical terms

the coordinates are changed to polar coordinates x = r sin β, y = r cos β sin γ

and z = r cos β cos γ as shown in Fig. 2.2.
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Figure 2.2: Transformation of cartesian coordinates in polar coordinates

Due to its geometry a spherical wave does not dependent on β and γ. Thus

the scalar wave equation becomes

1

r

∂2

∂r2
ru− 1

c2

∂2u

∂t2
= 0 (2.13)

2.2 Intensity

The phase ϕ of the wave described in Eq. 2.12:

ϕ =
2π

λ
z − ωt+ ϕ0 (2.14)

is proportional to the wavelength of light λ = c
ν
. The wavelength of visible

light ranges from 400 nm to 800 nm. The corresponding frequency ranges from

7.5 · 1014 Hz to 3.7 · 1014 Hz. Light sensor such as the eye, photodiode, CCD or

CMOS are not able to detect such high frequencies. The only quantity which can

be measured is the intensity. The intensity observed correlates to the sum of the

energy per unit volume (ρE) namely energy density of electric (ρel) and magnetic
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field (ρmag)
∗:

ρE = ρel + ρmag =
1

2
εE2 +

1

2
µH2 (2.15)

With H = E
cµ

and c2 = 1
µε

follows:

ρE =
1

2
εE2 +

1

2
εE2 = εE2 (2.16)

The electromagnetic energy is recorded in energy packets called photons. The

photon energy Epho is converted by the photoelectric effect into free electrons

with a certain kinetic energy Ekin.

Epho = WA + Ekin (2.17)

Where WA is the material dependent energy gap which needs to be exceeded

in order to generate free electrons. The intensity recorded is hence proportional

to E2. The frequency of visible light is of such large magnitude (1014) that even

the fastest high speed cameras (≈ 105 Hz) are too slow to resolve a time period

of light. Hence the recorded intensity represents the integration of E2 quantities.

2.3 Polarization Optics

The light wave is a transversal wave, which can have different planes of oscillation.

In each plane perpendicular to the direction of propagation the vector of the

electric field strength ~E and in analogue manner the magnetic field strength ~H

follows a specific path Haferkorn (2003). The path may be describe a straight line,

a circle or an ellipse. These different states of wave propagation can be described

as linearly, circularly or elliptically polarized light. They can be produced by two

∗taken from Lohmann and Sinzinger (2006)
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Table 2.1: Different types of polarization

phase difference
∆ϕ

Ax 6= Ay Ax = Ay

0 ◦ linearly polarized light diagonal linearly polarized
0 ◦ < ϕ < 90 ◦ left elliptically polarized left elliptically polarized
ϕ = 90 ◦ left elliptically polarized left circularly polarized
90 ◦ < ϕ < 180 ◦ left elliptically polarized left elliptically polarized
ϕ = 180 ◦ linearly polarized diagonal linearly polarized
180 ◦ < ϕ < 270 ◦ right elliptically polarized right elliptically polarized
270◦ right elliptically polarized right circularly polarized
270 ◦ < ϕ < 360 ◦ right elliptically polarized right elliptically polarized

linearly polarized wave-trains, which are orientated perpendicular to each other.

The resulting states of polarization for various combinations of two perpendicular

wave-trains with amplitude Ax and Ay and phase difference ∆ϕ between both

wave-trains are shown Table 2.1.

There are different possibilities to obtain linearly polarized light. One way is

to generate linearly polarized light within a laser cavity utilizing the Brewster

window. Fig. 2.3(a) shows the light path starting from the incident wave on a

dielectric medium, which is then split into a reflected wave, indicated by subscript

R, and a refracted wave, indicated by subscript T.

If the sum of the reflection angle ϑR and the refraction angle ϑT is 90 ◦

only the s-component is reflected. The abbreviation ‘s’ arises from the German

word ‘senkrecht’, which means orthogonal. It is also referred to as the transverse

electric (TE) or orthogonal component. The p-component, parallel component,

also known as the transverse magnetic (TM) passes through the glass without

experiencing any reflection loss. The power reflectance for the s-component Rs,

p-component Rp, and the sum of both R according to Haferkorn (2003) is defined
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Figure 2.3: (a) Reflection and refraction between two media of refractive index n1 and
n2 , (b) Power reflectance R versus incident angle ϑ for n1 = 1 and n2(BK7) = 1.517

as:

Rs =
sin2 (ϑT − ϑ)

sin2 (ϑT + ϑ)

Rp =
tan2 (ϑT − ϑ)

tan2 (ϑT + ϑ)

R =
Rs +Rp

2

(2.18)

The power reflectance as a function of the incident angle ϑ for BK7-glass is shown

in Fig. 2.3(b). The incident angle at which only the s-component is reflected is

referred to as the Brewster-angle. The Brewster-angle (ϑBr) can be directly
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calculated as follows:

n1 sinϑBrn1 = n2 sin (90◦ − ϑBr) =⇒ ϑBr = atan
n2

n1

(2.19)

This relationship can be used to obtain polarized laser light. The vector normal

to the surface of the polarising glass (also known as the Brewster window) is

orientated at the Brewster-angle to the optical axis of the resonator. The s-

component is thus reflected orthogonally outside the laser cavity. Light within

the laser cavity is reflected back and forth. Therefore it passes through the

Brewster window several times, which results in laser light containing only the p-

component. Working with linearly-polarized light in interferometry offers a high

degree of freedom by adapting either intensity and/or polarization to different

situations. Moreover, the contrast of the interference pattern can be increased,

which results in an improved resolution for the reconstructed hologram, which

will be discussed in Section 4.4.3.

Sometimes the polarization state of one of the two interfering beams needs

to be changed in order to obtain matched polarization state of both beams.

Moreover, changing the polarization state enables the acquisition of more object

information, as shown in Whittaker et al. (1994). A change of polarization state

can be accomplished by the introduction of wave-retarder plates, which possess

a certain phase delay ∆ϕ between optically slow and optically fast axis. The

incident wave, shown in red in Fig. 2.4, oscillates on a plane at an angle θ1 to

the x-z plane. The amplitude of the incident wave can be split into its vertical

Ax (green) and horizontal Ay (yellow) component. We assume that the optically

fast axis is vertically aligned as shown in Fig. 2.4. The horizontal component in

Fig. 2.4 is phase delayed by π (half-wave retarder) to the vertical component.

This results in a changed angle θ2 of the polarization plane.
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Figure 2.4: Passage of linearly polarized light trough a half-wave retarder

The influence of wave-retarders on the incident beam can be predicted utiliz-

ing Jones-Calculus. A wave-retarder with the phase delay ∆ϕ can be described

by the following Jones-Matrix.

J =

 1 0

0 exp (−i∆ϕ)

 (2.20)

The incident light maintains a certain angle θ1 to the x-z plane. Its Jones-vector

is therefore obtained by its vertical and horizontal projection.

 cos θ1

sin θ1

 (2.21)

A possible rotation angle θ between wave-retarder and the x-z-plane is ac-

counted for by applying the rotation-matrix R(θ) to J.

R (θ) =

 cos θ sin θ

− sin θ cos θ

 (2.22)
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The rotated wave-retarder becomes:

JR (θ) = R (θ)−1 JR (θ)

=

 cos θ − sin θ

sin θ cos θ


 1 0

0 exp (−i∆ϕ)


 cos θ sin θ

− sin θ cos θ


=

 cos2 θ + sin2 θ exp (−i∆ϕ) 1
2

sin 2θ [1− exp (−i∆ϕ)]

1
2

sin 2θ [1− exp (−i∆ϕ)] sin2 θ + cos2 θ exp (−i∆ϕ)


(2.23)

The rotated Jones-matrices of the most commonly applied polarization optical

elements are shown in Table 2.2. It needs to be emphasized that θ of each

individual element does not necessarily need to be the same. The influence of

the polarization-optical element on the incident wave can be calculated using:

~jout = JR
~jin (2.24)

Polarization optical elements in conjunction with digital holography will be used

at a later stage of this thesis in Section 3.3.4 and Section 6.2.1.
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Table 2.2: Jones-Matrix of polarization optical elements

Polar-

ization

ele-

ment

Jones-

Matrix
Rotated Jones Matrix Application

Rotated

polarizer

 0 0

0 1


 cos2 θ 1

2 sin 2θ

1
2 sin 2θ sin 2θ


Generate lin-

early polarized

light, polariscope,

photography

Rotated

half-

wave

retarder

 1 0

0 −1


 cos 2θ1 sin 2θ1

sin 2θ1 − cos2 θ1


Phase stepping,

polarization

alignment in

interferometry

Rotated

quarter-

wave

retarder

 1 0

0 −i

  cos2 θ1 − i sin2 θ1
1
2 (1 + i) sin 2θ1

1
2 (1 + i) sin 2θ1 sin2 θ1 − i cos2 θ1



Phase stepping,

polarization align-

ment in Michelson-

interferometer,

polariscope, op-

tical isolator in

conjunction with a

polarizer

Dielectric

mirror

 1 0

0 −1


 cos 2θ1 sin 2θ1

sin 2θ1 − cos 2θ1

 Polarization align-

ment



2. Fundamentals of Optics and Interferometry 22

2.4 Interference of Light

This section is focused on the explanation of the principles of interferometry.

The effect of interference occurs when two or more coherent light waves are

superimposed. Let us consider two waves with amplitudes A01 and A02. The

angular frequency ω and the polarization plane is assumed to be the same for

both waves. The different directions of propagation of both waves is accounted

for by the corresponding k-vector.

u1 (r, t) = A01 exp
[
i
(
~k1r − ωt+ ϕ1

)]
u2 (r, t) = A02 exp

[
i
(
~k2r − ωt+ ϕ2

)] (2.25)

k1

b1 g1

y

x

z

k2

b2
g2

Figure 2.5: Decomposition of wave vectors
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The interference can be described as:

(u1 (r, t) + u2 (r, t)) = A01 exp
[
i
(
~k1r − ωt+ ϕ1

)]
+ A02 exp

[
i
(
~k2r − ωt+ ϕ2

)]
= exp (−iωt)

[
A01 exp

{
i
(
~k1r + ϕ1

)}
+ A02 exp

{
i
(
~k2r + ϕ2

)}]
= exp (−iωt) [A01 exp (iφ1) + A02 exp (iφ2)]

(2.26)

A possible combination of two different k-vectors is shown in Fig. 2.5. ~k1 and ~k2

can be described as:

~k1 =
~kz

cos β1 cos γ1

~k2 =
~kz

cos β2 cos γ2

(2.27)

The recording media detects the intensity of both interfering waves, which is

defined as:

I (r) = |u1 (r, t) + u2 (r, t)|2

= (u1 (r, t) + u2 (r, t)) (u1 (r, t) + u2 (r, t))∗

= A2
01 + A2

02 + A01A02 exp (i (φ1 − φ2))

+ A01A02 exp (−i (φ1 − φ2))

= A2
01 + A2

02 + 2A01A02 cos (φ1 − φ2)

= A2
01 + A2

02 + 2A01A02 cos (∆φ)

(2.28)

I (r) =A2
01 + A2

02 + 2A01A02 cos

[
kzr

(
1

cos β1 cos γ1

− 1

cos β2 cos γ2

)
+ ∆ϕ

] (2.29)

One can distinguish between constructive and destructive interference. Con-

structive interference occurs when the phase difference between the two waves is
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a multiple of 2π.

|∆φ| = 2nπ with n = 0, 1, 2, ...

In that case, wave peaks overlap with one another. This happens when the cosine

term becomes:

cos

[
kzr

(
1

cosα1 cos γ1

− 1

cosα2 cos γ2

)
+ ∆ϕ

]
= 1

Destructive interference is obtained when the cosine-term becomes 0. The

phase difference between the two waves is:

|∆φ| = (2n+ 1)
π

2
with n = 0, 1, 2, ...

The resulting amplitude of two waves becomes smaller and in case of A01 = A02

nullify each other. In order to obtain the maximum contrast of the recorded

interference pattern the following conditions need to be fulfilled:

· The polarization-states of both interfering waves need to be matched.

· The same path-length is required for both waves.

· The intensity of both waves should be the same.

· Both waves need to be spatially filtered to obtain a Gaussian beam profile,

which results in noise reduction.

· Only light from the object should contribute to the recorded object-wave.

The recording of light scattered or reflected by other objects needs to be

avoided.
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· The dynamic range of the camera should be fully used in conjunction with

subtraction of dark-measurement and avoiding over-exposure.

Having taken all these parameters into account should then enable the recording

of an interferogram with the best possible contrast.

2.5 Coherence

In order to detect interference a light source of sufficient coherence needs to be

used. Coherence is defined as the stability of the phase of a wave in space and

time. Laser light consists of waves of finite length. An external energy source,

such as Xenon flashlamp used for the Ruby laser, pumps energy into the laser

medium. This results in electrons being moved from a ground energy level E1

to a higher energy level E2. We assume a very simplified case of a two-energy

band model, as shown in Fig. 2.6. The electrons remain at that higher energy

level, namely the meta-stable energy-level due to its long lifetime, for a few

microseconds. This results in a higher number of atoms being in the excited

state than in the ground state. An impinging wave causes all the electrons to fall

back to the ground state. The energy released is transformed into light waves

which have the same phase and the same propagation direction as the impinging

Figure 2.6: Creation of a photon by electron-jump from energy-level E1 to E2
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wave. The wavelength λ of the emitted light is given by:

E1 − E2 = hν = h
c

λ
⇒ λ =

hc

E1 − E2

(2.30)

Where h is Planck’s constant. Inside the laser cavity, the waves which are perpen-

dicularly orientated to the two cavity mirrors are then reflected back and forth.

One of the mirrors is semi-transparent to permit light to leave the laser cavity.

The reflected light is phase-matched-amplified by induced emission within the

cavity. This amplification approaches a limit at which a standing wave is cre-

ated. The nodes of the standing wave are located on the mirror surfaces. The

relationship which relates the laser cavity length L and the wavelength λ, can be

expressed by:

λn =
2L

n
(where n=1,2,3...) (2.31)

As a result the emitted light consists of a spectrum with equidistant sharp lines,

which are also known as longitudinal laser modes. These laser modes correspond

to wavelengths of the standing wave, which are amplified by constructive inter-

ference within the laser-cavity. Other wavelengths are suppressed by destructive

interference. These longitudinal laser modes are within the spectral-profile that

would result without having a laser-cavity. In that manner the back and forth

reflection in the laser cavity is the cause of temporal and spatial coherence. Tem-

poral coherence describes the phase correlation between different points of a single

wave in time. It can be measured by using a Michelson-interferometer as shown

in Fig. 2.7(a). In Section 2.1 the harmonic wave equation was presented, see

Eq. 2.10. Considering two such waves of matched amplitude and wavelength

superimposing each other, results in the creation of a fringe pattern. If the path

length of one of the beams is changed with respect to the other a lower contrast
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V is obtained.

V =
Imax − Imin
Imax + Imin

(2.32)

Increasing the path-length difference results in no contrast being recorded, see

Fig. 2.7(b). The coherence length lc is defined by the point at which V drops to

e−1.

a

coherent 
light source

collimating 
optics

beam 
splitter

mirror

mirror

d
1

d2

imaging 
optics

sensor

(a)

(b)

Figure 2.7: (a) Interferometric setup for measuring the coherence length lc, (b) reduced
contrast for increasing differences between the path lengths of the two interfering beams
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It corresponds to twice the path-length difference, since the light travels the

same way twice. lc can be related to the coherence time τc by:

lc = τcc (2.33)

For the Helium Neon laser used in this thesis a coherence length lc of 23 cm

has been measured. Another important measure of temporal coherence is the

spectral width ∆νc, which can be calculated according to Saleh and Teich (1991)

by:

∆νc =
1

τc
(2.34)

The counterpart to the temporal coherence is the spatial coherence in space. This

refers to the ability of laterally separated light point sources to interfere. The

spatial coherence can be measured with the Young’s double slit experiment. A

wave emitted at the source S0 travels to the small aperture A1, see Fig. 2.8. At

the aperture A1 the incident wave generates a spherical wave in accordance with

Huygens’ principle. After traveling a long distance to the second aperture A2 the

generated wave at A1 appears as an almost plane wave. The distance at which

this approximation is valid will be discussed in Section 2.7.3. Two new waves are

generated at the apertures S1 and S2, separated by the distance g . At a distance

d from the plane A2 the interference pattern is recorded on a screen.
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Figure 2.8: Young’s double slit experiment

The intensity profile on the screen is described by the formula, taken from

Hecht (2005):

I (b) = 4I0 cos2

(
πgb

λd

)
(2.35)

The interference images shown in Fig. 2.9, were calculated with λ=632.8 nm,

d=1 m and g=0.4 mm, 0.6 mm and 1 mm, respectively. A measure for the degree

of spatial coherence is the complex degree of coherence γ12 (r1, r2, τ). It is linked
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Figure 2.9: Intensity profiles for, (a) g=0.4 mm, (b) g=0.6 mm, and (c) g=1 mm
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Table 2.3: Different light sources used in interferometry and their coherence properties

Source lc in mm ∆νc in Hz
output
power in W

White light (400-800 nm) ≈ 1 · 10−3 3.75·1014 ≈10
Low pressure sodium lamp 0.6 5·1011 10...180
Light emitting diode (LED) 0.05 1.5·1013 cw: ≤5

pulse: ≤10
Diode laser unstabilized ≈1 21 · 109 > 3 · 103

Diode laser stabilized ≥ 1 · 103 2 · 107 ≈ 0.08
HeNe (632.8 nm) unstabilized ≈ 200 1.5 · 109 10−4... 0.1
HeNe stabilized (632.99 nm) ≈ 3 · 105 1.0 · 106 2 · 10−3

Pulsed ruby laser ≥ 1 · 103 3.3 · 1011 1011

Pulsed Nd:YAG ≥ 1 · 103 1.2 · 1011 1010

to the contrast of the recorded interference pattern.

γ12 (r1, r2, τ) =
Γ12 (r1, r2, τ)√

Γ11 (r1, 0) Γ22 (r2, 0)
(2.36)

Γ12 (r1, r2, τ) is called the mutual coherence function.

Γ12 (r1, r2, τ) =

〈√
I1 (r1, t+ τ)

√
I2 (r2, t)

∗
〉

(2.37)

Γ11 (r1, τ) =

〈√
I1 (r1, t+ τ)

√
I1 (r1, t)

∗
〉

(2.38)

Γ22 (r2, τ) =

〈√
I2 (r2, t+ τ)

√
I2 (r2, t)

∗
〉

(2.39)

Where 〈. . .〉 denotes the cross-correlation function. The coherence length, spec-

tral width, output power and wavelength of some selected light sources are

shown in Table 2.3. The information shown in Table 2.3 has been collected

from Saleh and Teich (1991), Schröder and Treiber (2007) and various sup-

plier web-pages in order to update the information, e.g. SIOS GmbH. (2010)
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†, Apollo Instrument Inc. (2010)‡ and Ondax Inc. (2010) §. In conclusion, the

temporal coherence determines the axial extension of the object under investiga-

tion. The spatial coherence determines the lateral extension of the object under

investigation. Hence macroscopic objects need to be investigated with a light

source of increased temporal and spatial coherence. In addition to temporal and

spatial coherence, other properties of a coherent light source are:

· narrow ∆νc

· light emitted from a laser is almost one directional

· the power density is higher than for incoherent light

· more stable amplitude

· ultra-short light pulses of 10−15s can be generated

· it can be focused to a smaller spot than incoherent light

These benefits support the introduction of laser light in many different fields

such as laser cutting Charles Day Ltd. (2010), laser welding TWI Ltd. (2010),

optical trapping Dholakia and Lee (2008) and interferometry. However, there

are also drawbacks to application of coherent light. For example a rough surface

illuminated by laser light results in the occurrence of speckle pattern, which

reduces the resolution of the recorded interferogram. Moreover, particles which

might be floating in the optical path generate diffraction pattern which disturbs

the recorded interferogram. Hence, arrangements need to be made to reduce this

kind of environmental influences, e.g. optical table enclosure system as shown in

Appendix C.2, introduction of optical fibres.

†reference for stabilized HeNe
‡reference for laser diode
§reference for stabilized laser-diode
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2.6 Digital Recording Devices
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Figure 2.10: Sketch of working principle of, (a) a CCD sensor, and (b) a CMOS sensor

In optical holography the hologram is recorded on a holographic plate. Digital

holograms are recorded on digital receivers which enable a faster and simplified

image acquisition and processing. Generally CCD cameras and CMOS cameras

are used for the recording of digital holograms. With a CCD camera the photon

energy is converted into an electrical charge, which is then read out by trans-

ferring the charge down the pixel-column to a common output register, see Fig.
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Table 2.4: Comparison CCD vs. CMOS

Parameter CCD CMOS

Costs expensive
comparably less ex-
pensive

Electronics noise low moderate

Fill factor ≤100% typically ≤60%

Light sensitivity high sensitivity lower than CCD

Power consumption
10 times higher than
CMOS

low

Recording speed ≤100 Hz high speed kHz

Resolution

≥143 lp/mm (Sony
ICX625 with 3.5 µm
pixel-size)

≥ 357 lp/mm (Aptina
MT9E013 with 1.4 µm
pixel-size)

Smearing line transfer smearing no smearing

Uniformity of pixel-
response

homogenous less homogenous

2.10(a). Here the electrical charge is converted into voltage and is then sent

to the camera-circuit board. A CMOS camera instead performs the charge to

voltage conversion at each individual pixel by an attached transistor, see Fig.

2.10(b). These differences in sensor architecture have significant consequences

for the sensor capabilities and limitations. A comparison of both methods has

been conducted partly based on Litwiller (2001). The results of this comparison

are shown in Table 2.4. It is based on the current state of the art technology

available (March 2010). It is not easy to judge which of the two sensors is best.

The best suited sensor technology depends on the particular application.
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2.7 Approximation of Light Propagation

Different models are used to describe the propagation of light from the object-

plane u(x,y) to the hologram-plane u’(x’,y’). These propagation models are based

on approximations made with respect to the wave-front curvature. They are

applicable at different distances between object-plane and the hologram-plane.

One can distinguish between the Rayleigh-Sommerfeld diffraction formula, the

Fresnel-approximation, which is also known as the Near-field diffraction, and the

Fraunhofer-approximation, known as Far-field diffraction.

2.7.1 Rayleigh-Sommerfeld Diffraction Formula

x

y

z

e

y'

x'

rdA

z=0 z=d

object-plane u(x,y) hologram-plane u’(x’,y’)

Po

Figure 2.11: Propagation of light from the object-plane to the hologram-plane

At each object point an incident light waves generates a propagating elementary

spherical wave according to Huygens’ principle. A single spherical wave can

be considered to originate from an area element dA, which represents a small

surrounding of an object point xo as shown in Fig. 2.11. The spherical waves

originating from all object points overlap with another to unify to a common

complex wave field in the hologram-plane. Hence an integration of the light
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propagating from the area segments needs to be performed.

u(x′, y′) ∝ 1

iλ

∞∫
−∞

∞∫
−∞

u(x, y)
exp (ikr)

r
cos ε dA (2.40)

Where ε denotes the angle defined by the distance (d) and radius (r):

cos ε =
d

r
(2.41)

The angle ε is reproduced by the intersection of the hologram plane with the

tangential plane of the elementary spherical wave. For a large recording distance

d cos ε can be dropped in Eq. 2.40. The term exp(ikr)
r

indicates the impulse

response of free space propagation of light (hd). It represents the free space

propagated spherical wave, which needs to be divided by its radius (r) due to

conservation of energy. Hence the intensity recorded on a unit area decreases

with increasing distance by 1/(λ2r2), but the integrated intensity over the entire

spherical wave remains constant. The factor ik is responsible for a phase shift

of π
2

in all points of the object plane and can therefore be neglected. The radius

can be substituted with the coordinates in the object-plane and hologram-plane.

r =

√
(x′ − x)2 + (y′ − y)2 + d2 (2.42)

Hence the impulse-response becomes:

hd(x
′, y′, x, y) =

exp

[
ik
√

(x′ − x)2 + (y′ − y)2 + d2

]
√

(x′ − x)2 + (y′ − y)2 + d2

= hd(x
′ − x, y′ − y)

(2.43)
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Eq. 2.43 indicates that the Rayleigh-Sommerfeld diffraction integral is shift-

invariant and can hence be simplified by a convolution of the initial light distri-

bution in the object-plane u(x, y) with the impulse response hd.

u(x′, y′) = u(x, y)⊗ hd(x′, y′) = F−1 [F {u(x′, y′)} · F {hd(x′, y′)}] (2.44)

The symbol ⊗ denotes the convolution operator. Eq. 2.44 can be simplified

numerically by inserting the transfer-function Hd, which represents the Fourier-

transformation of the impulse response (Hd = F {hd}). The transfer-function

according to Goodman (1996) is:

Hd(νx, νy) =

{ exp

[
i2π d

λ

√
1− (λνx)

2 − (λνy)
2

]
,
√
ν2
x + ν2

y <
1
λ

0 , otherwise

(2.45)

Hd is a circular symmetric complex function and can be regarded as a linear

spatial filter with a certain bandwidth. The filter blocks spatial frequencies larger

than the circular region defined by the radius 1
λ
.

2.7.2 Fresnel-Approximation or Near-Field Diffraction

In the Fresnel-approximation the spherical wavefront described by the Rayleigh-

Sommerfeld diffraction integral is replaced by a parabolic wavefront, as shown

in Fig. 2.12(a). For the Fresnel-approximation the assumption (x′ − x)2 +

(y′ − y)2 << d2 is made. r in Eq. 2.42 is rewritten by taking d outside the

square root:

r = d

√
1 +

[
(x′ − x)

d

]2

+

[
(y′ − y)

d

]2

(2.46)
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For r appearing in the denominator of Eq. 2.40 all terms apart from d can be

dropped without introducing an error:

r ≈ d (2.47)

Whereas changes of a fraction of a wavelength can produce significant errors in

the exponential term. The phase term within the square root is multiplied with

the wave-number (k). The wave-number for visible light (λ=350-700 nm) ranges

between 1.8 · 107 m−1 and 0.8 · 107 m−1. Thus a more precise approximation

must be found for the exponential term. The root expression in Eq. 2.46 can be

expressed by a binomial series.

√
1 + a = 1 +

1

2
a− 1

8
a2 +

1

16
a3 − ... (2.48)

Only the first two terms in Eq. 2.48 are taken into account and the parameter a

is replaced by

([
(x′−x)
d

]2

+
[

(y′−y)
d

]2
)

. This results in:

r = d

[
1 +

1

2

(
x′ − x
d

)2

+
1

2

(
y′ − y
d

)2
]

(2.49)

With

cos(ε)

r
≈ 1

d
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u(x′, y′) can be calculated as:

u(x′, y′) ≈ exp (ikd)

iλ d

∞∫
−∞

∞∫
−∞

u(x, y) exp

[
iπ

λ d

{
(x′ − x)

2
+ (y′ − y)

2
}]

dx dy

≈ exp (ikd)

iλ d
exp

[
iπ

λ d

(
x′2 + y′2

)] ∞∫
−∞

∞∫
−∞

u(x, y) exp

[
iπ

λ d

(
x2 + y2

)]

· exp

[
−i2π
λ d

(x′x+ y′y)

]
dx dy

(2.50)

From Eq. 2.50 it follows that the light distribution in the object plane is mul-

tiplied with the impulse response of the Fresnel-approximation, which is repre-

sented by the chirp-function exp
[
iπ
λ d

(x2 + y2)
]
. Aside from multiplicative am-

plitude and phase factors that are independent of x and y the light distribu-

tion in the hologram-plane u’(x’,y’) is obtained by a Fourier transformation of

u(x, y) exp
[
iπ
λ d

(x2 + y2)
]
. Eq. 2.50 describes a parabolic-wavefront approxima-

tion of the previously spherical-wavefronts described by Eq. 2.40. This imposes

some restrictions with respect to the validity of the Fresnel-method. The Fresnel

approximation is valid if the phase difference arising from the higher orders of the

binomial series are a lot smaller than one radian and therefore negligible. This

conditions results in:

kd
a2

8
=

π

4λ
d

[(
x′ − x
d

)2

+

(
y′ − y
d

)2
]2

>> 1rad (2.51)

This results in a minimum recording distance d:

d >> 3

√
π

4λ

[
(x′ − x)2 + (y′ − y)2]2 (2.52)

For an assumed object of 12 mm x 12 mm (x=y=-6 mm), a camera pixel size

of 6.45 µm2, pixel-number N = 1392 and M = 1024 (x’=1392·6.45/2 µm;
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y’=1024·6.45/2 µm), and a HeNe-Laser (632.8 nm) the minimum recording dis-

tance at which the Fresnel-method is valid is 363 mm.

2.7.3 Fraunhofer Approximation or Far Field Approximation

The Fraunhofer model represents a stronger simplification by replacing the parabolic

wavefront of the Fresnel-approximation with a plane-wavefront, see Fig. 2.12(a).

The wavefront can be considered to be plane when the parabolic phase term

π
λ d

(x2 + y2) in Eq. 2.50 becomes a lot smaller than one radian. This condition

results in a minimum recording distance :

d >> k
x2 + y2

2
(2.53)

The light distribution in the hologram-plane u’(x’,y’) is calculated by applying

the Fourier transformation to the object’s light distribution only.

u(x′, y′) ∝ exp (ikd)

iλ d
exp

[
iπ

λ d

(
x′2 + y′2

)] ∞∫
−∞

∞∫
−∞

u(x, y) exp

[
i2π

λ d
(x′x+ y′y)

]
dx dy

(2.54)

For the Fraunhofer propagation model a minimum distance of 357.45 m is re-

quired, taking into account the same setup parameters as previously used for the

Fresnel propagation-model in Section 2.7.2. Fig. 2.12 shows the different propa-

gation models and the assumptions made in respect to the shape of the wavefront

for each model. Different applications and setup geometries for each model are

the consequences of this consideration.
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Figure 2.12: (a) Distances and corresponding wave-front for different propagation meth-
ods, (b) diffraction pattern of a rectangular aperture at different distances
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2.7.4 Definition of Sign of Phase

A converging spherical wave which propagates in the z-direction has a positive

phase. Each consecutive phase envelope is obtained by a forward propagation in

time. A plane wave is set to have a positive phase if the wave-vector ~k points

away from the optical axis.

The contrary case accounts for the definition of a negative phase. A converging

spherical wave can be treated as a light-wave which back-propagates in time. A

negative or reversing phase in holography refers to the reconstruction of the

virtual image and a positive phase to the reconstruction of the real image. Fig.

2.13 shows the wavefront shape (spherical-wave) and geometry (plane-wave) for

positive and negative phase.

optical axis

k

optical axisk

(a)

optical axis

k

optical axisk

(b)

Figure 2.13: Spherical-wave and plane-wave with (a) positive phase and (b) negative
phase

2.8 Conclusion

Basic terms required to understand holography were explained in this chapter.

The terms coherence, interference, intensity and digital recording devices have

been explained to support the understanding of the recording process. The

recorded hologram is numerically reconstructed by applying the diffraction in-

tegral described in this chapter. Diffraction occurs when light strikes an obstacle
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whose dimension is in the range of the wavelength. The observed light distribu-

tion forms a pattern of dark and bright regions. Diffraction is explained using

Huygens’ principle: ”Every point on a propagating wavefront serves as the source

of spherical secondary wave, such that the wavefront at some later time is the

envelope of these secondary wavefronts”. Huygens’ principle can mathematically

be described by the propagation models, which were explained in this chapter.

In that manner the fundamental knowledge was presented. This knowledge will

be used to obtain the best possible setup in terms of fringe contrast and to re-

duce the impact of environmental influences. Moreover, the digitized numerical

calculations for the reconstruction of digital holograms, which will be presented

in Chapter 3, is based on the diffraction models discussed in Section 2.7.



CHAPTER 3

Reconstruction Methods

3.1 Introduction

In optical holography, reconstruction is performed by illuminating the developed

holographic plate with the reference-wave as previously discussed in Section 1.1.

This approach is not applicable for holograms which have been recorded utilizing

digital receivers such as CCD or CMOS cameras. For simplification purposes

only the CCD camera will be considered in subsequent explanations. Different

options exist for the reconstruction of digitally recorded holograms using current

technology:

i displaying the hologram on a spatial light modulator (SLM) or similar

means and illuminating it with the reference beam,

ii simulating the reconstruction process numerically.

The first approach possesses the drawback of limited spatial resolution and dis-

turbing diffraction effects which are caused by the SLM’s pixelization. Further-

more it is not possible to reconstruct the phase in an unambiguous manner.

Therefore this chapter focuses on the study of the most commonly applied

numerical reconstruction techniques in digital holography. Fig. 3.1 shows dif-

43
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ferent planes which are involved in the optical and numerical wave-propagation

process. In the x-y object plane, light impinges on the object, which results in

the generation of spherical waves according to Huygens’ principle. The interfer-

ence pattern of the overlapping spherical object waves and the reference-wave

is stored in the hologram plane on a CCD. Numerical methods are applied in

order to perform the reconstruction of the digitally recorded holograms. Dif-

ferent numerical reconstruction techniques exist with respect to the object size

and recording distance used in the experiment. One can distinguish between

the Rayleigh-Sommerfeld Diffraction Integral, the Fresnel-method and

the Fourier-method. Their corresponding diffraction equations have been de-

scribed in Section 2.7. The digitization of the reconstruction algorithms were

performed utilizing Matlab and its implemented functions.

x

y' y''

x''

Y

x

y'

x'

object 
plane

hologram
plane

d

y''

x''

z

d'

reconstruction 
plane

Figure 3.1: Nomenclature of coordinates used for the holographic recording and recon-
struction process
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3.2 Rayleigh-Sommerfeld Diffraction Integral

The Rayleigh-Sommerfeld Diffraction integral was already presented in Section

2.7. Its notation for the reconstruction including the reference-wave ur is.

u(x′′, y′′) ∝ 1

iλ

∞∫
−∞

∞∫
−∞

u(x′, y′)·u∗r(x′, y′)
exp

[
ik
√

(x′′ − x′)2 + (y′′ − y′)2 + d′2
]

√
(x′′ − x′)2 + (y′′ − y′)2 + d′2

dx′dy′

(3.1)

Where u∗r(x
′, y′) indicates the complex conjugated reference-wave. A constant

phase for ur is obtained when a plane reference-wave is used. For this special

case, ur does not need to be taken into account for the calculation of the numer-

ical reconstruction. The numerical effort required to implement the Rayleigh-

Sommerfeld diffraction integral using discrete values can be minimized by utiliz-

ing a digitized transfer-function, as shown in Eq. 3.2.

u′′(l,m) = F−1[F {u′(l,m) · u∗r(l,m)} ·Hd(νx′ , νy′)] (3.2)

Where l and m are the counters in x and y directions, respectively, and F and F−1

denote the two dimensional Fourier transformation and inverse Fourier transfor-

mation, which can be implemented using a Fast Fourier Transform (FFT) algo-

rithm. Hd(νx′ , νy′) indicates the transfer-function, which was represented in Eq.

2.45. Hd(νx′ , νy′) needs to be evaluated at its discrete spatial frequencies:

νx′ =
lν − 1

N∆x′
and νy′ =

mν − 1

M∆x′
(3.3)

Where N x M denotes the number of pixels, ∆x′ the pixel-size and lν and mν are

the counters in the Fourier domain, which range from lν = 1...N and mν = 1...M .

The digitized transfer-function is shown in Eq. 3.4.
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Figure 3.2: Optical model for Rayleigh-Sommerfeld Convolution integral

Hd(lν ,mν) = exp

[
i
2πd

λ

{
1−

(
λ
lν −N/2− 1

N∆x′

)2

−
(
λ
mν −M/2− 1

M∆x′

)2} 1
2
] (3.4)

A problem encountered with the implementation of the numerical code in Mat-

lab is that its initial matrix starting point is the upper left corner instead of the

center. Therefore, the initially defined spatial frequencies, see Eq. 3.3, had to

be shifted by half the sensor width for both directions (l −N/2− 1). Fig. 3.2

shows an optical model for the optical recording process and numerical recon-

struction process. Light from the object passes through a 4-f system by which it

is convolved with the transfer-function to result in a sharp image-point. Due to

applying a convolution integral the pixel size in the reconstruction plane ∆x′′ and

the hologram plane ∆x′ are matched. Therefore care needs to be taken that the

object dimensions do not exceed the camera-sensor dimensions. Otherwise parts

of the object exceeding the sensor’s dimension are convolved in the reconstructed

hologram, which results in a disturbed reconstruction. There are ways which

allow the recording of objects larger than the sensor dimensions of the camera.
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: (a) Recorded 2800x2800 zero-padded intensity hologram (b) reconstruction
with phase 2800x2800 pixels, (c) phase for a parabolic lens, (d) phase for a spherical
lens, (e) corresponding reconstruction of (c) by applying a shifted transfer-function and
Γ = 0.7 (1392x1392), (f) corresponding reconstruction of (d) with analogue parameters

3.2.1 Zero-padding

One approach is based on zero-padding. The recorded hologram is numerically

extended by adding pixels of zero intensity to it as shown in Fig. 3.3(a). In

case the object was not centered on the optical axis in the recording process, the

reconstruction displays the image information split into different parts, which

appear at the edge of the reconstruction, see Fig. 3.3(b). This effect is due to

the nature of the convolution process and can be avoided by applying a shift

in the reconstruction process so that the reconstructed image becomes centered.

Schnars and Jueptner (2005) and Kreis (2005) applied a shift to the impulse

response, which then needs to be two dimensionally Fourier-transformed in order

to obtain the transfer-function. Alternatively, the shift can directly be applied

to the transfer-function, which is less time consuming than applying it to the
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impulse response. Hence, the shift needs to be converted into a corresponding

shift in the frequency domain. From the Fourier-relationship follows that a pixel-

size in the Fourier-domain is described as:

∆x′′ =
λd′

N∆x′
(3.5)

In order to obtain the magnitude of the shift sx Eq. 3.5 is differentiated in respect

to ∆x′:

∂∆x′′

∂∆x′
= − λd

N∆x′′2
(3.6)

In νx′-direction a shift sx is applied which represents a multiplicative phase factor

−N∆x′2

dλ
. In a similar manner the shift sy is applied in the νy′ direction. Taking

into account the shifts sx and sy results in a rewritten Eq. 3.4:

Hd(lν ,mν) = exp

[
i
2πd

λ

{
1−

(
λ
lν −N/2− 1− sxN∆x′2

dλ

N∆x′

)2

−

(
λ
mν −M/2− 1− sy M∆x′2

dλ

M∆x′

)2} 1
2
] (3.7)

Results for the reconstructed intensity of a phase hologram, with and without

shifting the transfer-function, are shown in Fig. 3.3.

3.2.2 Numerical Lens

Another method, which enables the recording of objects exceeding the camera’s

sensor dimension is the introduction of a numerical lens of a certain magnification

Γ′ between zero and one. The reconstruction distance d’ needs to be adjusted

with respect to Γ′, which results in:

d′ = d · Γ′ (3.8)
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Where d indicates the recording distance. The numerical formulation of the lens

equation for a plano-convex lens with spherical and parabolic lens-surface have

been derived in Appendix A.2. Its digitized notation for a spherical lens surface

is:

L(l,m) = exp

[
i2πf (nLens − 1)2

λ

·

√
1− ∆x′2 (l −N/2− 1)2 + (m−M/2− 1)2

f 2 (nLens − 1)

 (3.9)

And for a parabolic approximation is:

L(l,m) = exp

[
−iπ∆x′2

λf

{
(l −N/2− 1)2 + (m−M/2− 1)2}] (3.10)

With

f =
d · d′

d+ d′
(3.11)

It needs to be pointed out that Eq. 3.10 refers to the Fresnel region. Hence the

focal length f needs to have a certain value in order to be valid, see Eq. 2.52.

Otherwise the image quality of the numerical reconstruction could be degraded

due to introduction of phase errors. The final equation for the convolution integral

with a numerical lens L is:

u′′(l,m) = F−1[F {u′(l,m) · ur(l,m)? · L(l,m)} ·Hd′(νx′ , νy′)] (3.12)

The intensity representation of the transfer function is shown in Fig. 3.4(a).

Only a finite rectangular area with values different from zero contributes to the

reconstruction. The same rectangular area restricts the phase data. The phase

data outside the rectangle correspond to numerical noise and hence does not

contribute to the transfer of high spatial frequencies according to Kreis (2005).

In that manner the transfer-functions acts like a low-pass filter.
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(a) (b)

(c) (d)

Figure 3.4: Transfer-function: (a) modulus and (b) phase for at d’=120 mm; (c)
modulus and (d) phase for d’=67.3 mm

The larger the recording distance the stronger the filtering effect on high

spatial frequencies is. Thus high spatial frequencies might be lost in the recon-

struction process.

Therefore, a cascaded reconstruction algorithm has been proposed by Kreis

(2005). The hologram is propagated in different propagation stages of a higher

frequent impulse response to the final reconstruction plane, see Fig. 3.5. The

distance between each propagation is calculated to maintain the highest possible
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Figure 3.5: Cascaded reconstruction in two steps

spatial frequency, without violating the Nyquist criterion. Assuming that the

impulse response is centered, highest spatial frequencies occur in the corners of

the impulse response l = 1. The maximum phase difference ∆φ between two

pixels should not be larger than π according to the Nyquist criterion. The phase

(in digitized notation) of the impulse response can be described by:

φ =
2π

λ

√
(l − N

2
− 1)2∆x′2 + (m− M

2
− 1)2∆x′2 + d′2 (3.13)

The phase needs to be differentiated with respect to l, whereas only the x’-

direction is taken into account.

∆φ

∆l
≈ ∂φ

∂l
=
π

λ

2∆x′2(l − N
2
− 1)√

d′2 + ∆x′2(l − N
2
− 1)2

(3.14)

Rearranging Eq. 3.14 to be solved for d′ and inserting the corresponding values

for l, ∆φ and ∆l results in:

d′ ≥ ∆x′
N

2

√
4∆x′2

λ2
− 1

≈ N∆x′2

λ

(3.15)
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Figs. 3.4(c) and (d) show the intensity and phase at an optimum reconstruction

distance, respectively. The calculation was based on the pixelfly qe camera with

1024x1024 pixels and 6.45 µm pixel-size, as shown in Appendix D.1. This camera

was initially used to carry out the experiments. When the transfer-function covers

the whole frequency range (as in Fig. 3.4(c) and (d)), the high spatial frequencies

are maintained when applying the Rayleigh-Sommerfeld convolution integral. A

more detailed discussion of the low-pass filtering effect of the transfer-function

can be found in Kreis (2005).

3.3 DC-term and Twin Image Suppression

Before turning to the numerical realization of other reconstruction models the

suppression of the DC-term and twin image, which was applied to obtain the

reconstructions shown in Fig. 3.3(b) and succeeding sub-figures, is discussed.

Some theoretical ideas in this section are based on Schnars and Jueptner (2005)

and Kreis (2005). According to Eq. 2.28 the hologram can be considered to be a

sinusoidal amplitude grating. The recorded intensity can hence be described by:

I = A2
r + A2

o + 2ArAo cosϕ (3.16)

According to Goodman (1996) the amplitude transmission function of a sinusoidal

amplitude grating, as shown in Fig. 3.6(a), is:

tA =
1

2
+
s

2
cos (2πν0x

′) (3.17)

Where s represents the modulation depth of the sinusoidal grating and ν0 the
spatial grating frequency.
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Figure 3.6: (a) Amplitude transmission-function for sinusoidal amplitude grating, (b)
Fraunhofer diffraction pattern

The resulting Far-field diffraction pattern can be calculated by applying a

Fourier-transformation.

F {tA} =
1

2
δ(νx) +

s

4
δ(νx + ν0) +

s

4
δ(νx − ν0) (3.18)

Three diffraction patterns are obtained namely a plus and minus first order,

which correspond to the reconstructed image and twin-image, and a zero order

also known as the DC-term. The diffraction efficiency η is introduced in order to

evaluate the obtained intensity of the desired reconstructed image. The diffrac-

tion efficiency takes into accounts the initial intensity I0, which corresponds to

the reference-wave intensity if optical reconstruction was applied and the ob-

tained intensity of the reconstructed hologram I. The result obtained needs to

be squared in order to obtain the diffraction efficiency η for each corresponding

diffraction order. The diffraction efficiency for the DC-term η0, the image η+1
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Table 3.1: DC-term and twin-image suppression

Suppression method
DC-term
suppres-
sion

Twin-
image
suppres-
sion

Averaged intensity subtraction possible
not possi-
ble

Subtraction of reference-wave intensity A2
r

and object-wave intensity A2
o

possible
not possi-
ble

Filtering in Fourier domain (only applicable
for off-line arrangement)

possible possible

Phase stepping possible possible

and the twin-image η−1 for an amplitude grating are as follows:

η0 =
1

4

η+1 =
s2

16

η−1 =
s2

16

These values show that the intensity of the plus and minus first diffraction order

is overexposed by the strong DC-term, which is shown in Fig. 3.6(b). Moreover,

one needs to take care that intensity values are evenly distributed to cover the

whole dynamic range of the sensor in order to obtain the optimum diffraction

efficiency η for the reconstructed image. Methods which enable the suppression

of the DC-term and in some cases the twin-image are shown in Table 3.1 and

discussed in more detail hereafter.
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3.3.1 Averaged Intensity Subtraction

One can suppress the DC-term by subtracting the averaged hologram intensity

from the hologram.

I(l,m)∗ = I(l,m)−

N∑
l=1

M∑
m=1

I(l,m)

NM
(3.19)

Subtracting the averaged intensity value from the hologram results in an amplitude-

transmission-function:

tA =
s

2
cos (2πν0x

′) (3.20)

Its Fourier-transform results in the plus and minus first order only.

F {tA} =
s

4
δ(νx + ν0) +

s

4
δ(νx − ν0) (3.21)

Both, amplitude transmission function and its Fraunhofer diffraction, are shown

in Fig. 3.7(a) and (b), respectively. The diffraction efficiency of plus and minus

first order matches with the one obtained by a sinusoidal amplitude grating, see

Fig. 3.7(b).
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Figure 3.7: (a) Amplitude transmission-function for averaged intensity subtracted si-
nusoidal amplitude grating, (b) corresponding Fraunhofer diffraction pattern
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Figure 3.8: Influence of different ratios between reference- and object-wave amplitude

Care needs to be taken that the intensity of the reference and object

beams are matched otherwise both terms in Eq. 3.16, 2AoAr and A2
o + A2

r,

differ in magnitude, which is shown Fig. 3.8. This would offset the sinusoidal

intensity profile even further from the zero-line, which decreases the modulation

depth and consequently decreases the diffraction efficiency. Furthermore, the re-

construction will not result in a successful DC-term suppression. This problem

can be overcome by subtracting the minimum recorded intensity value and ad-

justing the grey values to cover the whole dynamic range. Having fulfilled this

condition does not automatically guarantee a total DC-term suppression since

this approach assumes a homogenous intensity distribution. Two numerical ap-

proaches have been carried out to overcome the problem of an inhomogeneous

intensity distribution. The first method is based on adding a strong inverted

median filtered image of the hologram’s intensity distribution to the hologram

itself. The median filter is used in order to obtain the shape of the intensity

distribution without fringes. Therefore a very strong median filter needs to be

applied. The median filter used in this particular case is 60x60 pixels. Once the

inverse of the median filtered hologram is added to the hologram the averaged
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Table 3.2: Comparison of termination speed

Suppression method time in s
maximum
value

minimum
value

Inverted median filter 179.50 206.89 -97.10
Sliding window 40.18 178.21 -150.68

intensity is subtracted.

The second method is based on the assumption that the intensity distribution

within a small region can be considered to be homogeneous. This region needs

to be at least as large as the width covered by an interference fringe. A sliding

window moved over the entire hologram is used to calculate the averaged inten-

sity value within this region. Prior to the sliding window operation the image is

padded with its average value on each side by half the width of the window-size.

This step is necessary to avoid an abrupt cutoff for the values which are located

at the sides of the hologram. The resulting sliding window averaged intensity

map is then subtracted from the hologram. The reconstruction is DC-term free.

In our case the width used was 10x10 pixels. The improved performance of both

approaches is demonstrated in Figs. 3.10(b) and 3.10(c) compared to solely sub-

tracting the averaged intensity as shown in Fig. 3.10(a), which does not fully

suppress the DC-term. The sliding window operation terminates faster and pos-

sesses a larger degree of homogeneity for negative and positive values, see Table

3.2. Hence it is superior to the ’inverted median filter’ method, which is confirmed

by a stronger DC-term suppression.

Both, the ’inverted median filter’ and the ’sliding window’ method, benefit

from requiring a single hologram only in order to perform the DC-term suppres-

sion. They could also be applied to an in-line configuration for which a plane

reference-wave and a long recording distance in respect to the wavelength and the

numerical aperture NA were used (see Eq. 4.33). In this case the reconstruction
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consists of an in-focus image overlapped by a strongly blurred twin-image, which

does not significantly affect the image quality according to Martinez-León and

Javidi (2007).

3.3.2 Subtraction of Reference-wave and Object-wave Intensity

Another way of suppressing the DC-term is to record and subtract the object-

and reference-wave intensity. This approach is associated with additional experi-

mental effort, since one needs to block one of the beams whilst recording the other

beam. The performance of the previously discussed DC-term suppression algo-

rithms such as ’average intensity subtraction’, ’inverted median filter’ , ’sliding

window operation’ and ’subtraction of reference and object-beam’ was investi-

gated on a recorded interference pattern shown in Fig. 3.9(a), which possesses

a Gaussian intensity distribution shown in Fig. 3.9(b). The results obtained

utilizing the various DC-term suppression methods are presented in Figs. 3.9(c),

(d), (e) and (f), respectively. The intensity profile obtained applying the ’sub-

traction of reference and object-beam’ method possesses more evenly distributed

positive and negative intensity values than when applying the initial ‘average

intensity subtraction’ method. This results in a better DC-term suppression as

demonstrated in Fig. 3.10(d).
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Figure 3.9: (a) Initial interference pattern, cross-sections: (b) without DC-term sup-
pression, (c) average intensity subtraction, (d) inverted median filter, (e) sliding window
operation, (f) subtraction of reference and object-beam
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(a) (b)

(c) (d)

Figure 3.10: (a) Numerical reconstruction after average-value subtraction, (b) Nu-
merical reconstruction with the inverted median filtered image, (c) Numerical recon-
struction with sliding window operation,(d) Reconstruction by subtraction of reference
and object-wave

3.3.3 Filtering in the Fourier Domain

Another approach to suppress the DC-term is based on a two dimensional Fourier

transformation of a recorded off-line hologram. Due to the off-line arrangement

the image, twin image and DC-term are spatially separated in the Fourier domain,

as shown in Fig. 3.12(a). The DC-term and twin image can be filtered by

blocking them in the Fourier-domain, see Fig. 3.12(b). Afterwards the inverse
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Figure 3.11: (a) Amplitude transmission-function for saw tooth phase, (b) correspond-
ing Fraunhofer diffraction pattern

two dimensional Fourier transformation is applied to obtain the filtered hologram

which possesses an unambiguous phase. The reconstruction of an unambiguous

phase hologram can be modeled by its amplitude transmission-function, shown

in Fig. 3.11(a).

tA = exp (±i2πν0) (3.22)

Its Fourier-transform results in the plus first or minus first order only, see Fig.

3.11(b).

F {tA} = δ(νx ∓ ν0) (3.23)

The diffraction efficiency obtained is:

η±1 = 1

The hologram of the previously used dice shown in Fig. 3.3(a) has been Fourier-

filtered and the phase map of the filtered hologram and its numerical intensity

reconstruction are represented in Figs. 3.12(c) and (d), respectively. The Fourier-

filtering algorithm is superior to the ‘averaged value subtraction’ method and

the ‘subtraction of reference-wave and objective-wave intensity’ in terms of its
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(a) (b)

(c) (d)

Figure 3.12: (a) Hologram in Fourier-domain, (b) blocked DC-term and twin-image
in Fourier-domain, (c) phase of resulting Fourier filtered hologram, (d) numerical re-
construction

diffraction efficiency. Moreover, it additionally enables the suppression of the

twin-image.

3.3.4 Phase stepping

A further method for the suppression of the DC-term and twin-image is Phase

Stepping. This is an important tool used in interferometry and has some advan-

tages in holography such as:

i. High measurement accuracy (>1/1000 fringe) can be obtained.

ii. Good results can be obtained for low contrast fringes.

iii. Reduced impact of temporally stationary fringes caused by double reflec-

tions when light passes through an optical element.
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iv. Recording distance can be reduced which results in an improved resolution.

Phase stepping could also be listed as a separate reconstruction method. It en-

ables one to obtain phase information for image-holograms which are commonly

applied to digital holographic microscopy [Schnars (2005)]. Phase stepping is

performed by recording three or more phase stepped holograms. The correspond-

ing phase hologram is calculated by numerical means. The additional phase step

is generally applied in the reference arm. A detailed discussion of possible phase

stepping devices is presented in Wyant (2009). The phase stepping device intro-

duces an additional optical path length which corresponds to a change of phase

between reference and object-wave. Phase stepping utilizing wave retarder plates

(shown in Fig. 3.13(a)) and a piezo mounted mirror (Fig. 3.13(b)) have been

carried out in the scope of this thesis. A series of temporally separated holograms

have been recorded. Thus environmental influences such as air disturbances had

to be minimized.
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plate
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Beam splitter

cube
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(a)

Polarized

Laser

M1

M2

�/4-

plate

@45°

�/2-plate

Polarizing beam

splitter cube

Camera

Analyzer

@45°

(b)

Figure 3.13: (a) Setup with wave retarder plates, (b) setup with piezo-driven mirror
M1
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Reliability Of Piezo And Polarization Optics

Two independent methods have been implemented which calculate the magnitude

of phase step applied. In this manner the impact of disturbing environmental

influences or inaccuracies caused by the phase stepping device are minimized, by

which the reliability of the results achieved can be improved. The first method,

which was proposed by Cai et al. (2004) calculates each phase step individually.

It requires a minimum number of three phase stepped holograms possessing the

following intensity distribution:

I1(x′, y′) = A2
r(x
′, y′) + A2

o(x
′, y′) + 2Ar(x

′, y′)Ao(x
′, y′) cos[ϕ(x′, y′)] (3.24)

I2(x′, y′) =A2
r(x
′, y′) + A2

o(x
′, y′) + 2Ar(x

′, y′)Ao(x
′, y′) cos [ϕ(x′, y′)

−∆ϕ1]

(3.25)

I3(x′, y′) = A2
r(x
′, y′) + A2

o(x
′, y′) + 2Ar(x

′, y′)Ao(x
′, y′) cos [ϕ(x′, y′)

−∆ϕ1 −∆ϕ2]

(3.26)

Where Ar and Ao are the amplitude of reference- and object-wave, and ∆ϕ1 and

∆ϕ2 (0 < ∆ϕi < π, i = 1, 2) are the two phase steps. Three new variables, which

result from the subtraction of the three intensity distributions, are introduced,

as follows.

o21 = 〈|I2(x′, y′)− I1(x′, y′)〉| = 〈|4Ar(x′, y′)Ao(x′, y′)

sin(ϕ−∆ϕ1/2|〉 sin(∆ϕ1/2)

(3.27)

o32 = 〈|I3(x′, y′)− I2(x′, y′)〉| = 〈|4Ar(x′, y′)Ao(x′, y′)

sin(ϕ−∆ϕ1 −∆ϕ2/2|〉 sin(∆ϕ2/2)

(3.28)
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o31 = 〈|I3(x′, y′)− I1(x′, y′)〉| = 〈|4Ar(x′, y′)Ao(x′, y′)

sin(ϕ− (∆ϕ1 + ∆ϕ2)/2|〉 sin[(∆ϕ1 + ∆ϕ2)/2]

(3.29)

〈〉 is the average intensity value of the recorded hologram. Assuming thatAo(x
′, y′)

and ϕ(x′, y′) are mutually independent and ϕ(x′, y′) is spatially randomly dis-

tributed one can conclude all terms 〈|...|〉 on the right hand side of Eqs. 3.27-3.29

to be the same.

o21 = v sin(∆ϕ1/2) (3.30)

o32 = v sin(∆ϕ2/2) (3.31)

o31 = v sin[(∆ϕ1 + ∆ϕ2)/2] (3.32)

v can be obtained by the following equation.

v = 2o21o32o31[2(o2
21o

2
32 + o2

21o
2
31 + o2

32o
2
31)− (o4

21 + o4
32 + o4

31)]−1/2 (3.33)

The phase steps ∆ϕ1 and ∆ϕ2 can be calculated by using trigonometrical rela-

tions.

∆ϕ1 = 2 arcsin(o21/v), ∆ϕ2 = 2 arcsin(o32/v) (3.34)

The complex amplitude of the object-wave is given by:

Ao exp (iϕ) =
1

4Ar sin
(

∆ϕ2

2

)[ exp
(
i∆ϕ1

2

)
sin
{

∆ϕ1+∆ϕ2

2

}
(I1 − I3)− exp {i (∆ϕ1 + ∆ϕ2) /2}

sin (∆ϕ1/2)

(I1 − I2)

] (3.35)

Another method, which enables one to obtain the unknown phase step is based on

Carré-formula, which requires four equally phase stepped holograms. The highest
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phase step accuracy is achieved by a pointwise calculation. One then needs to

average the phase step value for each single pixel since the overall phase step

should be constant. In this manner uncertainties and fluctuations, which may

have been caused by speckle or environmental influences, are averaged out.

∆ϕ =
1

NM

N∑
l=1

M∑
m=1

arccos
I1(x′, y′)− I2(x′, y′) + I3(x′, y′)− I4(x′, y′)

2[I2(x′, y′)− I3(x′, y′)]
(3.36)

The hologram’s phase map can then be calculated taking into account the con-

stant phase step ∆ϕ of either the first three phase stepped intensity holograms

or the last three phase stepped intensity holograms.

ϕ = arctan

[
I3 − I2 + (I1 − I3) cos ∆ϕ

(I1 − I3) sin ∆ϕ+ (I2 − I1) sin 2∆ϕ

+
[I2 − I1] cos 2∆ϕ

(I1 − I3) sin ∆ϕ+ (I2 − I1) sin 2∆ϕ

+
3∆ϕ

2

] (3.37)

A series of numerically generated fringe patterns with a phase step between

10 ◦ and 120 ◦, in increments of 10 ◦, have been generated and tested on both

methods. Cai’s Method, despite representing an approximation and its reduced

requirement of three phase stepped holograms rather than four equally phase

stepped holograms, performed better than Carré’s-formula, see Fig. 3.14. Both

methods have a maximum error of less than one percent, which makes both of

them reliable approaches for obtaining the desired phase step information. Both

methods were then experimentally applied to a Michelson interferometer (see

Fig. 3.13) in order to evaluate the phase step accuracy of a piezo-driven mirror

and wave-retarder plates. The piezo has an overall positioning range of 37.48

µm with a measurement uncertainty of 0.3 nm, as shown in Appendix D.2. The

wave retarder plates had been ordered from the United Crystals company, see
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Figure 3.14: Accuracy performance of Cai’s and Carré’s Methods

Appendix D.3. They have a maximum retardation tolerance of less than three

percent, which corresponds to a maximum retardation error of 4.7 nm and 9.5

nm for a quarter-wave-plate and half-wave-plate, respectively. A fundamental

requirement for phase stepping with polarization optics is polarized laser light as

a light source. The polarized laser light is split into two arms by a beam splitter

cube, see Fig. 3.13(a). The light in one arm passes through a quarter- and a

half-wave-plate. Four phase steps were generated by rotating the quarter and

half-wave-plate between 0◦ and 90◦ as shown in Table 3.3.

Table 3.3: Combination of λ/4- and λ/2-plate and the resulting phase step

Case
Rotation
angle of λ/4-
plate in ◦

Rotation
angle of λ/2-
plate in ◦

Obtained
phase step in ◦

1 0 0 0
2 90 0 -90
3 0 90 -180
4 90 90 -270
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The values shown in Table 3.3 are based on the fact that the optically slow

axis of the retarder plates was horizontally orientated and the laser light was

vertically polarized. The phase step between two subsequently recorded inter-

ference pattern is 90 ◦. The same phase steps were applied to the piezo-driven

mirror. Taking into account that the light is traveling twice the path-length

between the polarizing beam splitter and the piezo-driven mirror results in a re-

quired piezo-displacement λ/8. The wavelength of the laser was 632.8 nm, thus

the displacement applied to the piezo was 79.1 nm. An analyzer rotated by 45

◦ was then required in order to combine both cross-polarized light beams and

to record the interference, see Fig. 3.13(a). The setup for both phase stepping

approaches are shown in Fig. 3.13. The data represented in the graphs of Fig.

3.15 have been analyzed by statistical methods Stockes (2007) and the results

are represented in Table 3.4.

Table 3.4: Evaluation of the phase step data

Statistical properties polarization optics piezo-driven mirror
Carré Cai Carré Cai

Maximum deviation from
expected value in ◦

30.98 23.35 14.51 17.37

Mean value in ◦ 82.86 84.14 93.26 92.83

Standard deviation from ex-
pected value in ◦

12.22 10.53 5.35 7.71

Standard deviation of the
mean in ◦

82.86±1.46 84.14±1.29 93.26±0.56 92.83±0.95
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Figure 3.15: Phase step accuracy obtained by (a) a wave-retarder plates and (b) a
piezo-driven mirror

In conclusion, phase stepping performed with a piezo-driven mirror gives a

more accurate phase step than when applying polarization optics. A cause of the

lower phase stepping accuracy of polarization optical devices might be due to the

larger retardation error of both combined wave-plates, as previously mentioned.

Moreover, angular alignment errors when mounting the wave retarder plates into

its holder results in a further decreased accuracy. Furthermore, reflection is not

as strongly affected by disturbances as transmission is. Light passing through

the retarder device could be affected by reflection effects, dust and scratches at

both sides of the wave-retarder. Another error could have been arisen from the
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inclination of the wave-vector ~k of the incident light, which needs to be normal

on the retarder plates in order to maintain an optimum performance of the phase

step.

At a next stage, a holographic experiment was performed using phase stepping

by means of a piezo-driven mirror. An in-line setup was used as shown in Fig.

3.16(a). The object has been a five pence coin. The distance to the camera

was 345 mm and the camera used is the pco-pixelfly qe. The obtained result

for the reconstruction utilizing an intensity hologram and an unambiguous phase

hologram are shown in Figs. 3.16(b) and (c), respectively.

Polarized 

Laser

M1

l/4-

plate

l/2-plate

Polarizing beam 

splitter cube

Camera

Analyzer

@45°

Object

(a)

(b) (c)

Figure 3.16: (a) Setup, (b) numerical reconstruction of the intensity hologram, (c)
numerical reconstruction of the phase hologram
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3.4 Fresnel-Method
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1. numerical lens
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Figure 3.17: (a) Optical model for Fresnel method, (b) numerical reconstruction uti-
lizing Fresnel-method

The Fresnel-propagation model including its validity region has been discussed

in Section 2.7.2. The Fresnel reconstruction is performed utilizing the formula:

u(x′′, y′′) =
exp (ikd)

iλ d
exp

[
iπ

λ d

(
x′′2 + y′′2

)] ∞∫
−∞

∞∫
−∞

u(x′, y′) · u∗r exp

[
iπ

λ d

(
x′2 + y′2

)]

· exp

[
−i2π
λ d

(x′′x′ + y′′y′)

]
dx′ dy′

(3.38)

For further considerations the term exp(ikd)
iλd

in Eq. 3.38 is neglected since it

only introduces a constant phase. The last complex exponential term within the

double integral
(
exp

[−i2π
λ d

(x′′x′ + y′′y′)
])

describes a Fourier-transformation and

is treated as such. The Fresnel-method in digitized notation is:

u′′(l,m) = exp

[
iπ

d′λ
∆x′′

{
(l −N/2− 1)2 + (m−M/2− 1)2}]

· F
[
u′(l,m) · u∗r(l,m)

· exp

{
iπ

λd

(
(l −N/2− 1)2 (m−M/2− 1)2)}]

(3.39)
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The complex exponential term in front of the Fourier-transformation can be ne-

glected if just the intensity is of interest or double exposure holography (which

will be discussed in Section 4.7.3) is performed. The Fresnel-method is optically

modeled in Fig. 3.17(a). The chirp-function within the Fourier-transformation

corresponds to a numerical lens, see Eq. 3.10, of d′ = −f . The reconstruc-

tion utilizing the Fresnel method is shown in Fig. 3.17(b). The pixel-size in

the reconstruction-plane ∆x′′ can be estimated by using the Fourier transform

relation:

∆x′′ =
λd′

N∆x′
(3.40)

The reconstructed hologram possesses a width of:

N∆x′′ =
λd′

∆x′
(3.41)

In order to display this width a certain amount of pixels with the initial pixel-

size ∆x′ are combined to form a single pixel of width ∆x′′ in the reconstruction-

plane. The number of pixels displaying the numerical reconstruction decreases

with increasing reconstruction distance d′ by the ratio:

N∆x′2

λd′
(3.42)

This does not impose a serious problem, since the reconstructed pixel-size matches

the resolution obtained according to Abbe’s criterion. In that way the Fresnel-

method is more economical in terms of displaying the image than the Rayleigh-

Sommerfeld’s convolution integral is. If one was interested in displaying the

image by a larger amount of pixels zero-padding needs to be applied to the holo-

gram prior to its numerical reconstruction. A certain degree of zero-padding also

increases the resolution obtained in the reconstruction, which is demonstrated
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at a later stage in Fig. 6.10. Displaying the reconstruction on a larger number

of pixels than is needed to display the smallest resolvable object detail results

in empty magnification and is therefore not recommended. A factor of two is

an adequate choice to perform zero-padding, as shown in the following Chapter

4.7.4:

NZero = 2N (3.43)

3.5 Fourier-Method

d

1. lens of  is 
embedded due to 
spherical reference-wave 

f’=-d 2. numerical lens 
Fourier-transformation

object-
plane u

hologram-
plane u’

reconstruction-
plane u’’

z

(a) (b)

Figure 3.18: (a) Optical model for Fourier method, (b) numerically reconstructed
Fourier-hologram

The numerical reconstruction utilizing the Fourier-method is similar to the re-

construction procedure described by the Fresnel-method as shown in Eq. 3.44.

u′′(x′′, y′′) = exp

[
iπ

λd′
(
x′′2 − y′′2

)]
· F
{
u′(x′, y′)u∗r(x

′, y′)

· exp
[
i
π

λd′
(
x′2 + y′2

)]} (3.44)

The chirp-function used in the Fresnel-method, which acts like a lens of focal

length f = −d′, is already embedded in the hologram due to the spherical

reference-wave ur, see Fig. 3.18(a). The spherical reference-wave in the hologram-
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plane (dr = d′) can be described by:

ur(x
′, y′) ≈ exp

[
i
π

λd′
(
x′2 + y′2

)]
(3.45)

Substituting Eq. 3.45 in Eq. 3.44 permits the elimination of the parabolic chirp-

function, dependent on x′ and y′. Hence the reconstruction algorithm for the

Fourier-method becomes:

u′′(x′′, y′′) = exp

[
iπ

λd′
(
x′′2 − y′′2

)]
· F {u(x′, y′)} (3.46)

The digitized notation for the reconstruction is:

u′′(l,m) = exp

[
iπ

λd′
∆x′′

{
(l −N/2− 1)2

− (m−M/2− 1)2

}]
· F {u(x′, y′)}

(3.47)

The numerical reconstruction requires only a two dimensional Fourier-transformation

of the hologram u(x’,y’) multiplied with a phase factor, see Eq. 3.47. Therefore,

these kind of holograms, whose optical setup is characterized by an equidistant

object and reference point source distance, are coined lens-less Fourier-holograms.

By analogy with the Fresnel-reconstruction (discussed in Section 3.4) the complex

exponential phase term

(
exp

[
iπ

λd′
∆x′′

{
(l −N/2− 1)2 − (m−M/2− 1)2

}])

is only of concern for phase measurement and can be neglected for intensity and

double-exposure holography. The reconstructed hologram obtained is focused

at the reference-plane distance. Both image and twin-image are in focus in the

numerical reconstruction due to focusing at the Fourier-plane, see Fig. 3.18(b).
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In the Fourier-plane image and twin-image are in focus. Both represent a complex

conjugated pair, which explains the upside down orientation of the twin-image.

The computationally inexpensive algorithm to reconstruct a Fourier-hologram is

offset by the inability to focus at different axial sections within the object volume,

since Eq. 3.46 is not a function of the reconstruction distance d’, as discussed

in Schnars and Jueptner (2005). One possible way to focus at different axial

object sections is to apply Eq. 3.39. The disadvantage of this approach is that

the numerical chirp-function possesses high frequencies at its edges, which might

not be resolved when applying the synthetic aperture method. In order to avoid

numerical under-sampling the camera-object distance needs to be increased the

larger the synthetic aperture becomes. Moreover, a chirp-function needs to be

calculated twice, once for the object-wave and again for the reference-wave. A

more elegant approach is to combine both chirp-functions to a numerical lens as

proposed by Goodman (1996) and Haddad et al. (1991). The numerical lens in

digitized notation is:

L(l,m, dref , do) = exp

[
iπ

λ

dref − do
drefdo

∆x′
{

(l −N/2− 1)2

+ (m−M/2− 1)2

}] (3.48)

The numerical lens presented in Eq. 3.48 is a function of the reference source point

distance dref and the object distance do. It is convex for do < dref and concave

for do > dref . It possesses a very low frequency chirp-function since dref and do

are almost matched. It can therefore be applied at any distance without the risk

of under-sampling or exceeding the validity of the Fresnel approximation. The

parameters in the reconstruction-plane such as pixel-size ∆x′′, the reconstructed

width N∆x′′ and the pixel-size ratio are calculated by the same method as in the

Fresnel-reconstruction, see Eqs. 3.40, 3.41 and 3.42.
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3.6 Conclusion

The three most commonly applied reconstruction methods in digital hologra-

phy have been presented in their digitized notation. A comparison of the three

reconstruction methods is shown in Table 3.5.

In addition to the digitized reconstruction formula found in Schnars and

Jueptner (2005) and Kreis (2005) some supplementary numerical methods were

developed to either increase the accuracy or to reduce the numerical effort. This

in particular refers to the introduction of a spherical numerical lens presented in

Eq. 3.9 to increase the accuracy for a focal length smaller than the Fresnel-region

allows for. Moreover, the DC-term suppression performance by Average Inten-

sity Subtraction could be improved by the inverted median filter method and the

sliding window method, which have been developed in the context of this thesis.

Furthermore, the numerical effort to center the image in the reconstruction utiliz-

ing the convolution integral, which corresponds to the numerical implementation

of the Rayleigh-Sommerfeld-method, could be reduced. The shift was initially

applied to the impulse-response as shown in Schnars and Jueptner (2005). The

numerical method reported in this thesis applies the shift to the transfer-function,

see Eq. 3.7. In that manner a two dimensional Fourier-transformation could be

saved.

Moreover, it was found that the phase stepping error is smaller using a piezo

shifted mirror than when using polarization optics.

This knowledge and the numerical tools developed could then be applied to

record, reconstruct and process digital holograms.
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Table 3.5: Summary: Comparison reconstruction methods

Parameter

Rayleigh-
Sommerfeld-
Diffraction-
Integral

Fresnel-method Fourier-method

Calculation
time

long, at least two
FFT + loop

moderate, one FFT
+ loop

little, one FFT

Reference-
wavefront

generally plane generally plane spherical

Pixel size
in the re-
construction
plane

∆x′′ = ∆x′ ∆x′′ = λd
N∆x′

∆x′′ = λd
N∆x′

Minimum
recording
distance d

0 < d <∞ dmin < d <∞
0 < d < ∞ (for
intensity reconstruc-
tion)

Application

independent from d
and λ; well suited for
microscopic objects,
e.g. particle detec-
tion

large distances
macroscopic objects,
otherwise under-
sampling of the
chirp-function

d independent from
pixel-number N , well
suited for synthetic
aperture method

Fringe dis-
tribution

spherically shaped
distribution, high
density at corners

spherically shaped
distribution, high
density at corners

almost homoge-
nous, reference-wave
adapted to object-
wave



CHAPTER 4

Optical Parameters and Properties of

Digital Holography

4.1 Introduction

The main optical parameters such as lateral and axial resolution, field of view

and setup dependent recording distance are partly derived and discussed in this

chapter. These parameters are influenced by the camera’s specification, the light

source employed, the object’s extension and the setup arrangement as shown

in Table 4.1. Furthermore, benefits of digital holography in comparison with

photography and optical holography are demonstrated.

Table 4.1: Source and corresponding parameters

Source Parameter

Recording device pixel size ∆x′

number of pixels N
quantization lgrey

Light source wavelength λ
Object dimension X
Setup geometry distance d between recording device and object

78
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4.2 Parameters for Optical Setup

The parameters discussed in this section are closely related to the resolution of

the camera sensor and the Nyquist-criterion. The Nyquist-criterion says that in

order to recover a band-limited signal the sampling frequency νsa needs to be at

least twice as large as the highest signal frequency νx. In our case the signal is

represented by the sinusoidal intensity pattern which results from the interference

of reference-wave and object-wave.

ν ′x =
1

g
=
νsa
2

=
1

2∆x′
(4.1)

Where ν ′x is the highest frequency of the sinusoidal interference pattern and νsa

is the sampling frequency, which corresponds to the reciprocal of the pixel-size

∆x′.

4.2.1 Minimum Distance Plane Reference-wave

A hologram recorded with a plane reference-wave is often refereed to as a Fresnel-

hologram. It is assumed that the spherical object-wave can be treated as a plane-

wave over an area of a few pixels. From Fig. 4.1 it follows that:

g = a+ b = λ

(
tan

α

2
+

1

tanα

)
(4.2)

Using the trigonometric relations:

tan
α

2
=

1− cosα

sinα
(4.3)

tanα =
sinα

cosα
(4.4)



4. Optical Parameters and Properties of Digital Holography 80

reference reference 
wave-frontswave-fronts

obj ct eobj ct e

wa
-fr

nts
ve

o
wa

-fr
nts

ve
o

NDx’/2NDx’/2

xmaxxmax

objectobject

aa

optical axisoptical axis

aa

a/2a/2

bb

aa
gg

ll

object-planeobject-plane hologram-planehologram-plane

dmindmin

Figure 4.1: Geometry of interfering object and reference-wave when recording a Fresnel-

hologram

it follows that:

g =
λ

sinα
(4.5)

Taking into account the sampling frequency νsa results in the largest acceptable

angle α:

α ≤ arcsin
λνsa

2
= arcsin

λ

2∆x′
(4.6)

The object-size X and the recording distance d are mutually dependent on α.

The minimum distance between camera and object shown in Fig. 4.1 is:

dmin =
xmax + N∆x′

2

tanα
(4.7)

The angle α in digital holography is small, typically less than five degrees. It can

therefore be assumed that sinα = tanα. Combining Eq. 4.6 and Eq. 4.7 results

in:

dmin =
(X +N∆x′) ∆x′

λ
(4.8)

Eq. 4.8 is valid for an in-line setup. An off-line setup is aimed towards a recon-
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struction with spatially separated zero-order, image and twin-image. Therefore

the object needs to be displaced from the optical axis by half the sensor width.

The minimum distance in that case is:

dmin =
2 (X +N∆x′) ∆x′

λ
(4.9)

The minimum recording distance for an in-line and off-line Fresnel hologram

recorded at a wavelength of 632.8 nm on a camera with 1392 pixels of 6.45 µm

pixel-size and 12 mm object-size is 213.83 mm and 427.66 mm, respectively.

4.2.2 Minimum Distance Spherical Reference-wave

a
a

x

dmin
l

point-source 
reference wave

object 
point

2Dx’

hologram-
plane

object-plane

th
0  order

st
1  order

nd
2  order

Figure 4.2: Resulting intensity pattern due to interference of spherical reference- and
object-wave

From the trigonometric relations shown in Fig. 4.2 the minimum allowable

recording distance can be obtained. The highest fringe density is obtained be-

tween the 1st and 0th diffraction order. Thus the path-length difference between

the two propagating spherical waves, separated by the distance x, needs to be
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one wavelength λ.

sinα =
λ

x
(4.10)

tanα =
2∆x′

dmin
(4.11)

Eq. 4.10 and Eq. 4.11 can be combined and solved for dmin assuming again that

α is relatively small.

dmin ≥
2∆x′x

λ
(4.12)

With x the distance between reference-wave source point and furthest distant

object point. A hologram recorded with this kind of arrangement is refereed to

as a Fourier-hologram. The minimum recording distance for an in-line and

off-line Fourier hologram recorded at a wavelength of 632.8 nm on a camera with

1392 pixels of 6.45 µm pixel-size and 12 mm object-size is 244.63 mm and 122.31

mm, respectively.

4.2.3 Minimum Distance for Reconstruction Validity Region

The approximated reconstruction methods such as Fresnel-method and Fraunhofer-

method, represented in 2.7.2 and 2.7.3, impose a certain reconstruction distance

at which the phase errors introduced become negligible. In most cases recording

distance d and reconstruction distance d′ are matched. Therefore we have to take

into account the validity condition:

dFresnel >>
3

√
π

4λ

[
(x′ − x)2 + (y′ − y)2]2 for Fresnel (4.13)

dFraunhofer >>
2π

λ

x2 + y2

2
for Fraunhofer (4.14)

The optical resolution of the reconstructed hologram recorded at such far distance

as dFraunhofer is of rather poor quality and hence hardly used in digital holography.
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Therefore, if one would like to reconstruct the hologram utilizing the Fresnel-

method the smaller distance among dFresnel and dmin needs to be taken into

account when setting up the experiment. The minimum distance for the validity

of the Fresnel-region and Fraunhofer region, utilizing the same parameters as

applied in previous examples of Fresnel and Fourier-hologram, is 363.30 mm and

357.45 m.

4.3 Field of View (FOV)

The minimum distance dmin determines the object-size and hence the FOV. The

FOV is an important parameter for the performance evaluation of an optical

system, which will be discussed at a later stage in conjunction with the lateral

resolution in 5. It is assumed that the object is positioned at dmin to the camera.

Moreover, only the x-dimension is considered in this case. The y-dimension

can be obtained in an analogue manner by taking into account the corresponding

parameters. The FOV for a Fresnel-hologram for in-line and off-line arrangements

is given by:

Xin−line =
dλ

∆x′
−N∆x′ (4.15)

Xoff−line =
dλ

2∆x′
−N∆x′ (4.16)

The FOV for a Fourier-hologram for in-line and off-line arrangement is:

Xin−line =
dλ

∆x′
(4.17)

Xoff−line =
dλ

2∆x′
(4.18)



4. Optical Parameters and Properties of Digital Holography 84

The FOV for an image-hologram (image recorded in focus on camera utilizing

a lens-system) depends on the sensor size N∆x′, the focal length f of the lens

system∗ and the distance between sensor and lens system d2. Fig. 4.3 shows

a schematic sketch of the imaging process by a lens; where HH’ denotes the

principal-planes of the lens. The FOV obtained is thus:

d2

HH’

f’-f

X NDx’s’max

s’max

Figure 4.3: Lens field of view

X =
N∆x′f

d2 − f
(4.19)

4.4 Resolution

This section is devoted to the axial and lateral resolution obtained by diffraction

limited optical systems. The lateral resolution is the one observed in the image

or reconstruction plane, whereas the axial resolution refers to the longitudinal

region for which an in-focus image can be observed. The axial resolution is also

known as Depth Of Field (DOF). The axial resolution can be derived from the

lateral resolution.

∗assuming equal length of back and front-focal length
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4.4.1 Lateral Resolution

The lateral resolution describes the smallest resolvable object detail in the lateral

dimension. It is defined by the optical parameters of the system such as NA and

the wavelength employed. Two coexisting criteria namely Abbe’s criterion and

Rayleigh’s criterion have been developed to determine the lateral resolution with

respect to the optical system employed. Abbe investigated the diffracted light

as it travels from the object to the optical system as discussed in Lummer and

Reiche (1910) and Rayleigh the diffraction effects caused by the spatially limited

aperture in the imaging process, which is discussed in Hecht (1998).

Abbe criterion

Abbe investigated the resolution in conjunction with microscopy and realized

that the resolution is determined by diffraction and the numerical aperture (NA)

of the optical system. The first and zeroth diffraction order of the smallest object

detail need to pass through the optical system’s aperture. The two grey right-

angle triangles shown in Fig. 4.4 are similar, which enables one to obtain an

equation for the smallest resolvable object detail δ:

δ =
λ

2NA
=

λr

nX ′
=

λ

2n sin
[
atan

(
X′

2d

)] ≈ λd

nX ′
(4.20)

With the refractive index n = 1 the following equations for rectangular and

circular aperture, respectively are obtained.

δ =
λr

D
for circular aperture

δ =
λr

X ′
for rectangular aperture

(4.21)
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r

Figure 4.4: Geometry of plus first, minus first and zeroth diffraction order caused by a
binary grating

Rayleigh criterion

Lord Rayleigh investigated the minimum lateral distance at which two point

sources can still be resolved. He discovered that the maximum of the diffraction

pattern related to the first point source needs to match with the minimum of

the diffraction pattern caused by the second point source. The observed diffrac-

tion pattern can be described by a convolution of the aperture-function with the

ideally sharply imaged point Goodman (1996). The angular dependent normal-

ized intensity of the diffracted light is described mathematically by a first order

Bessel-function J1
†:

I(ε)

I0

=

[
2J1

(
πD
λ

sin ε
)

sin ε

]2

(4.22)

Where sin ε can be described by the axial radius r and the lateral radius in

Far-field distance rl, shown in Fig. 4.5(a):

sin ε =
rl
r

The normalized intensity I(ε)
I0

first drops to zero at 3.83, see Fig. 4.5(b). The

minimum lateral radius rl, which corresponds to the smallest resolvable object

†taken from Hecht (1998)



4. Optical Parameters and Properties of Digital Holography 87

detail δ is hence described by:

δ =
1.22λr

D
≈ 1.22λd

D
(4.23)

In case a rectangular aperture is used, which is more appropriate for lens-less digi-
tal holography where the interference pattern is directly recorded on a rectangular
sensor matrix, the diffraction pattern can be simulated by a sinc-function.
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Figure 4.5: Geometry circular aperture, (b) cross-section for resulting diffraction pat-
tern

The mathematical formulation of the sinc-function is:

I(α′, β′)

I0

=

(
sinα′

α′

)2(
sin β′

β′

)2

(4.24)

α′ and β′ can be calculated by:

α′ =
πX ′x′′

λr

β′ =
πY ′y′′

λr

Where X ′ and Y ′ are the aperture dimensions in x’ and y’-direction as shown in

Fig. 4.6(a). The sinc-function’s first minimum occurs at (α′ = π), which results
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in a smallest resolvable object detail δ:

δ =
λr

X ′
(4.25)

For a rectangular aperture Abbe’s and Rayleigh’s resolution criteria match. The

minimum contrast obtained for a circular aperture is 0.27 whereas the minimum

contrast for a rectangular aperture is 0.19, shown in Figs. 4.5(b) and 4.6(b),

respectively.

p-

circular aperture
rectangular aperture

I
I0

I
I0

p

I
I0

x’

y’

x’’

y’’

x’

y’

x’’

y’’

ry

P

rl

P

rx

PxPy

dx
dy

X’X’

D

d

d

r

pX’x’’
lr

pX’x’’
lr

pDrl

lr

Y’Y’

; pDrl

lr

(a)

p-

circular aperture
rectangular aperture

I
I0

I
I0

p

I
I0

x’

y’

x’’

y’’

x’

y’

x’’

y’’

ry

P

rl

P

rx

PxPy

dx
dy

X’X’

D

d

d

r

pX’x’’
lr

pX’x’’
lr

pDrl

lr

Y’Y’

; pDrl

lr

(b)

Figure 4.6: (a) Geometry rectangular aperture, (b) cross-section in x”-direction for
resulting diffraction pattern

Both resolution criteria were established for incoherent illumination. In case

of coherent illumination the resolution depends on the phase relationship between

both point sources. The intensity cross section of two coherently superimposing

point sources with respect to a rectangular aperture can be calculated as:

I

I0

=

∣∣∣∣sin (α′ − π/2)

α′ − π/2
+ exp (iφ)

sin (α′ + π/2)

α′ + π/2

∣∣∣∣2 (4.26)

Where I is the obtained intensity of both superimposing point sources and I0 is

the intensity of each individual point source The resolution for two point sources

of equal brightness and changing phase difference has been calculated and its
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intensity cross section been plotted, shown in Fig. 4.7(a). A worse resolution

is obtained if both point sources are in phase. For a phase difference φ = π/2

the lateral resolution for coherent and incoherent illumination matches and for

a phase difference of π an increased resolution is obtained. Fig. 4.7(b) shows

the normalized intensity at the center of both superimposing sources points as a

function of the phase difference. Generally diffuse scattering objects are investi-

gated in digital holography. The height and hence the phase between adjacent

object points changes randomly. In that manner the statistical mean of the res-

olution obtained can be described by the resolution obtained for the incoherent

case. The validity of this assumption is experimentally confirmed at a later stage

in Chapter 6.
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Figure 4.7: (a) Normalized image intensity for two point sources of same brightness and
changing phase difference, which are separated by the Rayleigh distance with respect to
a rectangular aperture, (b) normalized intensity in dependence of the phase difference
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4.4.2 Axial Resolution or Depth of Field
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Figure 4.8: (a) Geometric-optical DOF, (b) Geometric optical DOF and wave-optical
DOF

The axial resolution or Depth of Field (DOF) for the geometric optical model

is defined by the circle of confusion in conjunction with the pixel-size in the

reconstruction-plane ∆x′′. The ideal infinitesimal small image point is for the

observer in-focus until the circle of confusion reaches the size of a pixel ∆x′′. In

order to obtain the DOF ∆x′′ needs to be projected into the object plane. The

depth of field for the geometric optical model could be derived with the help of

the trigonometric relationships shown in Fig. 4.8(a).

DOFg = DOFlg + DOFrg = ∆xd

(
1

X ′ + ∆x
+

1

X ′ −∆x

)
=

2∆xdX ′

X ′2 −∆x2
(4.27)

If a lens-system with a magnification Γ′ was employed between object and sensor

the pixel-size in the object-plane is obtained by taking into account
(
∆x = ∆x′′

Γ

)
:

DOFg =
2∆x′′dX ′

Γ′
(
X ′2 − ∆x′′2

Γ′2

) ≈ 2∆x′′d

Γ′X ′
=

∆x′′

Γ′NA
(4.28)

For an optical system with a larger NA, such as a microscope-objective, diffraction

effects have a stronger impact. The imaging process from a point in the object-
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plane to a point in the reconstruction plan is subjected to the laws of diffraction

(Rayleigh-criterion, Abbe-criterion). The wave-optical DOFλ can be obtained

from the diameter of the circle of confusion, which in this case is defined by the

smallest resolvable object detail δ. According to Haferkorn (2003), both, the

wave-optical DOFλ and the geometric-optical model DOFg, have to be added

when an objective with a large NA is used.

DOFNA = DOFλ + DOFg (4.29)

Where DOFNA denotes the DOF of a large NA. A rectangular aperture, which

corresponds to the shape of a digital sensor, is assumed for further considerations.

Both models and their corresponding DOF are represented in Fig. 4.8(b), in

which it is assumed that the projected pixel-size in the object-plane ∆x is smaller

than the smallest resolvable lateral object detail δ. This on the other hand

imposes a condition, which needs to be fulfilled in order to display δ.

∆x ≤ δ (4.30)

In the same manner as applied for the derivation of Eq. 4.27 the wave-optical

DOFλ can be obtained.

DOFλ =
2δdX ′

X ′2 − δ2
(4.31)

Taking into account Eq. 4.20 with the refractive index n = 1 results in:

DOFλ =
λX ′NAd

X ′2NA2 − 0.25λ2
≈ λ

2NA2 (4.32)

The wave-optical DOFλ, the lateral resolution δ in dependence of the wavelength

λ and the NA used are shown in Fig. 4.9(a). The DOFλ has slightly larger values
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than δ. The difference between both decreases the larger the NA becomes.

The geometric-optical DOFg for Fresnel-method and Fourier-method matches

with the wave-optical DOFλ. The geometric-optical DOFg for Rayleigh-Sommerfeld

method is:

DOFg ≈
∆x′

Γ′NA
(4.33)

Fig. 4.9(b) shows a plot of the DOF obtained by the geometric-optical model

and wave-optical model in dependence of the NA. The NA value at which both

curves meet can be considered to be the critical point (NAcritical) at which the

wave-optical model needs to be taken into account as well. NAcritical can be

calculated by:

NAcritical =
λ

2∆x′
(4.34)

In case the NA is smaller than the NAcritical only the geometric optical field is

applicable. In this case the DOFg obtained by the Rayleigh-Sommerfeld method

is smaller than the DOFg by the Fresnel-method due to the different pixel-sizes

∆x′′ for both methods in the reconstruction-plane, see Table 3.5.
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Figure 4.9: (a) DOFλ and resolution for different wavelengths and NA, (b) DOFg
versus NA for ∆x′ = 6.54µm and λ = 632.8nm

4.4.3 Phase Resolution

The resolution with respect to the phase is examined for the recording and re-

construction process. The phase resolution is strongly related to the number of

available quantization levels of the sensor.
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Resolution of recorded phase

The phase in the recording process is encoded in the sinusoidal intensity pattern.

The resolution of the phase in the recording process depends on the pixel size

and the grey scale quantization lgrey. The pixelfly camera has a dynamic range of

12 bit. That means 4096 grey levels can be applied when recording the intensity

pattern. The recorded intensity pattern can be described by:

I(x′) = 2I0(x′) (1 + cos ∆ϕ) (4.35)

Eq. 4.35 assumes that the amplitudes of the object-wave and reference-wave are

matched. The phase can then be calculated by:

ϕ = arccos

(
I(x′)

2I0(x′)
− 1

)
(4.36)

The averaged recordable phase difference for a 12 bit camera is:

∆ϕgrey =
2π

lgrey
= 0.0015 rad (4.37)
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Figure 4.10: Effect of Quantization

Due to the nonlinearity of the cosine function the resolution in respect to

the smallest resolvable phase difference increases in areas of stronger intensity

gradient. The phase resolution in the recording process is largest near zero where

the intensity gradient is largest, shown in Fig. 4.10. On the other hand the phase

resolution becomes lowest near maximum and minimum amplitude value since

the intensity gradient is lowest at these points. The maximum phase resolution

∆ϕmax and minimum phase resolution ∆ϕmin can therefore be calculated by:

∆ϕmax =
π

2
− arccos

2

lgrey
= 0.0005 rad (4.38)

∆ϕmin = arccos

(
1− 2

lgrey

)
= 0.0313 rad (4.39)

The recorded phase resolution influences the quality of the reconstructed holo-

gram. In order to obtain a good phase resolution the camera’s dynamic range
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should be fully covered when recording the fringe intensity. Moreover, the sam-

pling of the interference pattern should be sufficient so that the contrast is not

significantly reduced.

4.5 Speckle

If a rough surface is illuminated with coherent light a ‘grainy’ intensity pattern

is observed. The speckle effect is caused by the interference of coherent light

scattered from different surface points. The height variation of the surface points

needs to be larger than the wavelength of the coherent light source used, oth-

erwise the surface acts like a specular surface for the incident light. The phase

of the scattered waves changes randomly according to the surface point height.

Hence the interference pattern observed consists of spatially stationary dark and

bright points representing interference maxima and minima. The point size dsp lat

increases the further away the observation-plane is located. The speckle has a

cigar-like shape with an axial extension larger than the lateral extension, as shown

in Fig. 4.11. The mean lateral speckle-size can be derived by the auto-correlation

function applied to the observed intensity pattern. The auto-correlation of free

space propagated light originating from a uniformly scattering square area of

dsp_axial

dsp_lat

Figure 4.11: Axial and lateral speckle-size
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X ×X can be described by ‡:

R′(x′, y′) = 〈I〉2
[
1 + sinc2

(
Xδx′

λd

)
+ sinc2

(
Y δy′

λd

)]
(4.40)

The mean speckle-size is defined between the positions at which sinc2
(
Xδx′

λd

)
first

drops to zero.

dsp lat =
λd

X
(4.41)

The same conclusion can be drawn from Young’s double slit experiment shown

in Fig. 4.12(a). This kind of speckle obtained by unhindered free space propaga-

tion is called objective speckle. By analogy, speckle obtained from a setup with

imaging optics is called subjective speckle. The in-focus imaged object point at

distance d2 is superimposed with a diffraction pattern caused by the spatially

limited lens aperture D.

R′(r′) = 〈I〉2
[
1 + 2J1

2

(
πDr′

λd2

)]
(4.42)

The lateral speckle size for a circular aperture is defined by the region between

the first two minima of the Bessel-function.

dsp lat =
0.61λ

NA
=

1.22λd2

D
(4.43)

One could see an analogy to the derivation of the smallest resolvable object detail

δ. The difference to the derivation of δ exists in the plane at which the features

occur. For lens-less holography δ is described in the object-plane and is defined

by the size of the sensor’s aperture. In contrast the lateral speckle-size (dsp lat)

occurs in the hologram-plane and is determined by the object-size. In case an

optical system is applied, such as for the recording of image-holograms, δ and

‡taken from Goodmann (1975)
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dsp lat depend on the lens-aperture D.
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Figure 4.12: Imaging arrangement for (a) objective speckle and (b) subjective speckle

The axial speckle-size according to Ostrovsky et al. (1991) is:

dsp axial =
λ

NA2 =
4d2

2λ

D2
(4.44)

The speckle effect is not only apparent in the recording process but also in the

reconstruction process. The speckle-size in the reconstructed hologram is de-

termined by the hologram-size (X ′) and the reconstruction distance (d′). The

resulting speckle-size in respect to the setup and the recording or reconstruction

process is shown in Table 4.2.

4.6 Modulation Transfer Function

This section is devoted to the influence of the pixel-size, the sensor-shape and

the sensor-size on the Modulation-transfer-function (MTF).
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Table 4.2: Speckle-size

Speckle size dsp Lateral Axial

Objective (recorded)
λd

X

4λd2

X2

Subjective (recorded)
1.22λd2

D

4λd2
2

D2

Reconstructed
λd′

X ′
4λd′2

X ′2

4.6.1 MTF of Pixel-size

The camera has a limited capability for recording high spatial frequencies (ν ′x)

due to its pixel-size (∆x′). A parameter for the camera’s frequency response is

the modulation transfer function (MTF). It is defined as the ratio of output and

input contrast (V) at each spatial frequency.

MTF =
Vout
Vin

(4.45)

Where the V can be calculated by:

V =
Imax − Imin
Imax + Imin

(4.46)

Imax and Imin represent the maximum and minimum intensity levels. The MTF

of a system indicates how the various frequencies are affected by the system.



4. Optical Parameters and Properties of Digital Holography 100

PixelPixel Pixel Pixel Pixel Pixel

Pixel Pixel Pixel Pixel Pixel Pixel

Iout

x’

x’

I

x’

Imax

Iin

Imin

Imax

Imin

Iout

Imax

Iin

Imin

Imax

Imin

Iout

Imax

Iin

Imin

Imax

Imin

In
cr

e
a
si

n
g
 p

ix
e
l-
s
iz

e

Figure 4.13: Sampling with different pixel-sizes

With increasing pixel-size ∆x′ the bandwidth of the MTF decreases (see Fig.

4.13). According to Boreman (2001) the pixel MTF can be calculated by:

MTFpixel =

∣∣∣∣sin (π∆x′νx′)

π∆x′νx′

∣∣∣∣ = |sinc (∆x′ν ′x)| (4.47)

Fig. 4.14 shows the pixel MTF including the cutoff frequency
(
νcutoff = 1

∆x′

)
and the Nyquist frequency (νNyquist). The Nyquist frequency defines the max-

imum sampling frequency νsa. The recording of spatial frequencies ν ′x larger

than νNyquist causes aliasing, which results in disturbing imaging features when
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Figure 4.14: Graph pixel MTF

reconstructing the hologram such as ghost images.

4.6.2 MTF for Lens-less and Image-Holography

The sensor’s MTF considers how various spatial object frequencies (νx) are af-

fected by the sensor’s size and shape. The MTF is represented by the auto-

correlation of the sensor’s aperture-function.

Lens-less Hologram

In the case of lens-less holography the hologram is directly recorded on a rect-

angular sensor. The auto-correlation function of a rectangle is a triangle, which

results in a MTF:

MTF (νx) = 1− νx
νcutoff

(4.48)

Where the cutoff-frequency represents the reciprocal of the smallest resolvable

object detail. In case of lens-less holography the minimum resolvable object

detail is determined by Abbe’s criterion, see Eq. 4.21.

νcutoff =
N∆x′

λd
(4.49)
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Doubling the NA or using a light-source of half the wavelength results in twice

the cutoff frequency, which is shown in Fig. 4.15(a).

Image-Hologram

A lens-system is employed between object and hologram. The recorded spatial

frequency content is determined by the aperture of the lens-system, which gen-

erally has a circular shape. According to Boreman (2001) the autocorrelation

function for a circular aperture is defined as:

MTF (νx) =
2

π

arccos
νx

νcutoff
− νx
νcutoff

√
1−

(
νx

νcutoff

)2
 (4.50)

Here the cutoff-frequency is defined by Rayleigh’s-criterion applied to a circular

aperture, see Eq. 4.23:

νcutoff = 0.82
D

λd
(4.51)

A comparison between the MTF obtained for a lens-less hologram and an image-

hologram is shown in Fig. 4.15(b). It was assumed that the sensor size N∆x′

matches the diameter of the lens system D. In conclusion, the MTF obtained

by lens-less holography possesses a larger spatial frequency bandwidth (∆ν) and

a better contrast than the MTF-curve obtained with image-holography. This

statement is based on the assumption that both systems have the same NA

and the same wavelength λ. Hence the introduction of a lens-system should be

avoided unless the object is either too small or too large to be recorded utilizing

lens-less holography.
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Image-holography
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Lens-less holography

(b)

Figure 4.15: (a) Influence of νcutoff based on a rectangular aperture, (b) Comparison
between lens-less holography with rectangular aperture and image-plane holography
with circular aperture

The MTFs shown in Fig. 4.15 correspond to incoherent illumination. Accord-

ing to Goodman (1996), the MTF for coherent illumination possesses a uniform

maximum value defined over the whole frequency range. At the cutoff-frequency

the MTF drops down to a value of zero. The cutoff-frequency for coherent il-

lumination is half the cutoff-frequency for incoherent illumination. It could be

concluded that incoherent illumination results in a better image resolution. How-

ever, it was pointed out by Goodman (1996) that the cutoff-frequency in the

coherent case determines the maximum frequency of the image amplitude, while

the cutoff-frequency in the incoherent case refers to the maximum frequency of

the image intensity. Therefore, the resolution obtained for both cases is not

directly comparable. It depends on the object’s phase distribution. Experimen-

tal results, presented in Chapter 6, and the cutoff-frequency calculation used by

other authors, such as Mico et al. (2006) and Ostrovsky et al. (1991), recommend

that the resolution for the reconstructed hologram can best be predicted utilizing

the incoherent illumination. Therefore, the resolution for the incoherent case is

applied hereafter.
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Figure 4.16: Cropped numerical reconstruction, (a) at 1020mm and (b) at 1090mm
reconstruction distance

4.7 Properties of Digital Holography

4.7.1 Storage of 3-Dimensional Information

Holographic images are capable of storing three dimensional information.

This property can be demonstrated by placing two objects at different distances

to the camera. An M6 nut (10 mm width across flats) and a five pence coin (18

mm diameter) have been placed at different distances to the camera. A single

hologram was recorded. Afterwards the Fresnel-method was used to reconstruct

the holograms. The reconstruction distances d′ applied ranged from 1000 mm to

1180 mm whereas the reconstruction was performed in 5 mm steps. The nut is

in focus at 1020 mm, shown in Fig. 4.16(a). At 1090 mm the coin is sharply

focused whereas the nut is now out of focus, see Fig. 4.16(b). The depth of field,

which was discussed previously in Section 4.4.2 , determines the sensitivity for

the axial range at which the object appears in-focus.
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Figs. 4.16(a) and (b) prove the three dimensional storage capability of digital

holography.

4.7.2 Homogenous Information Distribution

In the case of lens-less holography, light from each point of an object is dis-

tributed over the entire sensor. Therefore, each small region of the recorded

hologram holds information of the entire object. Reducing the size of the re-

gion used for the reconstruction only affects the resolution of the reconstructed

hologram, but not its size or the parts displayed. This property of holography is

demonstrated by Fig. 4.17. Some parts of the hologram have been covered by

a mask. Nevertheless, the object is still visible in the numerical reconstruction.

The shape of the mask can be seen in the DC-term since it represents the zero

order, which is build up by the undiffracted transmitted light. To prove that

all regions hold information of the object, the hologram was covered with the

inverted mask. Pixels which used to hold information are now covered by the

inverted mask and vice versa. However, the object’s image is still displayed in

the reconstruction, see Figs. 4.17(e) and (f). The resolution of the reconstructed

image decreased due to a reduction of the available reconstructing pixels. This

effect can be interpreted as a decreasing aperture, which results in an increased

speckle size and a reduced resolution.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17: (a) Digital hologram (b) Numerical reconstruction suppressing DC-term
(c) Masked hologram (d) Reconstruction (e) Negatively masked hologram (f) Recon-
struction
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In the case of image-holography the light from an object point illuminates a

small region of the hologram. Therefore, the reconstruction of a fragment of the

hologram displays only the corresponding part of the object.

4.7.3 Direct Phase Accessibility

(a)

p p- p p- p-

nDj i  rad(b)

p p- p p- p-

nDj i  rad(c)

Figure 4.18: (a) Object under investigation, (b) cropped ambiguous double-exposure
intensity reconstruction, (c) cropped unambiguous double-exposure phase reconstruc-
tion

If a hologram is reconstructed a complex wave field is generated holding amplitude

and phase information of the object under investigation. In optical holography

the reconstruction is perceived by a receiver which is only intensity sensitive such

as the human eye. The phase information in this case is not directly accessible.

In digital holography the reconstruction is performed numerically, which directly

enables the separation of amplitude and phase information. This is demonstrated

by means of double exposure holography. Double exposure holography is an im-

portant method when in-plane or out-of-plane deformations need to be investi-

gated with sub-micrometer precision. Fig. 4.18(b) shows the normalized modulus

of the double-exposure phase-map as obtained by optical holography including
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its cross-section, which is indicated by a black line. A double-exposure phase

map is obtained by subtraction of the numerical reconstruction of two holograms

recorded at different object states, un-deformed and deformed. In optical holog-

raphy the reconstruction results in a sinusoidal ambiguous intensity fringes. The

direction of deformation is unknown. However, the phase reconstruction of the

digital double-exposure hologram shown in Fig. 4.18 is unambiguous. The direc-

tion of deformation is known, which is a major advantage of digital holographic

interferometry in comparison to optical holographic interferometry.

Sensitivity vector

The double-exposure phase map needs to be evaluated in order to obtain the

magnitude of the deformation applied to the object under investigation. The

position of the illumination and observation point determines the setup’s dis-

placement sensitivity, which can be described by the sensitivity vector ~K. ~K can

be derived with the help of Fig. 4.19, which results in the following vectorial

notation:

~K = ~ki − ~ko (4.52)

The illumination wave-vector ~ki and observation wave-vector ~ko are defined by:

~ki =
2π

λ
~ni ~ko =

2π

λ
~no (4.53)
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Figure 4.19: Setup geometry with illumination and observation point

Where ~ni and ~no represent the corresponding unit vectors. The unit vector

~ni can be calculated by the distance between illumination point Pi and object

point P .

~ni =
~r − ~ri
|~r − ~ri|

(4.54)

~no can be obtained in a similar manner.

~no =
~ro − ~r
|~ro − ~r|

(4.55)

A displacement of the object causes a change of the object-vector ~r. The displace-

ment is of small magnitude typically a few microns compared to the magnitude

of the vectors ~r, ~ro and ~ri, which are in the meter range. Therefore it can be

assumed that ~ni and ~no remain constant for loaded and unloaded object states.

∆~r = ~r2 − ~r1 (4.56)
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Where ~r1 indicates the initial object position and ~r2 the object’s position af-

ter the displacement occurred. The phase change ∆ϕ obtained utilizing digital

holography is related to the displacement ∆~r by:

∆ϕ = ~K ·∆~r (4.57)

Out-of-plane displacement measurement

The setup geometry for measuring out-of-plane deformation is shown in Fig. 4.20.

The sensitivity to detect out-of plane-displacement is largest when illumination

vector ~ki and observation vector ~ko are parallel to each other.
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Figure 4.20: Setup geometry for measuring out-of plane displacement

Moreover, both vectors are perpendicularly orientated to the object surface.

The resulting sensitivity vector ~K is:

~K =
4π

λ
~ni (4.58)

One can assume that ~K is constant for the entire object if a collimated beam was

used to illuminate the object.
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In-plane displacement measurement

The measurement of in-plane displacement can be accomplished by illuminating

the object with two beams of corresponding illumination vector ~ki1 and ~ki2. The

angle of both beams in respect to the observation vector ~ko is matched but op-

posite in sign, as shown in Fig. 4.21. The magnitude of the resulting sensitivity

vector is related to the angle α, as discussed in Doval (1999).

| ~K| = 4π

λ
sinα (4.59)

In that manner the sensitivity can be adjusted to range between zero and 4π
λ

.

A good ratio between recorded scattered light from the object and reasonable

sensitivity is obtained by α = 45◦.

Pi

2. object beam 

in-plane displacement

re
fe

re
n

ce
b

e
 

a
m

 

beam splitter 

1. object beam 

a 

a 

out-of-plane displacement

r
f

ce
b

e
e

e
re

n
 

a
m

 

beam splitter 

object beam 

digital camera

digital camera

ki

ko

P

k  i1

k  i2

k  o

K =k -ki1 i2

k i

k  o

K =k-ki o

x

y

z
Po

ri

ro

r

K

object-plane

hologram-plane

Figure 4.21: Setup geometry for measuring in-plane displacement

Out-of-plane double exposure experiment

An experiment for out-of-plane displacement was performed. The object under

investigation was a cantilever shown in Fig. 4.18(a). A micrometer screw was

attached to the cantilever, which enabled the application of an adjustable and

controllable displacement with micrometer accuracy.
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Figure 4.22: (a) 5x5 Median filtered wrapped phase map, (b) Goldstein’s cut-line
algorithm unwrapped phase map, (c) deformation map

In that manner the results obtained by digital double exposure holography could

be validated. Two holograms, one of the initial object state u′1 and a second one

after the deformation was applied to the object u′2, were recorded. The magni-

tude of the applied deformation was 10 µm. Both holograms were numerically

reconstructed and their reconstructed phase subtracted from each other.

∆u′′(x′′, y′′) =
u′′2(x′′, y′′)

u′′1(x′′, y′′)
(4.60)

The corresponding phase difference in respect to the deformation applied is:

∆ϕ(x′′, y′′) = arctan
I {∆u′′(x′′, y′′)}
R {∆u′′(x′′, y′′)}

(4.61)

The subtraction was performed in exponential notation, which results in a better

phase contrast compared to subtracting the individually calculated phase maps of

each reconstructed hologram. The double-exposure phase map obtained including

cross-section is shown in Fig. 4.18(c). Where the x-axis of the cross-section
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denotes the cantilever length (Lc) and the y-axis the phase-difference in rad

between both object states (∆ϕ). Afterwards the 2π discontinuities were removed

utilizing unwrapping. The unwrapping was performed with the free software

HoloVision 2.2 § and ’Goldstein’s cutline’ algorithm, which is implemented in this

software. Prior to the unwrapping procedure a median filter was applied to the

obtained double exposure phase map to reduce the impact of speckle-noise, which

otherwise would result in unwrapping errors. In order to maintain the modulation

between π and −π the phase is split into its sine and cosine components. The

median filter is implemented in Matlab as ’medfilt2’ function, which was applied

to each individual component. The filtered double exposure phase map, shown

in Fig. 4.22(a), was then obtained by applying the atan function.

∆ϕfiltered(x
′′, y′′) = arctan

[
medfilt2 (sin ∆ϕ(x′′, y′′))

medfilt2 (cos ∆ϕ(x′′, y′′))

]
(4.62)

The obtained unwrapped phase data, shown in Fig. 4.22(b), was transformed

to deformation data by taking into account the sensitivity vector ~K, shown in

Fig. 4.22(c). The obtained result was then compared with the predicted results.

The bending model curve of a cantilever fixed at one end can be derived from

Cartwright (2001):

z =
zmax
2L3

c

(
x3 − 3L2

cx+ 2Lc
)

(4.63)

Where Lc is the length between the point at which the cantilever is fixed to

the point at which the micrometer screw touches the cantilever and zmax the

displacement applied to the cantilever at Lc. zmax applied was 10 µm. Both

the obtained and predicted bending curves are shown in Fig. 4.23. The residual

to the predicted curve is −0.0128 ± 0.0639 µm. Hence the standard deviation

obtained is λ
10

which matches the expected accuracy claimed by other authors.

§developed by Tuft and Øystein (2009) http://www.edge.no/projects/

http://www.edge.no/projects/
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Figure 4.23: Graph experimental data compared to model curve

4.7.4 Resolution Beyond Rayleigh-criterion

The sharply in-focus point arising from the geometric-optical model is convolved

with the rectangular aperture-function. In that way the wave-optical model,

which represents the diffraction limit due to the aperture is accounted for. The

resolution theory describing this effect is known as Rayleigh criterion, see Section

4.4. On the other hand the diffraction limit in the recording process, described by

e1

X’

l

2d1

e1

d

+1. order1;2

-1. order ; 0. order1 2

+0. order1

e2
2d2

Figure 4.24: Recording of higher spatial frequencies
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the Abbe-criterion enables the recording of twice the spatial resolution. Accord-

ing to Abbe, zeroth and first order need to be recorded in order to reconstruct

an object detail. This condition is already fulfilled in case zeroth and plus first

diffraction order are recorded, shown in Fig. 4.24, because plus and minus first

order are conjugated complex pairs and hold identical information. One needs to

expand the hologram utilizing zero-padding to at least twice its size in order to

be able to reconstruct these spatial frequencies, which otherwise would be lost in

the convolution process with the aperture function.

(a) (b)

(c) (d)

Figure 4.25: (a) Hologram 3000x2208 pixels, (b) zero-padded hologram 6000x6000
pixels, (c) cropped reconstruction of (a), cropped reconstruction of (b)
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Table 4.3: Theoretical and practically achieved resolution

Parameters
Vertical reso-
lution in µm

horizontal res-
olution in µm

Predicted for 3000x2208 pixels 24.2 17.8
Obtained for 3000x2208 pixels 31.3 15.6
Obtained for zero-padded
6000x6000 pixels

13.5 12.4

A hologram of the USAF 1951 resolution test-target was recorded at 295 mm

distance. The camera used consists of 3000x2208 pixels and a 25 mW HeNe-

Laser with 632.8 nm wavelength was employed. The resolution for vertical and

horizontal direction was calculated according to Rayleigh’s criterion applied to a

rectangular aperture, see Eq. 4.25. The smallest resolvable test target element

was determined by calculating an averaged cross section for the investigated

element. The cross sections are shown in Fig. 4.25(c) and (d), where the x-

axis denotes the pixel-number and the y-axis the normalized intensity. Care

was taken so that local minima are visible (black strips) and the ratio of the

largest local minima to the smallest local maxima is less than 0.81 according to

the resolution criterion for a rectangular aperture shown in Fig. 4.6. In order

to view the smallest resolvable object detail a small region has been selected.

The black ring in Fig. 4.25 encircles the horizontal resolution and the white

ring the vertical one. The same approach to evaluate the resolution obtained

is applied in this thesis hereafter. The values for the predicted resolution and

the experimentally obtained resolution is presented in Table 4.3. The resolution

obtained for the reconstruction of the 3000x2208 pixels hologram matches with

the predicted values. Apart from different pixel-numbers, astigmatism could

have caused a different resolution in x and y direction due to the recording of

an off-line hologram. The resolution utilizing zero-padding could be increased

by a factor of 2.3 in vertical direction and 1.3 in horizontal direction. Thus, the
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averaged resolution increased by a factor of 1.8, which is close to the expected

resolution improvement of factor two. A diffusely scattering object might enhance

the resolution obtained. The further enhancement effect can be explained by

considering a single point within a small object region enclosing this point. The

point has the characteristic that the undiffracted light from the zeroth order holds

a certain angle to the optical axis, which enables the recording of one of the first

diffraction orders and zeroth order only. This effect can even be enhanced by

tilted object illumination, which is discussed in Ishizuka (1994). The process

of only recording one of the first diffraction orders and zeroth order was coined

single-side-band holography by Lohmann (1956).

4.8 Conclusion

Optical Parameters have been derived, which are important to evaluate digital

holographic systems presented hereafter. The resolution improvement beyond

Rayleigh’s criterion needs to be pointed out at this stage. The resolution im-

provement by zero-padding was realized by other authors such as Gýımesi et al.

(2009) and P.Ferraro et al. (2008), but to my knowledge no explanation for the

improved resolution was presented.



CHAPTER 5

Space bandwidth product (SBP)

5.1 Introduction

In digital holography the interference pattern produced by the superimposition

of reference and object-wave is stored in discrete values by a digital camera

e.g. CMOS, CCD. It is assumed that the object under investigation has a finite

extent and is centered on the optical axis. Thus the maximum and minimum

object extension x, y and −x, −y are of same magnitude but opposite sign:

− x ≤ X ≤ x ⇒ |x| ≤ X

2

− y ≤ Y ≤ y ⇒ |y| ≤ Y

2

(5.1)

Moreover, it is assumed that the continuously defined spatial frequency spectrum

(∆ν = ∆νx ·∆νy) of the object has significant values only in a finite region.

Hence, the object can be considered to be approximately band-limited. The

frequency bandwidth ∆νx and ∆νy of the object is defined by its highest spatial

118



5. Space bandwidth product (SBP) 119

object frequency νx max and νy max, which results in the following relations:

− νx max ≤ ∆νx ≤ +νx max ⇒ |νx max| ≤
∆νx

2

− νy max ≤ ∆νy ≤ +νy max ⇒ |νy max| ≤
∆νy

2

(5.2)

The total amount of sampling points for the object is given by:

SBP = XY∆νx∆νy (5.3)

Where X and Y are the object’s spatial dimensions. The number of sampling

points represents the Space-Bandwidth Product (SBP). The SBP is the physi-

cal quantity which describes the information capacity of an optical system. The

SBP of the reconstructed hologram is defined as a product of the field of view

(FOV) and the highest resolvable spatial frequency νx max. The highest spatial

frequency is represented by the inverse of the smallest resolvable object detail

δ, which was discussed in Section 4.4.1. In order to record a hologram suc-

cessfully the SBP of the holographic system should be larger than that of the

object to ensure no loss of object-information. This section focuses on the re-

quired SBP′ of the sensor in the recording process and the obtained SBP′′ in

the reconstruction process. The nomenclature of the SBP in the recording pro-

cess SBP′ (hologram-plane) and reconstruction process SBP” (reconstruction-

plane) is in accordance with Fig. 3.1. The recording efficiency of different dig-

ital holographic setup configurations is analyzed and compared. Furthermore,

the performance capacity in terms of the reconstructed FOV and the small-

est resolvable object detail are investigated. An in depth study of the SBP

in digital holography was conducted by Lohmann (1967) and Xu et al. (2005).

Lohmann (1967) studied the most commonly applied holographic setup configura-

tions, the Fresnel-hologram, Fourier(Fraunhofer)-hologram and Image-hologram.
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A Fresnel-hologram is recorded when the free space propagated object-wave in-

terferes with a plane reference-wave. A Fourier-hologram is recorded when an

equidistant spherical reference-wave and an object-wave interfere in the hologram-

plane. Lohmann analyzed the holographic setups in an off-line arrangement.

Moreover, his investigation of Fourier-holograms were based on a lens, which

converted the reference and object point source into plane waves. The Fourier-

holograms discussed in this thesis are based on a lens-less setup. Xu et al. (2005)

discussed the SBP for Fresnel-holograms in in-line and off-line configurations.

In that manner, the next pages desribe an extension of the work conducted by

Lohmann (1967) and Xu et al. (2005).

An important property of the SBP is that its size remains constant for the

same optical signal, which is defined in one dimension as X∆νx.
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Figure 5.1: Adopted Figs. taken from Lohmann (1996) (a) SBP in the space-frequency

domain, (b) SBP of (a) after Fresnel-transformation, (c) SBP of (a) after Fourier-

transformation, (d) SBP of (a) after passage through lens
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Hence the area of the SBP is independent of the transformation applied to

it. The SBP can be described in the space-frequency domain. The impact of an

optical transform such as Fresnel-transform or Fourier-transform on the space-

coordinates and spatial frequency coordinates representing the SBP can be ob-

tained utilizing the Wigner-distribution function:

W (x, νx) =

∫
u(x+ x′/2)u∗(x+ x′/2) exp(2πiνxx

′)dx′ (5.4)

where x denotes the spatial coordinate of the signal and x’ the spatial coordinate

of the optical system. Further information of the Wigner-distribution function

can be found in Lohmann (1967) and Lohmann (1996). It is assumed that the

original one dimensional SBP of the object is rectangular as shown in Fig. 5.1.

A Fresnel-transformation applied to the original SBP results in a shear of the

spatial coordinate in the space-frequency domain (Fig. 5.1(b)). The original SBP

is rotated by 90◦ when a Fourier-transformation is applied to it (Fig. 5.1(c)). A

shear in the spatial frequency coordinate is introduced by the passage of light

through a lens or lens-system, see Fig. 5.1(d).

5.2 Required SBP′ of The Recording Sensor

This section focuses on how efficiently the sensor’s SBP′ is used in respect to the

optical arrangement. For simplicity only the one dimensional case is considered.

An object with the lateral extension X and a spatial frequency band-width ∆ν

has a SBP of:

SBP = X∆ν (5.5)

Instead of the Wigner-distribution function the impact of optical transforms on

the space and spatial frequency coordinate is obtained from the resulting inter-
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ference between reference-wave and object-wave. The propagation of light from

the object to the hologram was simulated using the Fresnel-method, for which

the spherical wavefront is approximated by a parabolic wavefront (Eq. 2.50).

5.2.1 Fresnel-hologram

The object is illuminated with a collimated laser beam. The point xo in the

object-plane is chosen to be located on the optical axis as shown in Fig. 5.2.

The object can be modeled as a grating with a grating frequency νo. The largest

resolvable grating frequency νo is determined by the size of the sensor X according

to Abbe’s criterion, see Section 4.4.1. We can simplify the grating to a double

slit, which corresponds to two point sources Ao1 and Ao2, which are located close

to xo. Both point sources are separated by:

xo2 − xo1 = 2δ =
1

νo
(5.6)

Due to only considering a single point in the object-plane u(x) the integral over

dx in Eq. 2.50 can be dropped. Hence, the propagation of light from both points

e
e

dl

object-plane u(x) hologram-plane u’(x’)

x x’

z

Ao1

Ao2

xo

evolving  
wavefront

x’

-x
x o

1
2

o

Figure 5.2: Interference pattern caused by smallest resolvable object detail
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in the object-plane to the hologram-plane can be described by:

u′o1(x′) = Ao1iλd exp

[
iπ

λd
(x′ − xo1)

2

]
(5.7)

u′o2(x′) = Ao2iλd exp

[
iπ

λd
(x′ − xo2)

2

]
(5.8)

The resulting interference pattern from both point sources and its corresponding

intensity becomes:

I = |u′o1(x′) + u′o2(x′)|2 = [u′o1(x′, y′) + u′o2(x′, y′)] · [u′o1(x′, y′)∗ + u′o2(x′, y′)∗]

= A2
o1 + A2

o2 + 2Ao1Ao2 cos
[ π
λd

2x′ (xo2 − xo1)
]

(5.9)

The phase term (x2
o1 − x2

o2 ≈ 0) contributes to a constant phase only and is there-

fore neglected for further considerations. The interference of both propagating

point sources at xo1 and xo2 results in a linear phase difference (phase tilt) accord-

ing to Eq. 5.9. Between both propagating waves no parabolic phase difference

exists, since both possess the same curvature. According to Huygens’ principle

these two point sources generate a newly evolving propagating distorted parabol-

ical wave, see Fig. 5.2 (dashed green line). The object information is stored in

the wavefront distortion. The phase of the parabolic object-wave is visualized

when the object-wave interferes with a reference-wave of different curvature. The

propagating object-wave can therefore be described as:

u′o(x
′) = Ao exp

[
i
2π

λd
x′ (xo2 − xo1)

]
exp

[
iπ

λd
(x′ − xo)2

]
(5.10)

Eq. 5.10 gives an overview of all phase terms involved in the setup of the object-

wave. According to Lohmann (1967) the linear phase term
(

2π
λd
x′ (xo2 − xo1)

)
can
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be replaced by (2πνox
′). Hence Eq. 5.10 is rewritten as:

u′o(x
′) = Ao exp (i2πνox

′) exp

[
iπ

λd
(x′ − xo)2

]
. (5.11)

At the hologram-plane u’(x’) the spherical object-wave, parabolically represented

in Eq. 5.10, interferes with a plane reference-wave, shown in Fig. 5.3. The plane

reference-wave can be described as:

u′r(x
′) = Ar exp (−i2πνrx′) (5.12)

Where νr corresponds to the reference-wave’s frequency. The interference pattern

obtained can be described by the intensity of the interference between object-wave

and reference-wave:

I(x′) =

∣∣∣∣Ao exp (i2πνox
′) exp

[
iπ

λd
(x′ − xo)2

]
+ Ar exp(−i2πνrx′max)

∣∣∣∣2
= A2

o + A2
r + AoAr exp [i2πx′ (νo + νr)] exp

[
iπ

λd
(x′ − xo)2

]
+ AoAr exp [−i2πx′ (νo + νr)] exp

[
−iπ
λd

(x′ − xo)2

]
= A2

o + A2
r + 2AoAr cos

[
2πx′ (νo + νr) +

{ π

λd
(x′ − xo)2

}]
(5.13)
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Figure 5.3: Spatial frequency introduced by inclination of plane reference-wave
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The recorded intensity pattern arising from both phase terms in Eq. 5.13 can

be interpreted as a Fresnel-lens with focal length f = −d. This Fresnel-lens is

slightly distorted by the spatial frequency of the object point and the reference

frequency (νo + νr). From the geometric relations shown in Fig. 5.4 follows:

x′ = xo + λdνo (5.14)

This means that the recorded data is spatially localized in the hologram-plane,

which is caused by the parabolic term
{
π
λd

(x′ − xo)2} in Eq. 5.13. The parabolic

term needs to be numerically compensated for the correct reconstruction of the

object phase. However, it does not hold any additional object information and

is therefore not taken into account for the spatial frequency consideration.

In-line Setup

For an in-line setup, νr = 0, the spatial frequency recorded is νo. Hence the

transformation of the spatial and frequency coordinates is:

(xo, νo)→ (x′o, ν
′
o) (5.15)

→ (xo + λdνo, νo) (5.16)

l

object-plane u(x)  hologram-plane u’(x’) 

 e ln0

(x +ldn ,n )o o o

(x ,n )o o

d

z

Figure 5.4: Diffracted cone of light from object coordinate xo to hologram-plane
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Where the prime notation (′) represents the parameters in the hologram-plane.

The SBP′ for an in-line Fresnel-hologram is:

SBP ′in−line = SBP

(
1 +

λd∆ν

X

)
= SBP (1 +

X ′ −X
X

) ≤ 2SBP

(5.17)

The result shown in Eq. 5.17 represents the optimum case for which (X ′ = 2X)

according to Lohmann (1967).

Off-line Setup

For an off-line Fresnel setup the reference-wave and object-wave interfere at an

angle α. Thus a spatial carrier frequency νr is superimposed with the object

information. The recorded intensity contains three spatial frequency components,

and a lateral coordinate shift, as previously discussed. The corresponding space-

frequency-coordinate transformation is:

(xo, νo)→ (xo + λdνo, [−(νo + νr), 0, (νo + νr)]) (5.18)

In this case the SBP′ is:

SBP ′off−line = (X + λd∆ν)(∆ν + 2νr) (5.19)

The main advantage of an off-line setup is its ability to suppress twin- image and

zero-order term by solely recording a single hologram and filtering those terms

in the frequency domain as discussed in Section 3.3.3. In that case νr and the

corresponding angle α need to be chosen in a way to spatially separate the image,

twin-image and zero-order term in the reconstructed hologram. This is especially

valid for short reconstruction distances, since the blurred twin-image increases in
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sharpness the smaller the reconstruction distance becomes. The zero-order term

is caused by the undiffracted light. Hence its size matches with the sensor size

(X’). In order to avoid an overlap of zero-order term, image (X”)∗ and twin-image

in the reconstructed hologram νr needs to be:

νr ≥
X +X ′

2λd
(5.20)

Rearranging Eq. 5.18 results in:

X ′ −X = λd∆ν (5.21)

Both equations, Eq. 5.20 and Eq. 5.21, are combined to:

2νr ≥
X ′ −X + 2X

λd
= ∆ν +

2X

λd
(5.22)

Eq. 5.22 is inserted in Eq. 5.19:

SBP ′off−line = (X + λd∆ν)(2∆ν +
2X

λd
)

= 2X∆ν +
2X2

λd
+ 2λd∆ν2 + 2X∆ν

= 2SBP

(
2 +

X

λd∆ν
+
λd∆ν

X

)
≥ 8SBP

(5.23)

Again the optimum case for which X ′ = 2X was applied. Hence the term X
λd∆ν

in conjunction with Eq. 5.21 could be reduced. In conclusion, the off-line con-

figuration requires the sensor’s SBP ′ to be four times larger than for the in-line

configuration. The SBP′ for both configurations is shown in Fig. 5.5.

∗X” matches with the object-size (X) and can hence be replaced by it
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Figure 5.5: SBP of a Fresnel-hologram, (a) in-line arrangement, (b) off-line arrangement

5.2.2 Fourier-hologram

The reference-wave’s frequency of a Fourier-hologram depends on the object-size

X. The highest spatial reference frequency is obtained from the interference of

the emitted light from the reference point-source and the object point-source.

The object point-source considered is the one located furthest distant from the

reference-wave source point, see Fig. 5.6. The complex object-wave and reference-

wave can hence be described by:

u′o(x
′) = Ao exp (2iπx′νo) exp

[
iπ

λd
(x′ − xo)2

]
(5.24)

u′r(x
′) = Ar exp

[
iπ

λdr
(x′ − xr)2

]
(5.25)

The assumptions previously made in Section 5.2.1 are equally valid for the in-

vestigation of Fourier holograms. Moreover, the distances dr and d for the point

sources of reference and object-wave to the hologram-plane are matched (dr = d).
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Figure 5.6: Spatial frequency introduced by laterally offsetting the origin of the spher-
ical reference-wave

The intensity pattern recorded can then be described by:

I(x′) = A2
r + A2

o + AoAr exp

[
iπ

λd

{
2x′νoλd+ (x′ − xo)2 − (x′ − xr)2

}]
+ AoAr exp

[
−iπ
λd
{...}

]
(5.26)

The focus is now set on solving the complex exponential term in the curly brack-

ets.

{...} = 2x′νoλd+ (x′ − xo)2 − (x′ − xr)2
(5.27)

The second and third term in {...} are responsible for the reference frequency:

(x′ − xo)2 − (x′ − xr) = −2x′xo + x2
o + 2x′xr − x2

r (5.28)

From Fig. 5.6 follows that xr = −xmax and xo = xmax, which results in:

(x′ − xo)2 − (x′ − xr)2
= −4x′xmax (5.29)
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The two similar triangles defined by the angle α shown in Fig. 5.6 (highlighted

in red) result in the expression:

xr = xmax =
νrλd

2
(5.30)

Eq. 5.26 can be rewritten by substituting xmax in Eq. 5.29 with Eq. 5.30:

I(x′) = A2
r + A2

o + 2AoAr cos [2πx′ (νo − νr)] (5.31)

The spherical phase factor inherent to recording of Fresnel-holograms is elimi-

nated by using a spherical reference-wave of equal curvature. This results in a

space-coordinate transformation:

x′ = λdνo (5.32)

This means that the object information is not localized, on the contrary it is

spread over the entire hologram.

In-line Setup

The transformation from the object to the hologram plane for the in-line config-

uration (νr = 0) can be described as:

(xo, νo)→ (x′o, ν
′
o) = (λdνo, νo) (5.33)

The resulting SBP ′in−line is:

SBP ′in−line = λd∆ν ·∆ν = X∆ν = SBP (5.34)
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Figure 5.7: SBP of a Frourier-hologram, (a) in-line arrangement, (b) off-line arrange-
ment

Off-line Setup

In the off-line case three different spatial frequency terms (side-bands) arise as

previously discussed:

(xo, νo)→ (x′o, ν
′
o) = (λdνo,−(νo − νr), 0, (νo − νr)) (5.35)

The SBPoff−line is:

SBP ′off−line = (νr + νo) (λd∆ν)(
2xr
λd

+
x′

λd

)
(λd∆ν)

(5.36)

With xr = X
2

and x′ = X′

2
the SBP ′off−line obtained is:

SBP ′off−line =

(
X +

X ′

2

)
∆ν ≥ 2SBP (5.37)
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The result presented in Eq. 5.37 does again assume the optimum case (X ′ = 2X)

according to Lohmann (1967).

5.2.3 Image-Hologram

The object is imaged onto the sensor with a lens or a lens-system. The recording

of the real image of the object instead of the object itself can have some advan-

tages [Hariharan (1984)]. It is possible to position the projected image of the

object when recording the hologram. It is often used when the object is three

dimensional but not very deep in the third dimension [Goodman (1996)], which

is the case in digital holographic microscopy. Moreover, the resolution can be in-

creased for the investigation of lateral object details in the sub-micrometer range.

The viewing angle and the highest recordable spatial frequency is restricted by

the NA of the imaging lens. In order to analyze the spatial frequency content of

both interfering waves the influence of the individual propagation components,

shown in Fig. 5.8, need to be investigated. This is again obtained by simulating

the propagation of light from the object-plane u(x) to the hologram-plane u’(x’)

utilizing the Fresnel-approximation. We previously considered only a single point

in the object-plane.

n

x

n

x

n

x

n

x

nx’

x’
SBPSBP Dn

X+ldDn

X

u’(x’)

u’*(x’)

nx’

x’
SBPSBP Dn

X’=X+ldDn

X

u’(x’)

u’*(x’)

Dn

nr

d(n )x’d(n )x’

nx’

x’

u’(x’)

u’*(x’)d(n )x’

nx’

x’

u’(x’)

u’*(x’)d(n )x’

xr

ld

X
ld

Dnx’

X’=ldDn

Dnx’

nx’

x’

nx’

x’
u’(x’)

u’*(x’)

u’(x’)

u’*(x’)d(n )x’d(n )x’

DnL
nr Dnx’

X’=XL

X’=ldDn

X’=XL

DnL

X
ld

n

x

nx’

x’

nx’

x’

U’(x’)

u’*(x’)

u’(x’)

u’*(x’)

d(n )x’d(n )x’

DnL

nr

Dnx’

X’=XL

X’=XL

DnL

u(x) u’(x’)u (x)L1 u (x)L2

d1
d2

z

Figure 5.8: Sketch of different planes involved in the image formation
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That assumption is not valid any longer, since the result depends on the po-

sition of Po in the object-plane u(x). This is due to the fact that the light path is

not retraced in order to obtain the reconstructed object. The recorded hologram

holds already the in-focus object information. The recorded object phase infor-

mation is a quadratic function with respect to the object-coordinate x, which will

soon be shown. Thus we need to consider the integral over all object points. The

mathematical derivation shown in the following closely corresponds to the imag-

ing equations discussed by Goodman (1996) and Lohmann and Sinzinger (2006).

At first, the light performs free space propagation between the object and the

first lens surface uL1(x̃). At the first lens plane uL1(x̃) a diverging spherical wave

originating from the point Po can be registered.

uL1(x̃) =

∞∫
−∞

u(x) exp

[
iπ

(x− x̃)2

λd1

]
dx (5.38)

From uL1(x̃) light passes through the lens to arrive at the second lens surface

uL2(x̃), which can be simulated in the paraxial region by:

uL2(x̃) = uL1(x̃) exp

(
−iπx̃2

λf

)
(5.39)

Hence the spatial frequency of the object-wave is subjected to a shear
(
νL1(ũ) + x̃

λf

)
when passing through the lens from uL1(x̃) to uL2(x̃), see Fig. 5.1(d). From the

second lens surface light propagates to the hologram-plane u(x’).

u′(x′) =

∞∫
−∞

uL2(x̃) exp

[
iπ (x̃− x′)2

λd2

]
dx̃ (5.40)
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Substituting Eq. 5.38 and Eq. 5.39 in Eq. 5.40 results in:

u′(x′) =

∞∫
−∞

∞∫
−∞

u(x) exp

[
iπ

λ

{
(x− x̃)2

d1

− x̃2

f
+

(x̃− x′)2

d2

}]
dxdx̃

=

∞∫
−∞

∞∫
−∞

u(x) exp

[
iπ

λ

{
x̃2

(
1

d2

− 1

f
+

1

d1

)
− 2x̃

(
x

d1

+
x′

d2

)

+
x2

d1

+
x′2

d2

}]
dxdx̃

(5.41)

The in focus image-point should then be represented by a δ-function. Let us

therefore consider all exponential terms in {...}. An in focus image needs to

satisfy the lens formula Eq. 5.42.

1

f
=

1

d1

+
1

d2

(5.42)

The lens-formula is represented in {...} by the quadratic phase term in depen-

dence of x̃2-coordinate. This term should consequently nullify which results in:

u′(x′) = exp

(
iπx′2

λd2

) ∞∫
−∞

∞∫
−∞

u(x) exp

[
iπ

λ

{
−2x̃

(
x

d1

+
x′

d2

)

+
x2

d1

+
x′2

d2

}]
dxdx̃

(5.43)

Assuming that all conditions are met to permit the change of integration order

Eq. 5.43 becomes:

u′(x′) = exp

(
iπx′2

λd2

) ∞∫
−∞

u(x) exp

(
iπx2

λd1

)
∞∫

−∞

exp

[
−2iπx̃

λ

(
x

d1

+
x′

d2

)]
dx̃dx

(5.44)
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We now substitute the term:
x+ x′d1

d2

λd1

= ω̂ (5.45)

Thus we can solve the integral over dx̃ by applying a Fourier-transformation with

frequency ω̂.

u′(x′) = exp

(
iπx′2

λd2

) ∞∫
−∞

u(x) exp

(
iπx2

λd1

)
δ

(
x+ x′d1

d2

λd1

)
dx (5.46)

Taking into account the scaling property of the δ-function †:

δ(ax) =
δ(x)

|a|
(5.47)

results in:

u′(x′) = |λd1| exp

(
iπx′2

λd2

) ∞∫
−∞

u(x) exp

(
iπx2

λd1

)
δ

(
x+ x′

d1

d2

)
dx (5.48)

The integral can be solved by applying the sifting property of the δ-function

according to Bracewell (1986):

∞∫
−∞

f(x)δ(x− a)dx = f(a)

∞∫
−∞

δ(x− a)dx = f(a) (5.49)

The δ-function in an integral shifts the function f(x) outside the integral by

replacing the argument with the point at which the δ-function occurs. In our

case f(x) is represented by the product
[
u(x) exp

(
iπx2

λd1

)]
. The constant factor

|λd1| in Eq. 5.48 can be neglected and the integral solved as:

u′(x′) = u

(
−x′d1

d2

)
exp

[
iπx′2

λ

(
1

d2

+
d1

d2
2

)]
(5.50)

†taken from Bracewell (1986)
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The factor
(
−d1
d2

)
in the argument of u denotes the magnification Γ′ of the optical

system. The minus sign indicates an inverted image. Γ′ can also be defined by

the object and image coordinates.

Γ′ =
d2

d1

=
x′

x
= −d2 − f ′

f
(5.51)

Eq. 5.50 can be described by Γ′:

u′(x′) = u

(
x′

Γ′

)
exp

[
iπx′2

λd2

(
1− 1

Γ′

)]
= u

(
x′

Γ′

)
exp

(
iπx′2

λd2

)
exp

(
−iπx2

λd1

) (5.52)

If one is only interested in the intensity Eq. 5.52 totally satisfies the condition

to obtain an in-focus point in the image-plane. The complex exponential terms

only affect the phase. If not only the intensity but also the phase is important

the recorded image needs to interfere with a reference-wave. Moreover, in order

to record the correct object phase the parabolic exponential terms in Eq. 5.52

exp

(
iπ

λ

x2

d1

)
and exp

(
iπ

λ

x′2

d2

)

need to be eliminated. The quadratic phase factor depending on the x’-coordinate

can be eliminated by adapting the curvature of the reference-wave to the curva-

ture of the parabolic phase term. The quadratic phase term depending on the

x-coordinate can be neglected according to Goodman (1996) if:

i. The object is on a spherical surface centered on the optical axis with a

radius equals d1.

ii. The object is illuminated with a spherical wave which converges towards

the point where the optical axis pierces the principle plane of the lens, see
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Fig. 5.9.

iii. The phase of the quadratic phase term changes by an amount which is only a

fraction of a radian within the object region which contributes significantly

to a particular image point. This statement is valid if the object is not

greater than a quarter of the size of the lens aperture.

The recorded intensity of the interfering spherical reference-wave, shown in Eq.

5.25, and the object-wave is:

I =

∣∣∣∣u(−x′Γ′

)
exp

[
iπ

λ

(
x′2

d2

)]
+ Ar exp

[
iπ

λdr
(x′ − xr)2

]∣∣∣∣2
= u

(
−x

′

Γ′

)2

+ A2
r + 2u

(
−x

′

Γ′

)
Ar cos

[
π

λ

(
x′2

dr
− 2

x′xr
dr

+
x2
r

dr
− x′2

d2

)] (5.53)

Assuming (dr = d2) and neglecting
(
πx2r
λdr

)
, which only introduces a constant

phase offset, results in:

I = u

(
−x

′

Γ′

)2

+ A2
r + 2u

(
−x

′

Γ′

)
Ar cos

(
−2πx′xr
λd2

)
I = u

(
−x

′

Γ′

)2

+ A2
r + 2u

(
−x

′

Γ′

)
Ar cos (−2πx′νr)

(5.54)

From Eq. 5.54 can be concluded, that the phase adapted spherical reference-wave
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Figure 5.9: Convergent object illumination to suppress quadratic phase term
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introduces only a phase-tilt to the recorded image-hologram. The three spatial

frequency components encoded in the hologram can be singled out by applying

a Fourier-transformation to the recorded intensity.

(xo, νo)→ (−xo · Γ′, [−(νx′ − νr), 0, (νx′ − νr)]) (5.55)

Although a magnification (Γ′) is applied to the image, the SBP′ and SBP′′ must

still be kept constant as discussed in Section 5.1. The highest resolvable spatial

frequency is determined by the NA of the lens.

νx′ = 2
NA

λ
=

2x′

λ (d2 − f)
(5.56)

Taking into account Eq. 5.51 results in:

νx′ = 2
NA

λ
=

2x′

λ (d2 − f)
=

2x′

λΓ′f
(5.57)

The spatial image frequency νx′ is inversely proportional to Γ′. Despite taking

into account all these conditions to record object intensity and phase the resulting

recorded and reconstructed SBP′ does not necessarily match the object’s SBP. A

lens-pupil of infinite extension was assumed to derive the imaging equation. In

practice the lens-pupil is spatially limited. The ideal image resulting from u′(x′)

is convolved with the Fraunhofer diffraction pattern of the lens pupil P (x̃). The

lens pupil acts like a low-pass filter and stops the transition of spatial frequency

higher than the NA of the pupil allows for, see Eq. 5.58. Hence the recorded

SBP′ is affected by the spatial frequency bandwidth of the lens or lens-system.

Furthermore, the spatial frequency bandwidth ∆νx′ decreases the more out-of-

field the object point is located. This effect is due to lens abberations, which

increase the more laterally displaced from the optical axis the object point is
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located, as shown in Fig. 5.10. The spatial frequency bandwidth of the lens ∆νL

can be described by:

|ν(x′)| ≤ ∆νL = 2
NA

λ
= 2

n sin
[
arctan( D

2f
)
]

λ
≈ D

λf
(5.58)

The SBP′ of the image is therefore defined by the lens parameters:

SBPL = D∆νL = XL∆νL (5.59)

In-line Setup

SBP′ for an in-line configuration is:

SBP ′in−line = XL∆νL = SBPL (5.60)
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Figure 5.10: SBP of an Image-hologram, (a) in-line arrangement, (b) off-line arrange-
ment
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Off-line Setup

The separation of image, twin-image and zero order term is obtained by choosing

the inclination of the reference-wave to be larger than the largest light inclination

introduced by any imaging components. This statement results in the condition:

νr ≥ ∆νL/2 (5.61)

The required SBP′ for the off-line configuration needs to have the same spatial

width as the recorded image.

X ≥ XL (5.62)

The spatial frequency bandwidth in the hologram-plane is defined as:

∆ν(x′) = 2νr + ∆νL ≥ 2∆νL (5.63)

Thus the SBP (x′) in the hologram-plane is:

SBPoff−line ≥ 2XL∆νL = 2SBPL (5.64)

Both, in-line and off-line SBP for an image-hologram are shown in Fig. 5.10.

5.3 SBP′′ or Performance Capacity

The SBP′′ of the reconstructed hologram is described by the product of the

reconstructed field of view (FOV), which is one-dimensionally represented by X ′′

and the spatial frequency arising from the smallest resolvable object detail δx′′ .

SBP ′′ = X ′′ · 1

δx′′
(5.65)
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It describes the performance capacity of the holographic systems and depends on

the camera parameters and on the setup geometry.

5.3.1 Fresnel-hologram

In the first case the recording of Fresnel-holograms (plane reference-wave) is con-

sidered. If one likes to reconstruct a certain FOV a minimum recording distance

between object and camera needs to be kept for which the recorded interference

pattern is not under-sampled. This recording distance differs according to in-line

or off-line configuration as described in Section 4.2.1.

din−line =
(X +N∆x′)∆x′

λ
(5.66)

doff−line =
2(X +N∆x′)∆x′

λ
(5.67)

The one dimensional FOV for both cases are:

Xin−line =
dλ

∆x′
−N∆x′ (5.68)

Xoff−line =
dλ

2∆x′
−N∆x′ (5.69)

Taking into account the recording distances represented in Eqs. 5.66 and 5.67,

and the camera parameters enable the calculation of the holographic system’s

NA, by which the highest recordable spatial object frequency can be calculated.

1

ν(x′′)
= δ(x′′) =

λd

N∆x′
(5.70)

Replacing the distance d of Eq. 5.70 by Eq. 5.66 and Eq. 5.67 results in:

1

ν(x′′)in−line
= δ(x′′)in−line =

X +N∆x′

N
(5.71)
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1

ν(x′′)off−line
= δ(x′′)off−line =

2 (X +N∆x′)

N
(5.72)

Thus the SBP ′′ for both cases maintaining the minimum possible recording dis-

tance are:

SBP ′′in−line =
X ·N

X +N∆x′

SBP ′′off−line =
X ·N

2 (X +N∆x′)

(5.73)

5.3.2 Fourier-hologram

The plane reference-wave has been replaced by a divergent spherical reference-

wave. Both, camera-object distance and camera-spherical wave point source dis-

tance are matched. This results in an equal curvature of reference and object-

waves. Thus the interference fringes are homogenously distributed across the

sensor. The minimum recording distance for in-line and off-line configuration

are:

din−line =
X∆x′

λ
(5.74)

doff−line =
2X∆x′

λ
(5.75)

The corresponding FOV for in-line and off-line arrangement according to Eq.

4.18 are:

Xin−line =
dλ

∆x′
(5.76)

Xoff−line =
dλ

2∆x′
(5.77)

Consequently the SBP ′′s for in-line and off-line configuration are:

SBP ′′in−line = N

SBP ′′off−line =
N

2

(5.78)
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5.3.3 Image-hologram

According to Eq. 4.19 the FOV for an image-hologram is:

X =
N∆x′f

d2 − f
(5.79)

The highest recordable spatial object frequency depends on the NA of the lens-

system with respect to Rayleigh’s criterion.

|ν(x′′)| = ν(x′) = 0.81
D

λf

Thus the SBP ′′ becomes:

SBP ′′ = 0.81
N∆x′f

d2 − f

(
D

λf

)
(5.80)

5.3.4 Conclusion

The required SBP′ in the recording process and SBP′′ in the reconstruction pro-

cess for Fresnel-holograms, Fourier-holograms and Image-holograms was derived.

The SBP analysis focused upon the spatial frequency content of the recorded and

reconstructed hologram. It is also worthwhile to explore the obtained interference

phase in respect to the recorded object phase. The complex reference-wave in

the reconstruction process needs to be adjusted in order to display the object’s

phase correctly. These adjustments with respect to different holographic setups

are:

• In-line Fresnel-hologram: spherical phase arising in the recording stage

needs to be eliminated in the reconstruction stage

• Off-line Fresnel-hologram: reconstructed object-phase is superimposed with
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a tilted reference-phase. Hence, the complex conjugated reference-wave in

the reconstruction process needs to be adapted in order to eliminated the

introduced tilt.

• In-line Fourier-hologram: quadratic phase term of the spherical reference-

phase and the object-phase cancel each other out; no adjustment needed

• Off-line Fourier-hologram : need to correct residual phase tilt arising from

the different lateral position of both waves’ point sources.

• Image-hologram: An in depth discussion has already been conducted in

Section 5.2.3

Having investigated the reconstructed object-phase and which precautions need

to be taken in order to obtain the correct phase-reconstruction some conclusions

are drawn with regards to the SBP performance of different holographic setups.

The best SBP performance for the recorded SBP′ and reconstructed SBP′′ is

obtained by a lens-less Fourier-hologram. The SBP performance of the image-

hologram depends to a high degree on the lens-system employed. In general one

should aim to avoid the introduction of a lens system unless the object is either

too small or too large to be recorded with a lens-less setup. Main advantages of

a lens-less setup are:

i. The spatial cutoff frequency νcutoff for a rectangular aperture is larger than

for a circular aperture, see Section 4.6.2.

ii. The contrast obtained for various spatial frequencies is larger for a rectan-

gular aperture.

iii. The zero-padding approach implemented to improve the resolution of the

reconstructed hologram beyond the Rayleigh criterion can not be applied

to image-holograms.
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iv. Small inhomogeneities in the pixel response have a stronger influence on the

image-quality of image-holograms than for Fresnel-holograms and Fourier-

holograms. This is due to the fact that the object information is not local-

ized in a single point only.

v. In lens-less holography all object points are recorded with approximately

the same dynamic range. An image hologram displays sharp features such

as edges with a higher grey level, which decreases the dynamic range for

other object information.

Apart from these and aforementioned advantages a lens-less Fourier-hologram

does furthermore benefit from:

1. Mathematical simplicity which reduces the computational effort for the

numerical reconstruction.

2. Reconstruction by means of a two dimensional Fourier-transformation is not

restricted to a minimum distance, whereas the reconstruction of a Fresnel-

hologram utilizing the Fresnel-method is only valid in the Fresnel regime.

3. Reduced recording distance compared to Fresnel-holograms, which results

in an increased optical resolution.

4. Wave-aberration compensating characteristic due to adapted curvature of

reference and object-wave.

5. No need to introduce lenses, whereas Fresnel-holograms require lenses for

the collimation of the reference beam. In this manner costs, disturbing scat-

tering effects from dust on optical surfaces and wave-aberrations introduced

in the collimation process are minimized.
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6. Low coherence light sources can be used in conjunction with the investiga-

tion of microscopic objects, since matched reference and object-wave curva-

ture requires less temporal coherence. This results in reduced speckle-noise

and improved image quality.

Another important difference between the recording of lens-less holograms

and image-holograms is that the smallest resolvable object detail δ in lens-less

holography is determined by the sensor-size X ′. On the contrary, for an image-

hologram the smallest resolvable object detail δ is determined by the pixel-size

∆x′ in conjunction with aperture of the lens-systemD. On the other hand the size

of the recordable object depends on the pixel-size ∆x′ for lens-less holography,

whereas in image-holography it depends on the sensor-size X ′ in conjunction with

the lens-system’s specifications.

In conclusion, it could be shown that the SBP is an important tool to compare and

investigate different holographic systems in terms of their recorded information

and reconstruction capacity.



CHAPTER 6

Resolution Improvement in Digital

Holography

6.1 Introduction

In holography the sinusoidal interference pattern resulting from the superimpo-

sition of the reference and the object-wave is stored on a recording medium.

Photographic plates were originally used in optical holography as recording me-

dia. For most applications photographic plates have been replaced by digital

receivers such as CCD or CMOS cameras. Digital receivers enable fast image

acquisition without the tedious process of developing the image. Furthermore,

the image can easily be processed since it is already stored in a digital format.The

maximum resolution of digital receivers (typically 500 lp/mm) is small compared

to the resolution of photographic plates (typically 3000 lp/mm). This limits the

maximum angle between reference and object-wave. If one likes to record a digi-

tal hologram of a macroscopic object, a large distance between object and camera

needs to be kept in order to avoid under-sampling. Due to the long recording

distance a numerically reconstructed hologram possesses larger speckle than a

hologram recorded on a holographic plate (see Eq. 4.41). Moreover, the small-

147
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est resolvable object detail, according to Rayleigh’s criterion (see Eq. 4.25), is

much larger than for optical holography. Therefore, this thesis is devoted to the

implementation and development of resolution improvement methods for digital

holography.

Different approaches have been developed to overcome the reduced resolu-

tion in digital holography. Very early in the 1990s Wyrowski and Bryngdahl

(1989) described a method to reduce speckle noise in the reconstructed hologram.

They used a digital diffuser, based on an iterative Fourier transform algorithm

(IFTA). Another resolution improvement approach was based on the introduc-

tion of imaging phase-gratings. Paturzo et al. (2008) described a resolution im-

provement method utilizing an electro-optically tuneable two-dimensional phase

grating. The grating directed light to the camera, which otherwise would have

been lost. Seven spatially multiplexed holograms were simultaneously recorded.

A 50% resolution improvement was obtained. Mico et al. (2006) use a two dimen-

sional Vertical Cavity Surface-Emitting Laser (VCSEL) array consisting of nine

elements in conjunction with a diffraction grating, producing the same amount

of diffraction orders as the VCSEL has elements.

The most commonly applied and most effective resolution improvement meth-

ods are based on speckle de-correlation. One way to obtain speckle de-correlation

is tilted object illumination, which was carried out by Mico et al. (2008), Kang

(2008), and Yuan et al. (2008). Mico et al. (2008) obtained an approximately two

times resolution improvement utilizing the tilted illumination method. Nomura

et al. (2008) reported another speckle de-correlation method based on superim-

position of holograms recorded with different wavelengths. The speckle pattern

produced by each wavelength differs for each individual object point. In order

to enable superimposition the pixel-size of the recorded holograms had to be

changed with respect to the recording wavelength. Kaufmann et al. (2003) pro-
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posed an alternative multi-wavelength method. Three lasers Nd:YAG (532nm),

HeCd (442nm) and HeNe (633nm), were used in conjunction with a three chip

RGB colour camera. The signal with the highest amplitude was then chosen for

the reconstruction process. A resolution improvement of 60% was obtained by

Kaufmann et al. (2003). The most promising and most widely applied speckle

de-correlation method is the synthetic aperture method. The synthetic aperture

method is based on an the generation of an increased sensor area, which results

in an increased NA. In this manner the lateral resolution can be improved and

the speckle-size be reduced when reconstructing the hologram. The synthetic

aperture method can be implemented by either using a camera array or shifting

a single camera to different lateral positions in order to generate an increased

recording area. The percentage of resolution improvement equals the percentage

of additional pixels. The implementation of the synthetic aperture-method in

digital holography has been reported by Clerc and Gross (2001); Clerc and Col-

let (2000); Di et al. (2008); Zhang (2005); Baumbach et al. (2006); Massig (2002);

Nakatsuji and Matsushima (2008); Martinez-León and Javidi (2007); Kreis and

Schlüter (2007) and Gýımesi et al. (2009). In most cases a spherical reference-

wave is chosen [Di et al. (2008); Zhang (2005); Baumbach et al. (2006); Massig

(2002); Nakatsuji and Matsushima (2008); Martinez-León and Javidi (2007) and

Gýımesi et al. (2009)]. Another method not associated with speckle de-correlation

is based on the reduction of the digital receiver’s pixel-size. By sampling the in-

coming wave-field with sub-pixel accuracy the recording distance can be reduced.

This results in the recording of higher spatial frequencies and an improved res-

olution. Kornis and Gombköto (2005) describes three such sub-pixel methods

namely the Fourier Spectrum method, the Drizzle Interlace method and the Four

Quadrant 2x2 Drizzle method. These methods use a CCD camera with a fill factor

approaching 100%, where the light sensitive area matches the pixel-size. In that
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manner it is based on interpolation of a larger pixel-size to a reduced pixel-size.

In general CCD cameras are used for the recording of holograms due to their

larger fill-factor and less noisy readout in comparison to CMOS technology. How-

ever, CCD technology is more expensive than CMOS technology. Moreover, the

minimum pixel-size, which determines the minimum object-camera distance, is

larger for CCD cameras, see Table 2.4. These properties support the idea to

introduce CMOS cameras in digital holography. The noisier readout of CMOS

cameras can be reduced by hot-pixel elimination and dark field calibration prior to

the measurement. Three resolution improvement methods, the synthetic aperture

method, the sub-pixel sampling method and a combination of both, in conjunction

with CMOS-technology are presented in this chapter.

The novelty of the synthetic aperture method described in this thesis is that

it was carried out on CMOS technology in conjunction with the recording of

lens-less Fourier-holograms. The synthetic aperture hologram recorded is to the

author’s knowledge the largest recorded digital hologram resulting in the largest

obtained Space-Bandwidth Product (SBP) for digital holograms. In addition, a

comparison of the synthetic aperture and the spatial averaging technique devel-

oped by Baumbach et al. (2006) with respect to the obtained optical resolution

and phase measurement accuracy was conducted. The spatial averaging approach

is based on averaging all individual reconstruction of the laterally shifted holo-

grams.

The sub-pixel sampling method was carried out on CMOS technology and in

contrast with Kornis and Gombköto (2005) is not based on interpolation, which

demonstrates its novelty.

It is the first time to report the combination of synthetic aperture method

and sub-pixel sampling method, which represents another novelty.

To demonstrate the resolution improvement the methods applied have been
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evaluated using the USAF 1951 test target. A parameter to define the resolution

and imaging performance improvement of the reconstructed holograms is the

SBP. The SBP of the reconstructed hologram represents the product of the field

of view (FOV) and the highest resolvable spatial frequency. The calculation of

the SBP was taken from Lohmann and Sinzinger (2006):

SBP = δ−1
x′′ · δ

−1
y′′ ·N∆x′′ ·M∆y′′ (6.1)

Where δx′′ and δy′′ are the smallest resolvable object details in horizontal and

vertical-direction, ∆x′′ and ∆y′′ are the pixel-sizes in the reconstruction-plane,

and the product N∆x′′ ·M∆y′′ is the FOV of the numerical reconstruction. In

this particular case N and M denote the number of pixels which display the

reconstructed image. The SBP is a more meaningful parameter for the judgment

of optical systems since it is independent of the recording distance and permits

the comparison of different optical systems. The SBP for Fourier-holograms can

be calculated as explained in Section 5.2.2, for which only the one-dimensional

case was considered. The two dimensional SBP for in-line Fourier-holograms is:

SBPin−line = N ·M (6.2)

The SBP obtained for an in-line Fourier-hologram can be considered to be the

optimum SBP. In case of an off-line setup the two dimensional SBP is:

SBP =
N ·M

4
(6.3)

In order to measure the setup performance with respect to its optimum SBP an
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efficiency parameter η is introduced.

η =
SBP

SBPin−line
· 100% (6.4)

In this manner different optical setups can be compared. The SBP consideration

makes sense when holograms recorded from resolution targets such as the USAF

1951 test target are investigated.

The Signal-to-Noise Ratio (SNR) can be applied in case one would like to evaluate

the image quality improvement for the reconstruction of an arbitrary object or a

double exposure phase map. The SNR can be calculated by:

SNR = 20 log

(
X̄

σ

)
(6.5)

Where X̄ is the mean value of a population and σ the standard deviation. Assum-

ing that the noise is evenly distributed over the entire reconstructed hologram,

only a small representative region of interest with ideally constant grey level needs

to be considered for the SNR measurement. Grey level changes in that region

should then solely be due to noise. The SNR calculation needs to be slightly

changed in order to evaluate double exposure phase maps. The values assigned

to the pixels in a double exposure phase map lie within a 2π boundary with

a certain phase gradient. This phase gradient results in a fluctuation of phase

values. Therefore, the SNR is determined by calculating the standard deviation

along a minimum phase gradient.
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6.2 Synthetic Aperture Method

This section discusses the potential of the synthetic-aperture method in digi-

tal holography to increase the resolution, to perform high accuracy deformation

measurement and to obtain a three dimensional topology map. The synthetic

aperture method and the resolution improvement described hereafter have been

carried out with a backlash free motorized x-y traverse from Physik Instrumente

(PI-M150.11) with a step width of 8.5 nm, for further details see Appendix D.4.

The camera used is a 6.6 Megapixel CMOS camera (C-Cam, BCi4-6600) with

3.5 µm pixel-size and 35% fill-factor (Appendix D.5). The CMOS sensor is not

covered with a micro-lens array. Phase stepping, if applied, was performed with

a piezo mounted mirror in the reference arm. A Queensgate Instruments AX100

piezo actuator, see Appendix D.2, including a position control unit was used.

The accuracy performance, repeatability and important specifications, such as

pixel-size of the camera-sensor employed, was checked prior to the experiments.

Once the performance of the motorized x-y stage, the piezo-actuator and the

CMOS-camera was checked, the experimental work could start.

6.2.1 Setup and Methodology

The setup used to implement the synthetic aperture method is shown in Fig. 6.1.

Vertically polarized laser light from a He-Ne Laser is rotated by a half-wave-plate.

The combination with a polarizing beam splitter cube enables the adjustment of

reference and object-wave intensity, by which a good contrast of the recorded

interference fringes is ensured. However, not only the intensity of reference- and

object-wave need to be the same in order to have a maximum contrast but also

the polarization of both waves should match.
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Figure 6.1: (a) Sketch of setup for recording Fourier-holograms, (b) small section of
realized setup with camera and motorized x-y traverse

The polarization of the reference-wave can be adapted to the object-wave

by two quarter-wave-plates. This configuration allows the adjustment of the in-

coming linearly polarized light to any arbitrary polarization state. The change

of polarization-state using both quarter-wave-plates is described by the Jones-

Calculus. The theory of the Jones-Calculus was presented in Section 2.3. Hence

the resulting Jones-vector after passage through both rotated quarter-wave re-
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tarders can be described by Eq. 6.6.

−→
jout =

−−−−→
J1QWP ·

−−−−→
J2QWP ·

−→
jin

=

 cos2 θ1 − i sin2 θ1 cos θ1 sin θ1(1 + i)

cos θ1 sin θ1(1 + i) sin2 θ1 − i cos2 θ1


·

 cos2 θ2 − i sin2 θ2 cos θ2 sin θ2(1 + i)

cos θ2 sin θ2(1 + i) sin2 θ2 − i cos2 θ2

 · −→jin
(6.6)

Where
−−−−→
J1QWP is the Jones-Matrix of the first quarter-wave-plate,

−−−−→
J2QWP is the

Jones-Matrix of the second quarter-wave-plate, θ1 is the rotation-angle applied

to the first quarter-wave-plate, θ2 is the rotation-angle applied to the second

quarter-wave-plate,
−→
jin is the Jones-vector of the linearly polarized light before

entering the two quarter-wave-plates and
−→
jout is the resulting Jones-vector once

the light has passed through both quarter-wave-plates. After the polarization

state of the reference-wave has been adjusted, the focused reference-wave passes

through a pin-hole. In this manner a clean single mode reference-beam can be

obtained. Moreover, the pin-hole and the object were positioned equidistant to

the camera, which enabled the recording of Fourier-holograms. The numerical

reconstruction of Fourier-holograms including refocusing was discussed in Section

3.5. The minimum recording distance at which the Fourier-hologram is not under-

sampled is:

dmin ≥
2∆x′b

λ
(6.7)

With b the distance between reference-wave source point and furthest distant

object point. From Eq. 6.7 it follows that the minimum recording distance

dmin does not depend on the pixel-number. Hence the recording arrangement of

Fourier-holograms is perfectly suited for the synthetic aperture method.
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The synthetic aperture method was implemented by laterally displacing the

camera with the motorized PI 150.11 x-y-stage. The total amount of shift applied

was in the range of the sensor dimension with a small overlap of approximately

200 pixels between adjacent holograms to enable accurate pixel alignment by

means of cross-correlation. The setup used is shown in Fig. 6.1. A larger sensor

area was generated resulting in a more detailed reconstruction. The more detailed

reconstruction is off-set by a smaller DOF. The DOF can be increased by applying

the EDOF method described at a later stage of this section Section 6.2.4.

The image quality improvement was demonstrated on a reconstructed inten-

sity and double exposure phase map.

6.2.2 Deformation Measurement

The object under investigation was a cantilever with an attached micrometer

screw, which permits the application of an accurately controllable deformation.

The setup is shown in Fig. 6.1. The object-camera distance is 780 mm and

the mirror illuminating the object is laterally displaced from the object-camera-

axis by 260 mm. The camera has been moved in a 4x3 grid to twelve different

positions.The generated synthetic aperture hologram occupied a sensor area of

8800x8800 pixels. The results obtained for the intensity reconstruction of the

cantilever, shown in Fig. 6.2.(c), demonstrate an increase in SNR from 24.06 dB

for a reconstructed hologram of 3000x3000 pixels to 26.66 dB for a reconstructed

hologram of 8800x8800 pixels. The synthetic aperture-method was applied to dig-

ital double exposure holography by moving the camera to a sequence of positions

for the unloaded object state and then moving the camera in reverse sequential

direction to exactly the same positions for loaded object state.
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(a) (b) (c)

(d) (e) (f)

Figure 6.2: Segment of reconstructed hologram and double exposure phase map both
with profile line (a), (b) 3000x3000 pixels, (c), (d) 8800x8800 pixels and (e), (f)
3000x3000 pixels averaging approach

A synthetic aperture hologram was obtained for both object states. Both

holograms were aligned to each other by means of cross-correlation and then

numerically reconstructed. The change of angle between the illumination and

observation vector for the centred and most displaced position is 0.2◦. Thus its

influence on the sensitivity vector and the corresponding phase shift in the double

exposure phase map is negligible. The double exposure phase map was calculated

by subtracting the reconstructed phase of the loaded ϕ2 and unloaded state ϕ1

Eq. 6.8.

∆ϕ(x′′, y′′) = ϕ2(x′′, y′′)− ϕ1(x′′, y′′) (6.8)

The resulting double exposure phase map is less well defined Fig. 6.2(e). The
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phase contrast of the 2π discontinuities is reduced, which might be due to align-

ment errors. It was noticed when illuminating the sensor with a collimated laser

beam that the sensor possesses a slight curvature. Fig. 6.3(a) shows the diffrac-

tion pattern obtained from the sensor. The diffraction pattern for an optimum

flat sensor should be orientated along straight lines. In our case parabolic lines

were obtained which are evidence of a convex sensor curvature. This results in

scanning at different axial positions of the incoming speckle field, see Fig. 6.3(b),

and hence introduces alignment errors. The reliability of the cross-correlation

values obtained have then been examined by calculating its standard deviation.

The shift amount in horizontal direction is 1972±1 pixels and in vertical direction

2781± 2 pixels.

diffraction pattern
caused by sensor 
pixelization

line connecting 
diffraction pattern of 
same vertical order

line connecting 
diffraction pattern of 
same horizontal

(a)

camera with 
curved sensor 

st
at 1  position

speckle

camera with 
curved sensor 

nd
at 2  position

y
x

axis
motorized
traverse

(b)

Sensor position for loaded and  object state at 
two different lateral positions P  and Pk n

unloaded

D
z

.   . ..   . .

P  k Pn

(c)

Figure 6.3: (a) Diffraction caused by collimated illumination of the sensor, (b) sketch
axial speckle de-correlation due to camera and/or curved sensor, (c) phase offset caused
by axial displacement between the two double exposure camera positions
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The larger residual in the vertical direction might be due to a larger shift

applied, which is combined with an increased axial speckle de-correlation. The

error represented in this case is a combination of cross-correlation error and lat-

eral alignment error arising from the x-y-stage. Three additional alignment errors

between adjacent holograms and hologram pairs, which represent the two later-

ally corresponding holograms for the unloaded and loaded object state, could be

defined. In conclusion, possible alignment errors might have arisen from:

i cross-correlation error

ii cross-correlation detected lateral misalignment between adjacent holograms

and hence laterally corrected

iii axial misalignment between adjacent holograms

iv axial misalignment between corresponding hologram pairs

v lateral misalignment between corresponding hologram pairs

The consequence of these errors on the lateral and axial alignment is shown in

Table 6.1, where 0 indicates no alignment error and 1 indicates that an alignment

error occurred. This consideration assumes that each error possesses the same

degree of impact. A curved sensor is more than twice as sensitive to pick up axial

alignment errors than a plane sensor is, according to Table 6.1. Moreover, the

impact of axial misalignment is amplified due to the optical setup’s sensitivity for

out of plane (axial) phase changes. If the two sub-holograms for the loaded and

unloaded object state at position Pk differ in their axial position a constant phase

offset is introduced in the resulting double exposure phase map, shown in Fig.

6.3(c). Consequently, each of the laterally corresponding hologram pairs might

have a different phase offset. Thus combining the information of all hologram

pairs to a synthetic aperture hologram results in a double exposure phase map
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Table 6.1: Consequences on lateral and axial alignment

Error Lateral align-
ment

Axial align-
ment (curved
sensor)

Axial align-
ment (plane
sensor)

i 1 1 0
ii 0 1 0
iii 0 1 1
iv 0 1 1
v 1 1 0∑

2 5 2

of reduced phase contrast, as shown in Fig. 6.2(e). Possible ways to avoid the

introduction of a phase offset between hologram-pairs are:

• to use a plane sensor, which is less sensitive to pick up axial misalignment

errors, see Table 6.1

• to record all laterally shifted holograms simultaneously at fixed positions

utilizing a camera array

• to apply phase stepping digital holography, which enables the elimination

of the phase offset between adjacent holograms prior to the reconstruction

process

• to apply spatial averaging as described in Baumbach et al. (2006)

The original spatial averaging approach was slightly modified and used in

this paper to overcome the problem of reduced phase contrast. Its flow-chart is

shown in Fig. 6.4. The loaded object state in Fig. 6.4 is denoted by ũ′ for the

recorded hologram and ũ′′ for its numerical reconstruction, respectively. More-

over, the functions ’medfilt2’ and ’angle’ indicate Matlab functions, which are

used to median filter the image and to calculate the phase of the complex expo-

nential reconstruction, respectively. The spatial averaging approach is realized

by reconstruction of each individual hologram using Eq. 3.46.
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Figure 6.4: Flow-chart of the spatial averaging approach applied to double exposure
holography

Due to the shift δx′ and δy′ in the hologram-plane the reconstructed hologram

needs to be multiplied with an additional complex exponential phase factor Eq.

6.9.

δϕ(x′′, y′′) =
π

λd
(2x′′δx′ + 2y′′δy′) (6.9)

The additional term only affects the phase and does not need to be applied to

average intensity reconstructions. The additional phase term can also be dropped

in case a double exposure hologram is recorded. This is due to the same additional

phase term for both recorded holograms of loaded and unloaded object state.

The averaged double exposure hologram is obtained by calculating the in-

dividual double exposure holograms at each position comparing the loaded and
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unloaded state. In that manner a possible phase offset can be removed from

each double exposure hologram. The phase offset is determined in an iterative

manner by taking the phase map at the last position Pn as the reference phase,

see Fig. 6.3(c). At this position the camera has not been translated to another

position between recording the unloaded and loaded object state. Hence it should

not have any phase offset or phase tilt due to lateral displacement. The phase

offset and an eventual phase tilt is then subtracted from the phase map at the

corresponding positions. In order to avoid smearing, the phase maps are then

added up in complex notation, see Fig. 6.4. The double exposure phase maps

obtained for a single position, the synthetic aperture method and the spatial av-

eraging approach are shown in Fig. 6.2(d),(e) and (f). A significant image quality

improvement between the synthetic aperture method and the spatial averaging

approach is demonstrated. The SNR values were calculated for the region shown

in Fig. 6.2(f) at the same corresponding region for all three phase maps. The

values obtained are 17.22 dB, 11.47 dB and 25.57 dB. Thus the double exposure

phase map obtained by the spatial averaging approach possesses a higher accu-

racy, which is also shown in both graphs of Fig. 6.5. The standard deviation

utilizing the spatial averaging approach is reduced from 0.85 rad with a single

double exposure hologram to 0.15 rad by using twelve double exposure holograms.

The corresponding object deformation uncertainties are λ
14

and λ
81

, respectively.

The gradient of the trend-line for the standard deviation shown in Fig. 6.5(b)

is higher than the one obtained by Baumbach et al. (2006), because the lateral

displacement between the consecutive holograms has almost been doubled from

5 mm in Baumbach et al. (2006) to 9.8 mm.
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Figure 6.5: (a) Phase error for vertical cutline of area under investigation, (b) standard
deviation of double exposure phase maps for adjacent and furthest distant holograms
including trend-line

Although the initial standard deviation for a single reconstruction is higher

than in Baumbach et al. (2006) only 12 holograms needed to be recorded instead

of 25 to obtain a similar result.
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Table 6.2: Trend-line standard deviation of phase

Parameters Adjacent
holograms

Furthest
distant
holograms

Result
obtained by
Baumbach
et al. (2006)

a 0.9165 0.8987 0.5773
b -0.70 -0.74 -0.50
R2 0.994 0.932 

The standard deviation (σ) could be approximated by a power function.

f(σ) = aσb (6.10)

The values of a and b are shown in Table 6.2. Fig. 6.5(a) shows the deviation of

the phase from the mean value along a cross-section in the region under inves-

tigation (boxed area in Fig. 6.2(f)). The area under investigation was rotated

by 5.5◦ in order to scan along the smallest phase gradient. Two statements can

be drawn from the standard deviation measurements. Firstly, the phase error

decreases the more holograms are used for the spatial averaging approach, see

Fig. 6.5(b). Secondly, the further distant the holograms used for the spatial

averaging method are the better is the image quality.

The averaging approach has also been applied to intensity reconstructions.

Fig. 6.2(c) shows a segment of the reconstructed intensity image. The SNR for

the presented segment is 36.61 dB. Contrary to the double exposure phase the

influence of a possible phase offset is not too severe for the intensity reconstruction

when applying the synthetic aperture method, see Fig. 6.2(b).
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Figure 6.6: (a) SNR for intensity reconstruction versus number of images and their

position, (b) SNR for phase map versus number of images and their position

In Fig. 6.6 the SNR-curves for the intensity reconstructed holograms and

double exposure phase maps are shown. The relationship between number of

holograms (Nh) used and the SNR follows to a good approximation a logarith-

mical curve described by:

f(Nh) = a · ln(Nh) + b (6.11)
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The logarithmic coefficients and the squared correlation coefficient R2 are shown

in Table 6.3. In conclusion, the statements previously made for the standard

deviation could be confirmed by the SNR-curves.

Table 6.3: SNR spatial averaging method for intensity and double exposure phase map

Parameters Intensity

reconstruction

Double exposure

phase map

a 4.842 3.3973

b 24.392 17.169

R2 0.995 0.985

6.2.3 Resolution Improvement

In order to determine the resolution improvement for the synthetic aperture-

method the USAF 1951 test target has been used as the object under investiga-

tion. Firstly, a Fourier-hologram without applying the synthetic aperture method

was recorded. Zero-padding was applied to generate a hologram of equal dimen-

sions in the x- and y-direction, see Fig. 6.7(a). In this manner the reconstructed

hologram does not suffer from different pixel-sizes ∆x′′ and ∆y′′ (Eq. 6.12), which

would otherwise result in a stretched reconstruction and possess different DOF

and resolution in vertical and horizontal direction.

∆x′′ =
λd′

N∆x′
and ∆y′′ =

λd′

M∆y′
(6.12)

Where N and M are the pixel-numbers in x’ and y’-direction.
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Table 6.4: Theoretical and practically achieved resolution

Parameters 3000x3000 at 295

mm

8000x8000 at 295

mm

Theoretical

resolution in µm

17.8 6.7

Vertical

resolution in µm

17.5 6.2

Horizontal

resolution in µm

17.5 7.8

Afterwards a hologram was recorded using the synthetic aperture-method.

Fig. 6.7 shows the recorded holograms and their reconstructions for 3000x3000

pixels and 8000x8000 pixels, respectively. The smallest resolvable test target ele-

ment was determined in the same manner as described in Section 4.7.4. According

to Rayleigh’s-criterion applied to a rectangular aperture (Eq. 4.25) the theoreti-

cally possible resolution was calculated and compared with the resolution of the

reconstructed holograms, see Table 6.4. Three conclusions can be drawn from this

comparison. Firstly, the obtained resolution with the synthetic aperture method

is almost three times larger than the resolution obtained with a single hologram.

Secondly, the result obtained matches well with the expected value. Last but not

least, the vertical and horizontal resolution obtained differ slightly, which might

be due to a different vertical and horizontal dimension of the light sensitive pixel

area. In a next step the USAF 1951 test-target holograms have been applied to

the spatial averaging approach. Each single hologram was zero-padded to create

an 8000x8000 pixels hologram in order to have the same pixel-size ∆x′′ in the

reconstruction-plane. The result is shown in Fig. 6.9(a). The resolution is the
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(a) (b)

(c) (d)

Figure 6.7: Hologram at recording distance of 295 mm for (a) 3000x3000 pixel, (b)
8000x8000 pixel and their reconstructions (c) and (d), respectively

same as in shown in Fig. 6.8(a). Hence no resolution improvement was obtained,

which is due to the fact that the experiment was carried out with a transpar-

ent object. A large amount of the light used for illuminating the object passes

through the object in an undiffracted manner. If the camera is shifted away from

the central illuminated object position less light from the object is recorded. The

resulting effect can be compared to a high-pass filter, which results in the recon-

struction of sharp edges only. The background intensity of the object features

is not reconstructed. Therefore, those test target elements, whose size is close



6. Resolution Improvement in Digital Holography 169

(a) (b)

Figure 6.8: Region of interest including cross-section for (a) 3000x3000 pixel hologram,
(b) 8000x8000 pixel hologram

to the optical resolution of the holographic system, are reconstructed as bright

strips on a dark background. In the spatial averaging process high spatial object

frequencies, displayed as a bright pixels for the reconstructed off-centred holo-

grams and as a dark pixel for the reconstructed central hologram, cancel each

other out. As a result a reduced resolution is obtained. The central individually

reconstructed zero-padded hologram, which holds the major information of the

USAF 1951 test-target, has a better resolution than when averaging all recon-

structed holograms. This statement is confirmed by comparing Fig. 6.8(a) with

Fig. 6.10, which corresponds to the section B2 in Fig. 6.9(b). This proves both

statements made in Section 4.7.4. Firstly, zero-padding improves the resolution

of the numerically reconstructed hologram. Secondly, increasing the number of

zero-padded pixels by more than twice the hologram-size does not result in a sig-

nificant resolution improvement, which is confirmed by comparing Fig. 4.25(d)

with Fig. 6.10. A better resolution with the spatial averaging approach could be

obtained using a diffuse reflective object.
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(a)

1 2 3 4

A

B

C

(b)

Figure 6.9: (a) USAF 1951 test-target result with the spatial averaging approach, (b)

displaying the same section for the twelve reconstructed holograms

6.2.4 Extended Depth of Field (EDOF) Method

The application of large NA optical systems results in a reduced Depth of Field

(DOF). Only a small axial region of a three dimensional object is sharply rep-

resented in the reconstruction plane as shown in Figs. 6.11(a) and (b). One
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Figure 6.10: Region of interest including cross-section for reconstruction obtained from
a 8000x8000 pixels zero-padded single hologram (3000x2208 pixels)

way to overcome this problem is demonstrated in the EDOF method originally

applied in confocal microscopy. As a result an image with all parts in focus and

a topology map can be obtained. The EDOF method was implemented by gen-

erating a stack of reconstructed holograms which are separated by the DOF. The

equation to calculate the DOF was derived in Section 4.4.2. The NA obtained

is 0.052, which is smaller than the critical (NAcritical=0.090) obtained by Eq.

4.34. For values smaller than NAcritical diffraction effects are negligible for the

calculation of the DOF. In this case the DOF calculation is only restricted to the

geometric-optical model which results in:

DOF =
∆x′′

Γ′NA
(6.13)

With Γ′ = 1 and

∆x′′ =
λd

N∆x

Eq. 6.13 is rewritten as:

DOF =
2λd′2

(N∆x′)2 (6.14)
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(a) (b)

Figure 6.11: (a) Intensity reconstruction for d′ = 728 mm, (b) intensity reconstruction
for d′ = 735 mm

The DOF obtained with Eq. 6.14 is 0.7 mm for a synthetic aperture hologram

of 8800x8800 pixels. The object under investigation is the same cantilever as pre-

viously used. The EDOF method had already been applied to digital holography

[Do and Javidi (2007); McElhinney et al. (2008) and Tachiki et al. (2008)], but to

the authors knowledge it is the first time to report the combination of synthetic

aperture-method with the EDOF method. Not all algorithms used in microscopy

to define the in-focus object regions can successfully be applied in digital holog-

raphy due to the speckle effect. The most successful algorithm is based on the

variance approach [McElhinney et al. (2008) and Tachiki et al. (2008)], which was

also applied in our case. Speckle noise apparent in the numerical reconstruction

produces a large change of variance. Therefore before calculating the variance a

speckle-noise reduction filter [McElhinney et al. (2008)] needs to be applied or

the reconstructed hologram needs be resized. Furthermore, the variance method

requires sufficient object illumination for all parts under investigation. The ob-

ject illumination ideally needs to be homogenously distributed over the entire

object in order to obtain a good contrast of all object parts, which results in

large deviation of variance values and reduced impact of noise e.g. speckle noise.
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A further requirement is the use the correct Window-Size (WS) for which the

variance is calculated. If the WS is too small, fine object details are reproduced

in the topology map. A WS which is too large results in a reduced accuracy of

the topology map. A last limitation of this method is that the axial resolution

of the topology map depends on the numerical aperture and wavelength of the

optical system. For macroscopic objects the obtainable axial resolution is only

in the mm range. Having discussed the limitations the main advantage of this

method needs to be put in focus. Instead of recording images focused at different

axial positions of the object, only one hologram is numerically refocused to differ-

ent axial positions. Thus the experimental effort and disturbing environmental

influences are minimized. As a result a high resolution reconstruction of all parts

in focus and the topology map of the object under investigation is obtained. An-

other possible application is the generation of a three dimensional particle field

and temporal three dimensional particle tracking, see Kreis (2005).

6.2.5 Variance Approach

The numerical focusing at different axial planes is obtained by reconstructing the

Fourier-hologram with help of Eq. 3.46 and a numerical lens described in Eq.

3.10. The refocusing range is defined by the upper and lower limit where the

reconstructed object is out of focus.

In our case this was between 726 mm and 743 mm reconstruction distance.

Within this region holograms separated by 0.5 mm reconstruction step width were

reconstructed. The reconstructed holograms were organized in a stack according

to their reconstruction distance, as shown in Fig. 6.12. Some pre-processing is

required before applying the EDOF method. The region of interest was cropped

and then resized to a quarter of its original size from 3600x832 pixels to 900x208

pixels. This step was necessary in order to minimize the calculation time and
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Figure 6.12: Topology map
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to reduce the impact of speckle-noise on the variance measurement as previously

discussed. The speckle size after resizing is less than the size of a pixel, as a

result of which it was not necessary to apply speckle-noise reduction filters, as

in McElhinney et al. (2008). The variance of each pixel was calculated with a

10x10 WS. This WS was experimentally found to give the best results. In order

to obtain the EDOF reconstruction the stack of the calculated variance maps was

binarized on a column by column basis with the threshold set at the maximum

variance value in each pixel column. Afterwards, this stack was multiplied in a

pixelwise manner with the stack of the reconstructed holograms. A reconstruc-

tion with all parts in focus was obtained, shown in Fig. 6.12. The topology map

was obtained by recording the position of the maximum variance value for each

column in a two dimensional map. The number of quantization levels equals the

number of reconstruction planes, see Fig. 6.12.

6.2.6 Gaussian Fitting

Fig. 6.13(a) represents the variance value at each reconstruction distance for both

boxed areas shown in Fig. 6.11(a) and (b). It can be concluded that the variance

values could be approximated by a Gaussian curve defined by the equation:

f(x) = a exp
[
− ((x− b)/c)2] (6.15)

Where a, b and c are the Gaussian coefficients. For both boxed regions shown

in Fig. 6.11(a) and (b) the Gaussian coefficients found are shown in Table 6.5.

The R2 values confirm validity of this approximation. This corresponds with the

assumption used by other authors to describe the sharpness-distance relationship

Chang et al. (2009).
This Gaussian approximation was then applied to obtain interpolated vari-

ance values. In practice, instead of a Gaussian approximation a fourth degree
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Figure 6.13: (a) Variance plot for both boxed areas shown in Fig. 6.11 including
Gaussian curve fitting, (b) Gaussian curve fitting for different WS and comparison
polynomial fitting for WS of 10x10 pixels

polynomial approximation was used. In this manner the calculation time could
be reduced and the algorithm became more robust towards any calculation errors,
which would have caused the program to end abruptly. These errors occurred
whenever the maximum variance value was close to the first or last distance value.
In this case no Gaussian function could be found to fit the data. The Gaussian
and the fourth degree polynomial are shown in Fig. 6.13(b) for a WS of 10x10
pixels. Moreover, from Fig. 6.13(b) can be concluded that the performance of the
Gaussian fitting can be used to obtain the correct sliding WS in order to perform
the variance calculation. The degree of WS-performance can be described by the
R2 values of 0.667, 0.989 and 0.997 for a WS of 5x5, 10x10 and 20x20, respec-
tively. The quantization levels of the topology map could be increased utilizing
the Gaussian fitting method.

Table 6.5: Gaussian coefficients and R-squared values

Parameters Boxed area 90 Boxed area 10
a 0.9843 0.9834
b 728.1 733.5
c 11.4 10.35
R2 0.9893 0.9893
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Figure 6.14: Histograms for obtained topology map with, (a) traditional variance ap-
proach, (b) polynomial interpolation

The obtained interpolated maximum value is used instead of the original max-

imum variance value. In this manner the number of quantization levels increased

from 35 by solely applying the variance approach to 349 by applying the poly-

nomial fitting. This is shown in Fig. 6.14(a) and Fig. 6.14(b), respectively.

Furthermore, location errors for the maximum variance value as shown in Fig.

6.13(a) can be reduced by the interpolated maximum value, which results in an

accuracy improvement. This could be demonstrated by a decreased standard

deviation, which was calculated for both profile-lines shown in Fig. 6.15 from

0.96 mm to 0.79 mm. The aforementioned advantages are off-set by the long

processing time. Despite the reduction of the stack-size from 35x342x1100 pixels

to 35x171x550 pixels the calculation time was 40 min with a server using an In-
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tel Xeon @2 GHz processor on Matlab at 64 bit. In comparison, the previously

described variance approach applied to the original stack-size needed 57 s. The

axial extension obtained from the topology map for the cantilever is 7.14 mm.

The holographically obtained topology data was validated by tactile manners

using a vernier caliper. The axial length differences between the deflected can-

tilever to its mount was measured at its four corners. The obtained result for

the topology map could be confirmed by the measured values with millimeter

accuracy. Further calibration work is required in order to validate data in the

sub-mm range.
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Figure 6.15: Cross-sections for indicated lines shown in Fig. 6.12, (a) A-A’, (b) B-B’
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6.3 Sub-pixel Sampling Method

The sub-pixel sampling method is focused on resolution improvement by reducing

the recording distance. This can be accomplished by recording the hologram

with a smaller pixel-size. A smaller pixel-size is obtained by shifting the CMOS

camera with sub-pixel accuracy into the light insensitive pixel area. Due to the

smaller fill-factor of lens-less CMOS sensors, a more reliable integrated irradiance

is obtained in comparison to the application of the sub-pixel sampling method

with CCD-technology, described in Kornis and Gombköto (2005). Moreover,

the environmental influences have been minimized by applying phase stepping.

In that manner, the sub-pixel sampling method described here presents a novel

approach to improve the resolution in digital holography.

6.3.1 Setup and Methodology

The setup used is shown in Fig. 6.16. The previously used spherical reference-

wave in Section 6.2 was replaced by a plane reference-wave.

x’
y’
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PBC

L2

L1

M1

PM-M2

M3

λ/4-plate

BC

x-y movable 
Camera

object 
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lenses        
microscope objective                
mirrors           
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piezo-mounted mirror                
polarization beam splitter cube  

    

L4L3
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u(x, y)

- BC               
- u’(x’,y’)        
- L1, L2, L3, L4
- MO 
- M1, M3  
- u(x, y)
- PM-M2     
- PBC

Figure 6.16: Sketch of schematic setup
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Figure 6.17: Sketch of original camera pixel and schemata of four position movement

in order to obtain sub-pixel resolution

The minimum distance for a plane reference-wave according to Eq. 4.8 was

taken into account when setting up the experiment. Other setup parameters

in order to obtain the best possible contrast, as discussed in Section 2.4, have

been taken into account. In order to increase the resolution of the numerically

reconstructed hologram, the camera sensor is moved by the PI-150.11 x-y-stage in

a 2x2 grid to four positions. The displacement between each consecutive position

is half the pixel-size. In that manner one original pixel can be replaced by four

sub-pixels of half the pixel-size, see Fig. 6.17. The influence of the pixel-size on

the MTF was discussed in Section 4.6.1. The pixel MTF can be described by:

MTFpixel = |sinc(νx′∆x
′)| (6.16)

The pixel MTF contributes to the overall MTF of the opto-electrical system in a

multiplicative manner. The benefits of using a smaller pixel-size in conjunction

with the recording process and the obtained pixel MTF are:
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i. Due to the smaller pixel-size the camera-object distance can be reduced.

This results in more light from the object being recorded, which reduces

the impact of noise in the recording process.

ii. The reduced camera-object distance enables a more detailed reconstruction.

iii. The cutoff-frequency for the sub-pixel sampling method is higher than when

recording with the normal pixel-size, see Fig. 6.18.

iv. Furthermore, spatial frequencies are recorded with a higher contrast using

the sub-pixel sampling method.

v. Last but not least, a fill-factor of 100% is obtained by means of the sub-

pixel sampling method. Thus the light-sensitivity is larger compared to a

CMOS and CCD sensor of equivalent pixel-size.

Temporal phase stepping was applied to each of the four recording positions. In

this way environmental disturbances which cause the interference fringes to shift

slightly around a centred location were averaged and minimized. Phase stepping

was implemented in the setup by a piezo-mounted mirror in the reference-arm.

The additional effort for applying phase stepping is rewarded by enabling an

in-line setup with a further reduced object-camera distance. The phase stepping

algorithm used was firstly proposed in Cai et al. (2004). It is based on recording

at least three phase stepped holograms. This algorithm calculates each phase

step by which phase step errors are minimized. The four different phase maps

which correspond to each camera position are combined in a common phase

map. The combination procedure for a 2x2 pixel sensor is shown in Fig. 6.19.

The initial phase among the four phase maps might differ. This would result in

sudden phase jump between adjacent pixels in the combined phase map. The

numerical reconstruction of a combined phase map without adjusting the initial
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Figure 6.18: Graph comparison of MTF sensor for the normal pixel-size and half the
pixel-size employing the sub-pixel sampling method

phase for each of the four individual phase maps leads to the occurrence of higher

diffraction orders. These higher diffraction orders cause a splitting of the object

information, see Fig. 6.20(b). This problem can be solved by resizing a part of

the first phase-hologram A to twice its size. The interpolated phase value of the

resized hologram A’ are used to calculate the phase difference for the other three

phase maps B, C and D. The phase difference is then subtracted from each of

the three phase maps B, C and D. A schematic sketch of the phase correction

approach is shown in Fig. 6.21. The final combined phase map possesses a

smooth phase transition, which to a reasonable extent suppresses higher orders

in the reconstructed hologram, see Fig. 6.20(c).

Figure 6.19: Combination procedure to obtain a sub-pixel hologram
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(a)

(b)

(c)

Figure 6.20: Phase-hologram and reconstruction at 191 mm recording distance for
(a) normal hologram with 3.5 µm pixel-size, (b) sub-pixel hologram without phase
correction and (c) sub-pixel hologram with phase correction

The numerical reconstruction was obtained using the Fresnel method Eq.

3.39. Holograms with and without applying the sub-pixel sampling method have

been recorded at a camera-object distance of 191 mm. The centre of the object
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is positioned with a 10 mm shift to the optical axis. Applying Eq. 4.8 results in

a minimum camera-object distance of 279 mm for 3.5 µm pixel-size and 140 mm

for 1.75 µm pixel-size. Thus the Nyquist-criterion is violated for the hologram

of 3.5 µm pixel-size recorded at 191 mm distance. In this case, aliasing occurs,

which results in the appearance of ghost images, see Fig. 6.20(a) left side. In

addition to the recording at a distance of 191 mm, a hologram was recorded at a

distance of 300 mm. At this distance the recorded hologram with a 3.5 µm pixel-

size is not under-sampled. A small region of interest is selected for the intensity

reconstruction without the sub-pixel sampling method at 300 mm, shown in

Fig. 6.22(a), and at 191 mm recording distance applying the sub-pixel sampling

method, shown in Fig. 6.22(b). The SNR values for these reconstructions are

22.71 dB for Fig. 6.22(a) and 25.18 dB for Fig. 6.22(b).

Figure 6.21: Sketch of phase-correction procedure
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(a) (b)

Figure 6.22: Region of interest for intensity reconstruction and their profile lines for
(a) 300 mm recording distance with 3.5 µm pixel-size, (b) sub-pixel hologram 191 mm
recording distance

Double exposure holograms in conjunction with the sub-pixel sampling method

have been recorded to evaluate the visibility of the 2π discontinuities obtained.

The recording distance was again chosen to produce an under-sampled hologram

for the 3.5 µm pixel-size. The cantilever was deflected by 2 mm in order to

produce a high density of fringes in the double-exposure phase map. Due to

the high density of fringes only a small segment of both double exposure phase

maps are displayed in Fig. 6.23. The fringes are more defined for the sub-pixel

sampling method than for the reconstruction with a 3.5 µm pixel-size. This is

also represented by the SNR values of 11.07 dB and 10.96 dB, respectively.

(a) (b)

Figure 6.23: Segment of double exposure phase maps for 191 mm recording distance (a)
normal hologram with 3.5 µm pixel-size, (b) sub-pixel hologram with 1.75 µm pixel-size
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In addition to the SNR the standard deviation and the corresponding relative

deformation has been calculated. This parameter is more meaningful to prove the

system’s accuracy performance. The obtained standard deviation alongside the

minimum phase gradient is 1.76 rad and 1.72 rad for double exposure phase maps

with 3.5 µm and 1.75 µm pixel-size, respectively. The corresponding relative

deformation is λ
6.88

and λ
7.05

, respectively. Thus the double exposure phase map

obtained with the sub-pixel sampling method can resolve to a higher degree of

accuracy.

6.3.2 USAF 1951 Test Target

In order to determine the resolution improvement for the sub-pixel sampling

method the USAF 1951 test target was used as the object under investigation.

The setup used is shown in Fig. 6.24. The previously employed plane reference-

wave has been replaced by a spherical one to enable the recording of Fourier-

holograms, which possess a more efficient use of the sensor’s Space-Bandwidth-

Product (SBP), as discussed in Chapter 5. The transparent USAF-1951 test-

target was placed between mirror and beam splitter.

x
y

Laser

λ/2-plate

PBC

L2

L1

M1

PM-M2

M3

2x  λ/4-plate

BC

x-y movable 
Camera

object 

MO

M4

, M4

Figure 6.24: Recording setup for determination of optical resolution
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(a) (b) (c)

(d) (e) (f)

Figure 6.25: (a) Intensity hologram 3000x3000 pixels, (b) modulus of calculated com-
plex object-wave 6000x6000 pixels, numerical reconstructions (c) without sub-pixel
sampling method, (d) with sub-pixel sampling method, (e) and (f) corresponding areas
of interest to determine smallest resolvable element

An intensity hologram was then recorded without applying the sub-pixel sam-

pling method at 295 mm recording distance. Zero-padding was applied to gen-

erate a hologram of equal dimension in x’- and y’-direction. In this manner the

reconstructed hologram does not suffer from different pixel-sizes ∆x′′ and ∆y′′,

which otherwise would result in a stretched reconstruction and might produce

different horizontal and vertical resolution and DOF. Afterwards, three phase

shifted intensity holograms at each sub-pixel position were recorded at 185 mm

recording distance. The complex object-wave was then calculated employing

Cai’s algorithm, see Cai et al. (2004). The intensity hologram recorded at a

distance of 295 mm, the modulus of the complex object-wave for the sub-pixel

hologram and their corresponding numerical reconstructions are shown in Fig.

6.25. In order to observe the smallest resolvable test target element a small re-
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gion has been selected, shown in Fig. 6.25(e) and(f). The theoretically possible

resolution according to Eq. 4.25 and the achieved resolution for both holograms

shown in Fig. 6.25(a), (b) are presented in Table 6.6. In conclusion, it was

found that the resolution obtained could be doubled and the obtained resolution

matched well with the expected value.

Table 6.6: Theoretical and practically achieved resolution

Parameters 30002 at 295 mm 60002 at 185 mm
Theoretical resolution 17.8 µm 11.2 µm
Vertical resolution 17.5 µm 8.7 µm
Horizontal resolution 17.5 µm 8.7 µm
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6.4 Combination of Synthetic Aperture and Sub-pixel Sam-

pling Method

The advantages of both methods were combined and the resolution improvement

demonstrated on an USAF 1951 resolution test target.

6.4.1 Setup and Methodology

The setup used is the same as previously used for the synthetic aperture method

to explore the resolution improvement. Fourier holograms have been recorded

in combination with phase stepping. The in-line arrangement enables the most

efficient use of the sensor’s SBP, as demonstrated in Chapter 5. The sensor was

firstly moved to four different sub-pixel positions, at which phase stepping was

applied. This micro-shift, sub-pixel movement, was followed by a macro-shift,

which was in the range of the sensor’s dimension.

Figure 6.26: Camera movement
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Record three phase stepped intensity holograms 
and the reference-wave intensity at positions 
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Figure 6.27: Flow chart combination procedure

The procedure was repeated four times to obtain a synthetic aperture of

10,040x10,040 pixels with 1.75 µm pixel-size. The different movement steps are

shown in Fig. 6.26. Thus the camera was traversed to a total number of 16 differ-

ent positions. At each of which phase stepping was applied. Not only the initial

phase of each individually combined hologram had to be adjusted to obtain a sub-

pixel hologram, shown in Fig. 6.21, but also the initial phase of each sub-pixel



6. Resolution Improvement in Digital Holography 191

hologram in order to generate the synthetic aperture hologram. Fig. 6.27 repre-

sents a more detailed description of the image acquisition and processing steps.

The phase and modulus for the hologram obtained by combining both methods is

shown in Fig. 6.28 (b) and (c). The resolution obtained was compared to a nor-

mal hologram of 3000x3000 pixels with 3.5 µm pixel-size. The reconstruction for

both holograms are shown in Fig. 6.29. The resolution obtained is shown in Table

6.7. The results obtained were then compared with those obtained when apply-

ing solely the synthetic aperture method and the sub-pixel sampling method.

Furthermore, two recent publications on resolution improvement Di et al. (2008)

and Gýımesi et al. (2009) have been taken into account for this comparison to

serve as a reference for the results obtained. Instead of taking into account only

the smallest resolvable object detail the SBP of the reconstructed hologram and

the setup efficiency factor η were calculated, as discussed in Section 6.1. From

Table 6.8 can be concluded that the SBP and the η obtained can compete with

the results published in recent papers.

(a) (b) (c)

Figure 6.28: (a) Intensity hologram 3000x3000 pixels with 3.5 µm pixel-size at 295 mm,
(b) and (c) phase and modulus of hologram 10040x10040 pixels with 1.75 µm pixel-size
at 185.25 mm
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Table 6.7: Theoretical and practically achieved resolution

Parameters 30002 at 295 mm 100402 at 185 mm
Theoretical resolution 17.8 µm 6.7 µm
Vertical resolution 17.5 µm 7 µm
Horizontal resolution 17.5 µm 5.5 µm

A larger FOV and consequently a larger SBP and η was expected for the

sub-pixel hologram and the hologram obtained combining both methods. Only

a small part of the reconstructed hologram displays the image, shown in Fig.

6.25(d) and 6.29(b). The reduced FOV is due to the use of a transparent object.

Diffraction only occurs at the edges of the target bar elements. The major part of

the recorded light is undiffracted. A collimated laser beam was used to illuminate

the USAF test target. Thus the size of the undiffracted recorded light corresponds

with the projection of the sensor on the object.

(a) (b)

(c) (d)

Figure 6.29: (a), (b) Numerical reconstruction for holograms shown in Fig. 6.28,
(c), (d) region of interest to evaluate the resolution obtained for both reconstructions,
respectively
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Table 6.8: SBP comparison

Parameters Normal
holo-
gram

Synthetic
aperture
holo-
gram

Sub-
pixel
holo-
gram

Combin-
ation

Results
refer-
ence Di
et al.
(2008)

Results
ref-
erence
Gýımesi
et al.
(2009)

Pixel-
number in
103

32 82 62 10.042 52 5.122

Pixel-size in
µm

3.5 3.5 1.75 1.75 7 7.5

FOV in
mm2

9.0x12.1 30x23 11.72 16.7x19.5 4x4 3302

δx′′ in µm 17.5 6.2 8.7 7.0 2.6 446.4
δy′′ in µm 17.5 7.8 8.7 5.5 2.6 446.4
SBP in 106 0.36 14.27 1.79 8.44 2.37 0.55
ηSBP in % 3.9 22.3 4.9 9.5 8.4 2.1

In that manner, diffracted light which originates from object points outside

the projected sensor area is recorded with almost no background intensity. This

results in a reduction of visibility for the corresponding object region. In case of

the synthetic aperture hologram a larger sensor area was obtained, which results

in a larger FOV. The FOV obtained with the synthetic aperture method matches

well with the maximum possible recordable object size. The SBP obtained for

the reconstructed synthetic aperture hologram is more than six times larger than

to the authors knowledge up to date published SBPs in digital holography. The

value of ηSBP is close to the theoretical value of 25% according to Eq. 6.3 and

is largest of the compared results shown in Table 6.8. It needs to be pointed

out that the experiments in the two cited papers were performed with a CCD

camera of larger pixel-size. Furthermore, in both papers optical imaging elements

were used between object and camera, which might explain a reduced ηSBP .

The result could prove that CMOS cameras can perform at least equally well as
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CCD cameras under sufficient lighting conditions. The main advantage of CMOS

cameras is their availability with smaller pixel-size. Thus the recording distance

can be reduced, which results in a further resolution improvement, see Table 6.8.

6.4.2 Conclusion

Two resolution improvement methods and their combination have been discussed

in detail. The resolution improvement could be proven by numerical reconstruc-

tions of the commonly used USAF 1951 test target. The potential of these meth-

ods in combination with the recording of Fourier-holograms has been demon-

strated. It was shown that these methods offer new applications for the investi-

gation of microscopic, such as the finest elements of the resolution target shown

in Fig. 6.8, and macroscopic objects, such as the cantilever shown in Fig. 6.2.

In case of the synthetic aperture method, good results were obtained for the in-

tensity reconstruction and the double exposure phase map, which was proven

by an increase of the SNR value. The reduced phase contrast in double expo-

sure phase maps due to axial misalignment could be overcome by applying the

spatial averaging approach. It was found that the more laterally displaced the

holograms used for spatial averaging approach the better is the image quality.

Furthermore, it was found that the image quality increases in a logarithmic man-

ner with the number of adjacent holograms used. The resolution improvement

experiment was carried out on the USAF 1951 test target. Here the synthetic

aperture method performed better than the spatial averaging technique. The

reduced resolution with the spatial averaging approach is most likely due to the

usage of a transparent object as previously explained in Section 6.2.3. Moreover,

it was demonstrated that the SBP obtained with the synthetic aperture method

is the largest reported SBP utilizing digital holography. The highly detailed res-

olution was combined with a long DOF by using the EDOF method. It is to
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the author’s knowledge the first time that the synthetic aperture method and

the EDOF method have been combined in digital holography to produce firstly a

reconstruction with all parts of the axial extended object in focus, and secondly

a three dimensional topology map. Furthermore, Gaussian interpolation of the

variance values was applied to increase the precision and accuracy of the topology

data. A further improvement of the result may be obtained by a more homo-

geneous illumination (flat-top profile) and reflectivity of the object. All object

points would then have the same impact on the recorded hologram, which results

in an improvement of measurement accuracy.

The sub-pixel sampling method presented is based on a novel approach to improve

the resolution. The camera was moved by half the pixel-size to four consecutive

lateral positions. In addition phase stepping was applied to increase the en-

vironmental stability. The low fill-factor inherent in the application of CMOS

technology could be maximized to 100%. The sub-pixel sampling method is not

based on interpolation, which increases the reliability of the results obtained.

Assuming that the light sensitivity per unit area is constant, this method results

in a less noisy read out than a CMOS camera with equivalent pixel-size would

produce. The successful implementation of the sub-pixel sampling method was

shown for an intensity reconstructed hologram and double-exposure hologram

of a cantilever. The image quality improvement for these reconstructions was

demonstrated by the SNR obtained. In order to prove the resolution improve-

ment holograms with normal pixel-size and with the sub-pixel sampling method

were recorded and reconstructed. A resolution improvement and an increase of

the SBP could be demonstrated. The system as it stands at the moment is lim-

ited to static measurements due to shifting the camera to four positions at each

of which phase stepping is applied. The sub-pixel sampling method could also

enable the analysis of real-time events. Three conditions need to be set to allow
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this. Firstly, the environmental influences need to be minimized to enable the

recording of a single hologram. This could be accomplished by the implemen-

tation of a pulsed laser. Secondly, the camera needs to be moved to the four

positions with sufficient velocity. Thirdly, at each position a hologram needs to

be recorded, which requires a certain frame rate of the camera used. Both x-y

stage velocity and camera frame rate need to be temporally aligned. Care needs

to be taken that the speckle de-correlation caused by the moving object needs

is less than half the speckle size according to Kreis (2005) whilst recording the

four laterally sub-pixel shifted holograms. The real-time measurement could be

a potential future work and improvement of this method.

The combination of both methods, synthetic aperture and sub-pixel sampling

method, proves an increased SBP compared to the sub-pixel sampling method

alone. The resolution obtained matched well with the one obtained by the syn-

thetic aperture method, although a smaller sensor area was used. This is due to

the reduced recording distance, which results in the same NA (NA=0.0474) for

both methods.

The presented methods can be applied to improve the optical resolution of

intensity and phase reconstructions and the accuracy for phase measurements.

It can be carried out on microscopic and macroscopic objects. Thus it offers a

large range of possible future applications in the field of e.g. bio-medicine, study

of microsystems and in auto-motive industry.



CHAPTER 7

Digital Holographic Microscope

7.1 Introduction

In previous chapters macroscopic amplitude objects have been investigated. How-

ever, this chapter is devoted to a new field of applications for digital holography,

the investigation of microscopic phase objects. In order to record the diffraction

pattern of microscopic objects with sufficient spatial resolution a microscope ob-

jective is placed between camera and object. Therefore this type of holography

was coined Digital Holographic Microscopy (DHM). The image of the object is

recorded slightly out-of-focus on the camera with respect to the microscope ob-

jectives depth of field. A BCi4-6600 CMOS camera with 3000x2208 pixels and

∆x′ = 3.5µm is utilized for the recording. The advantages of an out of focus

recording are:

• Bright in-focus object details are avoided by the out of focus recording.

Consequently, a more evenly grey level distribution within the camera’s

dynamic range is realized.

• The sensor’s space-bandwidth product (SBP) is used more effectively by

distributing the object information over the entire sensor.

197
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• Recording the out-of-focus image in front of the image plane reduces the dis-

persion effect of high spatial frequencies, which increases with the recording

distance (Goodman (1996)).

• The field-of-view and resolution can be increased when recording in front

of the image-plane.

• Out-of-focus recording enables the application of zero-padding to improve

the resolution, which was demonstrated by Gýımesi et al. (2009) and P.Ferraro

et al. (2008).

• Furthermore, a visual control of the object position in the recording process

is enabled.

Care needs to be taken that the image is not too much out of focus otherwise the

spatial frequencies are subjected to a shear, which results in an increase of the

hologram’s required SBP, see 5.2.3. The in-focus image is then obtained by a nu-

merical reconstruction process, which was presented in section 3. The resolution

of DHM is not as strongly constrained by the pixel-size as in lens-less holography.

Moreover, it enables the introduction of low coherent light sources such as Light

Emitting Diodes (LED) as demonstrated by Repetto et al. (2004), which results

in a reduction of speckle noise. DHM could, with reasonable optical resolution,

be applied to many different fields such as shape measurement, phase visualiza-

tion, living cell analysis Rappaz et al. (2005) and refractive index measurement

Charriére et al. (2006) and Rappaz et al. (2008). The main advantages of a DHM

compared to conventional microscopy are:

i. It permits to obtain object amplitude and phase by recording a single holo-

gram, see Fig. 7.1.

ii. It enables the recording of dynamic events such as living cell monitoring.
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iii. It permits numerical focusing to different axial object regions.

iv. The axial resolution obtained is in the sub-nanometer region, which was

demonstrated by Kuehn et al. (2008).

v. Wave-aberrations, such as spherical aberrations, can be corrected numeri-

cally.

The images in Fig. 7.1 show the same specimen, namely a human cheek-cell,

using different microscopes. The reduced resolution of the images obtained with

the DHM are likely to be due to the reduced NA employed. However, the contrast

obtained is superior to the Zernike phase contrast microscope, which is commonly

applied for the analysis of phase objects. This statement is confirmed by the

contrast values calculated for each image.

(a) (b)

(c) (d)

Figure 7.1: Comparison of, (a) DHM results with 20xMO (NA=0.40) intensity recon-
struction and (b) phase reconstruction, (c) conventional microscope Polyvar 50xMO
(NA=0.85) , (d) Zernike phase contrast microscope Olympus IX51 40xMO (NA=0.60)
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The contrast definition used is based on the Weber-contrast VWeber, which is

well suited for small features of intensity Io on a large uniform background of

intensity Ib.

VWeber =
Io − Ib
Ib

(7.1)

The values obtained for Fig. 7.1 from left to right and top to bottom are:

0.137, 6.127 and

0.037, 0.098, respectively

The work described in this chapter was focused on the analysis of a transparent

phase object (human cheek-cell), which benefits from the advantages previously

mentioned. The resolution improvement algorithms presented in 6.4 have been

applied to the DHM to prove its validity in the microscopic domain in conjunction

with imaging optics. Moreover, a three dimensional topology map of the cheek-

cell could be obtained, which was derived by the algorithm described in 6.2.4.

The topology map in combination with the two dimensional phase map enabled

the generation of a two dimensional refractive index distribution of the cheek-cell.

7.2 Setup

A schematic sketch of the setup and the practically realized setup are shown in

Fig. 7.2. A large amount of the mechanical parts used have been designed by

the author and manufactured in the engineering workshops, see Appendix C.1.

The setup has been realized in an in-line fashion. Hence phase stepping was

applied in order to suppress DC-term and twin-image, which was discussed in

3.3.4. In an analogue manner as explained in 6.2.1 the combination of linearly

polarized laser light, half-wave retarder and polarizing beam splitter are used to
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adjust the intensity of reference and object-beam. Single mode fibres have been

used, which permit a matched length adjustment of both optical arms without

the introduction of further optical elements such as mirrors. Consequently, the

setup is more compact. Moreover, a clear Gaussian beam profile in reference

and object arm was obtained, which reduced the impact of background noise in

the recorded hologram. Furthermore, the setup became more environmentally

stable. In addition, the polarization state of the reference and object-wave could

be aligned by rotating the reference single mode fibre by 90◦. A short fibre length

and large radii were applied in order to minimize polarization dispersion effects

due to the birefringent properties of the fibre. These dispersion effects would

otherwise result in a reduced linear polarization state at the fibre output. The

polarization dispersion can be described as a function of the square root of the

fibre length, which is discussed in Gong and Jian (1999).

Furthermore, the setup permits the possibility to illuminate the object with

circularly polarized light by the introduction of 45◦ rotated quarter-wave re-

tarders. In that manner the contrast of a birefringent object can be increased in-

dependently of the object’s birefringent axis orientation [Whittaker et al. (1994)].

When setting up the experiment a convergent object illumination was used in or-

der to record the correct object phase, as discussed in 5.2.3. In addition, conver-

gent object illumination enables one to obtain the highest resolution for transpar-

ent objects compared to other illumination arrangements (Pawley (2006)). The

quadratic phase term arising from the 20 x DIN achromatic microscope objective

could be minimized by adjusting the axial position of a convex lens placed in

front of the fibre output in the reference arm. This is an analogue principle as

used in Linnik interferometers, where the optical components in the reference

arm duplicate the optics used in the object-arm, see Malacara (2006). More-

over, a matched wave-front curvature for reference-beam and object-beam offers
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the advantage that the sensor is less occupied with fringes, which do not arise

from the object-diffracted light. The suppression of an eventually arising residual

phase term is discussed at a later stage of this Chapter in 7.4.
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Figure 7.2: (a) Schematic sketch of DHM setup, (b) practically realized setup
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7.3 Optical Parameters of DHM

This section focuses on the derivation of optical parameters for an out-of-focus

recorded hologram. The optical parameters supplied by the manufacturer and

obtained by the normalized measures taken from ISO 9345-1 are shown in Fig.

7.3.

HH’

-f f’

F’F
z

y

y’

image-plane

l =150mm2

d =3.3mmw

l =45mm1

d2d1

object-plane

DIN 20x 
NA=0.40
DIN 20x 
NA=0.40

principal-plane

e’e

Figure 7.3: Specified and normalized dimensions for microscope objective

7.3.1 Thin Lens Model

The microscope objective consisting of a range of lens elements is simplified to a

single thin lens model. In addition to the given measures the common focal length

f and f ′, the distances d1 between object-plane and the common principal-plane

and d2 between common principal-plane and image-plane is calculated. The sum

of d1 and d2 when maintaining the microscope objective’s working distance dw is

195 mm according to ISO 9345-1. The common focal length f can be calculated

by taking into account the geometric relations shown in Fig. 7.3

y + y′

d1

=
y′

f
⇒ d1 =

(y + y′)f

y′
=

(1 + Γ′)f

Γ′

y + y′

d2

=
y

f ′
⇒ d2 =

(y + y′)f ′

y
= (1 + Γ′)f ′

(7.2)
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Presuming that the front and rear focal length are matched results in:

f = f ′ =
Γ′ (d1 + d2)

(1 + Γ′)2 =
20 · 195 mm

212
= 8.844 mm (7.3)

From Fig. 7.3 it follows that:

d1 =
y + y′

y′
f ′ =

1 + Γ′

Γ′
f ′ = 9.286 mm (7.4)

and d2:

d2 = (1 + Γ′) f ′ = 185.710 mm (7.5)

Ideally the object should be recorded at the manufacturer’s specified working

distance, for which the optical system is optimized and at which Abbe’s sine-

condition, shown in Eq. 7.6, is fulfilled. Abbe’s sine condition implies that the

ratio between sine of the angular aperture on the object side ε and on the image

side ε’, see Fig. 7.3, equals the magnification.

Γ′ =
sin ε

sin ε′
(7.6)

Recording the object at a different distance than specified by the working distance

results in aberration effects such as coma caused by different lateral magnifica-

tions. Therefore, the position of the object, the microscope objective and the

camera should be arranged in the following manner:

i. Setup the object and the camera by taking into account the object-sensor

distance of 195 mm specified in ISO-9345-1 and shown in Fig. 7.3.

ii. Adjust the microscope objective’s position until an in-focus image appears

on the camera sensor.

iii. Move the camera slightly closer to the microscope objective as shown in



7. Digital Holographic Microscope 205

Fig. 7.4 in order to increase the recorded field of view and the optical

resolution.

The optical resolution obtained can be calculated as shown in Eq. 4.23. For mi-

croscope objectives it can generally be assumed that the object-distance d almost

matches with the focal length f . Therefore, the resolution can be calculated by:

δ = 0.61
λ

NA
≈ 1.22

λf

D
(7.7)

Recording the hologram in front of the image-plane as shown in Fig. 7.4 results

in reduced phase dispersion with respect to high spatial object frequencies, as

discussed in Goodman (1996), by which an increased optical resolution is ob-

tained.
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Figure 7.4: Imaging and reconstruction process
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7.3.2 Reconstruction Distance (d′)

The numerical reconstruction can either be performed by applying the conju-

gated complex reference beam in conjunction with the physical recording dis-

tance (d′ = dimage) or by calculating the corresponding reconstruction distance

d′, which would have arisen if a plane reference-wave was employed for the recon-

struction. The latter was used for the reconstruction discussed in this chapter.

It offers the advantage to be computationally less time consuming. An esti-

mate for the in-focus reconstruction distance d′ is obtained by subtraction of the

distances
(
d̃2 − d2

)
. d̃2 stretches from the principal-planes HH’ of the micro-

scope objective to the hologram-plane, and d2 stretches from the principal-planes

HH’ to the image-plane, as shown in Fig. 7.4. The subtraction corresponds to

the hologram-image-plane distance dimage. The spherical reference-wave in the

recording process acts like an additional lens which needs to be accounted for

in the reconstruction process. The reconstruction distance d′ with respect to

the source point distance of the spherical reference-wave dref can be calculated

according to Eq. 3.48 as:

d′ =
dimagedref
dref − dimage

(7.8)

In case of a large object-wave curvature, the compactness of the setup can benefit

from the introduction of a lens in the reference beam, which projects the reference-

wave point-source further distant. The lens projected reference-wave’s source

point distance (dr) depends on the distance of the lens L3 as shown in Fig.

7.2(a) in the reference arm to the fibre (dfb) and the focal length of the lens. The

distance between fibre and lens in order to obtain the desired distance (dr) can

be calculated according to Appendix A by:

dfb = f

(
1− dr tanϑ

y1

)
(7.9)
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Where ϑ indicates the angle under which the light is emitted from the fibre and

y1 denotes the height at which the light strikes the lens. ϑ can be calculated

by the manufacturer’s specified NA of the fibre. The fibre used in the experi-

ment is a 630HP Thorlabs fibre, which possesses a NA of 0.13 (ϑ = 7.41 ◦). In

order to obtain the whole reference distance dref , the distance from the lens to

the hologram-plane needs to be added to dr. Due to the relatively short recon-

struction distance d′ the reconstruction can not be performed using the Fresnel

approximation ∗, which would otherwise introduces errors in the reconstructed

phase. In this case the Rayleigh-Sommerfeld diffraction integral, see Section 3.2,

needs to be applied.

7.3.3 Magnification, Image-Size, and Field of View (FOV)

• Magnification Γ′′

The recorded lens due to the spherical reference-wave introduces a change of

magnification. The magnification of the reconstructed hologram (Γ′′) can be

calculated by:

Γ′′ = Γ′ · d′

dimage
= Γ′ · dref

dref − dimage
(7.10)

Where Γ′ indicates the manufacturer’s specified magnification.

• Calculation of Image-Size y′′

The image-size in the reconstruction plane y” can be calculated taking into ac-

count the geometric relations as shown in Fig. 7.4 and the magnification with

respect to the reference-wave distance.

y′′ =
dref

dref − dimage
(y′ + ∆y′) =

dref
dref − dimage

M∆x′
(

1− dimage
d2 − f ′

)
(7.11)

∗see Eq. 2.52 for validity-region of Fresnel-method
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Where M is the number of pixels in the y-direction. Recording the hologram

in front of the image-plane results in a reconstructed image which is larger

than the camera sensor-size. In the reconstruction process utilizing the con-

volution integral, see Section 3.2 the hologram either needs to be zero-padded by(
M ′ = M + y′′−M∆x′

∆x′

)
or a numerical lens of magnification

(
Γ′ = M∆x′

y′′

)
needs

to be introduced to display whole the object information.

• Calculation of FOV

The object-size in y-direction can be calculated as:

y =
y′′

Γ′′
=
M∆x′

Γ′
·
(

1− dimage
d2 − f

)
(7.12)

The object-size in the x-direction can be calculated in the same manner by re-

placing M with the number of pixels in the x-direction (N).

FOV = x× y = N ×M
[

∆x′

Γ′
·
(

1− dimage
d2 − f

)]2

(7.13)

7.3.4 Depth of Field (DOF)

The DOF in conjunction with a lens-system of a certain magnification (Γ′) has

been discussed in Section 4.4.2. Due to the large NA the wave-optical DOF and

the geometric-optical DOF need to be taken into account. Due to the numerical

reconstruction with the Rayleigh-Sommerfeld diffraction integral Eq. 4.33 was

applied in order to calculate the geometric-optical DOFg. The wave-optical DOFλ

is calculated according to Eq. 4.32. Combining both equations results in:

DOF = DOFg + DOFλ =
∆x′

Γ′′ (NA)
+

λ

2 (NA)2 (7.14)
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7.3.5 Experimental Validation

The obtained parameters have been validated by employing the USAF-test target

as the object under investigation. The camera was moved to different axial posi-

tions in close proximity to the image-plane (maximum axial camera displacement

± 40 mm). A spherical reference-wave was employed which was positioned at 325

mm distance to the in-focus image of the object. The camera used has 3000x2208

pixels with 3.5 µm pixel-size. Fig. 7.5 shows graphs in which the experimental

data and the calculated data have been compared. It was experimentally found

that obtained magnification for an in-focus recorded image (19.32 x) is slightly

smaller than the manufactures specified magnification (20 x), which has been

taken into account when calculating the theoretical values.
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Figure 7.5: Comparison of experimentally obtained data and calculated data for, (a) re-
construction distance (d′), (b) magnification obtained for the numerically reconstructed
hologram (Γ′′), (c) image-size in the reconstruction-plane (y”), (d) object-size (y)
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Table 7.1: Evaluation of the experimentally obtained data

Statistical properties d′ in mm Γ′′ y′′ in mm y in µm
Maximum deviation from
expected value

1.171 0.242 0.332 18.84

Mean value 0.102 0.073 0.126 5.43

Standard deviation 0.469 0.110 0.124 7.25

Standard deviation of the
mean

0.162 0.039 0.044 2.57

The statistical data which indicates how well the calculation matches the

experimental data is shown in Table 7.1. In conclusion, the mathematical model

created to describe the optical parameters matches well with the experimental

data. A fundamental derivation of optical parameters in conjunction with DHM

has already been conducted by Carl et al. (2004). Their mathematical description

was based on a plane-reference beam and a numerical reconstruction utilizing the

Fresnel-method, which is not the most suitable method for the reconstruction of

phase information in DHM. The correct choice of reconstruction method was

discussed in Section 7.3.2. The derivation described in this section takes into

account the shape of the reference-wave and the reconstruction by means of the

Rayleigh-Sommerfeld diffraction integral. In that respect it represents a novel

approach.

7.4 Subtraction of Additional Spherical Phase Term

The application of the microscope objective introduces an additional spherical

phase term, as discussed in Section 5.2.3. The spherical phase term can be

suppressed in three different ways as discussed in Osten (2006b).

i. Phase stepping is applied to record the phase of the interference pattern.
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A region of well defined fringes of the obtained phase map which does not

hold object information is selected. This area is then used to obtain the

curvature of the spherical phase term. Afterwards a non-linear fit is applied

to generate the corresponding phase for the hologram regions which do hold

object information.

ii. In analogy to the principle of double exposure holography a hologram

with the object and then without the object is recorded. The hologram

without the object should then only carry information of the spherical phase

arising from the microscope objective.

iii. The corresponding spherical wavefront is obtained numerically. The nu-

merical wavefront is obtained in the hologram plane and then reconstructed

with exactly the same parameters as applied to the hologram. An estimate

of the wavefront’s curvature according to Osten (2006b) can be obtained

by counting the number of circular fringes originating from the center.

It was empirically found that the subtraction of the spherical phase term can best

be accomplished in the off-line arrangement by the double exposure technique.

However, for the in-line arrangement described in this chapter numerical phase

correction was applied. This holds the benefit of not having to displace the object

under investigation. The digital hologram and the numerical reconstruction of

the phase is shown in Fig. 7.6(a) and (b), respectively.

In order to obtain an estimate of the magnitude of the spherical phase map, it

was presumed that an in-focus image is recorded and the microscope objective

is illuminated with a convergent light beam. Hence the spherical phase term

caused by the lens and the free space propagation from the object to the micro-

scope objective can be neglected as discussed in Section 5.2.3. The phase term,

which corresponds to the free space propagation from the microscope objective
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(a) (b)

(c) (d)

Figure 7.6: (a) Hologram of human cheek-cell, (b) reconstructed phase without suppres-
sion of spherical phase term , (c) numerically calculated spherical correcting wavefront,
(d) reconstructed phase with suppression of spherical phase term

to the hologram-plane (d2) and the reference-wave source point distance (dref ),

results in a combined spherical phase term that in parabolic approximation can

be described by:

ϕ(x′, y′) =
π (x′2 + y′2)

λ

dref − d2

drefd2

(7.15)

For the investigation of the cheek-cell the hologram was recorded at a distance

of 197 mm from the microscope-objective and the reference-wave source point

distance was 408 mm, which results in a curvature radius of 381 mm for the
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combined phase map. An accurate magnitude of the curvature radius can then be

obtained in an iterative manner by subtracting the hologram from the correcting

phase-map until the spherical phase term disappears. The final numerical phase

map obtained possessed a curvature radius of 430 mm and a shift of 618 pixels in

x-direction and of 1008 pixels in y direction, which is shown in Fig. 7.6(c). The

correcting phase map was then reconstructed utilizing the same parameters as

applied for the reconstruction of the hologram. Afterwards both were subtracted

from each other to reveal the object’s phase. The obtained corrected phase-

reconstruction is shown in Fig. 7.6(d).

7.5 Resolution Improvement

The resolution improvement algorithm presented in Section 6.4 was applied to

DHM to prove its validity for microscopic objects in conjunction with imaging

optics. The main difference to the preceding work is that the resolution improve-

ment obtained is additionally limited by the NA of the microscope objective

used. Phase holograms were recorded in order to overcome previously expe-

rienced problems encountered with the application of resolution improvement

methods as discussed in Section 6.2.2. In that manner the phase of each individ-

ual hologram could be adjusted prior to the reconstruction. The results obtained

for intensity in phase reconstruction are shown in Fig. 7.7 for a reconstruction

with 3000 x 3000 pixels and 8805 x 8805 pixels, respectively. The SNR obtained

for the boxed area shown in Fig. 7.7(d) and for the corresponding area in Fig.

7.7(b) is 13.82 and 12.42, which proves an image quality improvement. Moreover,

the object details shown are less noisy and possess an increased contrast, which

is shown in Figs. 7.7(c) and 7.7(a) for 8805 and 3000 pixels, respectively.
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(a) (b)

(c) (d)

Figure 7.7: Intensity and phase reconstruction at d′ =91 mm for (a) and (b) 3000x3000
pixels with ∆x′ = 3.5 µm , (c) and (d) 8805x8805 pixels with ∆x′ = 1.75 µm

7.6 Extended Depth of Field (EDOF) and 2D Refractive

Index Distribution

Due to the large NA of the microscope objective employed, only a finite region of

the image is in focus. In-focus reconstructions of the object were obtained within

a reconstruction region of 91 mm to 101 mm in 0.5 mm steps, see Fig. 7.8. An in-

focus reconstruction of the entire axial object extension can be obtained utilizing

the extended depth of field method, which was discussed in Section 6.2.4. In
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addition to the in-focus image the topology map of the image is obtained. In order

to obtain the object topology map the image coordinates need to be converted

to the object coordinates. Firstly, the reconstruction distance d′ was converted

to the physical distance dimage. The reconstruction distance (d′) represents a

combination of recording distance (dimage) and the point source distance of the

spherical reference-wave (dref ), as described in Eq. 7.8. The camera image

distance dimage can be calculated by rearranging Eq. 7.8

dimage =
d′dref
dref + d′

(7.16)

The reference source point distance used was 408 mm. The corresponding image

distances range from 74.4 mm to 81 mm. Secondly, the axial image extension

needs to be related to the axial object extension by taking into account the

magnification Γ′′. The axial object extension can then be calculated according

to Haferkorn (2003) by:

∆zobj = − f
f ′

∆zimage
Γ′′2

(7.17)

(a) (b)

Figure 7.8: Reconstruction at (a) 91 mm and (b) 101 mm
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The minus sign indicates an inverted axial orientation of the image compared

to the object and is therefore neglected in succeeding explanations. Assuming

that back focal length f and front focal length f ′ are matched results in:

∆zobj =
∆zimage

Γ′′2
=

6.6 mm

14.42
= 31.8 µm (7.18)

This experiment with a cheek-cell was sequentially performed before the con-

sideration of the optical parameters was conducted. The camera could not be

located at 195 mm distance to the object due to using a 50x50 mm beam splitter

to combine reference and object-beam. This beam-splitter was needed in order to

carry out the resolution improvement methods. The distance between the micro-

scope objective and the microscope slide was adjusted by a vernier caliper to the

specified working distance. The increased working distance due to the physical

thickness of the microscope cover-slide and the additional optical path length due

to the cover-slide’s refractive index ≈ 1.5 was not taken into account. Therefore,

the image-plane was located further in front of the hologram-plane than ini-

tially intended. Later calculation revealed that the object was positioned at 3.4

mm working distance rather 3.3 mm. In order to obtain an exact estimate of the

magnification the object-size in the reconstructed image was compared with those

images obtained with a conventional microscope and a phase contrast microscope

as shown in Fig. 7.1. The magnification obtained was 14.4. This magnification

was then used to calculate the axial object-extension (∆zobj = 31.8 µm).

In conjunction with the extended depth of field (EDOF) method, described

in Section 6.2.4, and the phase information obtained a refractive index map can

be calculated. Prior to the application of the EDOF method the reconstructed

images were filtered in order to suppress disturbing fringe features as shown in

Figs. 7.9(a) and (b), which otherwise would result in errors when calculating
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the variance value. Then the EDOF method based on the calculation of a three

dimensional variance map followed by the Gaussian fitting method was applied.

A 5x5 pixels window size was employed for the EDOF method. The obtained

in-focus image is shown in Fig. 7.9 (c). The obtained topology map was filtered

utilizing a 5x5 median filter in order to suppress noise.

(a) (b)

(c) (d)

(e) (f)

Figure 7.9: (a) Intensity reconstruction, (b) frequency filtered intensity reconstruction,
(c) EDOF map, (d) topology map unfiltered, (e) topology map median filtered, (f) 2D
refractive index distribution
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The unfiltered and filtered topology map are shown in Figs. 7.9 (d) and (e), re-

spectively. The object’s two dimensional refractive index distribution nobject(l,m)

can be calculated by:

nobject(l,m) = nsolution + ∆n(l,m) (7.19)

Where nsolution denotes the refractive index of the solution and ∆n(l,m) the

difference in refractive index between object and solution. ∆n(l,m) can be de-

termined by:

∆n(l,m) =
λ ·∆ϕ(l,m)

2π∆zobj(l,m)
(7.20)

The solution used is saline, which has a refractive index of nsolution = 1.33. The

two-dimensional refractive index map is shown in Fig. 7.9 (f) and the averaged re-

fractive index obtained is 1.355 which matches with the averaged refractive index

of cheek-cells reported by Moh et al. (2008). Furthermore, the refractive index

map obtained shows a higher refractive index for the cell-wall which matches

with the result presented by Moh et al. (2008).

7.7 Conclusion

This chapter dealt with the DHM and its potential for the investigation of phase

objects. The optical parameters for a DHM were derived, which to the authors

knowledge have not been described so far in such a comprehensive manner. The

resolution improvement methods, which were discussed in Chapter 6, have been

applied to DHM. Although the whole frequency bandwidth transmitted through

the microscope objective is already recorded by the camera sensor without ap-

plying the resolution improvement methods, the contrast and the SNR could
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further be increased. The image quality improvement might be due to the im-

proved MTF as shown in Fig. 6.18. Furthermore, the topology map obtained

by the EDOF method in conjunction with the two dimensional phase map were

used to generate a two dimensional refractive index map of the object. The result

obtained are in correspondence with the refractive index map obtained by Moh

et al. (2008).

The result presented by Moh et al. (2008) was obtained utilizing surface plas-

mon resonance sensing. It is based on collecting object localized data in conjunc-

tion with scanning microscopy. In Moh et al. (2008) a set of images needed to

be recorded in order to obtain the two-dimensional refractive index distribution.

In that manner, the method described in this chapter is superior with respect to

the experimental effort. The obtained two dimensional refractive index distribu-

tion represents a proof of principle. A further improvement could be obtained by

combining digital holography with tomography. Furthermore, the EDOF image

as such might already reveal the object depths due to features such as the black

edge which hems the cell wall, see Fig. 7.9(c). The appearance of the black

edge is due to total internal reflection and hence corresponds to a physical ramp.

These are points to be addressed for in future research.



CHAPTER 8

Conclusions and Future Work

8.1 Conclusion

This Ph.D. thesis was focused on the development and implementation of resolu-

tion and image quality improvement methods applied to digital holography. The

lateral resolution improvement was demonstrated by experiments carried out on

a USAF 1951 resolution test target and the phase resolution improvement by the

standard deviation obtained from double exposure phase maps. The smaller the

standard deviation, the smaller the measurement uncertainty. The image quality

improvement was demonstrated by the obtained Signal to Noise Ratio (SNR)

as defined in Eq. 6.5. It needs to be emphasized that the SNR is defined in a

logarithmic manner. Therefore, an SNR improvement by the magnitude smaller

than one already proves a significant image quality improvement. In the follow-

ing paragraphs the conclusions drawn from the resolution improvement methods

are as follows.

• The sub-pixel sampling method, in conjunction with CMOS technology,

was developed by the author. A three bucket phase stepping algorithm

developed by Cai et al. (2004) was implemented to minimize environmental

influences. The original pixel-size was decreased by a factor of two whilst

220
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maintaining the light-sensitivity. The lateral resolution obtained was dou-

bled from 17.5 µm to 8.7 µm, which compares well with other resolution

improvement methods mentioned in Section 6.1. The measurement uncer-

tainty for the interpreted double exposure phase map was reduced from λ
6.9

to λ
7.1

. Moreover, the fringe visibility was enhanced, which enables more

accurate deformation analysis. The SNR for the intensity reconstruction

for an investigated cantilever was increased from 10.96 dB to 11.07 dB.

Moreover, the small fill-factor inherent to CMOS-technology, 35% in our

case, was increased to 100% utilizing the sub-pixel sampling method.

• The successful combination of the synthetic-aperture method and the sub-

pixel sampling method to improve the optical resolution and image quality

was demonstrated. The lateral resolution obtained in comparison to the

sub-pixel sampling method could further be improved by a factor of three

from 17.5 µm to 5.5 µm.

• The well established synthetic-aperture method, in conjunction with the

recording of Fourier-holograms, was applied to improve the resolution of

the reconstructed hologram. The lateral resolution could be improved by a

factor of three. The product of lateral resolution and field of view obtained,

namely the Space-Bandwidth Product (SBP), was 14.2710, which represents

the largest SBP obtained in comparison to recent publications in the field

of digital holography. The problem encountered with the curved sensor

area when performing double exposure holography could be overcome by

the spatial averaging method developed by Baumbach et al. (2006). The

measurement uncertainty obtained with the spatial averaging method was

decreased from λ
14

to λ
81

.

• The extended depth of field method was improved by the Gaussian fitting
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method developed by the author to result in a quantization increase by a

factor of ten and an improved accuracy utilized by more precise scanning.

The Gaussian fitting method takes into account all variance values rather

than only the maximum variance value. In that manner, dislocations of the

maximum variance value, as shown in Fig. 6.13(a), can be correct, which

further increases the accuracy.

In the following paragraphs the conclusions obtained from the Digital Holographic

Microscope (DHM) are summarized.

• A two dimensional refractive index distribution of a microscopic phase ob-

ject (check-cell) was obtained by solely recording a single hologram. This

was enabled by combining the information obtained from the topology map

with the numerically reconstructed two dimensional phase map of the ob-

ject. The topology map was obtained by the extended depth of field method

combined with Gaussian fitting. This, to the author’s knowledge, has not

been reported before.

• A detailed derivation of the optical parameters of the digital holographic

microscope, in conjunction with a spherical reference-wave and the record-

ing of an out-of-focus image hologram, was conducted. To the authors

knowledge this was done for the first time. It was theoretically shown and

practically proven that the field of view can be increased when recording

the hologram in front of the image-plane.

• Image quality improvement based on the combination of synthetic aperture

and sub-pixel sampling method could successfully be demonstrated on the

DHM. The pixel-number was increased from 30002 pixels to 88052 pixels

and the sampling frequency doubled. This resulted in an increase of the
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SNR from 12.42 to 13.82, which proves that the speckle-noise could be

reduced significantly.

In the following paragraphs the conclusion derived from the computer aided

implementation of the numerical reconstruction methods are given. This in par-

ticular refers to the accuracy and performance improvement developed by the

author.

• The performance of the averaged-intensity subtraction method to suppress

the DC-term in the numerical reconstruction could be improved by two

methods developed by the author, namely the inverted median filter method

and the sliding window method, as demonstrated in Fig. 3.10.

• The numerical effort to center the image of the reconstructed hologram

could be reduced by shifting the transfer-function rather than shifting the

impulse response. In this manner the two dimensional Fourier-transformation

in order to obtain the transfer-function from the impulse-response was not

needed.

• A numerical lens, which is valid in the Rayleigh-Sommerfeld region, was ob-

tained, by which the accuracy of the reconstructed phase for short recording

distances is increased.

• Cai’s three bucket phase stepping method [Cai et al. (2004)] was compared

with the well established four bucket phase stepping Carré method. Cai’s

method requires the recording of three phase stepped holograms, whereas

the magnitude of phase step is unknown and can differ among the three

holograms. Carré’s method requires the recording of four phase stepped

holograms, whereas the magnitude of phase step is unknown and has to be

the same for the four recorded holograms. A series of computer generated
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sinusoidal interference pattern was used for the analysis. The measure-

ment uncertainty for Cai’s method was 0.0001 rad and for Carré’s method

0.003. This proves that Cai’s method can perform at least equally as well

as Carré’s method does. Moreover, the implementation of Cai’s method en-

ables the reduction of the experimental effort and the impact of disturbing

environmental influences by calculating the magnitude of each individual

phase step.

• It was found that phase stepping utilizing a piezo-mounted mirror results

in an increased phase step accuracy than when using wave-retarder plates.

The measurement uncertainty for the generated phase step utilizing a piezo-

mounted mirror was 0.0748 rad and 0.1543 rad utilizing polarization optics.

The final list of conclusions refers to the Space-bandwidth product (SBP) con-

sideration.

• The SBP considerations for the required SBP’ in the recording process

and obtained SBP” in the reconstruction process conducted by Lohmann

(1967) and Xu et al. (2005) has been extended to lens-less Fourier-holograms

in in-line and off-line configurations and image-plane holograms in in-line

configuration.

• The Fresnel-approximation has been employed to obtain the amplitude and

phase information for the interference pattern produced by different holo-

graphic setups. In that manner, conclusions for the SBP’ analysis in the

recording process could be drawn.

• Moreover, the obtained interference phase was analyzed in respect to the

reconstruction of the correct object phase. To enable a correct phase recon-

struction conditions upon the shape of the optical or numerical reference-
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wave have been imposed.

• Advantages of Fourier holograms, other than the largest SBP’ and SBP”

in comparison to the other holographic setups, have been listed such as

reduced impact of wave-aberrations and shortest recording distance. This

confirms the choice of Fourier holographic setups used throughout most of

the experiments performed during my PhD.

8.2 Future Work

Future research work could be split in two fields, the improvement of hardware

and the improvement of software, as detailed below.

8.2.1 Software

A Graphical User Interface (GUI) could be created based on a low level pro-

gramming language, such as C, C++ or Delphi. The most common digitized

numerical tools developed in the scope of this PhD thesis would be implemented

in this GUI. Future research projects and the calculation speed would benefit

from this. The GUI would include:

• The three numerical reconstruction techniques including DC-term suppres-

sion, Fourier-filtering and numerical lens as discussed in Chapter 3.

• An optimization tool to obtain the best in-focus reconstruction based on

the variance value.

• Implementation of numerical resolution improvement algorithm such as

speckle noise reduction filter or Inverse-Fourier-Transform-algorithm (IFTA)

to obtain the best possible impulse response with respect to the resolution

in the reconstructed hologram.
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• An optimization tool to remove the spherical wavefront of the reconstructed

phase in conjunction with digital holographic microscopy by tip, tilt and

de-focus removal.

• The implementation of phase stepping algorithms such as Cai’s and Carré’s

method.

• The implementation of phase unwrapping algorithms such as Goldstein’s

cut-line or Least-square unwrap.

• The creation of a topology map based on the variance method in conjunc-

tion with Gaussian fitting.

• A calculator to obtain parameters such as the minimum distance in respect

to the setup and the reconstruction model used, statistical values (maxi-

mum, minimum, mean, standard-deviation) of a two dimensional image or

a cross-section line.

8.2.2 Hardware

A more compact, easily transportable and measurement task adaptable holo-

graphic system should be aimed for, which would benefit from being more envi-

ronmentally stable and would enable a less time consuming implementation for

industrial inspection. The introduction of optical fibres has already proven to

enable the design of a more compact system. Moreover, fibres enable common

path interferometry, by which environmental influences are minimized. The setup

could further benefit from the introduction of laser diodes or in microscopy also

Light Emitting Diodes (LED). The coherence length of laser diodes and LEDs

is shorter than the one obtained for corresponding gas and solid state laser, see

Table 2.3. The setup becomes less bulky and more easily transportable. Fur-
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thermore, laser-diodes and LEDs can be pulsed down to the level of picoseconds,

which enables high speed measurements and further increases the environmental

stability of the setup. Moreover, the recording process is less strongly subjected to

the speckle effect, which would result in an improved image quality. However, in

order to perform accurate phase measurements care needs to be taken that either

the wavelength is kept stable or that a possible wavelength shift is monitored and

taken into account for the data interpretation. A shift to longer wavelengths is

common among semi-conductors due to a stronger impact of temperature, which

causes a narrowing of the gap between conduction and valence-band.

The flexibility of the holographic system could be increased by simultane-

ous application of different wavelengths and object illumination geometries. In

this manner real time shape measurement and in and out-of-plane deformation

measurement would be enabled. This could be accomplished by interference of

multiple beams separated in the Fourier domain by different inclination angles

of the reference beam. Multiple light sources of different wavelength could be

employed to ensure that only corresponding object and reference beam interfere.

In case a single light source was used, unwanted interference could be prevented

by destroying temporal coherence using fibres of different optical path-lengths

separated by the coherence length.

A resolution improvement of the aforementioned holographic system could be

obtained by implementing the resolution improvement methods developed in this

thesis. In order to maintain the realtime measurement capability of the proposed

holographic system the resolution improvement methods developed need to be

adapted. A camera array, rather than shifting a single camera in x and y direc-

tion could be used, to implement the synthetic aperture method. The following

requirements need to be fulfilled in order to enable realtime measurement by

means of the sub-pixel sampling method. Firstly, the shift to the four recording
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positions and the camera frame rate need to be aligned and automated. Sec-

ondly, both camera frame rate and shift-speed should be large enough in order

not to record speckle de-correlation caused by the object movement. Speckle de-

correlation needs to be less than half the speckle size according to Kreis (2005)

whilst recording the four laterally sub-pixel shifted holograms. The synthetic

aperture method has a larger potential to be applied in lens-less systems, whereas

the sub-pixel method is more likely to be useful in digital holographic microscopy

(DHM). In DHM the pixel-size of the sensor employed correlates more strongly

to the recordable and observable smallest object detail. The sub-pixel sampling

method would enable the application of a high NA system of relatively small

magnification such as Nikon CFI Apo LWD 25XW (25x,NA=1.1). The applica-

tion of such a microscope objective would result in an increased FOV and hence

an increased SBP. Moreover, a high resolution image is combined with a large

depth of field when applying a smaller magnification, see Eq. 4.28.

A high resolution compact holographic system including software for lens-less

holography and DHM can then be applied to analyze dynamic events, which re-

sult in a change of phase, such as different temperature gradients of a jet stream

or the monitoring of living cells, which generally are transparent. The developed

software would allow any user to carry out the measurement without the need to

understand the programming language and the installation of the programming

language. The proposed system could then be applied to solve many problems,

among others in biology, chemistry, medicine, engineering design and monitoring

of manufacturing process.



Bibliography

T. Baumbach, E. Kolenovic, V. Kebbel, and W. Jüptner. Improvement of accu-
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APPENDIX A

Lens Equation

A.1 Derivation of Fibre Point Source Distance dfb and Pro-

jected Fibre Point Source Distance dr

Light going through a lens experiences a change of propagation angle according to

Snell’s law of refraction Saleh and Teich (1991). This change is influenced by the

refractive indexes of lens nLens and the surrounding medium nSur. Furthermore,

the thickness-function combined with the position where the light beam stricks

the lens and the incident light angle ϑ influences the angle of light β2, see Fig.

A.1. The lens maker equation, shown in Eq. A.1, describes how light is affected

by the lens. This equation does not take into account diffraction effects. It

describes the impact of the radius of both planes R1 and R2, the refractive index

nLens and the thickness zLens on the focal length.

1

f
= (nLens − 1)

[
1

R1

− 1

R2

+
(nLens − 1)zLens

nR1R2

]
(A.1)
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Figure A.1: Passage of light through a plano-convex lens

For a plano-convex lens (R1 =∞) Eq. A.1 can be simplified. Furthermore, it is

assumed that back and front focal length are the same.

1

f
=
nLens − 1

R2

(A.2)

In our case, the thickness-function zLens describes a plano-convex lens:

zLens = ∆1 + ∆2 −
[
R2 −

√
R2

2 − y2
2

]
(A.3)

The focus is set upon the derivation of two parameters, the distance dfb,

and the distance dr which represents the distance from which the light would

have originated under the angle κT without any lens. The knowledge of these

parameters is important if the spherical wavefronts of a reference beam need to

be adapted to the object beam’s curvature. It is assumed that the focal length
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f , the refractive indexes nLens and nSur, the angle ϑ, and the thickness of the

plane lens part ∆1 and the spherical lens part ∆2 are known. Furthermore, nSur

is assumed to be one. In order to obtain an equation with both terms dfb and κT

the light path is retraced as it traveled through the lens. Thus we are starting

with an equation to obtain κT . The derivation of the equations shown in the

following are partially based on the geometric relationships shown in Fig.A.1.

From Fig. A.1 follows for κT :

κT = β1 − β2 (A.4)

Where β1 is the angle between the normal ~n1 on the lens surface for the coordi-

nates (y2, dR2) and the optical axis. β2 is the angle between the normal ~n2 on the

lens surface and the light leaving the lens. β2 can be described by Snell’s law:

sin β2 = nLens sinκ

= nLens sin (β1 − ϑT )

(A.5)

With ϑT = asin
(

sinϑ
nLens

)
Combing Eq. A.4 and Eq. A.5 results in a new equation

in which κT can solely described as a function of ϑ and β1.

κT = β1 − asin [nLens sin (β1 − ϑT )] (A.6)

Now we face the difficult task of solving this equation for β1. This could be solved

with the help of Matlab.

β1 = ϑT + atan

[
sin(κT − ϑT )

cos(κT − ϑT )− nLens

]
(A.7)

Having obtained an equation to describe β1 as a function of κT we now need to
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find an equation which combines β1 and dfb. This can be done by describing β1

as a function of the coordinates y2 and dR2:

tan β1 =
y2

dR2

=
y2√

R2
2 − y2

2

(A.8)

Assuming that the light is only traveling in the paraxial region, a finite region

close to the optical axis, the denominator in Eq. A.8 can be simplified by replacing

the spherical thickness-function with a parabolic one.

√
R2

2 − y2
2 = R2 −

y2
2

2R2

(A.9)

Thus Eq. A.8 becomes:

tan β1 =

(
R2

y2

− y2

2R2

)−1

=

(
f(n− 1)

y2

− y2

2f(n− 1)

)−1

(A.10)

All parameters apart from y2 are known in order to solve Eq. A.10. y2 can be

calculated from the two distances dfb and zLens and their corresponding angles ϑ

and γ, respectively.

y2 = tanϑT

[
∆1 + ∆2 −

(
R2 −

√
R2

2 − y2
2

)]
+ dfb tanϑ (A.11)

ϑT is the angle of light after refraction in the lens. It can be calculated by:

tanϑT = tan

[
asin

(
sinϑ

nLens

)]
(A.12)

To keep the equations relatively simple and easy to follow tan γ instead of its

solutions is used in the following.

Assuming again the paraxial region, the term
(
R2 −

√
R2

2 − y2
2

)
in Eq. A.11
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can be simplified as:

R2

(
1−

√
1− y2

2

R2
2

)
≈ R2

[
1−

(
1− y2

2

2R2
2

)]
=

y2
2

2R2

(A.13)

Thus Eq. A.11 becomes a quadratic equation which can be solved for y2:

y2
2 +

2R2y2

tanϑT
− 2R2 (∆1 + ∆2)− 2R2dfb tanϑ

tanϑT
= 0 (A.14)

Only the positive result of the quadratic equation for y2 makes physically sense.

Thus y2 becomes:

y2 = − R2

tanϑT
+

√(
R2

tanϑT

)2

+ 2R2

(
∆1 + ∆2 +

tanϑdfb
tanϑT

)

= −f(nLens − 1)

tanϑT
+

√(
f(nLens − 1)

tanϑT

)2

+ 2f(nLens − 1)

(
∆1 + ∆2 +

tanϑdfb
tanϑT

)
(A.15)

The angle κT (dfb) as a function of the distance dfb can now be calculated by

combing Eq. A.10, Eq. A.15 and Eq. A.5.

In a next step these equations need to be solved for dfb. To reduce the length

of the equations some substitutions are made.

a =
f(nLens − 1)

tanϑT

b =

√(
f(n− 1)

tanϑT

)2

+ 2f(nLens − 1)

(
∆1 + ∆2 +

tanϑdfb
tanϑT

)
c = f(nLens − 1)

d = tan(κT + β2) = tan β1

(A.16)
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Combining Eq. A.4 and Eq. A.15 with the substitutions results in:

d =
−a+ b

c− a2−2ab+b2

2c

(A.17)

Solving Eq. A.17 for b by only allowing the positive answer is:

b = −
( c
d
− a
)

+

√( c
d
− a
)2

−
(
a2 − 2c2 − 2ac

d

)
≈ f(nLens − 1)

[
1

tanϑT
+ tan (κT + β2)

] (A.18)

We can now calculate dfb by inserting all the parameters, which were previously

substituted. d or tan β1 can be obtained by Eq. A.7 and the result used for

calculating dfb.

dfb =

[
b2 − a2

2c
− (∆1 + ∆2)

]
tanϑT
tanϑ

≈
[
f(nLens − 1) tan β1

2

(
tan β1 +

2

tanϑT

)
− (∆1 + ∆2)

]
tanϑT
tanϑ

(A.19)

The second task is to obtain an equation to calculate dr. From our previous

calculations κT and y2 are known. These are the parameters needed to calculate

dr.

dr =
y2

tanκT
(A.20)

An easier but less accurate approach is based on the thin lens model, see Fig.

A.2. Thus the curvature and the thickness-function of the lens in not taken into

account. With the geometrical relationships shown in Fig. A.2 dfb and dr can be

calculated. Both parameters can solely be described by a function of the known

parameters f , κT and ϑ by substituting y1 with:

y1 = f (tanϑ− tanκT ) (A.21)
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Figure A.2: Parallel incident beams on a thin lens with ϑ the angle of incidence

Hence dfb becomes:

dfb =
y1

tanϑ
= f(1− tanκT

tanϑ
) = f

(
1− dr tanϑ

y1

)
(A.22)

The distance dr is:

dr =
y1

tanκT
= f

(
tanϑ

tanκT
− 1

)
= f

y1

f tanϑ− y1

(A.23)

A comparison of the more accurate paraxial method and the thin-lens model is

graphically shown in Fig. A.3. The parameters chosen for both calculations are

f = 57 mm, ϑ = 7◦, ∆1 = 1.5 mm, ∆2 = 0.7 mm and nLens = 1.515. The

maximum deviation is 1.63 mm for κT = 5.2◦, which would result in a change

∆κT = 0.2◦. Which of both models to chose does thus depend on how accurate

the angle κT needs to be adjusted for, see Fig. A.3.
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Figure A.3: Graphs dependence and accurracy of (a) dfb and (b) dr on the angle κT
and the chosen calculation model

A.2 Numerical Phase-Function of a Lens

When light passes through the lens it is delayed due its refractive index nLens

compared to the surrounding medium ns. We assume air to be the surrounding

medium, which has a refractive index of one. The total phase delay of incident

plane waves compared to plane-waves, which have not been subjected to the

passage through the lens is:

ϕ(x, y) = k (nLens − 1) zLens(x, y) (A.24)

A plano-convex lens (see Fig. A.1) is once again considered which is characterized

by a two-dimensional thickness function:

zLens(x, y) = ∆1 + ∆2 −
[
R2 −

√
R2

2 − (x2 + y2)

]
(A.25)

and by the lens maker equation, shown in Eq. A.2. ∆1 + ∆2 are combined to

∆0. Inserting Eq. A.2 in Eq. A.25 results in:

zLens(x, y) =∆0 −
[
f (nLens − 1)−

√
{f 2(nLens − 1)2 − (x2 + y2)

]
∆0 −

[
f (nLens − 1)

{
1−

√(
1− x2 + y2

f (nLens − 1)

)}] (A.26)
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The corresponding phase delay can be described in complex exponential notation

by:

L(x, y) = exp [ik (nLens − 1) ∆0] exp

[
−ik (nLens − 1)

· f (n− 1)

{
1−

√(
1− x2 + y2

f 2 (nLens − 1)2

)}] (A.27)

The complex exponential terms Eq. A.27 which do not depend on (x2 + y2)

represent a constant phase and can be dropped hereafter. Hence Eq. A.27 can

be rewritten as:

L(x, y) = exp

[
−ik (nLens − 1)2 f

√
1− x2 + y2

f 2 (nLens − 1)2

]
(A.28)

Eq. A.28 represents a complex Lens-formula, which is valid for the Rayleigh-

Sommerfeld region, see Fig. 2.12. A suitable refractive index is the 1.5 which

matches with the commonly applied BK7-Glass for lenses. The lens-formula can

be simplified for the Fresnel-region at which a parabolic wave-front approximation

is valid. The term under the square root can be expressed by:

√
1− x2 + y2

f 2 (nLens − 1)2 ≈ 1− x2 + y2

2f 2 (nLens − 1)2 (A.29)

Thus Eq. A.28 is simplified to:

L(x, y) = exp

[
−ikx

2 + y2

2f

]
(A.30)



APPENDIX B

Matlab Functions

There is little to be gained by providing a printout of all Matlab-functions used

in the frame of this thesis. Therefore, only a few but important subroutines are

included merely as an example.

function out = fresnel(d,p,image1)

%function for calculating the reconstruction results obtained by the

%Fresnel integral.

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

tic image1=single(image1);

d=d*10^-3; % conversion of distance from mm to m

w = 632.8e-9;% conversion of the wavelength from nm to m

pz=p*10^-6; % conversion pixel-size microns to m

c=i*pi*pz^2/(w*d);

[N M] = size(image1);

% In order to obtain same aspect ratio, same resolution and DOF in

%x- and y direction of reconstructed hologram.

if N>M

b=(N-M)/2;

image1=padarray(image1,[0 b]);

else

b=(M-N)/2;

image1=padarray(image1,[b 0]);

end [N M] = size(image1);

ch=single(zeros([N,M]));%pre-assign chirp-function to calculate

%the reconstruction

for k = 1:N

for l=1:M

ch(k,l) = (k-N/2-1)^2+(l-M/2-1)^2;

end

end

out=fftshift(fft2(image1.*exp(ch*c)));%result numerical reconstruction

toc t=toc %calculation time

figure(1); imagesc(abs(out));

Figure B.1: Matlab function: fresnel.
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function [finres,y] = convolution(dist,p,m,s,t,image1)

% This function represents the digitized implementation of the

%Rayleigh Sommerfeld diffraction integral.

%In addition a numerical lens is employed, which offers the possibility to

%change the magnification of the reconstructed hologram. In that way one does

%not need to apply zero-padding to the hologram in

%order to reconstruct a hologram of an object larger than the camera sensor.

%This would be very time consuming and requires lots of memory resources.

%Moreover, a shift can be introduced in x and y direction in order to

%center the reconstruction.

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

tic image1=single(image1);

[nR nC]=size(image1);

w=632.8*10^(-9);%wavelength conversion from nm to m

di1=dist*10^-3;%distance to the object converted from mm to m

pz=p*10^(-6); %normal pixel size

nR % number of rows y-values;

nC %number of columns x-values

c1=(nR*pz)^2/(di1*w); c2=(w/(nR*pz))^2; di2=di1*m;

f=(1/di1+1/di2)^(-1); di1=di2; [N M] = size(image1)

h=waitbar(0,’Wait, still busy calculating...’);

G=single(zeros(nR,nC)); L=G; for n=1: N

waitbar(n/N)

for m=1: M

%calculates term of the transfer-function which changes for each pixel

%enables one to apply a shift s and t in x and y direction, respectively

G(n,m)=1-(w*(n-N/2-1+s*N*pz^2/(di2*w))/(N*pz))^2-(w*(m-1-M/2+t*M*pz^2/(di2*w))/(M*pz))^2;

%calculates term of the numerical lens which changes for each pixel

L(n,m)=(n-1-N/2)^2+(m-1-M/2)^2;

end

end close(h);

%One can decide to use either a parabolic or a spherical lens for the reconstruction.

%parabolical wave front for lens

y=exp(-1i*pi/(w*f)*pz^2*L);

%spherical wave front for lens

%y=exp(1i*2*pi*f*0.5^2/(w)*sqrt(1-pz^2*L/(f^2*0.5^2)));

G=exp(1i*2*pi*di1/w*sqrt(G)); a=fftshift(fft2((image1.*y)));

finres=ifftshift(ifft2(a.*G)); figure(1) imagesc(abs(finres));

figure(2),imagesc(angle(y));

toc t=toc;

end

Figure B.2: Matlab function: convolution.
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function out =fourierfocus(d_obj1,d_obj2,d_ref,p,image1,x1,x2,y1,y2)

%Function which calculates the best in-focus reconstruction distance d_obj

%for certain image region defined by x1,x2,y1,y2 with a Fourier setup;

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

tic image1=single(image1);

% conversion of distance from mm to m of lower and upper limit for

% the in-focus estimate

d1obj=d_obj1*10^-3; %estimate for lower limit of in-focus position

d2obj=d_obj2*10^-3; %estimate for upper limit of in-focus position

d2=d_ref*10^-3;

w = 632.8e-9; %conversion of the wavelength from nm to m

pz=p*10^-6; %conversion pixel-size microns in m

[N M] = size(image1) %pixel-numbers in x and y direction

%optimization function fminbnd which results in best in-focus object-distance

%for specified region d_obj1<=d_obj<=dobj2

[x,fval,exitflag,output]=fminbnd(@(x)geterror(x,image1,pz,d2,w,x1,x2,y1,y2),d1obj,d2obj);

x %best in-focus d_obj

f=d2*x/(d2-x); %calculation of focal length for numerical lens

h=waitbar(0,’Wait, still busy...’);

lens=single(zeros(N, M)); %pre-assign lens-matrix

for

k=1:N

waitbar(k/N)

for l= 1:M

lens(k,l) = (k-1-N/2)^2+(l-1-M/2)^2;

end

end close(h)

y=exp(1i*pi/(w*f)*pz^2*lens); %numerical lens

out=ifftshift(ifft2(image1.*y)); %changed

toc t=toc figure(1);

imagesc(abs(out));% phase of chirpfunction

%out = fftshift(fft2(ch.*image4));

end

%Optimization function

function er = geterror(x,image1,pz,d2,w,x1,x2,y1,y2)

[N,M]=size(image1);

w=632.8*10^(-9);

f=d2*x/(d2-x);

h=waitbar(0,’Wait, still busy...’);

lens=single(zeros(N, M)); for k

= 1:N

waitbar(k/N)

for l= 1:M

lens(k,l) = (k-1-N/2)^2+(l-1-M/2)^2;

end

end close(h) y=exp(1i*pi/(w*f)*pz^2*lens);

res=ifftshift(ifft2(image1.*y)); %reconstruction

res=abs(res); %calculates modulus of reconstruction

res=res(x1:x2,y1:y2); %image region under investigation

[N M]=size(res);

er=imresize(res,0.5); %resize image in order to reduce impact of

%speckle effect

er=nlfilter(res,[20 20],’var2’); %sliding window function to calculate the

%variance value of each pixel

er=1/sum(sum(er)); %optimization for error-function ’er’ to

%be smallest (largest sum of variance) end

Figure B.3: Matlab function: fourierfocus.
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function [res] = phasemap_cai(image1,image2,image3,reference)

%function in order to obtain the wrapped phase map of unknown phase step

%by an iterative approach and use of the reference and object beam

%based on a method developed by Cai

%--------------------------------------------------------------------------

%--------------------------------------------------------------------------

tic

%convert three phase stepped holograms and intensity of reference-wave to single

%precision

image1=single(image1);

image2=single(image2);

image3=single(image3);

reference=single(reference);

%auxiliary variables according to Cai’s paper

ar1=sqrt(reference);

p=abs(image2-image1);

q=abs(image3-image2);

r=abs(image3-image1);

pa=mean2(p);

qa=mean2(q);

ra=mean2(r);

c=2*pa*qa*ra/(sqrt(2*(pa^2*qa^2+pa^2*ra^2+qa^2*ra^2)-(pa^4+qa^4+ra^4)));

a1=(2*asin(pa/c)) %indicates first phase step

a2=(2*asin(qa/c)) %indicates second phase step

%result of complex object-wave

ans1=1./(4*ar1*sin(a2/2)).*(exp(1i*a1/2)/sin((a1+a2)/2).*(image1-image3)-

exp(1i*(a1+a2)/2)/sin(a1/2).*(image1-image2));

%need to check for NaN (not assigned number) or Inf (infinity)

%which otherwise might result into errors or cause problems when

%calculation the reconstructed hologram

image=ans1;

a=image;

b1=isinf(a);

b2=isnan(a);

b=b1+b2;

before=sum(sum(b))

[N M]=size(a);

if before==0

image=image;

else

h=waitbar(0,’Wait, still busy...’);

for k=1:N

waitbar(k/N)

for l=1:M

if b(k,l)==0

image(k,l)=image(k,l);

else

% whenever NaN or Inf appears it will be replaced by the mean

% of its surrounding pixels

a(k,l)=(a(k-1,l-1)+a(k-1,l)+a(k-1,l+1)+a(k,l-1)+a(k,l+1)+a(k+1,l-1)

+a(k+1,l)+a(k+1,l+1))/8;

end

end

end

close(h)

c1=isinf(image);

c2=isnan(image);

c=c1+c2;

after=sum(sum(c))

end

res=image;

toc;

t=toc %calculation time for whole process

end

Figure B.4: Matlab function: phasemap cai.
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function [out,t]=gaussfit(stack);

%calculates a fourth polynomial fit of the stack obtained by the variance

%method

%outpot is a two dimensional topology map(out)and the calculation time(t)

[M N O]=size(stack); out=single(zeros([N O])); tic

h=waitbar(0,’Wait, still busy...’); for j=1:N

waitbar(j/N)

for k=1:O

out(j,k)=getcolumn3(stack,j,k);

end

end close(h); t=toc end function out=getcolumn3(stack,x,y);

%applies fourth degree polynomial fitt to a pixel-column of the stack

%speciefied by x and y

%reads out the maximum the maximum interpolated data and transfers it to

%function gaussfit.m

[M N O]=size(stack); out_y=(zeros([M 1])); out_x=out_y; for j=1:M

out_y(j)=stack(j,x,y);

out_x(j)=j;

end gfit=fit(out_x,out_y,’poly4’); out=feval(gfit,0:0.1:M); [a,b]=

max(out); out=(b-1)/10; end

Figure B.5: Matlab function: gaussfit.
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C.1 Solidworks assembly drawing for digital holographic
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C.2 Solidworks assembly drawing for box covering the op-

tical table
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C.3 Solidworks assembly drawing holder for ‘Physik Instru-

mente’ x-y traverse
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C.4 Solidworks assembly drawing holder for fibre launcher
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C.5 Solidworks assembly drawing laser shutter
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D.1 Data-Sheet Pixelfly qe Camera

36  8. Appendix 
 

©PCO 2006 
 pixelfly 

System Data 
 

CCD Sensor VGA (200 / 205) VGA (210 / 215) Scientific (230 / 235)
Number of Pixels 640 (H) x 480 (V) 640 (H) x 480 (V) 1280 (H) x 1024 (V) 
Pixel Size 9.9µm x 9.9µm 9.9µm x 9.9µm 6.7µm x 6.7µm 
Sensor Format 1/2“ 1/2“ 2/3“ 
Scan Area 6.3 x 4.8 mm 6.3 x 4.8 mm 8.6 x 6.9 mm 
Full Well Capacity 30.000 e- 30.000 e- 20.000 e-

Readout Noise 11…14 e- 16 e- 12 e-

Scan Rate 20 MHz 16 MHz 20 MHz 
Imaging Frequency …    
… at binning mode 1 50 fps 40 fps 12,5 fps 
… at binning mode 2 95 fps 76 fps 24 fps 
… at binning mode 4 177 fps 140 fps not available 
A/D Conversion Factor 6.5 e-/count 7 e-/count 4,5 e-/count 
Spectral Range b/w 290 ... 1000 nm 290 ... 1000 nm 290 ... 1000 nm 
Spectral Range color primary color, RGB primary color, RGB primary color, RGB 
Anti Blooming > 1000 > 1000 > 1000 
CCD Quality grade 0 grade 0 grade 0 
Non-Linearity (Differential) < 2% < 2% < 2% 
Binning Vertical factor 1, 2, 4 factor 1, 2, 4 factor 1, 2 
Binning Horizontal factor 1, 2 factor 1, 2 factor 1, 2 

 
 
CCD Sensor HiRes (220 / 225) QE (270 / 275) 
Number of Pixels 1360 (H) x 1024 (V) 1392 (H) x 1024 (V) 
Pixel Size 4.65µm x 4.65µm 6.45µm x 6.45µm 
Sensor Format 1/2“ 2/3“ 
Scan Area 6.3 x 4.7 mm 9.0 x 6.6 mm 
Full Well Capacity 13.000 e- 18.000 e-

Readout Noise 6…9 e- 6…9 e-

Scan Rate 16 MHz 20MHz 
Imaging Frequency …   
… at binning mode 1 9,5 fps 12 fps 
… at binning mode 2 18 fps 23 fps 
… at binning mode 4 not available not available 
A/D Conversion Factor 3 e-/count 3.8 e-/count 
Spectral Range b/w 290 ... 1000 nm 290 ... 1000 nm 
Spectral Range color primary color, RGB primary color, RGB 
Anti Blooming > 1000 > 400 
CCD Quality grade 0 grade 0 
Non-Linearity (Differential) < 2% < 2% 
Binning Vertical factor 1, 2 factor 1, 2 
Binning Horizontal factor 1, 2 factor 1, 2 

 
 
Camera Head + PCI-Board  
Power consumption 1 A at 5 V, 400mA at 12 V 
PCI-Board about 10 W 
Camera Head about 2,6 W …3,3 W 



D. Data-Sheets of Optical Elements and Instruments used 262

D.2 Data-Sheet Piezo-Actuator
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D.3 Data-Sheet Wave-Plates
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D.4 Data-Sheet PI M-150.11 Stage

M-100 Series Linear Stages  Operating Manual MP 32E

Release 4.0 Physik Instrumente (PI)   Page 9

Stage Model : M-150.10 M-150.11 M-150.20

Drive Type DC, 2 Watts
( DC-Mike drive)

DC, 3 Watts
C-136.10
backlash free

Stepping Motor
C-545
direct drive

Gear head reduction ratio 140.759183 : 1 29.64197530 : 1 ---

Encoder angular resolution 60 c/rev. 2000 c/rev. ---

Linear resolution 0.059202768 µm/c 0.0084339858 µm/c 0.25 µm/step

Linear transmission Ratio 1 ) 16.891102 c/µm 118.5679012 c/µm 4 steps/µm

Max. count frequency @ 11V
(Max. free running speed)

9000 c/s 200 000 c/s Max. step frequency:
12000 steps/s with C-500
Stepping Motor
Controllers

Max. Linear Speed 0.53 mm/s 1.68 mm/s 3 mm/s @ 12 kHz

Limit Switches installed installed installed

QMove drive identifier 2 ) DRIVEn=0 DRIVEn=1 ---

Cable connection Flat ribbon cable DB15(m) connector 12-pin round
connector

Cable part number C-815.62
Flat ribbon cable

C-815.36
Round cable with DB15
connectors at both sides

C-500.32
Cable for 5-phase
stepping motors

Controller options C-842, C-832, C-804, C-812 C-500 Series
Stepping Motor
Controllers

C-842 : parameters 3) DP  200...380
DI   0...12
DD  0...1000
DL  0...2000
SV  1...8000
SA  1..20

DP  100...300
DI   0...10
DD  0...800
DL  0...2000
SV  1...200000
SA  1...450

Table 3

Notes:
1) This values can be used in the QMove configuration file for RATIOn=... entries to convert count
based positioning commands to µm-based.
2) Use this number in QMove configuration file for DRIVEn= entries.
3) Motion control parameters can be varied within the given limits. The motors will work within a stable
operating range unless significant mechanical load changes may require to modify some parameters.
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D.5 Data-Sheet 6.6MP-CMOS sensor

IBIS4-A-6600
CYII4SM6600AB

ADVANCE
 INFORMATION

Document Number: 001-02366  Rev. *D Page 5 of 40

Specifications
General Specifications

Electro-optical specifications

Overview

Table 2. General Specifications.

Parameter Specification Remarks
Pixel architecture 3T-pixel
Pixel size 3.5 m x 3.5 m The resolution and pixel size results in a 7.74 mm x 10.51 mm 

optical active area.Resolution 2210 x3002 
Pixel rate 40 MHz Using a 40- MHz system clock and 1 or 2 parallel outputs.
Shutter type Electronic rolling shutter
Full frame rate 5 frames/second Increases with ROI read out and/or sub sampling.

Table 3. Electro-optical Specifications

Parameter Specification Remarks
FPN (local) <0.20% RMS% of saturation signal.
PRNU (local) <1.5% RMS of signal level.
Conversion gain Conversion gain @ output (measured).
Output signal amplitude 0.6V At nominal conditions.
Saturation charge 21.500 e-
Sensitivity (peak) 411V.m2/W.s

4.83 V/lux.s
@ 650 nm
 (85 lux = 1 W/m2).

Sensitivity (visible) 328 V.m2/W.s
2.01 V/lux.s

400-700 nm
(163 lux = 1 W/m2).

Peak QE * FF 
Peak Spectral Resp.

25%
0.13 A/W

Average QE*FF = 22% (visible range).
Average SR*FF = 0.1 A/W (visible range).
See spectral response curve.

Fill factor 35% Light sensitive part of pixel (measured).
Dark current 3.37 mV/s 

78 e-/s
Typical value of average dark current of the whole pixel array 
(@ 21 °C).

Dark Signal Non Uniformity 8.28 mV/s
191 e-/s

Dark current RMS value (@ 21 °C). 

Temporal noise 24 RMS e- Measured at digital output (in the dark).
S/N Ratio 895:1 (59 dB) Measured at digital output (in the dark).
Spectral sensitivity range 400 - 1000 nm
Optical cross talk 15%

4%
To the first neighboring pixel.
To the second neighboring pixel.

Power dissipation 190 mWatt Typical (including ADCs).

[+] Feedback 
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