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INTRODUCTION

The classical ("old fashioned") theory of integral
binary quadratic forms was developed by Gauss in his famous
"Disquisitiones Arithmeticae”. This thesis is concerned
with the formal description and analysis of a selection of
algorithms which make use of such forms.

For simplicity, we have adopted the same convention as
Gauss, who considered only binary guadratic forms having an
even middle coefficient. There is a more general theory per-
mitting odd middle ccefficient due to Dirichlet, and all the
algorithms described and analysed in this thesis can be
easily generalized to Dirichlet's forms.

The fact that the eguivalence classes of binary gquadratic
forms of fixed non-sguare determinant D form a finite abelian
group CL(D) was a fundamental discovery due to Gauss (2 - see
(13}, p. 15 and [25], P. 1711). Most of the algorithms we
describe are connected directly or indirectly with the
"structure" and "infrastructure" (that is the structure of a
class of CL(D)) of form class groups. Apart from their
intrinsic interest, these algorithms have applications in
connection with orders in quadratic fields and their associated
ideal class groups, and with the problem of factorization.
Applications of algebraic number theory are briefly sketched
where appropriate, but detailed reference is outside the scope
of this thesis, since our main interest is in the theory of
computation and the use of binary quadratic forms as a

computational tool.
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The content of the six chapters of the thesis is
briefly summarised below.

Chapter O comprises basic definitions, notations and
algorithms together with reduction procedures for binary
gquadratic forms due to Gauss and Lagarias.

Chapter 1 deals with composition of forms; methods of
composition due to Gauss and Dirichlet are described and
algorithms based on these methods are constructed. The
group C2(D) is defined and the relationship between C2 (D)
and an appropriate ideal class group is also described.

Chapter 2 deals with the genus characters CQ(D).
Algorithms for computing a basis for genus characters and
deciding whether or not a form belongs to the principal
genus (or equivalently is a square in C&(D)) are presented.

Chapter 3 is concerned with algorithms for deciding
equivalence of forms. This decision problem is particularly
interesting for forms of positive non-guadratic determinant,
and recent work of Lenstra and Shanks on relatively efficient
algorithms is described. Number-theoretic applications
includé the computation of regulator and fundamental unit
of real gquadratic fields and the related problems of solving
Pellian and non-Pellian equation.

Chapter 4 deals with methods for computing the class
number (the order of CL(D)). Gauss' counting methods are
described and analysed and the use of Dirichlet's formulae
is considered. A refined and improved version of an

O(|D|1/5+E) algorithm due to Shanks is described and analysed.
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The computation of class-numbers is considered in conjunction
with the computation of the class group structure (see
algorithms 4.1.13, 4.1.19).

In Chapter 5 Shanks' factorization algorithm CLASSNO,
which depends upon the relationship between factorization of
D and the group structure of C¢(D), is described.

For the most part the results described are closely based an the work
of Gauss, Shanks, Lagarias and Lenstra. The main problem
has been the collation and interpretation of results from
many sources, and the most original aspects of the work are
refinements of algorithms and their analyses (see e.g.
theorems 1.1.6 - 1.1.8, algorithm 2.1.9, theorem 4.1.7 (and

its applications) etc)

A note on the presentation of algorithms

In general the format of presentation of an algorithm
is (i) informal description, (ii) formal description (iii)
correctness, (iv) analysis. In our formal description of the
algorithms we use a version of the language PIDGIN ALGOL
given by Aho Hopcroft and Ullman in [2]. In our analysis
of the algorithms, we measure always the worst-case time

complexity (see [2]).

c.s.I.

Coventry

September 1981.
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0.1. BASIC DEFINITIONS-NOTATIONS

DEFINITIONS 0.1.1.

A binary quadratic form (abbreviated binary form or

simply form) Q is
0(x,y) = ax? + 2bxy + cy with a,b,c, integers

and will be denoted as Q = (a,b,c).
The coefficient matrix of a form Q = (a,b,c) is the

symmetric matrix

a b
M =
Q ( b ¢ >
Determinant D of a form Q = (a,b,c) is the integer
D = b?*-ac = - det (MQ) (0.1)

Two forms Q = (a,b,c), F = (&,B,C) are called opposite,

if

The opposite form of a form Q is denoted by 0.

The forms with determinant D < O are called definite, the

forms with determinant D > O and D non-sguare are called indefintite
and the forms with determinant D > O perfect square are called degenerate.
A form Q = (a,b,c) is called properly primitive, if

ged (a,2b,c) = 1.



A definite form Q = (a,b,c) is called positive, if
a > 0.
An integer N is represented by a form Q, if there exist

integers X,,X,, such that
Q(x1,x2) = N and gcd (x1,x2) = 1.

A form O = (a,b,c) is called ambiguous, if a|2b.

DEFINITION O.1.2.

A form Q1 = (a1,b1,c1) is equivalent to a form
02 = (a2’b2’c2)' if there exists a 2 x 2 unimodular matrix

S with integer entries such that

M. =58t M_sS (0.2)

where ST is the transpose matrix of S.
If (0.2) holds, we shall say that Q1 is transformed to Q2

and denote Q1 -+ Q2 via S.

PROPOSITION O0.1.3.

Suppose S is a 2 x 2 matrix.

(1) If Q1 + 0, via S, then Q, and Q2 have the same determinant

(ii) If Q, » 0, via S, then there existSa 2 x 2 unimodular

matrix S°'.



Proof
(1) From (0.2) we have
det(MQZ) - det (sT) . det (MQ1) . det(S) = det (MQ1)
and from (0.1) the result follows.
(ii) It can be shown for S' = s”' that Q, + 0, via S'. o

Proposition 0.1.3 shows that the relation of being
equivalent is an equivalence relation. We write Q.I ] Q2 to

denote that Q1, Q2 are eguivalent.

PROPOSITION 0.1.4.

If Q1 3 Q2 and Q1 is properly primitive, then Q2 is
properly primitive.
Proof

Let Q1 = (a1,b1,c1) ] Q2 = (aZ’bZ'Cz)' Then there

exists a matrix

s = (K

A
) with kv = Ay = 1
V

W
and
T
M = S M_ S
Q Q
_ 2 2
Then a1 = a2K + 2b2Ku + czu
2b1 = ZaZKA + 2b2(Kv + Au) + 2c2uv (0.3)
c = a,\? + 2b._2v + c,Vv?

1 2 2 2



If there exist p such that p[az, p|2b2, plaZ' then by

(0.3) pla1, p|2b1, p[c1. since Q, is properly primitive, it

follows that p = 1. ©

PROPOSITION O0.1.5.

1f Q1 RS Q2' then Q1 and Q2 represent the same integers.

Proof
K A
Suppose that Q2 -+ Q1 via S = ( ).
H Vv
Then if M is represented by Q1 and Q1(m,n) = M, then
one can see that Q2 («m + An, uym + vn) = M. D

NOTATION O.1.6.

For a n x n matrix M = (mij)' lIM]| denotes max {Imijl}
i,]

1f p is prime, we write pkﬁla to denote that p |a and

If Q is a form, then HQ[!denotes[]MQH.
We use log m to denote the function defined by

logzm ifm> 4

logm = {
2 if m< 4

The natural logarithm of a number m is denoted by &n(m)
When a form O with determinant D is denoted by

Q = (a,b,*), then * indicates the integer (b*-D)/a.



PROPOSITION 0.1.7.

If M,N are two n x n matrices, then

IMN|| < n? [|M]]]IN]]. o

REMARK

There is a more general theory of forms (introduced

by Dirichlet) which permits odd middle coefficient. A form
Q(x,y) = ax® + bxy + cy?

has discriminant
A = b?* - 4ac.

One can see that the Gaussian forms are a subset of the set

of the forms above. Moreover if a form Q
- 2 2
Q(x,y) = ax~ + 2bxy + cy

has determinant D, then in Dirichlet's terminology it has

discriminant

A = (2b)? - 4ac = 4D.



0.2. SOME COMPLEXITY BOUNDS

The time complexity of an algorithm is measured in terms
of elementary operations. An elementary operation is a Boolean
operation on a bit or pair of bits.

A function f(x) is said to be 0(g(x)) if there is a
positive constant c such that f(x) < cg(x) for every x.

Some preliminary complexity bounds for elementary

algorithms are given below.

THEOREM 0.2.1. (Sch®nhage and Strassen)

Two integers of length n (in binary bits) can be multi-

plied in M(n) elementary operations, where
M(n) = cn log n log log n

and ¢ is a sufficiently large constant. o

THEOREM 0.2.2 (Cook)

To divide an integer u of length n by an integer v of
length at most n to find

u = gvs+r O0< r <u
requires O(M(n)) elementary operations. o

The following theorem yields a bound for an algorithm

given by Knuth [19), analyzed by Sch8nhage [32].



THEOREM 0.2.3. (Extended Euclidean algorithm)

There exists an algorithm which finds the gcd of two

integers k,m of length at most n bits and yields integers

XA, ¢ such that

Ak + ym = r

with [A] < % » lul < % and r = gcd (k,m)

in 0(M(n)log n) elementary operations. o

The computation of gcd (k,m) (Euclidean algorithm)

requires the same time as the algorithm above.

THEOREM 0.2.4

Suppose that m,k are integers, and b is an integer with

O < b <m. Then an integer x such that
X = bk(mod m) and O < X <m
can be found in O(M(log m) log k) elementary operations.

Proof

See Lagarias [20], p. 150. o

The following theorem yields a bound for an algorithm
given by Shanks [35) based on a method of Tonelli (see Dickson

[14] I, p. 215) and analyzed by Adleman, Manders and Miller [1].



N

THEOREM 0.2.5

Suppose that a complete factorization of an integer m
and a guadratic non-residue n, for each prime Py dividing m are
given and b is an integer with O < b < m. Then it is possible

to decide whether the equation

x? = b (modm) O<K<Kx=<m

has a solution and find a solution if appropriate in

O(M(log m) (log m)?) elementary operations. o

The following theorem assumes the truth of the Generalized
Riemann Hypothesis (G.R.H.) (see Chapter 2) and it is based on

the result of Aukeny [3] for the least gquadratic non-residue.

Also see Lagarias [20] p. 152.

THEOREM 0.2.6.

If the Generalized Riemann Hypothesis is true then for a
prime p a quadratic n (mod p) can be found in O (log®*pM({log p))

elementary operations.

Proof

Ankeny proved that the least quadratic non--xesiduenp (mod p)

assuming G.R.H. is

= 0 (log? .
np (log?*p)



Now from Euler's criterion, k is a quadratic non-residue

mod p iff

x P=1/2 _ _4 noa p. (0.4)

Hence by testing for 1 < k < np the condition (0.4), a
guadratic non-residue n(mod p) will be found in O(log’pM(log p))
elementary operations, since the cost of one testing is
O(log p M(log p)) elementary operations from Proposition

0.2.4. o

Now an analogue of Theorem 0.2.6 is given without
assumption of unproved Hypotheses, making use of the result

of Burgess [10].

THEOREM 0.2.7.

Given a prime p, a quadratic non-residue n (mod p)} can
1/4+¢€

be found in O(P ) elementary operations.

Proof

Burgess proved that the least guadratic non-residue

n od i
p (m p) is

1/4+¢
n_ = 0f .
p P )
Hence as in theorem 0.2.6, it can be shown that a gquadratic

1/4+¢

non-residue n (mod p) is found in O(p ) elementary

operations. o
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0.3. REDUCTION OF BINARY QUADRATIC FORMS

A. DEFINITE FORMS

DEFINITION O.3.1.

A binary gquadratic form Q = (a,b,c) with determinant

D < O is reduced if
[2b| < Ja] < |c] (0.5)

which implies

12b] < la] <"3 |p] (0.6)

The definition of a reduced definite form Q, implies
iell < |p (0.7)

The following algorithm was given by Gauss; given a
definite form Q, it finds a reduced form Q' equivalent to Q.
It applies a series of transformations Q==Qb->Q1->QZ+...+Qk,
where Qi—1 + Qi via Si until a reduced form Qk is found.

If 0, 4 = (ai-1’bi-1'ci-1)’ then the matrix S; is given by

where the unique Ai is selected by the Gauss rule

|-b;_1 = A ci_1| < lej_4l/2 (0.8)
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ALGORITHM 0.3.2

INPUT : A definite form Q = QO = (ao,bo,co) with
determinant D.

OUTPUT : A definite reduced form F with determinant D,
equivalent to Q and a unimodular matrix S such
that

Q - F via S
Begin

i« 0; 8§ « <2 x 2 identity matrix>;

while <Qi is not reduced> do

Return F = Q.

end

Begin
1« i+1:
[ -

<choosea A : |=b, 4=} Ci-1l < [ci_1l/2>,
i T Ci-q i
by v wby_ 17y Gy

2. .
c, + (b1-D)/2;

Ql hl (ai'bilci);

o 1
S « S . ( 1 ) :
R

end

1
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THEOREM 0.3.3.

Algorithm 0.3.2 terminates and correctly yields a
reduced form F, which is equivalent to Q, and a unimodular

matrix S such that
Q - F via S.

Proof

L}
Let ao,a1,a2,...,ai be the seguence of ai s. Then there

exists an integer X such that

| < !ail for 0 < i<k

and

layl < lag o f. (0.9)

qx+1

Since if Iai+1

infinite sequence of decreasing positive integers.

I < !ail for every i, then we would have an

Now it will be proved that (ak,bk,ck) is reduced. From

Gauss rule we have

byl = I=b, 4 = Ajcp 41 < leg_q1/2 = la 1/2
which implies
lekI < lakl (0.10)

From (0.9), we have

l. (0.11)
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Hence from (0.10), (0.11) Qk = (ak,bk,ck) is reduced.

Now since the transformations Q,_4 = Qi are via the

unimodular matrix Si' easily

k
s = 11 s is unimodular and

Q - Qk = F wvia S. n

The following theorem gives the complexity analysis of

the above algorithm, following Lagarias ([20], p. 158).

THEOREM 0.3.4.

Algorithm 0.3.2 terminates in  O(M(log lIQIl} 1log liQl})

elementary operations and log liSil = O(log liQjl). o

B. INDEFINITE FORMS.

DEFINITION 0O.3.5.

A form Q@ = (a,b,c) with determinant D > O, non-square,

is reduced if
|vD - jall] < b < VD (0.12)

The definition of a reduced indefinite form Q, implies

lell < 2 VD] (0.13)

A reduced form Q = (a,b,c) is strictly reduced if

la] < YD} (0.14)



-14-

The following algorithm was given by Gauss ([16], A.181);
given an indefinite form Q, it finds a reduced form Q' eqguiva-
lent to Q. It applies a series of transformations
Q=0

a reduced form Q, . If Q4 = (ai—1'bi-1'ci—1)' then the matrix

o -+ Q1 -+ 02 > ... Qk’ where Qi-1 -+ Qi until to find

Si is given by

where the unique Ai is an integer selected by Gauss rule
| < -b. - A, C. < VD (0.15)

The above algorithm is not efficient.Lagarias ([20],
p. 154) found examples of infinite sequence of indefinite forms
Q, for which the above Gauss' reduction procedure requires
HQ||1/4 transformations to find a reduced form eguivalent to Q.
Moreover Lagarias ([20], p. 154) gave a reduction

algorithm, which does a series of transformations

Q=Q_ -~ Q1 >0, > .. 2 Qk = (ak’bk’ck)
where

i-1 -+ Qi via Si i=1,2,000

I1f Qi-1 = (ai—1'bi—1’ci-1)’ then the matrix Si is given by

()
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where Ai is an integer selected by the modified rule

< |c 1/2 (0.16)

-Ici_1l/2 < =by_q ;64 i-1

i7i-1

The algorithm transforms a Qi to Qi+1 until for some
k » 0, a form Qk such lckl < 2 VD is found. Lagarias proved

that the form Qk+1 or Qk+2 is strictly reduced, where Qk+1’

Qk+2 are computed in the following way:
Qp * Quuq Via Sp qr Qpuq ™ Oxun V12 Sy
- 0 1 —
where Sk+j = ( ) for j = 1,2
-1 k+3
and Ak+j for 5 = 1,2 is selected by Gauss rule (0.15).

ALGORITHM 0.3.6.

. . .. . - - .

INPUT An indefinite form Q QO (ao,bo,co) with
determinant D.

OUTPUT : An indefinite form F, eguivalent to Q, and a

unimodular matrix S such that

Q - F via S.
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Begin

i « O0: S « <the 2x2 igentiry matrixs>;

while <Q. is not strictly reduced> do
Begin
If c; > 2 /D then
<choose an integer Al —}ci[/ 2<-bi-)\i+1ci < [ci}/2>;

1f c; < 2 /D then

<choose an integer Mie1! /TT-]cil < —bi-Ai+1ci< Y D>;

1« i+1;
a; + Cy_qi
by « =byj_q 7XiC5-q7

2 _ .
c; * (bi D)/ai,

Ql « (ailbilci);

S « § .(_? ; ) ;
i

and

Return Qi F, S;

end

THEOREM 0.3.7.

Algorithm 0.3.6 correctly yields a strictly reduced
form F, equivalent to Q and a unimodular matrix S such that
Q0 + F via S; it terminates in Ollog || Q|| M(log l|Q]| }) elementary

operations and

log [[s]] = Of(log |[Q]|)
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Proof

See Lagarias [20] p. 154. o

C. DEGENERATE FORMS

DEFINITION 0O.3.8.

A form (a,b,c) with determinant D = h?*, h > 0 is reduced

if

(i) 0 < a < 2h-1

(ii) b = h (0.17)
(iii) ¢ = 0

Gauss ([16], A.206) gave a reduction procedure for
degenerate forms. It reduces a degenerate form Q=(a,b,c)ush@-n@
transformations

Q - Q1 via S1 and Q1 -+ Q2 via 52

KA

where S1 = ( bV

) unimodular, with «,u coprime, satisfying

0]

_ _ _ 1
rAa = v(h-b) and 52 = ( o1

) where m is an integer which

satisfies

O < 2mh + a,; < 2h-1 vwhere Q1 = (a1,b1,c1).

ALGORITHM 0.3.9.

INPUT : A degenerate form Q = (a,b,c) with determinant D=h?

OUTPUT : A reduced form Qz, equivalent to Q, and a unimodular

matrix S, such that Q =+ 02 via 8.
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Begin
v <« a/gcd (b-h,a); (0.18)
A « (h-b)/gcd(b-h,a); (0.19)

<Find k,py: kv-=-Au= 1, ikl < |Xl ’ IU| < |V|>7

Comment Use Extended Euclidean Algorithm (Theorem 0.2.3)

<chocse an m : O < 2mh + a, < 2h-1>; (0.20)

S, * Oy,
m 1)
T
MQ - 52 MQ-l 52,
2
S + 51527

Return Q2, S;

end

THEOEM 0.3.10

Algorithm 0.3.9 correctly computes a reduced form Q5
equivalent to Q and a unimodular matrix S such that Q -+ Q2

via S.

Proof

From (0.18), (0.19) we have gcd (A,v}) = 1 and

al = v (h-b) (0.21)
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Hence there exist k,u such that

KV = uA = 1

From (0.21) we have

¢c = -A{b+h) /v (0.22)
since h? = b? - ac.
From the transformation Q - Q1 = (a1,b1,c1) via 52 we
have
c, = a)? + 2bxv + cv? =

1
= (h-b)vx + 2biv = X{b+h)v =0
using (0.21) and (0.22).
Moreover
b1 = akd + b(kv + Ay} + cyuv =

= (h-b)Kk + b{kv + Ap) =-i(b+h)u = hi{xv-iu) = h.

From the transformation Q1 -+ Q2 via S2 we have

2mh + a

i}
"

2 1
b2 = h
c2 = 0

From (0.20) we have

0 < a., < 2h-1.

2

Hence Q2 is reduced.
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Directly we have that S is unimodular and

Q - 02 via S. o

THEOREM 0.3.11

aA.lgorithm 0.3.9 terminates in O(M(log [[Q]] ) log log [|Q]])

elementary operations in worst-case and log ||S|| = O(leog {{Q]])

Proof

The bottleneck of the algorithm is the application of the
extended Euclidean algorithm (see Theorem 0.2.3) at the steps
1,2, which requires o (M(log |IQ]||) log log [|Q]|| ) elementary
operations, since the remaining steps are of O(M(log j[Ql])
elementary operations for multiplications. Moreover easily we
have » = O( |||l ), 'v=0(]/Q}]) and using Theorem 0.2.3, one
can find [k | < |[x] , |p] < | withkv =y = 1.

Since a, = ac® + 2bky + cp® = O [le]] ?), from (0.20) we
have m = O( ||Q}| ®).

Now using Proposition 0.1.7 we have

sl < 4 dlsqll 18,1l

and since [|8,]] = O llell ) ana |[s, || = ol l|Ql] ) we have

log |[s|] = o(log |[Qi[). =&
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1.1. GAUSS APPROACH

DEFINITION 1.1.1.

Gauss defined that the properly primitive form
Q3 = (a3,b3,03) of determinant D (non-square, if D > 0) is
composed of the properly primitive forms Q1 = (a1,b1,c1) and
Q2 = (a2,b2,c2) with determinant D via a bilinear matrix B,

if the following holds:

= T
where (2 22) = B . (X1,Y1,X1Y2,X2Y1,X2Y2)

1 14
for some bilinear matrix B with entries from the intecgers

given by

satisfying the conditions:

(i) Unimodularity : The greater common divisor of Aij‘s

for 1< i < j <4 is one, where Aij

is given by

11 723 2i713

(ii) Orientability : a, A12 >0

=b . Db - b, .b,. for 1 <1< j<4
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Orientability of the bilinear matrix B is necessary to
distinguish between composition with a form Q and composition

with its opposite Q.

The operation of composition of forms is denoted by
Q1 0 Q2 = Q3 via B.

Now a method of composing two properly primitive forms
Q1 and Q2 of determinant D (non-square if D > O) to a properly
primitive form Q3 of determinant D via a bilinear matrix B is
described. The method is due to Gauss (see [16].A.242-3)

The following lemma is in Dickson [15], p. 134.

LEMMA 1.1.2.

Suppocse that gcd(m1,m2,...,mn) = 1. If S divides

miqj—qui for 1 < i, j < n, there exist exactly one solution

B mods of the system of eguations

mB = q; (mod §) 1 <i<n (1.2)
Proof
Since gcd(m1,m2,...,mn) = 1, there exist integers a,
such that
n
I a i < 1.
i=1

Also Slmiqj-qui for 1 < i, j < n, which implies

_ n
midy = qui (mod S). Then B 251

a;9; mod S is a solution
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of the system (1.2), since

n n n
ka = My .E a;d; = § amq = 9y .E a;m, Eqk (mod S) for 1<k<n
i=1 i=1 i=1
Moreover if there were an integer B' such that miB' z qi(mOd S)
1 < i < n, then aimiB' E a,q; (mod S) for 1 < i < n. Hence

adding all the equations we have

(

i

T N
1
ne~y
)

a.m.)B'
ivi

' 195 (mod S)
1 i

and thus B' = B (mod S). D

Proofs of the following theorem were given by Gauss ([16],

A.243), Mathews ([26}, p. 152) and Pall ([29], p. 404) .

THEOREM 1.1.3.

Suppose that Q1 = (a1,b1,01) and Q2 = (a2,b2,c2) are
properly primitive forms with determinant D (non-square , if
D> 0). Let u = gcd(a1,a2,b1+b2), m, = a1/p, m, = az/u,

my = (b1 +~b2)/u and aj = m,m,. Then

(i) The following system has integer coefficients, and a

unique solution x (mod a3)

m,X =z b2m1 (a)
m, X = b1m2 (mod a3) (B) (1.3)
myX z (b1b2+D)/u (C)
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(ii) Suppose b3 is the solution of the system (1.3). Then
Q3 = (a3,b3,*) is a form with determinant D and there

exists a bilinear matrix B such that
Q1 o] 02 = Q3 via B.

Proof

(i) First we have

H
o
o
+
%

b.b, + D

1°2 122 2 - a,c, = by(by+by) - a,c, = 0 (mod w)

Hence the system (1.3) has integer coefficients.

Now one can see that gcd (m1,m2,m3) = 1 and that a3 divides
m1m2b2 - m2m1b1, mz(b1b2+D)/u - m3b1m2 = - m,m,C, and
m1(b1b2 + D) /u - m3m1b2 = - m,m,c,. Hence applying Lemma 1.1.2

one can find the unigue solution x (mod a3) of the system (1.3)

by choosing integers 51,52,53 such that

and defining

x = S,bm, + Szb1m3 + Sy (b, + D)/u.

(ii) Let Q3 = (a3,b3,c3) with b3 a solution of the system (1.3).

It will be shown that C3 is an integer. Using (1.3) (c) we have

2 = BHR - = - - .
b3 D = b3 (b1+b2)b3 + b1b2 (b3 b1)(b3 b2) {mod ua3)
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Since from (1.3)(aA), (1.3)(B),

b3 - b1 = 0 (mod m1) and b3 —b2 = 0 (mod mz)
we have
2 - = =
b3 D=0 (mod as m1m2)
= 2 _ . .
Hence cy = (b3 D)/a3 is an integer.

Now let B be a bilinear matrix given by

b2-b3 b1—b3
/ YT m, (byby+D-bymyu) /umm, ) \
B:\ {
/
0 m1 m2 m3

Now after direct calculation we have

T .
where 27 = (X, Y., ,X,¥,, Y, X ,¥,X,).

This implies that Q3 is properly primitive, since Q1 and Q2
are properly primitive.

Moreover after direct calculation of Aij's of B can be
shown that B is unimodular.
Since a1A12 = a% > 0, a2A13 = aa > 0, B satisfies the condition
of orientability.

Hence Q1 o} 02 = Q3 via B. ©
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ALGORITHM 1.1.4.

INPUT : Two properly primitive forms Q1 = (a1,b1,c1)
and Q2 = (a2,b2,c2) of the same determinant
D (non-square, if D > O)

OUTPUT : A properly primitive form Q3 = (a3,b ,c3)

3
and a bilinear matrix B, which satisfy

Q1 e} Q2 = Q3 via B.

Begin

1. 1w + gcd (a1,a2,b1+b2);

2. m1 « a1/p;

3. m, « az/u;

2

4. m., <« (b1 + b2)/u;

3

5. «<Find 51,52,53 such that: S,M, + s, m, + S Mg = 1>:

Comment. This can be done with two applications of the
Extended Euclidean algorithm.

6. a3 « m1m2;

7. b3 + (S1b2m1 + szb1m2 + s3(b1b2 + D/u) {(mod a3);
2 o o
8. cqy (b3 D)/a3,
o & ( u (b2—133)/rn2 (b1—b3)/m1 (b1b2+D-b3m3u)/um1m2) )

0 m1 m2 m3
Return 03 = (a3,b3,c3),B;

end. @©
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EXAMPLE 1.1.5.

Let Q1 = (5,6,-8), Q2 = (3,-2,-24) be forms with deter-

minant D = 76. Then

(14 4 s
(5,6,-8) 0 (3,-2,-24) = (15,-14,8) via B = { )
0 5 3 4

THEOREM 1.1.6.

Algorithm 1.1.4 correctly composes the forms Q1 and

Q2 to a properly primitive form Q3 via a bilinear matrix B.

Proof

It follows directly from 1.1.3. 0o

THEOREM 1.1.7.

algorithm 1.1.4 reguires O(M(log |[Q]| ) log log [[Q]])
elementary operations to compute a properly primitive form Q3
and a bilinear matrix B such that Q1 o} Q2 = Q3 via B. Moreover

log ||Bl| = oflog [[Q]] ), where [Q]| = max {jlo il , [IQ,ll}.

Proof

Step 1 reguires O(M(log ||Q]] ) log log ||Q|| ) using the
Euclidean algorithm (see Theorem 0.2.3). The steps 2,3,4
require only O0(M(log ||Q]| )) elementary operations for divisions.
Step 5 requires O(M(log [|Q]] ) log log ||Q|| ) elementary operations

for two épplications of the Extended Euclidean algorithm (see

Theorem 0.2.3).
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Using Theorem 0.2.3, one can show that

s, = o(llell®), s, = oCllell®), s3 =oCliell) 1.4

Step 6 reguires only O(M(log ||Q]| })) elementary operations
for multiplication. Step 7 requires O(M(log [|Q|| ) elementary
operations for multiplications, since log |S;| = O (log Holl)
for i = 1,2,3. And Step 9 requires O(M(log ||Q]| )) elementary
operations for multiplications and divisions.

Hence the algorithm terminates in O(M(log |[|Q]] ) log log {Q]|)
elementary operations. It follows directly that

log |{B|] = O(log ilQf]).

COROLLARY 1.1.8.

If the forms Q1,Q2 of the input of glgorithm 1.1.4
are reduced, then algorithm 1.1.4 reguires
O(M(log |D|) log log |D|) elementary operations to compute a
properly primitive form Q3 (not necessarily reduced) and a
bilinea: matrix B such that Q1 o} Q2 = Q3 via B. Moreover

log ||B|| = 0O(log |D|).

Proof

If QT' Q2 are definite reduced forms, then from (0.7)

we have
liell < |D]

which implies log ||Q]] = O(log |D|).
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If Q1, Q2 are indefinite reduced froms, then from (0.13)
llell < 2vD

which implies log [[Q|| = o(log [D]).

Hence the corollary follows from Theorem 1.1.7. D

DEFINITION 1.1.9.

Suppose that M = (mij) is a p x n matrix, and N a k x g
matrix. Then
(Iﬂ,l.]N « e s m1nN>
m .N .... m N
pi pn
is a kp x ng matrix and M ® N is said to be the Kronecker product

of M and N.

PROPOSITION 1.1.10

Suppose Q1 0 Q2 = Q3 via B, Q{ > Q1 via S1, Q2 - Qé via 82
¢ s
and Q3 + Q3 via 83. Then

[ [ ' s -1
Q1 o) Q2 = Q3 via 53 B(S1 ® SZ)

where ® is the Kronecker product.

Proof

X xl y y'
Suppose ( 1) = S1 .( 1) (1), ( 1) = 52-< 1 )(2). Then
*2 *2 Y2 Y2

z = (S, © Sz)z' (3)

1

T _ T
where z~ = (x1y1,x1y2,x2y1,x2y2) and (2')

(x4}, xj3 %503 %393) -
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From Q1 o] 02 = Q3 we have,
Q1(x1,x2)-Q2(y1,y2) = Q3(B-Z) -

X X

-» (X1'X2) MQ,] ( 1) . (y1ryZ) MQZ (

1) = (Bz)T M. BZ
2

%2

X

Now using (1), (2), (3) we have

L 1] T X' \j 1 T y -
(x],%5)8; MQ1 S, < ?) . (y1.y2)52 Mg S, ( 3) =
x5 2

= T '
= (B(5, © 52)2 )" M B(S, ® 52)Z .

Q)

Now since

M., = S/ M s. for i = 1,2,3
Qi i70; 1

X1) (y;,yé) MQé (Yi) = (B'Z')T MQ, B'Z!

1] yé 3

we have (x1,x2) MQ‘,I (
2

X

-1
' - .
where B' = S3 B(S1 &® SZ)‘

Hence Q{(X',Xé)-Qé(Y‘,Yé) = Q§(B'Z'), which implies
Q% o} Qé = Qé via B', since from Proposition 0.1.4 Q%, Qé, Qé
are properly primitive forms and after computation it can be
shown that B' satisfies the conditions of unimodularity and
orientability. ©D

The following Corollary is an application of Corollary

1.1.8 and Propesition 1.1.10.
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COROLLARY 1.1.11.

There exists an algorithm which composes two properly
primitive reduced forms Q1, Q2 with determinant D (non-square,
if D > O) to a properly primitive reduced form Q3 via a bilinear
matrix B in O(M(lbg ID|) log |D|) elementary operations and

log ||B]] = O(log |D]|).

Proof

If algorithm 1.1.4 is applied to Qir Qs it will

give a form Qé and bilinear matrix B' such that
Q1 o} Q2 = Q3 via B

in 0(M(log |D|) log log |D|) elementary operations, since
Q1,Q2 are reduced.

One can see that with {|Q]| = max {]|Q,]] 119,11}
el = o fiell ) (1.5)

from the steps 6-8 of the algorithm 1.1.4 and (1.4).

From (1.5) and since QT'QZ are reduced, we have
lleill = o(|p|®) (1.6)

using (0.6) or (0.13) for the appropriate type of D.

Now we use a reduction procedure (0.3.2 if D < O, 0.3.6
if D > 0) to obtain a reduced form Q3 and a unimodular matrix S
such that: Qé > Q3 via S. It requires
O(log |03 M(log [[Q3]] )} = Oflog ID| M(log D )) elementary

operations and



-32-

log |{s|| = o(log |[0}ll ) = O(loeg |D]) (1.7)

Now using Proposition 1.1.8 we have

- : - "1|
Q1 0 Q2 = Q3 via B =S B

where Q3 is reduced. Hence, from the above analysis, the
algorithm terminates in O(log |D| M(log |D|) elementary
operations.

Moreover using 0.1.7 we have

1w

IB]| < 16 {|s '] B (1.8)

Since S is unimodular, we have |/S|| = HS—1H

Bence from (1.7), (1.8) we have

log |{B|] = O(leg |D|). ©
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1.2. THE FORM CLASS GROUP

It will be shown that the equivalent classes of properly
primitive forms with determinant D (non-square, if D > O) form
an abelian group under composition. First it is necessary to

show the following proposition.

PROPOSITION 1.2.1.

Suppose Q1 o) Q2 = Q3 via B, Q1 0 Q2 = Qé via B'. Then

1)
Q3 IS Q3.
Proof
b b b b b! b! b! b!
LetB:( 11 712 713 14)' B'=( 11 712 713 14>
1 ] 1) 1) 1]
Py1 Paa Pr3 Doy by1 P2y B3 Doy
= - - R | ] L] : : .
and Aij = b1ib2j b21b1j, Aij b1ib2j b21b1j for 1 < i< j<¥4
It can be shown that Aij = Aij for 1< i< j< 4 with

direct calculation from the relation Q1(X1,X2)-Q2(Y1,Y2)
Q3(BZ) = Qé(B'Z), where Z as in Proposition 1.1.3.
Since the greatest common divisor of Aij's for 1< i< 3j<4

is one, there exist integers aij' 1 < i< j < 4 such that:

z a; Ai' = 1.
i, J J

Let now
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S, = I (b - bl.b..)
s 2 2
1 1,5 11 3 j2i
- - ]
Sq = I 335(by3bey = Dygbyy)
i,3]
S3 - .Z. (b21 25 b23b21)
1,3
= - [ ]
Sy = I a;5)byibys = bysbsy)
i,3]
Then with direct calculation, using the fact A,. = A!

ij ij
for 1 < i < j < 4, can be shown that the matrix

is unimodular and Q3 - Qé via S. For details of the calculations
one can see Mathews ({26], p. 146). oD

Proposition 1.1.10 and Proposition 1.2.1 show that com-
position is well defined and independent of the choice of the
bilinear matrix B over the eguivalence classes of properly
primitive forms with fixed determinant D (non-square, if D > O}.

Hence we may write:
Q1 0 Qz = Q3

where Qi is used to denote the class to which it belongs for

1<i< 3.

Also let (cf(D) denote the set of equivalence classes of

properly primitive forms with determinant D.
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THEOREM 1.2.2.

(c2(D),0) is a finite abelian group, where o is the

operation of composition and D is non-square, when D is

positive.

Proof

(i)

(ii)

(iii)

(iv)

(v)

Let K,L,N &€ c2(D) and (a1,b1,c1) € K, (aZ’b2’c2) € L.

The operation of composition of classes is well defined

by Propositions 1.1.10 and 1.2.1.
As an application of Thecrem 1.1.3 we have
(K o L) o N=Ko (L oN} {see Mathews [26], p. 153)

Let I be the class of C&L(D) which contains the form

(1,0,-D). Then

KoI=ZK for every K € C&(D)

since using Theorem 1.1.3

(a1lb1lc1) 0 (1IOI-D) = (a1lb1lc1)
Let (a1,—b1,c1) € M. Then using Theorem 1.1.3 we have
(a1,b1,c1) ) (a1,—b1,c1) = (1,0,-D)

Hence M is the inverse of the class K.
Using Theorem 1.1.3 can be shown that
(a1,b1,c1) o) (a2,b2,c2) = (az,bz,cz) 0 (a1,b1,c1)

Hence K 0 L = L 0 K.



-36-

From (i) - (v) we have that (X (D),0) is an abelian
group.

Since every class can be represented by a reduced form
belonging to it, we have that the number of classes of C& (D)
is less than the number of the reduced forms. Now if D > O,
then from ineguality (0.13) it follows that the number of
reduced forms is finite. Similarly if D < O, then from in-
equality (0.7) we have that the number of the reduced forms is
finite. Hence C2(D) is a finite group. D

The group (C4(D),0) is called the form class group. The
identity element of the form class group is called the principal
class.

In current research in number theory the language of
divisors (see [8]) is used instead of the language of forms,
since it is simpler. The forms seem to provide a convenience
computational model of the algebraic number theory. Since
later some results of algebraic number theory are used (theorems
4.1.5 - 4.1.6), it is useful to review briefly some relations
between quadratic forms and quadratic fields. Extended reference
to algebraic number theory is outside of the scope of this

thesis ; see references in [13] for further details.

DEFINITION 1.2.3.

Suppose that @( v d) is the guadratic extension of the
field of rationals by v d, where d is square-free. If f > 1
is a rational integer (see [13], p. 43), then the ring consisting

of gquadratic integers of p( v d) which are expressible as
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a + bfwO

where a and b are rational integers, and

-}
+
o)
[oN]
1

1 (mod 4)

T d %1 (mod 4)

is called the crder of index f, denoted by Df(d) (see [13],p.216).

The discriminant b¢ of Df(d) is
b = f24 (see [13], p.216)

It is known that the strict equivalence classes of ideals
of an order Df(d) form an abelian group under the composition
of classes of ideals. (See [13], p. 114; 197; 212; and [5],

p. 278). Moreover it can be shown that the equivalence classes
of properly primitive forms (in Dirichlet's terminology (see
below 0.1.7), with fixed discriminant A form a group under
composition, (proof similar to that of Theorem 1.2.2). This
group is isomorphic to the class group of primitive ideals of
the order Df(d) with discriminant A = £?d with d square free
(see [13], 200-216). Since the Gaussian forms are a special
case of Dirichlet's formé and they have discriminant A = 4D
(where D is the determinant of the form), we have that CL (D) is
isomorphic to class group of primitive ideals of the order

sz(d), where D = f?4d with d square-free.
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THEOREM 1.2.4.

1f J = [o,B] is @ pri

0(x,y) = Nfax * gy) /N (J)

is a properly primitive integral binary quadratic form with
geterminant D = £f23. The map defined in this way induces a
d the class group of prim-

1-1 correspondence between CL (D) an

itive ideals which is a group isomorphism.

Proof

see Cohn ([13), P- 200-216). 1O

mitive ideal of an order sz(d), then
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1.3. DIRICHLET'S APPROACH

In Section 1.1 we discussed Gauss' method for composition
of forms, which makes use of bilinear substitutions. It was
also shown that the operation of composition is well defined
over CL(D). Dirichlet's method of composition of classes of
forms depends upon finding a pair of representatives which can

be simply compcsed.

DEFINITION 1.3.1.

Two forms O = (A,B,C), F = (a,b,c) with the same determ-

inant D are called concordant if:

(i) ged(a,a) =1
(ii) B = b.
The following proposition is a combination of results

by Cassels ([12]), Lemma 2.2, p. 334) and Gauss ([16], A.168).

PROPOSITION 1.3.2.

Suppose K and L are classes of CL(D). Then there exist

forms Q1 € K, Q2 € I which are concordant.

Proof

Let Q = (a,b,c) € K and F = (r,B,C) € L. First will be
shown that Q can represent an integer N coprime to A. We

require coprime integers X and y which satisfy for every prime

divisor p of A:
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(i) 1f p T a, then p T x and p|y.

(ii) If p t c, then p|x and p ¢ vy.
(iii) If pla and p|c (hence p T 2b), then p t x and p 4 y.

One can see that such integers x,y always exist and that
Q(x,y) = N is coprime to A. Since x,y are coprime, there exist
integers k, m such that

kx + my = 1.

Now let

X -m
Q - G via ( ) .
Yy k

k(bx + cy) - m(ax + by).

"

Then G = (N,M,*) with M

Since N, A are coprime, then there exist integers t, z

such that

tN + zA = 1.

Now we do the transformations

1 u\
o 1
1TV \
o 1

with u = t(B-M) and v = z(M-B).
It is obvious that Q1 € X and Q2 € L. Moreover direct

calculation shows that Q1 and Q2 are concordant. ©O
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PROPOSITION 1.3.3

Suppose that Q, = (A,b,*) and Q, = (a,b,*) are concordant

properly primitive forms with determinant D. Then

1 0 O (b*-D)/Aa
Q1 0 Q2 = (Aa,b,*) via B = ( )
0O A a 2b

Proof

It is a direct appiication of 1.1.3. D

Dirichlet's method of composing two properly primitive
forms Q1, Q2 with the same determinant D, finds as in Propoes-
ition 1.3.2 a pair of concordant forms Qi = (A,b,*) and
Qé = (a,b,*) eguivalent to Q1 and Q2 respectively. Then by

Proposition 1.3.1 there exists a bilinear matrix B such that:
Q. o Qé = (Aa,b,*) via B (1.9)

If Q% + Q1 via S, and Qé > Q2 via Sz.where 51, S2 are uni-

1
modular, then by Proposition 1.1.10 and (1.9) we have

Q1 o} Q2 = (Aa,b,*) via B(S1 ® 52) (1.10)

Lagarias ([20], p. 169) gave an algorithm for composition
of forms; it follows Dirichlet's method. To compose two properly
primitive forms Q1 = (a1,b1,c1) and Q2 = (az,bz,cz) with the
same determinant D (non-sguare, if D > O), it finds first two
concordant forms Qi = (a',b,*) =~ Q1 and Q{ = (A',b,*) = QZ’ and

thus a bilinear matrix B (using 1.3.3 and (1.10)) such that

Q1 0 Q, = (A'a',b,*) via B.
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To find two concordant forms Q!, Qé, it transforms

1 O
0o, + F= (A,B,C) via § = ( ) (1.11)
1 A1

by choosing a X such that
gcd(A,az) = gcd(a1 +M2b1 + AcT),az) =1
and after transforms

1w
F - Q% via S1 = ( )

o 1
1\)\
Q, =+ Q! via S =<
2 2 2 o 1/

where py = m(B - b2), Vo= n(b2 - 'B) for some integers
m,n: ma'+ na, = 1.

One can see with direct calculation that Q;, Qé are
concordant.

The hard part of the algorithm is to compute the A

and thus the form F. Hence first we give an algorithm to

compute F as above.

ALGORITHM 1.3.4.

INPUT : A properly primitive form Q = (a,b,c) and an

integer N. We assume w.l.o.g. that a is odd. (see
remark below)
OUTPUT : A form F = (A,B,C) ~ Q with gcd(A,N) = 1 and a

unimodular matrix S such that

Q - F via S
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Procedure PRIMEFACTOR (A,N)

Comment This procedure factors determines integer m1 and m,

such that

(i) N = m,m,,

(ii) ng (m.l lmz) =1,
(iii) gcd (A,m2) = 1 and

(iv) If p prime divides m,, then pla

Begin
1. 2z « gcd (A,N);
v <« N;

2.while z # 1 do

Begin
3. <choose the maximum A for which v/zx is integer>;
4, v o« v/zx;
5. z «+ gcd (z,v);
6. end
7. m, < N/v; m, < V;

Return (m1,m2);

end.

The algorithm for the computation of the form F is:
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Begin
10. (m ,m1) < PRIMEFACTOR (a,N);

11. (mz,m3) < PRIMEFACTOR (2b+c,N);

Comment Now N = m1m2m3 and m1,m2,m3 satisfy:

gcd(a,mT) = gcd(m1,m2,m3) = gcd(2b+c,N) = gcd)mz,m3) = 1
for p prime, if p|m, then pla and if plmz, then p|2b1+c1
12. <Find integers kz, k3 such that: k2m2 + k3m3 = 1>

13. <Find integers k1, k4 such that: k1m1 + k4m2m3 = 1>;

+ 2 k3m3) (mod a2);

14. X =« k1m1(k2m2

Comment Now X is as in (1.11) with the reguired property

10
=+ (, )
A1

T
15. MF < S MQS,

Return F ,S:

end. ©

Remark

If one has Q = (a,b,c) with a even, then c is o0dd, since

Q is properly primitive. Moreover

o 1
Q + (c,-b,a) via S§' = ( )
-1 O

Hence one can apply algorithm 1.3.4 to the form (c,-b,a), to
compute a form F = (A,B,C) with gcd(aA,N) = 1 and a unimodular

matrix S such that,
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(c,~b,a) + F via S.
Then easily Q = F and
Q - F via S8'S.
First the procedure PRIMEFACTOR is analysed and its correctness

is proved.

THEOREM 1.3.5

The procedure PRIMEFACTOR (A,N) correctly computes
(m1,m2) with the reguired properties in O(M(log X)log K)

elementary operations, where K = max {|a] , [N]|}.

FProof

Suppose that A = I p
o

will be shown that

Now let v, ,A denote v, ),z respectively at the beginn-

.2,
i'7ir%i

ing of the i-th loop. One can see that 2z, , = ged(z,,v; 4) < 24,

hence for some integer T, we shall have Zo4q = 1 and Zq £ 1.

n
It is obvious that v,|N for every i. Also I SYYIVi for
Y
every 1i.

Now since Zpeq T 1, for each o there is ja such that
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pa!zJOl and pd+zJa+1. Hence since Zi41 T gcd(zi,vi+1), it

follows that pu-,FVJ But we know that vi+1[vi for every i,

+1°
a
so we have pa-{-vT+1 for every a.

Hence we conclude that

and thus the procedure PRIMEFACTOR correctly computes (m1,m2).

One can see that 2,41 ° ged(z. ,v

5 i+1) < zi for i s T

and thus

zi/z. > 2 for every i < T

i+

which implies

> 2%

2z for every i < T

T-1
Hence we have

T T
I 25 > NI 27 » 2
i=1 i=

72 /2 .
z; < N, we have 2 < N which implies

1

Now since

H =3

i
T = 0( VIog N) < O0(VIog K} .

Also one can see that

T

z AT < Z ha = 0(log N) < O(log K)
= o

Hence the procedure requires T = O ({og K)T/z) applications

of the Euclidean algorithm and O(log K) divisions. Hence the
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procedure terminates in O(M(log X)log K) elementary oper-

ations. ©

THEOREM 1.3.6.

Algorithm 1.3.4 correctly computes a form F =~ Q
with gcd(A,N) = 1 and a unimodular matrix S such that Q - F

via S.
Proof.
It is sufficient to prove that the chosen A satisfy

gcd(A,N) = 1 with A = a + x(b + Ac)

1

First we have that 2 - a.

The integer N = m,m.m, with m, i=1,2,3 satisfying:

1723
gcd(a, m,) =1 (1.12)
gcd(mT,m2m3) =1 (1.13)
gcd (2b+c,my) = 1 (1.14)
gcd(mz,m3) =1 (1.15)
and for p prime we have
p!m2m3 - pla and p # 2 (since 2 t a) (1.16)
plm, = pl2b + c (1.17)
Now from Step 14 of the algorithm we have
A = 0 (mod m1) (1.18)

From steps 12, 14 we have

A= 2k1m1k3m3 = 2k1m1(1—k2m2) = k1m.l = 2 (mod m2) (1.19)
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and from steps 13, 14 we have

(1 - k,m.m

4723

Now let p prime

]
pim, or pimg

Case p!m1

such that p|N.

kzm

Ykomy 2

Then either p[m1 or

From (1.12) pia and from (1.18) p|A. Hence p-a
Case p{m2
From (1.16) pla and p £ 2. From (1.17) p;2b+c and hence
using (1.19) we have
2b + ¢ = 2b + 2c = ¢ (mod p) (1.21)

If c
which contradicts with the fact

3

Hence ¢ ¥ O (mod p) and from (1.

2b + 2c ¥ O mod p

(1.19), (1.21)

Now using ,

we have

A a + 2(2b + Ac)

Hence p + A
Case p:m3
From (1.14) we have

2b + ¢ ¥ 0 (mod p)

O (mod p), then since p|2b + c, we have 2b

O (mod p)
that Q is properly primitive.

21)

(1.22)

(1.22) and the facts pla, p#2

2(2b + 2¢c) ¥ O (mod p)

(1.23)

1 (mod m3) (1.20)
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From (1.16), (1.20), (1.23) we have

1

A =a+ A(2b + Ac) = A(2b +c) =2b + c § O mod p

Hence p + A.

From the above cases we conclude that

gcd(A,N) = 1. o

THEOREM 1.3.7

The algorithm 1.3.4 terminates in O(M(log K)log K)
elementary operations in worst-case and log [[S]| = O(log K},

where X = max {]|/Ql] ,N}.

Proof

Steps 10-11 by Thecorem 1.3.5 require O(M(log K)log K)
elementary operations. Steps 12-13 by Theorem 0.2.3 reguire
O(M(log K)log log K) elementary operations and
log !kil = O(log K) for i = 1,2,3,4. Hence step 14 by Theorem
0.2.2 reguire O(M(log K)) elementary operations and
log |[A] = O(log K).

Step 15 requires O(M(log K)) elementary operations.

Hence the algorithm terminates in O(M(log K)log K.)

elementary operations and since log |A| = O(log K) we have
log ||s|| = O(log K). o

- The following algorithm is Lagarias' algorithm for

composition using algorithm 1.3.4.



-50-

ALGORITHEM 1.3.8

INPUT : Two properly primitive forms 0, = (61,b1,c1),
Q2 = (a2,b2,c2) with the same determinant D
(non-square, if D > O).

OUTPUT : A properly primitive form Q3 = (a3,b3,c3) with

determinant D and a bilinear matrix B such that

Q1 o} Qz = Q3 via B

Begin

1. <Using algorithm 1.3.4 find a form F = (A,B,C) = Q1 with
gcd(A,az) = 1 and a unimodular matrix S such that
Q1 + F via S>

2. <Find integers m,n: mA + na, =1>;

3. u <« m(B - b2);

4. b - B);
v+ n{ 5 )

w
L[]
wn
-l
4
AN
-t
- ~
N’

0]

1 v
6.s+< )
2 o 1

T
7. MQ; “« S1 MF S1.

T
8. MQé « S2 MQ2 SZ'

-

Comment Now Q;, Qé are concordant;
<Let Qi = (a',b,*) and Qé = (A',b,*)>;

0y < (A'a',b,*);
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1 0 0 (b°-D)/A'a’ -1 -1
9. B+( ) (s:57" @ 53");
O AaA' a' 2b
Comment The matrix B is constructed as in (1.10)
Return Q3, B;
end. D

THEOREM 1.3.9

Algorithm 1.3.8 correctly composes the forms Q1 and Q5

to a form Q3 via a bilinear matrix B.

Proof

See Theorem 1.3.3 and description of the algorithm

(below Theorem 1.3.3). D

THEOREM 1.3.10

Algorithm 1.3.8 terminates in O(log Holl M @og {lall ))
elementary operations and log ||B|| = O(log |[Q]| ), where

ol = max (1o, Il . lle,ll}.

Proof

By Theorem 1.3.5 step 1 requires O(log llo]l M @og |lQ]])
elementary operations and log ||S|| = O(log [[Q]]) (1.24)

Step 2 by Theorem 0.2.3 requires O(log log lloiM (log |[Q )
elementary operations, since log |A| = O(log llo]] ) using (1.24).

Moreover by Theorem 0.2.3 one can see that
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log |m| = O(log [[Q]| ) and log [n| = O(log ||Q| ). Hence steps
3-4 reguire O(M(log ||Q]] )) elementary operations for multi-

plications and log HS1||= O(log llQ]] ), log ”52||= O(log |lQ]] ) (1.25)

Easily sSteps 7-8 reguire only O(M(log {|Q]|| })) elementary

operations.

From (1.24) and (1.25) we have that Step 9 requires only
O(M(log ||Q]| ) elementary operations for multiplications.
Hence the algorithm terminates in O(log |[Q|| M(log |[Q]] ))

elementary operations.

Also by Theorem 0.1.7, (1.24) and (1.25) we have

log ||Bll = O(log [Q{j). =®

COROLLARY 1.3.11

I1f the forms Q1, Q2 of the input of the algorithm 1.3.8
are reduced, then the algorithm has running time

O(log |D| M(log |D|)) elementary operations and log ||B|| = O(log|{D]).

Proof

Using the ineguality (0.7) or (0.13) for the appropriate
type of D, we have
log |[Qll = 0(log [D]) (1.26)

Hence the corollary follows from Theorem 1.3.10. D

Remark

Comparing algorithm 1.1.4 (Gauss' method) with algorithm

1.3.8 (Dirichlet's method) one can see that 1.1.4.1s simpler
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Moreover our analysis of 1.1.4 shows that the Gauss' method
compcses two forms faster than Lagarias' algorithm (see

Theorems 1.1.7 - 1.1.8 and 1.3.10 - 1.3.11)

COROLLARY 1.3.12

There exists an algorithm which composes two properly
primitive reduced forms Q.. Qs with determinant D (non-square,
if D > 0) to properly primitive reduced form Q3 via a bilinear
matrix B in O(M(log |D|)log |D|) elementary operations and

log |IB]] = O(log [D{).

Proof

If algorithm 1.3.8 is applied to the reduced forms
QT’ Q2, it will yield a form Qé (not necessarily reduced)

and a bilinear matrix B' such that
. ' s '
Q1 0 Q2 Q3 via B

in O(M(log |D|) log |D|) elementary operations using Corollary
1.3.11.

Now one using (1.24) - (1.26) can show
log |loyll = o(log [D]) (1.27)

Now we reduce Qé to Q3 using algorithm 0.3.2 or

0.3.6 for the appropriate type of D and let

Qé -+ Q3 via S.
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By Theorem 0.3.4 or 0.3.7 and (1.27) the reduction can

be done in O(M(log |[Q4]]) log |lQ}][) = O(log |ID| M(log |D]|))

elementary operations and
log |[s]| = o(log [loyll) = o(leg [D]) (1.28)

Now from Proposition 1.1.10 we have

s g

il

Q1 o) Q2 = Q3 via B
Now using Theorem 0.1.7 we have

Bl < 16 |Is” Il 1Bl

since lls”'|| =lis]| = o(log |D|) by (1.28) and

log {IB'|l = O0(log [D|) by Corollary 1.3.11,we have

log ||B|] = O(log D|).
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2.1. GENUS CHARACTERS

DEFINITION 2.1.1.

A homomorphism y from a group (G,0) to the multiplicative
subgroup of the field of the complex numbers is a character

of the-group G.

DEFINITION 2.1.2.

The character xg of the group G which satisfies
¥y (a) =1V ac¢€gG

o]

is called the principal craracter.

DEFINITION 2.17.3.

The characters of a group G themselves form a group with

identity element Xo with respect to the multiplication
(x1-x2)(a) = X1(a)-x2(a) V a € G (see Apostol [4],p.135)
A character x of a group G of order 2 i.e. such that

= Xg

is called a genus character.

In this section the genus characters of the form class
group will be studied. First it is necessary to show the

following lemmas. The first is due to Mathews ({261, p. 132).
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LEMMA 2.1.4.

If Q is a properly primitive binary gquadratic form,

there is a number N represented by Q with gcd(N,2D) = 1.

Proof
Suppose that Q = (a,b,c). Then let
n
ged(a,c,2D) =1 p ¢
o a
m Vg
gcd (a,2D) =11 pPalld (2.1)
a B
a B8
k t
ged(c,2D) =1 p*m Y (2.2)
. a Y
ol Y
e u z 8 hi
2p =1 p g ntY 1 sy (2.3)
o B T Y i=1

where . . . are distinct primes and n <m < €
Plr ql, Tll P a o CXI

n <k <e , v <u_and t < z .
a x a B B Y Y

Ifx=1 g
g B 4

n = o

si and v = 1 TY' then let
1 Y

Q(x,v).

]
"

It can be shown that gcd(N,2D) = 1. B

Remark

If we partition the si's in two disjoint sets, say

{51,...,su) ’ {su+1,...,sé}, then Q(x',y') = N' with

' o= satisfies

X = g q8.51...su, Y = N7t .Su+1'°'56
gcd(N',2D) = 1.
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LEMMA 2.1.5.

Suppose N1, N2 are represented by the forms Q1, Q2

(with the same determinant) respectively. Then N1-N2 is

represented by Q1 o Q2.

Proof
Let Q1(x1,x2) = NZ’ QZ(XT,Y1) = N2 and Q2 o} Q2 = ag via B.
Then by definition of the composition
Q3(24:25) = Q) (x3,%,) -0, [yqg,¥,) = NN,
T

where (21,22) = B'(X1y1,X1Y2,X2}’1:X2Y2) . o

DEFINITION 2.1.6.

For p odd prime and n an integer, the Legendre symbol

is defined by

+1 if x? = n mod p is solvable

n, .
(5) - { -1 if x* = n mod p is not solvable

0O if p|n

A Legendre symbol has the following properties

- mn, _ m, D
@ &) =@ @
a) B = @) ¢ (-1 {a-1)/4 ¢, ¢ 0aa prime
(i1i) (1) = (-1) (P1)/2
P
1 G = P
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Now for each prime divisor Py of D we define the "function"

Xp (cf. below) such that

Xy :C2(D) » {-1,1)

Pj

via X _(Q)== x. (N):= (57)

where Q is a form representing a class of Cf(D), N is an integer
represented by Q with gcd(N,2D) = 1 and (él) is the Legendre

i
symbol.

Moreover we define

x_4(Q):= x_4(N) = (—‘I)(N-”/2 when D = 0,3,4,7 (mod 8)

(2.4)
Xg (Q):= x8(N) = (-1)(N2-1)/8 when D = 2,0 (mod 8)

(2.5)
X_g (@)= x_,(Q)-Xg(Q) when D = 6 (mod 8) (2.6)

where Q is a form with determinant D and N is aninteger represented
by Q with gcd(N,2D) = 1.

The following theorem is due to Mathews ([26), p. 133).

THEOREM 2.1.7

The "functions" Xp’ for each prime divisor p of D, X_gqr

x8' X—8 are genus characters of Cf (D).
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Proof

(i) First will be shown that XP(Q) is well defined on
CR (D).

By Lemma 2.1.4, there always exists an number N

represented by Q with gcd(N,2D) = 1. Let N1, N2 be
such that
N1 = Q(k,v) ' gcd(N1,2D) = 1
N, = Q{(m,n) , gcd(N2,2D) = 1
then N1N2 = 0(k,v).-Q(m,n) = x* - Dy? (2.7)
where X = akm + b(kn + mv) + cvn, y = kn - vm.
Now from (2.7) we have
NNy
(—7;~) =1 V plD, p odd prime
N_‘ N2
Hence (—) = (—) which implies N = N.).
(p) (p) P xp( 1) xp( 2)

Moreover if Q. =~ Q., then from Theorem 0.1.5 they re-
1 2

present the same numbers, hence XP(Q1) = Xp(QZ)'

Hence has been shown that Xp is well defined on C&(D).
Now will be shown that Xp is an homomorphism.

Let N1,N are represented by Q1, 02 € CL(D) respectively.

2
Then from Lemma 2.1.5, N1N2 is represented by Q, © Q,- Now

we have

Hence Xp is a character of C2(D).
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(ii) It will be shown that X_4 is character when D = 3,7
(mod 8). If D=z 3,7 (mod 8), then D = -1 (mod 4).

Hence from (2.7) we have

N.N, = x? = Dy? =z x? + y? (mod 4)

Since N1, N2 are odd, one of x,y is odd and the other

even. Hence

N1N2 z 1 (mod 4) which implies
N1 = Nz(mod 4) or
(_1)(N1—1)/2 _ (_1)(N2—1)/2.

Hence X_4(Q)=X_4(N1) =X_4N2) is well defined.

Now let M M., be represented by Q1, Q2 respectively

17 72
with gcd(M1,2D) = gcd(M2,2D) = 1. Then

M.M_-1})/2
x_4(Q1 0 Q2) = x_4(M1M2) = (—1)( 172 )/

) (=10 (My=1)) /2

and x_4(Q1)'x_4(Q2) = (-1
One using the fact M1 = 1,3 {(mod 4) and MZ = 1,3 (mod 4) can
show

(M1M - 1)/2 - 2)/2 (mod 2)

2

(M1 + M2

and thus x_,(Q, o Q) = X-4(Q1)'X_4(Qz)- The other cases
can be shown similarly. o
Let D = 2° pfa]f1. plat+l q?k.’l*?: qibs*z and M be the

number of distinct prime divisors of D.
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TABLE

Determinant D = af?

1 (mod 4) £

jol)
]

o}
1

= 3 (mod 4) £

jol]
"

2 (mod 8) £

6 (mod 8) £

Q.
"

THEOREM 2.1.8

"

i

11}

th

Hi

I1f the first character of each row of the abov
is deleted, then the remainin

genus characters of CL(D) for the appropriate type of D.

Proof

see Venkov ([40], p.

since it refer

1 (mod 4)

2 (mod 4)

0 (mod 4)

1 {(mod 2)

2 {mod 4)

0 (mod 4)

1 (mod 2)

0 {(mod 2)

1 (mod 2)

0 (mod 2)

s to the theory of teruary quadratic forms.

d square free

Xp1,...,xpr

Xp1,...,)(pr

143-144).

Nunber of
generators
X re-ceX M-1
9 9
X eees X r M-1
q1' qs X__4
Xq1,--.,xqs,x_4,><8 M
geerX M
Xq1 9
X et X M-1
94 9
recy rX M
*q, Xq,""8
geses M-1
Xg, g
reees X M
g *qg7-4
geestX M-1
Xq1 95
M
e table

The proof is omitted,

g characters are a basis for the

O
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Lagarias in [20], gave an algorithm for computation of
the characters xp(Q). His algorithm first obtains an integer
M represented by Q with gcd(M,2D) = 1; after it evalutes XP(Q)
by computing the symbol (g) using Euler's criterion. To find
an integer M represented by Q, coprime to 2D, it uses algorithm
1.3.5. By algorithm 1.3.5 finds a form F = (A,B,C) with

gcd (A,2D) = 1. Then
F(1,0}) = A = M and gcd(M,2D) = 1.

We shall give an algorithm which obtains a number N

represented by Q with gcd(N,2D) by using the constructive proof

of Mathews' lemma 2.1.4, and after computes the symbol (g). Our

algorithm improves only the constant of worst-case complexity

bound of Lagarias' algorithm.

ALGORITHM 2.1.9

INPUT : The set P = {p1,p2,...,pr} of all odd distinct

prime divisors of D and a reduced form
Q = (a,b,c) with determinant D.
OQUTPUT xp(Q) vV p € P and _,(Q), Xg(Q), X_g(Q) when

appropriate.

1. m1

2. m, <« ged (a,2D);

< gcd (a,c,2D);

3. my * ged (c,2D);
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4. <Compute R = {q1,...,qm} c P where g; as in (2.1)>;

5. <«Compute T = {11,...,18} c P where T as in (2.2)>;

6. <Compute S {51,...,sn} c P where s; as in (2.3)>;

Comment To compute R,T,S, we do for each p € P,

which does not divide m, the following. 1If p[mz, then
p € R. If p]m3, then p € T. Else p € S.

X <« 1;

7. For<each element w of rygs>do
X + XwW ;
y < 1
8. Forc¢each element 1 of T>do
Y £ Y13
9. N « ax? + 2bxy + cy?;

10. For p = 1 until k do

Begin .
Comment The symbol (g) will be computed using Euler's

criterion; (g) = P2 (14q p)
11. N1 + N (mod pi);
(pj-1)/2 .
12. Xpi(Q) < N, T2 (mod p,);
13. end

if D =0,3,4,7 (mod 8) then

14. x_, « (-1) 871/,

if D = 0,2 (mod 8) then
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2 .
15. X.g (@) « (-1) N71)/8:

if D = 6 (mod 8) then

16. X _gl@) « (-1) (NT1/2r (V=178

end

THEOREM 2.1.10

Algorithm 2.1.9 correctly computes the characters Xp '
i
for each p odd prime divisor of D, and Xogr XB' X—8 when

appropriate.
Proof

Lemma 2.1.4 shows that N has the reqguired properties and
Euler's criterion justifies the computaticn of the xé s. D

i

THEOREM 2.1.11

Algorithm 2.1.9 terminates in O(log |D| M(log |D;))

elementary operations.

Proof

From Theorem 0.2.3 and using (0.6) or (0.13}) (since Q
is reduced) we have that steps 1-3 reguire O(log log ID| M(log |D]))

elementary operations.

Steps 4-6 require at O(r) divisions, where ris the
number of distinct prime divisors of D. Since r = O(log [D|/
log log |D|), steps 4-6 require O(log |D| M(log Ip|)/log log [D])

elementary operations.
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Loop 7 and loop 8 require r multiplications at most. Also

|x| < |D] and |y| < |D].

Since Q is reduced, step 9 requires O(M(log |D]))
elementary operations and N = O0(|{D|?).

From Theorem 0.2.2, step 11 requires O(M(log |D|))
elementary operations.

From Theorem 0.2.4, step 12 requires O(log piM(log pi))
elementary operations.

Now the loop 10-13 reguire

O(log |[DM(log iD])/ log D+ ? log p M(log pl)) =

p|D

O(log [DiM(log |D}))

elementary operations,.
Finally steps 14-15 require only O(M(log |[D|)) elementary
operations. Kence the algorithm 2.1.9 terminates in

O0(M(log |D|) log |D|) elementary operations. o

THEOREM 2.1.12

Suppose that y is a genus character expressed in terms
of the basis for genus characters specifiedbin Theorem 2.17.8.
For Q a reduced form with dterminant D, one can compute y(Q)

in O(log |D| M(log |D|)) elementary operations. o

Proof
Suppose that {Xi}is the basis of genus characters and
a,
x = 1 xil with a; € {0,1}. To compute x(Q), compute Xi(Q)
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for all the i's using algorithm 2.1.9. 1In O(log |D{M(log|D|¥
elementary operations and afterwards compute the product of

x; (@) 's in O(log ID|/log log [D|) elementary operations, since
o

x; (@ =21, o

DEFINITION 2.1.13

A form QO (or a class K 3 Q) belongs to the principal

genus 1if

¥ (Q) = 1 for every genus character.

THEOREM 2.1.14

Suppose that the complete factorization of D is given,
It is possible to decide whether or not a form Q with determinant
D (non-sguare if D > O) belongs to the principal genus in
0(log |lQ{| M(log |{Q}] })) elementary operations in general and in
O0(log |D| M(log |D|)) elementary operations if Q is a reduced

form.

Proof

Ve

First by using the algorithm 0.3.2 or 0.3.6 we reduce Q
to Q'. This from Theorem 0.3.4 or 0.3.7 can be done in
O0(log ||Q|] M(log ||Ql| )) elementary operations. Afterwards we
compute the basis characters x, (Q') in O{(log D] M(log [D]| ))
elementary operations. If xi(Q') = 1 for every i, thenQ

belongs to the principal genus.
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Now easily for every form Q, we have

lloll > ID[/2

Hence the algorithm terminates in O(log ||Q]] M(log ||Q]] ))

elementary operations.

If O is reduced, then by (0.7) or (0.13) we have

log ||Q]] = O(log |D})

and thus in this case the algorithm terminates in O(log |[D|M(log|D|))

elementary operations. o
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2.2. DIRICHLET'S L-SERIES

First an extension of the Legendre symbol is defined

DEFINITION 2.2.1

a a

If n > O cdd and n = p11 .. pTT, then for an integer
m m a1 m aT m
ith d{m, = 1 let (=):= (— cee f— wher —
m wi gcd (m,n) e (n) (p1) (p ) o, e (pi)

is the Legendre symbol. Then (g) is called the Jacobi symbol.

The following are some properties of the Jacobi symbol

(see Ayoub [5], p. 289).

(1) (é%) = (%) (%) for m,n odd and gcd(a,m) = gcd(a,n) = 1.
(11) (in?) = @) (-E) for n odd and ged(a,n) = ged(b,n) = 1.
(1311) (@) @) = (-1 7Y (a=1)/4 ¢5r a,n odd.

/

(iv) (%%) = c—1)(n_”/2 for n odd.
(v) (%) = (_1)(n2—1)/8 for n odd.

The restriction that n to be odd of the Jacobi symbol

m . .
(H) makes necessary an extension to permit even n.

DEFINITION 2.2.2

The Kronecker symbol for an integer d is defined: see

Ayoub [5], p. 290).
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Jacobi symbol if gcd(d,n) = 1 for n odd positive

lo!

@ &=
o] if gcd(d,n) 3 1 for n odd positive

g o) if 214

(b) (5):= { +1 if 4 = 1 mod 8
-1 if d = 5 mod 8

d _ d d L.

(c) (ﬁi)'— (ﬁ) (i) for m,k positive.

This extension of the Jacobi symbol respects properties (i) -(v)

above.

Now Dirichlet's L-function will be defined as an expression

of Kronecker symbols.

DEFINITION 2.2.3

\

d
Let Xd(n) = (;) the Kronecker symbol. Then

Xd(n)

1 ns

for s € € (complex numbers)

n w8

L(S,xd)
n

is Dirichlet's L-function.

Some of our complexity analyses for later algorithms
are based on the assumption of the truth of the Generalized
Riemann Hypothesis (G.R.H). The G.R.H. asserts that the zercs
of L(s,xd) in the critical strip O < Re(s) < 1 all lie on the
line Re(s) = 1/2 where Re(s) is the real part of s.

Some basic results about L(T,Xd) are given below. There
are important formulae, due to Dirichlet, relating L-functions
and class numbers, and algorithms for computing L(1,xd) are

given in Chapter 4.



THEOREM 2.2.3.

L(1,X

Proof
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EULER'S PRODUCT

= T (—E2 )

g
p prime p=X4(p)

See Apostol ([4], p. 231). o

THEOREM 2.2.4

O < L{(1,X

Proct

See Ayoub

g) <3 in [a].

([51, p. 338). o
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3.1. INFRASTRUCTURE OF C% (D) WITH D POSITIVE NON-SQUARE

The number ) of reduced forms in a class of the form
class group C2(D) is usually quite big (A = cvYD , where ¢ is a
positive constant, see 3.1.19 and remark below it). Hence
there is‘ho algorithm running in polynomial time to compute
the set of reduced forms of a class of Cf(D). Moreover there
is no known efficient algorithm for deciding whether two
indefinite forms Q and F belong to the same class. The only

known strategy deciding eguivalence of indefinite forms is

the following:

(i) Reduce F and Q to F' and Q' respectively.
(ii) Search if Q' belongs to the set S of reduced forms

equivalent to F'.

(iii) If Q' € S, then Q= F, if Q' ¢ S, then Q # F.

Gauss' algorithm for computing the reduced forms in an
equivalence class and deciding eguivalence of forms is described
1/2+¢)

in Section A below. This algorithm runs in time O(D An

o(D1/4+E) algorithm, due to Lenstra and Shanks, for computing

the regulator appears in Section D.

A. GAUSS ALGORITHM

DEFINITION 3.1.1.

Two forms F = (a,b,c), G = (&,B,C) with the same

determinant D > O and
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A =2cC

b+ B = Omod A

are said to be neighbours. Moreover G is a neighbour to F by
last part and F is neighbour to G by first part.
It is not difficult to see that F s~ G and

o -1

F > G via
1 k

) with k such that: b+B = kA.

THEOREM 3.1.2

Every indefinite reduced form has exactly one reduced

form neighbour by either part.
Proof
Let F = (a,b,c) be a reduced indefinite form and
G = (c,B,*) be a form with the same determinant and B satisfies

B+ b = 0O {(mod c¢) and (3.1)

YD - |c| < B <VD. (3.2)

Let B + b = kc. Then k is uniquely determined by
(3.1), (3.2).
Since F is reduced, from (0.12) replacing a by (b*-D}/c

we have
YD - |c| < b <V/D (3.3)
From (3.2) and (3.3) we have

kc =B +b = (/D+ B~ |c|]) + (b= ¢¥D - |c|) >0
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Hence
ke > |c] (3.4)
Moreover using (3.2), (3.3), (3.4) we have

2B = (/D - b)+(B -V/D + |c|)+(kc - |c|) > O (3.5)

Hence from (3.2) and (3.5) we have

0 < B < /D (3.6)
Moreover from (3.2), (3.4) we have

yD + B - c| = (VD - b} + (kc - lc|) >0 (3.7)
Hence from (3.2), (3.7), we have

and from (3.6)

|vD = |c| | < B </D
which implies that G is reduced.

Hence G is the unigue neighbouring reduced form to F

by last part, since if Q is a reduced form neighbour to F

by last part, then Q will satisfy (3.1), (3.2) and thus Q = G.
Similarly it can be shown that F has exactly one neigh-

bour by last part. o

EXAMPLE

The form (3,8,-5) with determinant 79 has neighbour by

last part (-10, 7, 3) and neighbour by first part (-5, 7, 6).
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THEOREM 3.1.3

Suppose F = FO, F1""’F1'Fi+1"” are indefinite reduced
forms with the same determinant and Fi is neighbour to Fi+1
by first part. Then there exists an even positive integer A

such that

Proof

From Theorem 3.1.2, there always exists one reduced
neighbour to a reduced form and since the number of the reduced
forms of fixed determinant is finite (from (0.13)), there are

integers m > O, A > O such that

i1f ¥ =F then from Theorem 3.1.2 we have
m m+

A
Fo-1 = Fpsa-1-
Hence applying this recursively, we have F = Fo = FA'
i1f Q = (a,b,c) is reduced form with determinant D, then

b? - D < O since b <Y D. BHence ac = b?® - D < O.

Let Fi = (ai’bi'ci)’ Fi+1 (ai+1, bi+1’ ci+1). Then

a.a. = a.c, < O. (3.8)
i i+ i"i

since F., F are neighbours and F, reduced.

i+1
Now since the first terms of two reduced neighbouring

forms have opposite sign, we conclude that the period X is

even. o
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The sequence of forms {F = For FoverofFy = F}, where
Fi's and A as in Theorem 3.1.3, is called the cycle of F

and A the period of the cycle of F.

THEOREM 3.1.4.

Two, reduced forms are eguivalent if and only if one
belongs to the cycle of the other. n

Gauss ([16], A.193) gave a lengthy proof of the above
theorem but Dirichlet (see Smith [38], A. 93 ) observing
connections between the seguence of neighbouring forms of a

reduced indefinite form (a,b,c) with determinant D and the

V' D-b

3 , gave a shorter proof.

continued fraction expansion of
For an alternative proocf see Beynon and Iliopoulos [7].

Let F = (a,b,c) be a reduced indefinite form with

determinant D and

(3.9)

o -1
with Fi - Fi+1 via Si = \ 1 ki )

be the segquence of neighbouring forms of F.

Dirichlet pro&ed that {k1,k2,...,k2A} is the continued
‘/ D—S

fraction expansion of — - Hence one can compute the

c.f.e of (VYD - b)/a by computing the sequence of neighbouring

forms.
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EXAMPLE

The cycle of the form (5, 8, -3) is:

(5, 8, =-3), (_317110)1 (10131—7): ('71419)1 (9151—6)1("6,7,5).

o

Usually the seguence of neighbouring forms of a reduced

form F, is represented by placing them on a circle

F
o

By 3.1.4 the cycle of F contains all the reduced forms
of the class to which F belongs. If F belongs to the principal
class, then the cycle of F is called the principal cycle. 1In
this section let I = (1,bo,co) denote a form of the principal

cycle of C&(D), with b_ = | VD J.

Gauss' method for computation of the set of reduced forms
of a class, begins with a reduced form F of the class and does

a series of transformations

F=FO*F1-’F2+...-’F1+Fi+1
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where F, , is the unique reduced form neighbour to F., by
first part. For some even integer A > O, it finds a form
F, = F. By Theorem 3.1.4 the set {F1,F2,...,FA} is the set
of the reduced forms of the class.

ALGORITHM 3.1.5

INPUT : A reduced form Q = Qo = (ao,bo,co) with
determinant D > O, non-sgquare.
OUTPUT : All the forms belonging to the cycle of Q

and the period X of the cycle.

Regeat

Choose a k,; such that: /D - {ci_1!

a, « C,_.;
i i-1
by « ~Pj_q * Ky Ciq7
2 _ .
c. < (bl D)/all
Q- bl (ailbilci);
i« i+1;
Until Q. 4, = Q
Return {Qi}, A o= i-2,

end. DO

Assuming the truth of the fact that the period X of a
cycle of an indefinite form with determinant D is O( YD) (see

Theorem 3.1.16), we have the following theorem.
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THEOREM 3.1.6

Algorithm 3.1.5 yields correctly the period and all
the reduced forms of the cycle of Q in O(vY D log D M(log D))

elementary operations.

Proof

Since Qi is reduced for every i, from (6.13) we have
H%}I < 2V D. Hence each iteration of the loop requires only
O(M(log D)) elementary operations for multiplications. Since
the period is of O( YD), it can be computed in O(/D M(log D))
elementary operations and all the reduced forms of the cycle
of Q0 can be written down in O(vD log D M(log D)) elementary

operations (since log HQi!E = O(log D)). D

Gauss method for deciding eguivalence of the indefinite
forms F and G, reduces them to F' and G' respectively and
computes the cycle of F'. 1If G' belongs to the cvcle of F',
then by Theorem 3.1.4 F =~ Q. 1If not, then F & G. Hence if
F,G are reduced, then one can decide equivalence of F and G
with the above method in O( VD log D M(log D)) elementary

operations by Theorem 3.1.6.

B. FUNDAMENTAL UNIT

DEFINITION 3.1.7

If (TO,UO) is the smallest non-trivial integral solution
of the eguation T? - DU = 1, thenn = T +vD U is said to be

the fundamental unit of the order sz(d) with D = £?d and
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R = 2n{(n) is said to be the regulator of the order sz(d).

Remark

The terms fundamental unit and regulator are used here
in the "strict" sense. 1In algebraic number theory, the
fundamental unit n in the "ordinary" sense of an order with

discriminant A is
n = i(TO +»fZ-UO), (see [35], p. 53)

where (TO,UO) is the smallest non-trivial integral solution

of the eguations
T? - AU? = t 4

and the regulator R is

R = 4n n (see [35], p.56).

The fundamental unit n in the "strict" sense of an order with
discriminant A is n = i(To + /ZTUO) where (TO,UO) is the
smallest non-trivial solution of the equation T? - AU? = 4
and the regulator R = &n n (see [25], p. 10, 21)

Now we shall show that our definition of fundamental
unit is essentially the same as the fundamental unit in the

"strict" sense in algebraic number theory. If (t,u) is a

solution of the equation T? - DU? = 1, then (2t,uy) is a
solution of the eguation T? - 4DU? = 4. Moreover if (TO,UO)
is the smallest non-trivial integral solution of T? - DU? = 1,

then one can see that (ZTO,UO) is the smallest non-trivial
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integral solution of T? - 4DU? = 4. Hence the fundamental

unit €n the "strict" sense) of an order with discriminant

A = 4D is
n = 5(2To + v 4D Uo) =To+/_D-UO .

Since we deal only with orders having discriminént A = 4D,
(see remark below, Theorem 1.2.2), definition 3.1.7 is the same
as in algebraic number theory.

Similarly it can be shown that if (TO,UO) is the smallest
non-trivial integral solution of the equation T? - DU? =-1,
then (2TO,UO) is the smallest non-trivial integral solution
of the eguation T? - 4DU? = -4.

Methods of solving the eguations T? - DU? = 1 and
T2 - DU? = -1 are given below; thus one can compute the funda-
mental unit in both the "strict" and the "ordinary" sense.

One method of computation of the fundamental unit and
the regulator is based on the computation of the cycle of a
reduced indefinite form with determinant D. It relies on the
fact that the least non-trivial integral solution (TO,UO) of

the equation can be expressed in terms of the coefficient of

the matrix S =
i

[ =]

Si where Si are unimodular matrices such
1
that

F, »- F

. . via S.
i i+1 i

where {F = fo’F1’F2""’Fn = FO} is the cycle of a reduced

indefinite form with determinant D.
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The formula to obtain (TO,UO) from the coefficients of

S is given in the following theorem.

THEOREM 3.1.8.

Suppose that F is reduced indefinite form of C2(D) let

FO,F1,...,F21 = F be the cycle of F and Fi—1 -+ Fi via Si' If

i=1 * t
then (T_,U ) = (lax + bz)/a|, |z/al) is the smallest positive
non-trivial integral solution of the equation T? - DU = 1.

Proof

See Gauss ([16], A.198) and Beynon and Iliopoulos [7]. o
One can compute the ﬁatrix S of the above theorem, using
algorithm 3.1.5. and (3.9) to compute the matrices S, for
1 < i< 2), and thus evaluate the fundamental unit. Sometimes
the size of the fundamental unit can be enormous (= e , see
remark below Proposition 3.1.19, also [ 351, Pp. 54); In view
of this fact, there is in general no more efficient method (up

to a constant factor) for computing the fundamental unit, but

better methods for computing the regulator exist (see below).

C. DISTANCES AND REGULATOR

The description and analysis of Shanks' algorithm (see [36])
for computation of the regulator makes use of a notion of

"3istance” between forms which was used informally by Shanks
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and described formally by Lenstra [25]. The significant
features and properties of Lenstra's distance function are
briefly summarized below; for detailed definitions and proofs

see Lenstra [25] and Schoof [33].

DEFINITION 3.1.9.

A form F is Z-equivalent to a form G if there exists a
matrix

s = ( Tom ) , M integer
o 1

such that

F + G via S.

It can be shown that being Z-equivalent is an eguivalence
relation, stronger than the usual eguivalence of forms.
Now let T (D) denote the set of the Z-eguivalence classes

of properly primitive forms of fixed determinant D.

THEOREM 3.1.10.

Gaussian compeosition is well-defined over the Z-eguivalence

classes and the set F(D) under Gaussian composition forms an

abelian group.

Proof

See [25], p. 13). ©
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Remark

One can see that Dirchlet's method of composition is
unsuitable in this case, because if (a,b,c) is a form of a
class C1 of (D), then all the forms of the class are of the
shape (a,b',c') and thus if (A,B,C) is a form of another
class C2 of (D) with gcd(A,a) # 1, then there does not exist

a pair of concordant forms Q1, Q2 such that Q1 € C1 and Q2 £ C2.

COROLLARY 3,1.11

Let E(D) denote the set of Z-equivalence classes of forms
belonging in the principal class of C2(D). Then the set &(D)

under Gaussian composition forms an abelian group.

Proof

It is easy to show that E(D) is a subgroup of F(D) and

thus by 3.1.10, &(D) is an abelian group. o

Lenstra's distance function @4 is defined in terms of an

injective group homomorphism
§:E(D) > R/RR & Z/2 Z,+)

where R is the regulator of the order sz(K) and D = £?K with
K square free. For the precise definition of 6 - which is
omitted here - see [25], p. 15 and [33], p. 183 (The map & has
been introduced since a knowledge of how d is defined from §
is conceptually helpful and unifies the results cited from [25]
below). The distance between two forms F1, F2 of G(D) is

defined to be
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d(F1,F2) = the first component of &(F, © F;1)

Now let
{ -la]/2 < x < |al/2 if |a]| > 2 YD
J =
a /B - la] < x <v/D if |a] < 2/D

Each class C of F(D) contains exactly one form (a,b,c) such
that b € Ja" and this form is reduced if and only if ¢ contains
a reduced form.

It will be convenient in the sequel to identify a class
in F(D) (or (D)) with the unique form (a,b,c) with b € Ja
which it contains, and to use o to denote the operation of
Gaussizn composition on this set of representatives.

The map o:F (D) -~ F(D) is defined by
c((a,b,c)) = (c,b',*) with b € Ja and b' € Jc

It is easy to see that the form o(F) is a neighbour by last
part to F and if F is reduced, then o(F) is the unique reduced
form neighbour to F by last part.

Let R to be a set of properly primitive reduced forms

of determinant D > O (non-sguare). The map

o*:F (D) » R 1is defined by

c*(F) = ok(F), F € F (D)

where k is the smallest positive integer such that o*(F) is
reduced form. Observe that the computation of the function o*
can be done by algorithm 0.3.6, since every transformation

Qi > Qi+1 (see 0.3.6) is an application of the function 0.

Now we shall give some results about distance. The
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following results hold for forms in &(D) but generally are

true for forms in F (D) (see Schoof [33]).

THEOREM 3.1.12

Suppose that F (a,b,c) € B(D). Then

a(F,o(F)) = ib* /——l(mod R)
Proof
See Lenstra [25], p. 18. o
We note that
d(c(F),F) = =d(F,o(F)) (3.10)

which follows from the fact that § is homomorphism and

-1

§(G ') = -&(G).

THEOREM 3.1.13

Suppose that F = (ao,b ,co) € G(D), on(F) = G and

o
i _ .
g (F) = (ai,bi,ci) for 1 < i < n. Then

-1 b. +v/D
d(fF,G) = £ & &n S (mod R)

bi -v/D

Proof
We have

d(F,G) = 6(FoG 1) = 5 (Fo (o (F) T Voo (F) o (02 (F)) " Voo? (F)
-1 n-1
)=

0 ...0 1)) oG d(oi(F),oi+1(F)). o

o
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THEOREM 3.1.14

Suppose that I = (1,bo,co), F,G € &(D). Then

d(1,GoQ) = 4(1,G) + 4d(1,Q) (mod R)

Proof
Using the fact that & is homomorphism, we have
_ -1 -1, _ -1 -1
d(I,GoQ) = 8(IoG o0Q ') = &§(IoG " 0I0Q )
= d(1,G) + 4a(1,Q).
since I is the identity element of G(D). o

COROLLARY 3.1.15

Suppose that I = (1,bo,co) with bO € J1 and F,G ¢ &(D).

Then
d(I,c*(FoG)) = d4(1,F) + d(1,G) + d(FoG,0*(FoG)). b

The following proposition yields an upper and a lower

bound for the function of distance.

PROPOSITION 3.1.16

Suppose that F € G(D) and F is reduced. Then

(1) d(F,0(F)) < & &n 4D

(ii) d(F,o(F)) + d(o(F), o*(F)) > &n 2.
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Proof
(1) Let F = (a,b,c). Then since F is reduced we have
| VD - la] |[< b <VD
Hence
G(F,o(F)) = 4 an | YD | g gn 2 2/D)
b -/D lac]

<3} 4n (b +/D)? < % n 4D.

(ii) See Lenstra [25], p. 18-19. o©

PROPOSITION 3.1.17

Suppose that F € &(D). Then

d(F,c*(F)) < % &n (1 + (1 +V5) VD)

Proof

See Lenstra [25], p. 20. o

THEOREM 3.1.18

Suppose that I = (1,bo,co) with bo € J1. Then the
regulator of the orders sz(k) with D = f?k and k square free
is given by

A i i+1
R= § d(o°(I), 0o (1)) (3.11)
i=0

where ) is the period of the principal cycle.
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Proof

See Lenstra [25}, p. 19. o

If the forms I = F F 2 I of the principal

g1

cycle are placed on a cycle in such a way that Fi and Fi+1

oI

have distance d(Fi'Fi+1)’ then from (3.11) the circumference

of the cycle is given by

A
R= I a(F; 4,F) (3.12)

The following proposition yields an upper bound for

the regulator the period of a cycle and the fundamental unit.

PROPOSITION 3.1.19.

Suppose that n and R are the fundamental unit and the
regulator respectively of an order sz(d) with D = £?d and A

is the period of the principal cycle of C2(D). Then

(i) R < 6YD &n 4D
(ii) A = 0( VD)

(iii) log n= 0(VD log D).

Proof

(i) From (4.19) and Theorem 2.2.4 we have

R < 6YD &n 4D (3.13)

(ii) From (3.12) and Proposition 3.1.16(i) we have
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A
R= I A(F;_j,Fy) < A(d n (4D))

and thus from (3.13) we have
A = O0(v D) (3.14)

(iii) Follows from (i) and the fact R = &n n. o

Lagarias in [21] (p. 486) had an example (known to
Dirichlet) of an infinite seguence of values of D for which
the continued fraction expansion of VYD is greater than
c vD (log D)—1, where c positive constant. Hence since there
is one to one correspondence between the forms of the principal
cycle of C£(D) and the terms in the period of continued fraction
expansion of YD , one can see that the bound (3.14) cannot be
improved except perhaps by a factor (log D)_1. Now one can

see using Proposition 3.1.16(ii) that

A

A
R= ¢ d(F F.) > 3 n 2.

i-1'74
Similarly the bounds (i), (iii) of Proposition 3.1.189

are seen to be optimal.

Now a theorem is given which shows that in the principal
cycle there exists an ambiguous form (different to I) and its

distance from I is R/2, where R is the regulator.

THEOREM 3.1.20.

Suppose that I = FO, FT""’FZA = I are the forms of

the principal cycle of C&(D). Then (i) the form FA is ambiguous
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and
d(I,FA) = R/2

where R is the regulator.

(ii) The forms I and FA are the only ambiguous forms of the

principal cycle.

proof
(i) Let FO = (1,bo,co) = sz = I. Then we have FZA-1 = (co,bo,1).

Now let F1 = (co,b1,c1) and FZA—Z = (a,b,co). Using

Proposition 3.1.2 and the fact that

b+b, =b+ by, =0 (mod c )

we have FZA—Z = (c1,b1,co)

And generally by induction on k can be sbown that
(3.15)

Fp = (8B ¢ ) = Fpy o 4 = (Ck’bk’ak)

Now for k = X-1 we have

Fao1 = @y q0By_qiGyiq) = Fy = (O 1Dy g0 )
Now since F)\_1 is neighbour to FA by first part,we have

b + b = 2b, . = 0 (mod c,_,)

Hence FA is ambiguous.



N

Now from (3.11)

d(I,FA) =
and

a(F,,Fy,)

From (3.15) we
d(I,FA) =
Hence we have

d(I,FA) =
since

d(I'FA) +
(ii) See Gauss ([16]

Now applying al
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we have
A= bk + v D

I 4 &n —_—
k=0 by, - YD

2 | bk + VD

= I 4 &n

k=X l b, -vD
have that bk = b2x-k—1 and thus
a(F,  Fypy)
R/2

, A.187). o

gorithm 3.1.5 to the form I = (1,bo,co) = FO

one can compute the forms Fo’F1""'FA until to find an ambiguous

form FA

for some integer X. From the middle terms of the Fi's~

one can compute d(I,FA) and thus the regulator R = 2(I,FA) using

Theorem 3.1.20. This method has running time of

O( YD M(log D) log D)

(see 3.1.6 and 3.1.19).

’
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D. LENSTA-SHANKS ALGORITHM

Shanks [35]) gave an algorithm for computation of the
regulator which was formulated later by Lenstra [25]. The

Lenstra-Shanks algorithm is the following:

1. Let FO = I = (1,bo,co) (I is a reduced form of C&(D)).

Compute the sequence of forms F1,F2,...,Fk, where

F. = (a.,b.,c,) = ofF, ) in conjunction with the distances
i i'717 3 i-1
d(I,FiL (d(I,Fi) = d(I,Fi_1) + d(Fi-1'Fi)) until either an

ambiguous form Fj is encountered or for some Kk

a(I,F,) > d_ = (6/D in sp) /2

(This is taking "baby-steps" around the principal cycle in

Shanks terminology).

2. If an ambiguous Fj form is found, then R = 2 d(I,Fj)

(using Theorem 3.1.20), otherwise:
3. Compute the forms F F—T’EZ""'F-R’ where F, = G(Fi_1)

on the distances d(I,F_i) (using the relations

Fi_1 = (Ci’bi’ai) and d(I,F1_i) = -d(I,Fi)

which follow from (3.15) and (3.10}).

4. Compute G = o*(F;) and d(I,G) (using the algorithm of

Corollary 1.1.11 and Corollary 3.1.15).

5. By searching into the neighbours of G find a form G1 such

that
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2d_ - 4%n (1+(1575)/5) 204D < d(1,6,) < 2d -4+ (1+/5)F  (3.16)

6. Compute the sequence of forms GZ'G3’°" fusing the algorithm
of Corollary 1.1.11), where Gj+1 = 0*(jS>G1) in conjunction
with d(I,Gj) (d(I,Gj) = d(I,G1) + d(I,Gj) + d(Gj o G1, Gj+1))
until an integer m such that Gm = Fn with |n] < k is encountered.
(This is taking "giant-steps” around the principal cycle in

Shanks terminology).

7. R = d(I,Gm) - d(I,Fn).

The steps of the algorithm may be illustrated diagrematically

v

thus:

It can be shown that if Gy satisfy (3.16), then

g < d(Gy,6y,,) < 2 4d,.
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Hence one of the jumps will fall into the distance [-do,do]
since each jump covers a distance less than 2 do' Moreover

1/4

this will happen after at most O(R/do) ~ O(D ) jumps, since

each jump is greater than do‘

ALGORITHM 3.1.21

INPUT : A non-sguare integer D > O

OUTPUT : The regulator R of sz(k) with D = f?k and k
square-free.
Begin

5. d(I,FO) « 0O;

6. do <(6 /YD &n 4D)1/2;

7. While d(I,F) <d  do

Begin
8. Fioq © o (Fy )i
(bk + VD)
d(I,Fk+1) “ d(I,Fk) + ¢ 4n | — |
(bk - VD)
k <« k+1;
If < 3% is ambiguous> then Return R = 2d(I,Fk);
9. end
G+« F

k;



10.

1.

12.

13.

14.

15.

16.

17.

18.

-g5—

For i = 1 until k gg

Begin
Fiog © egibyiay)s
a(I,Fy_y) « -d(I,F;);
end

Comment Use the algorithm of Corollary 1.1.11 for
composition and reduction, and Corollary 3.1.15 to

compute d(I,G1).

<Compute G1 = g*(G?®) and d(I,G1) in conjunction>;

while d(I,GT) > 2do - 3 &n(1 + (1 +V/5)VD) do

Begin
G1 <the neighbour (a,b,c}) by last part to G1>;
a(1,6,) « a(1,6)) - 4 tn | 227D
b -vD
end

<Sort all Fi's to obtain a list L>;

o«

while <Gj £ L > do

D
t

Comment Use "binary search" to search if G

Begin
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19. <Compute Gj+1 < 0*(GjoG1) and d(I,Gj+1) in conjunction>;

Comment Use algorithm 0.3.6 for reduction and
Corollary 3.1.15 to compute d(I,Gj+1)
J « J+1;
20. end;
<Let m be such that Gj = Fm>;
R « d(I,Gj) - d(I,F );

Return R;

end. ©

THEOREM 3.1.22

The algorithm 3.1.21 terminates and correctly vields

the regulator.

Proof

It is sufficient to prove that d(Gerj+1) < Zdo for
all j's, because then one of the jumps will fall into the
interval [—do,do]. The rest of the correctness of the
algorithm follows from Corollary 3.1.15 and Theorem 3.1.18.

First we have

d(I,G,I) < 2do - 4 4n(1 + (1 +/5)/D) (3.17)
Now using definition 3.1.14

) = a(1,G ) - d(I,Gn)

d(Gn’Gn n+1

+1

Now since

— *
d(I,Gn+1) = d(I,G1) +d(I.,.Gn) + d(csnoc;1 , 0 (GnoG1))
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we have

d(Gn,G ) = d(I,G.l) + d(Gn0G1,0*(Gn0G1)) (3.18)

n+1

Hence from Proposition 3.1.20 and (3.17) we have

d(Gn'Gn+1) < 2do. o

THEOREM 3.1.23

The algorithm 3.1.21 yields the regulator in

/4

O(D1 M(log D) log D). elementary operations.

Proof

Steps 1-6 require only O(M(log D)) elementary operations.
To find a neighbour of a form (step 8) regquires only

O(M(log D)) elementary operations.

Now using Proposition 3.1.16(ii) we have that the number
of iterations in the loop 8-9 (similarly loop 10-12) is at

most
24, /tn 2+ 1 = 0(0'/% 109 D).

Hence loop 8-9 reguires O(D‘l/4 log D M(log D)) elementary

1/4

operations. Also the loop 10-12 reguires O(D log?D) ele-

mentary operations.

To compute o*(G?) by Corollary 1.1.11 requires

O(M(log D) log D) elementary operations.
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Now from Corollary 3.1.15 we have
a(I,oc*(G?*)) = 2 d(1,6) + a(G?,0*(G*))
Now from Proposition 1.1.16(i) and Proposition 3.1.17 we have
d({1,G) < do + 4 &n + D and
d(G?,0*(G%)) < % #n(1 + (1 +V5) /D).

Hence we have

d(I,c*(G?*)) < 2 a + 3 fn 4D + % n(1+/5)VD) (3.19)

From (3.19), (3.18) and Proposition 3.1.16(ii) finding a form

G, (loop 14-16)

d(1,64) <24d, - 4% @1+ O +/5) VD)

requires at most 1 + 2 (3 fn 4D + fn (1+(1+ V/'5) Yy D)Y&n2 = 0(log D)
iterations of the loop 14-16. Since step 15 reguires only
O(M(log D)) elementary operations, the loop 14-16 requires
O{(log D M(log D)) elementary operations.

Since the number of Fi's is O(D‘l/4 log D), sorting

1/4

regquires O(D log? D) elementary operations (see [2}, p.87).

As step 18 to search whether Gj belong to L using binary search
requires only O(log D) elementary operations (see [2], p. 114)
Now will be shown that d(Gi'Gi+1) > do

One can see that

d(I,G1) > 2do - 3 2n(1 + (1 +/5)/D) - & 2n 4D > dg

using Proposition 3.1.16(i).



_99_

Moreover from (3.17)

d(G_,G.,
( ; )

*
541 d(I,G1) + d(GjG1,G (GnG1).

Hence we have

Thus a match Gj Fm will be found as most after

6 VD #nD - O(D1/4)

d

1 + RAd < 1 +
(@]
O

iterations of the loop 18-20.

Hence, since step 19 reguires O(M(log D)log D)) elementary
operations (similarly with step 13), the locop 18-20 requires at

1/4

most O(D M(log D) log D! elementary operations.

From the above analysis we conclude that the algorithm

174 M(log D) log D) elementary

yields the regulator in O(D
operations in worst-case. o

Since ambiguous forms are very easy to identify, it may
be helpful to test the ambiguity of Gi at step 19 in algorithm
3.1.21., 1f Gi is ambiguous, then R = 2 d(I,Gi), but the
probability of finding the midpoint of the principal cycle by
chance in this fashion is so small for large D that this
modification is unlikely to have practical interest.

An iterative version of Lenstra's algorithm for comput-

ation of the regulator given below may have practical application.

The method is the following:
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Begin
k « 0O;
while the regulator is not computed>do
Begin
<Compute 2k baby steps>
Comment. We find 2k neighbours (Fi's) of I by either
side
<Compute 2k giant steps>
Comment We compute 2k forms Gi,where Gi as in algorithm 3.1.21

If <a match (Gm = Fn) is found> then Return <the regulator>;

k « k + 1

end

One using Proposition 3.1.16(ii) can show that 2k baby

steps cover distance db > Zk £n 2 and 2k giant steps cover

distance 4_ > Zk da > 22k fn 2 (since each giant step is greater

o)
than do ;) see 3.1.21-23). 1If we find for some k a match is

found then R > 25771 gn2 + 22(k=1) g 2> 22(k=1) o1 2 and thus

2* = o(v/m.
Hence this modified version always requires O( /R) steps to
compute the regulator, whilst algorithm 1.3.21 requires R/2
steps when R < (6 VYD 2n &) /2. Both algorithms have the
same worst-case complexity time.

Lenstra ([25), p. 22) asserts that, using the same
technigque as in the algorithm 3.1.21 one can decide in

O(D1/4+€) elementary operations whether or not two indefinite

forms F,G are egquivalent. Such an algorithm is given below.



-101-

We note that to decide egquivalence between two forms F,G, it
is sufficient to decide whether or not the form F o G-1
belongs to the principal cycle. The following algorithm decides

whether or not a reduced form Q with determinant D > O (non-

square) belongs to the principal cycle.

1. Let I = (1,bo,co) form of the principal cycle. Compute

the forms

F_yr--1FgiFoqr T2 F FqiFyres ooy

and their distances as in algorithm 3.1.21. If Q is one of
the Fi's, then Q belongs to principal cycle. If Fj is

ambiguous for some 5, then {F R FO,...,Fj} are all

-3+1'°
the forms of the principal cycle, and if Q is notonecﬁfthef&‘s,

then Q does not belong to the principal cycle. Assume then that

no Fi is ambiguous and Q is not an Fi.
2. Compute G = 0*(Fi) and 4(I,G) in conjunction.

3. By searching the neighbours of G find (as in 3.1.21 (steps

14-16)) a form G1 which satisfies
28, - 3 en(1 + (1+ /B)/D) - % in(4D) < d(I,G1) <28, -

i oen(r + (0 +Y 5} /D)
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4., Compute Qj+1 = o*(Q1 0 G1) for j = 0,1,... and d(I,Qj)

until either for some j,Qj = Fm or d(I,Qj) > (6vD £n4D)1/2,

In the former case, Q belongs to the principal cycle, whilst
in the latter case, it does not.
The steps of the algorithm when Q belongs to the principal

cycle may be illustrated diagrammatically thus:

ALGORITHM
INPUT = A reduced form Q with determinant D > O (non-square)
OUTPUT = Whether or not Q belongs to the principal cycle

of CL(D).
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Begin
F, < (1,b_,c ) where b, = | VD | and c, = bé - D;
k « O;
d(I,FO) -« O;
while d(I,F,) < d_ = (6/D n 40)"/% a0

Begin

F + o(Fk);

k+1

b, +vVD
d(I,Fk+1) « d(I,Fk) + 4 ¢n —

k
-/D

.
4

Ibk

kK « k+1;

end

For i = 2 until k+1 do

Begin

Foieq = (egibyias)s
G(I,Fy_;) « -d(1,F);

end

If <Q = Fi for some i> then Return "Q belongs to the principal

cycle";

If <Fi is ambiguous for some i> then Return "Q does not

belong to the principal cycle";
<Compute G = o*(Fi) and d4(I,G) in conjunction>;
G1 +« G;
while d(I,Gy) > 2d_ - 4 2n(1 + (1 +/5)/D do

Begin
G1 < (the neighbour (a,b,c) by last part to G1>;
}
4(1,6y) « 8(1,6,) - 4 en|22LD
b -/D

end
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<Sort all Fi's to obtain a list L>;

Q, « Qi
a(I,0.) « d;
Comment For each i d(I,Q) is a lower bound for &(I,Q)
Jo« 1
while <Qj g L> do
Begin
if é(I,Qj) > GVD fn 4D then

Return "Q does not belong to the principal class";

else

[l

) = d(I,G1) +

% d
<Compute Qj+1 C (Qj.G1) and d. (,Q

3+1

a(I,Qj) + d(Qij,Q }) in conjunction>

j+i
j o« 3+
end

Return "Q belongs to the principal class”;

end. b

THEOREM 3.1.25

Algorithm 3.1.24 correctly decides whether a form Q
belongs to the principal cycle in O(D1/4M(109 D) log D)

elementary operations.

Proof

Similar to that of Theorems 3.1.22 - 3.1.23. ©
An application of the algorithm 3.1.24 will now be

described. Using the following theorem one can decide whether

the eguation
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T2 - DU? = -1 (non-Pellian equation)

is solvable or not.

THEOREM 3.1.2¢

The equation T? - DU? = -1 with D > O non-square has an

integral solution if and only if (1,0,-D) = (-1,0,D)

Proof
(=) Let (t,u) be a solution of T? - DU? = -1. Then
t u \
(1,0,‘D) * ("1,0,D) via § = ( }
Du -t
and det (S8) = -t? + Du? = 1.

(<) If (1,0,-D) =~ (-1,0,D), then there exists a unimodular matrix

18 )\ \
S =( / such that
H Vv

K A \ -1 6]
( ) = ( ) which implies
v 0O D

( k2 = u?D K A=p WD ) ( -1 0 )
KA=HvD A*=V?D 0O D

Hence («k,u) is a solution of T? - DU?

L]
!
-
o
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THEOREM 3.1.27

There exist an algorithm which decides whether or not
the equation T? - DU? = -1 with D > O non-square has integral

solutions in O(D”4 log D M(log D)) elementary operations.

Proof

We use algorithm 3.1.24 to examine whether or not
the form o*(-1,0,D) belongs to the principal cycle. D
Also one can compute the forms of the principal cycle of
C%2 (D) using the algorithm 1.3.5 and if o*(-1,0,D) belongs to
the principal cycle, then using (3.9) can compute the matrices

Si and thus a matrix § = 1 Si such that
i

c*(1,0,-D) = o*(-1,0,D) via S

The reduction procedure (see 0.3.6) provides matrices S1, S2

such that

(1,0,-D) » o*(1,0,-D) via S1

and (-1,0,D) » o*(-1,0,D) via 52

Hence we have

. -1 K A
(1,0,-p) = (-1,0,D) via S1S S, = ( - ) .

Then (k,u) is a solution of the eguations T2 - DU? = -1 (see

Theorem 3.1.26(«)).
Lagarias [21] gave an algorithm for deciding whether or
not the non-Pellian egquation has solution. His algorithm

obtains a basis for the ambiguous forms using genus characters
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and decides the equivalence of the forms (1,0,-D), (-1,0,D)
by expressing them in terms of elements of the basis. His

Varey ¢

algorithm has worst-case complexity time O(D
complete factorization of D is provided and the G.R.H. is
true, then his algorithm terminates in

O((log D)%log log D log log log D) elementary operations.
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3.2. INFRASTRUCTURE OF C& (D) WITH D NEGATIVE

The following theorem is due to Gauss ([16], A.172);
it characterizes the number of reduced forms in a class of

C2(D) with D < O.

THEOREM 3.21

Suppose K € C2(D) with D < 0. Then either K contains
one reduced form or two opposite reduced ambiguous forms or

two opposite reduced forms with egual the outer terms.

Proof

Let F = (a,b,c) and G = (A,B,C) be reduced forms in K.

Then there exist a unimodular matrix S given by

s - < KA )
TRERY
such that ST MFS = MG.
Now with direct calculation of ST My %QSS‘1 we have:
Ay - axk = (B+b)yu (3.20)
cu + a2 = (B-b)x (3.21)
ar + Cu = (B-b)v (3.22)
Ck - cov = (B+b)A (3.23)
Without loss of generality we may assume [A] > |a]. (3.24)

Also since D < O we have that ac > O, AC > O. Now

using (3.20) and (3.22=
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aA = aA(cv = Au) = A(AV2-Cu?-2Byv)=(Av-B )?+Du?® > 0O (3.25)
Hence a,c,A,G have the same sign.

Now using (3.24), (3.25) and the fact C is reduced we

have
2By | = |A? + cu? - al > min ({A], |C])(p2+v?)-]al] (3.26)
> |l + v - 1) (3.27)
> 2(B| (p* + v - 1) (3.28)
Hence p? +v? - |w] = (Jy]-]v?* + |w]| <1, which implies
(luf = (902 v = 1.

Now we have two cases.

Case p = 0O

Then v = 1. From (3.26), (3.27) we have [A] = [a].
If » = O, then from (3.23) B = b. Hence F = G.

If A # O, then from (3.23) we have a}X = B - b and

la] < JaA] = |B-b| < 2 max{|B|, |b|} < [Aa] = |a] (3.29)
Hence |B-b| = 2 max {|B|, |b|},which implies B = -b.
And from (3.29 2|B| = 2|b| = |a| = |A|, which implies

F = G and F,G ambiguous.

Case v = 0O

Then y = 1. From (3.26), we have [C| = |a]. From (3.27),

. Ifx = 0, then from (3.20) we have B = -b.

we have |A| = |a

Hence F = G with the outer terms equal.
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If X # 1, then using (3.20)
|B + b|] > ]a] = |a] » 2 max {|B|, |b]}
which implies

Bl = |bj.

G or F = G with the outer terms egual. o

Hence either F

From the previous theorem one can see that the inner
structure of C2(D) is much simpler in the case of negative
determinant than the positive one. Hence it is much easier

to decide egquivalence between two definite forms.

THEQREM 3.22

To decide whether or not two definite reduced forms
F,G are equivalent reguires O(log |[Q]] M(log |[Q!] }) elementary

3

operation, where lig|] = max {|[F|| , [|G]

Proof

First we check if F,Q have the same determinant. It
requires O(M (log [IQ|| )) elementary operations. If they have
not the same determinant, then they are not equivalent.

Second we reduce F,G to F', G' respectively using the
algorithm 0.32. It requires O(log ||Q|| M(log ||Q]| })) elementary
operations. If F' and G' are either identical or opposite and
ambiguous or opposite with equal outer terms, then F ~ G, else
F & G.

Hence we can decide equivalence in O(log ||Q]] (M(log |[Q]])

elementary operations. o
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3.3. DEGENERATE FORMS

Although the degenerate forms do not form a group, since,
composition is not defined for gquadratic determinant, we
describe and analyse an algorithm to decide whether or not two
degenerate forms are eguivalent. The fecllowing theorem is due

to Gauss ([161, A.207).

THEOREM 3.3.1

Two reduced degenerate forms are equivalent if and only

if they are identical.

Proof

Let F1 = (a1,h,o), F2 = (az,h,o) be equivalent reduced

forms with the same determinant D

h? and

KA
F1 -+ F2 via S = ( ) .

M V
Then we have
a, = a1K’ + 2xyph (3.30)
h = a1KX + hixv +Xxy) (3.31)
0 = a1A’ + 2hXv (3.32)
KV = A = 1 (3.33)

From (3.31 and (3.32) we have

-hX {(xv-ulX) = hi
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and from (3.33)
-hXx = hXx .

Hence ) = O (The case h = 0 is trivial)
Now from (3.33) we have kv = 1 which implies |k| = 1.

Hence from (3.30) we have

a, = a, + 2xyh (3.34)

2 1

Now since F1,F2 are reduced we have

0 < a, < 2h-1

! (3.35)
and 0 < a2 < 2h-1

Hence from (3.34) we have

0 < a, + 2xgh < 2h-1

1
and since (3.35) we have y = O.

Hence from (3.30) we have a1 = a2 and thus P1 = F2' o

THEOREM 3.3.2

There exists an algorithm to decide equivalence between
two degenerate forms F1,F2 in O0(M(log ||F]|| }1log log HF][) ele-

mentary operations, where |[[F|| = max {”F1[|, HFZ[I}.

Proof

First we check if F1,F2 have the same determinant. This

can be done in O(M(log ||F|| )) elementary operations. If Fo.F,

have not the same determinant they are not equivalent.
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If F1, F2 have the same determinant, then we reduced
F1, F2 to F{,Fé respectively using the algorithm 0.3.9. ©This
can be done in O(M(log [[F{| ) log log ||F||) elementary operations.

Now if F{ = Fé, then F1 and F2 are eguivalent. b
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4.1. CLASS NUMBER OF IMAGINARY QUADRATIC FIELDS

A. GAUSS ALGORITHM

DEFINITION 4.1.1.

The number of classes of properly primitive positive
definite forms of fixed determinent D < O is called the class
number of CL(D) and it is denoted by h(D).

Gauss ([16], A.173) gave two algorithms for finding the
class number of CL£(D) for D < O. Both are based on counting
a set of representatives for C{(D) and both run in time

exponential in log |D|.

METHOD 4.1.2.

Gauss's method makes use of the inequalities
O <A< 2V D/3
2|Bl< A

which every positive definite reduced form (A,B,C) satisfies

and the fact that D = B?® - AC, which implies
B? = D mod A.

The method is the following:

1. For O < A< 2Y |D[/3 find all pairs (A,B) such that X = B

satisfies

X? = Dmod A and |x| < A/2 (4.1)
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2. For each such pair (A,B), compute a triple (A,B,C) where
C = (B> - D)/A. Then we have a set of forms (A,B,C) with
determinant D.

3. Reject the forms which are not properly primitive

4. 1If A divides 2B or A = C, then reject (A,-B,C) (since
(A,B,C) ~(A,-B,C) by Theorem 3.2.1).

5. The number of remaining forms is the class number

It is known that the number of solutions of (4.1) is

D(ZtA), where t, is the number of distinct prime divisors of

A
A. (see Apostol [4], p. 120-122). Now since

ty = O(log A /log log 2&)

t+he total number of solutions of (4.1) is

T p(2ta) =

A=0 A

k k
T 0(a) = 0({D|) with k = 2/ [D[/3 .

1
One can see that the method then requires O(IDi1+E)

elementary operations. More detailed analysis yields the

bound O(|D|M(log|D|) log log {D}).

METHOD 4.1.3.

Since every positive definite form (A,B,C) satisfies

0O <aAa<C and |B| </ [D[/3

we have the following method for computation of the class

number.
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1. Construct a set S of forms with determinant D comprising
forms of shape (A, *B,C), where 0 < B < YV [D[/3 and (a,C)
satisfies AC = B?* -D and O < A < C.

2. Modify S by rejecting forms which are not reduced.

3. Modify S by rejecting forms which are not properly primitive.

4. If two forms in S are equivalent, reject one of them (as in
4.1.2,(4)).

5. The number of remaining forms is the class number.

It can be shown that step 1 requires O(|D[M(log [D]))
elementary opations, which is the bottleneck of the algorithm.

The counting methods for computation of the class-number
are inefficient when one computes h(D) for a particular D, but
are relatively efficient when used to compute class numbers of
determinant lying in some range. One can count triples (a,b,c)
with |2b]l < a < ¢, a > 0 and sort them by determinant. This

method was used by Buell in [9].

B. DIRICHLET'S FORMULAE

Dirichlet (see Mathews [26]), p. 235) gave a formula for

h(D) with D < 0, as an expression of Jacobi symbols:

D

-Z-T(T_T) if D < -1

z (

h(D) (4.1)

z -1 _ . _
- (-Z—k::l')—1lfD-1

Now using the facts



-117-

. D _ 4D . 4 _ 2 .2 _
(1) ('2—}2'_;':“) = (m), since (5}-;:-1-) = (m) = 1 and
.. 4D, _ ,
(ii) (TT) = 0 for n even (Kronecker's symbol})
we  have
z 1 D ® 4D, 1 _
=0 n=1

Hence using Theorem 2.2.3 we have

D Yo
ho) = 2080 pqr,x,) = 2B 1 —B— (s.2)
P23 5 - (2B
prime P p
Moreover observing that (%) = 1 we have
h(D) = EJ?LQL T P (4.3)
p=3 —
prime P (p)
or
D
h (D) =»{;D L{1,xp) (2 - (5)) for D § 3 (mod 4) (4.4)

(The exception is due to the fact that Kronecker's symbol (g)

is not defined for D = 3 (mod 4))

Now if D = DO S?2 < 0, then, h(D) and h(DO) are related

' by the following formula: (Mathews [26], p. 166)
D

p - (=2)
h(D) = w h(D )s T (-—75—J1-4 for p odd prime  (4.5)

pls

where w = 1 except when DO = -1 then w = 1/2.

Moreover for sgquare D < -1 there is a formula (also due

to Dirichlet) expressing h(D) as a finite sum of Kronecker
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symbols (see Venkov [40], p. 224):

LID]/2-1] D
z (m) if D= 1,2 mod 4
k=0
h(D) =
Lipi/z) 4
z (:5) if D = 3 mod 4
k=1
Now one can compute the class number h(D) for D < O
using the formulae (4.5) and (4.6) in the following way:
THEOREM 4.1.4
The computation of h(D), for D < -1, via the formulae
(4.5) and (4.6) reguires O(|D| log|D|M(log|D]|)) elementary
operations.
Proof
bo b1 br

- - 2 = :

1. Factor D. Let D = DOS and DO 2 Py -+ Py with
b, € {0,1}.
2., 1If DO = 1,2 mod 4, then compute
Do
(5357) for O < K < Lip /2 -1)

(4.6)

in the following way: (see definition 2.2.1 and properties)

(p.-1)/2

2kt1) = (2kx+1) * mod p, for 1< i<t

(i) s

i

using Euler's criterion.
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(ii) (7E%T) = (Zgil) -E®Pi™M/2 sor 1 <1<

k(k+1)/2

k 2 e
(iii) (m) (-1)" and (2k+1) = (-1)

and hence

b -1 2 Po Py P

. 0 _ 1
(1vy Gxt) = Bxer) e

i
(2k+1) e (2k+1

if D = 3 mod 4 compute (g%) similarly.

3. Compute h(DO) using (4.6) (If Dy = -1, then h(DO) = 1)

D (p-1)/2

4. Compute h(D) using (4.5) and (75) = Do mod p.

Now one can factor D in step 1 using Pollard's [30]

1/4+e) elementary operations.

method in O(|D|
Steps (i) - (iii) require O(log|D|M(log|D|)) elementary
operatidns (see analysis of steps 11-12 of 2.1.11) and step (iv)
requires only O(log|D|), since it is multiplication by #1's
and *1's. Hence step 2 requires O(|D|log|D|[M(log|D|)) elem-
entary operations. Now step 2 reqguires O(|{D}|) elementary
operations for additions.
Step 4 requires O(log|D|/log log|D|) computations of
the symbol (%f) and thus costs O(log? |[D|M(log|D|)) elementary

operations. From the above analysis the theorem follows. ©
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Given h(D) the computation of Dirichlet's function
L(1,x,) for D $ 3 (mod 4) can be done using (4.4). Hence
L(1,Xp) can be computed in 0(|{D|log|D|M(log|D|)) elementary
operations using the method for computation of h(D) given

by Theorem 4.1.4.\

C. SHANKS' ALGORITHEM

Before describing Shanks' algorithm, it is necessary
to state some basic background results.

Shanks' algorithm for computing the class number makes
use of the group structure on CL(D). An essential step is the
consideration of a set cf generations for CL(D). The following
theorems are used to give bounds on the amount of computation
reguired to find such a generating set, with and without assump-
tion of the GRH. The proofs are direct applications of results

by Lagarias and Odlyzko [23], Lagarias, Montgomery and Odlyzko

[22].

THEOREM 4.1.5

If the G.R.H is true, then there exists an effectively
computable positive constant c, which does not depend on D

such that the set of forms of shape

2 o 4.7
(Per: (Bp D) /p) ( )

where p < c, log? |D| is prime and B; = D (mod p) generates

c2 (D).
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Proof

From Lagarias and Odlyzko [23], it follows that there
exists a positive constant Cqs effectively computable, and
independent of D, such that the class group of ideals of
sz(d) where D = f?d, d square free, is generated by the set
of non-principal ideals whose norm is a rational prime

p < ¢, log? |D|. Such ideals correspond to forms of shape

9

(p,Bp, (B; - D) /p) where B; = D (mod p) under the isomorphism
of Theorem 1.2.4 and Theorem 4.1.5 follows immediately. (Also

see Schoof [33], p. 17%9). o

THEOREM 4.1.6

There exist two positive constants Cq1 S5 which do not

depend on D such that the set of forms of shape

2
(p, B_, (Bp D)/p),

P

€3
where p < c, ID| is prime and B? = D (mod p), generates CL(D}.

Proof

It is an application of [22] and Theorem 1.2.4. o

The following theorem yields a relation between h (D)

and D.

THEOREM 4.1.7

Suppose that p is an odd prime and that h(D) is the class

number of CL(D).
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(i) If kallD for some integer k > 1, then

D
Pk-1(P - (75)){h(D), where Dp = D/ka.

(ii) If p2k+1[lD for some integer k > 1, then pk{h(D).

Proof
Let D = p221*1 | p2ar+1 qu1 e qun 2™t Gith
1 r 1 n
t 2 D
t =1o0or O, DO = Pq c-- pr2 and §° = 5; where Py 9y
are distinct odd primes.
From (4.5) we have
D
a a_ b b P- (—2)
_ 1 r 1 n.m P
h(D) = w h(DO) Py +-- P Qg e-- 9y 2 1 — -
pls
p odd
Do
One can see that (5—) = 0, hence
i
Do
p - (=) n DO
it — P 1 (q; - (——-))/qi
pls P i=1 93
p odd
And finally
a a b.-1 b -1 n D
_ 1 r 1 n _(_0O
h(D) = wh(D) Py --- P 9y SRR .q (a; (q_)) (4.11)
i=1 i
DO DO
and since (7;) = (7;) the theorem follows. D

Now some bounds on the class number of CL(D) are given.
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PROPOSITION 4.1.9

Suppose that h(D) is the class number of C2(D) with

D < 0. Then
h(p) < 2V D] &n |4D]

Proof
By Theorem 2.2.4 we have

L(1,X4D) < 3 &n [4D|
and from (4.2) follows that
h(D) < 2VD &n [4D| . o

THEOREM 4.1.10

1 e/ - ).
p<m
p prime

Suppose that L = (1,XD) and L'

If the Generalized Riemann Hypothesis is true, then

1+ O(m_1/2(log D] + log m))

ol
]

Proof
This is a result due to Odlyzko (see Monier [28], p. 3.8,
Lenstra [25], p. 11). Also the constant of the O-symbol is

20 (see [28)], p. 3.11). ©

L}

C
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COROLLARY 4.1.11

Suppose that

N
n=2YIPT 5 (—P ) ana n =—2—£n@L(1,xo).

T

p<m - 9)
P (p
If the G.R.H. is true, then
i ! ! "1/2
em) = |h - h| = 0(Y D] log|{D|m (log|D|+ log m))
Proof
Y] /
We have ¢(m) = |[h - h| = Z—;lgi lL - L'|, where L, L'

as in Theorem 4.1.10. By Theorems 4.1.10 and 2.2.4 we have

L' - L] = L.O(m-1/2(log ID| + log m))
Hence £{(m) = 0(v |D| log |D| m_1/2(log ID] + log m)). Also

the constant of the O-symbol is Cg = 14 (it follows from c4

and 2.2.4). ©

DEFINITION 4.1.12

Suppose that G is a finite group. Then the smallest

integer e such that
a =1 vV a€c@G

is called the ezponent of the group G.

Shanks' algorithm for computation of the class number
h(D) of C2(D) will now be described. We shall describe the

algorithm in two parts. First we shall give an algorithm
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computing the exponent of C2(D) and afterwards an algorithm
computing the structure and the class number of CL (D).

Shanks' algorithm for computation of the exponent of
CL (D), constructs a set of generators of CL(D) (using Theorem
4.1.5 or 4.1.6), computes the order of each generator and
determines the exponent e of the form class group as the
L.C.M. of these orders. The algorithm uses a special technique
(Shanks' "baby-giant step" strategy) to find the order of each
generator and computes the exponent e of CL(D) in O(D1/5+€)
elementary operations under the assumption of the truth of
G.R.H.

An outline of the algorithm is now given.

g
A. Compute an h to approximate the class number h(D) using

the formula

hzzL;IEn —P
p<m p - (=)
odd prime P
where m = m(D) is a positive integer chosen so as to

achieve optimal efficiency. If a bound of the approximation

is €(m) (it can be computed using the formula of Corollary

4.1.11), then
Y n
h - e{m) < h(D) < h + e(m)

B. Initialise b to the largest factor of h(D) (e.g. using

Theorem 4.1.7).
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C. Compute a set of generator {Fp] of CL(D) (as justified
by Theorem 4.1.5), where Fp = (p ,Bp,*) for primes

p < c1(log D)? and Bp is a solution of the equation
X? = D (mod p) O < X < p.
D. For each generator carry out D1 - D4.

n
D1. Compute the closest integer h* to h such that h” = O(mod b)

Observe that

'h™-h(D)| < e(m) + b = a

+

p2. 1If F; # I, then by searching in the interval (h+-a,h++a)

[ ]
find an integer h' = O (mod b) such that F; ~ I (In this interval

there exists at least one such integer, viz h(D)). Let h' become

egual to h'.

+
D3. Using the relation Fg ~ I compute the order ep of the

form F_.

P
D4. Let b to become equal to LCM(b,ep) {since eplh(D)).
E. The exponent e of C (D) is determined by

e = LCM ({ep}).

Some technical details of Shanks' algorithm will now be
given. The following techniques are used to speed up the

algorithm.
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4"
1. One can improve the approximation h and simultaneously
find a factor of h(D) (see step B above) using Theorem 4.1.7.

One can compute the sets

P, = {p < m:pZap ||D for some integer ap > 1 and p odd prime}
p, = {p < m:pzaP+1HI)for some integer ap> O and p odd prime}
and let
o -1 D a 2a
b= 1 o) p p - (=£)) 1 p P, where D_ = D/p““P and
PEP, P PEP, P

D
(Eg) is the Legendre symbol.

+ |
Let 22m ti{D with t = 0,1. If D is a sgquare, then let b become

equal to Zm—Tb otherwise let b become egual to 2™, From

Theorem 4.1.7 and (4.11) we have that b|h(D).

Lt _
2. One cancomgﬂsz; (step D2) the following way. First

+ . ,
express h in binary

i
o a;2”, where a; € {0,1}

g
n
ne~Ms

i

and compute Fg via the recursive relation

2 - %i-1 . o
Gi-1 = Gi F for i = n+1 until i =1
h+
with G_,, (1,0,-D}). Then Fp = G-

+
3. The most difficult part of the algorithm is when Fh d I

(in step D2) and it is necessary to find an h' Z O(mod b) such

]
that fh ~ I by searching in the range
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h* - o« <h' <h" + a. (4.12)

(There is at least one such integer in the interval (4.12),
viz h{(D)). A direct search into the interval (4.12) would
require O(e(m)+ b) compositions, but this can be reduced to
O( Ye(m)] by applying the baby-giant step strategy.

Suppose that h' = h* + €. Then from (4.12) we have

N 0
jel = {h'=h7| < [h=h"| + [h'-h| < e(m) + b

[Ve(m)/b + 1]. Since b/h* and we want blh' we

Now let s

Lhave that ble. Hence ¢ can be written

€ = 2rsb + tb for some integers |r| < s/2 and |t]| < s

Let g = 2sb.

First compute

(pr)t for 0< t < s (baby steps)

and

for 0O t < s

since the inverse of a form is its opposite (see 1.2.2).

Now compute

<+
Fh *Ig for - % < r < >

5 (giant steps)

Now we have two cases.
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(i) If |e| < [V/e(m) + b], then € = tb for some |[t| < s and

+

thus a match will be found F; o F;tb. Hence h' = h' + tb and
L

Fh ~ I,

P

(ii) 1f |e| » [Ye(m) + b], then ¢ = rg + tb for some

r| < 2 and |t| < s and thus a match will be found

2
+
@’ Fh *rg F_tb.
P P
. + h'
Hence h' = h + rg + tb and Fp ~ I

Let h’ to become egqual to h'.

4. One can compute the order of a form Fp (step D3) in the

+

following way. We have that F; ~ I. Then we factor h' using

Pollards[30] method. Let h' = T qiai and t, = h+/piai. 1f
i
v
for every prime divisor a; of h one finds the smallest integer

si such that:

then the order ep of the form Fp is

S.
e =I0Tgq, ¢
p 4 i

Some remarks about Shanks' algorithm.
- Whenever two forms are composed, the composition is followed by
reduction of the composed form (use algorithm of Corollary 1.1.11).
- To decide equivalence of two forms, the algorithm of Theorem 3.2.2

is used.
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- To solve the equation X? = D the method of Tonelli-Shanks

(see 0.2.5 - 0.2.6) is used.

ALGORITHM 4.1.13

INPUT : The determinant D < O, an integer m bound for the

v
approximation h of h(D).
OUTPUT : The exponent of C2(D) and a generating set Gp for
every p-Sylow subgroup of C2(D) together with the

orders of the generators.

Begin
1. n< 200 g —P
m p<m p - (=)
p odd prime P
e(m) « Cc /D] log }D{m_1/2(log ID| + log m)

Comment For the constant C5 see Corollary 4.1.11
b« 1: G_ « @;
b @
Comment We shall make use of Thecrem 4.1.7 (see 1 above
4.1.13)
2. For <all add primes p < m> do

Begin

1f <p2api|D for some a_> > then
— p i —

Begin
D_ « D/p23p;
P a_.1 D
b «bp P @-(fm

end



2ap

-131-

If <p +1HD for some aj > 0> then
b « b.p P;

end

1f < 22™%) D with t = 0,1> then

If < |D| is a square> then

m=-1

b « 2
else

b « 2"b;
p' « 2;

while p < C

Begin

b

1

.
’

log? |D| do

N

<Compute h* the closest integer to h such that

+

h = 0 (mod b)>;

Comment Construct a form Fp = (p,B

,C_)
P P

<Find the smallest prime p such that (g) =1 and p > p'>;

p' « pi

<Solve the equation X2 = D (mod p} O < x < p;

B <« Xx;
b

C_ <« (B?
P P

Fp +« (p,B

e

D)/p;

Icp) H

<Reduce F_>;

Comment F

<Compute

U o R o

+
h will be computed by expressing nt in binary
n .
's € {0,1} such that h* = I a.2%>;
i j-0 1

G <« (1,0,-D}:

n+1
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For i = n+1 until 1 do

Begin
2 ai.1.
Gi-1 « (Gi) Fp ;
end
<+
Fh «G _;
P o]
s « [Vem /b+T ]
h+
If <Fp # (1,0,-D)> do
Begin
byt . It .
<Compute (Fp )~ for all [t < s>;
Comment This can be done by computing (pr)t for
0 <t < s and finding (F b)_t for 0 < t < s using
bt
the relation F.% = (F_Pt)
P p
. _ o Bt
<Sort the list L = {Fp : |t] < s}>;
g <« 2bs;
r « O;
+
G « F h H
P

While <G or G is not in the list L> do
Comment To find whether or not G or G belongs to
the list L use binary search (see [2])
Begin
G « G.F3
r « r+1;
end

—

<Let G = F;bt for some |[t| < s>;

h* « ht o+ rg + bt;

end
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Comment The order e_ of Fp is computed

13. <Factor h' and let h” = q1a1 .o qrar>;~
ep « 1;

14. For i = 1 until r do
Begin

+
aj
ty < h/ay T

ti
G <« F : s, <« 0O;
P i
while <G & I> do
15. Begin
G < qu;

s, « s5.+1;
1 1

16. end

17. end

b « L.C.M.(b,ep);

e « L.C.M.(e,ep);

18. end.

Return e, <Gq for every distinct prime g which divide e’>;

end. D

THEOREM 4.1.14

1f G.R.H. is true, then algorithm 4.1.13 correctly

computes the exponent e of C2(D).
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Proof

It follows from 4.1.5 and the description of the

algorithm (above 4.1.13). o

THEOREM 4.1.15

If G.R.H. is true and m is suitably chosen, then

1/5

algorithm 4.1.13 terminates in O(|D| (1og[D])4 M(log|D]))

elementary operations.

Proof

The parts of the algorithm which involve m are analysed
to determine the optimal choice of m.

Since the number of primes less than m is O(m/log m) by
prime number theorem, the computation of step 1 requires
O(m/log m) computations of Legendre symbols and O0(m/log m)
multiplications. To find all primes less than m reguires m
applications of a primality test. Using Miller's [27] test,
which tests a integer k for primality in O(log k)4) elementary
operations on the assumption of the G.R.H, this can be done

m
in O( £ (log k)4) elementary operations. 2Also the computation

k=1
of the Legendre symbol (g) requires O(M(log|D|) + log p M(log p))

elementary operations (see Theorem 2.1.11, analysis of steps

11-12). Hence step 1 reguires
max{0(m(log m)/log m), O(m(M(log|D|)/logm + I log p M(log p}),
p<m

m
O( Z (log k)4)} elementary operations. This can be simplified to
k=1
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max{0(m(M(log|D|)/log m + m M(log m)), O(m(log m)4)} =

= O{m.max{M(log|D|)/log m, (log m)4})

Now loop 2-3 requires only (m log|D|/log m) elementary
operations for divisions.

Step 10 requires s compositions and by Corollary 1.1.11
requires O(s log|D[M(log|D|)) elementary operations. To sort
the list L takes O(s log s) elementary operations (see [2],

p. 87). To search (step 11) if G or G belongs to the list L
costs O(log s) elementary operations, using binary search (see
[2], p. 114). Since a G or G will be found in the list L for

the loop 11-12 reguires at most s

some r with |r] < isl,

compositions and thus O(s log |D| M(log|D|)) elementary operations.
Since s < Ve (m) = O(}Di1/4m_1/4(log!Dl(logiD}+ log m) /2 (by

Corollary 4.1.11) we have that steps 10-12 reguire

O(ID]1/4 log? |D|M(log D )m_1/4) elementary operations (using
m < |D|).

Since the parts of the algorithm analysed above are the
only parts depending on m and the loop 4-18 is iterated

0(log? |D|) times, we conclude that the optimal choice of m

is m =h>ﬂ/5. With this choice of m step 1 requires
O(m1/5(logiD[)4) elementary operations and steps 10-12 reguire
Oﬂd1/5 log? |D{M(log|D|)) elementary operations.

Now the rest of the algorithm will be analysed. 1In
steps 5-6 to construct a form FP = (p,Bp,Cp) we solve the

eguation
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It

X? = D (mod p) 0 < Bp <p

by reducing D (mod p) and applying Theorems 0.2.5 and 0.2.6.

Since p < C, log? |D|, this construction requires O(Mlog|D]|))

1
elementary operations.

From the fact that Bp < p < c log?|D| one can show that
log{]FpH = 0(log|D|). BHence the reduction of Fy (step 6)
requires by Theorem 0.3.7 O(log HFPIIM(log HFPII)) =

O0(log |D|M(log|{D|)) elementary operations. The computation

+

h . - .
of Fp regquires n+1 compositions and since

h* < h + b =0(/]D| logi{D|)

+
we have n = O(log |D!). Hence to compute Fg using the

algorithm of Corollary 1.1.11 requires o(n log |D|M(log|D])) =
O0(log? iD|M(log{D|)) elementary operations.
Step 13 requires O(iD]1/8+E) elementary operations using

Pollard's factorization algorithm, since nt = o(/TD| log |D]).
a.:

Loop 15-16 regquires S5 compositions and since ht =1 q; i
i

and s, < a;, we have s, O(log|D|). Hence loop 15-16 reguires

0(log? |D|M(log|D|}) elementary

n

O(s; log |ID|M(log |D|))

operations (by Corollary 1.1.11). Loop 14-17 requires r

iterations and since r = O(log n/log log H) = O(log ID|), it

terminates in O(log?|D|M(log|D|)) elementary operations.
Finally loop 4-18 requires 0(log? |D|) iterations and

from the above analysis, it terminates after

O(;Dl1/5 log4[DiM(log}D[)) elementary operations in worst-case.

Hence the theorem follows. D
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REMARKS

1. In practice, it may be unnecessary to reduce the form
Fp at step 6. In algorithm 4.1.13, if D is large enough to
ensure that [D[/log4[D}> C1, then choosing Bp such that

0 < ]Bp]< p/2 will ensure that Fp is reduced.

2. If one wants to implement algorithm 4.1.13, then it is
necessary to know the constant C1 of Theorem 4.1.5. This
constant can be determined from [23], but we do not know its

value. For practical purposes, very few forms are generally

sufficient to generate C{ (D) (see [34] and Remark 4 below).

3. If one wants to compute the exponent (and further the
class number) of Cg{D} without the assumption of unproven
hypothesis one has to search in the interval (O, 2V [D[4n|4D|)
(see the bound on h(D) given by Theorem 4.1.9) using the "baby-
giant step" strategy to find an h' such that Fg' ~ I. This
will require O({D|1/4+E) operations. Since the number of
generators for which the order must be computed is O([D|C3)

(by Theorem 4.1.6), the algorithm will terminate in

3+1/4+¢

C
O(|D| ) elementary operations. It is known that

C3 > % (see [22], [23]). This worst-case complexity bound
seems to be unrealistic, but as stated in [22] it is not easy
to prove a better bound on the number of generators of sz(d)
unconditionally, (Observe that in the above version of the
algorithm 4.1.13 we do not compute an approximation g to h(D},

since there is no known unconditional bound for the quantity

"
|[h = h(D)| better than the absolute bound on h(D)!)
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4. Algorithm 4.1.13 was designed by Shanks as a heuristic

algorithm for computing the class number. There are two

‘ways in which algorithm 4.1.13 may give information about the

class number.

(i) If b is sufficiently large, there may, at some point

in algorithm 4.1.13, be a unigue value h* = 0 (mod b) in
the range

v v

h - ¢(m) < h* < h + ¢(m)
which is probably (and subject to the truth of the G.R.H.
necessarily) the class number. In practice if this test
is used the computation of the order of a few generators
of C% (D) is usually sufficient to determine the class

number, as remarked by Shanks [34] and Shoof [33].

(ii) If all the p-Sylow subgroups of Ci(D) are cyclic, then
e = h(D), where e is the exponent of C2(D). In practice,
the p-Sylow subgroups for p odd prime, are almost always
cyclic (few examples of class groups with non-cyclic

p-Sylow subgroups are known! see [33]),so that almost

always
h(p) = 2°.e

The above methods for computing the class number are
generally effective and fail with low probability. When the
class group is irregular, the algorithm for determining the

group structure may be required.
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Those are standard algorithms (see e.g. Sims [39])
for finding the structure of a finite abelian group; it suits
our purpose to describe an algorithm specially suited for use
in conjunction wiih algorithm 4.1.13. Subject to the G.R.H,

1/4) elementary

we describe an algorithm requiring O(|D]
operations which determines the complete structure of CUD).
Since algorithm 4.1.13 outputs a generating set for each
p-Sylow subgroup of CR(D) and there are at most

O(log h(D)/log log h(D)) = O0(log|D|/log log D) p-Sylow sub-
groups of Cf (D), it suffices to describe an algorithm which
computes a basis given a generating set for a finite abelian
group.

First we give some notations and results, basic background

for the algorithm.

NOTATION 4.1.16

Suppose that H is group. If {b1,b2,...,bn} generates
H, we write that H = <b1,b2,...,bn> and if {b1,b2,...,bn} is

a basis for H, we write H = << b1,b2,...,bn>>.

THEOREM 4.1.17

Let H = <<b "'bn>>’ H, = <H,x> be abelian groups,

12 1
where bi has order p i for 1 < i<n and x has order p  for

p prime. If R is the set of relations of the form
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n .
xB- 1 b, * (4.13)

where 0O < Yy < p for 1 <« i< nand 1< B < ph. Then

(i) R#Q

8* n 61
(ii) Let X = 1 bi (4.14)
i=1
be a relation of R, where f* is the smallest exponent of x

which appears in R. Then

S . O . h

*
R* = {xB = I b, l, bip 121 for1<icx n,xp =1}

i
is a set of defining relations of H1.
(iii) For some O < k < h, we have that g* = p'.

Proof

n
(i) We have that R @ @, because x = 1 b? € R.

(ii) Suppose that (4.13) is a relation in R. Then we choose

an integer m such that

O0< B - mp* < B* (4.15)

By raising both of the sides of (4.14) to the exponent -m and
multiplying by (4.13) we have

Ca% n Y, ~md,
xB me* T b, * 1
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Since B* is the smallest exponent of x in relation of

this form, from (4.15) we have that B-mb* 0 and thus B*|R.
Now since {b1,b2,...,bn} is a basis and thus the bi's are

independent we have that R is the set of the relations of the

form

S.t h
for 1 < B*t < p
Hence easily we have that R* is a set of defining

relations of H1.

n
(iii) Since x = 7 b? is a relation of R, we have that

6*§ph and thus B* = pk for some 0 < k < h. ©

A procedure (based on 4.1.17) computing the complete

structure of a finite abelian p-group Gp will now be described.

P

structure of Gp will be computed by computing recursively a

Suppose that {x1,...,xg} is a set of generators of G_. The

basis of the subgroup H of G_, then
s+1 P

H > for 0 < s < g-1 and H_ = {1}

s+1

<H
s’xs+1

a,
Suppose that Hs = <<b1,b2,...,bn>>, where bi has order p

for 1< i < n and x has order ph. First we compute B*,Gi

s+1
for 1 < i € n such that
8,

n

*

x2+1 = nb, * (4.16)
i=1
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and B* is as in Theorem 4.1.18. Then B* = pk.

Case k = h

Since the set R* of defining relations of Hs+1 is

ph pai
{xs+1 =1, bi =1, 1< i< h}
we have that Hs+1 = <<b1""’bn’bn+1 = xs+1>>
Case 0 < k < h
Let gcd(S*,61,...,6n) = pr with 0 < r < k
B! n Yi . r r
u = x T b with 8' = g*/p” and vy, = -8./p
s+1 i=1 i i

r n
p _ _B* -1
u = X2, 4 2 b 1

and 8* is the smallest exponent of the relations of R.

Subcase r = k

n ooy,
¢ - - 1 —
Then B 1 and u xs+1 iE1bi . Then Hs+1 <Hs
<Hs,u> and the set R* of the defining relation of Hs+1
k o
(W% =1, p/F 121, 1<i<n}
Hence we have HS+1 = <<b1""'bn’bn+1 = u>>.,

If O< r < k, then for some j, 1 < j < n, we have that

gcd(yj,p) = 1.

becomes
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Then there exist. integers X, y such that

a.
Xy3 + VP I =

Hence we have

a.
AYLtVYP 3 ot n v
b. = b, - L SR N AYi
J J i=1
i#3
and thus bj € <u,xs+1, b1""’bj—1’bj+1""’bn> = Hs+1'
Sub-case r = 0
= ' = 3
Then we have u 1 and bj € <HS, Xs+1> HS+1 with
H' = <<b.,...,b. .,b...,...,b >>. Hence it suffices to
s 1 j=1'73+1 n
recursively compute a basis Hs+1 = <Hé,xs+1>.

Sub-case ¥ # 0,k

Then using the definition of u and B*, it can be shown that

the set {u,b b b

qree

Hence it suffices to recursively compute a basis of

-1703%10

Hs+1 = <Hs’xs+1> with Hs = <<u’b1""'bj-1’bj+1""'bn>>'

To justify the above procedure, it suffices to show

that the recursive calls lead to simpler subproblems. It is

..,bn} has independent elements.

¥ X L 1
clear that H! is a proper subgroup of H_, whence [Hsl <3 [HS
Moreover
r D a4 1
H" | = i 1l < - 'H (4.17)
|H2|= P JP 5 H
i#s

.
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n Q. ;
since {HSI = I p 1 ana pr < paj from the facts prlﬁj and
i=1
o
6j < p 3. Hence to find a basis for Hs+1 reguires at most t
recursive calls of the procedure, where [Gpl = pt.

To find a basis of Gp, g applications of the above
procedure are reguired.

It remains to give an efficient way of computing the
relation (4.16). We shall use the baby-giant step strategy.

First we compute for 1 < i < n

-t “i/2
b, 1 for all 0 < t; < [p 1 (baby steps).
ti{
Let now L be a list of all possible products of bi S. Then we
n o,
can see that #L = o( 1 p l)1/2).
i=1
Now we compute the list L* such that
k
L* = {ax? : a €L, 0< Xk <h}.
Then one can see that #L* = (#L).(h+1). Moreover we compute
for 1< i<n
c.d. a o,
by 1 for all 0< c; < [p 1/2] with 4, = [p i/2 ]

(giant steps)

Now let L** be a list containing all the possible

cidi noooyoq/2
products of b, 's. Then we have #L** = O(( I p ) ).
i=1

Now for every element w of L** we search if w belongs to L*

(using binary search). Hence we shall find a set of relations

of the form
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n c.d. k n
m b, " h=xP o biti
i=1 i=1
%172 ®i/2

for some 0 < C; < [p 1 o< t, < [p 1 and 0 < k < h.

Choosing the relation with the smallest k we have the relation

(4.16).
From the above one can see that the computation of the
relations reguires O(h(#L)}) = O(h(.g pai)1/2) multiplications
n a%=1
and since h = 0(log!G|) and 1?1 p * < |G|, we have that the

computation of the relation reguires O(log|G|V[G]) multiplications.

And now explicitly the algorithm.

ALGORITHM 4.1.18

INPUT : A set of generating sets Sp = {x1,...,xg} for
every p-Sylow subgroup of an finite abelian group
G and their orders.

OUTPUT : A basis for every p-Sylow subgroup of G.

a a
Procedure BASIS (HS = <<b1,b2,...,bn>>, Xoyqr o 1,...,p n,ph)

Comment This procedure computes a basis of the p-group
o,

= <Hs, X >. Also p 1 is the order of bi

H s+1

s+1
for 1< i < n and ph the order of 41t
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Begin
g * n 6,
1. <Compute the relation Xs+1 = 1 bi as in (4.16)>;
i=1

Comment This can be done with the baby-giant step strategy

described above

k « lo *
gp B
Case k of
Begin
O : Return Hs+1 = <<b1,b2,...,bn>};
h : Return Hs+1 = <<b1’b2""’bn'xs+1>>;
* -
2. else r « logp (gcd (8 ,61,...,6n).
x/ L n _o ;T
3. u o« xB /p I b.{sllp ;
s+1 . i
i=1
Case r 9£
Begin
k : Return Hs = <<b1,b2,...,bn,u>>
O : BASIS (Hé = <<b1"“’bj—1’bj+1""’bn>>’xs+1'
o a o o
1 3 =1 . +1 n _h
p I“'IpJ ij I"’Ip lp)
else
5. ""BASIS (H; = <<b1""'bj-1'bj+1""’bn'u>>'
a
1 Gj—1 aj+1 o

n r
Xg41'P ree-0p /P yeeesP 4P)

end
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Begin

6. For <each p-Sylow subgroup Gp of G> do

Begin

7. <Let G <x
p

1,...,xg> >

H <« 1;

8. For s = O until g-1 do

BASIS (Hs,x )

s+1
B <« H
p g

9. end

Return «<B_ for each G_>;
P P

end

THEOREM 4.1.19

Algorithm 4.1.18 correctly computes bases of all the

p-Sylow subgroups of G.

Proof
It follows from the description above 4.1.19. ©

We shall analyse algorithm 4.1.18 in the case G = C2(D).

THEOREM 4.1.20

There exists an algorithm which computes bases for all

the p-Sylow subgroups of C&(D) with D < O in
O([Dl1/4(logiD[)7M(log{D|)) elementary operations on the

assumption of the truth of the G.R.H.
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Proof

First we compute a generating set Gp for every p-Sylow
subgroup of C2(D) and the orders of the generators using
algorithm 4.1.13. After we compute bases for every p-Sylow
subgroup of Cf# (D) using algorithm 4.1.19.

First the procedure BASIS will be analysed. Step 1
requires O(log(h(D))/h (D)) compositions, since h(D) = [CL(D)|
(see description above 4.1.19). Since h(D) = O(/[D] log |D})
by Proposition 4.1.9 and composition (following by reduction)
regquires O(log!D| M(log |D|)) elementary operations by
Corollary 1.1.11, we have that step 1 reguires
O(}Di1/4(log§D})2 M(log:D|)) elementary operations.

n

!

Since 8* < h(D), @ ¢, < h(D) and n < g = 0(log? |D})

by Theorem 4.1.5), we have that step 2 regquires

O0(log? |D/M(log|D}!) log log,D!) elementary operations for n

applications of the Euclidean algorithm (see Theorem 0.2.3).
One can compute u by expressing g' = 5*/pr,yi = -éi/pr

for 1 < i < n, in binary (see steps 7-9 of 4.1.13). This

n
reguires O(log B' + I log yi) compositions and since
i=1
n
I y; < h(D) = o(/TD| log |D|), it requires O((log|D|)?*M(log|D|))
i=1

elementary operations (by Corollary 1.1.11).

From (4.17) (see comment below it) the procedure BASIS

is called recursively at most t = O(log? |D|) times (steps 4-3).
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From the above analysis we conclude that the procedure
BASIS regquires O(lD|1/4(longl)4M(1og D )) elementary
operations in worst-case.

The main algorithm will be analysed now. To find the
generating sets Gp and the order of the generators using
1/5

algorithm 4.1.13, it regquires 0 (|D] log|D{M(log|D|)) ele-

mentary operations.

To find a basis for a p-Sylow subgroup (steps 8-9) reguires
g = O(log?|D|) applications of the procedure BASIS and thus
reguires O(}D}1/4(log}D})6M(1ogED{)) elementary operations.
Loop 6-9 reguires O(lpg e/log log e) iterations (the number of
distinct prime divisors of the exponent e of Ci (D)) and thus

O(iD]1/4(log§D;)7M(logiD{)) elementary operaticns, since

e < h(D). ©

Remarks

1. A more detailed analysis may reduce the exponent 7 of the
running time of the algorithm. The presence of the term

{Dlj/4 in the running time of the algorithm discourages us

from doing it.

2. One may use Sims' method ([39]) for the computation of

the bases above, which is rather inefficient. His method

1+ €

has running time O(|D| ) but requires o(|p|%), ¢ > 1 bits

for memory which may cause overflow.
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If a basis {b1,b2,...,bn] for the p-Sylow subgroup
a.
CQP(D) of CA&(D) is known and bi has order p P for 1<1i < n,

then

Q [0 Qa
Ci (D) = G(p ) x Glp %) x ...xGlp ™) and

.
[ca )| = 7 p *

1

=3
-

o, a.
where G(p l) is a cyclic group of order p .

Since moreover C2(D) = 1 Cip(D) the class number h(D) (the
order of C{ (D) is the p?oduct of the orders of all the p-Sylow
subgroups CQP(D) of C2(D). Hence we have the following
theorem.

THEOREM 4.1.22

There exists an algorithm which computes the class

1/4

number h(D) in O(|D| (logEDi)7 M(log D)) elementary

operations on the assumption of the truth of G.R.H. 0O



-D h (D)
1 1
2 1
3 1
4 1
5 2
6 2
7 1
8 2
9 2
10 2
11 3
12 2
13 2
14 4
15 2
16 2

17 4
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TABLE 11I

CLASS NUMBER

-1 <D<

-D

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

-50

h (D)

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50



10
11
12
13
14
15
17

18

h (D)

1 < D < 50 non-sguare

19
20
21
22
23
24
26
27
28
29
30
31
32
33

34
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h (D)

35
37
38
39
40
41
42
43
44
45

46

47

48

50

h (D)
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4.2. CLASS NUMBER OF REAL QUADRATIC FIELDS

A. GAUSS METHOD

DEFINITION 4.2.1

The number of classes of properly primitive forms of
fixed non-guadratic determinant D > O is called the class
number and is denoted by h(D).

Gauss derived counting methods for the computation of
h(D) for D > O are similar to those described entirely for
D < O. The difficulty in the case of D > O is that equivalent
forms are not as easily recognized as in the case of D < O.
Eence it is necessary to compute the period of reduced forms

to reject eguivalent ones.

METHOD 4.2.2

Gauss' first counting method makes use of the fact that

every reduced indefinite form satisfies:
|vD - |A]lk B < vD and |a| < 2/D .

The method is:

1. For |A| < 2v¥/D find all pairs (A,B) such that X = B
satisfies
X? = D mod A |vD - |a]| < x < /D

and for each pair (A,B), let (&,B,C) be a form where

C = (B* - D)/A.
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Reject th4 forms which are not reduced.
Reject the forms which are not properly primitive.

Partition the remaining forms into equivalence classes
by computing cycles of reduced forms as appropriate

and select a representative from each equivalence class.
The number of remaining forms is the class-number h (D).

The method requires O(D1+€) elementary operations. More

detailed analysis shows that the algorithm terminates in

O(D(log D)* M(log D)) elementary operations.

METHOD 4.2.3

Gauss' second counting method for computation of h(D),

for D > O is:

1.

For O < B < VD factor B? - D = AC and for all possible

pairs (aA,C) let (A,B,C), (C,B,A) be a form.

Reject the forms which are not reduced.

Reject the forms which are not properly primitive.

Reject equivalent forms (as in step 5 of 4.2.2)

The number of the remaining forms is the class-number h(D).

One can see with detailed analysis that the method yields

the class number in O(D(log D)*M(log D)) elementary operations.
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B. DIRICHLET'S FORMULAE

Dirichlet gave the following formula for h(D), with

D > O (see Mathews [2g], 238)

hp) = 2221 ! (7}%—1) (4.18)

2k+1

where R is the regulator.

Now since

. D _ 4D
(i) (iijT) = (71:7) and
(i1) (%?) = 0 for n even (Xronecker's symbol)
7 © 1 D ) <] 4—12 l _
we have { w7 5raT) C ? () 5 = L1, Xyp!
k=0 n=1

Hence using the Theorem 2.2.3 we have:

_2/D _ 2/ =
h(D) = = L(1,X4D) = = i 755) (4.19)
p=2 p - (=)
p prime P
Moreover since (%) = 1 and (%) = Q0 we have
h(D) = %—5 n —B (4.20)
p=3 p - (5)

and if D # 3 mod 4, then we have

/D
R

D
)

h (D) L(1,XD) (2 - |
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Also the formula relating to the class number h(D) and

h(D ) where D = D_ S? is:
o o

h(D) = h(p) s = 1 ——F (4.21)
R' p|S P
where R, R' are the regulators of the orders sz(d), sz,(d)
respectively with D = f?d and D, = (£')2d (see Mathews [26],
p. 166).
Moreover there is a formula given by Dirichlet expressed

in finite sum of Kronecker's symbols for D square free

-2 - (%—) D-1 , ok
— R § (5) log sin for D = 1 mod 4
k=1
(4.22)
h(D) =
2D-1
- l i _TT_Q}.{_-F"_). =
B k§1 (2k+1)log sin D for D £ 2,3 mod 4

(see Venkov [40], p. 230)

Thus to compute the class number h(D) using the formulae
(4.21), (4.22), requires O(D log D M(log D)) elementary
operations in worst-case using one of the methods of the
section 3.1 for the computation of the regulator and computing

the Kronecker's symbols as in Theorem 4.1.4.

C. SHANKS ALGORITHM

Shanks' algorithm for the computation of the class
number with D > O differs from algorithm 4.1.13 - 4.1.19 in

the following respects.
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n
1. The approximation h of h(D) is computed via the formula
(4.20). To find an approximation, the computation of
the regulator R of sz(d) with D = £f2d8 is necessary. To

compute R one can use Lenstra-Shanks algorithm (section

3.1).

2. In algorithms 4.1.13 and 4.1.19 equivalent forms are
easily recognized, since they are definite by using
Theorem 3.2.2. But when D > O to decide equivalence
of two indefinite forms F, QO it 1is necessary to use

algorithm 3.1.24 to decide whether or not QF—1 is

principal.

Hence if one modifies the algorithms 4.1.13 and 4.1.18
in respect with (1) and (2) then similarly with the case D < O

we have the following theorems.

THEOREM 4.2.4.

Assuming the truth of G.R.H. there exists an algorithm

which computes the complete structure of C2(D) in O(D1/2+E)

elementary operations, when D > O, non-square

Proof

The bottleneck of the method (described above) is the
computation of the relation (4.16). It regquires O(D1/4+E)
applications of the equivalence procedure (algorithm 3.1).

Hence the computation of the complete structure of C&(D)

1/2+¢

requires O(D ) elementary operations. O
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COROLLARY 4.2.5

Assuming the truth of G.R.H. there exists an algorithm
which computes the class-number h(D) of CL2(D) with D > O non-

1/2+¢

sguare in O(D ) elementary operations.

Proof

See remark above the Theorem 4.1.22. o
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5.1. ALGORITHM CLASNO

DEFINITION 5.1.1.

A class of C2(D) which contains an ambiguous form is

called an ambiguous class.

PROPOSITION 5.1.2.

A class X of CL(D) is ambiguous if and only if
K? =1
where I is the principal class of C2(D).

Proof

(=) Let (A,B,C) be an ambiguous form in K. Then A|2B.
Let 2B = -mA.

Then

1T m
(r,B,C) - (A,-B,C) via ( )

and thus (a&,B,C) = (A,-B,C).

Now since (A,-B,C) € K_1, we have

Now we have

K2 =K oK =K oK = I

(«) If K? = I, then
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Hence every form (A,B,C) in k is equivalent to its
inverse (A,-B,C) and thus by Gauss [16] (A.162) there exists

an ambiguous form eguivalent to (A,B,C). s}

PROPOSITION 5.1.3.

The reduced forms of an ambiguous class of CR2(D) with

D < O are of the shape (a,o0,c), (a,b,a), (2b,b,c).

Proof

Let K be an ambiguous class of C2(D) and (a,b,c) a
reduced form in XK. Then (a,-b,c) € K, since X ambiguous.
Moreover {a,-b,c) is also reduced.

Now from Theorem 3.2.1 we have that either a = c or

al2b.

If a = ¢, then the class K contains only the reduced

forms (a,b,a), (a,-b,a).

If a|2b, then since (a,b,c) is reduced we have

|2b} < |a]

and thus

b =0 or 2b = a.

Hence the class K contains in this case only the reduced form

(a,o,c) or the reduced forms (2b,b,c), (2b,-b,c). ©
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PROPOSITION 5.1.4

Suppose that e is the exponent of C4-D) with D > 0. If

e is odd, then D is a prime-power.

Proof.

Assume that D is not a prime-power. Then there exist
integers f, g such that £ # 1, g # 1, £<g, D = f.g and
ged (f,g9) = 1. Now the form (f,o,-g) is a properly primitive
ambiguous form with determinant -D. Moreover using the fact

that (f,o0,-g) is reduced one can show that (f,o,-g) % (1,0,D) = I.

By Proposition 5.1.1 we have
(f,0,-g)* ~ I

hence 2le, and the exponent is even. O
A version of the algorithm CLASSNO (see Shanks [ 34) for

. . . . . . 1/5+¢
factorization of an integer D with running time O(|D] )

elementary operations is the following.

THEOREM 5.1.5.

There exists an algorithm which factors a positive
integer D in two factors f,g with gcd(f,g) = 1 and if D is
not prime-power, then yields £ # 1, g # 1. This algorithm
(CLASSNO) factorizes D in O(lD|1/5(log|D|)4 M(log|D|)) elementary

operations.
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Proof

First we compute the exponent e and a set G2 of
generators and their order of the 2-Sylow subgroup of
C%(-D) using algorithm 4.1.13. If the exponent is odd
then by Proposition 5.1.4 we have that D is a prime power.
Otherw;se for a Q € G2 with order Zj"1 we compute the form
G = sz using the algorithm of Corollary 1.1.11. Then one
can see that G? ~ I and by 5.1.2 we have that G belongs to
an ambiguous class. Also G is reduced (by 1.1.11). Now by

Theorem 5.1.3 we have that G is of the shape either (a,o,c)

or (2b,b,c) or (a,b,a). Hence we have either

-D = ac (5.1)
or -D = b? - 2bc = b(b-2¢c) (5.2)
or -D = b? - a? = (b-a) (b+a) (5.3)

Moreover using the fact that Q properly primitive,
one can show that the factors of D given by (5.1) - (5.3)

are coprime.

It is pessible (5.2) to give the trivial factorization
1.(-D). Using the fact that G is a non-principal properly
primitive reduced form, one can show that trivial factorization
could happen only when D = 1 (mod 4), then Q = (2,1, (D+1)/2)
and the trivial factprization is given by (5.2) .

Hence in the case D = 1 (mod 4) if (5.2) yields a trivial

factorization, then we use other forms of G2 to compute
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ambiguous forms. If all the forms of G2 lead to the ambiguous
form (2,%+,(D+1)/2), then it can be shown that in this case D
is prime power.(This follows from the theorem on generators
of the ambiguous classes of Cf (D) cited by Lagarias in [21],
p. 500).

We shall now analyse the algorithm. First, to compute
the exponent of C{(-D) and G2 (by Theorem 4.1.15) requires
O(D1/5(log D)4M(log D)) elementary operations.

s

Suppose that e = 2°.t and 2 } t.

Then to compute to form G requires j+1 compositions.

Since

J < s < log e < log(h(-D)) = O(log D)

we have that the computation of an ambiguous form requires
0(J log D M(log D)) = O((log D)? M(log D)) elementary operations
by Corollary 1.1.11. And in the case of trivial factorization
we have to compute at most #Gz = D(log?D) ambiguous forms,
hence the bottleneck of this step is O((log D)4M(log D))
elementary operations. From the above analysis the running
time of the algorithm follows. D

For alternative approaches to factorization via guadratic
forms see Lehmers' method [24] (an0(¥D) method but the facilities
of the University of California make it competitive!), SQUFOF
1/4+e)

(Shanks-unpublished: see Monier [28] - an o(D (expected

time) simple method using searching on the principal cycle),

Schnorr [31] (a probabilistic version of the algorithm CLASSNO) .
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