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INTRODUCTION

The classical ("o1d fashj-oned"l theory of integral

binary quadratic forms was developed by Gauss in his famous

,,Disquisi.tiones Arithmetieae,,. This thesis is concerned

withtheformaldescriptionandanalysisofaselectionof

algorithms which make use of such forms'

ForsimplicityrW€haveadoptedthesameconventionaS

Gauss, who considered only binary quadrati-c forms having an

evenmlddlecoefficient.ThereisamoregeneraltheoryPer-

mitting odd middle coefficient due to Di-rich1et, and all the

algorithms described and analysed in this thesis can be

easily generalized to Dirichlet's forms'

The fact that the equivalence classes of binary quadratic

forms of fixed non-sguare determinant D form a finite abelian

group C!. (D) was a fundamental discovery due to Gauss (a see

[13], p. 15 and 125), P. 171!l ' Most of the algorithms we

describe are connected directly or indirectly with the

,,structure,, and "infrastructure" (that is the structure of a

class of cL(D)) of form class groups' Apart frorn their

intrinsic interest, these algorithms have applications in

connection with orders in guadratic fields and their associated

ideal class groups, and with the problen of factorization'

Applications of algebraic number theory are briefly sketched

where appropriate, but detailed reference is outside the scoPe

of this thesis, si-nce our main interest is in the theory of

computation and the use of binary quadratic forms as a

computational too1.
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The content of the six ehapters of the thesis is

briefly summarised be1ow.

Chapter O comprises basic definitions, notations and

algorithrns together with reduction procedures for binary

quadratic forms due to Gauss and Lagarias.

Chapter 1 deals with composition of forms; methods of

composition due to Gauss and Dirichlet are described and

algorithms based on these methods are constructed. The

group cl, (D) ls defined and the relationship between cl. (D)

and an appropriate ideal class group is also described.

Chapter 2 deals with the genus characters Cl, (D) .

Algorithms for computing a basis for genus characters and

deciding whether or not a form belongs to the principal

genus (or equivalently is a Square in C!.(D)) are presented.

chapter 3 is concerned with algorithms for deciding

equivalence of forms. This decision problem is particularly

interesting for forms of positive non-quadratic determinant,

and recent work of Lenstra and Shanks on relatively efficient

algorithms is described. Number-theoretic aPPlications

include the computation of regulator and fundamental unit

of real quadratic fields and the related problems of solving

Pellian and non-Pellian equation.

chapter 4 deals with methods for computing the class

nuniber (the order of Cl,(D)). Gauss' counting rnethods are

described and analysed and the use of Dirichlet's formulae

is considered. A refined and improved version of an

O(fOl/5+e, algorithm due to Shanks is described and analysed'

(vii )



The computation of class-numbers is considered in conjuncti-on

with the computation of the class grouP structure (see

algorithms 4.1.13, 4.1.19) .

In Chapter 5 Shanksr factorization algorithm CLASSNO,

which depends upon the relationship between factorization of

D and the grouP structure of C!'(D), is described'

Fbr tle nost lxrt the results desei-bed ilp sfosely based cn the r,ork

of Gauss, shanks, Lagarias and Lenstra. The main probl-em

has been the collation and interpretation of results from

many Sources, and the most original aspects of the work are

refinements of algorithrns and their analyses (see e.g.

theorems f .i.6 1.1.8, algorithn 2.1.9, theorem 4.1.7 (and

its applications ) etc J

A note on the presentation of algorithnrs

rn general the format of presentation of an algorithm

is (i) informal description, (ii) formal description (iii)

correctness, (iv) analysis. fn our formal description of the

algorithms we use a version of the language PIDGIN AIGOL

gi,ven by Aho Hopcroft and ullman in 12) . In our analysis

of the algorithms, ite measure always the worst-case time

complexity (see t2l ).

Coventry

September 1 981.
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O.1. BASIC DEFINTTIONS-NOTATIONS

LEFINIT]ONS O.1 .1 .

A binary quadratic form (abbreviated binary form or

simply form) Q j-s

Q(xryl = ax2 + 2bxy * cY"with arbrc, integers

and will be denoted as O = (a,b,c) -

The eoef fie'tent matrit of a forn Q = (arbrc) is the

srmmetric matrix

Detexnincnt D of a form Q = (a,brc) is the integer

ab

"e= (b 
")

D = b2 -ac = - det (M.,)

Two forms O = (a,b,c), F = (A,B,C) are ca11ed opposzlte,

a = A, b =-Bt c = C-

The opposite form of a form Q is denoted bV O'

The forms with determinant D ( O are caIled definite, the

forms with determinant D ) o and D non-square are called'i-ndefinite

arrd tlp forms w'ith deternrirrant D > O perfect square are called deger'erate.

A form Q = (a,b,c) is called properly primitipe, if

gcd (a,2b,c ) = 'l .

(o.i)

if
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A definite form Q = (a ,b,c) is ca11ed positipe, lf

a>o.
An integer N is represented by a form Q, if there exist

integers *1,*2, such that

Q(xr,xr) = N and gcd (x.,,xr) = 1'

A form Q = (a,b,c) is called ambiguous, if alZU'

DEFTNITION O.1 .2.

A f ornr Q., = (a1 ,b1,c,, ) is equiisaLent to a form

QZ = (a2,b,c21 , if there exists a I x 2 unimodular matrix

S with integer entries such that

"0, = sT 
"0., 

t (o.2)

where sT is the transPose matrix of s'

If (o.2) holdsr w€ shall say that Q.l is transformed to Qt

and denote Q1 * Q2 via S.

PROPOSTTION O.1.3.

Suppose S is a ) x 2 matrix.

(ilIfQl*Q2viaS,thenQlandQrhavethesamedeterminant

(ii) If Q1 * QZ via S, then there existsa 2 x 2 unimodular

matrix S' .
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Proof

(i) From (O.2 ) we have

det (Mo, ) = det (sT) det 1"01 l - det (s) = det ,"0., ,

and from (O.1 ) the result follows'

(if) ft can be shown for S' = $ 1 thut Q2 * Qt via S" tr

Proposition o.1 .3 shows that the relation of being

equivalent is an equivalence relation. we write Q1 o Q2 to

denote that Q1, QZ are equivalent.

PROPOSTTToN o.1 .4.

ff Q1 - Q2 and Q.t is properly primitive, then Q, is

properly primitive.

Proof

Let Q1 = (a1,b1 ,c1) o QZ = G,br,.Zl' Then there

exists a matrix

and

no., = sT 
"ort

Then .1 = dZ*2 + 1;ZKV * crVz

2bl = 2^2"tr + 2b, (<v + Iu) + Zcrry (O'3)

"1 =d2lt +Zbrl$*"2u

lK I \S= { } with<v Iu=1
\u v /
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rf there exist p sueh that plaZ, Plzb|, Plaz, then by

(O.3) plat, pl2b., , pl.t. Since Q1 is properly primitive, it

follows that P = 1- Et

PROPOSITION O.1 .5.

If Q1 o Q2, then Q., and Q, rePresent the same integers '

Proof

NOTATTON O.1 .6.

q:rnn..,qpfh:tn +o l'iaS =(K 
A).

rqyHvrE LirqL -2 -1 - \ U v l-

Then if I"1 is represented by Qt and Q., (mrn) = M, then

one can see that QZ (<m + ).n, pfr + !n) = l'1' o

For a n x n matrix M = (*ij),llr'rll denote" 
T11 

{lntrl}

rf p is prime, w€ write Pklla to denote that pklt and

pk*1+..

rf O is a form, then lipil aenotes llu'll -

We use Log m to denote the function defined by

The natural Togarithn of a number m is denoted by 9n (m)

WhenaformQwithdeterminantDisdenotedby

O - (a,b,*), then * indicates the integer (b'z-p)/a'

- ( logrrn if m>4
lognn={| 2 if m<4
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PROPOSITION O.1.7.

If M,N are tno n x n matrices, then

lltc'rll <t,'llull llllll. B

REM.F.RK

There is a more general theory of forms (introduced

by Dirichlet) which permits odd middle coefficient. A form

Q(x,y)=ax2+bxy*cYt

has disez'int rtQflt

A = b2 4ac-

one can see that the Gaussian forms are a subset of the set

of the forms above. Moreover if a form Q

Q(x,y) -- u*2 + 2bxY * cYt

has determinant D, then in Dirichlet's terminology it has

discriminant

A=(2b)2-4ac=4D.
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O.2. SOI-{E CO}IPLEXTTY BOUNDS

The time complexity of an algorithn is measured in terms

of elementary Ope?ations. An elementary operation is a Boolean

operation on a bit or Pair of bits.

A function f (x) is said to be o(g(x)) if there is a

positive constant e such that f (x) < cg(x) for every x.

some preliminary complexity bounds for elementary

algorithms are given below-

THEOREM O.2.1. (sch6nhage and Strassen)

Two integers of length n (in binary bits) can be multi-

plied in l'{(n) elementary operations, where

t'l(n) = cn 1og n 1og 1og n

and c is a sufficiently large constant. o

THEOREIVI O.2 .2 (Cook)

To divide an integer u of length n by an integer v of

length at most n to find

u = eV + r O ( r < u

requires O(M(n) l elementary oPerations. o

The following theorem yields a bound for an algorithm

given by Knuth [19], analyzed by Schdnhage l'321 -
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THEOREI'I O. 2. 3. (Extended Euctridean algorithm)

There exists an algorithm which finds the gcd of two

integers k,m of length at most n bits and yields integers

tr,U such that

Ik+um=r

rr | - m I I - kwith lll .;,lul <; and r=scd(k,n)

in O (l'1(n) 1og n) elementary oPerations ' o

The computation of gcd (k,m) (Euclidean algorithm)

requires the same time as the algorithm above'

THEOREM O.2.4

Suppose that m,k are integers, and b is an integer with

O < b < m. Then an integer x such that

x = bk(mod m) and o < x < m

can be found in O(M(1og m) 1og k) elementary operations'

Proof

See Lagarias I2Ol, P. 15O. o

The following theorem yields a bound for an algorithm

given by Shanks t35l based on a method of Tonelli (see Dickson

11a1 f , p. 2151 and analyzed by Adlernan, !'landers and l"1iller t1l '
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THEOREM O.2.5

suppose that a complete factorization of an integer m

and a quadratic non-residue ti for each prixre pt dividing m are

given and b is an integer with O < b < m. Then it is possible

to decide whether the equation

x2 =! (modm) O(x<m

has a solution and find a solution if appropriate in

O (M (1og m) (1og m) ' ) elementary operations ' B

The following theorem assumes the truth of the Generalized

Riemann Hypothesis (G.R.H. ) (see chapter 2l and it is based on

the result of Aukeny t3l for the least quadratic non-residue.

Also see Lagarias i2ol P- 152-

THEOREM O.2.6 .

If the Generalized Rj-emann Hypothesis is true then for a

prime p a quadratic n (mod p) can be found in O (log'pM(Iog p) )

elementary oPerations .

Proof

Ankeny proved that the least guadratic non-rPsidue nn (mod P)

assuming G.R.H. is

rp = Q (log'zp).
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Now from Euler's criterion, k is a quadratic non-resj-due

mod p iff

k (p-11/2 
= -1 mod p. (o.4)

Hence by testing for 1 < k ( nn the condition (O.4), a

guadratic non-residue n(mod p) wiIl be found in O(1og'pl"l(1og p) )

elementary operations, since the cost of one testing is

O(1og p l'1(1og p) ) elementary operati-ons from Proposition

O.2.4 . o

Now an analogue of Theorem O.2.6 is given without

assumption of unproved Hypotheses, making use of the result

of Burgess i1Ol.

THEORE!'I O -2.7 .

Given a prime p, a guadratic non-residue n (mod P) can

be found in o lp1/4+e' elementary operations.

Proof

Burgess proved that the least quadratic non-resldue

rp (mod p1 is

n = o (p1 /A*el .
P

Hence as j.n theorem 0.2.6, it can be shown that a quadratic
1lA

non-residue n (mod p) is found in o(p'/**tl elementary

operations. o
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O.3. REDUCTION OF BTNARY QUADRATIC FORI'{.S

A. DEFTNITE FORI'IS

DEFINITTON O.3.1 .

A binary quadratic form Q = (a,b,c) with determinant

D < O is neCueed if

lzul

which implies

(o.s)

izu l

The definj-tion of a reduced definite form Q, implies

lloll . lol (o.7 )

The following algorithm was given by Gauss; gi-ven a

definite form Q, it finds a reduced form Q'eguivalent to Q.

It applies a series of transformations Q = Qo * Q1 * QZ*...*Q,

where Qi_t + Q, via S, until a reduced form Q* is found.

tf Qi-1 = (ui-t,bi-1,ci-1 ) , then the matrix S, is given by

where the unique tri is selected by the Gauss rule

( :, i,)

l-br_r - ti.i_rl . lcr_,1/z (o.8)
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ATGORTTHU O.3.2

INPUT : A definite form Q = Qo - (uo,bo,co) with

determinant D.

OUTPUT : A definite reduced form F with determinant D,

equivalent to Q and a unimodular matrix S such

that

Q+FviaS

Begin

i <- O; S <- <2 x 2 identity matrix>;

while <Q. is not reCuced> do
L

Begin

i <- i+1:

<choose. tit l-bi-t-tri ri-tl . l"r-., 1/2> i

a. {- c-i -i-1 '

bi * -bi_t-li ti_i;
.i <- (bi-Dl /2 ;

Qi * (a'br,cr);

s <-s . (-? l. \ ;
\ r-/

end

Return F = Qii

end
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THEOREM O.3.3.

Algorithm O.3.2 terminates and correctly yields a

reduced form F, which is equivalent to Q, and a unimodular

matrix S such that

Q+FviaS.

Proof

Let aora1,a2,...,a, be the seguence of ui'". Then there

exists an i-nteqer k such that

lar*., 1 < larl for o < i < k

and

(o.9)

Since if lar*1 | < | a, I f or every i, then we would have an

infinite seguence of decreasing positive integers.

(o.10)

IIq^/ it will be proved that (a*,b*,c*) is redueed. From

Gauss rule we have

l bk l = l-bk-1 - tri.t -t l

which implies

l2bkl < la*l

From (O.9), w€ have

la* l (o.11)
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Hence from (O.1O) , (O.11) a,. = ("k,bk,ck) is reduced.

Now since the transformations Qi-t * Qi are via the

unimodular matrix Si, easily

k
S = n S' is unimodular and

i=1 l-

Q*Qt=P vias' D

The following theorem gives the complexity analysis of

the above algoritbn, following Lagarias ([2o1, p. 158).

THEOREI''I O. 3 .4 .

Algorithm o.3.2 termi.nates in o (M(1og lf all) log llQll)

elementary operations and 1og llSll = o(1og ll0ll). tr

B. TI{DEFINiTE FOR.I'{S.

DEFTNITION O.3.5.

A form Q = (arbrc) r*ith determinant D ) o, non-sguaret

is reduced if

1,6 - l"ll < b rc.12l.

The definition of a reduced indefinite form Q, implies

lloll < 2 riq (o.13)

A reduced form Q = (a,b,c) is strietly redueed if

l. | < '/l-ol
(o. 14 )
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The following algorithm was given by Gauss (t161, A.18i);

given an indefinite form Q, it finds a reduced form Qr equiva-

lent to Q. It applies a series of transformations

(? l,)

O = eo * el * eZ + * Qk, where Q:--t * Qi until to find

a reduced form Q*. rf Qi-t - (ai-1,bi-1,ci-1), then the matrix

S:- is given bY

where the unique l. is an integer selected by Gauss rule

VT - l.i_-tl . -bi-r - lt ti-1

The above algorithm is not efficient,Lagarias ([20],

p. i54) found examples of infinite seguence of indefinite forms

Q, for which the above Gauss' reduction procedure requires

llelli/4 transformations to find a reduced form equivalent to Q'

Lloreover Lagarias ( [20], P. 154] gave a reductj-on

algorithm, which does a series of transformations

where

Qi-t + Q' via Si i = 1,2t."

rf Qi-t = (ai-1 rbi-1 rc1-1 ) , then the matrix St is given by

o1
(-t 

^r)
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where li. is an integer selected by the nodifi,ed ruLe

-l.i- 1l /2 . -bi-r -trici-r < l.i- 1l /2 (o- 16 )

The algorithm transforms . Qi to Qi+.| until for some

k > O, a form Qn such lckl < 2 1fFis found. Lagarias proved

where Sf*j

and lx*j fo

that tl'r. form Qk*1 or Qk*2 is strictly reduced, where Qk*1'

QL*2 are computed in the following ways

Qk * Qk*.1 via sk*1, Q3+.| + ok+2 via s112

ALGORITHM O.3.6.

rNPUT : An indefinite form Q = Qo = (aorborco) with

determi-nant D.

ouTpuT : An indefinite form F, equivalent to Q, and a

unimodular matrix S such that

Q + F vi-a s.

(o t \ for j = 1'2
\-1 k*i)

j = 1 ,2 is selected by Gauss rule (o'i5) '
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Begin

i + O: S <' <the 2x2 identlfY matrix>;

while <Q* is not strictly reduced> do
I

Begin

ff c,

<choose an integer ti*1r -lcrl/ 2<-bi-li+1ci ( lctl/2>t

Il ri < 2 {T then

<choose an integer tri*1r "tf -lcil < -bi-Ii+1cj.< vrf>i

i +' i+1;

ui <- "i-1;
bi <- -bi_1 -lici_1 ;

.i <- (b'?i-Dl/ai,

Qi * (ui, bi, c, ) ;

s+s.( 9 1\ i\-1 \J ',

and

Return Q. = Fr S;
.t

end

THEOREI'{ O. 3 .7 .

Algorithmo.3.6correctlyyieldsastrictlyreduced

form F, equivalent to Q and a unimodular matrix S such that

e + F via s; ir rerminates in o\1og llQll M(rog llQ|l )) elementarv

operations and

Loe llsll = o(Ios lloll )
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Proof

See Lagarias t2O1 p. 154. tr

C. DEGENERATE FORj'1S

DEFINITTON O.3.8.

A form (a,b,c) with determinant D = h2, h > O is reduced
if
(i) O<a<2h-1
(ii) b-h
(iii) c - O

(o.17)

Gauss (t161 , A.206) gave a reduction procedure for
degenerate forms. It reCuces a degenerate form e=(a,brc) usjlq tr*c
transformations

e * e1 via St and e, * e2 vi.a SZ

wheres- =( r l\
| \ U v ) unimodular, with Kr1l coprime, satisfying

la = v(h-b) and s^ = ( 1 o \z \m 1) wherem j-sanintegerwhich
satisfies

O < 2mh * 
".1 

< 2h-1 where el = (a1,b1 ,.t).
AIGORTTHI1 0.3.9.

INPUT : A degenerate form g = (arb,c) with determinant D=hz

ourPUT : A reduced form e1 eguivalent to e, and a unimodular
matrix S, such that e * e2 vj-a S.
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Begin

v + a/gcd (b-h,a); (o.18)

I + (h-b) /gcd (b-h,a) ; (o.19)

<Find KrU3 rv-),p= 1, if l . lIl , lul . lult;
Comment Use Extended Euclidean Algorithm (Theoren O.2.3)

(o.20)

s <-(K r)
1 \U v/

M<-"T"q*0.,* "1 *e "1i

<chooseanm:O(2mh*ul

s., <- ( 1 o \;
' \m 1)

T

"o 
* si 

"0., 
s2'

-2

s <- s., sr;
Return Q., S;

z
end

THEOEM O.3.10

Algorithm O.3.9 correctly computes a reduced form Q,

equivalent to Q and a unimodular matrix S such that Q * Q2

via S.

Proof

From (O.18), (O.19) we have gcd (l,vl = | and

al = v (h-b) (o.21)
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Hence there exist krU such that

Kv U). = 'l

From (O.21) we have

c = -| (b+h) /v

since h2 = b2 ac.

(o.221

From the transformation Q * Q1 - (al'br'c,,) via SZ we

have

a1 = atr2 + 2blv + c!2 -

(h-b)vl + 2blv tr(b+h)v - O

using (o. 21 ) and (o.22) .

Moreover

bt = aktr + b(krr + lir) + cUV =

(h-blr + b(rcv + trU) -f (b+hlu = h(rv-).p1 = h.

From the transformation Q., * Q2 via S, we have

^2 = 2mh * 
"1

bz = h

"z-o
From (O.2O) we have

O ( "2 
( 2h-1.

Hence Q2 is reduced.
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Directly we have that S is unimodular and

Q*Q2viaS. D

THEOREM O.3.11

A lgorithm o.3.9 terminates in o(M(1o9 llOll I los log liOli t

elementary operations in worst-case and fog llsll = o(1og llOll t

Proof

?he bottleneck of the al-gorithm is the application of the

extended Euclidean algorithm (see Theorem O.2.31 at the steps

1 ,2 , which requires o (M(f oe li0ll ) 1og f oe llA ll ) elementary

operations, since the remaining steps are of o(M(fog il0ll l

elementary operati-ons for multiplications. Moreover easily we

have | = O( llOll ) r 'v = O( llOll ) and using Theorern O.2.3, one

can find l*l < lrl , lul < l, lwith<v ),u = 1.

Since u1 = aK2 + 2brp * cpt = O( ll0ll tt, from (O.2O) we

have m = o( li0ll '1.
Now using Proposition 0.1.7 we have

lls ll < 4 llsl ll lls2 ll

and since llsl ll = o( lloll ) and lls2 ll = o( lloll ') we have

roellsll =o(loelloll t. tr
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1.1. GAUSS APPROACH

DEFINITION 1 .1 .1 .

Gauss defined that the properly primitive form

Q3 - (ug,b3,c3) of determinant D (non-square, if D > o) j-s

composed of the properly primitive forms Q1 = (a1,b1 rc1 ) and

Q2 = (aZ,bZ,"Z) with determinant D vi.a a bilinear matrix B,

if the following holds:

Q1 (X1,X2).QZ(Y1 'Y2) = Q3 lZ1,Z2) (1.1)

where lZr,Zrl = B (x1 ,Y1,XtYZ ,XZY1,X2Y2)T

for some bil-inear matrix B with entries from the integers

-.i,,^* 1-,,
Y.J.vsrr LJI

B = (btt 
b'tz bit bta 

)t b2 l bzz bz3 bzl '

satisfying the condj-tions:

(i) Unimodularity : The greater conmon divisor of A.r's

for 1 < i < j < 4 is one' where At,

is given by

I b.; b" I

orj = | *tt *t' | = o.,i bzj - bzi.b' for 1 < i < j < 4

| -21 -2j I

(ii) Orientability : at AIZ > O

^Z 
Atg > O
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Orientability of the bilinear matrix B is necessary to

distinguish between composition with a form Q and composition

with its oPPosite O-

The operation of composition of forms is denoted by

Q1 oQZ =Q3viaB'

Now a method of comPosing two properly primitive forms

e1 and Q2 of determinant D (non-square if D > O) to a properly

primitive form Q, of determinant D via a bilinear matrix B is

described. The method is due to Gauss (see t16l'A'242-31

The following lemma is in Dickson [15], P' 134'

LEMMA 1.1.2.

suppose that gcd (m1 ,mz, . . . ,*rr) = 1' rf S divides

m.q*-In-ig, for 1 < i, j < n, there exist exactly one solution
I)Jf

B mods of the sYstem of equations

*iB = gi (mod S) 1 < i < n (1.2)

Proof

Since gcd (m., 2rrr2t.. - r*r) = 1, there exist integers ui

such that

n
E a'm. = 1-

i=1 l- a

Also s l*it-.jqi for 1 < i, j ( n, r*hich inplies

mig-i = m.9i (mod S) - Then B = E!=t aigi nod S is a solution
LJ)L
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of the system (1.2), since

nnn
m.B = m, E a.g. = I d.ft-.9,- = Q,- I a.m, f q' (nod s) for 1<k<n"'k- - "'k i]r -i=i - i=1-i- L'K i=1 a a 'K

Moreover if there were an integer B'such that *iB'= 9j-(mod S)

1 < i < n, then a.m.B' f ui9:. (mod S) for 1< i < n' Hence

adding all the equations we have

( I a.m., )B' = I aigi (mod S!
i=1 + r i=1

and thus B' = B (mod S). D

proofs of the following theorem were given by Gauss ([16],

A.2431 , I"lathews ( t26l , P. 1521 and Pa11 ( [29], P' 4o4l '

THEOREM 1.1.3.

Suppose that Q1 = (a1,b1 ,c1) and Q, = lar,br,crl are

properly primitive forms with determinant D (non-square , if

D > o). Let p = gcd(a 1,a.,b.,+br), .1 = ar/tt *2 = ar/v,

*3 = (bt + 'br) /v and .3 = t1*2- Then

(f) The followj-ng system has integer coefficients, and a

unique solution x (rnod aa)

*1" = b2m1

*2* = b1*2

*3* = (U rbr+Dl /v

(A)

(mod a, ) (B)

(cl

(1.3)
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(ii) Suppose bg is the solution of the system (1'3). Then

Q3 - (a3'b3,n) is a form with determinant D and there

exists a bilinear matrix B such that

Q1oQ2=Q3 viaB-

Proof

C 
(i) First we have

btbZ + D = b1b2 * bi uZ"Z = bz(br+br) - u2"2 = O (mod u)

Hence the system ( 1 .3 ) has integer coefficients.

Now one can see that gcd (m1,rnrrmr) = 1 and that u3 divides

*t*2b2 *2*1b1 , m, (b.,br+D) /u - mrb.,m, = - m1m2c1 and'

n1 {b.,b2 + D)/u - mrm.,b, = - *1*2t2' Hence applying Lemma 1'1'2

one can find the unique solution x (mod ar) of the system (1'3)

by choosing integers 51r52,53 such that

S1*1 *S2*2*S3*3-1

and defining

x = S1b2*1 * S2b1*3 * 53 trtbz + oJ/u'

(ii)LetQ3=(ar,b'cr)withb3"solutionofthesystem(1'3)'

ft will be shown that "3 is an j-nteger. Using (1'3) {c} we have

bi D = bi (br+br)b, * brb2 = (b3-b1) (Ur-ut) (mod ua3)'
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Since from (1.3)(A), (1.3)(B),

bg - b1 = O (mod rn.,) and % -bZ = o (nod mr)

we have

h2"3

Hence c- = (b'-:3

D=O (modu3=m.,mr)

Now let B

- Ol /ag is an

be a bilinear

i 
-! ^-a*r.rr LE ysr .

matrix given bY

(b 
t 
bZ +D-b3m3 P ) /Pm.tmt )

*3

we have

h -la"2 "3 la -h"1 "3

B=

Now after direct cal-culation

u
(
\o

*1

^2

*2

*i

Qi (x 
1,x21 .az (Y., , Y, ) = Q3 (B'z)

where zT - (xtY1,X1Yz,Y1x2,Yzxzl-

This implies that Q3 is properly primitive ' since

are properly prinitive.

Moreover after direct calculation of Orj'"

shown that B is unimodular.

Since 
"1A12 

= a] ) O, u2A13 = a) ) O, B satisfj'es

of orientabilitY.

Hence Q1 o QZ = Q, via B. tr

Q1 and Q,

of B can be

the condition
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AIGORITHM 1 .1 .4.

fNPUT : Two ProPerly primitive forms Q' - (at,b.,,c.. )

and Q, = (a2,b2,"2) of the same determinant

D (non-square, if D > O)

OUTPUT : A properly primitive form Q, - (a3,br,ca)

and a bilinear matrix B, which satisfy

01 oQZ =Q3viaB-

Begin

1. u + gcd (a.,ar,b.*b.r);

2. m. + a./ ,,ti
tl

3. m^ <- a^/ uizz

4. *3 <- (bt * b.l/ vi

5. <Find 
"1 , =2, t3 such that t "1*1 

* =2*2 * =3*3 = 1):

Comment. This can be done with two applications of the

Extended Euclidean a)-gorithn.

6. .3 + m.,m, i

7. bl .. (s1b2m.l * 
"2b1t2 

* 
"3 

(brbZ + D/V) (mod at);

8. "3 
<- (bi s1 /ari

1v (b2-b3l/nz (b.,-br)/m., (b1b2+D-b3m3u)/pm''mr) \9' B \o *1 ^z t3 )

Return Q, - ("1,b'cr) rB;

end. o
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EXAI'{PLE 1.1.5.

Let Q1 = (5,6,-81 , QZ = (3,-2,-24) be forms with deter-

minantD=-16. Then

THEOREM 1.1.5.

Algorithm 1.1.4 correctly comPoses the forms Q1 and

QZ to a properly primitive form Q, via a bilinear matrix B.

Proof

It follows directly from 1.1.3. o

THEOR.EIVI 1.1 .7 .

alsorithm 1 .1 .4 resuires o (11(rog liO il I 1os rog ll0li )

elementary operations to compute a ProPerly primitive form Q,

and a bilinear matrix B such that Q., o Q2 = Q, via B. Mcreover

1og llell = o(toe lioll t, where jiell = max t ilor ll , llorllt .

Proof

step 1 reguires o(M(1og llOll I 1og los ll0ll t using the

Euclidean algorithm (see Theorem O.2.3). The steps 2,3,4

require only O(M(fog liOll t ) elementary operations for divisions.

step 5 reguires o(M(1og llOll t 1og 1og llAll ) elenrentary operations

for two applications of the Extended Euclidean algorithm (see

Theorem O.2.3) .

t1 4 4 I \(5,6,-8) o (3,-2,-241 = (15,-14,8) via B - |=\o 
s 3 n)'o
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Using Theorem O.2.3, one can show that

"1 = o( lloll 't, tz = o( llOll '), ss = o( li0ll ) (1.4)

Step 5 requires only O(t'1(fog liOll ) ) elementary operations

for mul-tiplication. Step 7 requires O(Ivl(1og llOll t elementary

operations for multiplications, since 1og lsil = Q (1og li0ll I

for i = 1,2,3. And Step 9 requires O(M(Iog llOll t ) elementary

operations for multiplications and divisions.

Hence the algorithm terminates in o(M(log llOll t log log llOll t

elementary operations. ft follows directly that

los liell = o(1og lloll ). B

COROLLARY 1.1.8.

If the forms Q..,QZ of the input of algorithm 1'1'4

are reduced, then algorithm i-1-4 reguires

O (1,1(1o9 iO | ) log log lO I I elementary oPerations to compute a

properly primitive form Q, (not necessarily reduced) and a

bilinear matrix B such that Q., o Q2 = Q3 via B. Moreover

ros llell = o(1oe lol).

Proof

If Q1, QZ are definite reduced forms, then from (O'7)

we have

lioll . lPl

which implies rog liOll = o(Ios lpll.
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If Q1, QZ are indefinite reduced froms, then from (O.13)

lloll < 2 ,6

which implies rog ll O ll = Q (los lo I I .

Hence the corollary follows from Theorem 1.1.7. o

DEFINTTION 1 .1 .9.

Suppose that l'1 = (rnrr) is a P x n matrix, and N a k x q

matrix. Then

is a kp * ng matrj-x and M I N is said to be t|re Xroneeker proCuct

of M and N.

PROPOSITION 1 .1.1O

MeN = (*t1N 
t1"N

\m
piN *Pr* )

Suppose Q1 o Q2 = Q3 via B, a; * Ql via 51, QZ * Qj via SZ

and Q, * Oi via 53. Then

O.i o a) = Ai via s]1ats, @ s2l

where I is the Kronecker product.

Proof

srrnn.qe /xr\ zx.ir /y1) = s^. / 
yi 

\ tzt. ThenD,yyvrs [ ') = 51.t -i (1), t,*r, ' ,*i, ,tr, z \ Vj /

z = (st I srlz' (3)

where =T = (*1y1 ,* 1yz,x2y1tx2y2) and (z')T = (xivi,"i v),x)V),x)V)l .
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From Q., o QZ = Q, we have,

Q.,(x1,xz).Qz(Y1 ,Y2) = Q3(B'z) ')

Qt,Yz, "o, (l:l = (Bz,r Mes Bz

t,

,(

= (B(S1 I SztZ')T MQ2 B(S1 @ szlz'-

Now since

M^, = sT u,,-'' si for i - 1'2'3
ti**i

we have (xi,x)) Mo, ("i\ (vi ,i'i) Mo: /ti) = (B'z')r Mol B'|z,2' ai \"il ' az \vjl '3

where B' - sr1.e {s., I sz) -

Hence Oi (xi ,*i | 'Oi(Yi ,Yi ) = ai (B'z' ) , which implies

0i o o, = oi via B,, since from Proposition o.1.4 oi ' a)' oi

are properly prirnitive forms and after computation it can be

shown that B' satisfies the condltions of unimodularity and

orientabilitY. tr

The following corollary is an application of corollary

1 .1 .8 and ProPosition 1 .1 .10.

(3) we have

;ll (vi ,vi) sl 
"oz 

sz (il) =

Now using (1) , (2

(xi,x)tsT Mor s
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coRoLLARY 1 .1 .1 1.

There exists an algorithm which comPoses two properly

primitive reduced forms Q1, QZ with determinant D (non-square,

j.f D > O) to a properly primitive reduced form Q, via a bilinear

matrix B in O(M(1og lDl) log lDl) elementary oPerations and

roe llell = o(1og iDl ).

Proof

If algorithm 1.1.4 is appli-ed to Q1 , Q2, it will

give a form Qj and bilinear malrix Br such that

Q1 oQZ =OiviaB'

in o(I..1(1og lDi) 1og 1og iDi) elementary operations, since

Qj,Q2 are reduced.

one can see that with ilOll = max { llOl ll , li02 ll}

llojll = o( lioll ')

from the steps 5-8 of the algorlthm 1.1.4 and (1.4).

From (1.5) and since Q1,QZ are reduced, hre have

(1.s)

lioill = orlol6) (1.6)

usi-ng (O. 5 ) or (O. 1 3 ) f or the appropriate tlpe of D.

Now we use a reduction procedure (O.3.2 if D ( O, 0.3.6

if D > o) to obtain a reduced form Q, and a unimodular matrix s

such that t Oi * Q3 via S. It requires

o(Ioe lloill M(rog llOill )) = o(Ios loi u(loe D )) elementarv

operations and



Qi o QZ = Q, via B = S-18'

where Q3 is reduced. Henee, from the above analysis, the

algorithm terminates in o(1o9 ioi I'1(1og lolt elementary

operations.

Moreover usinq O.1.7 we have

ilBli

Since S is unimodular, we have liSll = llS-1 li

Hence from (1.7), (1.8) we have
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ros llsll = o(1og lioill l = o(Ios lolt

Now using Proposition 1 . 1 .8 we have

ros llell = o(Ios lDl ). tr

(1.7)

(1.8)
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1 .2. THE FORI"I CLASS GROUP

ft will be shown that the equivalent classes of properly

primitive forms with determinant D (non-square, if D > o) form

an abelian group under composition. First it is necessary to

show the following proposition.

PRCPOSTTION 1 .2.1 .

Suppose Q1 o QZ = Q3 vj-a B, Ql o QZ = Ai via Br - Then

Q3 * oi'

Proof

and orj = blibzj bzrbri, orj =biibjj-b)ibi: for 1 <i<j <4'

ft can be shown that Orj = Aij for 1 < i < j < 4 with

direct calculation from the relation Ql (X1 ,XZl'Q2 (Y1 ,Y2) =

Q3(Bz) = Oi(V'z'1, where Z as in Proposition 1.1-3-

Since the greatest conmon divisor of A.r's for 1 < i < j < 4

is one, there exist integers "ij, 
1 < i < j < 4 such that:

LerB =(btt 
btz bt: b

t o, t bzz bzz otrn^)' 
B' = ( :;; i'ri:;: l;: )

I a.. 4.. = 1.
i 'i 1l r'l
+rJ

Let now
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-

st = .Er "ij(bilbz) - b)jott)
arl

st = i:j 
uti (bt ibr j - bt joitl

s3 = ,fj 
uij (biibzj - bijb2i)

sa = *t* uij)bribij - btioitl
+t)

Then with di-rect calculation, using the fact Orj = Aij

for1<i

r S. S^ \s= ( | z 
)\qq/"3 "4

is unimodular and Q3 -+ Oi via S. For details of the calculations

one can see Mathews ( [26], p. 1461. tr

Proposition 1.1.1O and Proposition 1.2.1 show that com-

position is well defined and independent of the choice of the

bilinear matrix B over the equivalence classes of properly

primitive forms with fixed determinant D (non-square, if D > O).

Hence we may write:

Q1 oQ2 =Q3

where Q, is used to denote the class to which it belongs for

1 < i < 3.

Also let Cl, (D) denote the set of equivalence classes of

properly primitive forms with determinant D.
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THEOREI'I 1 .2 .2.

(c!.(o), o) is a finite abelian grouP, where o is the

operation of composition and D is non-square, when D is

positive.

Proof

Let K,L,N € c{ (D) and (a., ,br,cr} € K, (a,br,crl € L.

(i) The operation of compositi-on of classes is well defined

by ProPositions 1.1.1O and 1.2-1.

(i:- 1 As an application of Theorem 'l - 1 .3 we have

(x o L) c N = J{ o (L o N} (see Mathews l26J' P. 153)

(iii) Let I be the class of c.e.(o) which contains the form

(:l , o, -D) . Then

K o I = t( for every K € Cl.(D)

since us j-ng Theorem 1 . 1 .3

(a.,,b.,,c., ) o (1,o,-D) = (ar rb., ,c., )

(iv) Let (a.,,-b., ,c., ) € M. Then using Theorem 1'1'3 we have

(a.,,br,c., ) o (a1,-b1 ,c1l = (1,o,-D)

Hence M is the inverse of the class K'

(v) Using Theorem 1 . 1 .3 can be shorsn that

(a,, ,b., ,c., ) o (a, ,br,crl = lar,br,crl o (a1,b1,c., )

HenceKOL=LOK.



-36-

From (i) (v) we have that ( CX (D) ,o ) is an abelian
grouP.

Since every class can be represented by a reduced form

belonging to it, we have that the number of classes of C!, (D)

is less than the number of the reduced forms. Now if D ) O,

then from inequality (O.13) it follows that the number of

reduced forms is finite. Similarly if D < O, then from in-

eguality (O.7) we have that the number of the reduced forms j-s

finite. Hence Cl(O) is a finite group. tr

The group (Cl 1c1 ,o I is called the f orm elass gt,oup. The

identity element of the form class group is called the principal

ciass.

in current research in number theory the language of

divisors (see t8j) is used instead of the language of forms,

since it is simpler. The forms seem to provide a eonvenience

computational model of the algebraic number theory. Since

later some results of algebraic number theory are used (theorems

4.1.5 - 4.1.61, it is useful to review briefly some relations

between guad.ratic forms and quadratic fields. Extended reference

to algebraic number theory is outside of the scope of this

thesis; see references in t13l for further details.

DEFINITTON 1 .2.3.

Suppose that 0(

field of rationals by

is a rational integer

of guadratic integers

6 is the quadratic extension of the

'8, where d is square-free. If f > 1

(see [13], p. 43r, then the ring consisting

of A( 'fil which are exPressible as



where a and

+ bfwo

b are rational
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inCex

Aaf

'f 
v!

is ca1led the crder cf

The di s c v'ini nan t

integers, and

d = 1 (nod 4)

d + 1 (mod 4)

denoted by ?, (d) (see [13] ,p.216l.

(d) is

l+G
| --7-

1t_
/d

7Lt

t)
I

  - E2 ALf-Lu (see [13J, p.215]

It is known that the strict equivalence classes of iCeals

of an order Df(d) form an abelian group under the eomPositlon

of classes of ideals. (See [13J, P- 114;197;212; and [5],

p. 2781. Moreover it can be shown that the equivalence classes

of properly prirnitive forms (in Dirichlet's terminology (see

below O.1.7), with fixed discriminant A form a group under

composition, (Proof similar to that of Theorem 1.2.21. This

group is isomorphic to the class grouP of primitive ideals of

the order tf(d) with discriminant A = f'zd with d sguare free

(see [13], 2OO-2151. Since the Gaussian forms are a special

case of Dirichlet's forms and they have discriminant A = 4D

(where D is the determinant of the forrn) , we have that Cl' (D) is

isomorphic to class grouP of primitive ideals of the order

?Zffdl , where D = f2d with d square-free.



-JU-

THEOREI'I 1.2.4.

If J = [cr,BJ is a Primitive ideal of an order 02f (d) ' then

Q(x,Y) =N(ox+BY)/N(J)

is a ProPerty pri'mitive integral binary quadratic form with

determinant D = f2d. The map defined in this way induces a

1-1 corresPondence between Cq (D) and the class group of prim-

itive ideals which is a group isomorphism'

Proof

See Cohn (t13l ' P' 2c,A_216\ ' u
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1.3. DIRICHLET'S-4PPROACH

fn Section 1,1 we discussed Gauss' method for comPosition

of forms, which makes use of bilinear substitutions. rt was

also shown that the operation of composition is well defined

over C!.(D). Dirichlet's method of composition of classes of

forms depends uPon finding a pair of representatj-ves which can

be simplY comPcsed-

DEFT}iITION 1.3.1.

TVo forms 0 = (A,B,C) , F = (arb,c) with the same determ-

inant D are called cancordenL if:

(i) gcd(A,a) - i

(ii) B = f '

ThefollowingproPositionisacornbinationofresults
hrr t-.3sse1s ( t12l , Lemma 2.2, P' 334) and Gauss (t161 ' A'158) '

l$.r YJ v

PROPOSITION 1.3.2.

qllr,r,rrse K and L are classes of Cl' (D) ' Then there exist

forms Q1 € K, QZ € L which are concordant'

Proof

Let 0 = (arb,c) € K and F = (A,B,C} € L' First will be

shorm that Q can represent an integer N coprime to A' we

reguire coprime integers x and y which satisfy for every prime

divlsor P of A:
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(i) If p + a, then p t x and plv.

(ii) rf p + c, then plx and p { y.

(iri) rf pla and plc (hence p + Zbl, then p * " and p * v.

One can see that such integers xry always exist and that

Q(xry) - N is coprime to A. Since xry are coprime, there exist

integers k, m such that

kx + mY ='l .

Then G = (N,M,*) with 11 = k(bx * cy) - m(ax + by).

Since N, A are coprime, then there exist integers t' z

such that

tN + zA = 1.

l'low we do the transformations

Now 1et
1x -m\

Q+Gvia ( )tyk/

G

"*ervia 
(t u\

' \o 1)

F*e.via ('v\z, \o 1)

with u = t(B-M) and v = z(M-B).

rt is obvious that Q1 € K and Q' € L. Moreover direct

calculation shows that Q1 and Q, are concordant. B



PROPOSITION 1 .3.3

Suppose that

properly primitive
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Q1 = (Arbr*) and Q, =

forms with determinant

(arbr*) are concordant

D. Then

O O (b2 -Pl /ea \
Aa 2b )Q1 o QZ - (Aa,b,*) via B = ( 

1

\o

Proof

ft is a direct apPlication of 1.1.3- o

Dirichlet's method of composing two properly primitive

forms Q., Q- with the same deternrinant D, finds as in Propos-
tz

jtion 1 .3.2 a pair of concordant forms Qi = (A,b, * ) and

4 = (a,b,*) equi-valent to Q1 and Q2 respectively- Then by

Proposition 1.3.1 there exists a bilinear matrix B such that:

0i o Oj = (Aa,b,*) via B

If Oi * Q1 via St and A)-+ Q2 via Srrwhere St

modular, then by Proposition i.1.1O and (1-91

(1.9)

, SZ are un1-

we have?

Q1 o Q2 = (Aa,b,* ) via B(S,, e 52)

Lagarias ([2O], p. 169) gave an algorithm for composition

of forms; it follows Dirichlet's method. To comPose two properly

prirnitive forms Q1 = (a., ,b., rc., ) and Q, = Gr,br,crl with the

sane determinant D (non-square, if D ) O), it finds first two

concordant forms Ai = (a',b,*) s Qt and 0i = (A'rb,*) s QZ, and

thus a bilinear matrix B (using 1.3.3 and (1.10)) such that

(1.10)

Q. o Q. = (A'd',br*) via B.
l4
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To find two concordant forms Oi

Q1 + f = (A,B,C) via

, Qi,

s=(

it transforrns

t o\
l1)

(1.11)

by choosing a I such that

gcd(A,ar) = gcd(a., +l(2b1 + lcal ,arl = 1

and after transforms

/1 ur
F*ai viasr=(o .,)

Qz*a)via'r=(: ., I

where u = m(B b2l , u = n(bZ e) for some integers

mrn: rrat + nu2 = 'l .

One can see with direct calculation that Qj, O) are

concordant.

The hard part of the algorithm is to compute the I

and thus the form F. Hence first we give an algorithm to

cornpute F as above.

AIC'ORITHM 1.3.4.

INPUT : A properly prinitive form Q = (arbrc) and an

integer N. we assume w.1-o.9. that a is odd. (see

remark below)

OUTPUT : A form F = (A,B,C) sc Q with gcd(A,N) ='l and a

unimodular matrix S such that

Q*Fvias
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Procedure PRfIIEFACTOR (ArN)

Comment This procedure factors determines integer n., and m,

such that

(i) N = ttl.rll2r
lL

(ii) gcd (m., ,mr) = 1,

(iii) gcd (A,mr) = 1 and

(iv) If p prime divides m.,, then plA

Begin

1. z + gcd (A,N) ;

v <- Ni

2.while zt 1 do

Begin

3. <choose the maximum I for which v/z\ is integer);

4. v * v/z\;

5. z + gcd (z,vli

5. end

7. *1 * N/vi ^2 
<- v;

Return (m., ,m, ) ;

end.

The algorithm for the computation of the form F is:



-44-

Begin

1O. (m ,*1 ) + PRIMEFACTOR (a,N);

1 'l . (m, ,m, ) * pRtt'tEFAcToR (2b+c,N) ;

Cornment Now N = *1*2*3 and m1 ,m2rm3 satisfy:

gcd (a,m., ) = gcd (m., ,m'mr) = gcd (2b+c,N) = gcdlmr rmr) = 1

for p prime, if plm, then pla and if plm' then plZU.,+c.,

12. <Find integers kZ, kS such that, k2*2 * k3t3 ='l)

13. <Find integers k1, ka such thatt kltl * k4*2*3 = 1);

14. I <- kr*1 (kZmZ + 2 k3*3) (mod arl;

Cornment Now I is as in (1.11) with the required property

't'
15. 1"1_ * S-M. c.

r Q"'

Return F ,S:

,1 O\
s<-(^ 

,)

end. tr

Remark

If one has O = (a,b,c) with a even, then c is odd, since

O is properly primitive. Moreover

lo t \Q + (cr-bra) via S' = ( )\-1 O

Hence one can apply algorithm 1.3.4 to the form (cr-b,a), to

compute a form F = (A,B,C) with gcd(A,N) = I and a unimodular

matrix S such that,
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(cr-bra) + F via S.

Theneasj-lyQsF and

Q*FviaS'S.

First the procedure PRIMEFACTOR is analysed and its correctness

is proved.

THEOREM 1 .3.5

The procedure PRI!"IEFACTOR (A,N) correctly computes

(mn,m-,) with the required properties in O(M(1og K)1og K)
tz

elementary operations, where K = max { lal , iwl}.

Proof

suooose rh^r A = TI .,to il rl3 and N = Ji Pho n 
"t' 

rteut/yvre LlraL 
'a - li }J(

s t B 'F c 0 y Y

will be shown that

m^n-z = l trt

Now Iet v. ,\i,r! denote Vrlrz respectively at the beginn-

ing of the i-th 1oop. One can see that ,!*1 = gcd(zyvr*1) , "i,
hence for some integer T, we shall have ,T*1 = 1 and ,T I 1.

n
rt is obvious that v, lw for every i. Also n s Yl.t' for

YYIA
every i.

Now since "T*1 = 1, for each a there is ja such that
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po lr., and p6*2., +1 . Hence since =i*1 = gcd (z1rv1*1) , it.-u ,c u ,0''

follows that potV"o*.,. But we know that ti*t |ti for every i,

so we have po*v1*., for every 0.

Hence we conclude that

n^,
m. = V-,n = fl S-.Iz J^'+ | Y

Y

and thus the procedure PRII'1EFACTOR correctly computes (m., ,mr).

One can see that 2,,. = gcd(z.rv.-.) ( z, for i < T
l-+ | - .l-' .l-+ | r

and thus

z./2. ,.1' I+ |

which inplies

^itt-1

Hence we have

T T , *2/,
I z.

i-=1 r i=l

T)
Now since n zi ( N, we have 2T- /2 < N which implies

i=1

T = O( \ffogT) < o( \ffogTl

Also one can see that

T
I l.,. ( t h^ = o(1og N) < o(1og K)

i=l ^ 0

a l1

Hence the procedure requires T = O ( 0og Kl "'l aPPlications

of the Euclidean algorithm and O(1og K) divisions. Hence the
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procedure terminates in o(M(1og K)1og K) elementary oper-

ations. o

THEOP.EM 1 .3.6.

Algorithm 1 .3.4 correctly computes a form F ns Q

with gcd(A,N) - 1 and a unimodular matrix s such that o * F

via S.

Proof.

It is sufficient to prove that the chosen I satisfy

gcd(A,N) - 1 with A = a + tr(b + Ic)

First we have that 2 : a -

The integer N = *1*2*3 with mrr i = 1,2,3 satisfying:

gcd (a, *t ) = 'l

gcd(m.,,mrmr) = 1

gcd(2b+c,m3) - 1

gcd(mr,mr) - 1

(1 . 121

(1.13)

(1.14)

(1.1s)

and for p prime we have

pl*z*: + Pla and p { z (since 2 + a) (1'16)

plmz oplZU+c ('17l.

Now from steP 14 of the algorithm we have

tr = O (mod m., )
(1.18)

From steps 12, 14 we have

tr = 2kt*1k3*3 = Zktmt (1-krmr) = klt1 = 2 (rnod mrl (1 ' 19)
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and from stePs 13, 14 we have

), = k1r1k2*2 = (1 k4*2*3)kZmZ = krm, = 1 (mod mrl (1.2o)

Now let p prime such that PlN. Then either plml or

*!* ^- ^lmy lr"2 vr r i.,.3

Case p lmr

From (1.12) p*a and from (1.181 plr- Hence p*a

Case p lm2

From ('l .15) pla and p + 2. From (1.17) pi2b+c and hence

using (1.19) we have

2b+),c=2b+2c=c(modp) (1 .21)

If c = O (mod P) , then since Pi2b a ct we have 2b = O (mod p)

which contradicts with the fact that Q is properly primitive '

Hence c { o (mod P) and from (1.21}

2b + 2c f o mod p fi'221

Now using (i.19) , (1 .211 , (1 .22) and the facts pla, P+2

we have

A - a + f (2b + lc) = zzb + 2c) * o (rnod P)

Hence p i A

Case p l!n3

From (1 .1 4 ) we have

zb+c*o(modp) (1.23)
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,

From (1.15), (1.20), (1 .23) we have

A = a + l(2b + lc) = ).(2b + c) = 2b + c { O mod p

Hence p + A.

From the above cases we conclude that

gcd (A,N) = 1. o

THEOREM 1 .3.7

The algorithm 1.3.4 termj-nates in O(!'l(1og x)iog 61

elementary operatS.ons in worst-case and log lisll = O(1og K),

where K = max t il0ll ,nl .

Froof

Steps 1O-11 by Theorem 1.3.5 require o(M(1og K )1og x )

elementary operations. Steps 12'13 by Theorem O.2.3 require

O (M (1og K ) 1og 1og K ) elementary operations and

1og l** | = O(1og K) for i = 1,2,3,4. Hence step 14 by Theorem
L'

o.2.2 require o(l'1(1og K) ) elementary operations and

1og ll | = o(1og K) .

step 15 requires O(U(1og K) ) elementary operations.

Hence the algorithm terminates in o(14(1og K ) log K )

elementary operations and sj.nce 1og lll = 0(Lo9 K) we have

los llsll=o(1ogK)- o

The following algorithm is Lagarias' algorithm for

composition using algorithm 1 . 3.4.
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ALGORITH}I 1 .3.8

INPUT : fwo Properly primitive forms Q1 = ( d1,b.,,c., ) ,

Q2 = (u2'bz'"2) with the same determinant D

(non-square, if D > O).

OUTPUT : A properly primitive form Q, - (a:,b3,c3) with

deierminant D and a bilinear matrix B such that

Q1 oQ2 =QrviaB

Begin

1. <Using algorithm i.3.4 fj-nd a form F = (A,B,C) * Q1 with

gcd(A,ar) - 1 and a unimodular matrix S such that

Q1 -+ F via s>

2 . (Fi nd integers m, n: n',A * nu2 = 1 ) i

3. u * m(A - br);

4. v * n(b^ - B);
z

/1 u1
s. sl <- t I i| \o 1/

7. "oi 
* sT Mr sr,

T8. ltQi <- si vQ2 s2,

Comment Now Qi , A) are concordant;

<Let 0i = (a'rbr*) and Oi = (A'rb,*));

Q3 * (A'a' ,b,*l i

a

lt v\.
6' sz+ |.o ,)i
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Comment The matrix B is constructed as in (1 ' 10)

Return Q3, B;

end. tr

G THE'REM 1 .3.9

Algorithm 1.3.8 correctly comPoses the forms Q., and Q2

to a form Q, via a bilinear matrix B'

Proof

see Theorem 1 .3.3 ano description of the algorithm

(below Theorem 1.3-3)- o

THEOREM 1.3.10

Alsorirhm 1.3.8 terminates in o(1o9 llOll |t 0og llOIl lt

elementary operations and 1og ilell = o(1og ll0ll l, where

ll oll = max { lior ll , llo, ili .

Proof

By rheorem 1.3.5 srep 1 requires o(1og l[Oll u 0.og liOll t

elementary operations and rog lls ll = o(1og ll0ll I (1 '241

srep 2 by Theorem o.z .3 requires o (1og 1og llO ll"1 (1og liO li) )

elementary operations, since 1og lel = O(1og llOll t using f .241'

Moreover by Theorem O-2-3 one can see that
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Ios l*l = o(1og llOll t and los l"l = o(1og llOll ). Ilence steps

3-4 require o (M (1og liO ll t ) elementary operatj-ons for multi-
plications and 1og 11s., ll = o(1og llOll l, 1os llszll = o(los lloll t f .251

Easily steps 7-8 require only o(utlog llOll ) ) elementary

operations.

From (1.24) and (1.25 ) we have that steP 9 requires only

o(M(fog ll0ll I elementary oPerations for multiplications.

Hence the algorithm terminates in o(1o9 llOll u(1og llOll lt

elementary operations.

AIso by Theorem O.1.7 ' (1 .24) and (1 .25) we have

ros ijell = o(1og l;oii t. tr

COROLLARY 1 .3.1 1

. If the forms Qi , QZ of the input of the algorithm i - 3.8

are reduced, then the algorithm has running time

o(1o9 lpl ttl(1og loitt elernentary operations and 1og llell = o(1o9ioil.

Proof

Using the inequality (O.7) or (O.13) for the appropriate

type of D, we have

1og lloll = o(1os lol I

Hence the corollary follows from Theoren 1.3.10. tr

Remark

(1 .261

Comparing algorithrn 1.1.4 (Gauss' method) with algorithn

1.3.8 (Dirichlet's method) one can see that 1.1.4. is simpler
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Moreover our analysis of 1 '1 '4 shows that the Gauss'method

composes two forms faster than Lagarias' algorithm (see

Theorems 1.1.7 1'1'8 and 1'3'10 - 1'3'11)

COROLLARY 1.3.12

There exists an algorithm which composes two properry

primitivereducedformsQl,Q,withdeterminantD(non-sguare'

if D > O) to properly primitive reduced form Q' via a bilj-near

matrix B in o(M(1og lol)ros lolt elementary oPerations and

tog ilell = o(1os ioi )'

Froof

If algoritirm 1'3'8 is applied to the reduced forms

Q1 , QZ, j-t will yield a form Qi (not necessarily reduced)

and a bilinear matrix B' such that

Q1 o QZ = Qi via B'

ino(M(loglpltloglolle}ementaryoPerationsusingCorollary

1.3.11.

Now one using fi '241 - 11 '26) can show

log lloill = o(los lolt ( '271

Now we reduce Oi to Q3 using algorithn o'3'2 ot

O.3.6for the appropriate tyPe of D and let

ai + Q3 via s.
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By Theorem o.3.4 or O.3.7 and (1.27 ) the reduction can

be done in o(r'1(Ioe lioill) rog lloill t = o(los lol u(1og lol))
elementary oPerations and

rosllsll =o(loglloill)=o(loslol) (1.28)

Now from Proposition 1.1.10 we have

Qi o Q2 = Q3 via B = S-18'

Now using Theorem O.1.7 r+e have

iiBll < 15 lls-1 li lie'ii

since lis-1ll = llsll = e(los lpll bv f.28) and

1og iis' il = o(1og iolt by Corollary 1.3.11, we have

rosiiell =o(Ios joi). tr
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2.1 . GENUS CHARACTERS

DEFINITION 2.1 .1 .

A hcnnnorphrisn X from a group (Gro; to the rnultiplicati-ve

subgroup of the field of the complex numbers is a character

of the grcup G.

DEFINTTTON 2.1.2.

The character Xo of the group G which satisfies

Xo(a) =1Va€G

is ca11ed the prirtcipaL cV,creci'€!.

DEFINITION 2.1 .3.

The characters of a grouP G themselves form a group with

identity element Xo with respect to the multiplicatj-on

(x.,.xr) (a) = X1 (a).xr(a) v a € G (see Apostol [4] 'P.135]

A character x of a group G of order 2 i.e. such that

x'=Xo

is cal1ed a genus eharaeter.

In this sectj-on the genus charactes of the form class

group will be studied. First it is necessary to show the

following lemmas. The first is due to l'lathews ([26J ' P' 132l. '
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LEMUA 2.1.4.

IfQisaProPerlyprimitivebinaryquadraticform,

there is a number N rePresented by Q with gcd(N,ZD) = 'l '

Proof

N = p(xry).

It can be shown that gcd (Nr2D) = 'l - B

Remark

qrrnr)nqe that O = (arbrc) . Then letv qrrvvv

n
gcd (a ,c,ZD'I - n P^ 

0
-0

n

ecd(a,zDr =fl p:*nn:u Q.1l
6V0koa

gcd ( c ,2D) = n P^ 
0 II 'r ^.Y (2 .21

GLIYI
e u^ z 6 h*

2D - Tl p^o rg oF r'r^.-f n si* Q.3)
o. tr B - Y ) i=1 -

where pi, 9i, Ti, are distinct primes and no 
"" 

( 
"o,

n<k<erV^(u.andtcx 0 0' ts F6 Y Y

If x = fl q^ il s' and Y = n T-.t then let
b 'F i=t a y Y

rf we partition the =i'" in two disjoint setsr saY

{s1r... rsu} , {"r* 1t. -.,su}, then Q(x'rY') = N' with

x' = 
I 

gg.=1..."u, y' = IIry.su*1...s6 satisfies

gcd (N' ,2D) = 1 .



LEM-|'1A 2 .1 .5 .

Q:rnrrnco

(with the same

represented by

Proof

Let Q., (x 1,x2) =

Then by definition of
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N1 , N2 are represented by the forms Q., ,

determinant) respectively. Then Nt -NZ

Q1oQ2

Q2

is

and 0, o QZ = "3 via B.

QrGl,zZl = Q., (xt,x2\.Qr$r,yrl = N1N2

where (zr,zrl = B- (*tyi ,x1yZ,r2y1 ,x2y2)T. B

DEFINTT]ON 2.1 .6.

For p ood prime and n an lnteger, the Legendre sgmbol

is defined by

N2, Q, (xi,y1) = N2

the composition

tlt = [ 
+1 if x2 = n mod P is solvable

'p' - 
t -1 j-f x2 = n mod p is not solvable

o if pln

A Legendre symbol has the following properties

(i)

(ir)

(T)

rBr
Y

(3)

,3)

rlrp

(-t ) (p-1) (e-11/4 for q odd prime

-1( rii ) (F)

(iv) &l
P

= (-t ) (P-11/2

= (-t ) (P'-11/8
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Now for each prime divisor pi of D we define the "function"

X^ (cf . below) such thatri

X^ :Ct (D) + {-1,1}
v.-a

I\I

via X^ (Q) : = X^ (N) : = (-)
'l_

where O is a form representing a class of C!. (D) , N is an integer

represented by Q wlth gcd(N,2D) - 1 and tSf is the LegendrePi
symbol.

Moreover we define

x-n (Q):= x-4 (N) = (-1) (N-11/2 when D = o,3,4,7 (mod 8)

" 
(2.41

Xg (Q) := Xg(N) = (-1)(N -11/8 when D = 2,o (mod 8)

(2.51

X-g (Q) := X-4 (Q) .X8 (O) when D = 6 (mod 8) (2.6\

where O is a form with determinant D and N is aninteger represented

by Q with gcd (N,2D) = l.

The following theorem is due to Mathews ([26], P. 133).

THEOREM 2.1.7

The "functj-ons" *n, for each prime divisor p of D, X-4,

Xg, X_g are genus characters of Ct (D) .
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Proof

(i) First will be shown that xp(Q) is well defined on

cr (D).

ByLemma2.l.4rtherealwaysexistsannurnberN

represented by Q with gcd(N,2D) = 1' Let N't, N2 be

such that

Nt = Q(k'v) ' 9cd(N1'2D) = 1

N2 = 9(m,n) , 9cd(N2,2D) ='l

then NtN2 = Q(k,v) .Q(m,n) = x' - Dyt (2'7)

where x = akm + b(kn + mv) + cvn, y = kn - vm.

Now from (2.i1 we have

N. N^
(-!al = i v PlD, P odd Pr5-me

v

N. N.
Hence , ni) = ,;, which implies Xn(N.,) = xp(N2).

Moreover if Q1 o QZ, then from Theorem O'1'5 they re-

present the same numbers, hence Xn(Q.,) = Xp(Q2) '

Hence has been shown that Xp t" well def ined on c.0 (D) .

Now will be shown that Xp is an homomorphism'

Let N., rN, are rePresented by Qr, QZ € Cg(D) respectively'

Then from Lemma 2.1.5, N'NZ is rePresented by Q't o Q2' Now

we have

N., N, NnN"

xp(Qi)'xn(Qr) = (+) '(;11 = (+=) = xp(01 o Qr)'

Hence Y is a character of CL (D) .
'\h
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(ii) rt will be shown that X_4 is character when D = 3,7

(mod 8). If D = 3t7 (mod 8), then D = -1 (mod 4).

Hence f rom 12 ,7 | we have

N.,NZ = x2 Dyt = x2 + y' (mod 4)

Since N., , NZ are odd, one of x,y is odd and the other

even. Hence

NtN2 = 1 (mod 4l which imPlies

Nt = N2(mod 4) or

t_r ) 
(Nr -11 /2 _ (_r ) 

(Nz-1) /2 .

Hence X-a (Q)=X-n (N.', ) = /-lNZ) is well defined.

Now 1et M1, MZ be represented by Qt, QZ respectively

with gcd (M., ,2D) = gcd (Mr,2Dl = 1 . Then

x-4 (Q1 o Qr) = x-4 (l'l1I'12) - (-t ) (Mt142-1l./2

and x-4(e1)'x-a(er) - (-t) ((Mt-1)+(M2-1ll/2

One using the fact Ml a 1,3 (mod 4l and M, = 1,3 (mod 4l can

show

(".,", 1l /2 = (M., + MZ 2l /2 (mod 2l

and thus X-4 (Q1 o Qr) = X-4 (Ql )'X-4 (02) - The other cases

can be shown similarlY. o

Ler D = zt p?ul:1, p2?t.*t n1o.t.*7 n3o"*' and M be the

number of distinct prime divisors of D.
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TABLE

BASIS FOR GENUS CHARACTERS

d sqr:are freeDeteriT'dnant D = dfz

d= 1 (rcd4) f = 1 (Ircd4)

f=2(npd4)

f=O(ITDd4)

d=3(ITPd4) f=1(ITDd2)

f=2(npd4)

f = o (ITod 4)

d= 2 (ITDd 8) f = 1 (npd 2)

f=O(IrDd2)

&1""'*%

,n.,, "'*n=

X_4,Xp.,, "' ,XO, &1" " '\'XB

X 'X^ ""rX^gvlrr

X ,X* , "',X^8 t'1 rr

\1" "'h'

\1'" "\'x-4

X^ r'"r1

X^ r"'
v1

X- r.. .
Y1

X ,X^
-4 Y1

X -,X-
^ 

Y.

lft:nber of
generators

M-i

t'I-1

lr,1

l{

M- 1

Ir'1

M-1

M

M-1

l'1

,X^rr

,X^

*nr' " r*n,

*nr, " ,X*'X-n

tnr, ",X*rX-4 , XB

d = 5 (rod 8) f = 1 (rcd 2) *_r,rn,,,'"'b, &1""'*n"

f = o (rrod 2) *_n,*8,Xp1,...,b, &1""'\

THEOREM 2.1 .8

Ifthefirstcharacterofeachrowoftheabovetable

isdeleted,thentheremainingcharactersareabasisforthe

genus characters of c[ (D) for the appropriate type of D'

Proof

Venkov ([4O], p. 143-1441' The proof is omitted'

refers to the theory of teruary quadratic forms ' o

Qoe

since it
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Lagarias in L2o!, gave an algorithm for computation of
the characters xp (Q) , His algorithm first obtains an integer
M represented by Q with gcd(M,2D) = 1i after it evalutes Xp(e)
by computing the symbor tll using Euler's criterion. To find-'P
an integer M represented by Q, coprime to 2D, it uses algorithm
1.3.5. By algorithm 1.3.5 finds a form f' = (A,B,C) with
gcd (A,2O) = 1. Then

F(1,O) = [ = lv! and gcd(M,2D] = 1.

We sha1l give an algorithm which obtains a number N

represented by Q with gcd(N,2D) by using the constructive proof

of lvrathews' leinma 2.1.4, and after computes the synbol t*l . our

algorithm inproves only the ccnstant of worst-case .o*pt"*ity
bound of Lagarias' algorithm.

ALGORITHI"I 2.1 .9

II'{PUT : The set P = {p 1,p2,...,pr} of all odd distinct
prime divisors of D and a reduced form

O = (a,brc) with determinant D.

oUTPUT , XO(Q) v p € p and \l_4(e), Xg(e), X_g(el when

appropriate.

Begln

1. *1 + gcd (arcr2Dl;

2. .2 <- gcd (a,2D);

3 . *3 <- gcd (c ,2Dl i
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4. <Compute R - {q1,...,gm} c P where q, as in (2.1)>;

5. <Compute T = {t1r... rr.} c P where ti as j-n (2.21>,

6. <Compute S = {s1r... 16rr} c P where =i as in (2.3) >;

Comirrent To compute RrTrS, we do for each p € P,

which does not divide m., the following. f f plm' then

p € R. If plm:, then p € T. Else p € S.

x <- 1i

7 . For-<each element w of R'U S>do

x <- x.w ;

y * 1;

8. For4each element r of T>Co

y * y.r;

9. N <- ax2 + 2bxy + cy2 i
10. Por P = 'l until k do

Begin

conment The synrbol tll will be computed usi-ng Euler'sp

criterion; tll = n 
(P-11/2 (nrod p)

v

11. N1 + N (mod pr);

12. XD. (Q) * N1 @i-ll /z (mod pr);

1 3. end

if D = 0,3,4,7 (mod 8) then

14. x-4 + (-1) (N-11 /2.

if D = O,2 (nod 8) then
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/1,12 _1 \ ,/9.15. X.r(Q) * (-1)"' 't

if D=6(modB) then

16. x-r(Q) * (-1)(N-11/2+(N'-11/8'

end

THEOREM 2.1 .10

Algorithrn 2.1.9 correctly computes the characters t'r-'

for each p odd prime divisor of D, and X-4, X-g, X-t when

appropriate.

Proof

Lerrfna 2.1.4 shows that N has the required properties and

Euler's criterion justifies the computation of the Xi s. u"Pi

THEOREI{ 2 .1 .11

Algorithm 2.1.9 terminates in o(1og lpl M(1og lDl))

elementary operations.

Proof

From Theorem O .2 .3 and using (O. 6 ) or (O. 1 3 ) (since Q

j.s reduced) we have that steps 1-3 reguire O(1og 1og lOl t{(log lOll t

elementary operatj.ons.

steps 4-5 require at o(r ) divisions, where r is the

number of distinct prime divisors of D. Since r = O(1og lplt

los tos lol), steps 4-6 require o(1og lpl lI(1og lolt/rog los lpll

elementary operations.
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Loop 7 and loop I reguire r multiplications at most. Also

l"l
Since 0 is reduced, step 9 requires O(M(1og loltt

elementary operations and N = O(iDit).

From Theorem A.2.2, step 11 requires O(M(log lDl))
elementary operations.

From Theorem O.2.4, step 12 reguires O(1og PiM(1og pr))

elementary operat j.ons .

Now the loop 1O-13 require

O(1o9 joju(1o9 iDi)/ log ,oi* I 1og P t"l(1og p)) =

PiD

o (1os io 1n (ros iD I ) )

elementary operations .

Finally steps 14-15 require only o(!4(1og lDl) ) eiementary

operations. lience the algorithnr 2.1.9 terminates in

, , o(M(1og lDl) log lDl) elementary oPerations- o

THEOREM 2.1.12

Suppose that X j-s a genus character expressed in terms

of the basis for genus characters specified in Theorem 2.1 .8.

For Q a reduced form with dterminant D, one can compute X (a)

in o(1o9 lol M(1og lDl ) ) elementary oPerations- o

Proof

suppose that {xr}is the basis of genus characters and
a.

X = fl Xit with "i € {o,1}. To compute X(a}, compute Xi(Q)
P
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for all the i's using algorithm 2.1.9. rn O(1og lOilt(logloiI
elementary operations and afterwards compute the product of

Xi (e) 's in o (1o9 lo | /f og 1og lo I t elementary oPerations, s j-nce

a.
xif,(Q) = t 1- tr

DEPTNITION 2.1 .1 3

A form Q (or a class K ) 0) belongs to the principal

genus if

X (a) - i for every Eenus character.

TI.iT'ADIiM ) 1 1A
I lllvr\Lr

suppose tha'u the compiete factorization of D is given.

It is pcssible to deciCe whether or not a form Q with determinant

D (non-square if D > o) belongs to the principal genus in

O(1o9 iiOil u(1og ligii )) elementary operations in general and in

O(1og lOl t'l(1o9 iOl)) elementary oPerations if Q is a reduced

form.

Proof

First by using the algorithm o.3.2 or 0.3.6 we reduce o

to Q'. This from Theorem o.3.4 or o.3.7 can be done in

o(1o9 llOll utiog ilgll ) ) elementary operations. Afterwards we

compute the basis characters xi(Q') in o(1og ipl M(1og lpl ))

elementary operations. If xr(Q') = l for every i, thaQ

belongs to the princiPal genus.
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Now easily for every form Q, we have

llo ll > {IDTE

Hence the algorithm terminates in o(1og liOll u(1og llOll lt
elementary operations .

If O is reduced, then by (O.71 or (O-13) we have

rog llo ll = o (los lo I t

and thus in this case the algorithm terminates in O(1og ioltutfogiol))

elementary operati.ons. tr
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2.2. DIRICHLETIS L-SERIES

First an extension of the Legendre symbol is defined

DEFTNTTION 2.2.1

rf n > o odd and n = p; o:'', then for an inreger

m with gcd (m, n ) = 'l let tfit , = ,#, 
tt 

t*t 
tt 

, where (*)plPPi

is the Legendre s1mrbol. Then (*) is caIled the Jacobi symbol.

The following are some properties of the Jacobi symbol

(see Ayoub [5] , p. 2891 .

(i) (*) = (*) (i) for m,n odd and gcd (a,m) - gcd (a,n) = 'l .

>lr a h(ii) (T) = (;) (;) for n odd and gcd(a,n) = scd(b,n) = l'

(iii) (i) (3) - (-t ) (t-i ) (a-1) /4 for a,n odd-

-1 c_1) .n-11/2 for n odd.(iv) (") =

) _1) (tt -11 /8 for n odd.(v) (;) = (

The restriction that n to be odd of the Jacobi symbol

(*) makes necessary an extension to permit even n.

DEFTNTTTON 2 .2.2

The Kronecker symbol for an integer d is defined: see

Ayoub [5], p. 290).
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A 1 Jacobi symbol if gcd(d,n) = t for n odd positj-ve
(a) (i) := {n [ 9 if gcd(d,n]llfornoddpositive

.r r o if 2id
(b) (*),= i *t if d = 1 mod I

4' | -1 if d=5modB

.rdd
(c ) {fr) : = (;) (;) f or rn, k Positive.

This extension of the Jacobi symbol respects properties (i) - (v)

above.

Now Dirichlet's L-function will be defined as an exPression

of Kronecker s1'nboIs -

DEFINITION 2 .? .3
-lu

Let y, (n) = (:t the Kronecker symbol. Then
"q n'

o X^ (n)
t te .. I = I'o for s € C (complex numbers).t-, l>r\d, - 

r.r:1 nS

C is Dirichlet's L-function.

some of our complexity analyses for later algorithms

are based on the assumption of the truth of the Generalized

Riemann Eypothesis (G.R.H). The G.R.H. asserts that the zercs

of L(s,1U) in the critical strip O < Re(s) < 1 all lie on the

line Re(s) = 1/2 where Re(s) is the real Part of s'

some basic results about r'(1,Xal are given below' There

are important formulae, due to Dirichlet, relating L-functions

and class numbers, and algorithms for computing L(1rXd) are

given in ChaPter 4.
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THEOREM 2.2.3. EULER'S PRODUCT

co

L(1,Xa) = fl t P 
)

p prime p-):U (e)

Proof

See Apostol ([4], p. 231).. o

THEOREM 2.2.4

o < L(1,X^) < 3 .tn Idl.q

Procf
/

See Ayoub ([5], p. 338). o
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3.1 . TNFRASTRUCTURE OF Cg (D} WITIT D POSITTVE NON.SQUARE

The number ), of reduced forms in a class of the form

class group Cl, (D) is usually guite big ( ), o cE , where c is a

positive constant, see 3.1.19 and remark below it). Hence

t.

there is-no algorithm running in polynomial time to compute

the set of reduced forms of a class of Cl, (D) . Moreover there

is no known efficient algorithm for deciding whether two

indefinite forms 0 and F belong to the same class. The only

known strategy deciding eguir;alence of indefinite forms is

!1^^ €^'1 1^r-'.i r^.LJIC I Uf f Vw !rr\-,! .

(i) Reduce F and O to F' and Q' respectively.

(if) Search if Q'belongs to the set S of reduced forms

equivalent to F'.

(iii) If Q' € S, then Q ry F, 1f Q' ( S' then a * E'

Gauss, algorithm for computing the reduced forms j.n an

equJ-valence class and deciding equivalence of forms is described
.r /2+el . Anj-n section A below. This algorithn runs in time o(D'

o(D1 /4*e) argorithm,'due to Lenstra and shanks, for computing

the regulator aPPears in Section D.

A. GAUSS AIGORITHI'I

DEFINI?ION 3.1 .1 .

Two forms r = (a,b,c), G = (ArBrc! with the same

determinantD>Oand
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[=c

b+B=OmodA

are said to be nei.ghbouTs. Moreover G is a neighbour to 1l by

Tast part and F is neighbour to G by first part-

It is not difficult to see that F nr G and

F + G via ( o -1 \ with k such that: b+B = kA-
\r k)

THEOREM 3.1 .2

Every indefinite reduced form has exactly one reduced

form neighbour by either Part.

Proof

Let F = (a,b,c) be a reduced indefinite form and

G = (c,8,*) be a form with the same determinant and B satisfies

B + b = O (mod c) and (3.1)

lT l.l < B <,/T. (3.2)

Let B + b = kc. Then k is uniguely determined by

(3.1), (3.2).

since F is reduced, from (o.12) replacing a by (b'z-D)/c

vre have

/T- l.l < b <ff

From (3.21 and (3.3) we have

(3.3)



C

-7 3-

Hence

kc > l.l

Moreover using (3.2), (3.31, (3.4) we have

(3.4)

28 = (,/T - b)+(B -lT * lcl)+(kc l.l) > o (3.s)

Hence from 8.2) and (3.5) we have

o < B </T

Moreover from (3.2 ) , (3.4 ) we have

(3.6)

,fT_+ B lci = {/'I-- b} + (kc l.l) >o (3.7)

Hence from (3.2) , (3'7)-, we have

/T- B < lcl < 
"'D-+ 

B

and from (3.6 )

Itr- l"l l< B < lT
which iniplies that G is reduced.

Hence G is the unique neighbouring reduced form to F

by last part, since if o is a reduced form neighbour to F

by last part, then Q will satisfy (3.1), (3.2) and thus O = Q.

similarly it can be shown that F has exactly one neigh-

bour by last Part. o

EXAMPLE

The form (3,8,-5) with determinant 79 has neighbour by

last part l-1O,7,3) and neighbour by first part (-5r 7,6)'
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THEOREM 3.1 .3

suppose F = Fo, F1r...rFj-rFi*1r... are indefinite reduced

forms with the same determinant and F, is neighbour to Fi*1

by first part. Then there exists an even positive integer I

such that

F = F).'

Proof

From Theorem 3.1 .2, lhere aiways exists one reduced

neighbour to a reduced form and sj-nce the number of the reduced

forms of fixed determinan*' is finite (fronr {O'13) ), there are

integers m ) O, ). > O such that

! = I \.m+Atlt

Tf F = p . then from Theorem 3-1.2 we have-m -m+),

Fm_1 = Fm*),_1.

Hence applying this recursively, wB have F = Fo = Ftr'

If O = (arbrc) is reduced form with determinant D' then

b2 D < O since b,<'/t Hence ac = b2 - D < O'

Let F. = (.i,bircr) , Fi*1 = (ai*1r bi*1, ci11) . Then

.iti*1 = ui"i < o' (3'8)

since Fi, Fi*1 are nei-ghbours and Ft reduced'

Now since the first terms of two reduced neighbouring

forms have opposite sign, w€ conclude that the period I is

even. tr
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The sequence of forms {f = Fo, F1 r... rFtr = F}, where

Fr'" and I as in Theorem 3.1 .3, is call.ed the cyele of ?

and ), the period of the cYcle of F.

THEOREM 3.1 .4.

Two, reduced forms are eguivalent if and only if one

belongs to the cycle of the other. o

Gauss (t161, A.193) gave a lengthy proof of the above

theorem but Dirichlet (see Smith [38], A. 93 ) observing

connections between the seguence of neighbouring forms of a

reduced indefinite forn (a,b,c) with determinant D and the
.rfi:r

continued fraction expansion "t -=i- , gave a shorter proof .

For an alternative proof see Beynon and fliopoulos i7l.

Let F = (a,b,c) be a reduced indefinite form with

deierminant D and

F=Fo*Fl '+ *F2tr=F
(3.e)

be the seguence of neighbouring forms of F.

Dirichlet proved that {kl,k2 ,...,kZf } is the continued

fraction expansion of /TF . Hence one can compute the
a

c.f.e of ({T- bt/a by computing the seguence of neighbouring

forms.

with Fi -> Fi*1 via si = ( ? ;: )



-7 6-

EXA},IPLE

The cycle of the form (5, 8, -3) is:

(5, 8, -3), ?3,7,1O), (1O,3 ,-71 , ('7,4,91 , 19,5,-6) ' l-6,7 
'51

Usually the sequence of neighbouring forms of a reduced

form F, is rePresented by placing them on a circle

'o

By3'l.4thecycleofFcontainsallthereducedforms

of the class to which F belongs. If F belongs to the principal

class, then the cycle of F is called t]ne principaT' eycLe. In

this section let I = (1,bo,co) denote a form of the prlncipal

cycle of C!, tDl , with bo = L /b- i.

Gauss, method for comPutation of the set of reduced forms

of a class, begins with a reduced form F of the class and does

a series of transformations

F=Fo*Ft*F2-+ *Fi*Fi*l
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where Fi*1 is the unique reduced form neighbour to Fi by

first part. For some even integer ). > O' it finds a form

Ftr = p. By Theorem 3.1.4 the set {rr,rr,--.,Ftr} is the set

of the reduced forms of the class.

ALGORITHM 3.1 .5

INPUT : A reduced form Q = Qo = (aorbo,co) with

determinant D ) O, non-square.

OUTPUT : A11 the forms belonging to the cycle of O

and the period tr of the cYc1e.

Roni n

j <- 1i

-^-^ -!

Chocse a ki such thatz {o - l.i-., 1 . - bi-1 * ki .i-1 <,fD

ui * 
"i-1;

bi * -bi_1 * ki ci_1;

.i * (bi Dl /a',
Qi * (ar,br,cr);

i <- i+1;

Until Qi_t = Q

Return {Q. i, tr = !-2 iT

end. tr

Assuming the truth of the fact that the period I of a

cycle of an indefinite form with determinant D is O ( {D) (see

Theorem 3.1.16), we have the following theorem'
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Algorithm 3. 1 .5

the reduced forms of the

elementary oPerations .

Proof
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yields correctly the period and all

cycle of Q in o ( {T 1og D u(log D) )

smallest non-trivial integral solution

= 1, then n = To + 6-Uo is said to be

the order ?Zt|G) with D = f2d and

Since Qi is reduced for every i, from (O.13) we have

ilqll < 2 '6. Hence each iteration of the loop requires only

O (M (1og D) ) elementary operations for multiplieations. S j-nce

the period is of O( /5), it can be computed j-n O(/O t'l(Iog D))

elementary operations and all the reduced forms of the cycle

of Q can be written down in O( "'plog D M(1og D)) elementary

operations (since 1og ilO, ll = o (1og D) ) . tr

Gauss method for deciding equivalence of the indefini-te

forms F and G, reduces them to F'and G'respectively and

computes the cycle of F'. If G' belongs to the c1'c]e of F',

then by Theorem 3.1.4 r s 9. If not, then P * G. Hence if

F,G are reduced, then one can decide eguivalence of F and G

with the above nrethod in o | /-f 1og D u (1og D) l elementary

operations by Theorem 3. 1 .6.

B. FUNDA}IENTAI UNIT

DEFINITION 3.1.7

rf (To,uo)

of the eguation

the fundanentol

is the

T2 - DU2

unit of
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R = gn (n) is said to be the ?egulator of the order ,2f (d) .

Remark

The terms fundamental unit and regul-ator are used here

in the "strict" sense. In algebraic number theory, the

fundamental unit n jn the "ordinary" sense of an order with

discriminant A is

n = i (To + rE uo) , (see [35] , p. 53)

where (T_,U-) is the smallest non-trivial integral solution' n' n

of the equatj-ons

T2AU2=*4

and the regulator E is

R = .Q.n n (see [35] , p.56) .

The fundamental unit n in the "Strict" sense of an order with

discriminant A is n = l (To + /Z-Uo) where (To,Uo) is the

smallest non-trivial solution of the equation T2 AU2 = |

and the regulator R = [n n (see 125], P. 10, 211

Now we shaI1 show that our definition of fundamental

unit is essentially the- same as the fundamental unit in the

"strict" sense in algebraic number theory. If (tru) is a

solution of the equatj-on T2 DU2 = 1r then (2t,u) is a

solution of the equation T2 4DU2 = 4. f{oreover if (Toruo)

is the smallest non-trivial integral solution of T2 DU2 = 1,

then one can see that (2To,Uo) is the smallest non-trivial
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integral solution of T2 4DU2 = 4. Eence the fundamental

unit [n the "strict" sense) of an order with discriminant

A=4Dis

n = l(2To +'4D-Uo) = To *

Since we deal only with orders having discriminant A = 4D,

(see remark below, Theorem 1.2.21 , definition 3.1.7 is the same

as in algebraic number theorY.

Similarly it can be shown that if (To,Uo) is the smallest

non-trivial integral solution of the equation T2 DUz =-1,

then (2To,Uo) is the smallest non-trivial integral solution

of the equaticn T2 ADV? = -Q.

Methods of solving the equations T2 - DU2 = 'l and

T2 DU2 - -1 are given below; thus one can compute the funda-

mental unit in both the "strict" and the "Ordinary" Sense.

One method of computation of the fundamental unit and

the regulator is based on the computation of the cycle of a

reduced indefinite form with determinant D. ft relies on the

fact that the least non-trivial integral solution (TorUo) of

the eguation can be expressed in terms of the coefficient of
n

the matrix S = .J1- Si where Si are unimodular matrices such
i=1

that

6- uo

(.-

Fi * Fi*1 via si

where {r = fo,?1,?2r..'rFn = Fo}

indefinite form with determinant

is

D.

the cycle of a reduced
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to obtain (To,Uol from the

following theorem.

coef f icients of

THEOREI'{ 3. 1 .8.

qlrnnr^lqF that F

Tr tr -. - - -F-- = F be.or^1t...r-2^

is reduced indefinite form of Cl, (D) let

the cycle of F and Fr-., '+ F, via Si. If

v\
t)

2^
S= fl Si

i= 1

=( x
\z

then (To,Uo) = (iax + bzl/al, lz/al) is the smallest positive

non-trivial integral solution of the equation T2 - DU2 = 'l .

Proof

See Gauss (t151, A-198) and Beynon and Iliopoulos L7J' tr

One can compute the n',atrix S of the above theorem, using

algorithm 3.1.5. and (3.9) to compute the matrj-ces si for

1 < i < 21, and thus evaluate the fundamental unit. sometimes

the size of the fundamental unit can be enormous (o . 5 
' see

rernark below ProPosition 3.1.19, also [ 35J, P' 54]' In view

of this fact, there is in general no more efficient rnethod (up

to a constant factor) for computing the fundamental unit' but

better methods for computing the iegulator exist (see below) '

c. DISTANCES AND REGULATOR

The description and analysis of Shanks' algorithm (see t36l

for computation of the regulator makes use of a notion of

'distance" between forms which was used informally by Shanks
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and described formally by Lenstra i2S1. The significant

features and properties of Lenstra's distance function are

briefly summarized below; for detaited definitions and proofs

see Lenstra 1,257 and Schoof t3:1.

DEFINITION 3.1 .9.

A form F is %-equiUaTertt to a form G if there exists a

matrix

such that

F -+ G via S.

It can be shown that being Z-equivalent j.s an eguivalence

relation, slronger than the usual equivalence of forms.

Nowlet]F(D)denotethesetofthet-eguivalenceclasses

of properly primitive forms of fixed determinant D.

THEOR-EI-I 3.1.10.

Gaussian composition is well-defined over the Z-equivalence

classes and the set lP (D) under Gaussj-an composition f orms an

abelian grouP.

Proof

/q\

S={rrrr),minteger\6 1/

See 1251, p. 13). o
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Remark

one can see that Dirchlet's method of composition is
unsuitable in this case, because if (arbrcl is a form of a

class ct of lF (D) , then all the forms of the class are of the

shape (a,b',c') and thus if (A,B,C) is a form of another

class cz of IF(D) with gcd(A,a) I 1, then there does not exist
a pair of concordant forms Ql, QZ such that e' € Ct and e, I CZ.

COROLLARY 3.1.1 1

Let c(D) denote the set of z,-equivalence classes of forns

belonging in the principal class of Ct (D) . Then the set C (D)

under Gaussian cornposition forms an abelian group.

Proof

It is easy to show that E (D) j-s a subgroup of ]F (D) and

thus by 3.1.10, C(D) is an abelian group. tr

Lenstra's distance function d is defined in terms of an

injective group homomorphism

6:G(D) -+ G'/n B. @ Z,/Z Z,+l

where R is the regulator of the order 02f$) and D = f2K with

K square free. For the precise definition of 6 - which is
omitted here see 125J, p. 15 and [3:1, p. 183 {fhe map 6 has

been introduced since a knowledge of how d is defined from 6

is conceptually helpful and unifies the results cited from I25l

below). The distance between two forms F1, FZ of G(D) is

defined to be



'84-

d(F-,F") = the first component of 6 (Fl o frlt
11

Now }et

,-lal/z <x< lal/z if l"l >2lT
Jt=tu5-- 

lul <x <{D if [.] <2'.r-

Each class C of lF(D) contains exactly one form (a'b'c) such

that b € Ju., and this form is reduced if and only if c contains

a reduced form.

It will be convenient in the sequel to identify a class

in A"(D) (or c(D)) with the unique form (a,b,c) with b € Ju

which it contains, and to use o to denote the operation of

Gaussjan conrposition on this set of rePresentatives'

?he maP o:E'(D) * F(D) is defined bY

c ( (a,b,c) ) = (c,b'r*) with b € Ju and b' € J.

It is easy to see that the form o (F) is a neighbour by last

part to F and if F is reduced, then o(F) is the unique reduced

form neighbour to F bY last Part'

LetRtobeasetofproperlyprimitivereducedforms

of determinant D > O (non-square). The map

o* 5'(D) + R is def ined by

o*(F) = ok(r), F €r(D)

where k is the smallest positive integer such that o* (F) is

reduced form. observe that the computation of the function o*

can be done by algorithm o.3.6, since every transformation

Qi * Qi*1 (see 0.3.6) is an aPPlication of the function o'

Nowweshal]-giveSomeresultsaboutdistance.The
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following results hold for forms in {E (D} but generally are

true for forms in ]F (D) (see Schoof t33l ) -

THEOREM 3.1.12

Qrrnnose that F = (a,b,c) € G(D). Thenu sl,rvvY

Proof

See Lenstra 1.25) , P. 18. D

we note that

d tc (F) ,F) = -d (r, o (F) ) (3 ' 10)

which follows from the fact that 6 is homomorphism and

6(c ') = -.(G).

d(F,o(F)) - i .Q.n lo-qitmoa n)
lb- utD I

THEOREM 3.1 .1 3

suppose that F = (ao,bo,co) € G(D), ot{F) = G and

iot(F) = (ar,bt,ct) for 1 < i < n' Then

n-1
d(F,c) = t l .Q,n

i=O

.r:D. + ! L)
1

b. -'6I

(nod R)

Proof

We have

d(F,G) = 6(roc-1) = 6(Fo(c(r)f1oo(Flo(o2(F)l-1oo2(r)

o ...o ot-1 (r) ) o c-1) = 
ti1 

a(oi(rl,oi*l(r) ). tr

i- =O
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THEOREM 3.1 .14

Suppose that I - (1rbo,"o) , F,G € G(D). Then

d(f ,GoO) = d(r,G) + d(I,Q) (nod R)

Proof

Using the fact that 6 is homomorphisn, we have

d(I,GoQ) = 6(roG-1 oQ-1) = 6(IoG-1 oroQ-1)

= d(f,G) + d(I,e).

since I is the identity element of C (D) - tr

COROLLARY 3.1 .1 5

qrrnn.-1qF +r-,=+ r - t1 b ,c ) with b_ € J. and FrG € G(D).JUI-YV-L LllqL \ r, 
O. O O I

Thren

d(r,o*(FoG)) = d(r,F) + d(r,G) + d(FoG,o*(FoG))' D

The following proposition yields an uPPer and a lower

bound for the function of distance.

PROPOSITION 3.1 .1 6

Suppose that F € G (D) and F is reduced. Then

(i) d(F,o(r)) < l 'Q.n 4D

(ii) d(F,o(F)) + d(o(F), o'(r) ) ) 9-n2-
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Proof

(i) Let F = (arbrc). Then since F is reduced we have

| lT- l"l l< b <,/T

Hence

d(F,o(F)) = * .tn
b +rE
D -{U

= l nr, (b + /D)' a
1"" I

<l [n (u +/d' < ] tn 4D.

(ii) See Lenstra [25], P. 18-19. o

PROPOSTTTON 3.1 .17

Suppose that F € G(D). Then

d(F,o*(F)) < l .Q,n (t + (1 +/-Sl fol

Proof

See Lenstra 1,251 , P. 20. tr

THEOREI{ 3.1.18

Suppose that f = (l rborco) with bo € Jl. Then the

regulator of the orders ?Zt .k) with D = f2k and k sguare free

is given by

R - ^;t a (oi (r) , oi*1 (r) ) (3.11)
i=O

where I is the period of the principal cycle.
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Proof

See Lenstra 125) ' P. 19. tr

rf the forms r = Fo, F1,..-,FL = r of the principal

cycle are placed on a cycle in such a \'ray that Ft.td Fi*1

have distance d(FirFi*1), then from (3.11) the circumference

of the cycle is given bY

I
ft = d(Fi_1,Fi)

r=l
(3.12)

(

The following ProPosition yields an uPPer bound for

the regu'lator the period of a cycle and the fundamental unit.

PROPOSITION 3.1 .1 9.

suppose that ri ano R are the fundamental unit and the

regulator respectively of an order 0.t|G.l with D = f2d and I

j-s the period of the principal cycle of Cl (D) . Then

(i) R < 6{o Ln 4D

(ii) | = o( fDl
(iir) 1og n= o( lT log D).

Proof

(i) From (4.191 and Theorem 2.2-4 we have

R < 6{T 9"n 4D

(ii) From (3.12) and Proposition 3.1-16(i) we have

(3.13)
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I
fl = d(Fi-1,Fi) < I(l 9n (4D))

l=l

and thus from (3.13) we have

| = 91fO)

(iii) Follows from (i) and the fact R = 9n n- tr

(3. 14 )

Lagarias in l21l (P. 485) had an example (known to

Dirichlet) of an j-nfinite seguence of values of D for which

the continued fraction expansion of {T is greater than

c {T (Iog D)-1, where c positive constant. Hence since there

is one to one correspondence between the forms of the principal

cycle of Cl (O) and the terms in the period of continued fraction

expanslon of/T, one can see that the bound (3.14) cannot be

-,|improved except perhaps by a factor (1og D) '. Now one can

see using Proposition 3.1.16(ii) tnat

I
R = .I- d(Fi-1,Fil ,;9n 2.

: -tJ-- I

Similarly the bounds (i), (iii) of Proposition 3.1.19

are seen to be optimal.

Now a theorem is given which shows that in the principal

cycle there existF an ambiguous form (different to I) and lts

distance from f is R/2, where R is the regulator.

THEOREM 3 .'I .2O.

Suppose that t = Fo, F1 r...,F21 = f are the forms of

the principal cycle of Cl, (D) . Then (i) the form F^ is anbiguous
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and

d(I,Ftr) = R/2

where R is the regulator.

(ii) The forms I and Fl are the only ambiguous forms of the

principal cycIe.

Proof

(i) Let Fo = (1,bo,co) = Fzl = J. Then we have F2l-l = (co,bo,1)'

Now tet Ft - (to,b1 , c1 ) and Fr^-, = (a,b, co) - Using

Proposition 3.1 .2 and the fact that

b*b1 =b*bo=O (modco)

we have YZx_z = (ci,b1rco)

And generally by induction on k can be shown that

Ft - (at,bk,"k) <+ F2).-k-1 = (c*,b*ra*) (3.is)

Now for k = |-1 we have

Fl-t = (al-1 ,bl-1 ,cI-1) * Fl = (ctr-1 ,b),-1'al-1) '

Now since Fl-t is neighbour to F^ bY first partrwe have

bl-t * bl_1 = 2bl-t = O (rnod c^-.t )

Hence Fl is arnbiguous.
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Now from (3.1 1 ) we have

),-1

d(I,F)) = I i ln
" k=O

2^
d(F.,F^.) - r * ln

A' ZA K=A

t,.:g
bt - 'rf

and

1j
bt -6

From (3.15) we have that b* = b2).-k-., and thus

d(r,Fr) - d(Fr,F2t)

Hence we have

d(I,F)) = R/2

slnce

d(r,Ft) + d(F^,F2t) = R

(ii) see Gauss ([16], A.187). tr

Now applying algorithm 3.1.5 to the fo:m I = (1,bo,co) = Fo,

one can compute the forms ForFl ,...,F^ until to find an ambiguous

form F^ for some integer l. From the niddle terms of the Fi'"

one can compute d(IrFl) and thus the regulator R = 2(f,FI) using

Theorem 3.1.20. This method has running tine of

O( 6- M(1o9 D) log D) (see 3.1.6 and 3.1.19).
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D. LENSTA-SHANKS ALGORITHM

shanks t:s] gave an algorithm for computation of the

regulator which was formulated later by Lenstra t251. The

Lenstra-Shanks algorithm is the following:

1. Let Fo = f = (1,bo,"o) (f is a reduced form of C'e'(D))'

Compute the sequence of forms F1,F2,...,Fk, where

P:_ - (ai_,br,cr) = o(Fr-.,) in conjunction with the distances

d (r,Fi), (d (r,Fi) = d (r,Fi-1) + d (Fr-1,Fi) ) untir either an

ambiguous form F, is encountered or for some k
J

1/2
d(r,Fk) ) do = (6/T-ln 1Dl"

(This is taking "baby-steps" around the principal cycle in

Shanks terminology).

2. If an ambiguous 
"j 

form is found, then R = 2 d(I,Fj)

(using Theorem 3.1.2Ol. , otherwise;

3. Compute the forms Fo, F-1r\2,..-rF-kr where F, = o(Fi-1)

on the distances d (f,F-i) (using the relations

Fi-t = (ci,bi,ui) and d (r,F1-i) = -d (r,Fi)

which foIlow from (3.15) and (3.10)).

4. Compute Q = o* (Fl) and d (I,G) (using the algorithm of

Corollary 1.1.11 and Corollary 3.1.15)'

5. By searching into the neighbours of G f ind a forrn G., such

that
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C

2do l.[n (1+(1+75ltD) Ln4D < d(1,G1)

6. Compute the sequence .of forms G2rG3r... tusing the algorithm

of Corollary 1.1.11), where 
"j*, 

= o*(G, oGr) in conjunction

with d(r,Gj) (d(r,Gj) = d(r,G1 ) + d(r,Gj) + d(Gj o Gr, Gj*t))

untilanintegermsuchthatG*=F,'withl"l<kisencountered.
(This is taking "giant-steps" around the principal cycle in

Shanks terminology).

7. R = d(I,Gm) d(I'Fr,).

The steps of the algori,thm may be illustrated diagramatically

thus:

It can be shown that if Gl satisfy (3.151, then

o* (Fi)-

do < d(ci,Gi*1) < 2 do.
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Hence one of the jumps will faII into the distance [-do,do]

since each junp covers a distance less than 2 do. Moreover
.t /A

this will happen af ter at most O (R/do) nl O (D'/ = ) jurnPs, since

each jump is greater than do.

ALGORITHI'{ 3.1.21

fNPUT : A non-square integer D > O

OUTPUT : The regulator R of D2f{.k) with D = f2k and k

square-free.

Begin

1. bo * L6 i

2. "o 
* b3 D;

3. Fo * (1,bo,co);

4. i + O;

5. d(r,Fo) <- o;

6. do * (6 6- sn aoll /2 i

7 . while d (I,Fk) . do do

Begin

8. Fk*1 + o(F*);

d(r,Fk*1) * d(r,F*) + i l.n
(b. + 5)'K

(bk - 6J
k + k+1;

If < rk is ambiguous) then Return R = zd(I 'f*);
9. end

G<-F.;K'
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10. For i = 'l until k do

Begin

11. F1_i * (cr,b'ar);

d(I,F1_i) * -d(I,Fr);

12. end

Comment Use the algorlthm of Corollary 1.1.1 1 for

composition and reduction, and Corollary 3.1.15 to

compute d (f, G. ) .

1 3 . (Compute Gt = s* (G2 ) and d (I, G1 ) in conjunction);

14. while d(r,cl) > 2d^ | ln(1 * (1 +fTl6l do

Beqin

Gr <the neighbour (a,b,c) by last part to Gr)i
t-l

d(r,G1 ) <- d(r,G1 ) * ln I H
1 5. end

17. <Sort all Fr'" to obtain a list I);

j + 1;

18. while<G. ( L>do-)
Comment Use "binary search" to search if G. e Ll
Begin
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19.

Corollary 3.1.15 to compute d(I'tj*t)

J <- J+1;

20. end;

<Let m be such that G-. = F-);
J rrr

R <- d(r,Gr) d(r,r-);'Jm
Return R;

end. o

THEORE}{ 3.1 .22

The algorithm 3.1 .21 terminates and correctly yields

the regulator.

Proof

rt is sufficient to prove that d(Gj,Gi*1) < Zdo for

all j's, because then one of the jumPs will faII into the

interval [-do,do]. The rest of the correctness of the

algorithm follows from CoroJlary 3.1.15 and Theorem 3.1 ' 1 8 '

First we have

d(r,cl ) .2do I l,n(1 * (1 *,6,61 (3.17)

Now using def initj-on 3.1.14

d(Gn,Gn*1) = d(IrGn*1) - d(r'Gn)

Now since

<Compute 
"j*., 

+ o* (GroG.,) and d (r 'Gj+1) in con junction);

Comment Use alqorithm O.3.6 for reducti-on and

d(I,Gr,*1) = d(I,G1 ) + d(rr'Grr) * d(GnoG., ,o*(Gr-,oGr))
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we have

d(Gn,Gr.,*1) = d(1,G1 ) + d(G'G1,o*(GrroGr)) (3.18)

Hence from Proposltion 3.1.20 and (3.17) we have

d (Gn, Gn* 
1 
) < 2do. tr

TIiEOREI*1 3.1.23

The algorithm 3.1 .21 yields the regulator in
1/AO(D"'M(1og D) log D) elementary oPerations.

Proof

Steps 1-6 require only O(M(1og D)) elementary operations.

To find a neighbour of a form (step 8) reguires only

O (1"1(1og D) ) elementary operations.

Now using Proposition 3.1.16(ii) we have that the number

of iterations in the loop 8-9 (similarly loop 1A-12) is at

!. most

z d^ /I"n 2 +'l = o@1 /4 1og D).
o

Hence loop 8-9 requires o@1 /4 1og D !t(1og D) ) elementary

operations. AIso the loop 1o-12 requires o@1/4 1og3Dl ele-

mentary operations.

To compute o* (G2 ) by Corollary 1 .1 .1 1 requires

O(l'1(1og D) 1og D) elernentary operations.
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Now from Corollary 3.1.15 we have

d(f,s*(G2)) = 2 d(1,G) + d(G2,o*(G'l)

Now from Proposition 1.1.15(i) and Proposition 3.1.17 we have

d(I,G) .do+l.Q.n+Dand

d(G',o*(G'?)) < l ln(1 + (1 +GJ5r.

Hence we have

d(r,s'k(G')) < 2 do + | ln 4D + l .[n(1{-5t'b)(3.19)

From (3.19), (3.i8) and Proposition 3.1.16(ii) finding a form

Gr ( l-oop 14-151

d(r,Gi) <2 do I nn(1 + (1 +,r-sl 6l

requr-res at nost 1+ 2 (t .tn 4D + in (1+(1+ /Tl 'f|))/tnZ = O(1og D)

iterations of the loop 14-16. Since step 15 requires only

? O(M(1og D) ) elementary operations, the loop 14-16 requires

o(1og D M(1og D)) elementary operations'
.lA

Since the number of Fi'" is o (D'/' log D) , sorting

requires o@1 /4 logt D) elementary operations (see LzJ, p'87) .

As step 1 I to search whether aj belong to L using binary search

requires only O(1og D) elementary operations (see 121, P- 114)

Now wil} be shown that d(Gi,Gi*1) t do

One can see that

d(r,G1 ) ,2do I l,n(1 + (1 +.G151 l9n 4D t do

using Proposition 3.1 .1 6 (i) .
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lloreover from (3.17)

d(Gj,Gi*1) = d(r,G.,) + d(cjGr,o*(cnc1).

Hence we have

d (cj, ci*1 ) > do

Thus a match aj = F* wiII be found as most after

1 + P/d,^< 1 + 6'lD 'tno ^D1 /al
o ----A- = LJ t

iterations of the loop 1e-ZO.

Hence, sl,nce step 19 reguires o(M(log D)1og o) ) elementary

operations (similarly with step 13), the loop 1g_2O requires at
most o@1/4 u(1og D) Iog Di elementary operations.

From the above analysis we conclude that the algorithm
yields the regulator j-n o@1 /4 M(log D) log D) elementary

operations in worst-case. tr

since ambiguous forms are very easy to identify, it may

be helpful to test the ambiguity of Gi at step 1 9 in algorithm
3.1.21 . If G:- is anJriguous, then R = / d(I,Gi), but the
probability of finding the midpoint of the principal cycle by

chance in this fashion is so small for large D that this
modification is unlikely to have practical interest.

An iterative version of Lenstra's algorithm for comput-

ation of the regulator given below nay have practical application.
The method is the foll.owinq:
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Begin

k<-o;

while the regulator is not computed>do

Begin
k

<Compute 2" baby steps)

Cor.rnent. we find 2K neighbours (Fr'sl of f by either

side

<Conpute 2k giant steps)
kComment We compute 2" forrns Grrwhere G, as in algorithm 3.1.21

If <a match (G* = Fr,) i.s found) then Return (the regulator);

k*k+1

end

one usi-ng Proposition 3.1.16 (ii) can show that Zk baUy

steps cover distance dU > 2k tn 2 and 2k giant steps cover

distance d- > zk d^ > 22k .8.n 2 (since each giant step is greatergo
( than do ) see 3.1.21-23). If we find for some k a match is

found then R > 2k-1 g"n2 * 22(k-1) .tn z > 22|&-11 .{,n 2 and thus

2k = o( /Fl .

Hence this modified version always reguires O( fiJ steps to

compute the regulator, whilst algorithm 1.3.21 requires R/2

steps when R < (5 6 yn 4il1 /2. Both algorithrns have the

same worst-case complexity time.

Lenstra ( [25], p. 221 asserts that, using the same

technique as in the algorithm 3.1.21 one can decide in
. 1/4+e,O(D't' - ) elementary operations whether or not two indefinite

forms F,G are equivalent, Such an algorithm is given below.
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WenotethattodecideequivalencebetweentwoformsF'G'it

is sufficient to decide whether or not the form F o G-1

belongstotheprincipalcyc}e.Thefollowingalgorithmdecides

whether or not a reduced form Q with determinant D > O (non-

square) belongs to the principat cycle'

r = (1,bo,co) form of the principal cycle' Compute

forms

F-k, .. -,E-z,F-1, f = Fo'F 1'F2""'Fk

and their dj-stances as in algorithm 3'1'21' If Q is one of

the Fi'r, then Q belongs to principal cycle' If fi is

anrbiguous f or some J, then t'-j*1" "'1 = Fo" "'Fj] are all

theformsoftheprincipalcyclerandif0isnotoneoftheFr's'

then Q does not beiong to the principal cycle' Assume then that

no F. is ambiguous and Q is not an Fi'

2. Compute G = s* (Fl) and d(r'G) in conjunctj-on'
tt

3. By searching the neighbours of G find (as in

14-15)) a form G', which satisf ies

3.1 .21 (stePs

2do- | l.n(1 + (1 *'r51 tT,l l l'n(AD) <d(r'Gl) t2do-

I l.n(1 + (1 +tET6l



4. Compute Qj*, = o*(Q1 o G1) for j = O,1 ,"' and d(I,Qj)

until either for some j,Qj = F* or d(r,Qjl > (6 {T t'n4D)1/2 '

In the former case, Q belongs to the principal cycle, whilst

in the latter case, it does not.

The steps of the algorithm when Q belongs to the principal

cycle may be illustrated diagrammatically tlus:

-1(-r^2-

Q with determinant D > O (non-square)

Q belongs to the PrinciPal cycle

,

ALGORTTHM

INPUT

OUTPUT

A reduced form

Whether or not

of Cl (D) .
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Beqin

Fo * (1rbo,co) where bo = L /D J and co =

k<-o;

d(I'Fo) + Oi

while d (r,Fi) . do = (6 ,6 9-n nall/2 ao

Begin

Fk*1 + o (F*);

d(r,Fk*1) * d(r,Fk) + | .Q.n

bt +6

bk - ,--
k <- k+1,i

end

Fori-2untilk+1do

F,en i ns!Y4rr

;.' <- (cr,b'ar);
d(r,Fn .) <- -d(r,F.);

| '-L l-

Fnd

IE <O = F; for some i> the_n Beturn "e belongs to the principal
J.

cycle " ;

ff <F. is ambiguous for some i> then Return ne does not

belong to the principal cyc1e";
(Compute G = o* (Ff,) and d(I,G) in conjunction);

G.+G;
I

while d(r,G.) > 2d^ I tn(t + (1 *fi16' do

Begin

G.r <- (the neighbour (a,b,c) by last part to Gn );1--l

d(r,c.) * d(r,cl) - l !,niiJ._fl,' I I - 16 -61'
end

b3-ot

G

{

Vi
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(Sort all Fi't to obtain a list L);

Qo*Q;
E(r,eo) * doi

Comment For each i a(I,Q) is a lower bound for d(r,Q)

j <- 1;

while (Q* / L> do)-
Begin

if d(r,e-) > c /o gn 4D then)-
Return "Q does not belong to the pri-ncipal c1ass";

^'1 ^^

.r-nmnrrto o = n*(o -G.) and d. (rQ*,r) = d(f rGl) +\vv',l-eLu _j*1 v \yj.. 
J+1. l.

Etr,Qr) + d(Qfar,Qj*r) in conjunction>

j <- j*1i

end

Return "Q beLongs to the principal class";

end. B

THEOR.EI'I 3.1 .25

Algorithm 3.1.24 correctly decides whether a form Q

belongs to the principal cycle in O @1/a U(1og D) 1og D)

elementary operations.

Proof

Slmilar to that of Theorems 3.1.22 3.1-23. tr

An application of the algorithm 3-1-24 will now be

described. Using the following theorem one can decide whether

the equation
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T2 DU2 = -1 (non-Pellian equation)

is solvable or not.

THEOREM 3.1 .29

The eguation T2 DU2 - -1 with D > O non-sguare has an

integral solution if and only if (1,O,-D) Ar (-1,O,D)

Proof

and det (S) = -t2 + Du2 - 1.

Hence (r,U) is a solution of T2 - DU2 = -1. o

C

(*) Let (t,u) be a soLution of 1e - DU2 = -1 . Then

(1,Or-D) + (-1,OrD) via S = ( 
t u 

)\Du-t/

^i (-1,O,D) , then there exists a unimodular matrix

h that

D

S

If (1,O

l:l\
\

U ,)
s=(

(^ 
"l 

(: 
")(; ll= (: ll whichimplies

( *' utD x),-1i',.rD 
\ _ ( -1 O 

\
\*tr-uvo I2-vzD ) \ o Dl

(- )

G
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THEORET'I 3.1.27

There exist an algorithm which decides whether or not

the equation T2 DU2 - -1 with D ) O non-sguare has integral

solutions in o@1 /4 1og D 14(Iog D)) elementary oPerations'

Proof

Weusealgorithm3.l.24toexaminewhetherornot

the form o*(-1,O,D) belongs to the principal cyc1e. o

Also one can coir,pute the forms of the principal cycle of

C!. (D) using the aLgoriti-rm 1 .3.5 and if o* (-1,O,D) belongs to

the principal cycIe, then using (3.9) can compute the natrices

S:_ and thus a matrix S = I Si such that

o* (1,O,-D) * o* (-1,O,D) via S

The reduction procedure (see o.3.6) provides matrices s1, s2

such that

(1rOr-D) + o* (1,O,-D) via St

and (-1rO,D) -> or (-l rOrD) via S,

Hence we have

(1 ,Or-D) -> (-1,O,D) via 51S 
';t 

= ( ; ; )

Then (r,p) is a solution of the equations T2 - DU2 = -1 (see

Theorem 3.1.26 (*) ) .

Lagarias tzl1 gave an algorithm for deciding whether or

not the non-Pe11ian equation has solution. His algorithm

obtains a basis for the ambiguous forms using genus characters
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and decides the eguivalence of the forms 11 ,O,-D)r (-1rOrD)

by expressing them in terms of elements of the basis. rlis
algorithm has worst-case complexity tirne o(D1 /4+El. rf
complete factorization of D is provided and the G.R.H. is
true, then his algorithm termj-nates in

O((1og O) slog log D log 1og 1og D) elementary operations.

G
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3.2. INFFASTRUCTURE OF Cg(D) WITH D NEGATIVE

The following theorem is due to Gauss (ttOl, A.1721;

it characterizes the number of reduced forms in a class of

Cl,(DlwithD<o.

THEOREM 3.21

Suppose X € Cl.(D) with D < O. Then either K contains

one reduced form or two opposite reduced ambiguous forms or

two opposite reduced forms with equal the outer terms.

Proof

Let F = (a,brc) and G = (A,B,C) be reduced forms in K.

Then there exist a unimodular matrix S given by

1K l\s =t i\ rr \) /
PY

Now with direct calculation of tt }l-, {cS 1 *. have:

(3.20)

(3"21)

(3.22l,

(3.23)

such that tt trt = MG.

Ap - aK = (B+b)U

cU+al = (e-b)x

a.i + CU = (B-b) u

Cr c1l = (B+b) tr

Without loss of generality we may assume fel

Also since D ( O we have that ac ) O, AC > O- Now

using (3.20) and (3.22=
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aA = aA(<v IU) = A(Avt.cut-2Bpv)=(Av-B )2+DU2 > O (3.25)

Hence drcrArG have the same sign'

Now usl-ng (3.241 , (3.25) and the fact c is reduced we

have

lzeu I= la'' + cu2 al >mintlal,lclttu2+v2)-lal (3'261

Hence!2 +v2 lUul= (lp1-li, l)'+ lpr, la1, whj-chinplies

tlui l'.,1)'*luvl = 1.

Now we have two cases.

A-^^ a\\-d>s u - v

Then',r - i. From (3.26l , G-271 we have ial = l.l'

If I - O' lhen from (3.23) B = [' Hence F = G'

If X I O, then from G.23) we have aL = B - b and

lui

Hence iB-bl = ) max { lBl, lbl}rwhich implies B = -b'

And from (3.2g') 2lBl = 2lbl = lul = lAl, which irnplies

F = 6 and FrG anrbiguous.

Casev=O
Then u = 1. From G-26)1 we have lcl = lAl' From B'n l'

we have ial = lal. If r = or then from (3.2O) we have B = -!'

Hence F = G with the outer terms equal '
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If k I 1, then using (3.2O)

la * bl

which implies

lnl = lbi.

Hence either F = G or F = 6 with the outer terms equal. o

From the previous theorem one can see that the inner

structure of C!. (D) is much simpler in the case of negative

determinant than the positive one. Hence it is much easier

to decide equivalence between two definite forms.

THEORFM 3.22

C'

To decide whether or

FrG are equivalent requires

operation, where llg ll = max

Proof

not two definite reduced forrns

o (tog ll0 ii u (Ioe liA li ) l elementary

{iiFll , ilclli.

First we check if FrQ have the sane determj-nant. ft

requires o(1"1 tfog il0ll ) ) elenentary operations. If they have

not the same determinant, then they are not equivalent.

Second we reduce FrG to Fr, G' respectively using the

algorithm o.32. rt requires o (1og llO ll u (1o9 llO ll ) ) elementary

operations. If F' and G' are either identical or opposite and

an$iguous or opposite with equal outer terms, then F sr G, else

F qB G.

Hence we can decide equivalence in otfog 11911 (u(Iog ll0ll t

elementary operations. El
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3. 3. DEGENERATE FORI"IS

Although the degenerate forms do not form a grouP, since,

composition is not defined for quadratic determj-nant, we

describe and analyse an algorithm to decide whether or not two

degenerate forms are equivalent. The following theorem is due

to Gauss (t151 , A.2O7l.

THEORE!.j 3.3. 1

?wo reduced degenerate forns are equivalent if and only

i f f hcv are i dentical .v..eJ

Proof

Then we have

uZ = d1K2 + 2xph (3'3O)

h = .1,<.tr + h(xv +lU) (3'31)

O = a1trt + 2hlv (3.32)

KV -utr= 1 (3'33)

From (3.31) and (3.32) we have

forms

Let Fi = (a1,h,O), FZ - (^Z,hrO) be equj-valent reduced

with the same determinant D = h2 and

F1 *F2 via s=(" :)
ts

-hl(rv-ul) = hl
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and from (3.33)

-h). = hl

Hence ). = O (The case h = O i.s trivial)

Now from (3.33) we have kv = 'l which implies lt l = 't.

Hence from (3.30) we have

uZ = u1 + 2<ph

Now since F1 r"2 are reduced we have

o<"1
and O<uz

Hence from (3.34) we have

(3.34 )

(3.3s)

O'.1 * 2KUh < 2h-1

and since (3.35) we have u = O.

Hence from (3.3O) we have u1 = d2 and thus F1 = FZ. tr

THEOREM 3.3.2

There exists an algorithm to decide eguivalence between

two degenerate forms F1,FZ in o(M(1og llFll llog 1o9 llFll l ele-

mentary operations, where llr ll = max { llFl ll , llF2 ll } .

Proof

First we check Lt F1 ,F2 have the same determj-nant. This

can be done in o (M (1og ilr ll ) ) elementary operations. If F 1,F2

have not the same determinant they are not equivalent.
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If F1 , ?2 have the same determinant, then we reduced
P1 , F2 to Fi, Fj respectively usi-ng the algorithm o.3.9. This
can be done in o(M(1o9 liril t log log llrll t elementary operations.
Now if Fi = Fir then F., and FZ are eguivalent. o
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4.1. CLASS NUI'IBER OF TMAGINARY QUADRATIC FIELDS

A. GAUSS AIGORTTHM

DEFINITTON 4.1 .1 .

The number of classes of properly primitive positive

definite forms of fixed determinent D ( O is called the cLass

number of Cl. (D) and it is denoted by h(D).

Gauss ( ti6l, A.173) gave two algorithms for finding the

class number of Ct (O) for D < O. Both are based on counting

a set of representatives for Ci (D) and both run in time

exponential in log iDI.

I'IETHOD 4 .1 .2 .

Gauss's method makes use of the ineq'ualiti-es

o < A < 2 ,/W3
zlel< a

which every positive definite reduced form (ArB,C) satisfies

and the fact that D = 82 - AC, which implies

82 =DmodA.

The rnethod is the followinc:

1. For o < A < z,ryEIE find all pairs (A,B) such that x = $

sati sfies

x2=DmodA andlxl <A/2 (4.1)



-115-

2. For each such pair (A,B), compute a triple (ArBrC) where

C = (B2 Dl /A. Then we have a set of forms (A,B,C) with

determlnant D.

3. Reject the forms which are not properly primitive

4. If A divides 28 or A = C, then reject (A,-B,C) (since

(A,B,C) nr (A,-BrC) bY Theorem 3.2.11 .

5. The number of remaining forms is the class nunber

rt is known that the number of solutions of (4 - 1 ) is
+D(2'A), where tA is the number of distinct prime divisors of

A. (see Apostol L4) , P. 12A-122') . Now since

ta = o(rog Aftog 1og A)

the total nurnber of soiutions of (4.i) is

k!k
rD(zta)- r o(A) =o(lol) withk=2{1uTT7T'

A=O A= 1

one can see that the method then requires o(lDi1*t)

elementary operations. More detailed analysis yields the

bound o(lDitutroslol) los los lolt.

I'IETHOD 4.1.3.

since every positive definite form (ArB,c) satisfies

o<A<c and lel <'tfdTTT

we have the following method for computation of the class

number.
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1. Construct a set S of forms with determinant D comprising

forms of shape (A, tB,c), where o < B < {Df/f and (A,c)

satisfies AC = 82 -D and O < A < C.

2. Modify S by rejecting forms which are not reduced.

3. t'lodify S by rejecting forms which are not properly primitive.

4. If two forms in S are equivalent, reject one of them (as in

4.1.2,(4)).

5. The number of remaining forms is the class number-

rt can be shown that step 1 requires olloit'ltfog ioltt

elementary opations, which is the bottleneck of the algorithm.

The counting methods for computation of the class-number

are inefficient when one computes h (D) for a particular D, but

are relatively efficient when used to compute class numbers of

determinant lying in some range. One can count triples (a,brc)

with lZUl < a < c, a ) O and sort them by determinant. This

method was used by Bue11 in t9l.

B. DIRICHLET' S PORJ'IULAE

Dirichlet (see Mathews 126) , P. 2351 gave a formula for

h(D) with D ( O, as an exPression of Jacobi s1'mbols:

h(D) =

@
hl (==" 

= l if D

x]o '2k+1'

*io talil=lirD=-'tAq

;

Now using the facts

(4.1)
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(il

(ir )

we have

tzfot =

t*l =e

since t1fof

/n
- r?Ur

= L (-=l
. Lln=l

= b|-......tz = 1rflr and

for n even (Kroneeker's symbo1)

Hence using Theorem 2.2 ' 3 we have

@ 1n
2k+1 '2k+1'

K=U

1

l'loreover observing that (:) =
Y

't ./-]tri -
h(D) = # il

*-2
tr

prime

1_
n L(1,Xao).

.> ./-r":r- 2 {:pTh(D) = t# L(1,x4D) =: r n P (4.21
D=3 ,4D.

^--;-o P - (;-l
r

I ..^ l^^-.^I We lrdvg

w
..g

h

p (:)
v

(4.3)

(4 .4',,h(D) =,@-r(l,X.ol Q ttl f for D $ r (mod 4l

that Kroneckerrs symbol t|f
1T

due

tl

(The exception is

is not defined for

NowifD=

by the following

h (D)

to the fact

= 3 (mod 4))

Do52 (O,

formula:

= w h(Do)S

then, h (D) and h (Do)

(Mathews t26l' p. 156)
D

P- t*l
; (_;s) for p

Pis v

are related

odd prime (4 .5 )

where w = 'l except when Do = -1

Horeover for square D

to Dirichlet) expressing h (D)

then w = 1/2.

there is a formula (a1so due

a finite sum of Kronecker

-1
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symbols (see Venkov [40] , p. 224):

h(D) =

Now one can compute the class number h (D) for D < O

using the formuLae (4.5) and (4.6) in the following way:

THEOREM 4 .1 .4

The col-nputaticn of h (D) , for D ( -1, via the formulae

(4.5) and (4.6) requires o(lDl roglniutroglol)) elementary

operAtions.

Proof
bb-b

l. Factor D. Let D = -Dos' and Do = ) o n' . prt with

bi € {o,1}.

2. If D^ 7 1,2 mod 4, then computeo

I lDl /2-1 |t'-'r- ' r ttfor if D = 1,2 mod 4
k=o zt

t lDl /21L' t ' (+) if D = 3 mod 4

k=1 u

(4.6)

Dtffit ror o < K < llooltz -1J

in the following way: (see def inition 2.2.1 and propertj"es)

,2k+1. - -. (Pi.-11/2
(i) (?)=12k+1)' modpi forl<i<r

I

usinq Euler's criterion.
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(ii) ,rf}, = r?|*t (-t )k 
(vr-'tt /z ror 1 < i < r

vi

(1ii) t;|r = (-1)k and tffil = (-t)k(t<*1)/2

and hence

D_ _1 ^ b p. bt ,pr.b,(ivv tfrt = t21-l1r tffit-" tsir t2q6)

if D = 3 mod 4 compute t*l similarly.

3. Coinpute n (Do) using (4.61 (If Do - -1 , then h (Do) = 1)

D

4. compute h(D) using 1a.5) and ,?, = Do(p-1)/2 *oap.

liow one can factor D in step 1 using Pollard's I3Ol

' methoo in otioll/1+e) el.^..,tary operations.

Steps (i) (iii) reguire o(loglolu(Iogloi)) elementary

C operations (see analysis of steps 11-12 of 2.1.111 and step (iv)

reguires only O(1oglplt, since it is multiplication by +1's

and +1's. Hence step 2 requires o(iDlr"glplM(roglol)! erem-

entary operations. Now step 2 requires OtiOi) elementary

operations for additions.

Srep 4 reguires O(loglol/fog fogloll computations of
D

rhe swbol f *t and thus costs o (1og2 lo lu (f og lp I ) ) elementary.P
operAtions. From the above analysis the theorem folIows. tr
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h (D) the computation

D * r (mod 4l can be

be computed in O(ioi

using the method for

4.1.4.'

of Dirichletrs functi-on

done using 14.41. Hence

toglolutrogloi I t elementary

computation of h (D) given

C. SHANKS' ALGORTTHM

Before describing Shanks' algorithm, it is necessary

to state some basic background results.

Shanks' algorithm for computing the class number makes

use of the group structure on Cl, (D) . An essential step is the

conslderation of a set of generations for C.e,(D) . The following

theorens are used to give bounds on the amount of computation

reguired to find such a generating set, with and without dssrrlrrp-

tlon of the GRH. The proofs are direct applications of results

by Lagarias and Odlyzko 123J, Lagarias, !'lontgomery and Odlyzko

t22l .

THEOREM 4.1.5

If the G.R.H is true, then there exists an effectively

computable positive constant "1 
which does not depend on D

such that the set of forms of shaPe

(4.71

(mod p) generateswhere p ( .1 log' lol is prime and

cr, (D) .

82=D
P
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Proof

From Lagarj-as and Odlyzko [231, it follows that there

exists a positive constant "1, effectively computable, and

independent of D, such that the class group of ideals of

DZf{d) where D = fzd, d sguare free, is generated by the set

of non-principal ideals whose norm is a rati-onal prime

p ( cn log' loi. Such ideals correspond to forms of shape

(p,8,.,, (B: - Dl /p) where B; = D (mod p) under the isornorphism_PPT

of Theorem 1.2.4 and Theorem 4.1.5 follows inrmediately. (AIso

see Schoof [33], p. 179). o

TIJEOF.EI'I 4 .1 .6

?

There exist two posltive constants c1 I c' which do not

depend on D such that the set of forms of shape

(p, B^, (Bi - ol /p') ,
PY

' ,ca
where p , "2 lOl " j-s prime and 82 = D (mod P), generates Cl,(D) .

Proof

ft is an aPPlieation of l22J and Theorem 1.2.4' tr

The following theorem yields a relation between h (D)

and D.

THEOREM 4.1.7

Suppose that P is an odd prime and that h (D) is the class

number of Cl (D) .
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)v .,(i) If p"'ll D for some integer k > 1, then

pk-1 (p rlr r lh (D) , where op = o/P2k .

(ii) tf p2k*1ll o for some integer k ) 1, then pklrrtot.

Proof

2 a. +1 Zar+ 1 ,2b1 .r2b, ,m+t withLet D = P; p;-- ' q1 ' .... 9r,'

t = 'l or O, Do = p.l pr2t and 52 = # where pi, qi
o

are dist j-nct odd priines.

From (4.5) we have 
D

h(D) = w h(Do) n;t ol'nlt...nf'r'oT= +
P OOO

D

one can see that (*) = o, hence

D
Dt-9tnD

nT= + =r1,, (ei tnftl/et
p odd

And finally

a. a b"-1 b--1 n D^
h (D) = wh (Do) n;t o;' n;t n;" .L tar- tof) ) (4.1 1 )It i=1 ..i

DD
' o) = (j) the theorem follows' Dano sance t;.1 q

g

Nor.r some bounds on the class number of Cf (D) are given.
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PROPOSITION 4.1 .9

suppose that h (D) is the class number of cf, (D) with

D

h (D) < 2 '\Tl .Q,n l4D I

Proof

BY Theorem 2.2 - 4 we have

r,(1,Xao) < 3 .Q.n iaoi

and from (4.21 follows that

h(D) < 2lTt"n iaoi - tr

THEOREI'I 4.1.10

b
o-.*F^^^ rhar L - (1,x^) and L' = n (p/(p - tlf f f .DLIPP\.DE Llrqe u - \rri'D, 

P<m
p Prime

If the Generalized Riemann Hypothesis is true' then

*' = .f + o(m 1/2 (tog iol + 1og m)l

Proof

This is a result due to Odlyzko (see Flonier [28J, P' 3'8'

Lenstra 1.25J , P. 1 1 ) . Also the constant of the O-syrnbol is

c = 20 (see l28J , P. 3.11) . o
4
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COROLLARY 4.1.1 1

e (m) = lil h i = o ( /-i5T- los !o 16-1/z (los lo l+ Ios m) )

Proof

DEFINTTION 4.1.12

Suppose that G is a finite grouP. Then the smallest

integer e such that

ea-='l Y a€G

is called the e&ponent of the group G.

Shanks' algorithm for computation of the class number

h(D) of ci,(D) will now be described. we shall describe the

algorithm in two parts. First we shalI give an algorithtrt

we have e (m) = l; hl ='{f' lr, - L'1, where L, L'

as in Theorem 4.1.10. By Theorerns 4.1.1O and 2.2.4 we have

ll, Ll = r,.o(m 1/2(tog lPi + 1og rn))

Hencee (m) =o('rl5l log lol ^-1 
/2(tog iol +logm)). Also

the constant of the o-symbol is "5 = 14 (it follows from c,

and 2.2.41 . tr

?
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computing the exponent of C[ (p) and afterwards an algorithm

computing the structure and the class number of Cl. (p) .

Shanks I algorithm for computation of the exponent of

C.q,(D), constructs a set of generators of Cl,(D) (using Theorem

4.1.5 or 4.1.61, computes the order of each generator and

determines the exponent e of the form class grouP as the

L.C.M. of these orders. The algorithrn uses a special technique

(Shanks' "baby-giant step" strategy) to find the order of each

generator and computes the exponent e of cg(D) in o{o1/5+e,

elernentary operations under the assumption of the truth of

G. R. H.

An outline of the alqoriti-im is now qiven.

n -^-*..!^ - 
*

A. \-1,'.,uLE en h to approxi-mate the class number h(D) using

t.he formula

h _z/-F-t 
' 

p=
1T p<* p- r*l

odd prime Y

where m = m (D) is a positive integer chosen so as to

achieve optimal efficiency. If a bound of the approx5-mation

is e (m) (it can be computed using the formula of Corollary

4.1.11), then

t\,fu
h e(m) < h(D) < h + e(n)

B. Initialise b to the largest factor of h(D) (e.9. using

Theorem 4.1.71 .
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C. Compute a set of generator ifn) of Cl,(D) (as justified

by Theorem 4.1.5), where Fn = (p,Bp, ) for primes

p ( .1 (1og D)'? and Bn is a solutj-on of the equation

yz =D (modp) O<X<p.

D. For each generator carry out Dl - D4.

5. + tu +
-- D1 . Compute the closest integer h' to h such that h' = O (mod b)

Observe that

ih--h(D) I < e (m) + b = 0

l-* + +
D2. If rl + I, then by searching in the interval (h'-o,h'+o.)

Y
hl

find an integer h' = O (ncd b) such that t" - I (In this interval

there exists at least one such integer , ,i" h (D) ) . Let h+ become

equal to h' .

.+
tr D3. Using the relatj-on fl o f compute the order e- of the-P - ---'!-- P

form Fn.

D4. Let b to become equal to LCt'l(b,e^) (since 
"^lh 

(D) ) .PP

E. The exponent e of C (D) is determined by

e = LCM ({e-}).
P

Some technical details of Shanks' algorithm will now be

given. The following techniques are used to speed up the

algorithm.
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1 . One can improve the approximation il "rra simultaneously

find a factor of h(D) (see step B above) using Theorem 4.1.7.

One can compute the sets

pt = ip < m:p2.P ilD for some j-nteger an > 1 and p odd prime]

pz = {p < m:p2tP*i 11o fot some integer an) o and p odd prime}

and Iet
0^-l D^ 0,h

b - n p rl (p t*f I ll p P, where D^ = o/p2aP and
p€Pt Y p€Pz Y

D

,f , is the Legendre symbol.

?m+# ..Let 2-"' " il o wi-tn t = o,1. If D is a -equare, then let b become

m-1 mequal to 2"' 'b otherw.ise 1et b become equal to 2"b. From

Theorem 4 .1 .7 and (4 .11) we have that b ih (D) .

r.*
2. One canco:iq)ute F^ (step D2) the following way. First

v
+express h in binary

.+ I ^ih = | dr?*, where a. € {or1}
i=O

-h*and compute F" via the recursive reLation-P

^ a.
G. - E G? F -i-1 for i = n+1 until i ='l].-t L D

with Gn*1 = (1 ro,-D). Then rh = gPo
.+

3. The most difficult part of the algorithm is when Fn { f

(in step D2) and it is necessary to find an hr I O(mod b) such

that fh' s r by searching in the range
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(4 .121

ut

(There is at least one such integer in the interval (4.12't ,

viz h(D)). A direct search into the interval (4.12) would

require O(e(m)+ b) comPositions, but this can be reduced to

O(,4Tm)TUy applying the baby-giant step strategy.

Suppose that h' = h* + e. Then from (4.121 we have

, 1" + fu.
Irl = lh'-h'l

Now let s = f /cTm-I7ET-Tl. Since uin* and we want blh'we

have that b I e. Hence E can be written

e = 2rsb + tb for some integers lti < s/2 and ltl < s

ra! - 
,)-l'

l-JgL Y - .-Y.

F'i rct nrrmnirf 6e vv.!rrg Ev

hi(FD")' for o < t < s (baby stePs)

and

(r-b)-t = (F-5F for o < t < s
PP

since the inverse of a form is its opposite (see 1.2.21 .

Iiow compute

,h**rg for -2.t.; (giantsteps)

Now we have two cases.
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C,

(i) If l.l
thus a match will be found Fh* * F:tb. Hence h' = h* + tb andPP

hl
F" Ar f .

(ii) If l. I

rrSlrl < + and ltl < s and thus a match will be found
z

-h-+rs --tb!-AJt.PP

Iience h' = h* + rs + tb and Fh' nr I .p

Let h* to become equal to h' .

4. One can compur,e the order of a form F^ (step D3) in the

rn'!'rnr.,ih^,.,-,, r^ra r^:r:.^ that Fh o r. rfrfn *" factor h* usingIUIJ-LJWrjr9 Wdy. vlE ild.vE 
P

Pollardbt3ol method. Let h* = | nrut and ti = h*/Pi.i. rf
l-

tu

for every prime divisor ai of h one finds the smallest integer

s . such that:
a

t. si
1AIr V-(tn -)'j- s J

then the order e of the form F isPP
si

e = ll q, 4
p-l
'L

Some remarks about Shanks' algorithm.

Whenever two forms are composed, the compos5-tion is followed by

reduction of the composed form (use algorithm of Corollary 1 .1 .1 1 ) .

To decide equivalence of two forms, the algorithm of Theorem 3.2.2

is used.

6'
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To solve the equation X2 = D the rnethod of Tonelli-Shanks

(see O.2.5 - O.2.61 is used.

AIGORITH}I 4.1.13

INPUT : The determinant D ( O, an integer m bound for the
tu

approximation h of h (D) .

OUTPUT : The exponent of C!. (D) and a generating set G for
P

every p-Sylow subgroup of Ct (D) together with the

orders of the generators.

e (m) * cs /TDi los ioi*-1/2 (tog lol + los m)

Comment For the constant C. see Corollary 4.1 .11

! <- 1: G^* Q';
v

coruoent i'le shall make use of Theorem 4 - 1 .7 (see 1 above

4.1.13)

2. For (a11 add primes p < m> do

Begin
,).

I.;! .p"P il p for some "p, 
> then

HO^1 n

fu r ./--F-]-
f . il * 2"._Iri jl ___P____

r p(m p (:)
p odd prime E

Begin

D^ * o/pz'P;Y a^-1 D

b *bpP' (p tftt;
end
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If
la

end

rf
If

3.

.P2uP*1 ll
a^<- b.P Y;

D for some .p

with t =

square >

> O> then

thenOr1)

then

22**t ll D

< iol is a

^m- 1,1- Z Dib

else

!<-

p' <- 2i

.,L.i1^wlrJ Jc Y

A

h
z Di

< c. 1oq2 iDl do
i-

Begin
+

<Conpute h the closest integer

h* = O (mod b)>;

Comment Construct a form F
P

prime p<Find the smallest

P' <- P;

(So1ve the equation X2

"p 
* "t

tp * ("; - ol /P;

"p 
* lprBprCn);

<Reduce tnr t

= (P, B^, c^)vv
n

such that (;) = 1 and P ) P')i

=D(modplO<x<P;

toh such that

6.

Comment F*h* r*il1 be
v

<Compute .i'" € {or 1 }

Gn*1 + (1rOr-D):

computed by expressing h' in binary

such that h+ = ; ".i2it,:-n7.



C

Begin

G. . € (G.)t P-ai-1;t-t i P

9. end
+h'

F" +G lP o-

s <- l,'etnlSn I

h+rf <F^" + (1,o,-D) ) do
P

Begin
}.f

10. (fpmrrrro lF ")' for all ltl < s>;'-p '
h+

Comment This can be done by computing (Fo") - for
Y

o < t < s and findj-ng ("^o) t for o < t < s using
v

the relation 
";* = (Fpbt)

(Sort the 1j.sr L = iF*bt , ltl < s]>;'n

g + 2bsi

r <- O;
;+

G*F*" i
Y

1 1 . While (G or G is not in the list L) do

-132-

8. For i = n+1 until 1 do

Conrment To find whether or not G or G beiongs to

the list L use binary search (see I2l )

Begin

Q <- G.Fg

r + r+1;

12. end

<Let G = t:ba for some itl ( s);
P

h**h-*r9+bt;

end
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Comment The order

h* and let

e
P

t1

of Fn is computed

a1 ar
=91'"'9r-);13.

14.

16.

(Factor

tP * 1i

Fori=

Begin

f+

G<-F

while

+
=tnZQi 'i

tLi': s.
y4

<G+I>

1 until r do

I-]. SE G the element

(b,eO) ;

(e, en) ;

Co

F.oni n

vl
t)+L,

s. <- s.'l 1

^*:

e <- e .q.nn
v1

(fnsert in

t

si .

the
t. s.

(Fpa,g, a)>;

17. end

G b + L.C.M.

e <- L.C.M.

1 8. end.

Return e, <G for every distinct prime q which divide e>iq

end. o

THEOREI'I 4 .1 .1 4

If G.R.H. is true, then algorithm 4.1.13 correctly

computes the exponent e of Ci.(D).



Proof

It follows

algorithm (above
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and the description of the

m is suitably chosen, then

in ot ioll /t ttonlol ta M(losioi t t

from 4.1 .5

4.1.13).

THEORE!'{ 4 .1 .15

If G.R.H. is true and

algorithm 4.1 .13 termj-nates

eLementary operations .

Proof

max{o (m (1og

o( I (1o9 k)
k=1

m) /1og m) , o (m (t't (1o9 lD I ! /tog n *
nt ) elementary operations. This

I 1og p M(1og p)),
P<m

can be simplified to

The parts of the algoriti:n which involve m are :n:''lrrcorr

to determine the optimal choice of m.

S j-nce the number of primes less than m is O (n/log m) by

priine n'.lnber theorem, the computation of step 1 requires

O 6/ log m) computations of Legendre slrnibols and o (m/Iog m)

multiplications. To find all primes less than m reguires m

applications of a primality test. Using Miller's 1,27J test,
A

which tests a integer k for primality in O(1og k)-) elementary

operations on the assumption of the G.R.H, this can be done
mA

in O( I (1og k)=) elementary operations. Also the computation
k=1 nof the Legendre symbol (;) requires O(t't(loglol) + 1o9 p I'1(1og p)

elementary operations tr". Theorem 2.1 .11 , analysis of steps

11-121. Hence step 1 requires
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max{o(ni(l't(loglol}/rog m + m M(1og n)), o(m(tog n}4}} =

= o(m.maxitu(rogloltZlog m, (1og tla])

Now loop 2-3 requires only (m log I o | /1og m) elementary

operations for divisions.

Step 1O requires s comPositlons and by Corollary'1.1.11

reguires O(s logjl>iMtfoglOl)) elementary operations. To sort

the list L takes O(s 1og s) elementary oPerations (see 12),

p. 87). To search (step 11) if G or G belongs to the list L

costs o (1og s) elementary operations, using bJ-nary search (see

l2l, p. 114). Since a G or G will be found in the list L for
* "i+h 'ti . i=i, the loop 11-12 reguires at most s5LJt,lE ! hr Lll 

I

.c,mr.,rls'itions and thus O(s log lOi M(loglol)) elenentary oPerations.v v.,,rv

since s < ,,?GT = o(',D11 /4^-1/4 (tog!ol (rogioi+ 1og m) 11 
/21 (by

Corollary 4.1 .1 1 ) we have that steps 10-12 require
1/^ -1 /4, -O( lOl 'rt Jog' lOiU(1og O )m 't 'l elementary operations (using

m < Iplt.
Since the parts of the algorithm analysed above are the

only parts depending on m and the loop 4-18 is iterated

O (1og, I D | ) times, w€ conclude that the optinral choice of m

1 /c.
is m =lD l'i'. with this choice of rn step 1 requires

a tc A

O(lq'/t(1ogiOII") elementary operations and steps 1O-12 reguire
,r lc.

o (ld'' ' log' lD iM (1og io I t t elementary oPerations '

Now the rest of the algorithm will be analysed. rn

steps 5-6 to construct a form Fn = (P,Bn,Cn) }te solve the

equation



G
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x2=D(modp) o."P<P

byreducingD(modp)andapplyingTheoremso.2.5anda.2.5.

Since P < C,, 1og'?lOl, this construction reguires O(Mlogloltt

elementary oPerations'

From the fact that 
"n 

< p < c log'?lol one can show that

rog liFell = o(loglol). Hence the reduction of Fn (step 6)

reguires by rheorem o -3.7 o(rog Il"pll Mtrog llrnll )) =

O(Io9 lOlu(logiDl ) ) elementary operations. The computation

Ft
nfF

f

requires n+1 conpositions and since

h- <; + b = 0(,,151 rogiol)

,.*
we have n = O(1og iDi). Hence to compute fn using the

algorithm of Corollary 1.1.11 requires O(n log lOlU(logiDl)) =

o(1og'? ioiu(logiDI ) ) elementary operations'

Step 13 requires O(iD11/8+e, elementary oPerations using

pollard's factorizati.on algorithm, since h+ = O(/TDl 1og lOl)'

Loop 15-16 requires "i compositions and since h* = 
t 

nrut

and s, ( a1r we have "i = O(loglol) ' Hence loop 15-16 requires

o(s, 1og lplu(Ios lol)) = o(1og'iDlM(logloll) elementarv

operations (by corollary 1'1'11)' Loop 14-17 requires r

iterations and since r = o(fog fiTfog 1og h1 = Otlog lDl) ' it

terminates in O(1og3 lOlU(1og lDi ) ) elementary oPerations'

Finally loop 4-18 requires o(1o9'lo[] iterations and

from the above analysis, it terminates after
1 IE A

o( rDi 
1/t 1og4 ipiu(1o9lol ) ) el-ementary oPerations in worst-case'

Hence the theorem follows ' o
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RE}":ARKS

1. fn practice, it may be unnecessary to reduce the form

F_ at step 5. In algorithm 4.1.13, if D is large enough top

ensure that ioi/fog4lol> Cl, then choosing Bn such that

O < l"nl. p/2 will ensure that un is reduced.

2. If one wants to implement algorithm 4.1.13, then it is
necessary to know the constant C., of Theorem 4.1.5. This

constant can be determined from 1231, but we do not know its
value. For practical purposes, very few forms are generally

sufficient to generate CL (D) (see t3a1 and Remark 4 below) .

3. If one wants to coi-up'r+.e the exponent (and further the

class number) of C!.(D) wi+-hout the assumption of unproven

hypothesis one has to search in the interval (O, zr\fltn l4Dl)
(see the bound on h (D) glven by Theorem 4.1 .9 ) using the "baby-

giant step" strategy to find an hr such that Fl'ns I. This
P

will requJ-re o ( ID t1 
/ 4+e, operat j-ons. Since the number of

c^
generators for which the order must be computed is O( lol-'11

(by Theorem 4.1.61 , the algorithm will terminate in
Ce+1 /A+qO(iDl " ) elementary operations. ft is known that
1C" > + (see L22l , t23l ). This worst-case eomplexity bound

JII

seems to be unrealistic, but as stated in t22) it is not easy

to prove a better bound on the number of generators of 02f(dl

unconditionally. (Observe that in the above version of the
4"

algorithm 4.1.13 we do not compute an approximation h to h(D),

since there is no known unconditional bound for the quantity

ih h(D) | better than the absolute bound on h(D) !)
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4. Algorithm 4.1 .1 3 was designed by Shanks as a heuristic

algorithm for computing the class number. There are two

ways in which algorithm 4.1 .1 3 may give information about the

class number.

(f) If b is sufficiently large, there RaY, at some point

in algorithm 4.1.13, be a unique value h* = O (mod b) in

the range

r!fu
h e(m) < h* < h + e (m)

which is probably (and subject to the truth of the G.R.H.

necessarily) the class number. In practice if this test

is used the computat-ion of the order of a few generators

of C!. (D) is usually sufficient to deternine the class

nr.uiJrer, ds remarked by Shanks [34] and Shoof t33l .

(ii) If all the p-Sylow subgroups of Ci(D) are cyclic, then

e = h(D) , where e is the exponent of Ct (D). In practice,

the p-Sylow subgroups for p odd prirne, are almost always

cyclic (few examples of class grouPs with non-cyclic

p-Sylow subgroups are known! see t3f11,so that almost

always

h(D) = 2s.e

The above methods for computing the class number are

generally effective and fail with low probability. When the

class group is irregular, the algorithm for deternining the

group structure may be required.
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Those are standard algorithms (see e.g. Sims t3gl)

for finding the structure of a finite abelian grouPr it suits

our purpose to describe an algorithm specially suited for use

in conjunction with algorithm 4.1.13. Subject to the G.R.Ii,

we describe an algorithm requiring o(lDl'/') elementary

operations which determines the complete structure of Ct(D).

Since algorithm 4.1.13 outputs a generating set for each

p-Sy1ow subgroup of Cl. (D) and there are at most

o(1og h(D) /Iog 1og h(D) ) = o(logiol/1o9 1o9 D) p-Sylow sub-

groups of C.Q.(D) , it suf f ices to describe an algorithm which

r-orrnrrf eq a ha 3ner,af ino set for a f inite abelian--S1S g].Ven a $u,.-

First we girre sone notations and results, basic background

for the algorithm.

NOTATION 4.1.16

Suppose that H is group. I1 tbt ,b2,...,br] generates

H, vre write that H = ab1 ,b2,...,br, and if {btrb2,...rbn} is

a basis for H, we write H = (( b1 ,b2,...,bn>>.

THEORET'I 4.1.17

LCt H

where b. has
1

p prime. If

= <<b1 ,b2,

order p i

R is the

...,brtr, Ht = (H,x) be abelian grouPs'

for 1 < i < n and x has order Ph for

set of relations of the form
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xB = il b.Yi
a1= |

0ih
where O < yi < p for 1 < i < n and 1 < B < P". Then

(i) R I @

a* n 6i
(ii) Let X' = ,il. bi !

l_= |

(4.13)

(4 .1 4)

be a relation of R, where B* is the smallest exPonent of x

which appears in R. Then

An'^h
R* = 1xB* - il or"t, biP*i = 1 for 1 < i < n,xp =1]

is a set of defining relaticns of H1.

(1ii) For some O < k ( h, we have that B* = Pk

Proof

-hnn(i) we have that R g O, because xP = fl b: € R.'l
.l_= |

(ii ) Suppose that (4 . 1 3 ) is a relation in R. Thren we choose

an integer m such that

o<B-nS*<B* (4 . 1s )

By raising both of the sides of (4.14) to the exponent -m and

multiplying by (4.13) we have

B-mB* ! Y1-md '
x- 'r'v = fl b.

i=1 f,
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Sj.nce B* is the smallest exponent of x j-n relation of

this form, from (4.15) we have that B-mb* = O and thus B*iB.

l{ow since {b1,b2,...,bn} j-s a basis and thus the bi'= are

independent we have that R is the set of the relations of the

form

*E*t = il b.oit for 1 < B*t < ph
i=1 L

Hence easily we have that R* is a set of defining

relations of H..
I

hn
(ifi) Since xp - I b? is a relation of R, we have that

i=1 +

.hk
3*,p" and thus S* = p" for some O < k < h. tr

A procedure (based on 4.1 .17) computing the complete

structure of a finite abelian P-grouP Gn will now be described.

Suppose that {X. r. .. tx^} is a set of generators of G^. The
l9y

structure of GO will be computed by computing recursively a

basis of the subgroup H-,n of G^, thenS+I P

Hs*1 = aH"rXs*l) for O ( s < 9-1 and Ho = {1}

ct.

Suppose that H" = ((b., ,bZ,... rbrrr, where b, has order p L

hfor 1 < i < n dtd *s*1 has order p". First we compute B*r6i

forl<i<nsuchthat

e* n 6i
X' - = Il b.s+l .:_.| L

r-l

(4.15)
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and B* is as in Theorem 4 . 1 . 1 8. Then B* = Pk.

Casek=tr

Since the set R* of defining relations of Hs*1 is
la^

{"!.'t =1r ot-o*t =1' 1<i<hi

we have that Hs*1 = ((b1 t...'brrrbrr*l = Xs+l))

CaseO<k<h

Let gcd(B*,61,...,6r.,) = pr with o < r < k

u = *!.'' il- l]i ru:.tn B, = g*/pr and yi = -g L/pt

Then u has order pr, since

hA
n* Q* --tu- = x - .ll D. I

S+ I Il-= |

and B* is the smallest exPonent of the reJations of R.

Subcase r = k
n Y.

Then S' = 'l and u = *=*1 .n ort. Then Hs*1 = (Hs,*s*1) =

i=1
(H=,u) and the set R* of the defining relation of Hs*1 becomes

*k ^0itr-," -1, bio =1,1<icni

Hence we have Hs*1 = ((b1t... rbr.rrbn+, = u)).

If O ( r ( k, then for some ), 1 < j ( D, we have that

ocd(y;,p) ='l .
)
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Then there exist integers )', v such that

c-i
1Y3"vPr-1

Hence we have
),y.+vpoi I -rar n

oj = bj ) = u" .;i?' 
,1r 

bi-rYi
i,f)

and thus Oj € (u,Xs*1, b1 ,... rbj-1,bj+1r " ',br) = Hs*1'

Sub-case r = Q

Then we have u = 'l and oj € <H' , xs*1) = Hs*1 with

H; = ((b,, oj-.t ,oj*', , " ' 'bn>>' Hence it suffices to

recursively compute a basis Hs*1 - tH;,Xs*1)'

Sub-case r I O,k

Thenusingthedefir-ritionofuandB*,itcanbeshownthat

the set {u,b., t...,oj-t,bi+1,...,br,} has independent elements'

Hence it suffices to recursively compute a basis of

Hs*1 - .H:,xs+1> with H! = ((u,b1 , " ',bj-i'bj+1" " 'br))'

To justify the above procedure, it suffices to show

that the recursive ca]Is read to simpler subproblems - rt is

clear that H; j-s a proPer subgroup of H", whence lH:l '* lH"l'

Moreover

r rt rY.i 1 '-- t

iHll=p- n poi.*iH. l (4'171
p .!-.r P D

r-l
ils



C
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since lH^l = il not and pr . n% from the facts ptlo. and' s' i=1 - J

0.
6 . < p l. Hence to find a basis for H-.. requires at most t-l r - - s+l

recursive calls of the procedure, where le^l = Pt.' p'
To find a basis of Gp, g aPplications of the above

nrnnarlrr ro : ra raa'tll i rari
lJrvuvvsre

It remains to give an efficient way of eornputing the

relation (4.16). We shall use the baby-giant step strategy.

First we compute for 1 < i < n

-r. , oi/2-,
b.'r for aII O < t. < lp -,"1 (baby steps).aa

t.
Let now L be a l-1st of all posslble products of b. t't. Then we

n cl .

can see that #t = o ( il p 'l'/'l .
.: -,rJ-- I

Now we comprrte the l-ist L* such that

k
L*={axP :a€L, o<k<h}.

Then one can see that #t* = (#L). (h+1). Floreover we comPute

forl<i(n

c. d, dc rt oi
b.'i-i for all o < c. < [p r/zl with d. = [p '/2 1-i i rr , I

(giant stePs)

Now let L** be a list containing all the possible
c. d. I si.1/2,

products of b. I t'". Then we have #L** = o(( fl P -) t.a i=1

Now for every element w of L** we search if w belongs to L*

(using binary search). Hence we shall find a set of relations

nf *ho fnrrn
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n c,d. k n
bi_ a I = *f,*t .n b:ti

i-=1 r r=1 a

dq t.t d, t.,
for some o < c. < ip rtzl o ( t. ( lp t'"1 and o < k < h.1'l-

Choosing the relation with the smallest k r+e have the relatj-on

(4.i6).

From the above one can see that the computation of the
n q. - t^

relations requi-res o(h(#LI) = o(h( II p tlt/z'1 multiplications
i=1

n o.
and since h = o (:-og ic l ) and )1 p

i -1

computation of the relation requires O(loglci/TcT) multiplications.

And now explicitly the aigorithm.

AIGORf TIII'{ 4. 1 .1 8

fNPUT : A set of generating sets S., = {x1 r.. . ,Xo} for
yrY

every p-Sylow subgroup of an finite abelian grouP

G and their orders.

OUTPUT : A basis for every p-Sylow subgroup of G.

Procedure BASIs (H= = ((b., ,bZ, .. rbrrr, xs+1, Pot r... rPotrPh)

Conment This procedure computes a basis of the p-group
0.

Hs*1 = (H", xs+1)- Also p t i" the order of b,

for 1 < i < n and ph the order of xs+1.
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Begin
a* n 6i

1. (Compute the relation YP - n h - as in (4.16)>;^s+1 - i'jt"i

Comment This can be done with the baby-giant step strategy

described above

lq <- log^ g *
v

Case k of

Begin

O : Return Hs*1 = ((b1,bZt.--,brr)};

h : Return Hs*1 = ((b., ,bZ, -.. rbrrxs+1>>;

2. else r *- logp (gcd (3*,61 , . . . ,6rr) ;

ax /nT n -Si/er.3. u * *!*i' .n.bi ,
1= I

Case r of

5.

Begin

k : Return H" = ((b 1,b'r. -. ,brrru))

O : BASIS (H; = ((b., ,...,bj-l ,bj+1,...,brr>,x"a1,

Po1 ,...,Poj -i rPoj 
*1r 

"'rPotrPh)
else

TBASI S (H: = <<b1 ,...,Oj-r rbi+1 '. -. 'brrru))r

xs*1 ,Po1 ,-. -, p j-t rnoj*lr.. - rPotrPt)

end



-147-

Beoin

6. For (each p-Sylow subgroup Gn of G> do

Begin

7. (Let nO = (xi'...,*g, );

Ho * 1i

8. For s = O until g-1 do

BASIS tu I' tt's'^s+1'

B +H
Pg

O ond

Return <B_ for each G^);PP
^-,t

THEOREM 4.1 .19

Algorithm 4.1 .1 8 correctly computes bases of all the

p-Sylow subgroups of G.

Proof

It follows from the description above 4.1.19. tr

We shall analyse algorithm 4.1.1 I in the case Q = C!, (D) -

THEOREI{ 4 .1 .2 0

There exists an algorithm which computes bases for all

the p-Sy1ow subgroups of CL (D) with D < O in
.t lA 1

o( lDl "' (logiol )'u(logiol ) ) elementary oPerations on the

assumption of the truth of the G.R.il.
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Proof

First we compute a generating set Gn for every p-Sylow

subgroup of C.e, (D) and the orders of the generators using

algorithm 4.1 .1 3. After we compute bases for every p-Sy]ow

subgroup of Cl. (D) using algorithm 4.1 -19-

First the procedure BASfS will be analysed- Step 1

requires O (1og (h (D) )/E-TDT) compositions, since h (D) = lCl, (D) 
I

(see description above 4.1.19). Since h(D) = o({Df fog lplt
by Proposition 4.1 .9 and conposition (following by reduction)

requires o(logiol M{1og iDi}) elementary operations by

CorolLary 1.1.i1, we have that step 1 reguires
1/A

o( lDi'" (logjDj )' M(iogiDi ) ) elementary operations-

since b* < h(D), ; 6{ < h(D} and n < g = o(1og2 lpl)
i=1

by Theorem 4 . 1 .5 ) , we have that step 2 requires

O (1og, lp lu (iog io; ) log f o9 io | ) e],ementary operations for n

applications of the Euclidean algorithm (see Theorem O.2.3).

One can compute u l:y expressing B' = g* /Pr,li = -6i/Pr

for 1 < i ( D, in binary (see steps 7-9 of 4.1.13)- This

requires O (1og B' - ; log v. ) compositions and since
n i=1 'l-'

n yr < h(D) = o(/TDl rog lol), it requ5.res o((loglDl)'t't(loglol)
i=1 I

elementary operations (by Corollary 1.1-11).

From (4.17 ) (see comment below it) the procedure BASIS

is called recursively at most t = O(1og'?lOl) times (steps 4-5)'
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From the above analysis we conclude that the procedure
1/A A

BASIS requires O(iol ''*(1o9lol)'M(1og D )) elementary

operations in worst-case -

The main algorithm will be analysed now. To find the

generating sets Go and the order of the generators using

alqorithm 4.1.13, it requires o(lolt/t lo9lol!r{loglDl)} ele-

€ mentarY oPerati'ons '

To find a basis for a p-Sy1ow subgroup (steps 8-9) requires

g = o(1og'iD!) applications of the procedure BASIS and thus
n lA C.

reguires O( lD'," " (1o9iol ) "u(loglol ) ) eJementary operations'

Loop 6-9 reguires o (lpg e/:JOg 1og e) iterations (the number of

,r.i e+inn* nrims divj-sors of the exponent e of Cf (D) ) and thus
Ll-L> LJ-llU U t/r 4rt'

1/A 1
O( iD lt / 

n (1og]oi )'t't(logiDl ) ) elerrentary oPerations, since

e < h(D) . o

Remarks

1. A more detailed analysis may reduce the exponent 7 of the

running time of the algorithm. The Presence of the term

^ 
/A

loll/n i., the running time of the algorithm discourages us

from doing it.

2. One may use sims' method (t39ll for the computation of

the bases above, which is rather inefficient. His method

has runni-ng time O(lOl1*t) but requires O(lDlc), c > 1 bits

for memory which may cause overflow'
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If a basis {b1,b2,...,br} for the p-Sylow subgroup

c!,^(D) of c g(o) ls known and b. has order not for 1 < i ( D,Pa
then

01 o? d
ct_(o) = c(p ') x G(p 'l x ...xc(p n) and

D

n 0.
lct^(o) | - n p rY i=1

.0i. - oi
where G(p *) is a cyclic group of order p -.

Since moreover Ct (D) = n Cf ^(D) the class nur'.rber h(D) (the
pv

order of C! (D) is the product of the orders of all the p-Sy1ow

subgroups C!,^ (D) of C!. (D) . Hence we have the following
v

+ l-^a*anIttgvr Eltt.

THEOF.EM 4.1 .22

There exists an algorithrn which computes the class
1/A 1

n'arber h(D) in otioi'"(logioi)'M(1og D)) elementary

operations on the assumption of the truth of G.R.H. o
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TABLE II

CLASS NUMBER

-1<D<-50

-D

18

19

20

21

22

23

z.t

25

26

27

28

zt

30

31

32

33

34

h (D) -D

Jf,

36

37

38

39

40

41

42

43

AA:t

45

46

47

48

49

50

h (D)

I

I

1
I

I

2

2

1
I

2

2

2

3

z

2

4

2

2

4

z

3

!

q

2

!

2

6

3

2

c

A:

3

Aa

,̂)

.̂)

6

q

2

6

.t

4

I
AI

3

6

A

{

5

4

A.t

5
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1<D<50non-square

D

2

3

5

R

7

I

I\J

11

tz

,1 At!

t)

17

to

h (D)

I

2

1

2

2

2

2

2

2

I

2

AI

I

2

n

19

20

21

22

23

zLt

zo

27

28

J(J

JI

32

33

34

h (D)

2

2

2

2

2

i:

2

L

2

.t
I

z

2

2

A:

D

35

37

38

39

40

41

42

43

AAaa

45

46

A7

48

50

h (D)

4

3

2

4

4

1

a

2

2

2

2

2

4

2
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4.2. CLASS NUMBER OF REAI QUADRATIC FTELDS

A. GAUSS },I.ETHOD

DEFTN]TION 4.2.1

The number of classes of properly primitive forms of

fj-xed non-quadratic determinant D > O is called the eLass

number and is denoted by h (D) .

Gauss deri-ved counting methcds for the computation of

h (D) for D ) O are similar to those described entirely for

D < O. The difficulty in the case of D > O is that eguivalent

forns are not as easily recognized as in the case of D < O.

lience it is necessary to compu'Le the period of reduced forms

to reject equivalent ones.

Gauss' first counting method makes use of the fact that

every reduced indefinite form satisfies:

l'6 - iall. B < 6 and lal < 2'6

The method is:

1. For lal < 2,6 find all pairs (A,B) such that x = I

satis fies

x2 = D nod A l'6 - lail < x < fr

and for each pair (A,B) , let (A,B,c) be a form where

c = (82 D, /A.
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2. Reject th4 forms which are not reduced.

3, Reject the forms which are not properly prinitive.

4. Partition the remaining forms into equj.valence classes

by computing cycles of reduced forms as aPPropriate

and select a representative from each eguivalence cIass.

5. The number of remaining forms is the class-number h(D).

1+c
The method requi-res O (D " ') elementary oPerations. More

detailed ana11'sis shows that the aigorithm terrninates in

o (D (1og D)' l{ (1og D) ) elenentary operati-ons.

I'IETHOD 4.2.3

Gauss' second counting method for computation of h (D) 
'

for D > O is:

1. For O < B < 'fr factor 82 D = AC and for all possible

pairs (A,C) let (A,B,C), (C,B,A) be a form-

2. Reject the forms which are not reduced.

3, Reject the forms which are not ProPerly priniitive.

4. Reject equivalent forms (as in step 5 of 4.2 -21

5. The number of the remaining forms is the class-number h (D) -

One can see with detailed analysis that the method yields

the class number in O (D (1og D) 'l't (1og D) ) elementary operations .
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B. DTRICHLET'S FORMULAE

Dirichlet gave the following formula for h (D) , with

D > O (see Mathews [Zd, 2381

h(D)=Pnio #t*r (4.18)

G where R is the regulator.

Now since

(i) tfrt = (#+) and

(ri) t*f - o for n even (Kronecker's symbol)

,*-e ha'e ; =J= (=,D . ) : '4D' 1

k=o zffi t2111r = nl, 
(#) ; = L (1 

' xro)

Hence usinq the Theorem 2.2 -3 we have:

- /F. 't-R c

h (D) = + L(1 ,xao) = T p!_z ;jg;
p prime P

AA
Moreover since (;) = 'l and ql = O we have

h(D) ='f ; PR p=: P ,3,

and if D / 3 mod 4, then we have

(4.1el/

(4.2o1

h(D) =*L(1,xD) Q tlrr



Also the formula relating to the class number h (D) and

h(Do) where D = Do S' is:
n

h(D) =h(D^) s-L n n=t;' 
G.211L, Rr pis v

where R, R' are the regulators of the orders Drf (d), Dzf , Gl

respectively with D = f2d and Do = (f')2d (see Mathews L26J,

P. 166).

Moreover there is a formula given by Dirichlet expressed

in finite sum of Kronecker's symbols for D square free

-' 
; '3' :;] r5r loe sin $ ro' o = 1 mod 4

K=l
(4.22)'

h(D) =
.r 2D-1 n n(?Lrll- R. r. (#.T) log sin -l:ft-l for D =- 2'3 nod 4

K-- |

(see Venkov [40], P. 23o)

Thus to compute the class number h (D) using the formulae

(4.211 , (4.221 , requires o(D log D M(1og D) ) elementary

operations in worst-case using one of the methods of the

section 3. i for the computation of the regulator and computing

the Kronecker's s1'mbols as in Theorem 4'1'4'

-1 56-

C. SHA}TKS AIGORITHI'I

shanks' algorithm for the computation of the class

number with D > o differs from algoritlrnr 4.1.13 - 4.1.19 in

the following resPects -
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tu

1 . The approximation h of h (D) is computed via the formula

(4.20). To find an approximation, the computation of

the regulator R of O2t{G) with D = f2d is necessary. To

compute R one can use Lenstra-Shanks algorithm (sectj-on

3.1).

2. In algorithms 4. 1 .1 3 and 4.1 .1 9 equivalent forms are

easily recognized, since they are definj-te by using

Theorem 3.2.2. But when D ) O to decide equivalence

of two indefinite forms P, O it is necessary to use

algorithm 3.1.24 to decide whether or not QF-l is

principal.

Hence if one modifies the algorithms 4.1.13 and 4.1.19

in respect with ( 1 ) and (21 then similarly with the case D < O

we have the following theorems.

THEOF.EM 4.2,4.

Assuming the truth of G.R.H. there exists an algorithn

which computes the complete structure of c!,(D) in o(D1 /2+el

elementary operations, when D ) O, non-square

Proof

The bottleneck of the method (described above) is the

computation of the relation (4.1 5 ) . rt requires o (D1 /4+e,

applications of the equivalence procedure (algorithm 3.1).

Hence the computation of the complete structure of C!, (D)

1/)+crequires o(D't''e) elementary operations. o
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COROLLARY 4.2.5

See remark above the Theorem 4.1.22. o

Assuming the truth of c.R.H. there exists an algorithm

which computes the class-number h(D) of C0(D) with D ) O non-

square in o rol/2+e, elementary operations.

Proof
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5. 1 . AIGORITHI'T CLASNO

DEFTNTTION 5.1 .1 .

A class of Cl. (D) which contains an ambiguous form 1s

ca1led an anbiguous eLass.

PROPOSITION 5.1 .2.

A cLass K of Cg (p) is ambiguous if and only if

,r2 - Tf\-]

where I is the principal cl-ass of Cl. (D).

Proof

(*) Let {A,B,C) be an an'biguous form in K- Then Al28'

Let 28 = -mA.

Tlron

and thus (A,B,C) Ai (Ar-B,C).

Now since {A,-B,c) € K-1, we have

x = if1.

Now we have

K2 = K. o K = ff o x-1 - I

(*) If K2 = I, then

K-1=K-1or_K-1oK2=I{

(A,B,c) '+(A,-B,c) via (:rl
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Hence every form (A,B,C) in k is equivalent to j.ts

j-nverse (A, -8, C ) and thus by Gauss t 1 6l (A. 1 62) there exists

an ambiguous form equivalent to (A,B,C). tr

PROPOSTTTON 5.1 .3.

The reduced f orms of an ambiguous class of C.e, (D) with

D < O are of the shape (arorc), (a,bra|, (2brb,c).

Froof

Let K be an ambiguous class of Cl.(D) and (a,brc) a

reduced form in X. Then (a,-b,c) € R, since K ambl-guous.

N{nrF-vtrr {a.-h n) ic, e'l qn reduced.:-JVfLvYLr \s, vrvl

Now frorn Theorem 3.2.1 we have that either a = c or

: I /n

If a = c, then the class K contains only the reduced

forms (arbra), (a,-bra) .

If alZU, Lhen since (a,b,c) is reduced we have

lzr I

and thus

b=Q or 2b =a.

Hence the class K contains in this case only the reduced form

(a,o,c) or the reduced forms (2brbrc), (2br-brc). tr
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PROPOSITION 5. 1 .4

Suppose that e is the exponent of Cl'(-p1 with D > O- If

e is odd, then D is a Prime-Power.

Proof.

Assume that D is not a prime-Power. Then there exist

integers f, g such that f / 1, I I 1, f ( g, D = f'g and

gcd(f ,gl - 1. Now the form (f ,o,-g) is a ProPerly primitive

ambiguous form with determinant -D. Moreover using the fact

that (f,o,-g) is reduced one can show that (f,o,-9) * (1,OrD) = f'

By ProPosition 5.1 .1 we have

(f ,o,-g)t A, I

hence 2 ", and the exponent is even. tr

A versj.on of the algorithm CLASSNO (see Shanks t 34 ) for

faetorization of an integer D with running time o(1o11/5+e,

elementary oPerations is the following'

THEOREM 5.1 .5.

There exists an algorithm which factors a positi-ve

integer D j-n two factors frg with gcd(f,g) = 1 and if D is

not prime-power, then yields f I 1, g I 1' This algorithrn

(cLASsNo) factorizes D in o(lDl1/tOorlollA M(lo9loltt elementary

operations.
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Proof

First we compute the exponent e and a set Gt of

generators and their order of the 2-sylow subgroup of

Ci, (-D) using algorithm 4.1.13. If the exponent is odd

then by Proposition 5.1.4 we have that D is a prime Power.

Otherwise for a Q € G- with order 2)*1 we comPute the form
zt

^J
G = gt using the algorithm of Corollary 1 .1 .1 1. Then one

can see that G2 A, I and by 5.1 .2 we have that G belongs to

an ambrguous cIass. Also G is reduced (by 1.1.i1). Nqt by

Theorem 5.i.3 we have that G is of the shape either (a,o,c)

or (2b,b,c) or (a,b,a). Hence we have either

or

a)r

-L)

-L)

L2t)

u

Zbc = b (b-2c)

a2 = (b-a ) (b+a )

(s.

(s.

(s.

1)

2l

3)

l'loreover using the fact

one can show that the factors

are coprime.

It is pcssible $.21 to give the trivial factorization

1. (-D). Using the fact that G is a non-Principal ProPerly

primitive reduced form, one can show that trivial factorization

could happen only when D = 1 (mod 41 , then I = (2,1r@+11/21

and the trivial factprization is given by (5'2) '

Hence in the case D = 1 (mod 4) if (5'21 yields a trivial

factorization, then we use other forms of Gt to compute

that Q proPer1Y Primitive,

of D given by (5.1 l (5 - 3 )
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ambiguous forms. lf all the forms of G, lead to the ambiguous

form (2,!, (D+1) /21 , then it can be shown that in this case D

is prime power. (tnis follows from the theorem on generators

of the ambiguous cl,asses of C.( (D) cited by Lagarias in 121),

p. 5oo).

we shalf now analyse the algorithrn. First, to compute

the exponent ofCt(-D) and GZ (by Theorem 4.1,15) requires
^ 

lE A

o (D''' llog D)=I'{ (1og D) ) elementary oPerations.

Suppose that e = 2s.t and 2 + t.

Then to compute to form G requires j*t compositions'

Qinno

J < s < 1og e < log(h(-D)) = O(1og D)

we have that the computation of an arnbiguous forrn reguires

o(J log D M(1og D) ) = O((1og D)' M(log D) ) elementary operations

by Corollary 1 .1 .1 1 . And in the case of trivial factorization

we have to compute at most #Gz = D(1og2D) arnbiguouS forms,

€ hence the bottleneck of this step is O ( (1og p) 4t'l (1og D) )

elementary oPerations. From the above analysis the running

time of the alqoritl-rm f olIows. tr

For alternative approaches to factorization via guadratic

forms see Leh-mers' method Qay (anO('r[) nethod but the facilities

of the University of California make it competitive!), SQUFOF

(shanks-unpublished: see Monier t28l an o ,,r1/4+e, (expected

time) simple method using searching on the principal cycle),

Schnorr I3t 1 (a probabilistic version of the algorithm CLASSNO) .
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