

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/47392

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/65690

G

The eguivalence of an operational and

a denotational semantics

for pure dataflor,v

bV

Antony Azio Faustini

A dissertation submitted for the degree of
Doctor of Philosophy.

Department of Corputer Science
University of Warwick

Coventry
UK

April 1982

Contents

p.1 g. Introduction

Mathsnatical Notation

p.23 A Review of work related to the Kahn principle

Historically important early models of dataflow

A. Karp and Miller, Ccrnputation graphs.

B. Mans, A model of paralrel corputation with datafrow
seguencing.

Scrne contsnporary models of dataflow

C. Kahn. A sirnple language for parallel programming.

D. Arvind and Coste1ow, An interpreter for Dennis
Dataflow (DDF).

E. Wie&Trer, Computirrg with infinite objects.

F. Arnold, Semantigue des processus conununicant.

G. Keller, A language for nonteterministic parallel
prograuning.

p.55 2. A formal operational ssnantics for 'pipeline' datafrow *
A. IJodes and nonteterministic infinitestate Autcxnata.

B. Closed nets and closed net cornputation.

C. Qen nets.

D. Ehvironment nodes and Tbst beds.

E. Ihe Encapsulation property.

C

p.97 3. A Denotational Semantics for Ptrre Dataflow.

A. Preliminaries.

i. Countable Chain Conplete partial Orders (C3pO's).

ii. Kleene's fixed point theorsn.

B, A Denotational Semantics for Dataflow (Kahn).

i. Para11el progran schsnas.

ii. Fixed point eguations.

iii. Using 'wtrere' notation together with
.certain transformation rules to
massage expressions involvirg a fixed
point operator.

C. llcdes, Open Nets and F\rnctionality.

D. An fntroduction to Infinite Games of
Perfect Information.

E. Infinite Ganes and Q>en Net Functionality.

F. Scrne Results.

i. History functions computed by open nets are
continuous.

ii. The Universality property.

iii. The Abstraction property.

p.138 4. A Proof of the Kahn principle in a Completely
Genera] Context.

A. Relating our Q>erational Semantics to Kahn's
Denotational Ssnantics.

i. Constructing dataflorp nets using the prirnitives
juxtaposition and Iteration.

ii. O-Kahnian and Kahnian nets.

B. A Proof of the Kahn principle.

C. Sone Conseguences of the Kahn principle.

i. An eguational dataflorr,r progranning language.

ii. Deadlocks and the rycIe sun test.

p-169 5. Possible Extensions, Refinenents and Future vilcrk.

A. Extending the Eguational Dataflow language.

i. Infinite nets.

ii. proving the Kahn principle for infinite
Pure dataflow nets.

B. Properties which Ensure F\rnctionality.

i. The one step Church-Rosser like property.

ii. I'lonotone transition relations for nodes.

C. Extending the Denotational sernantics.

i. ltcn-functional nodes.

ii. Hiatonics.

p.186 6. Bibtiography.

F

C

Abstract

rn this thesis $/e prove the eguivalence of an operational
and a denotational semantics for pure dataflow.

The term pure dataflow refers to dataflow nets in r+frich the
nodes are functional (i.e, the output history is a function of
the input history only) and the arcs are unbounded fifo gueues.

Gilles Kahn gave a nrethod for the representation of a pure
dataflo,rr net as a set of equations; one equation for each arc in
the net. Kahn stated, and rne prove, that the operational
behaviour of a pure dataflov net is exactly described by the
least fixed point solution to the netrs aisociated set of
equations.

rn our moder we do not require that nodes be seguentiar nor
deterministic, not even the functional nodes. As a consequence
our model has a claim of being conpletely general. rn particular
our nets have utrat r+e call the elgapsutation propertv in that any
subnet can be replaced in any pure oatatrow context uy a node
having exactly the same i.nput/output behaviour. our nroaer is also
complete in the sense that our nodes have wtrat we call the
universaritv propertv, that is, for any continuous history
function there exists a node that will conpute it.

The proof of the Kahn principle given in this thesis makes
use of infinite games of perfect information. rnfinite games
turn out to be an extremery useful tool for defining and proving
results about operational semantics. we use infinite games to
give for the first time a cornpletely general definition of subnet
functionality. rn addition their use in certain proofs is
effective in reducing notational ccnplextity.

Finally ri€ look at possible l€ys of extending Kahn,s
denotational nodel by the introduction of pause objects called
hiatons. Finally r,ve describe interesting ways of refining our
operational nxrdel.

Acknowledgernents

I would like to thank my supervisor, Bill Wadge

for his continuous interest and encouragement and for

numerous discussions that provided the stimulation for

this research.

I r^rouId also like to thank all the mernbers, past

and present, of the Warwick dataflow group wtro have

devoted many hours of their time to help me with this

research. Special thanks must go to Stephen Matthews

for proof reading.

In addition, the financial sutr4nrt of the Science

Research Council is gratefully acknowledged.

Finally, I would like to Lhank my wife for her

patience, moral support and for the preperation

of the diagrams that appear in the text.

F

IF

Chapter O

Introduction

In this thesis \.re present for the first tilne' a proof, in a

conpletely general context, of the eguivalence of an operational and a

denotational ssnantics for pure dataflovr.

Dataflow is currently an active area of research, with teams of

researchers r,rorking on dataflov,r machines (Gurd and Watsonl23l ,

Davis[16],Misunas[39],Dennist2Ol ...); dataflow progralTlrning languages

(CAIOLE[24],ID[51],\AL[1],..) and Softr,,rare design (Bic[34J, Yourdon and

Constantine[52], Cameron[14] ...). Hcrwever, the idea of data flcxn'ing

between concurrently executing processes is an old one, dating back

nearly twenLy years to a paper written b1z Conwayllsl. In this paper

Conway describes horll it is possible to divide certain processing

activiLy into a nr-unber of autonomous nodules. Conway writes "A program

organization is separable if it is broken up into processing nrodules

which conrnunicate with each other according to the following

restrictions: (1) the only conrnunication between modules is in the form

of discrete j.temsi Q) the flow of each of these items is along fixed,

one-way paths;". Conway even predicted the advantages of dataflow

in truly distributed systems. He writes "When true parallel processors

are available the fact that the coroutines of a separable program may be

executed simultaneouslv beccrnes even more significant".

Recent years have seen an unprecedented interested in paraIlel

(distributed) conrputing and the dataflow concept, thought of so many

years ago, is proving to be extremely fruitful. As a result of this

widespread interest there has ernerged a nunber of different dataflorp

page 1

models.

In this thesis we are interested in a nrodel of dataflow in wlrich

the ccrnputing stations are autoncrnous machines and the fixed

unidirectional ccnrnunication lines are unbounded fifo gueues along which

discrete itsns of data flow. A discrete itsn of data can be any datun

such as a natural nunber or a matrix of natural nwnbers or a real number

or a set of real numbers. I{e shal1 refer to these discrete units of

data as datons. Ihe asynchronous ccrnputing stations in our model can be

thought of as continuously operating rblack boxes' that consume datons

one by one frcrn each of their input arcs and after scrne internal

conputation output datons one by one on each of their output

arcs. Simple dataflow nodes usually produce and consune datons at the

sane rate, horoever the more ccmplex nodes may produce outputs at a

different rate to that at vfiich they consune inputs. The only way in

which our nodes may ccrTmunicate with another is by sending datons along

the fixed arcs which interconnect the producer and consumer nodes. I,^$e

can think of an arc as a 'pipe' along which a producer node dispatches

datons one by one to some consuner node, the producer having no

knowledge of who the conswner is and vice versa. Itris is analagous to

the way in which two UNIX processes, connected by a UNIX pipe,

ccnmunicate. In our nrodel if an observer is placed on one of the

'pipes' he is able to record its entire activity, a possibly infinite

seguence of datons called the history of the pipe. The model of

dataflor,v we have just described has been referred to as pipeline

dataflow or stream flow and it has been studied by many including

Adams[2] , Kahn[26], Karp & Miller[28J, Arno]d[4] , Arvind a Costelow[3]

and Mcflroy[37]. Although Mcflroy has not published many papers he has

been influential in the incorSnration of pipeline dataflow into UNIX t531.

r

page 2

G

An example of a dataflovr model which is not pipeline dataflow is
that of Kowsinski t3f1. In this nrodel the datons are tagged and so the

order in which the3arrive at a ccrnputing station is unimportant, a1l

that has to be done is to match on t4s. Arvind and Gostelowl3] have

also investigated such a tagged interpreter. They have shown in a simple

context that the tagged rnodel is sometinres able to ccrnpute more than the

pipeline nrodel. (i.e it doesnrt have to process its inputs using a fifo
ordering). TLre tagged nrodel has arso been used very successfurry, by the

dataflow team of Gurd and watsont23l, as the basis of a dataftor^,

machine.

However in this thesis \^re are exclusively interested in pipeline

dataflow. Figure A shows a simpre example of a dataflow net vfrich

produces as output the infinite seguence 1,2,6,24,I?0,..... of

factorials.

page 3

The node labelled TIMES repeatedly awaits the arrival of a daton on both

its input arcs and as soon as both datons arrive they are consuned and.a

daton representing their product is output. The node laberled pLUS

processes similarly except that it outputs the sun of the inccrning

datons.

The node labelled oNE is a constant node (having no input arcs)

that produces as ouLput the infinite seguence I,I,ItI,
The nodes v'e have just described are all examples of nodes that

process their inputs, however not all of our nodes process their

inputs. Thre forlowing nodes, also used in Figure A, are exampres of

nodes that manipulate their inputs. ILre node labelIed NEXI awaits the

arrival of its first input daton and as soon as it arrives it is
consuned. Thereafter the node repeatedly awaits of the arrival of inputs

and as soon as a daton is available it is constrned and a copy is
produced as output. The node label1ed FBy (followed by) awaits for the

first daton to arrive through the input port labelled t1t and as soon as

this daton arrives it is consuned and a copy of the daton is produced as

the node's first output. Thereafter the node repeatedly awaits the

arrival of datons through the input port rabelted 'r' and as soon as a

daton arrives it is comswned and a copy of the daton is produced as

output. The node labelled DUp (dupticator) repeatedly awaits the

arrival of datons on its input arc and as soon as a daton arrives it is
consrmed and a copy is sent along both output arcs.

These are by no means the only nodes \rre are interested in buL even

with this snall selection it is possible to describe interestinq

dataflcn* nets.

page 4

Pure Dataflow

A11 the nodes described in the previous examples have one property

in ccnwpn, namely they all ccnrpute functions frcrn the histories of their

input lines to the histories of their output lines. For exampte the NEKI

node conputes the history function:

next: <aoral td2t....) (a'd2r

e.g. if the sequence 1l,2r3r4,....) is the entire history of the NE)ff

nodesf s input line then <2,314,

NEXI noders output line. Tn a similar way the node raberled pl,us

ccnputes the history function:

plus: ((aOrar,...),<b'rbl,...)) H (uO*%r"1*b1r...>

and the FBY node corq>utes:

fby: ((aoraar...)r<borbl,b2,...>) (aorborba,b2,...)

Although all the nodes r"e have described so far are functional

(i.e. compute history functions) this is not true for aII 'pipeline'
dataflow nodes. A classic example of a non-functional node is the MERGE

node. fn its simplest form the node passes on dolrn its only output arc

the first daton to atr4nar on either of its inpuL arcs. However if datons

are available on both input arcs one arc is choosen at randqn and the

first daton in its associated queue is output. The }IERGE node is

interesting because it exhibits two properties not possessed by

functional nodes. one of the properties i" -tit,e-s"ng.itinj!I., that is,
the rate of input of datons effects rnore than just the the rate of

output; it effects what is output. A functional node may alrow the

input rate to effect the output rate; but it can never allo,r the input

rate to determine what is output. TLre other property possesed by t'tERGE

is internal randomness.

page 5

This property te1ls use that even if there is no time-sensitive

behaviour (e.9. I'IERGE begins cornputation with all the inputs it is ever

to receive queued on its input arcs) the inputs will still be nrerged in

a non-deterministic manner. rt may even be the case that one of the

inputs is eventually ignored conpletely, thus the rnerge may be unfair.

Although simple nodes such as PLUS are deterministic, in that there is no

choice in how to coq>ute, the more ccfirplex functional- nodes do permit a

choice. This choice, unlike the random choice of the MERGE node, is

usually based on a strategy that ensures that the node ccnrputes the

reguired function. rf a randon strategy were used by these ccrnplex

functional nodes then the only possible adverse effect would be that the

entire output history would be an initial segnrent of that produced by

the correct strategy.

Functionality i-s extronely imSnrtant because it allows us to

associate sinple nrathernatical objects with complex crperational

entities. In particular it allcnps us to associate with each arc in a net

a countable seguence of datons (the history of the arc) and with each

node a history function which describes the relationship between a

node's entire input/output activity.

In this thesis we shall use the term pure dataflow to describe

dataflow nets in which all the nodes are functional. Gilles Kahnt2Sl

was the first to study pure dataflorp and he pointed out that a pure

dataflorp net can be represented by a set of eguations. Kahn stated that

given a pure dataflovr net,such as that in figure B,it is possibre to

assign a variable to each arc in the netrand to each node it is possible

to assign a history function corputed by the node.

e

page 6

Thre set of eguations representing a net are generated by associating

eguation with each output arc in the net. For example the output arc

node NEXI in figure B (labelled b1r the letter g) is the result of

applying 'next' (the history function conputed by NE)CI) to NE)C| 's

single input arc (tabelled bry the letter f). This generates the

eguation:

g = next(f)

an

of

h

tl
e
€
!

Y
h
:
j
k
I

-1-L

= plus (<i,e)
= fby (a,b)
= dup., (c)
=l
- dup (c) (g')

= next(f) &
-1-I

= dup (k) (j)
= multiply (g, i)
= fby(h,j)
= dupn (k)

F Applying this same rule to each output arc in Figure B we generate the

set of eguations 4.
It is a rrrell knovrn result that under certain conditions a system of

equations such asF" has a least fixed point solution (see l3.e). Thre

principle that the operational behaviour of a pure dataflorp net is

exactly described by the least fixed point solution to the net's

eguations we call the Kahn Pri.nglple. Although Kahn was the first to

realise this principle he never published a formal proof nor did he

define precisely the concepts of "node", "net", etc.

page 7

one of the main objectives of this thesis is to give a satisfactory

operational semantics for pure dataflor^r and thus give for the first time

a satisfactory proof of the Kahn principle.

The Kahn principle has many imSnrtant conseguences, for exampre, we

can use sets of eguations (such as \) as a dataflow progranrning

language. Tfris eguational language, r,,trich is close to the language

Lucid[6], is above all easy to reason about because it is simply

mathematics as it stands.

An additional conseguence is that we have ccnrplementary ways of

viewing dataflow. on the one hand we have simple sets of eguations, on

the other we have ccnrplex operational behaviours. The eguivalence of the

operational and the denotational semantics of pure dataflow has been

used by Wadge[46] to give a denotational (extensional) treatment to

datafrorp deadlock. A similar approach has been used by pilgram[4o] to

analyse pure dataflovs nets for gueueing properties.

F

page 8

C

The Inadeguacy of current models of pure dataflow

An important objective of this thesis is to give a proof of the

Kahn principle for an operational senrantics uitrich has a claim to being

ccnpletely general. Current nodels of pure dataflor restrict themselves

to nets in which nodes are seguentiar and deterministic.

A seguential node is, roughly speaking, one in wtrich a node is
either ccnrputing or is blocked waiting for input. The nodes we described

earlier such as PLUS, FBY and NEXI are all examples of sequential

nodes.

A deterministic node is, roughly speaking, one in which there is no

choice in behaviour. For example the NDCT node destructively consrmes

its first input and thereafter passes on any future input. Tfre

description of the behaviour of node NEKI given in a previous section

allows no choice in the node's behaviour. H*pver the fact that a node

is deterministic does not nrean that the node is functional. An example

of a deterministic non-functional node is the node that outputs a copy

of the daton that it has just consuned frsn the head of the queue

associated with the nodes input arc. If the queue associated with the

node's input arc is empty the node outputs a zero. The reason that this
deterministic node is not functional is that it is time sensitive. oll

the other hand as we will see later not all nondeterministic nodes are

non-functional. In fact there are many useful nondeterministic nodes

that are functional. Examples of sorne of these useful nodes are 'wise'
if-then-erse, parallel 'or' and pararler rand' tsee Jz.a for rnore

details).

Since Kahn stated his principle there have been three publications,

one by wie&rert49J, one [z Arvind and C,ostelcryrt3], and one by Arnold[4],

page 9

each of vftich attenrpts to give a proof of the Kahn principle. Thre first
of these publications is the paper by Arvind and Gostelow in which they

define a select set of primitive functional nodes and consider only nets

built up using these primitives. As the primitives are seguential and

deterministic they have no difficulty in proving the Kahn principle; for

a extremley limited context.

Alnpst at the same time as Arvind and C'ostelow's paper Edwin

Wiedmer published, in German, his doctoral dissertation in whrich a

sketch proof is given of the Kahn Principle. In our opinion Wiedrer came

closest to giving a ccnpletely general proof of the Kahn

principle. Unfortunately Wie&ner's dissertation is not in English and so

has been ignored by dataflo$/ researchers outside Europe. However a

recent translation of some of his thesis has atrpeared recently and this

should nnke his r.ork more accesible (Wie&rer t48l) . Wiedner follows the

advise given by Kahn 126l and gives a formal description of his nodes

and nets in terms of Turing machines, interconnected by one way infinite

tapes. The reason that we stated that Wie&ner came closest to proving

the Kahn principle is that he outlines a definition of functional

behaviour whrich can handle more than seguential and deterministic

behaviour. The class of history functions ccrnputable by his nodes he

calls the 'approximation corputable' functions. On the other hand the

cfass of history functions conrputable by the seguential and

deterministic nodes described by Kahn, he ca1ls 'rigidly conputable'

functions. Wie&ner is on the right track in that he has broadened his

view as to vihat operational behaviour assocaited with a node deserves to

be called functional. However, we feel that his operational nrodel is not

very natural as it is outtined in terms of Turing rnachines connected

page 10

by one way infinite tapes. fn addition his proof of the Kahn principte
(which is not one of the objectives of his dissertation) is only given

in the form of a sketch proof.

The rnost Recent attempt to prove the Kahn principre appears in a

recent paper by Andre Arnold[4]. rn this paper Arno1d claims to give a

satisfactory operational semantics corresponding to Kahn's simpre

language for pararler processing. However Arnord restricts his

operational model to sequential nodes that produce as much output as

they consune input. Once again the restriction of the operational nodel

to this limited context means that there is little difficulty in proving

the Kahn principle. the inadeguary of Arnold's model is dernonstrated by

the fact that the simple NE)(T described earlier can be realised in

Kahn's language but cannot be realised in Arnord's rnoder. (we have more

to say about this restriction inJf.rt
Of the three roorks nentioned Arnold's is by far the nrost formal, he

gives precise defintions of nodes, nets, node ccnrputations, net

ccnputations etc... fn his operational semantics a node is defined in

terms of a seguentiar transducer of infinite r.,ords. Although the

transducers described may be nondeterministic, it rryould seem that in
his lirnited proof of the Kahn principle only deterministic transducers

are used.

We argue that previous operational nxrdels of dataflor are not truly
distributed as underlying the distributed nature of these dataflorp

models are seguential and deterministic nodes. In addition previous

models lack nrodularity; in that there are history functions cqnputed by

nets that cannot be realised b,y seguential nodes lsee Jz.a). Girles

Kahn[26] pointed out that in pure dataflop top do,rntesign finds

page 11

mathematical justification. The reason given by Kahn is that the

decision to implement a history function by a single process or a

network of processes can be delayed without introducing side effects

into the overall system design. Any formal operational model of pure

dataflor,v wishing to aIIo,v top doln-design cannot restrict itself to

seguential and deterministic nodes.

F

page 12

Our Operational rnodel and a corpletelv qeneral

Principle

Proof of the

Kahn

In this thesis vre prove, for the first time, the Kahn principle in

its most general context. In our model we allow functional nodes to be

both non-seguential and non-deterministic.

A non-sequential node is, roughly speaking, one wtrich is capable of

performing other activities (such as output) vftile waiting for input -
in other rrords, it is essentially able to do rpre that one thing at the

salne time. A very simple example of such a node is the rdouble identity'

node. TLris node has two inputs and two outputs and echos the first input

on the first output, and the second input on the second output. Such a

node cannot be seguential because it cannot allovs both outputs to rrun

dry' when only one of the inputs does so. This ability to corpute vfiiIe

waiting is essential if our nodel is to be in any sense general.

To give directly a general operational semantics for pure dataflow

is extrenrely difficult. TLre reason for this is that i.ae require nodes to

be ccnpletely general and at the same time we reguire them to be

functional. Ttris ccnrbination of generality and functionality is very

difficult to capture in one step. In this thesis we solve this problem

in two steps. As a first step we give a formal operational semantics to

the vstrole of pipeline dataflor*. Although this means we include non-

functional nodes it does give us the generality we reguire. The second

step is to give a precise definition of vfiat it means for a node to

ccnrpute a history function. We are then able to use our definition of

functionality to select thaL subset of pipeline dataflow that deserves

to be called pure dataflovr. Using this approach rre are able to describe

page 13

any functional node no rnatter how bizzare its behaviour.

Besides Wie&ner others vfio have strdied pure dataflow have given

restricted definitions of vfiat it rleans for a node to ccnrpute a history

function. Arvind and Gostelowl3] consider only nodes vtrich are all
obviously functional, ccnpletely avoiding the question. On the other

hand Kahn[25] assumes (without proof) that the processes definable in

his simple language are all functional. Arnold[4] takes a different

atrlproach and associates with each of his nodes a function frcrn the set

of possible input histories to the por+erset of the possible output

histories. In addition he proves that the deterministic nodes ccxnpute

history functions that are continuous in the sense of Kahnl26l.

In this thesis r,ve present for the first time a ccnrpletely general

definition of what it nreans for a node to conpute a history

function. Our definition uses a new approach based on infinite games

(see uf:n; .

In our model we allorrr functional nodes to be non-deterministic and

non-seguential and as such our nrodel has a claim to being ccnpletely

general. In particular our nets have vfiat we caII the Encapsulation

property in that any network of interconnected nodes can be replaced in

any dataflovr context by a single node having exactly the same

input/output behaviour. In other words our nrodel is nrodular in that it
allops top do*n-design (none of the previous nodels posseses the

modularity property). fn addition our nrodel is conplete in the sense

that any continuous history function can be realised by sonre node.

As our operational semantics is that of pipeline dataflow and our

definition of node functionality is conpletely general our proof of the

Kahn principle has a claim to be in soine sense ccxnplete.

b

page 14

using a functional proqranrning approach to extend

pure dataflor*

The equational dataflor.r progranuning language referred to earlier is

tfunited in that the programs are built frcm a finite set of eguations in

ich the left hand side of every equation is a variable and the right

hand side is a finite e:<pression involving variables, constants and

, history functions. A tlpical program is:

x = fby (1 , x+1)

Y = next (x)

z=fuy (1 ,Y*z)

output = z

This set of equations (program) is related to the graph in Figure

A. Thre least fixed point solution to the equations gives:

x is (l ,2r3r4r......)
y is (2' 3,4,5,

z is (1 ,216,24,Iz;-'

utPut is (1 ,2,6,24,Iz;-,

G TLre infinite sequence corresponding to the variable output is exactly

- the output produced by the net in Figure A.

To allcs the user to develop programs in a structured way we extend

' this 'simple' language by altcnr,ring equations defining functions'

including recursive definitions. Some tlpical user defined functions

(UDF's) are :

first(x) = fby (x' first(x))

f (x) = if x leq I then I else x*f (x-I) fi

The implementation of this extended language (wtrich is similar to

Structured Lucid[6]) involves either dlmanically growing nets or

page 15

(notionally) infinite nets (but still pure datftotnt). The nethods of

this thesis extend naturally to such nets and permit us to give, for

first time, a proof of the correspondingly extended Kahn principle.

L

page 16

Further extensions and refinernents

In our formal model of pipeline dataflov/, a node is defined to be a

nonteterministic autqnaton. rn general it is very difficurt, simply by

looking at the set of transitions associated with a node, to say whether

or not that node is functional. As trnssible refinernents to our

operational nroder we look at scxne intersesting node transition

properties wtrich mery guarantee node functionality. one of these

properties is the simple one step Church-Rosser like property. If a node

posseses this property the it is guaranteed to be functionar. (note:

note all functional nodes have this property). Other interesting cases

are based on the transition relation associated with a node beinq in

some sense rmonotonict.

A more ambitious extension is to extend the denotational semantics

to handre a broader class of nodes and nets (i.e not just pure

dataflow). ore such extension involves changing the basic dcrnain of

histories \z introducing a special kind of object called a "hiaton,' (

frsn "hiatus" meaning a pause; the term is due to W. Wadge and

E. A. Ashcroft). A hiaton can be thought of as a unit of delay that

(notionally) travels alorrg with the ordinary datons and allows a node to
produce sonething regularly even if it has no real output. Hiatonic

streams code up tirning information and they can be used to handle nodes

and nets vfiich are time senstive. Frederic Boussinot in his recent

Doctorat DrEtat, entitled "Reseaux de processus avec nelange eguitable:

une approache du temps reel", presents a denotational semantics based on

hiatonics, for an operational sernantics vtrich csnbines the sequential

model of Arnold[4] and a fair rerge operator. Ttrus Boussinotrs

denotational semantics describes a much larger

page 17

class of operational behaviours than does the denotational semantics of

Kahn[26]. Even more recently, David Park[41] has found a denotational

sernantics that nrakes use of the hiaton to describe the operational nrodel

corresponding to a coinbination of our nrodel of pure dataflorrs and merge

operators that behave "fairry" (i.e. we carr these neLs F-nets). The

Park Principle states that the operational behaviour of an F-net is

exactly described by the de-hiatonised set of solutions associated with

the F-net's associated set of hiatonised relations.

w

page 18

tr

Mathematical Notation

In this thesis v,e use a particularly simple representation of the

natural numbers due to Von Neuunann, it has not gained corplete

acceptance but we find it extremely convenient. TLre number zero is the

empty set, the nr-unber one is the set { O } r.. in general the nr-unber n

is the set { O,L,zt...rn-I } of alt snaller numbers. this process of

constructing numbers goes on endlessly hovrever, for the purposes of this

thesis \,v€ are interested in only the nr.rnbers up to the first infinite
ordinal namely:

Q (= { or1 ,2r3r4r5r... }) .

thus 0J represents the natural nr-unbers.

Besides the concepts of sets and nunbers two other important

concepts are those of a relation and a function. A relation R between

two sets A and B is represented b1r a subset (possibly ernpty) of the set

of aII ordered pairs (a,b) of elements a and b frcm A and B

respectively. If the relation R is such that

Va € A]t U e e (a,b) € R then R is said to be a function. Thus a

function is a special kind of relation.

The dornain of a function f (written don(f)) is the set of alI left
hand ccra;nnents of elelrents of f i.e { a | (a,b) € f }. Similarly

the range of a function f (written rg(f)) is the set { U | (a,b) €

f]. Notice that the empty set is also a function (the ernpty

relation). It is the only function rtrhose dcrnain and rarge are both

empty. Note that here and throughout this thesis we use the

conventional set builder notation {... | ... }.

Given two sets A and B, the set BA is the set of all functions frcnr

page 19

AtoB.

Sequences in our notation are

The finite sequences over a set A (

their dcrnain thus:

(by definition) simply functions.

= Sg (A)) have the natural nr-unbers as

sq(A)-{ Aklke(^) }

Thre infinite seguences over a set A have the ordinal Q as their dcrnain

i.e. aQ is the set of aII infinite seguences over the set A. Tn this

thesis \^re are especially interested in seguences over the natural

nunbers in particular vle refer freguently to the set of finite and

infinite seguences of natural numbers. Thrus for notational convenience

we define this set to be

Ka (= Sq(A) Oil 0) Since a seguence is a function the lergth of a

seguence is its dqnain. For example the sequence

(I,2,7r9) is the function

i (o,1)r(I ,2)r12t7>r<3,9> j

and its dornanin is thus { Or1,2r3 } which we knotr to be the natural

nunber 4, the length of the seguence. The elsnents in the range of a

seguence are called the ccrnponents of the seguence. Since seguences are

just functions, the seguence indexing operation is just function

application. For exanple the lOth conqnnent of the sequence s is sirnply

s (1O) . Often it is convenient to use the conventional subscripting
=1O,

we therefore adopt the convention that subscripting denotes function

application. However, we still use the functional subscriptirrg since it
is useful in avoiding multiple levels of subscripting. For example:

instead of s., r,vre write s(i)..1. 'l
l

If s is a segunce and n is a natural nunber, the function sln (s

restricted to n) is sinply the initial segnent of s of lerrgth n (or

paq.e 20

simply s itself if n is greater than the length of s).

In writing expressions denoting seguences we will use a seguence

builder notation wLrich is similar to the set builder notation except

that angular brackets are used instead of curly brackets. TLrus (OrI,2,3>

is a segunce of length 4 and <i I i e 6p is the ordered seguence of

natural nwnbers. Thris second form of the sequence builder notation is
just a varialion of X -notation; the seguence is the value of the

X -expression

x i e Q .i
sometinres r.ve wirl use the direct form together with tripre dots to

denote an infinite seguence:

(2r415r8r10, .. .>

We are asstming that the first fer* values given are sufficient to nrake

out the pattern for the rest of the sequence. We also use the triple dot

notation for finite seguences

<sOrsl r. . . rs3_1 r"j*1r. . . rsn_I).

In our notation there is no reguirement for a seguence to be

L represented using angular bracket notation. Often rrre can refer to a

- sequence by iLs name alone. Thus instead of writing
("Orrlr...> or (s. I i e e > we sfunply write s.

- rf s is a sequence and i is a natural nunber, the function

"{i
(s drop i) is simply the seguence s with its ith ccnrponent

drop@. For example (1 ,Zr3r4>*Z is the sequence (1r2r4).

If d is scme expression then the furction

sltd (s insert d at i) is sirnpty the seguence s with the value of

expression d inserted after the ith ccfirponent. For example

(I,2,3r4r5>/l399 is simply (I,2,3,4r99,5>

page 21

Note in general

(s{r) ti-l"i = (stt-tx) *i =
=

If s and t are finite sequences then the function
.\-s-'t = (s.r... rSn_1 ,t'r... rt*l)

where dqn(s) = n and don(t) = m

In addition to the above notion of sequence we add the generalised

notion of seguence in which the indexing set is not reguired to be a

natural nunber or (^). Threse generalised sequences are called "families"

and can be thought of as labelled sets. It should hovrever be a;ryarent

that a family is nothing nrore than a simple function, the dornain of

which is the indexing seL. In Lhis thesis we use the notion of a

"family" in conjunction with subscripting.

Let f be a family over elements of a set D indexed by the set I

(in other words f e oI)

LetielanddeD

the function

t/i (f dropi)issimplytheset{ (x,y) l(x,y)€f andx / i }

the function

t/i d (f add (i,d)) is simply the set { (i,d) i u t/f

Note

(t/i)/rt{i| = G/i)/it(i) - f

To aid the reader bear in mind the nature of particular objects we

introduce sorne notatonal conventions.

We will generally use the variables:

i, j rkrnrm for natural nurnbers.

srtru tv twt... for finite seguences.

a,9,6, . . . for inf inite sequences

ArBrCrDr... for sets

Page 22

l-

Chapter 1

A Review of Related Work

In this chapter we shal1 briefly describe what roe consider to be

important npdels of pipeline dataflory. one of the main aims of this
chapter is to assess to what extent the various nrodels relate to the

follovring topics:

i) A ccrnpletely formal operational sernantics for pipeline

dataflorrr.

ii) A conpletely general definition of vihat it means for a pipetine

dataflow node to ccnrpute a history function.

iii) A proof of the IGhn principle in a ccnrpretely general context.

A. Computation Graphs

The first paper to attenrpt to formalise pipeline daLaflow was a

paper by Karp and Mi11er [28] in which they refer to dataflow nets as

ccnputation graphs. A ccnputation graph is defined in terms of a

directed graph the arcs of wLrich are unbounded FIFO gueues and the nodes

of which are determinate ccrnputing stations.

In this graph based nodel of conpuLation a node is an operator that

corputes after a pre-determined nunber of operands (i.e. datons) have

arrived along the nodes input arcs. Computation involves the removal of
the operands and the production of a number of datons on the operators

page 23

output arcs. rn the networks described by Karp and Miller each node

conputes only a finite nr-unber of times. Nodes that conpute ad infinittun

are considered to be in some sense faulty. this design decision is not

surprising since at the tinre that Karp and Mi11er developed their

ccnputation graphs conventional programs vihich failed to terminate were

considered to be incorrect; correctness being defined as partial

correctness plus termination.

A node in the Karp and t"li1ler nrodel is associated with a single

valued function which deterrnines for each conputation step the

relationship between a node's inputs and outputs. A node with n-input

arcs and nroutput arcs is associated with an input/output function of

the follorsing form:

f : 6r
(o) x ... x 6r

(n-t1

where i € n

j€m

f (i) denotes the nwnber

by input arc i for each

O(j) denotes the nuunber

by output arc j for each

the natural ntrnber

of datons required

conputation step.

the natural nunber

of datons produced

computation step.

(Remember that throughout this thesis we are assuming that datons are of

type natural nunber).

Thus in the Karp and Miller nodel a node is a machine that repeatedly

conputes its associated input/output function. As long as the node is
supplied with the appropriate inputs the node will produce the reguired

outputs thus the node is able to ccnrpute ad infinitun if given inputs ad

page 24

(
?

infinitr-un. However in all the examples given by Karp and Miller the

entire input activity of a node is always finite.

The follovring is an example of a Karp and Miller operator; it has

two input arcs, one output arc and is associated with the input/output

function:

h:L) xtJ-rO
va€(J,bsdh,1u,u)=Fo*brif a / o

lbo * b, otherwise

TLris node awaits the arrival of a single daton on its Oth input arc

and two datons on its lst input arc. upon arrival of Lhe reguired inputs

they are consumed and a single daton is sent on as output. If the daton

that arrives along the Oth input arc is non-zero then the value of the

daton output is the strn of the two datons that arrived along the noders

el- l-h1-' input are; if the daton to arrive along the O-" input arc is zero

then the daton output is the product of the bpo datons that arrived

along the nodes lstinput arc. (Thus the claim of Mams l2l and others

that data de;:endent decisions are not allored in this model is not

corpletely correct).

As well as allovring data dependent decisions such as in the last

example rnany other useful nodes can be realised in this rnodel e.g. plus'

times ...etc.

Now that r+e have briefly described the Karp and Miller model let us

see how the npdel relates to the issues set out in the introduction to

this chapter.

The first issue described is that of a caq>Iete1y general npdel of

pipeline dataflovr. It is not difficult, even frqn our brief description

of this modeI, to think of nodes that cannot be realised. An example of

page 25

such a node is the I,iHff.lEVER node which reguires the arrival of a daton

on both its input arcs and passes on the daton to arrive on its oth

input arc if the daton to arrive on its lst input arc is ',true,,

(i.e.non-zero) and produces no output if the daton to arrive on the Ist
input arc is "false". Thrus nodes tafiich vary the ntrnber of datons they

output depending on the value of the datons input are not realisable in

the Karp and Miller rrodel, (It is this form of data dependent decision

that is referred to by Adams[2] and others).

Horvever the main limitation of the Karp and Miller npdel is that

each ccrnputation step reguires a fixed number of inputs and produces a

fixed nunber of outputs. Ttris restriction means that many useful nodes

cannot be realised in this nxrdel and thus the npdel cannot be considered

as a ccmpletely general nodel of pipeline dataflo.r.

The second issue is that of a precise definition of wlrat it nreans

for a node to coq>ute a history function. we feel that it is not

possible to relate this particular model to this particular issue. The

reason for this is that this model was deveroped before Kahn[Z5]

developed the notion of nodes ccnrputing history functions. However it
is stilt possibre to think of the entire output activity of a node as

being a function of the entire input activity and in this respect the

nodes in this model are all functional (i.e. they all conrpute a history

function). Ttre reason for this is that each of a node's ccxrputation

steps is associated with a single-valued input/output function and thus

the entire input activity is related to the entire output activity by a

history function derivable frcm the node's inpuL/output function. TSis

means that we can think of the l(arp and Miller nrodel as the first nodel

of pure dataflovr.

F'

page 26

The third issue nentioned earrier was a proof of the Kahn

principre. Again roe feel that it is not possible to relate this
particular nodel to a proof of the Kahn principle. rhe reason is again

that the Kahn principle had not been formulated vfren Karp and l'iiller
designed their conputation graphs.

page 27

B. A model of parallel ccrnputation with dataflow seguencing

Ttre next significant developnent to follow the Karp and Miller

model was the dataflow model described by Drane Adans in his ph.D

dissertation[2]. One of the interesting goals of this dissertation was a

graphical progranuning language for dataflor. Arr important feature of

this language was that nets could be naned and used as nodes in other

nets. This feature of the language is similar in certain respects to the

declaration of procedures in a conventional progranning language. In

textual prograrnming languages such as Pascal and A1go1 it is meaningful-

for a procedure declaration to contain a reference to itself. fn a

similar way Mams allovrs a net definition to contain references to

itself. Ihe user of the graphical language is asked to think of a net

that is recursively defined in terms of dlmamically contracting and

expanding net. In Chapter 5 we will deal with recursively defined nets,

however rne think of these recursively defined nets as infinite nets in

which only a finite part is ever active.

The primitive nodes described by the Adans nrodel are divided into L
tvo classes the r-nodes and the s-nodes.

Ttre r-nodes are a simple extension of the Karp and Miller nodes

which allows operators to produce no output for selected inputs. Tb be

more precise an r-node is a single valued input,/output function which is

permitted to return 0 (the snpty output) for certain inputs. A node

that makes use of this extension is the ViIIE1rIEVER node described in the

previous section. This node is not realisable by any operator in the

Karp and Miller model but in the Mans model it is realisable in terms

of the follcnrinq r-node:

page 28

Thre single valued function associated with each ccnputation step of the

WIIH{EI/ER node is the following:

wvr:Qx(^)->(^)

s.t. Va,b € (^) wvr(a,b) ifa/o
otherwise

where I denotes the empty output

Although nodes like ViFIB{EVER can be realised by r-nodes it is not

difficult to think of more corplex nodes that cannot be realised in

terms of r-nodes. An example of such a node is the node with one input

arc and one output arc that repeatedly awaits the arrival of a daton on

its input arc and as soon as it beccmes available consumes it and

produces as output n-copies of the consuned input, where n is egual to

the value of the consuned input. For example if the node receives as

input a daton representing the nr-rnber 4 then four datons each

representing the natural nunber 4 are output. Thre fact that the node

just described varies the nr-unber of datons output depending on the value

of the daton input rneans that it cannot be realsied by any r-node. fn

fact the node just described cannot be realised by any node in the Adams

mode1.

fhe second class of primitive nodes are vftat Adams describes as the

s-nodes. Threse nodes are able to ccnpute by ignoring scnre but never all

of their inputs. An exary>Ie of such a node is the ALIERNATE merge node

which has two input arcs and one output arc. TLris node @ins
c{-

ccnrputation by ignoring its 1"" input arc and passing on the daton to

arrive on its oth input arc, after which it ignores its oS input arc

and passes on whatever arrives on its lst input arc. The node continues

merging Lhe datons frqn alternate input arcs ad infinitum, hence the

name ALTERMTE nerge node.

={u
Ls

L

page 29

In the Adams nodel an s-node has a boolean flag associated with

each of its input arcs. Initially the arcs of an s-node are either L

(locked) or U (unlocked), if an arc is locked it nreans that no input is

expected or if input does arrive it is ignored. If an arc is unlocked

then input is expected on that arc and until input arrives the node is

blocked waiting for input. Ihus an s-node with n-input arcs is

associated with a vector of boolean f14s, one for each input arc. Ihis

vector is caIled the nodes input status. For example a two input s-node

may have an initial input status of (UrL) v"hich means that the nodes OS

input arc is initially unlocked and that the lst input arc is initially

locked. S-nodes repeatedly await for a daton to arrive on each of their

unlocked input arcsi on arrival of the reguired inputs, the nodes

compute, erasing the reguired inputs, possibly outputing datons on some

or a1l output arcs and possibly changing the current input status. An

s-node with n-input arcs and nroutput arcs is thus associated with a

single-valued input/output function of the form:

s: (0(J{@ })nx ({ L,u })n-> ((^fq(0) L){g })mx({ L,u })n

where p denoLes either the empty ouLput or the onpty input.

The only restriction to this input/output function is that it is not

permissible to have an input status in which all input arcs are locked.

The single valued function associated with the ALTERNATE nrerge node

is:

att : (OLJ i Q \)2 * ({ L,u })2 -> ((F(Q) O t g })x({ L,u i)2

s,t.Va,b€Q alt(a,@,U,L) = (a,L,U)

a1t(9rbrLrU) = (b,UrL)

where the initial input status is (UrL)

k

page 30

Iv

Even with this nrore general nrodel it is not difficult to find nodes

which cannot be realised. One such node is the NE)(| node wLrich consunes

its first input and passes on any future input. Ihe reason wtly nodes

like ND(T cannot be realised is that their behaviour cannot be described

by a unique single valued function.

L,et us now look at hovr the Mams nodel of dataflow relates to the

topics described at the beginning of the chapter.

The first topic is that of a ccnrpletely general nodel of pipeline

dataflor. As we have already seen there are many nodes that cannot be

described bV the Mams modeI. Thris means that we cannot think of the

Adams nrodel as a ccxTlpletetly general rrodel of pipeline dataflor,r.

The second topic is that of a precise definition of vfiat it means

for a node to curpute a history function. With respect to this topic the

Mams model is identical to the Karp and Mil1er nodel in that they roere

both devetoped before Kahn[26] came up with the idea of a node ccmputing

a history furnction. Horever, it is still possible to think of the

entire output activity of an s-node or an r-node as being a function of

the entire input activity. In other r,mrds the nodes in this model are

functional. Given any particular node in the nrodel the history function

associated with the node is derivable frcm a node's single valued

input/output function. Although we do not provide a proof it is not

difficult to see that the Adans npdel is another pure dataflotp tnodel.

The third topic that was mentioned in the introduction to this

chapter was that of a proof of the Kahn principle. Again with respect to

this topic the Mams nodel is identical with that of Karp and Miller in

that both nrodels $rhere developed before Kahn[26] formulated the Kahn

principle. Therefore lie see no point in trying to relate this rpdel to

the last topic.

page 31

C. A sinpte language for parallel processing

One of the nrost significant contributions to the developrent of

pipeline dataflcn was the 1974 IFIP paper of Gilles Xahn[25]. The reason

for its imgnrtance is that Kahn gives for the first time a denotational

sernantics for an funportant subset of pipeline dataflow. In addition Kahn

describes an operational ssnantics in terms of a textual dataflovr

language. In our opinion Kahn's textual language can be thought of as a

generalisation of the graphical dataflovr language of Adams.

The nrodel of ccnrputation underlying Kahn's language is based on the

directed graph the nodes of vftich are continuously operating coilPuting

stations and the arcs of vfrich are unbounded fifo gueues.

The ccnrputing stations in the Kahn model are much Inore general than

in previous models. In particular a ccrnputing station has a possibly

unbounded amount of internal nremory with which it is able to remember

all previous inputs.

Kahn was also the first to think of dataflo\d Programs as

continuously operating. Designers of previous nrodels restricted

themselves in that their dataflovr nrodels were based on the traditional

notion of a correct program terminating.

t,

page 32

Kahn's textual language is simitar to AIf,OL but with the addition

of a fevr extra features. These new features are based on the process

declaration, wtrich is used to define a conputing station. TLre process

declaration is similar to an ALGOL procedure declaration except that in
the heading of the process vre declare hcxn' it is linked to its outside

wor1d. In other rrords the input and output arcs are given formal names

(similar to formal parameters of a procedure). Ttre body of a process is

a usual AI6OL program except for the use of two primitive procedures

cal1ed PLrf and GET. The primitive procedure pUT(ErA) praces a daton

whose value is equar to the expression E onto the output arc named

A. The primitive function GET(A) returns as as its result the value of

the daton at the head of the fifo queue associated with input arc A.

Nothing can ever prevent a conputing station frcm placing output on an

output arc but if a GET(A) is invoked and the queue associated with

input arc A is empty then the conputing station is forced to wait until
a daton shovrs up.

Thre NDfl node vtrich was not realisable in the previous models is
defined by the following Kahn process:

process next(integer in x; integer out y);

@in
integer tenp;

temp : = GET(x);

while true do PtlT(cET(x),y);

end;

Unlike previous nrodels of pipeline dataflovr the Kahn model a}lor*s

nodes to have.memory. A simple exampre of such a node is one that

outputs the running total of the datons input. rn Kahn's textual

page 33

language this r.',ouId be written as follows:

Process runtoatal (integer in x; integer out y) ;

begin

integer sun;

sLrn : = O1

repeat

sum : = sun*GET (x) ;

PUT (swrry) ;

end;

end;

Even with these fa* examples r+e can see that Kahn's language is

extremely trnwerful. In fact in a later paper with McQueen[27] they look

more closely at an implenentation of this language based on co-

routines. In the 1974 IFIP's paper Kahn points out that all processes

definable in his language are functional (sornething he does not prove).

Some of the restrictions irposed by Kahn on his model are that

ccnnputing stations (i.e. the nodes) have to foIlow a sequential program

and that at any given time a conputing station is either ccnputirrg or

waiting for input on one of its input arcs but not both.

Norp that we have briefly described Kahn's textual language 1et us

look at the operational inodel underlying Lhe language and see how this

model relates to to the topics listed in the introduction to this

chapter.

The first topic to consider is wtrether or not the operational nodel

underlying Kahnrs language is a ccnpletely general nrodel of pipeline

dataflow. Sinie the nodes in this model must be sequential then the

page 34

B

underlying model cannot be canpletely general. In fact it is not

difficult to think of nodes that are functional but cannot be realised

in Kahn's language. A simple example of a furctional node that cannot

be realised in Kahnrs textual language is the FUBLEID node. this node

has two input arcs and two output arc and passes onto its oth output arc

whenever appears on its oth input arc and passes onto its 1st output arc

whatever appears on its Ist input arc. If we try to code this up in

Kahn's language rre get the following process:

process doubleid(integer in xry; integer out prq);

@in
repeat

PUT (GET (x) ,p) ;

PLIT(GET(y),q);

end;

end;

If the process is always given an infinite nunber of inputs on both

input arcs then the node produces the correct output. However if one of

the input arcs dries up then the wtrole node is blocked waiting for

inputs. lhus the process is unable to ccnrpute the general double

identity function (i.e. identity: (xa2->xa)z).
We nn:st therefore conclude that the Kahn npdel is not suitable as a

ccrnpletely general ncdel of pure dataflor . Ilris is not surprising since

as vre explained in chapter O the topics of generality and functionatity

are difficult to capture directly. ltrus the operational nrodel underlying

Kahn's textual language is not a ccnrpretely general rpdel of piperine

dataflovr nor is it a conpletely general rndel of pure dataflovr. However

the Kahn model'can be thought of as a ccnrpleletly general npdel of pure

page l5

dataflor* in which the nodes are are sequential and deterministic.

The second topic is that of a precise definition of vtrat it means

for a ccnputing station to corpute a history function. Unfortunately

Kahn never defined precisely the concepts of "nodes", "nets", etc. and

as a result never gave a formal definition of wtiat it reans for a node

to curpute a history function. In his IFIP's paper he used the fact that

all processes definable in his language ccnrpute history functions but he

never gave a proof of this. In particular he does not state wLrether or

not processes may have formal parameters that are called by name. We

assume that these are not allowed as otherwise processes could have side

effects and hence not be functional.

In chapter O we briefly described vitrat is nreant by the Kahn

principle, we now examine to vfiat extent Kahn proved his principle. In

fact it turns out Lo the surprise of many ccEnputer scientists that Kahn

never published a formal proof of the Kahn principle.

€

page 36

D. An asynchronous interpreter for the dataflovr language DDF

the first published paper to attenpt a proof of the Kahn principle

was that of Arvind and Gostelcwl3]. rn their paper they describe an

interpreter caIled the gueued interpreter (QI) vrtrich is thought of as a

machine for the excecution of programs for an early dataflow language of

Jack Dennis[l9]. Itris language is referred to bry Arvind and Gostelow as

DDF (Dennis DataFlovr).

A program in DDF is, roughry speaking, a directed graph whose arcs

are unbounded fifo queues and whose nodes are choosen frcrn the following

5 prirnitives:

The results of all fir inqsof a function or predicale
operator under. OT.

H\,')

It #,(T) Hr)

t

I
-+(T)'l:

The results of a qate
if-true operator, rrdrere
ff, tt denote false and true
respectively.

The rerge operator

ftrf

t
t
f
t f

Hr+ L

page 37

The D-Box operator
(produces an initial daton)

Hr)

n
\J

r H/+ H The apply operator
G (3)
F(4)

According to Arvind and Gostelovv dataflow is based utrnn two

principles :

(a) An operator fires (produces an output) vfienever the

inputs reguired by that operator are present.

(b) A11 operators are functional and produce no side effects.

This view of dataflow is exactly the same as that of Karp and

Miller[28] (i.e" each set of inputs is required to produce a set of

outputs) and so rnany of the rernarks made about the Karp and Miller rpdel

(see section A) also apply to this model.

Let us now examine to what extent this nrodel relates to the issues

set forth in the introduction to this chapter.

Thre gueued interpreter just described is based on five primitive

operators and as such we cannot think of this model as a ccmpletely

general model of pipeline dataflovr. (i.e. there are infinitely many pure

dataflow nodes).

2
?
'7

page 38

The 5 primitive nodes used by Arvind and C,ostelow are all obviously

functional and so the more fundamental problem of defining wlrat it rneans

in general for a node to canpute a history function is ccrnpletely

avoided.

Ihe proof of the Kahn principle given by Arvind and Gostelow is not

presented in a very formal way. For example there is no precise

definition of a dataflovr net ccrq>utation. Presunably the assr-mption is
that the rndel is so sirnple that no foraml definition of ccnputation is
necessary. Moreover even if it was presented formally their proof is
only for nets built using the 5 primitives described earlier. TLrus the

proof of the Kahn principle is for a very limited context.

page 39

E. Computing with infinite objects

A second attempted proof of the Kahn principle is outlined in the

Ph.D. thesis of Edwin Wie&rer t49l . In this thesis Wiednrer is interested

mainly in exact conputations over the real nrmbers. Hor+ever in the

second part of his thesis he describes sqne of the theoretical issues

underlying ccnrputation over finite or infinite objects. Using infinite
seguences of natural numbers to represent the reals he describes

machines which conpute operations over these infinite objects (i.e.the

reals). Each nrachine reads in natural ntrnbers one by one frcrn its input

arcs and produces one by one natural nwnbers on its output arc. The

entire history of the rnachine's input activity denotes the real nunbers

given to the rnachine as input and the entire history of the machine,s

output activity' the real nunbers produced as output. More ccnnplicated

operations over the reals often require a network of machines. Wiedner

thinks of these networks as datafrovr nets the arcs of wlrich are

unidirectional conrnunication lines and nodes of v*rich are continuously

operating coflTputing stations.

Wiedner follows the advise of Gilles Kahn[26] and defines nodes as

Turing nnchines and arcs as one way infinite tapes upon wLrich a Turing

machine reads and writes. A node with n input arcs and one output arc is
defined to be a Turing nnchine with n input tapes and I output

tapes. The T\:ring machine has a separate read head for each input tape

and a separate write head for the output tape. once an item has been

read frcm a sqluare on an input tape the read head is forced to move to

the next square away frcm the t\:ring machine. (rnitially al1 heads are

over the sguare nearest the Tr.rring machine). rn a similar way once a

page 40

write has been performed the write head moves to

frcrn the Trrring machine. Ihe diagram illustrates

a one,/input one/output Turing nachine:

the next sguare away

a ccnputation step for

G l-^P

In addition a node (i.e.Turing rnachine) is able to use an auxiliary
tape (not shown in the diagram) onto wtrich it can record all the inputs

it has received and all the results of intermediate ccnrputations.

Now that we have given a brief description of the model tet us

relate it to the issues listed in the introduction to this chapter. Ttre

fact that Wiedrer uses Turing nrachines as nodes means that his nodes

are, aL least in terms of conputability, the npst general form for a

node. However we feel that Turing rnachines are not a very natural nrodel

of dataflovr. Nodes are no longer simple black boxes rather they are

Turing machines together with those trnrtions of the tape wlrich have been

read or written on. Arcs are no lorrger pipes along which datons fl*r but

rather they are infinite one-$ny tapes along wtrich a read or write head

travers. ltrub the rrodet of wiedner is not a very natural model of
pipeline dataflow.

page 41

One of the nrost important aspects of Wiednrer's work is his

definition of wtrat it neans for a node (Turing machine) to conpute a

history function. He is the first to realise that Kahnrs definition of

node functionality, based on processes that con'nunicate using only PUI

and GET primitives, is not ccnrpeletely general. In fact Wie&rrer refers

to functions cqq)utable by Kahn's process as 'rigidly conputable

functions'. Ttre function f (arb) = rnax{ arb } wtrere arb are finite
seguences of natural nunbers; is given as an exary)le of a function not

ccnputable using the simple language for parallel progranuning described

by Kahn.

Wiedmer refers to functions ccmputable by his nachines as

'approximation ccnrputable functionsr. What Wiedner means by this is that

Turing machines are allorped to ccmpute given only an approximation Lo

the input i.e. even when inputs are absent. fnis nreans that his Turing

machines are able to realise nodes such as the DOUBLEID node, in fact

any non-seguential node nny be realised.

Although Wieftner's definition of node functionality is nore general

than that of Kahn we stilI feel that it is not an adeguate

definition. The reason for this is that Wie&ner's t:ring machines are

deterministic and we feel that a ccnrpletely general definition of node

functionality should include nodes that are not only non-seguential but

also non-determinietic. The reason we say this is that a conpletely

general defintion of node functionality should be able to describe any

node that carputes a history function no rnatter hovr bizarre its
behaviour is.

page 42

IF

The rsnainder of wiedrerrs r,vork is extremely sketchy; for exampre

there is no definition of a network of machines nor is there a

definition of a net ccnputation (this is not surprising since these

issues rrere not of rnajor importance in Wiednerts r+ork). Towards the end

of part two of wiedner's thesis rrc find a schetch proof of the Kahn

principle which is based on nodes being rrring rnachines, the proof is
not a very convincing one.

page 43

F. Semantigue des processus connunicant

Recently Andre Arnold[4] published a paper in utrich he atternpts to

prove the Kahn principle. Ttre author claims that the main goal of his

paper is to give a satisfactory operational ssnantics corresponding

exactly to Gilles Kahn's denotational semantics for pure dataflovr

(i.e. the Kahn principle). Hor+ever there sesns to be a substantial error

in this r,',ork in that it is not generar enough to cover all Kahn's

networks.

operationally a node in the Arnold model has the followinq

properties:

i) they have a finite nunber of input and output arcs.

ii) each input arc is an unbounded fifo gueue.

iii) each node has an unbounded anount of internal memory. (it
is thus able to rernember all previous inputs).

iv) to function each process must acquire datons on certain

input arcs, if these are not present the process is blocked

waiting for input.

Ttrese properties are all included in the follovring formal definition.

FI Definition: A process with n-input arcs and r output arc is a

tuPle a%, .. .,4,ere,6,R)

hrnere

>b'...,sn are possibly infinite alphabets such

that >b is the alphabet of

the output arc and n I (i (n

is the alphabet of the ith input arc.

page 44

?

Q is a possibly infinite set of states

% e A the initial state

6:f>,Pl t"t) where tnl = { 1,...,n }

R is a set of rules

Ihe rnapping 6 associates with each Snssible state the set of

nunbers that denote the input arcs on vftich the process must receive

inputs. Ihus mapping 6 has a similar funcLion to the input status

flags of Mams.

Thre set of rules describes for each state: the datons necessarv to

enable the node to coq>ute and also the activity that should be

perfornred when ccnrputation is enabled. Thris activity may involve

changirg state and outputing one or more datons on the output arc. The

follovring is a formal definition of a rule:

F2 Definition: each rule is of the form

<q;ul r . . . zun)-)(u;qr)

with q, q' e 0
,*andu e t^ t'u 10

*

over fo)

(5 is the set of finite seguences

ui € Ii if i e 5(e)

ui =/\ (empty sequence) if i e 5 tel

The formal operational ssnantics given by Arnold are extremely

precise. In particular he gives precise definitions to concepts such as

nodes, nets, ccnrputation sequences, .. etc. As can be seen frcrn the

last definition Arnold allows nodes to be non-deterministic in that nrore

than one rule nay have the same left hand side. Although non-

deterministic nodes are alloved in this nrodel they are never used to

page 45

describe nocles that cornpute history functions. Thus the nodes which

coilpute history functions are seguential and deterministic.

The substantial error referred to earlier is to do with Arnold's

definition of a node. To be more precise Arnold reguires his nodes to

produce at least as much output as they receive input. Thris means that

essential filter nodes like NDff and WFTENEVER that produce less output

than they receive input cannot be realised as Arnoldian processes. These

simple filters can certainly be realised as Kahnian processes and thus

Arnold's claim that his operational rnodel is eguivalent to Kahn's is
certainly fa1se. The reason that Arnold reguires that his nodes conpute

at least as much output as they receive input is that he reguires his

nodes to compute history functions with a special property. To

understand this property we must describe a metric space over infinite
seguences of natural nr-unbers in r,rfiich the distance between two objecLs

is defined to be 1l.l where N is the amount of agreenrent over the initial
segments of the two objects. ltre fact that Arnold reguires his nodes to

produce at least as much output than they receive input corresponds to a

node coqruting a contraction mapping on the nretric space described

above. rt is a rvell knovrn result that under certain conditions

contraction nnp'pirrgs give unigue fixed points. Arnold is able to use

these facts in some of his proofs.

Let us now relate Arnold's nrodel to the topics set out in the

introduction to this chapter.

Already we have seen that there are fiurny useful functional nodes

that cannot be realised as Arnoldian processes. Thus Arnold's nodel

cannot be thought of as a conrpletery general npder of pipeline

dataflorrs.

page 46

As a result of the restriction to the definition of node we find

that the definition of vfiat it reans for a node to conpute a history

function is correspondingly restricted. Thre follotring is the definition

of what it neans for a node to ccnpute a function overs histories. This

definition is important because it is the first to formally define what

it neans for a node to be functional. Arnold uses tvro versions of this

definition. Ttre first is for processes that are seguential and

deterministic, in this case the function i i" u history function. The

second is for processes that are non-determinate and seguential, in this

case the function i i" u set valued function and this is the version of

the definition shorn belc'vr.

F3 Definition: Ttre function

;,*) r...r * -rpr# l

associated with P (P a process) is such that

iCvrr...rvr) is the set of results of the

0J -derivations starting frqn the initial

configuration (2\ ,g grV1r... rv,.,).

NoLe that if the process is deterministic then there is only one

possible (J -derivation starting frcrn the initial state. In our opinion

this definition is restricted in that it assunes that a node always

begins ccmputation with infinite amounts of data on all its input arcs.

We feel that this assr-rnption is not realistic because in any real systern

the input arcs may be empty to @in with and even at intermediate

stages in the ccmpuLation. We are thus 1ed to conclude that Arnoldrs

definition of node functionality is not ccnrpletely general since he does

not allorp nonteterministic nodes to csnpute functions.

page 47

The third topic listed in the introduction to this chapter is
concerned with proving the Kahn principle. Of all the published proofs

of the Kahn principle the nrost precise is that of Arno1d. However since

Arnold's rnodel is unable to describe nodes that produce less output than

they receive input the proof of the Kahn principle is only a simple case

of the more general Kahn principle.

Of all the models of dataflop we have surveyed the nrodel of Arnold

is the closest to ours, although r+e developed our npdels separately they

are surprisingly similar in nany ways. For this reason we conclude this

section by describing a few of the important definitions and ideas

contained in Arnold's work. we begin by looking at an example of a

non-deterministic process: Exarnple I€t P be a process with n-input arcs

and I output arc defined by

%,IyQ,qo,6,R)
where%=It={arb}

e = { 96191 ,e2 }

6 (e) ={1} vq e o

and the rules are:

<qO;u> -) (a;qt)

<%;"> -) <b;qr)

<%ob> -) <b;qr)

(9I;u> -) (a;gt)

(qr;a) -) (a;gr)

(qria) -t <b;gZ)

(qr;b) -) (b;qr)

this is an example of a non-deterministic process that produces

different results depending on wlrat infinite input sequence is

e

page 48

suFplied. For exanple if a 0 is supplied as input then eith", r Q or

b Q will be output. rf b Q is supplied as input then b o is produced

as output. Of all the r^rork we have reviewed Arnold's is the onlv one to

give a formal definition for a dataflory net.

(F4) Definition: t€t Pl,...,Pk be k processes p, having

n. input arcs and m, output arcs.

Letp eQ

Let n = nl+n2+...*nk

Let m = m'+m2+...+rnk

A dataflovr net is given by the k processes the natural

number p and two injections:

r) : [n] *> tpl

tr : [m] -> tpl

The intuitive nreaning of this definition is the following:

r-h
The j'^' input port of process P, (I < j S ni) is given the nrmrber

no+n1+...+nr-r+j irtrere.o = o. rn the same way the j'th output port of

process P. is given the nr:mber nb+m1+...*i_t*j. Ttre arcs of the net

are nunbered frcrn I to p. Ttre natural nr-unber ! (1) is thus the nr.rnber

of the arc connected to input port nr-rnber I and the natural nr:rnber

6 (1) is the number of the arc connected to output port nr:rnber 1. We

therefore suppose thaL 11 (tnl) (J d'(tml) = tpl

Figure F5 An example of a data flor net.

Ttre net consists of 3 processes P, P2 and p, each having 2 input ports

and two output trnrts .Ttre two injections 11 and 6. frcrn t6l->tgl are

page 49

given by the folloruing table:

r)6
135

2L6

327

448
s63
674

The follovring is a graphical representation of the net.

A modular operational semantics ?

Gilles Kahn gave a lot of importance to the fact that a network of
processes could be considered as a single process (even though it was

not true in his model). Motivated by this consideration Arno1d proves

that his operational nodel has this encapsulation property. Hor.rever we

find Arnoldrs resurt rather misleading because it is not true in
general. Thre ieason for this is that Arnold assunes that his nodes

always receive infiniLe amounts of input on all input arcs and in

|r

page 50

e

reality this nny not be the case. For example the DUBLETD node

described earrier can be written as a single process in Arnord's

notation and it can replace two seperate single identity nodes in any

context provided an infinite amount of input is given to both input arcs

of the DOUBLEID node. However if one of the inputs dries up the node is
blocked waiting for input and is thus unable to ccmpute the DOUBLEfD

function. rtrus Arnold's encapsulation property is for the rimited

context in which seguential and deterministic nodes ccnrpute in an

envirorrnent in which they are never starved of input. Ihus the

Encapsulation property is trivially true for Arnoldian nets. In chapter

2 we prove that our inodel of dataflow has the encapsulation property in

a ccnpletely general sense.

page 51

G. A language capable of expressing all pipeline Dataflop conputations

rn this, the last section of the current chapter, we describe a

progranrning language proposed by Robert Keller 1.29). Ke11er extends

Kahnrs simple language for parallel processing by the addition of two

new primitive nodes caIled poII and choice. Keller is mainly interested

in dataflcn* nets in which nodes may behave nonteterministically, and as

a conseguence' the new prirnitives both introduce non-determinisn into

what is otherwise a sequential and deterministic language. Keller

states that nondeterminate behaviour can be introduced into a language

in two ways. one way is through tfune dependenqg, this form of non-

determinate behaviour is caputred by the po11 primitive. The other form

of non-determinate behaviour is randqnness within a ccmputing station

and this form is captured by the choice primitive. Keller introduces

these prirnitives into Kahnrs language in the follcxring way:

The poll primitive checks to see if the fifo gueue associted with a

particular arc is empty or not. we can think of this in terms of a

booLean procedure in AIGOL which returns true if the gueue it is looking

at is non-eq>ty and farse othemise. This can be expressed with a

primitive of the follovring form:

NOI{Et{Pry((arc name)) The inclusion of this primitive into Kahn's

language enables processes to detect an enpty input arc and thus avoid

being blocked waiting for input. TLris enables Keller's processes to

realise nodes like the DOUBLEfD node rrentioned earlier.
The choice primitive randornly chooses between different

activities. We can think of this in terms of a boolean procedure in

AICOL which returns a randqn truth value and when used in conjunction

with a conditional primitive such as if-then-else allor,vs a process to

page 52

e,

non-detenninistically choose between different cffrputations. This
primitive nay h expressed in the fotlovring form:

cnorcE o

Although we do not provide a proof rrc claim that the addition of these
two prirnitives to Kahn's language lleans that the extended language is
able to describe any pipeline dataflow ccnputation. For example here is
the DOUBLEID node:

process doubleid (integer in xry; integer out prg) ;

begin

repeat

if NONEMPTy(x) then pUr(GET(x),p) ;

if nonemS:ty(y) then pUI(GET(x),q) ;

end;

end; Another example is the unfair I'{ERGE node:

process merge(integer in xry; integer out z);
begin

repeat

if NONm{pIy(x) and }loNEMpIy(y) then

if CTCIICEO then pt-tT(GET(X),2)

else pUlf (GET(y),2)

fi;

fi;

if NoNED,rpry(x) then piJT(GET(x),2) fi;
if NONEMpTy(y) then pUT(GHI(y),2) fi;
end;

end;

g

page 53

Keller' like many others, assunes that Kahn gave a proof of the Kahn

principle in t26) and thus does not address the issue. As a conseguence

Kell-er is not interested in nonteterministic and non-seguential nodes

that are functional. Rather he is intersted in nodes with non-

determinate input/output behaviour .

rn the follovring chapter r+e develop our o\,rn formar operational
semantics for pipeline dataflovv. The reason r*e do this rather than adopt

Keller's language is that we want to be able to reason formally about

dataflorp nets and dataflow conputations and this is very difficult to do

from a language like Kerler'!s. For example in chapter 5 we prove that
nodes with a partcularly sirnple property, namery the 1 step church-

Rosser like property, are functionar. A corresponding proof for
processes defined in Keller's language r^rculd be extremely difficult.

g

page 54

A FormaI

Chapter 2

Operational Semantics

G

for Pipeline Dataflor

The main result of this chapter is a precise formulation of a

corpletely general operational semantics for pipeline dataflovr. In

section A rrc present a formal definition of a pipeline dataflor node in

terms of a nonteterministic autcrnaton. In section B r.re examine networks

of these nodes. Thre two rnain result of sebtion B are: (1) a formal

definition of closed pipeline dataflovr nets and (2) a formal definition

of closed net ccnputations. In Section C roe sholr how the formalisn of

section B can be re-used to describe open nets and open net

cornputation.

To sutr4>ort our claim that our operational semantics is ccnrpletely

general in section E, roe prove that our model has the encapsulation

properLy in a ccnpletely general sense.

A. Nodes and non-deterministic autcnrata

I'he nodes in our model of pipeline dataflcx* will be continuously

operating automoinous conputing stations connected to one another via

pipes wtrich are unbounded fifo queues and along v*rich they endlessly

exchange information.

To save notational corplexity and without loss of generality r+e

assune that the discrete units of data that travel along the pipes

(i.e. the datons) represent only natural ntunbers.

A corputing station in our nodel consunes datons one by one frcnr

its input arcs and outputs datons one by one on the ccmputing stations

(

page 55

output arcs. fn terms of input/output behaviour our rnodel is not

seguential in that each node conrputation nay simultaneously produce and

consume datons on all its input and output arcs. Although we do not

provide a proof rrye claim that all input/output behaviouri can be

expressed by our model.

A simple node in our npdel usually consunes datons at the same rate

at which it produces them. However, we allcr,r more general nodes that

may produce output at a different to that at which they consunes

inputs.

the justification for reasoning about computing stations as

continuously operating black boxes is that nany aprplications such as

operating systems and database systens are best thought of in terms of

continuously operating autoncxnous processes. A practical example of this

is a netroork of UNIX processes connected to each other via UNIX pipes.

In our formaL operational sernantics each ccnrputing station (node)

is associated with a set of internal states and at any given moment a

node is in one of these states. Irlhen a node is first "activated" it
moves autornatically into a knor'n initial state. Threreafter it nay move

to other internal states depending utrnn what the node is to ccrq>ute. We

can think, informally, of the internal state of a node as having two

distinct ro1es.

One role is as a "marker", marking the current step in the

algorithrn that specifies a node's behaviour. The initial state is a

marker to the first step in such an algorithm. For exanple consider a

node with tr+o internar states, one input arc and one output arc. rn its
initial state the node consunes its first input, produces no output and

moves into a-second state. In its second state the node conswnes its

tF

page 56

next input and produces as output a copy of the consuned input. rf we

require this last step to be retrnated ad infinitr-rn $re arrange for the

node to rernain permanently in its second state. As you have probabry

realised the node just described is our old friend the NEX| node.

A second role or use of internal states is as memory. we feel Lhat

is is not unreasonable to think of a node reguiring access to all of its
previous inputs in order to produce its next output. As nodes are

continuously operating this rnay reguire a possibly unbounded amount of
internal memory. (some authors such as Arvind and Gostelort3l restrict
thernselves to a subset of pipeline dataflor in which nodes have only one

state (i'e. no menory). es a result of these restrictions these nrodels

are certainly not general models of pipeline dataflovr. In addition they

rack the encapsulation property- subnets have rnemory, in the form of
daton gueues, but nodes have none). en example of a node that uses

internal state as nernory is the node that produces on its one output arc

the running total of the datons it has consurned through its one input
arc. rn the case of this node we think of the initial state as

initialising the running total to zero. Thre node repeatedly awaits the

arrival of a daton on its input arc and as soon as one beccmres available
it is consuned, the value of the consumed daton (a natural nunber) is
added to the internal state and a daton representing the new runnirrg

totar is output. since the sun of trpo natural nunbers is always a

natural nunber' a countably infinite nrmber of internal states enabLes

the node to record succesive running totals and thus the node rrorks

correctly for any input history.

Although rr\e can informally think of internal states as havirrg two

distinct functions this does not npan that nodes need separate internal

page 57

states for each of these functions. On the contrary, our nodes may

'code upr both of these functions within a single internal state.

We think of our conputing stations as black-boxes connected to

their outside rrcrld through input and output pipes through wltich they

ccnnmnicate with one another. Now it is certainly possible for a node

that consurnes datons at a very sIo* rate to receive inputs frcrn a node

that produces datons very guickty. If this is the case then the pipe

connecting the two nodes should be able to store the surplus datons in

the order in vfiich they arrived. This is the justification for the

earlier decision to take pipes as unbounded fifo queues.

In our nrodel we reguire our nodes to conswne datons one by one frcm

their associated input arcs. Tb formalise this reasoning we associate a

one place input br:ffer with each of a nodes input arcs. This one place

buffer is empty if the fifo gueue assoicated with the buffers input arc

is empty, otherwise it holds the daton at the head of the input arcs

associated fifo gueue. Our nodes are able to consune a daton frcrn an

input arcs by issuing a conunand to erase the correspondirxJ input

buffer.

The contents of each one place input buffer together with the

internal state gives a snapshot description a node which we call the

cause of conputation. With every possible cause our nodes (are reguired)

to associate some effect. An effect may be to erase some or all of the

nodes input br-rffers; it may be to change the internal state' or it may

be to output a daton on some or a1I of the output arcs, or a ccrnbination

of these 3 activities. Threrefore unlike the rpdel of Arno1d[4], vtrich

becomes blocked if an unexpected input arrives, our nodel is able to

cope with all possible input situations.

page 58

rF

To iIl-ustrate the idea of causes and effects r.re turn to our old

friend the NEXI node. Thris node has troo internal states qO (the initial
state) and gr. A snapshot of this node ccnrputing may reveal that the

node is in its initial state 6 with a 5 in its input buffer. We denote

this cause of conputation by tne ordered pair <5,q). A later snapshot

may reveal that the node is in state 91 with an empty input buffer. We

denote this cause by the ordered pair (ni1,g1>, the nil meanirrg that the

input buffer is empty. As roe are assuming that datons are all of Lype

natural nr-unber the follovring is the set of all possible causes for the

ND(T node:

{ <nil,%)r(nilrgr)r(O,qO)r(O,qr),<1,qO>,(1rgr). ... l

If our nodes are to compute for any input then it is essential that for

each possible cause vre associ.ate at least a single effect. For the NEKI

node we could associate causes with effects in the following way. For

all those causes in which the state conponent is q1 and the input buffer

is non-empty roe would associate an effect wfrich is to consune the

contents of the input buffer, not to change internal state and to output

the consrmed input. For example the cause (2,qr) is associated with the

effect (tt, ni1 , 2). ltre tt nreaning erase the input buffer, the nil
meaning do not change state and the 2 neaning output a daton r+hose value

is 2. Sfunilarly for all those causes in wtrich the state i" gO and the

input buffer is non-empty we rvould associate an effect wtrich is to erase

the contents of the input buffer, to change internal state to 91 and not

to output anything. For example the cause <2,qO> is associated with the

effect <tt, 91, nil). the tt reaning erase the contents of the input

buffer, the g1 neaning move to the new state g1 and the nil nreaning do

page 59

not produce any output. The two remaining causes <nirrq) and (nilrgr)
are bolh associated with the busy wait (nil, nil, nil). The first ni1

meaning the do not erase the input buffer, the second meaning do not

change internal state and the third meaning do not produce any output.

Provided the node just described ccnrputes indefinitely it will
conpute the following history function:

next: Ka -) Ka

s.t. Vq € Ka next(a) = < t_ r\t\r...
note! G= (%rt,%,...

The follorping diagran illustrates a possible cunputation seguence for
the node just described:

:H + compu,e + compu,e + ...,"..+.

As we saw in the previous exampre if one or nnre of the input

buffers associated with a cause is empty then it is still possible to
associate an effect with that cause. fn some cases the effect mav be to

do nothing, we call this busy waiting.

On the other hand Lhe effect may be to cause sonre activity, this is
called conputirrg on empty buffers. ft is possible for seguential nodes

(e-9. Arnold's[4]) to corpute vrhen sone of their buffers are ernpty, but

onry if they ccxrpletery ignore the contents of these buffers. using

Kahn's GET prirnitive, for exampre, it is possible to wait for the

appearance of a daton dcnm the first arc and output it wtren it arrives

page 60

even if the second buffer is arrpty. But when a GET

must do just that and has no way of knovring rrftether

arrived in the other buffer.

is

or

invoked, the node

not anything has

the more general nodes wlrich we arlovl, ho'i^rcver, are capable of

performing other activities (such as output) while waiting for input on

certain arcs - in other rrords, they are essentially able to do npre than

one thing at Lhe same time. It is precisely these more general nodes

that have been ignored in previous nrodels. A very sirnple example of

such a node is the DOuBLETD node. Thris node has two inputs and two

outputs and echos the first input on the first output, and the second

input on the second output. Such a node cannot be sequential because it
cannot allcrvr boLh outputs torrun dryr rvhen only one of the inputs does

so. Thris ability to conqrute while waiting is essential if our nrdel is
to be in any sense general. In fact any nrodel that is unabLe to ccrnpute

in this way will be deprived of the encapsulation property.

The follor,ring formal definition of a node is based on the informal

ideas presented above. A node is specified by: the nurnber of input and

output arcs; the initial internal state; the set of all trnssible

internal states, and the collection of all possible cause,/effect pairs.

page 61

(A1) Definition A node is a seguence (ergrn,mrT)

where

Q is a countable set with ni1 S e

(the set of all possible internal states)

qeQ

(the initial internal state)

nrm€Q

(the nr-unber of input/output ports resp.)

TC (Bnre)x(En16rem)
(the transition relation)

such that

Bw (:r
where

Bw= { <c,nilnffi+l> lc€ (Bnxe)]

!'= 0O {nil}
Q=Ou{nil}
E- { tt,nil }

Tb facilitate rater work we introduce the folloring auxiriary
functions:

L€t N be a node (ergrnrmrT)

(i) States(N) is e

(ii) Initialsrate (N) is q

(iii) Inportariry(N) is n

(iv) Outportarity(N) is m

(v) Transitions (N) is T

page 62

rE!

I"€t t e Transitions(N)

(i) Buf fers (t) is to I rnportarity (N)

(ii1 Newstate (r) is t, (rntrnrtarity (N))

(iii) Prod(t) is < tr (rnportarity(N)+1+j) | j € outportarity(N)>
(iv) Erase(t) is trl tnportarity(N)

page 63

Ncde transitions

Let us exanine in nrore delair the concept of a transition
relalion. Given a node n (= (er9,nrm,T)), the transition relation T is
a subset of (Bn r e) r (En: e r il) i.e. a set of cause effect pairs.

F. tlpical cause is of the form (bg,...bn_r,q) where b, denotes the
}Lstatus of the ith input buffer. rf bi is nil then the itt, input buffer

ic e-.+rr if }..-* -,,v-r r -. -i. is scrne natural nirnber say 7 then the ith input buffer

con+.a:-ns the na+-ural nrrnber 7. Ttle g caiiponent of our tllpical cause is
a norje sl,ate.

A tlpical effect is of the form (€Or...r€n_I ,z,b},...rbrn_l) **rere

the e. deno*.es the acr.ivity associatej wirh the ith inrr"t buffer. rf e.l. -J --- rlJu! vurr
1

is nll'"i-'en the cont.ents of the:.th inpu+- buffer is noi to be erasec.

If the e.. is tt then the coitents of the ith input b,.:ffer i.s to be

erase:r. ftre z cG-ilpoiient denotes the ectl,,'jt.y associatec wllh tlre node's

stei€. 7f z is nil tnen '-his lr€ans th"-t the no"Je's state shculd r=*i^i.r:

trnni,:me-i rr - is q*^.. then this neans ihe noie's state sliould be' T)ew

chargec to the state 9n.*. The b, ccmpcnent denote-q the acitrvi*-y

asscciated with the node's output arcs. rf bi is nil then nothirg is to
be sent alorg the ith output arc. rf bi is scnre natural nurrber say 5

then thret rneans that the natural nmLber say 5 is to be sent alorg the
fla

i'" outpJ.- arc.

At this point let us digress to ccrnnrent ugnn Lhe scnrewhat

unconventional. 'next state' relation used in definition 2.1, rhose

faniliar with traditional. autcneta theory may feel a litlle urreasy- in
the use of nil. to specify no charge in state. rn standard autcrnata

ts

page 54

F

theory the next state relation is a relation over States r States and

not over states r (statesL){ nil }). At this point in the thesis we

cannot justify this unconventional next state relation but the reasons

for its inclusion will beccnre apparent when in Chapter 5 we define a one

step Church-Rosser like property for node's.

Tb familiarise the reader with our definition of a node vie present

several exanples of node's. Ihe first few examples are elsnentary but

the Later ones are conplex and are rneant to show the generality of our

definition.

Exarnple 1

The following is the formal definition of a node having tvlrc input

arcs, one output arc and one internal state. the node in this example

repeatedly awaits the arrival of datorrs on both its input arcs and as

soon as both inputs arrive they are constrned and a daton representing

their sun is output.

page 65

{ g J,

where

9, 2,

T={

IrT)
((niI rnil,g), (nil rni1 rni1 rniI)),

:;
((nil, Org)r(niIrnilrnilrnil)),

(ftil, 1rg) r (ni1rnil rnil rnil)),
((niI , 2,9) , (niIrnil rniIrnil)),

i;
O, Org)r(tt, ttrnif, O)),

O, 1rg)r(tt, ttrnil, I)),

O, Zre) r(tt, ttrnil , 2)),

1, Org)r(tt,

1, 1rg)r(tt,

1, 2,9) r(tt,

:

((1OO, Org)r(tt,

((1oo, 1,9)r(tt,

)
J

:

tt,nil, I)),

ttrnil , 2)),

ttrnil-, 3)),

:

tt,nilr1m>>,

tt,nil, lol>>,

Exanple 2

This exanple is the formal defintion of our o1d friend the NEXr

node. Ttris node has tr+o states, one input arc and one output arc. Unlike

the last example the node does not process datons it simply manipulates

page 66

thern. Iro be npre precise the node dicards its first input but thereafter

passes on any future inputs.

a{%,er},qo, 1, 1,r>
where T = {

(fiil r%), (niI,ni1,niI)),

<<r,ii,91), <nir rnir rnil)),
(< Or91)r(ttrnil, O)),

(< 1re1),(tt,nil, I)),
(< 2,g'),(ttrnil , 2)),

l

Exanqrle 3

the follovring is the formal definition of a node that has a

countably infinite nurnber of states, one input arc and one output

arc. This is a naive example of a functional node that canputes on ery)ry

€ buffers. In fact the node ccnputes the follorriring history function:

first: Ka -) Ka

s.t Vo e Ka first(o) = 1 cbrcbrcb,...

page 67

The formal

<{ qil
where T

<iefinition of this node is:

ie 0] L){g},q,1,1,T>
= { ((nilrq)r(ni1rnilrnil)),

aa

((nil,9b), (ni1,ni1,

Or%r,(tt,nil,
lrqO>r(ttrnil,

]'

<<.,if rq1>, (nil rr,rr,

::
a

((nil,g99),(ni1,ni1, 99)),

i

Up to this point in the thesis we have defined the set of

transitions associated with a node by writing doqrn every individual

member of that set. We chose such a verbose nethod of definirrg the set

of transitions so as to avoid any misunderstanding of wLrat r+e nrean b1z a

set of transitions. It is novi tirne to introduce a npre concise

notation. To do this r+e have defined a notation similar to that of

Rodriguez[43] -Instead of writing transitions as a countable set of

o>>,

o>>,

o>>,

1>>,

1>>,

1>>,

G

page 68

ordered pairs such as

{ <<nil,%)r(nil,nilrnil)),

we shall write a table of transition rules such as the follovrinq:

G (Org) -) (tt,nil, O>

F

Ttris does not in itself simplify the notation it simply gives the

transitions rrpre of an operational flavour.

To simplify the notation rryre shall not include in our transition

tables those transitions associated with busy waitirg (i.e. transitions

whose right hand side are all niI's). fhus we adopt the convention that

any cause not included in the transition table is assuuned to be paired

with a busy wait.

In addition we simplify our notation by use of transition

schemas. For exarnple the scherna

Vx e 61

(xrE) -) (ttrnilrx)

corresponds to the transition table

aO,9O> -) (tt*lil,O>

<l,qb> -) (tt.nil11>

<2,qO> -) (tt,nilt2>

page 69

Using our new notation the PLttS node described earlier beccrnes

< { q },9,2,1, T)

where T is given by the following transition schema

Vxry € 0 (xryrg) -) (tt, ttrnilrxt)

More General nodes

A11 the examples of nodes given in the previous section possess the

property that each cause determines a single effect. Nodes with this

property we call determinate nodes. In addition the nodes of the

previous section were all deterministic with respect to their

input/output behaviour. In all previous nrodels of dataflcru with the

exception of Wie&rer [49] , all determinate nodes are deterministic with

respect to their input/output behaviour. However in our model a

determinate node's input/output behaviour may be non-

deterministic. Threse nodes we call time sensitive or time dependent

nodes and they are characterized by the ability to conpute on ernpty

buffers. In Keller's languagel2g] it is nodes that use the empty buffer

test that lrray be time senstive. fn the previous section we saw an

example of a determinate node that conputed on empty buffers, namely

example 3. the following is an example of a node that ccmputes on ernpty

buffers and is time sensitive:

Exanqrle 4

This node has one internal state, one input arc, one output arc and if
its input buffer is full it erases the buffer and outputs a copy of the

erased daton. However if the input buffer is ernpty it outputs a zero

(i.e. it ccmputes on an empty buffer). Thrus if this node receives

L

page 7A

inputs faster than it can process then, then it will conpute the

identity function. Ho*ever if there are delays to the input they will
cause spurious zeros to atr4>ear as a part of the node's output. Formarly

we have:

<{ q I,gr 1,1rT>
where T is given by

Vx e Q

(niIrg) -) (nilrnil, O>

(xrg) -) (ttrnil, x)

Nofsequential nodes

A11 of the example nodes ve have given so far can all be written up

using Gilles Kahn's simple language for trnralIeI prograrnming. However

the follovring two examples both of wtrich conpute history functions

cannot be programred in Kahnts language.

Exarnple 5

The first of these examples is the DOUBLETD node. Thris node has one

internal state, two input arcs and two output arcs and echos on its
first output arc the datons that it receives on its first input arc and

echos on its second output arc the datons that it receives on its second

input arc. There is no seguential process (i.e. Kahnian or Arnoldian)

that correstrnnds to this node. Ttre DCTTJBLEID node has the follovring

forrnal definition:

page 71

<{ q },9,2,2,T)
where T is

Vx,y € Q

(xrnilrg) -) (ttrnilrnil, xrnil)
(nil, yrg) -) (nil, ttrnilrnil, y>

(x, yre) -) (tt, ttrnil t xt y)

A more ccnrplex example of a non-seguential node is the following:

Example 6

The folloring is an example of a non-seguential node with determinate

input/output behaviour. The node r+e define is called 'paraIle1 or' but

first let's look at the'simple or'vrhose formal definition is

<{ g lrQ,2,1,R)
where R is all the transitions of the form

(xryrg)

Vx,y e { 1ro }

(1 and O denote True & False respectively)

The simple 'or' awaits for a daton to arrive on both input arcs and on

arrival they are both conswred and their logical 'or' is output. The

parallel version of this node takes advantage of the follorrring

egualities:

lorY=1

xorl=1

Vx,ye{1,o}.

*

page 72

Our parallel version awaits the arrival of a daton in either buffer as

soon as a 1 arrives on either input, it outputs a 1. For the sake of

argurnent let us assune that a 1 arrives in the left buffer; the node

erases the I and outputs a copy without waiting for the corresponding

right input. Orr node then records using internal merory that it is one

ahead on the left input. ff another I arrives in the left input and

sti11 nothing arrives in the right input then another 1 is output ard

the node records that it is tr+o ahead on the left input. The node can

carry on like this indefinitely or until a O arrives in the left input

in rr*rich case it must allcxp right hand input to catch up. This is only

half of the explaination, the other can be extracted frcm the follo^ring

formal definition

<{
"ilieQ

i,8o,2,1,R>
where R is

Vx,y e { 1,O }

(X, yt BO> -> < tt, tt, nilrx or y>

(Irnil, BO) -) (ttrnil, BI, 1>

(niI, 1, 82.> -> (niI, bL,B.L*Z, 1)

(1,nil,B2i+1) -) (ttrnil,B2i*3, 1)

(1, y,B2i*1) -> < tt, tt, nil, 1>

(X, I,B2i*2, -) (tt, tt, nil, l>

(x,nil ,82!+Z) -) (ttrnil, Bzi, nil>

(x, o,"zi*2, J
(nil, yrB2i*3) -) (niI, ttrB2ia1, nil)
(o, y,rZi*1, J
(nil, y, BI> -> (nil, tt, BO, ni1)

(O, Y, ,rrJ

page 73

Note

Ina

'para1le1

that the even states b2, b4,... code up the deficit of

the left input rr'hilst the odd states bl, b3r... code up

the deficit of the right input.

similar way we could define other non-sequential nodes such as

and', and twiser if-then-e1se.

Non-deterministic nodes

So far all the nodes we have defined have been deterministic in

that each cause has been associated with a single e!!ect. However our

formal defintion of node (A1) also allovrs us to describe nodes that are

non-deterministic, The following is a classic example of a non-

deterministic node with nondeterminate input/output behaviour.

Exanple 7

The node we shall describe is caIled the unfair l"lERGE node. It is

used in various other forms in nrany models of dataflovr. For example

Davis[I7] defines a more general form of this node and calls it an

Arbiter ceIl. Our l"lERGE node has one internal state, two input arcs and

one output arc. The node continuously awaits the arrival of a daton in

either of its input buffers, outputing the first daton to arrive in

either buffer. If datons arrive simultaneously a randcrn choice is made

as to whrich daton is to be output.

page 74

formal defintion of the unfair ITffiRGE node is the

<{ q },g,2, I,T>
where T is

Vxrx e Q

(xrnilrg) -) (ttrnilrnilrx)
(nil, yr9) -) (nil, ttrnilry)
(x, yrg) -) (ttrnilrnilrx)
(x, yrg) -) (nil, ttrnilry)

folloaing:

entries in the above schsna asWe usually write the tast troo

(xryrq) -) (nil, ttrnilry)
\> (tt,nilrnil,x)

C

The reason for this is that they both have the same cause

The MERGE node is a classic example of a nonteLerministic node that has

nonteterminate input/output behaviour. Un1ike other authors r+e allop
our functional nodes to be non-deterministic. However, rue shall have

more to say about this in the next chapter. TLre follor*ing is an example

of a nonteterministic functional node.

Exanple 7

The follovring node cornputes the identity function but the transitions
code up different internal activities. one activity is to build up an

internal memory (gueue) of inputs, and the other is to output stockpiled

datons. The node is nonteterministic because each cause has associated

ttoo possible effects, one stockpiling the other outputing. A ccnputation

in wtrich art but finitely rnany operations are stockpiring roould

page 75

be 'unfair' and would fail to produce the reguired outputs. Formally we

have the folloring definition:

<{ qilie6 } O t q },9,1,1,r>
where T is

Vx € 0, 1 € Sq((,J)

(nil, g> -> (nil, nil, nil)
(X, q> -> (tt, g<x>, nil)

(tt, nil, x)

(nil,qr) -) (nil,etai'
11y 'hd

(1) >

(xrgr) -) (tt, gl^xrhd(1)>

(nil rqutt
111 'hd

(1) >

L

page 76

B. Closed nets and closed net ccrnputation

In this section r+e develop a precise formal definition for closed

dataflow nets. In addition \^re formally define dataflop ccnputation for

the closed nets. A closed net is roughly speakirrg a directed graph in

which every arc has a, source and destination node. Since all arcs have a

source node the net is unable to receive inputs frcrn its external

environrnent (i.e. there are no input arcs) and in a similar way there

are no output arcs. The more ccnrplex nets which allovr input and output

are dealt with in the next section. The following diaqram illustrates a

Fiqure E, A closed
dataflow net in which
nodes are ta3geC by
natural numbers

tlpical example of a closed net. In this thesis we deal

exclusively with dataflow nets buirt up frcrn pipes (the arcs) and

autcnnta (the nodes). Another possible atrproach is that of structured

nets in vfrich the nodes ntay themselves denote dataflor nets. rhis
approach would be a generalisation of the named nets used by Adams. As

illustrated in the above diagran the nodes of our unstructured net can

be labelled with distinct natural numbers. Thris enables us to uniguely

identify each node in a net even if two or more nodes are identical as

autcrnata. Moreover if the natural nrmilrers used as tags cone frcar the set

Tags

,/\

page 77

n, htiere n is the nunber of nodes in a net, then r^re can denote the nodes

in a net as a sequence. For example the seguence associated with the net

in the above diagram would be

(DUP, NEXT, *, 2, 1, FBY, FBY>

Note in this sequence DUP refers to the automaton that ccnputes the copy

function.

In the previous section we saw that within the context of each node

it is possible to assign a unigue label to each of a nodes input trnrts

and a unique set of labels to each of a nodes output ports. Thus within

the context of an entire network the ports of each node are uniguely

labelled by an ordered pair (xry), where x denotes the node nwnber and y

the port nr-unber. ttre set of ordered pairs that uniguely determine each

input port is called the set of destinations (denoted by D) and the

corresponding set for output trnrts is called the set of sources (denoted

bv s).
We can ncn^r use the set of sources and destinations in an elegant

way to define an arc in terms of a source/destination pair. The source

being the output port of a node (i.e. an elernent of S) and the

destination the input port to a node (i.e. an elsnent of D).

Now that we have sorre idea as to wlrat we nrean W an arc and a node

we must look at the way in which r+e want to cqnbine thsn. Since lee are

defining closed subnets roe must ensure that every source is associated

with a destination and that every destination is associated with some

source. so ensure that our closed nets are well formed we reguire that

within the sei of source/destination pairs that describe the

interconnections of a net,no source or destination is included nxrre than

page 78

once. Thus to ensure that our net is rrcIl formed we reguire that the set

of source/destination pairs define a bijective map frcm s to D. rf
this is the case then the follo,ring net constructs will be excluded:

i) A sp.litting ar.c
()

Thus we define a closed net to be

source destination pairs such that the

to the nurnber of destination pairs. In
unigue destination pair and vice versa.

definition of a closed net:

at es
()

a sequence of nodes and a set of

nuunber of source pairs is egual

addition each source determines a

This leads us to the following

ii) Merging
{)

G
()

However we get the same effect as i) and ii) by using a) and b)

respectively:

a) A duplicator node An unfair merge
() ()

()

e

page 79

(81) Definition A closed net is an ordered pair (F, A)

where

F :k -) f ntrere k € CI and X is the

set of all nodes.

A :S -) D is a bijection

where

s = { (i,j) I i e dcrn(F) and

j e ouQortarity(Fr)]

D={ (i,j)|iedcm(F)and

j € Inportarity(F i)]

Example

Thre diagram belovr illustrates the closed net described by the

follcming formal definition:
(F,A)

where

F = (ONE, FtsY, PLUS, ONE)

where

i e 4 F i € lf (the set of all nodes)

page 80

Thre follovring table gives the input/output arity
i rnportariry(r i) Ourportariry(F i)

of the various nodes:

1

I

I

1

= { ((0,6),(I,A), ((L,6),(2,I)),

<<2,9>,<Ir1)), ((3,0) r(2,6))]

Figure F, A closed Dataflovr net showing node and port nr:mberino

TLre follor*ing are auxiliary functions that will facilitate 1ater

formalisn:

I€t M be a closed net (FrA)

(i) Nodes (M) = F

(ii) Arcs (M) = A

(iii) Size(M) = dorn(p) (the nwrber of nodes

Let a (= ((srn)r(drm))) be an elernent

(i) Tonode(a) = d

(ii) Toport(a) = m

(iii) Frannode(a) = s

1n

of

the net)

Arcs (M)

page 81

Closed Net Conqrutation

Now that ve have defined closed nets formally let us turn our

attention to closed net ccnputation.

The current state of a closed net is roughly speaking made up of

ttoo objects. Firstly a vector of states that records for each node in

the net the current state of each node. The second is a function that

associates with each arc in the net the current contents of the arcs

fifo gueue (the gueue function). For a closed net in its initial state

the node state vector records each node as in its initial state and the

gueue function records all arcs as being empty. A closed net

ccrnputation involves the closed net conputes in nroving frcm one net

state to another via a net transition. A net transition is a vector of

node trasnsitions such that the vector contains one transition for each

node in the net. A net cornputation is then a countabLe sequence of net

transitions' a finite seguence defining a partial net ccxnputation and an

infinite seguence defining a ccnplete net ccnrputation. Formally we have

the follovring def initions:

(82) Definition L€t N be a closed net

TLre state of N is an ordered pair (SrA)

where

S € Xi e Size(N) States(Nodes(w)i)

A : Arcs(N) -> Sq((,J)

The initial state of N is a state

of N (< S,A >) such that

V a € Arcs(N) A(a) =-/\

V j e Size (N) S, = Initialstate (Nodes (n) j)

page 82

We will also find the follovring auxiliary functions of use later:

I€t N be a closed net

L€t T (= (S,A >) be a state of N

(i) Queues(T) = [
(ii) States(T) - S

Net ccxrputation involves all the nodes in a net performing a node

ccnputation. Since each node corputes by choosing a cffrpatible node

transition vrc define a net transition to be a sequence of node

transitions. This leads to the follovring formal definition:

(83) Definition L€t N be a net

T is said to be an N-transition iff

T e X. € Size(n; Transitions(Nodes(N)i)

A net cannot conpute using a random N-transition it must use the

transitions available to it in a particular context. For example the Oth

node of a net has a state and hrffer contents wlrich define a cause it
must use a transition that is carpatible with that cause, this applies

to aII nodes in the net. This gives us the follcning definition of

ccnpatibility

page 83

(84) Definition Let N be a neL

I€t S be a state of N

L€t t be an N-transition

t is said to be N-cornpatible with S

iff

t-

(i) Va € Arcs(N)

Buffer (honooe
(a))toport (a)

(ii) Viesize(N)

State(tr) = States(S) .

(
= | ni1 if Queue(S) (a) =-At-

I

f Qr"uu(S) (a) l1 otherwise

page 84

We are nqr in a position to define formally wtrat it means for a

node to rpve frcrn one state to another.

(85) Definition t€t N be a closed net

Let C and D be states of N

D is said to be t-derivable frcrn C over
f(c -i-> D)

iff

G (i)

(ii)
tis
Dis

N-corpatible with

such that

a) V i € Size(N)

States(D)i = [stut""(A), lf Newstate(tr) = ni]-
I

I Newstate (tr) otherwise

F
t- tail (Oueues (A) (a)^Prod (tr,rcrnnode

(a)) Frcnrport (a)
I

eueues(B) (a) = I
if Erase(trot'oae(a))toport(a) = tt

I Queue (A) (a) Prod (trro*,ode (a))r'rcmport (a)
I

L otherwise

b) Va € Arcs(N)

that we have forrnally defined wtrat it nreans for a node to rrove

state to another we can easily define vrhat it means for a nodefrcnr

Now

one

page 85

to make a finite or infinite seguence of rnoves or ccnrputation steps.

(86) Definition Let k e L)

Let N be a closed net

I€t C and D be states of N

D is said to be finitely derivable frcrn C

*
(c 5-> D)

iff

] a seguence (EOr... rEO_r) of

N-states and a seguence (tgr... rt*) of

N-transitions such that
t^ t, t,, r. -#, to -#, .. .-t0,, t*-,. ib, o

(87) Definition L€t N be a closed net

Let C be an LFseguence of N-states

C is said to be an N*state chain

iff

J an (^Fseguence of N-transitions T

suchthatvieQ
Ti

Ci -fr=) Ci*l

page 86

C. Open Nets and Open Net Conputation

In this section we will shovr how the definitions developed in the

last section can be applied to open nets and open net conputation. The

essential difference between an open net and a closed net is that the

open nets have arcs wtrich have no source node called the input arcs and

arcs r"ftich have no destination called the output arcs. A simple open net

is illustrated in the follo+ring diagran:

To enable us to think of an open net in terms of a closed net we borror,,

the idea of an envirorrnent frcrn l'linskyt38l . For our application vre can

think of the envirorrnent as an anonlnpus datafloqr node. Thrus any open

net when connected to its environment becones a closed net. For example

when we connect the simple net shourn above an environment node with one

input arc and one output arc r+e get the closed net illustrated in the

follovring diagran:

page 87

The environsnnt node turns out to be very useful for two reasons. The

first is that it converts an open net into a closed net and thus allows

us to define open net ccmputation in terms of closed net

ccrnputation. The second is that the addition of an environment node

allows us to define an open net through a simple extension to the

definition of a closed net. Itre only problen we are faced with is vfrat

is an environrnent node. hle shall deal with this problern in the next

section and for the moment we think of the envirorrnent node as an

unknown or anonymous node.

Let us now look at the technical details of using an envirorrnent

node in the definition of an open net. fn the above diagran we see that

the anonlmous nde that was used to close the open net has been tagged

with the natural nunber 4 (i.e. the size of the open net). Now if we

recall in definition BI a closed net is defined to be a sequence of

nodes and a set of source/destination pairs (a bijective map'ping) ' The

problen with using this definition for open nets is that the source

destination pairs do not usually form a bijection. the reason for this

is that scrne of the arcs have no Source node and others have no

destination node. However, we can use the idea of an environment node to

over ccme this technical difficulty. The above diagram shows that with

the addition of an environment node all arcs once again have unigue

sources and destinations. Although rryre have used the envirorunent node to

allovr us to describe input and output arcs in terms of sources and

destination pairs rrc need not consider the envirorrnent node as being a

part of the open net. Ihese ideas give rise to the followirrg formal

definition:

?

page 88

(cl) Definition An open net (subnet) is a seguence (FrA, n,m)

such that

nrm€e

F:k-) X k€(^)and

lf is the set of all nodes

A:S-)Dabijection

where

S = { <i,i> | i e dqn(F) and j € outporrarity(Fi) }

U { <acm(F),k> lkem }

D = { (i,i> | i e dcrn(F) and j € rntrnrtarity(F i) }

tJ { <acrn(F) ,k> lkem }

The formar definition for the simple open net illustrated above is:
< F, A, 1r1>

where F = (1, *, FBy, DUp >

rnportarity(r i) OuttrnrtaritY(r ,)
i =O O 1

i=l 2 t
i=2 2 t
i=3 1 Z

A = { ((OrO), (1 ,1)), ((1rO), (2 rI)) ,

((4 rO), (2 rO)) r((3 rO), (4 rO)),
((2 ,o) , (3 ro)), ((3 r 1) , (1 ,o))]

page 89

We novl introduce sqne auxiliary functions that r.le nnke use of later.

kt p be an open net (FrA, nrm)

(i) Inportarity(p) = n

(ii1 Outlnrtarity(p) = m

(iii) size(p) = dcm(F)

(iv) arcs (p) = A

(v) Let a (= ((srn),(drm))) € A

(a) Frqru:ode (a) = s

(b) Frcnport (a) = n

(c) Tonode (a) = fl

(d) Toport (a) = m

(vi) Internalarcs(p) ={ a€ A lFrcnyrode(a)lSize(p)and

Tonode(a) t' Size(p))

(vii) Transitions(p) = Xi e Size(p) Transitions(Nodes(p) i)
(viii) Nodestates(p) = Xi e Size(p) States(Nodes(p) i)

(ix) Inputarcs(g) = { a€A lFrqnnode(a) =Size(g) i
(x) Outputarcs(p) ={ a€Altonode(a)=Size(g) }

The fact that any open net can be attached to an environment node

of corpatible input/output arity means that the problern of defining open ?

net ccnrputation has been reduced to that of closed net ccnrputation. As

we already have a formal definition of closed net ccnrputation the only

renaining problem is to define precisely vfiat rrc mean by an enviromnent

node. However before we do this r.le introduce one mcre definition wtrich

we shall rnake use of later.

page 90

(C2) Definition kt p be an open net

the internal state of p is an ordered pair

(s,A)
where S € Nodestates(g)

A: Internalarcs(p) -> Sq(0)

Ihe initial state of p (Initialstare(p))

is a state of p (= (SrA)) such that

V a e Arcs (p) A (a) =A-

V j e Size (p) S, = rnitiatsrare (Nodes (p),)

page 91

D. Envirorrnent Nodes and Test Beds

rn this section rtre conplete the definition of open net
functionality by givirrg a precise reaning to the notion of an

envirorunent node. we knovr roughly speakirg that the behaviour of an open

netrs real environment is non-determinate. By this rre rnean that the reat
enviromnent can behave in an unpredicatable manner. The only possible
description of the real envirorrnent is that it sr4>plies datons to the
input arcs of an open net at an unkno+n rate and removes datons frcnr the
output arcs of an open net at an unknor+n rate. Horoever since our

operational sernantics is sutr4nsed to be ccrnpletely general we should be

able to simulate, using one of our nodes, the behaviour of an open net,s
real environment. TLre node roe reguire is the one that is abre to
simulate all possible input/output behaviours. In fact using the

notation we developed in section A rre have no trouble in defining such a
node' None of the other nrodels vre have described is able to define the
envirorunent node.

For exampre an open net with two input arcs and one output arc is
closed bY an envirornnent node with I input arc and two output arcs. the f
following is a formal definition of an envirorrnent node with one input
arc and trto output arcs:

<{ g },g,I,2,T>
where T is

Vx,y,ze0U {niI }

V a,b e { tt,nil }

(xryrq) -) (arbrniJ_rz)

page 92

The envirorrnent node just described can be used with any open net with 2

input arcs and one output arc. In general an open net rnay have n input

arcs and m output arcs and so if r,tre want to close any given open net r+e

shal1 reguire the following fanily of environnent nodes,

Envirorrnent (nrm) :

Vn,m e L)

<{ q }r9,n,mrT)
where T is

V xgr... rXn-l tzgt.... rznr' e QO { nil i

Vqo,...rdn-l e { nil,tt }

(xgr... rxn_lrg) -) (a'r... ran_lrnilr ror... r"r*l)

Ttrus given any open net we can close it by connecting the net to a

ccnpatible environnent node. As a consequence r{re are able to use the

definition of closed net ccnputation to describe open net ccnrputation.

To make this idea more precise we introduce the concept of a test

bed function. A test bed function has as its dqnain the set of all open

nets and as its range the set of all closed nets. To be more precise the

test bed function takes an open net and a ccnpatible environnent node

and naps it to the corresponding closed net. the test bed function is

formally defined as follorvs:

page 93

(D1) Definition tet O be the set of aI1 open nets

Let C be the set of all closed nets

Letpe O

Let n = Inportarity(p)

Let m = Outtrnrtarity(p)

T: O

such that

t(P) is a closed net with

Nodes (t (P)) = Nodes (9)^nnvironment (nrm)

[rcs (r (p)) = Arcs (p)

(_

page 94

?

E. ltre &rcapsulation Property

In this section ire prove that any open net can be replaced in any

pipeline dataflow context by a black box eguivalent single node.

Informally speaking, two ccrnpatible open nets are black box eguivalent

iff given the sane inputs at the sane rate they produce and consume the

sane datons at the sdne rate.

(El) Theorem (the encapsulation property)

I€t o be an open nett-

Ihere exists a single node (N) which is black box

equivalent to p.

Proof We can construct N as follovss:

(i) the node N and the open net p have the sane nunber of input and

output arcs. Intrnrtarity(N) = fnportarity(p) O.rt;nrtarity(W) =

O:tportarity(p)

(ii) Ttre states of node N are the internal states of the open net p

States (N) = States (p)

(iii) Ttre initial state of N is the initial state of p

Initialstate(N) = Initialstate(9)

(iv) The transitions of N are the internal transitions of p

Transitions(N) = Transitions(p) (i.e. via scme coding)

Now that r+e have shqm that N exists tv€ prove that it is black

box eguivalent to p.

page 95

Lt p' be the open net consisting of the node N and its

inPut/outPut arcs.

For any (,J-configuration sequence for r (p) there exists an

(,|configuration seguence "(p') in r^hich the behaviour of

the envirorrnent is eguivalent to that of r(p) and such that

g and p' are indistinguishable as black boxes.

this must be the case since p' is always able to simulate

(via the transition coding) any possible transition of P.

Thus the two open nets are black box eguivalent.

Note: since the troo nets are

indistinguishable as black boxes within the context of a

testbed (hence the r's in the above) they are indistinguishable

within the context of any pipeline dataflotp context.

QED

page 95

Chapter 3

Relatinq our operational semantics for pipeline dataflow to

Kahnrs Denotational sernantics for pure dataflovr

In the last chapter roe formulated a ccrnpletely general q>erational

semantics for pipeline dataflovr and thus achieved one of our goals. In

this chapter r.re will formulate a conpletely general definition of wtrat

it reans for an open net to corpute a history function thus achieving

another of our goals. Ttrus the single nrost important result of this

chapter is the characterization of orpen net functionality in terms of a

t*o player infinite game of perfect information. Ihis definition of

functionality rrc claim is conpletely generar and vre use it to prove

several important results. Ttre first result is that the history

functions carputed by functional open nets are continuous in the sense

of Kahn, the second is that every continuous history function is the

function cornputed bv some node and finarry that every open net can be

replaced in any pure dataflor* context by sqne node, Hc'v€ver before we do

this roe include two brief sections in vfiich r+e briefLy explain some of

the important ideas underlying our results. Itre first section describes

some erernentary background information on the fixed point theory of

recursion and the second gives more details of Kahnts denotational

semantics for pure dataflop.

page 97

A. Sore Mathematical preliminaries

To understand Kahn's denotational sernantics for pure dataflovr it is
necessary to have at least sone elernentary knowledge of the fixed point

theory of recursion. fn this section $re present sonre of the basic ideas

underlying this theory. For a ncre conplete presentatioh the reader is
referred to Bird[1O] or Mannatso] .

We @in with some elenrentary definitions.
(Al) Definition A binary relation < over a set S

is a partial ordering of S

iff

V xryrz € s

(i)x(x (reflexive)

(ii) x < y and y < x implies x = y (anti-synrnetric)

(iii) x I y and y < z irnplies x < z (transitive)

The structure (S,S) is called a partially

ordered set or poset for short.

For the sake of brevity and dren the context is unambiguous roe will
denote the poset (S , < > by its set i.e. S.

(A2) Definition Let < S, () be a trnset,

Let x be an infinite seguence of elements of S,

x is said to be an increasinq chain

iff

VieQ*iJ*i+1.

F

page 98

(..-

(A3) Definition The structure (S , S) is a dcrnain or countable

chain ccmplete partial order (C3PO)

iff
(i) <S,<)isatrnset'
(ii) S contains a mininal elernent,

(iii) Any increasing chain in S has a lub in S'

In the introduction to this thesis r^re defined the set Ka of countable

seguences of natural ntrnbers. In Ka we included the empty sequence2\

. The follovring is a binary relation wLrich we will make great use of in

this and subsequent chapters.

(A4) oetinition C is a binary relation over Ka such that

$xry € Ka x C y

iff
x is an initial segrnent of Y.

For example (1r2t314> C (I'2r3t4t5r6).

(A5) Proposition Ttre structure (Ka' g) is a trnset

Proof Straightforward.

In this and subseguent chapters we shall also use an extended form of

the binary relation C . The extension we have in mind is the folloiing:

(A5) Definition Let n € Q,

C ,., is a binary relation over Kan such that

Vx,y€Kan *9r,Y

iff

Vienxigyl

page 99

(A7) Proposition For any n € e
the structure (11un, g,) is a C3pO

Proof (i) (Kan, gn, is a ;nset, straightforward,

(ii) { :\ }n is the least element,

(iii) Every increasirg chain in Kan has a

lub in Kan, straightforward.

In the introduction to this thesis rlrc stated that in the denotational

ssnantics nodes rrculd be associated with functions over counLable

seguences of natural nunbers 1Xa). We will thus make use of the

folloring def initions :

(AB) Definition t€t < A, $) and < B, $) be C3pO's,

I€Lf:A-)B,

f is said to be monotonic

iff

Va,b € A

u$bimpliesf(a)$f(b).
(A9) Definition I€t < A, $) and < B, $) be C3pO's,

I€tf:A-)B,

f is said to be continuous

iff
(i) f is ronotonic,

(ii) For every increasing chain x in A

f(Lli.eqfi) = LlieUr(x1)
The concept of continuous function, c3po and fixed point (i.e. a

fixed point of a function h is any varue x for vfiich h(x) = x) are all
brought together in the forlo,ving important theorem due to Kleene.

page 100

(A1O) fheorern (The first recursion theorem, Kleene)

Iret<Dr<D>beaC3PO,

Let f: D -> D be a continuous function,

f possesses a fixed point x given by

x = t | -..fnr 5- I
-n€(J\ d'

where 5o is the least element in D and

rt(5a): r(....f (r(dD))...).

n-times

Moreover x is the least fixed point of f under the partial ordering

Io. this theorem is used by Girles t<ahn[26] to give a denotational

semantics for pure dataflorp.

page 101

B. Kahn's Denotational Semantics for Prrre Dataflow

rn our opinion there is no doubt that one of the single rnst

important contribr:tions to the strrdy of datafrc'w vras the Kahn

principle. For ccnrpreteness we include, in this section, a brief
description of Kahn's work t251.

Kahn noted that it is possible to associate a countable sequence,

called a historv with each arc in a pipeline dbtaflo^r net. Ttre history

of an arc denotes the entire sequence of objects to have travelled upon

that arc. Ttre order of the objects in the seguence corresponds to the

order in which the objects travelled along the arc. rn Kahnrs model

different arcs can carry objects of different types and thus the tlpe of

the objects in a history is determined by the type of the arc

(e.g. integer, matrix, real ...etc). However in our nrodel the only

objects that flow along arcs are natural nunbers and thus a history is
simply a countable seguence of naturar numbers or in other words an

element of Ka. We should trnint out that it is essential not to confuse a

queue with a history. A gueue is a dlmarnic (operational) object that

grohts and shrinks as a result of the cornputational activity of the nodes g

attached to either end of an arc. o:r the oLher hand a history is a

static (denotational) object that is the entire record of all the datons

to have travelled along an arc.

A further observation of IGhn was that it is possible for canputing

stations with renrory of their cryn to ccnpute functions frcrn the

histories of their inputs to the history of their output. rn other

words a node with n input arcs and 1 output arc could canpute a function

frcrn Kan to Ka. Kahn refers to these functions as history functions.

page 102

tt

We should point out that in the operational nrodel rve developed in the

last chapter it is possible to describe nodes that do not conpute

history functions; one such node is the unfair MERGE node. Tfre history
of the MERGE node's inputs determines a large set of possible outputs,

sore would say it corputes a reration. Thrus the goal we pursue in the

rernainder of this chapter, is that of choosing a sr-rlcset of our npdel in

which the nodes all conpute history functions. In Kahn's restricted

operational rrodel all the nodes carpute continuous history functions.

Kahn explains the restriction to functional pipeline dataflow nodes in

the follovring terms:

(i) likrnotonicity means that receiving nrore input at a ccnrputing

station can only provoke it to send out nore output. Indeed it
is a crucial property since it allorus parallel operation. A

machine may not need all input to start cornputing, since future

inputs concern only future outputs.

(ii) Continuity prevents any station frcrn deciding to send some

output only after it has received an infinite amount of input.

We caII dataflors nets in which all the nodes conpute history functions

Pure Dataflovl nets.

Fixpoint equations

Rather than study the behaviour of a cornplex machine, Kahn wanted

to study the properties of the solution to a set of eguations. To

achieve this he associated with each parallel program schsna p (dataflop

graph) a set_+ of eguations over sequence dcrnains, in such a v€y that a

set of sequences is a trnssible sotution to +

page 103

iff it is a possible set

of histories for the arcs of the dataflovr graph. Kahn gives the

follovring rules for constructing 4:
(i) to each arc h in the net associate a variable xn

(ii1 if x,-,r...1X_ 1 are the variables associated with the input arcsU' N-T

and i,-r...ri_ 1 are the set of sequences fed in as inputsU' N-I

include the equations

Y =i"o -o
a,

t.

x,=1n-r n-r
(iii) for each node f, with n input arcs (x.,...xn_l) and m output

arcs

(Y9,...
'Y*-1) include the m eguations

YO = fO(xor... rxn-l)
a

o

c o

Ym-l = frr*l (*Or.. . rxrr-I)

C1ear1y, the histories of the arcs of lhe graph p have to satisfy the

systern +. Moreover since + i= a set of fixpoint eguations over a C3PO ?
where the operators are continuous, such a system admits a unigue

minimal solution, the least fixed point solution (see AlO),

page I04

The minimr-un solution { y(x6) ,...'}(*r,_t) } of the systern

& = i *i = ti(xo,...rxn_1)i € n i
vfiere the ?.: terms are continuous operatorsI

is given by

Ui e e ("o,...,*r,_r)

where

xr=A i€n
*i =rr(xor...rrrr_1) i€n jg(^)

An arternative and more consise way of writirrg this expression is by

using th. P operator. If f is a function frorn a C3PO D into itself then

the least fixed trnint of f is given b1z the follorirg expression

pxf(x) (=Uieeft(Ao)).
Thus the solution for the systen of eguation

px r(x).

The follorring is an example of a dataflow net and its associated set of

eguations. Note that the ttpper case letters in the graph denote the

nalnes of nodes and the corresponding lower case letters in the set of

eguations denote the function(s) ccnrputed by the node.

Open net p

xa =i
xl = f (x,rx.)
x) = eo !*rl'xi =91 (x1, Inxi = ki (xi)
xi = kfx',Iax[= Irr !*:;*s]x] = hfr (x j,x!)

+ beccrnes:

*1

*4

,2

page 105

Tkre principle that the operational behaviour of a pure dataflop net

is exactly described by the least fixed point solution to the nets

eguation we call the Kahn Principle. t'lany ccnputer scientists believe

that the Kahn principle was proved by Kahn. Hovrever Kahn never

published a formal proof of this principle nor did he define precisely

the concepts of "node", "net" etc. In the renrainder of this chapter r^ae,

formulate a precise definition of vftat it means for a pipeline datafloqr

node to conpute a history function.

iii Usinq 'where' notation together witb certain transformation

rules to massaqe expressions involvinq fixed Froint operators

The first to use rwherer notation in Conputer Science was p.J.

Landin in his rencnsned paper "Ihe next 7OO Progranuning Languages" (see

Landint33]). rn this thesis ,*furr,"r"' notation as a neta-language ro

prove certain results about the operationar behaviour of nets. our

'where' notation is a minor variant of Landints rwhere,, namely our

'where' crause correstrnnds to landints twhere rec'. rn his paper Landin e
shovrs hovr 'wheret expressions can be thought of as a formal system in

which precise proofs can be carried out using a ntrnber of transformation

page 106

b

rules. A simpre example of a ,wtrere'expression is the follovring:

a wtrere

a = c r+trere

c=1
end

end

rn this exaq>Ie it is obvious that the varue of the variabre ,ar is
1. The follcwing example is more ccnplex:

g vtrere

g = P(a) u*rere

a =f
end

a=2
end

rf we r'rere using Landints rr.freret the value of the above expression

would be F(2) since Landin's 'vftere' associates the outermost occurence

of the variable ta'with the 'a' in F(a). However, our ,where'

corresponds to Landints 'where rect and so it rrould associate the

innermost 'a'with F(a). Ttrus the value of the our 'where' expression is
F(1). rn A.ii we saw how to associate a set of eguations with a pure

dataflow net. rn the chapter 4 we will prove that the operationar

behaviour of a pure dataflcry net is exactly the least fixed trnint of the
net's associated set of eguations. To do this we will need to prove that
different e:q>ressions involving the reast fixed point operator p are

equivalent. we saw in section A.ii how the expression

p x r(x)

corresponds to the least fixed point solution to a set of eguations.

page 107

In this thesis we use the transformations defined below to massage

expressions wtrich involve p (the fixed point operator). A simple exanple

of such an expression is

p x f (x)

See section A.i for nrore details about C3POrs. Thre transformation rules

given belcry can all be verified using sLandard fixed point theory

(e.9. see De Bakker t81).

Our transformation rules

(aO) Given the fixed point expression:

PaF(a)
we can express this, without changing the nreaning,

using the following 'vrherer notation:

avrherea=F(a)

We call this transformation

p elimination.

(aI) Conversley, given a 'ttrere' expression:

awherea=F(a)

we can express this, without changing the nreaning,

as the follo,r'ing fixed point expression:

;:aF(a)
We call this transfonnation

;: introduction.

(bO) Given a 'where' e:<pression

we can add a nevr eguation to the right hand arm of

the 'where'without charrging the meaning of the e:<pression so long

as the new equation defines a variable not already used. For

g

page 108

example h€ can add the eguation z = 10 to

a where

a=7
end

giving us

a where

a=7

z=70

end

Both 'where' expression have the same value.

(br) conversely, r"€ can renove an eguation provided the variabre

defined by the eguation is not used anln*here else in the
rwhere' expression.

(cO) Another transformation is the sulostitution of a variable

for its definition. Ihis does not change the

meaning of the rwherer expression.

(c1) Conversely, given an expression which is egual to sore

variable, it is possible to change the e4>ression for the

variable without changing the neaning of the 'vfrere'

e:<pression.

(dO) Finally, as our 'where' expressions are defined over a

C3PO any variable defined in terms of itself correstrrcnds

to the recursive definition and so the fixed point theorenr

(A1O) applies. Hence we can take a fixed point without

changing the neaning of the 'where' expression.

page 109

For example:

a where

a=b
b = F(b)

end

can be transformed into:

a where

a

b b F(b)

=$

=F

end

without changing the meaning of the 'wkrere' e:rpression.

(dI) Conversley, given an eguation wtrich contains a fixed

point operator in the normal form (i.e x = pxf(x)),
we can renove the fixed point operator, leaving a

recursive definition. Thris transformation does not chanqe

the neaning of the rwhere' expression.

The follcning is an example of hovr we prove that

pAF(A)=pAF(F(A))

p A F(A)

t (P elirnination)

ArrtrereA=F(A)

i (substituition of a variable for its definition)

wtrere A = F(F(A))

f (tt introduction)

AF(F(A))

QED

t-

C. Open Net Funcionality

In this section we examine wlrat it neans to say that an open net

conputes a history function. So be more precise, l*rat does it mean to

say that an open net, with n input arcs and one output arc, conputes a

function f:Kan -) Ka.

Functionality is an externely important property as it alloss us to

reason about an open net in terms of a simple mathenratical object,

namely a history function. This is in contrast to the ccnrplex

operational nature of an open net (i.e. internal net state, net

transitions etc.).

To @in with let us look at functionality in nodes. Ren,ember that

a node together with its input and output arcs is an an open net. Given

a node rtre knovr, roughly speaking, that the node ccmputes a history

function if and only if the node's entire output activity is determined

only bry the node's entire input activity. As we stated earlier there

are two ways in qftich a node may fail to be functional:

f (i) if there is randonness within the node itself
(ii) if the rate of input of datons effects rnore than the rate of

output of datons (i.e. the node is time-sensitive)

The classic example of a node that is both time-sensitive and

randcnr is the unfair MERGE node. For convenience we restate its formal

definition:

page 111

< { g l,q,2,I,T)
rftere T is

Vx,y € (J

(xrnil rq)

(nil, yrg)

(x, yr9)

(tt,nilrnil, x>

(nil, ttrnil, y)

(ttrnilrnil, x)

(ni1, ttrnil, y)

The merge node is time sensitive in that the node's output activity is
dependent upon the raLe of arrival of the node's inputs. Ihre folloring
diagrams illustrate this time dependenry:

A. A possible seguence of events

.+
Y

tt
-l-l-v:7

ll
l2
ltB. An alternative seguence of events

rn both seguences A and B, the entire input activity of the merge node

is ((2),(1,I)). In sequence A the input datons arrive in the follorvring

order (-A'(1)), (<2>r<1>) and ((2),(1,1)). This resurts in the node

outputing the seguence (1r2rl). rn seguence B the sane inputs arrive in
a different way nanely ((2)r-A), (<2>r<I>) and (<2>,(I,1)). Thris

results in the node outputing the sequence <2,1,I>. Ttrus the exanple

shovr that the nerge node is indeed time-senstive.

page 112

C

On the other hand if the seguences ((2),(1,1)) are placed on the

node's input arcs at the beginning of the conputation, hence preventing

any time sensitive behaviour, r,e€ see ttre noae's randcrnness at r+ork.

Here are troo possible seguences of events

-l-il- -i-i. =il- Jj-Vy vy vy v:/it'ttti
J_ir" -l-t.- -Ll -l-l-\9 g/ qv vyft'tlti

-r.G
In both cases the node starts with the same inputs but produces a

' different output for each seguence. The reason for this is that the

node had to choose nondeterministically between the follor,ving two

transitions:

Yx,y € (J

(X, yr 9) -) (ttrnilrnilrx)
(nil, ttrnilry)

Other authors who have given a definition of node functionality

have usually assr.rned the follovring naive definition of node

functionality.

page 113

A node is said to ccnpute a history function f iff given o as input

there exists an infinite ccnputation seguence which accumulates f(o) on

the nodes output arcs.

In addition these authors insist that the node @ins ccnputation with

all the inputs it is ever to receive already gueued up on the nodes

input arcs.

For a variety of reasons this "obvious" definition turns out to be

both unrealistic and incorrect.

To @in with a node will never (vfien in use) have an infinite

seguence of datons on its input arcs. On the contrary the input arcs

are usually errpty to begin with and even at intermediate stages in the

ccnputation. The contents of the input arcs of any 'real' node is

determined by the rate at wLrich the node's enviromnent supplies inputs

and the rate at which the node consunes inputs. The proposed definition

fails because it reguires that a node functions correctly (i.e. corputes

f) only wtren sup'plied datons at a faster rate than that at wtrich the

node constnnes input. ft could be argued that the above definition is

adeguate if nodes are incapable of ccnputing on "erqrty buffers" and we

would agree with this. As our nodes nEry ccnpute on "empty buffers" r,re

reguire a more general definition of functionality.

There is an interesting way to repair the inadeguaql of the above

definition and although we do not use the repaired version it will be of

interest to examine hovr we could repair the definition.

The above definition reguires that all the datons that a node ever
t

receives are placed on the nodes input arcs before ccnpuation

begins. Thris usually rreans placing an infinite seguence of natural

page 1I4

F

nlnnb€rs on each of the nodes input arcs. Our rnain objection to this is
that it is unrealistic because datons arrive one b1z one and often with

pauses between successive datons. ltrese pauses mean that those nodes

that can corpute on an "empty buffer" rrould do so and often with

disastrrous effect. For example consider the node that produces a zero

when its buffer is ernpty and outputs a copy of its buffer otherwise.

TLris node has the following forrnal definition:

<{ q },9, l, 1,T>
where T is

\/x € l)
(nilrg) -) (nil,nil, O)

(xrq) -) (ttrnil,x)

rf rarc initialise this node's input arc with the infinite sequence

1r,2,3'4,5,...) , then according to the above definition this net would

ccnpute the identity function. rf convinced of this by Lhe above

definition we incorporated this "identity node" into a 'real' data flovr

net then it could use its "empty buffer" computation with disastrous

effect. For example if there was a delay before the arrivar of the

first daton (say a six) then one or more zeros may have been output

before the six was output.

To repair our hl4nthetical definition of functionality pe extend

the notion of a history to include tfuning information. To do this we

introduce the notion of a unit of delay called a hiaton (Greek for
pause). this term was coined by E. A. Ashcroft and w. w. wadge and is
denoted by t*t. Norp instead of initialising an input arc with a

seguence frcm Ka (the set of histories) r+e initialise an input arc frqn

page 115

the set (CJLI { * })Q (tf,u set of hiatonic seguences). We can then

restate the definition of functionality as follows:

A net is said to compute a history function f iff given any hiatonic

sequence o as inPut there exists a ccnrpuLation seguence that produces

f (deI(o)) as output.

Where del is a function that renroves all hiatons fron a hiatonic

seguence thus producing a pure history.

It is possible to formalise functionality using hiatonic, however,

we shall not do so prefering to stay with pure histories, at least util
we have proved the Kahn principle. However r+e shall use a a denotational

semantics based on hiatonics in chapter 5 when we look at ways to extend

Kahn's denotational sennntics to handle a broader class of operaLional

behaviours. Let us novr return to the main theme of this section namely

the formulation of a precise definition for node functionality.

A second problern with the obvious definition of node functionality
proposed earlier is that it reguires onry that f(q) be possible as the

output history, but not necessary. since in our operationar moder

functional nodes Irray be nonteterministic, the distinction between

possible and necessary is crucial. We can certainly define a node that

can output a randcm seguence of datons and in fact the environnent node

with n input arcs and I output arc r.rou1d, according to our hl4nthetical

definition, conq>ute every history ftnction f :Kan -) Ka.

Thre fact that our functional nodes nay be nonteterministic means

that r.ve cannot repair the last problem by reguiring that every sequence

of transition produce f(o) as output. ltris reguirernent would be too

restrictive because it rules out any sort of control or direction of the

activity of a node. Such control is hcnrever necessary because our nodes

F

page 116

C

are non-deterministic devices capable of doirg more than one activity
(e.9. input and output) at the sane time. ff ccmputation proceeds at

randcn one vital activity may be neglected even though the ccmputation

as a rr,trole never stops. Irle call such a situation ',livelock,, a term

coined by E. A. Ashcroft[54].

A good exanpre of a node wtrich is non-deterministic and yet

functional is the node that ccmputes the identity function but vftose

transitions code up different internal activities. one activity is to
build up an internal stockpile (a gueue), another is to output

stockpiled datons. rtre formal definition of this node was given in
chapter 2 (example 7 p.75). The node is obviously non-deterministic and

any ccrnputation seguence in which all but finitely many operations are

stockpiling r+ould be in livelock and hence fail to produce the required

output.

I,b could of course avoid all these probrens by restricting
ourselves to deterministic and seguential nodes, but we reject this
course since lve r.lould like to define the class of all datafrow nodes

that ccrnpute history functions, including non-sequential and non-

deterministic nodes.

With this in mind we formulate a rnore "dlznanic,' version of the

obvious "static" definition above.

Ihe problqn with the above definition of functionality is that it
assurnes that the underlying ccrnputation is sequential. We can think of
sequentiality in terms of our node transtions as associating with each

"cause" only one "effect".

page 117

Horoever in this thesis ttre are lookirrg for a more general definition, one

which makes sense even when the underlying conputation is non-seguential

and nondeterministic. In other rrords our definition should also be

applicable to nodes which al1ow more than one trnssible effect to be

associated with each cause. Exanple 7 on page 75 defines a non-

deterministic node that conputes the identity function and in wlrich each q

cause is associated with two effects. One effect is to internally

stockpile datons and the other is to output internally stockpiled

datons. If we choose transitions using a strategy that chooses only

finitely many output effects then the node will not ccmpute the identity

fuction because of livelock. (i.e. it will spend most of its tjme

buildirE up an internal stockpile of datons that it may never be able to

output).

Frcrn this exanple it is obvious that the definition of

functionality that r,re reguire must be one which allows a node to be used

in conjunction with a "fair" strategy for avoidirrg 1ivelock.

Our definition of node functionality is defined in terms of a tr+o

player infinite game of perfect information. However before we deal

with infinite games or our definition of functionality we should point

out that whatever,in this section about nodes is also applicable to open
I

nets in Seneral. [. r-^ ka* lw
t)t)1- '

t!

page 118

€

D. Infinite C,anes

rn this section we present sqne background information on the

theory of infinite games. However for more detail the reader is referred

to GaIe and Stewart[I8] and Wadgel|T.

An infinite gane is a gane in vrhich a particular 'round' need not

terminate, so that the outccnre of the contest can only be determined by

exanining the entire history of the contest.

Sirnple but interesting examples of infinite games can be

constructed by extending the standard chessboard infinitely in one or

more directions, and by suitably modifying the rules. consider, for

example, the position shown in the diagran (the board extends

infinitely in the direction of the dots).

Vlfrite's goal is to checkmate Black's king, ailJ Black,s

goal is to avoid checkmate. This gane is genuinely infinite because

Black can win, but cannot achieve certain victory after any finite
number of rnoves, i.e. we cannot in general conch:de that Black has won

without exanining the entire record of the game.

K

X R

page 1I9

Thris game nevertheress has a finite aspect in that one of the

players (WLrite) cannot win without terminating the game: r+e might call
such a game "half-finite". But it is easy to devise garnes which are not

even harf-finite. For exalrple we could retain the above board and

position but charrge the rures so that l,lfriters goal is instead to get

arbitrarily far away frcm the Black king, i.e. to play so that no matter

ho'r large an integer n is, there will be a point in the game after rttrich

I'0hite's king will never be less than n moves away frcrn the Brack

king. Then clearly neither player can ever win in any finite nr:rnber of
moves, and it will always be necessary to rook at the entire history of
the game to determine the winner.

It is not difficult to give a precise definition of rinfinite game'

provided we restricL ourselves to ganes in wtrich

(i) Lhere are only 2 players.

(ii) each player on each rnove has only countably many choices for

his next move.

(iii) there are no infinite stages in the game i.e. all rounds are of
lengrh e.

Thre history of a particurar rround' of such a game can be 'coded-up' as

a pair (c, B) of elernents of LIJ anA thus the game is ccnpletely

determined by the subset W of # x LP consisting of aII histories of

codes of bouts in r+rLrich 'II' is the winner. We therefore assune for
simplicity that each prayer on each nrove plays a natural nurnber, and

define the game to be the set Iy itself.

g

page I2A

(D1) Definition An (infinite) game is a subset of # - #

we can no* formarise the notion of a strategy. rt is clear that a

strategry for rIIr in one of these ganes is a function frcm Sq to e wtrich

takes as its argument the sequence (a(0),o(l)r...rc(D-l)) for each n of

'r's first n rnoves and gives as its result player 'rr,s nth *rr"
F(n). For our purposes it is nore convenient to have a startegy for 'Ifl
yierd the entire history <B(0) rF(1) r...,F(n-1)> of 'rr's moves up to
that point. Strategies for player rlr are defined in a sirnilar manner.

(D2) Definition

(i) A strategy for ,If is a rnonotonic function)z frcrn Sq to Sq

s.t. l/(s) | = lsl for every s in sq

(ii1 A strategy of rrr is a rnonotonic function p from sq to sq s.t.
lp(s) | = lsl+t for every s in Sq.

note vre often abbreviate Sq (e) to Sq.

rt should be noted that this defintion impries that the games we are

studying are games of perfect information, i.e. games in rtrich each

player has corplete knonledge of his opponents rnoves up to that point. ?
Now if / is a strategy for 'rlr , we let / denote the corresponding

function frc^ fP ao # which takes as its argument the entire history of

'r's moves and gives as its result the entire history of 'rr's
moves. rkrus)z is a winning strategry for rrr' for the game r iff
<o,/(o)) is in

page 121

H for every o, and the notion of a winning strategy for rlr is
similarly defined.

(D3) Oefinition For any monotonic function)z frcrn

sqtoSgandanyce#

Y.o.t = Qear /(c1p1

note that if / is a strategy (either for rI, or for 'rr') then /(a)
will be in dJ for every o.

(D4) Definition For any game It

(i) A winning strategy for 'IIr for H is a strategy)z for rfll

such that <*,7(o)> e H for every s in afJ.

(ii) A winning strategy for 'r' for rr is a strategy d for 'rr such

*rat <51p),p> e - F for every B in CF.

The sttdy of the infinite alnost always concerns in some way or another,

the guestion of determinedness. A game is determined iff one of the

prayers has a winning strategy (i.e. if the game determines a winner)

since every finite game is determined, and since also draws are not

possible in infinite games (as we have defined thern) it rnight be

plausible to conclude that every infinite game is determined. Tjris

conclusion is hcnever not justified. The guestion of determinedness is
arso beyond the scope of this thesis and the reader is refered to

- wadge[47].

Novr it is certainly true that it cannot be the case that both

players 'I' and 'IIr have winning strategies for a game H. Given tr+o

strategies 6and f for rlr and rflr respectively, we can 'play thern off'
against each other and form a unigue elernent (c,p) of dJ x LIJ calfed the

clash of d and /. this is a term introduced by the logician J. Mdison.

page 122

rf (a,p> is the clash of d and)u then o =E(p) and p = y(o') . rf 6'and /

are both winning strategies the clash (crp) rryould have to be in both n

and - l, impossibte. Ttrus given tr,ro strategies for 'I' and rII'

respectively, one must be 'sutrrerior' to the other.

This argument does not hovrever, rmply that every game is

determined. It rnay be that given any strategry for 'I', player rflr has a

strategry wLrich is superior, but that given, any strategry for player

'II', player'I'has a strategywhich is superior. In fact it is

possible using the unrestricted axicrn of choice, to construct (by

'diagonalising' over strategies) a game vfiich is not determined.

page 123

E. Infinite Games and Open Net Functionality

In this section we relate certain kinds of infinite games and open

net functionality. Ihe use of infinite games allows us to express in a

natural way, the dpamic nature of net carq:utation. As a conseguence we

are able to give a natural and ccnpletely general definition of open net

functionality.

In the custunary manner we begin by givirg an informal,

anthropomorphic explanation of the connection between infinite games and

open nel functionality. let us assune that an argunent has arisen

betr,leen two individuals wlrcrn r.,e shaIl call 'f ' and I II | . The arqument is

whether a certain open net ccmputes a particular history

function. Indivitual rII' claims that the open net ccnputes a history

function. However individual 'I' demands that he be allowed to test out

the open net on some sample inputs to see if it rea11y does ccnrpute a

history function.

Individual 'IIr accepLs rlrs challenge and produces an open net

which is packaged to look like a black box with the open netrs input and

output arcs protruding. Player rlfr then invites player 'I' tomake a e'
move b1z placing a daton on some or all the black boxes input arcs. After

'I' has placed inputs on the black boxes input arcs player 'rI' rnoves by

choosing a ccnpatible open net transition. The effect of this transition

nay cause a daton to fall out of son€ or all of the black boxets output

arcs. The contest between these two individuals then continues in this

fashion ad infinitun.

page 124

C

The goal of rr' in this contest is to discredit 'rr's black box and

so 'f' nay try all kinds of activity to test out whether rlfrs btack box

real1y does ccnpute a particular history function. For example 'r' rnay

try to supply datons at different rates hoping there is a time sensitive

node within 'rrrs black box, he may corpletely stop placing datons on

the input arc hoping that 'fl's black box will nrove into a state that

over produces output. ff at any finite stage the accurnulated outputs of

'II's black box are not an initial segnrent of the particular history

function applied to the accunurated inputs then 'r' wilr be able to
discredit 'rrrs black box. rf rr' is unable to discredit 'rr's black

box at any finite stage he rnay be able to do it by examining the entire

history of the contest. To do this player 'Ir examines the entire input

to rrr's black box and if this input was c and player rrr' claimed that
his black box conrputed the history function f then the entire output of

'rr's brack box must be f(o). rf this is the case then ,rrrs claim is
totally correct and rr' is the loser. However if 'rr's brack box

produces as output only an initial segnrent of f(o1 then'rr's craim is
only partially correct and thus rr' is able to discredit 'rr's black

box.

Let us non'make some mathgnatical sense of this anthroponrorphic

description. The situation just described fits in very naturally with

the formarisn we deveroped in the last chapter. rn particular the

context in wtrich the game is played is well suited to the idea of open

nets conputing within test beds. If rve place this ganre in the context

of a test bed r,ve can think of player 'rrr as a controrrer of the open

page 125

net and player 'I' as the

situation is illustrated

controller of the environnent node. Ttris

in the follo*irg diagram:

PIA}ER I

T-H
tl

Controller of the
environment node

(Note: it is custcnrary in infinite ganres to think of player'Il'

as the 'good' player and 'I' as his 'evil' opponent) In this context

player 'II' makes a flrove by choosing a cffrpatible open net transition

and player 'I' makes a move by choosing an environment node transition.

The two players are nols able to engage in their contest, an

infinite game. Player 'IIr (the open net controller) must use a

strategy which ensures that the open net produces the correct output.

This strategy must be totally correct no matter how the input arrives

frcm the environment node (i.e. no matter wtrat rate the controller of

the environnent node decides to produce datons). Ttre fact that an open

net ccnputes a history function does not nean that player 'ff| succeeds

no rnatter vftat choices he rnakes (remember open nets may be non-

determinate allcrying a choice of open net transitions); it neans only

that he has a strategy to ensure success in his battle against a hostile

opponent (player 'I').

PIAYER IT

-\r
rl-t

/\
tl

Controller of
the open net

€

page 126

C

our definition of open net functionarity forrnalises this
anthrotrnmorphic vievr in terms of winning strategies for two player

infinite games. Ttre idea that nodes require controlling strategies in
order to choose transitions suggests an infinite game with the following

rules

I€t 6 be an open net with n input arcs and m output arc.

Let f : lxan -> xa)m

The rules of the infinite game G(f,6') are:

(i) The game begins with the open net in its initial state

(i.e. a1I the nodes in their initial internal state and all the

internal arcs ery>ty.). and the input/output arcs of the open

net empty. In other roords r (6; (the testbed for 6) is in its
initial state.

(ii) The two players alternate in making nrcves 'r' playing first.
(iii) on each of his moves tr' places a daton on some or arl of the

open nets input arcs (possibly none). what ,r' rearly does is
choose an envirorrnent node transition which has the effect of
producing datons on sone or all of the open nets input arcs. In
addition 'rrs choice of transtion may result in some datons

being consuned frornthe open netrs output arcs.

(iv) Each of rrr's moves involves choosing one of a nonempty set of
possible open net transitions. fn other words the controller of
the open net chooses a cffipatibre open net transition. rhere

will always be at least one trnssible transition to choose frcrn

and usually more than one.

(v) Given that tr's infinite seguence of moves produced an input

history o € Kan. prayer 'rrr wins iff 'rr's infinite sequence

tr

page 127

of moves produce for each output arc i (€ m) the output history

fi(o).
Note that in conventional infinite game theory a move for a player is

usually associated with a natural nuunber (see section D). However, in

the our infinite game we have said that a rpve for player 'rr' is a net

transition (similarly for player 'r'). To be precise roe should have

Iabelled each trnssible net transition with a natural nunber (notice that

the set of net transitions is countable). In this way player ,rrrs

choice of natural nunber would be associated with sone open net

transition (similarly for Player 'r'). To avoid this coding we choose to

describe a move directly in terms of an approppriate transition. Thrus

the follovring definitions of strategy take a move as being sqne neL

transition, in the case of prayer 'rrr and an environment node

transition in the case of player 'f'.
rn our game a strategry for player 'rr' is a irpnotonic function /

that takes a finite sequence of noves for 'rr and produces a finite
sequence of (responses) nroves for rlf ,.

(81) Definition L€t 6 be an open net

Let n = Inportarity(O

Let m = Outportari.ty(O

A strategy for 'ffr for G(frO is a monotonic function

/: (Transitions (Envirorrnent (n,m)))Sq -> (Transitions (o-))59

such that

V a g (Transitions (Envirornrent (n,m)))&
l)z(c) | = lcxl

t

page 128

(82) Definition I€t d be an open net with

n input arcs and m output arcs

Let f : (Kan -> Ka)m

Let O be the set of all finite and infinite

seguences of rnoves for 'If in G(frO

Let I be the set of all finite and infinite

seguences of npves for 'Ir in G(frO

(i) Output: (O -) Ka)m

suchthatVo€Oj€m

outnut, (o) = Ti e dcrn(o)Prod(o(i)rr*'noae(y(j))) (rrqnport(y(j))

where y(j) = <Arcs-l(d') (size(6') ,j),(size(o-),j>>

(ii) Input: (r -) Ka)n

such thatVt e I j.€ n

rnnut, (t) = Ti a U*,(t) Prod(ti) j

Note T, a n*i = "il*i..i*r,-r. n finite
*r^*i x; ... n infinite

(note o,^ t ,l -- ntl ^q- = *)

_ page 129

(83) Definition I€t 6. be an open net with n input arcs and

m output arcs

Let f : (xan -> xa)m

T,et Y be a strategy for 'II' for G(6rf)

I€t I be the set of all infinite seguences

of moves for rlr.

Let A = | ae E^v,tot',re-.t(",r) \ I^p*t(e) =a]

(i) Y is said to be a totally correct

strategry for 'IIl
iff

Va e A outputtTf.l I = f(o)

(ii1 y is said to be a partially correct

strategy for 'II'
iff

Va € A outputtTt"ll C f(o)

The use of infinite games allcrys the follcniing definition of

functionality:
t

(84) Definition An open net 6 is said to ccnpute a history fwrction f F

iff there exists a totally correct strategy for

player 'flr in G(frO and any other strategy /
for rIIr is a partially correct strategy.

page 130

-t. Some Results

In this section hre prove sorne results about o6ren nets that ccrnpute

history functions. For notational simplicity r.le prove the results with

respect to open nets that canpute functions of the form:

f:Kan -) Ka. The nrethods used in proving these results extend readily
' to the more general case in wtrich nodes ccmpute functions of the form

: (Kan -> xa)m ntrere nrm € Q.

(F1) theorsn EVery history function ccnrputed by an

G open net is monotonic.

Proof letn€Q

Lt p be an open net such that

Intrnrtarity(P) = n

outportarity(p) - 1

I€t f : Kan -) Ka be the function ccrnputed by p

TEt Y be a totally correct strategy for rflr in G(f,p)

Iet a, F € Kan such that oC p

F
LetB={B€Envirorrnent(n,t)Qlrnput(B)=Bi

L€t A = { A € Environnent(nrf)Q I Input(A) = G }

(see E2 for a definition of the function Input)

In v,fiat follows r€ prove that f (o) C f (B) .

To @in with roe know that o C B and

thus for any seguence A € A we can find a sequence

B e B such that B simulates the moves of A up to

any finite number of moves.

i.e.Vn e(,JVA e Af B e B Aln = Bln

page 131

If we apply)z to this rrc get that

Vn e QVA e A I B € B

output(/(eln)) = output(/(Bln)) c o:rpurtTtett = f (F)

(note)z(A) =Q e 6.,
/talXl and thus

Ital tn = y(Aln))

Hence or:tpurti tal In) c f (B)

Since O:tput is continuous we have that

J n' € (^) n' (n orrpurtltall In'{r:rputtital In) c f (F)

thus f(c) cf(F)

QED

g

page 132

rF

(F2) Theorem Every history function ccmputed by an

cpen net is continuous.

Proof Letn€Q

kt p be an open net such that

rnPortarity(P) = n

outporLarity(p) = f
I€t f : Kan -) Ka be the function ccnputed by p

Ir-L Y be a totally correct strategy for rIIl

for G(f,p)

I€t C be any increasing chain in Kan

I€t Ai = { ai € Envirorrnent(n,flil I rnput(ei) = C. }

for all i e(J

I€t A = {A e Environrnent(n,fl0 I Input(A) =g e C.l
Cj}

!{e prove that Ui e e f(ci) = f(Lli e 6 ci)
Since f is monotonic (F1) r,e have that

Ui e ., r(ci) c r(Lli e cJ
ci)

Hor,vrever let us asstrne that

ui . e r(ci) (:r(LJi
e 1;

ci)

we can express this in terms of our infinite qane

G (f ,P) as:

Vj €e, Aj €Aj, AeA

U i e ,, o-rrput ti tail) C ourput(/(e)) .

page 133

Itrus for any A € A, j e 6, aj e aj

/tal is able to produce at scrne finite stage

an output that cannot be produced by any

y(A^) for any k € e;

but this cannot be true since

Vn e(J VAeA I k lAk s.t. Aln =Akln
(Input(A) = C0 OCf O ... E

rnput(%) O rnput(A1) u ...)
Thus whatever is output at sqne finite stage

nV V tel can also be output at sqne finite
stage uv ltakl for scrne k e 0 and sqne ak e J.
fb be more precise:

Vn € OVA e A I k e (J, ek e ek

ortputt/tal lnl = ortputtTtokl l'l
Hence

I I Ftr- \ 'fui e (J r(ci) (I f(Lii e (^) ci)

thus it must be the case that

Ui e ,, f (ci) = f (LJi
e .^,

ci)

QED

b

page I34

C

(F3) lheorqn EVery continuous history function is the

Eunction ccnputed by sone node (i.e. scne

atcmic open net).

Proof Ietn€Q

I€t f : Kan -) Ka

We construct a node that when placed together

with its input and output arcs into a test bed

ccnputes the function f according to E4

Such a node (= N) is defined by the following:

(i) rnportarity(ll) = n

(i.e. the function has Kan as its dcmain)

(ii) O:tportarity(N) = l
(i.e. the function has Ka as its range)

(iii) State(N) = { (o,p,I) | ae Sgn and

p€Sgand

l eQ)

The a ccmtrnnent records the history read

so far; F records wlrat has been output so far;
I is the running total of datons output so

far.

(iv) Initialstate(N) = ({ 7\ in,A,6)

page 135

(v) Transitions(N) are given by the following

transition scherna:

va € ((,JU { ni1 })n, b e(Ju { nil },
k€Q,a€Sgn,Besq

(ar(crBrk>> -> (Er(cr^arB^f(o) (k) ,k'>rf(cr) (k))

where i € n
eE, =Jtt if a, E nil-l
L ff otherwise

k' =/r+r if lP^f(a) (k) | > lBl
I
Lr otherwise

Let us place this node (i.e. N) together with its input

and output arcs (we call this the open net p')

into a test bed. Once in the

test bed we can @in to play the infinite game

C(f,pr). Since the function f is continuous we

kno* that giving the node nrore input can only

cause it to produce more output (i.e. monotonicity)

thus given a few inputs we knovr that rrc can

safely produce the outputs reguired by the

function definition. In other words future

inputs will not reguire us to recall those

datons already output. Secondly we know that

the node will never reguire an infinite amount

of input to produce sone output.

ts

page 136

Informally the strategy for player ,ffl

in this game is to constrne inputs whenever

possible and to produce an output rrtrenever possible.

Ihus on rrr I s ,rth ,-rr" he will have produced

f (aln) ln as output where a is the result of the

first n rnoves of ,I'. Since the node defined above

is deterministic player rII' is never in the

postion rrhere he has a choice of moves. Ttrus

the formal strategy of rIIr is entirely

determined by the moves of rf'. Horoever no

matter what moves are made by rf' the strategy

of rlf r is such that on 'ff , nth nrove he will
have output f (oln) In vfrere s is the input

produced by the first n moves of rI'. Thus 'If'
strategy is a totally correct strategy.

QED

lE (F4) Theorsn Every pure datafl*r open net can be replaced in

any pure dataflor,,r context by a pure dataflovs

node

Proof A direct consequence of theorsns F2 and F3

QED

The so called 'encapsulation' property described in Arnold[4] is based

on a theorsn similar to F4.

page 137

Chapter 4

A Proof of the Kahn Principle in g Conpletelv

C,eneral Context

In this chapter r,e give, for the first time, a proof of the Kahn

principle for finite pure dataflow nets. Others rr'tro have attenrpted to

prove the Kahn principle have tried to do so directly. This is extremely

ccrnplicated as it involves direct reasonirrg about open net ccmputation

(e.9. fair $seguences of net transitions, etc..). Grr proof of the Kahn

principle makes use of infinite gdnes and as a result the proof is less

ccmplex than it would have been had we used a direct approach.

The Kahn principle has many important conseguences one of r^frich is

that sets of eguations can be thought of as an equational programning

larguage similar to Lr:cid [7] . Ttris tlpe of progranning language has been

ignored by many designers of dataflovr larguages. Another conseguence of

the Kahn principle is that rte can use the sirnple denotational ssnantics

to reason about our operational ideas. A good example of this is the

cycle swn test of Wadge[46]. Ttrese conseguences are briefly described in

section B.
(

page 138

G

A. A Proof of Ttre Kahn principle

In this section rre shovr honr all rryell-formed open pure dataflow nets

can be build up using tr^ro particularly sirnple operations. One of these

operations is the placing side by side of two open nets to form a larger

open net, we call this juxtaposing t*o nets. rhe second operation is
called iteration or looping. Itre idea here is that a net can be formed

frcrn an existing open net by choosing one of the subnets output arcs and

bendirg it back to feed an arbitrary input arc. Sdne dataflcm groups do

not allovv dataflow nets with loops (e.g. Hankin[24]). The reason for

this is that dataflow nets which allor re-rycring (looped arcs) may

deadlock. I,ile deal with the problen of deadlock in section B.

O:r approach to proving the Kahn principle is in a nr.unber of

stages. rlo start with r"e define what it means for an open net Lo be

Kahnian (i.e. it ccrnputes the least fixed point of the netrs associated

set of equations). similarly roe say that a net is output Kahnian or o-

Kahnian iff it.s output behaviour is as predicted by the teast fixed

point of the net's associated set of eguations. Ttre first results we

prove are that the operations of juxtaposing and iteration preserve O-

Kahnity. Using these results h'e prove by induction of the size of a net

that all finite pure dataflor* nets are O-Kahnian. Ihe Kahn principle is
established by the use of a simple lsmrn vtrich states that an open net

is Kahnian iff it is O-Kahnian. !{e now present the technical details of

a proof of the IGhn principle.

C

page 139

Juxtaposition

We begin by defining precisely wtrat

side by side) two open nets.

Let a and b be tiro open nets.

c = a:b (read a juxtaposed b)

iff
a:b is the unigue net c such that

(i) rnportarity(c) = fntrnrtarity(a) +

(ii1 Outportarity(c) = Outlrcrtarity(a)

(iii) Nodes (c) = Nodes (a)^ llodes (b)

(iv) Arcs(c) = t ((n+Sri),(mrj))

{ ((nri>r<m+Srj) >>

i (<n+S, iff{), <mls, j >>

{ ((n*Sri>,<nF}S,j++{>>

i ((n+Sri>r<ftrsrj>>

fnternalarcs (a)

where S = Size(a)

it reans to juxtapose (i.e. place

The Cornrpostion of tr+o
open nets

Intrrcrtarity (b)

+ OutSnrtarity(b)

I ((n,i)r(m,j))eJlU

l((nri)r(m,j))eplU
l((n,i)r(mrj))ef lCJ

| ((nri)rcnrj))eoiLJ

l((nri)rfir,j))eBlLJ

?

N = fnportarity(a)

M = Outportarity(a)

page 140

G

J = Inputarcs (a)

P = Outputarcs(a)

I = Inputarcs(b)

O = Outputarcs(b)

B = Internalarcs(b)

Thris rarge expression simpry does re-narning. Ttre internar arcs

of a need no re-nanring so they appear as they are; the input

arcs of a need to have their source node uglated to the size of

the nevr net; similarly for the output arcs of a. fn the

juxtaposed net b must be ccnpretery re-labelred. This means

that the input arcs of b must not only have there source node

updated (i.e. to the size of the new environrnent node); but

arso the port nunbers must be re-labelled so that they begin

frcrn the Inportarity(a). A similar argunent applies to the

output arcs of b. rhe internal arcs of b must be re-labelred to
take account of their nevr position in the node seguence that

defines the juxtaposed net. This is also the reason that the

nodes associated with the input and output arcs of b are re-

1abelled.

page 141

fteration

Another important operation over open nets is the iteration
operation. Ttris involves taking an arbitrary output arc and bending

back to an arbitrary input arc, as illustrated in the diaqram:

Bencling backrf;he jth output
arc to the l"" input arc.

ir

We define this operation precisely as follovrs:

Let c be an open net

f€t i,j € Inportarity(c) rOutsnrtarity(c) respectively

c' is the new subnet formed by bendirrg back the jth
output arc of c to feed the ith input arc of c.

(i) Inportarity(c') = fntrnrtarity(c) - 1

(ii) Outportarity(cr) = Outtrrcrtarity(c) - I
(iii) Nodes (c') = Nodes (c)

(iv) Arcs(cr) = Internalarcs(c) LJ { <i',j'> } U
{ <(n-1rp)r(mrg)) | ((nrp)r(mrq)) g I & (p<i

{ ((n,p),(m-1rg)) | ((nrp)r(m,p)) e O & (g<j

F

p>i)] L)

q>j) i
where f = fnputarcs(c)

O = Outputarcs(c)

i ' = Arcs (c) -1 (size (c) ,i)
j' = Arcs(c) (size(c) rj)

rn this case the only re-labetling is to the input/output

arcs.

AN
OPEN
I'JET

page 142

C

(Ar) Lenuna Any pure dataflovr open net definabre in our

operationar npdel can be build using a ccnrbination of
i) Juxtapsition: the placing side by side of trpo

open nets to form a new open net.

ii) rteration: the bending back of an arbitrary

output arc to an arbitrary input

arc wiLhin the sane open net.

Proof Layout arl the nodes in the net using juxtaposition

and apply iteration to make neccesary interconnections.
QED

Reratinq our datafrovr nets to sets of fixed point equations

rf we are to state precisely vrtrat rrre rnean to say that a net is
Kahnian then we must be able to relate our dataflcry nets with a set of
fixed point equations. lto formalise this idea roe associate two functions

with each open net c. one function we calr f and the other f. me

function f associates a countable sequence of natural ntrnbers with each

internal arc. Thre actuar value of the seguence depends on the history
function ccrnputed by the source node of the arc (and of cause that nodes

input arcs). rn a similar way the function f associates a countable

seguence of natural nr-unbers with eactr output arc. Formally we have the

folloring:

Let c be a pure dataflovr open net

n = fnlnrtarity(c)

m = Outportarity(c)

C = Internalarcs(c)

O = Outputarcs(c)

We associate trro functions with c

€,

page 143

(i) gS , xaC r Kan -> KaC

VeeC x€Kan

f(c,*) (e) = Fnodes(")rr",rrode(q1 (c,x)

where Fhodes(c) is the sequence of functions that

correstrnnd to the sequence Nodes(c) of

functional nodes.

(ii) Fc : KaC x Kan -> Kam

Vx € l(an q € o

rP(C,*) (Toport(g)) = Fnodes(")frornode(gy (Crx)

Where Brodes(c) is as above.

The function Ec can used to associates an eguation with each internal

arc in the open net. In a similar way f cu.r be used to associate an

equation with each of the output arcs of c. For example consider the

open net N defined by the follooing structure:

<<FBYTDUP,DUP,PLUS>, { q.,qf ,... rg5 }, 2, 2>

Tfre nodes FtsY etc. have been formally defined in chapter 2 and for

notational convenience, in this example r+e refer to the nodes by their

name. The arcs of N are as follovrs:

page 144

%=
93=

91 =

94=

((oro), (I ro))
((3 rO) r (O,1))

((1, l), (2 ro))
((1rO), (4,O))

g2 = ((2rl>r<3r1>>

g5 = ((2ro>r<4r1>>

?

Note that lve have labelled the input arcs with a seguence of input

variables (the xrs) and the output arcs with a sequence of output

variables (the y's). For this example the d function is

#(crx) = { (q..,, fbv(x,-rrc.,)), (q.,, dup., (c^)),Y3rrYo
(q1 dupr,"nrr), (g3, plus (x'cqz) >)

Note that the fby, dup and plus are not the nodes Ftsy, DUp and plus,

they are the functions corputed by these nodes. Frcrn the above

definition of d rte see that the set of eguations associated with the

internal arcs of N are:

%
= fbY(xo,cnr)

tn, = dunl (cno)

"r, = duet (cnt)

"n, = plus (x, ,"nrl

page 145

For the function fl t* have the follo*ing definiticn:

fl(.,*) = { (Toport(en), duno(cO)>,

(Iotrrcrt (e5) , dun. (cnr) >)

= (dupo,"nor, dup',"nr,

Frqn this vre see that the equations associated with the output arcs

are:

= uupo,"qo,

- 6up1,"nr_,

vo

Y1

Tlrus given any pure dataflon net c vre can u=e trP and f to

formalise precisely wtrat it rreans for a c to ccnpute the least fixed

point of its associated set of eguations (A3). Hovrcver, before we give

this definition rrc define wtrat it rreans for the output activity of a net

to conpute that predicted by the least fixed point solution to the netrs

associated set of eguations. Nets wtrich behave in this way are calIed

Output Kahnian or more concisely G-Kahnian.

(A2) Definition Iet c' be a pure dataflovr open net

Let x e Kalnportarity(c)

Let c a *"Internalarcs(c)

c' is said to be O-Kahnian

iff

the output activity of the net c,

given input x, is

ft p.rf tc,x), x)

?

page 146

(A3) Definition Let c be a pure dataflovr open net

Let x e Kalnportarity(c)

Let a a *"Internalarcs(c)

c is said to be Kahnian

iff
(i) c is o-Kahnian

(ii) the activity of the internal arcs

of c, given input x, is

€ pcrf (c,x1

We no* prove that any finite pure dataflcrrs net is G-Kahnian. Ihe

proof is by induction on the size of the net and uses the folloring

important lenrnas:

(A4) Lerrna Let a, b be O-Kahnian nets

Let c be a:b (i.e the juxtaposing of a and b)

c is O-Kahnian

Proof L€t A = Internalarcs(a)

b
B = Internalarcs(b)

C = Internalarcs(c)

n = Inportarity(a)

n' = Inportarity(b)

m = OutSnrtarity(a)

m' = Outportarity(b)

aexaA

bEKJ
ceKac

x e Kan*n'

page 147

Since a and b are O-Kahnian we have frqr.

(A2) that the output activity of a, given z e Kan is
ra1pat'1a ,z) tz).
Similarly the output activity of b, given y e Kam is
Ptpo*bto,y) ,y) .

ft is fairly obvious that the juxtaposing of tr,ro

nets will not change their operational behaviour

since the nets do not interact.

Thus the output of c, given input z y, will certainly be

t'rput'tu ,21 ,zyn P{pu*1u,y1 ,y1 (1)

or alternatively r+e could replace z^y by x (e Kan+n')

with z = xln and y = (*nrxn+lr...rxp.r_pr_l>

ff we are to prove that c is O-Kahnian then we

must prove that the output activity of c given

input x is

f tF"f (",x) ,x) (2)

Let us @in be expressing rc ana fF in terms of f,
P, t' ano *. we can do this because we knovr

the juxtaposd net relates to the original nets.

However, before we do this roe must take into

account the re-naming that is done rrdren the nets are

juxtaposed. To do this we introduce the re-name function:

rn(D,1) = { ((n+Iri>r<IrH-Irj>> | ((nri)r<Inrj)) e D }

page 148

Now f can be written as

rc(crx) = f (.larx In')^F(c-c lA,xr.,r . . . ,x,.,arr,-1)

and f can be written as

f(crx) = rP(.lArx In) (J P("-"lA,xnr . rxp.r-nr-1)

where

FrXar.(B,size(a)) r Kan -> Karn(Brsize(a))

P,xarn(e,size(a)) r Kan _> Kam

Note: the essential difference between F, F .nA

P, Bb is that the set of eguations generated

by the first pair differs frcrn the set of eguations

generated by the second pair only in only in the names of

the variables. The reason for this that in the juxtaposed

net the arcs the arcs corresponding to b have been

re-labelled. Thus the least fixed point of both sets of

eguations is the sane.

Now, if r+e are to prove that c is O-Kahnian we

must prove that the expression given to use by

e
the definition of O-Kahnity of c (21 is eguivalent the

the expression we obtained frcrn the knorn

operational behaviour (1). In other word we must

prove that the following erpressions are eguivalent:

For the first m outputs of c r.re must prove that

f(p"g"(",x) lArxln) is eguivalent to

f tp.t'1",x In)

page I49

For Lhe last mr outputs of c we must prove that

Ptp.rct",x) -pcrf (c,x) lA,xn' . . .,xn4n,-1)

is equivalent to

f tfru*btur xr.,r . . . rxp4n, -l)
For the first m outputs we only have to prove

that the argunents of f are eguivalent:

pcf 1c,x; 1a = paf (a,xln)

ths pc f (c,x) la

t (t' etimination)

cllt wtrere c = f(crx) end

t (exPansion or f)

tr-

clA wtrere . = t'("llrxln) (JP("-"lArxnr-'.rxn.r-r.,,-1)

end

I (adding nevr eguations)

c lA where " = trP (" larx I n) U F("-" lArx,.,r . . ., x,.,4r",'-1)

a=clA

end

I (substituLion of expression for variable)

a where " = f (urxln) Uf (.-"lA,xnr..., xn1,.rr-1)

a=clA

end

i (replacing a variable b1r its definition)

a vfiere . = f (",xln) U*("-"lA,xnr.-., xn+n,-1)

a = [t'(arxIn) UP("*lA,xnr.-.'xnrn,-1)) ll

end

I (srmplification)

page 150

a wtrere " = t'(u,xln) UP(.-"l&xnr..., xnarr,-1)

a = f,P(a,xln)

end

t (removing unused eguation)

a where a = B3(arxln) end

i (p introduction)

pa t'1a,x1

Ihis the the rhs

G For the last m' outputs of c we must prove that:
,{rPtF"f t",x) -pctrc(c,x) lA,x,r,. . .,xnarr,_1)

is equivalent to
hlrf- (;:bf (b r xr., r . . ., Xn+n,

-1),
xr.r r . . ., xn4n, _1)

Since F ana P nurr" the same meaning (except for the re-narning

of arcs) we must prove that their argurlents are egual except

for the re-naning of arcs.

Essentially this means proving that

pcf 1c,x;1:cEc(crx) la = ;ru*{n,*nr. . . rxn.'urrr-1)

G ths pcrF(crx)- pcf (c,x) le

i (P elimination)

c-clA where c = Ef(c,x) end

, t (e:pansion ot f)

c-cla where " = t'(.lerxlnl LJf(c-clArxr.,r.. rxn..rr,-1)

I (add nerr eguations)

page 151

c-clA wtrere " = trl("le,xln) O P(.-"lA,xnr.. rxn4n,_1)

a=clA
b = c-clA

end

I (sr:lcstitute er<pression for variable)

b where " = El(u,xln) LJ Plbr*n,.. rxn.1-,.,,_1)

a=clA
b = c-clA

end

I (renrove c)

r

b where a = lt'(arxln) Uftbr*rrr.. rXn+n,_1) I lA

[= [f (a,x In) U Plbr*n, . . ,xn*,.,,_1) I -
[t'(a,xln) U P1b,*,r,..,Xr+n,_1)) le

end

I (surplif ication)

b wherea=t'(a,xln)

u = F(urxnr.. rxr.ran,_1)

end

I (rsnoving unused eguation)

b where n = f (urxnr.. rxr.r4rr,-1) end

t (p introduction)

pu*tnr*n,. . . ,x.+n,_1)

This is the rhs except for the re-naning associated

witrr P.

Thus we have proved that c is O-Kahnian.

OED

page 152

IF

(A5) Lema Let c be an G-Kahnian pure dataflovr open net.

Let i € Inportarity(c)

Let j € Outportarity(c)

Let cr be the result of tocping back the jth

output arc of c to feed the ith input arc of c.

c' is O-Kahnian

Proof L'et C' = fnternalarcs (c')

Let C = Internalarcs(c)

Let n = Inportarity(c)

Let m = Outportarity(c)

Let x € Kan

Let x' e Kan-l

Let c e KaC

Let c' e KaC'

Let g = (Arcs (")-1 (Size (c) ,i) ,Arcs (c) (Size (c) , j) >

(i.e the looped arc)

ThusC'=CL){e}

Since c is O-Kahnian we knonr that the output activity

of c aiven input x is:

rclpcrf 1c,x),x)

We want to prove that the output activity of cr given

input x' is:
a-t t-lr (pc'*- (c, rX') rX')

page 153

Since we knot the relationship between the old net

and the iterated net we can expre"= FF'

and gF' in terms of rc and f:
f' (", rx,) = f(", /nx'f,(c'q)) lj
tf' (", ,X,) = nf (" , /n,x,l, (c,n) | /rf 6, /r, x'1, (c'q)) { j
Since c is O-Kahnian it ccnrputes a sequence of functions

f : (Kan -> xa)n

To be more precise it ccnputes

f = \x rclpcr9(c,x),x)

TLris means r^te can use infinite games.

Let r be a totally correct strategy for the game G(frc).

We prove that there is a totally correct strategy r' for

G (f ' ,cr) such that

f ' = (x xr f*(x'g, ,xi_Irpzfirrl(xtliz) rxti, ,*tn-2) >k e ml,
c' is the open net with n-l input and rn-l output arcs formed by bending

. .t-h rhback the j"" output arc of c to feed the i"" input arc of c.

ts

THE
OPEN
NET c

page 154

rr is a totally correct strategry derived frcm t using an auxiliary game

in wlrich r is atrrplied to

x' and Lhe output frqn tt. jth output arc. Note that in infinite garnes

is a standard technigue to have a strategy play against itself.
Since rr is derived from r, the first output of the each of the output

. arcs of cr is

Vr e m m / j
f* (xtOr. . rxt i_I, -/\ rxt ir. . ;Xrn_2) l1

(since c' has no input on its ith input arc).
G

The second output will be

f*(x'Or.. rxti_', q- rX'i, .. rxn_r) l2

where t = fj (x'or..rxti_Irl\rx,ir..lxrn_r) lf
(since r is playing against itself).
ff rne continue the process we get the follolring that the rth of c' is:

fn(xt'r..lXri_I, or_1 rXtir..rx'n_r) lr
where or_1 = f, (x'or.. rxr i_l, or_2 ,x, ir.. rxtn-r) lr-1

Thus c' certainly does corpute

f' = \ x' f(x'lipz(f(x'trz))r)*i
F Thus the infinite game argrurnent defines for us the operational

. behaviour of the output arcs of c'.
If we want to prove that c' is G-Kahnian then r+e must prove that, given

input x', the output activity of cr is:

lc'(pc'Ef'(c'rx')rX') (= f'(x'))
Since rte can express rs i.r terms of rg ana f r.rc have:

f ' (x') = rp((;:c'n9'(c,,X,))/q, x'f
,

(;:c'Ec'(c,rx,))b)ij (2)

Tltus we must prove that the e4pression r+e have derived frcnr the knorrrn

operational behaviour (2) is eguivalent to the expression rte have frorn

page 155

the definition of G-Kahnity for c' i.e. (l). As roe are tryirrg to show

the eguivalence between two expression each of vrhich is the result of an

application of f, then all we need do is to shorr,r that each expression

has equivalent argr.ments for f.
Ttre first argrurent of ps as given by the erpanded definition of the

O-Kahnity of c' is:
^l(pc'f (c' ,x')) b

Thre first argunent of rF as given by the infinite game sorution is:

p"(f (Fcgc(c,x'lrz),x'li")) j

(pc'n9' (c'rx'))b

* (f, elimination)

c'o where cr = Ef'(c'rx')

{ texpansion or f')
c'o wrrere c' = f (c, /r,x,l, (a'ol t/of t c, /b,x'1, {c'u)) j

end

* (adding new eguations)

c'o where c' = Ec(c' /o,x'{r(a'6))/of1c, /o,x'lr(c'u))j
c - "'/b
, =

"tb
end

i (suUstitution of an expression for a variable)

z where c' = Ef (crx'f
iz) /of rc,*,ii") j

c = ar/b

" ="'b
end

* (ef iminate c')

F

page 156

z vrhere c = [Eclcrx'ir", /of {c,*,l rz) il/6
z = [f (c,x']14/Of(c,x'f 1z)ilg

end

* tstplificarion)
z vfierec =f1"r*,rrr,

" = rF("rx'liz) j
end

* (taking a fixed point.)

z where " = f1p"rf(.r*,,r"r, end

t (p introduction)

p" f(pcrf(c,x, l rz),x, lrz) i
This is the output activity predicted bV the infinite game

i.e. the rhs.

The second argunent of (1) in its expanded form is:
al(pc'f (c',X'))/V

The second argument of (2) is:

p"f 1",*'lrpz (f tp.rf tc,x'f !z) ,x'li")) j)

(;:c'u9' (c' ,x')) /n

t (t, elimination)

ct/o where ct = dcr (c'rx')

I (expansion ot rf')

€ z ntrere"=;r"f1crx'{iz)

,=f(c,x'liz)j
end

* (replace a variable by its definition)

page 157

c'lo where c' = f("' /6,x, lr(a'5))/of1c, /6,x' lr(c'u))j
end

| (adding new eguations)

c',/o wLrere c' = Eclc'70,x' lr(a'ot l/orpt c, /b,x' f , (c,u)) j
c = "r/b

" =a'b
end

I (suUstitution of an expression for a variable)

c vrhere c' = f(crx'liz) /of rcr*'li") j
c = "r/b
, =",b

end

I (ef irninate c')

c r*rere c = [f (crx'lir) /Of {c,*'I irl l/o
z = [uF(c,x'lrr, /of {c,*'li") j]u

end

I (simplif ication)

c v*rere c = Ec(crx,rr.",

" = lF("rx, lrz) ,
end

I (taking a fixed point)

c where " = ;r"f lcrx'f rz)
, = f (.,x' liz) j

end

| (replace a variable by its definition)

C*

page 158

c vfrere . = p"f lcrx'f iz)

" = rP1p"trf (crx'tr", ,x'{rz),
end

{ (taking a fixed point)

v';here

; = ::Il;::::,,,",,x,ri2, j
end

* (replacing a variable by its definition)

G c vfiere " = f,f (",x'lr;:zrg{pcf (c,*'f i") j)
end

t (t, introduction)

pcnf 1c,*' f r;r"f tp"f (.,*' lr"r,x' I iz) j
This is the output activity predicted by the infinite game

Thus rrye have that c is O-Kahnian.

QED

(A7) Theorsn A11 finite pure dataflol open nets are G-Kahnian

Proof gr induction on the size of the crpen net

(i.e. the nr.unber of nodes within a net)

base step (n = 1) all open nets containing

a single node are O-Kahnian

(a11 nodes ccrnpute history functions)

assune all nets of size n-l are O-Kahnian

i) adding an extra node using juxtatrnsition

is O-Kahnian (see A3).

page 159

ii) ap'plying an arbitrary nunber of iterations

to any net arising frun i) preserves

fKahnianity (see A4).

Hence all pure dataflorp open nets are O-Kahnian.

QED

(AB) Definition Iet c be a open net.

3 i" tf,. output net of c

iff

€ is an open net derived frcm c such that

every internal arc of c is an output arc of

3 (i.e. each internal arc is cut and a

duplicator node is used to re-connect the

severed arc, the second output of the duplicator

beccrnes an output arc of t).
Ihe follcwing diagram shovrs an open net c and its correspondirrg 8.

net c

F

net 3

page 150

(A9) theorem

Proof

Let c be any pure dataflovr open net.

c is Kahnian iff t is exahnian

c Kahnian = > A is o-Kahnian

If c is Kahnian then tapping off all

internal arcs (using duplicator nodes) will not

change the operational behaviour of that part

of the net 6 that corresponds to the

original net. Ttre only effect operationally

duplicate arc activity. Denotationally the

is associated with a set of eguations that

differs frqn the set of eguations for c,

by the addition of extra equationsr the

rhs of vfiich involve a duplicate function.

is

net

to

c

It

would not be difficult using the technigues we

used to prove (A7) to show that e is o-Kahnian.

t is o-xuhnian =) c is Kahnian

The set of eguations associated with c

differs frqn the set of eguations for 3 only by

the addition of extra equations involving duplicator

functions. Removing these extra eguations

obviously correstrnnds to the rsnoval of the

duplicator nodes used to tap off the.internal

arcs of c. ltris will have no effect on the

operational behaviour of the net c. Again using

the technigues roe used to prove (A7) it is not

difficult to prove that c is IGhnian.

page 151

QED

(AIO) Theoren (The Kahn Principle)

A11 finite pure dataflovr open nets are Kahnian.

Proof Frcm (A7) r,re have that every pure datafloru open

net is O-Kahnian.

Given any finite Pure dataflovr q>en net c, the

correstrnnding output net c is O-Kahnian.

Hovrever, theorsn A9 tel1s us that if c is

O-Kahnian then c is Kahnian. Tlrus all

pure dataflol open nets are Kahnian.

QED

A proof of the Kahn principle for certain kirds of infinite nets is

given in Chapter 5.

€

page 162

C. Sone Conseguences of the Kahn Principle

In this section we examine two interesting consequences of the Kahn

principle. the first is that pure dataflcru progrErns are not graphs but

rather sets of equations. We can think of these eguations as an

eguational dataflcry language. We believe the programs in this larrguage

are concise and elegant. The second conseguence is that we can reason

about operational activity denoLationally. An interesting example of

this is the rycle sun test for dataflovr deadlock.

An equational dataflorr,r lanquaqe

Great amounts of resources have been poured into research projects

all over the r+orld with the sole aim of developing a dataflovr

language. Jack Dennis at MfT is developing a language called VaL[l];

Arvind and Gostelovs a language caIled ID[51] and Osnan, Hankin and Sharp

a language called CAIOLE|2A|.

On the other hand we get an elegant eguational dataflovr progranrning

larguage for "free" (i.e, via the Kahn principle), Here are sorne

($ exarples of some simple "standard" programs:

(i) The fibonacci program

r = 1 fby (2 fby (F + 2))

G=nextF

OUIPIII = F

(ii) A program to generate the stream of factorials

I=1fby(I+I)

n = I fby (F* (next I))

OLFIPIIT = F

page 163

Note: fby appears as an infix operator.

T!:e equational programlEr uses circularity to bring about

repetition. This idea is far rnore general than the sinple iterations of

our two simple prograns. (Mvanced eguational progranmring is beyond the

scope of this thesis and the reader is referred to Ashcroft and

WadgetTl). The equational programs r^re have written so far are extranely

simple; but by adding one or two rlore powerful operators the language

can becorne guite powerful. An example of one of these advanced operators

is called ,,u;)on". The follcming is an operational def inition of "utrDn":

As long as O's (representing falses) arrive dovm its second input arc it

sends copies of the last daton it consr-uned frqn its first input

arc. lrlhen a I (representing true) arrives on its first input arc' the

node consunes the next daton on its first input arc and send ccpies

until the next 1 arrives. For example if the history

4,2,319r8,... arrives along Lhe first input arc and

OrlrOrl'IrI'Or... arrives alorrg the second input arc the the history of

the output arc is 4,4,2r2r3r9r8r8,...

we can now use this node (or rather the history function ccmputed by

the node) in the follovring merge program:

AA=AutrnnAA<BB

BB=BUPONBB<AA

C = if AA < BB then AA else BB fi

OtIlPUl = C

lt'

page 164

If A and B are seguences in increasing order then the output will be

the ordered nrerge. rf roe add to the above program the forloring

eguations:

D=1fbyC

A=2*D

B=3*D

OIITPIII = D

We have a ner^r program, without inputs, that produces as output all
nurnbers of the form 2i, 3j in increasing order. Ttrus even with very few

operators we can write interesting programs.

Deadlock and the cvcle swn test

In all but trivial dataflcff programs we find that variables are

defined directly or indirectly in terms of themselves. The fact that a

variable is defined in terms of itself rneans that its correstrnnding arc

in the nebrrork is part of sone loop. Ttrus the datons that travel around

that loop are endlessly re-qgcled. However, this may not always be the

case because it is possible that the loop runs dry. The follorping two

C programs illustrate the situation:

(i) x=x*1
The loop is permanently dry.

(ii) x = I fby (next (1 fby(next x)))

Ihe locp is able to produce the output 1 before seizing up.

More corplex deadlocks may occur wtrich depend on the value of certain

variables. For example:

x=9fbynexty

y=3*xuponp

page 165

This program dealocks alrncst inrnediately unless the first value of P is

o.

Thus vre have the situation wtrere certain programs like the one

above deadl-ock and yet others like fibonacci and rnerge go on forever

(given enough inputs).

rn [45] wadge describes hcry it is possible to decide on rrtrat

prograns will deadlock. He notices that in healthy progralns a variable

depends on itself in such a v/ay that the present value of the variable

depends on at most the previously computed value. Orr the other hand in

programs which deadlock a variable reguires a present or future value of

itself. Thris observation suggests sone sort of reguirement which ensures

that the present value of a variable is dependent only on its previous

values. To rnake this idea nrcre precise we need to state in an exact way

the ways in rarhich the outputs of various nodes depend on their

inputs. For example:

(i) a=Brt

The value of A depends on the present value of B and C.

(ii)A=nextB

A depends on the value of B one time step in the future.

i.e. the first 3 values of A require the first 4 values

of B.

(iii)A=CfbyD

A depends on the present value of C and on the value of

D one time step in the past.

i.e. The first 3 values of A depend on the first 3

values of C and the first two values of D.

g

page 166

G

Ihese dependencies are clearly cumulative and thus given

A=3fby(5fbyB)
Thre first 3 values of A reguire only the first value of B.

Effects nny also cancel each other, thus

A=9fbynextB

Ihre first n values of A depend on the first n values of B.

This observation lead wadge to assign the follovring nunbers to the

input arcs of the various operators:

(i) O is assigned to each of the data operators such as +r*r..

(ii) O and -1 respectively are assigned to the argunents of fby

(iii) +1 is assigned to the argunent of next.

(iv) O and -1 respectively are assigned to the argunents of upon.

When operations are corq)osed their nunbers are added; to find the way

in which the value of a wtrole expression can depend on the values of

variables occuring in it, roe consider the expression as a tree, trace

paths frorn the root of the tree to the variable; and add up the ntrnber

associated with the operators on the path. For example if the expression

l_s
(v (9 fby(next B + next C)) upon (next (p fby B))

- the path to P goes through the second argr.unent of upon(-l), the

argunent of next (+1) and the first argwnent of fby (0). TLre sun of

this is O and so rde rnay conclude that in general the present value of

the expression could depend on the present value of p.

Given the graph of a progran we can tell wether a variable depends

on its osm present or future values. What roe do is to form the path strns

of aII paths which start at the arc wtrich correstrnnds to the variable in

question. (i;e. all qgcles containing the arc). If the qgcle strn is

page 167

negativerthe dependenqg of the variable on itself is healthy. To ensure

the vftore program is healthy rrc repeat the rycle sr,rn test for each

variable. Equivalently r.rc rnake sure that every qgcle in the graph has a

negative ryc1e strn.

rhe importance of wadge's paper is that although the concept of

deadlock is operationar he goes on (via the Kahn principle) to give a

denotationar proof of the qgcre sun test. such a proof is beyond the

scope of this thesis.

Note: rn this thesis we have nunbered the time dependencies in the

opposite way to r+ftich Wadge nunbered thgn in his paper. The reason for

this is that it is ccnrpatible with the extended version of the cycle surn

test (see Faustini and Wadge tSSl 1 . Ttre extended rycle sun test allops

the qgcle sun test to be applied to eguational prograns wlrich may

include recursive defined user functions.

€

page 168

Chapter 5

Possible extensions and refinements

In this chapter we briefly examine ways in ntrich to extend the

denotational ssnantics to handle a broader class of behaviours (i.e. not

' just pure dataflcm). In addition rre look at ways describirg functional

nodes in terms of their internal prq>erties; we see this as a refinsnent
' to the operational sernantics. However, before we look at these

extensions and refinernents ne prove the Kahn principle for certain kinds

of infinite net.

A- A Functional Progranuning Approach to Extend pure Dataflorp

f,

The Kahn principre as rne stated it in chapter 4 was defined only

for finite nets. The next guestion r+e ask ourselves is does the

principle hold for infinite pure dataflovr nets? As far as our

operational npdel is concerned there is no problem in defining infinite
nets, but this in itself is no justification for proving the extended

Kahn principle. Horcver, if rrc look at the denotational sernantics and in
particular the related eguational datafrcw progranunirq ranguage, h,e

furrediately find an excellent reason for wanting to prove the extended

Kahn principle- lhe eguational dataflovr prograruning language described

in tJa-al is linited in that the prograrns can onry be defined in terms

of a sinple finite set of eguations. To alLovr the user to develop

programs in a structured way l"E need to extend this 'simple' language b1r

alloruing eguations definirg functions, including recursive

page 169

definitions.

upon(xrp) =

Some tlpical

first x fby

user defined functions (uDF's) are 3

if p then upon(next x ,next P)

else utrnn(x, next P) fi

p then first x fby whenever(next x' next p)

else wLrenever (next x, next P) f i
whenever(xrp) = if first

merge(arb) = valof

aa = upon(a, aa S bb)

bb = upon(b, bb < aa)

result = if aa (bb then aa else bb fi

end

Tfre inplementation of this extended language (vftich is similar to

Lucidt6l) involves either dynamically grovring nets or (notionally)

infinite nets (but still pure datflc,vr) . Thre methods of this thesis

extend naturally to such nets and permit us to give, for the first tilne'

a proof of the correspondingly extended Kahn principle. Notice that even

though the nets are reguired to be infinite they always have a finite

nunber of input and output arcs. Nets with a finite ntrnber of input arcs

and a finite number of output arcs are said to have finite fan/out an

fan/Ln. Ttre way h€ prove the extended Kahn principle is to build the

infinite net as the limit of a seguence of finite nets. We begin by

taking a single node, for convenience roe choose the first node in the

seguence of nodes associated with the infinite netrs formal

description. this node together with its associated input/output arcs

(which rnay include iterated arcs) is a finite pure dataflors net. Since

the pure dataflow net is finite r.rc knovr that the net is Kahnian. In

addition r+e kno* hop the zeroth node relates to the infinite net. The

reason this is inportant is that rre wilt place no input on those input

page 170

arcs that are associated with internal arcs in the infinite net. Thrus

the behaviour of the single node together with its input/output arcs is

an approximation to the behaviour of the infinite net. Next we take the

first and second node in the infinite nets node seguence. This tirne

there are two nodes wtrich rnay thernselves be interconnected (the same way

as they are interconnected in the infinite net). Again we choose not to

give the second net any input on the inputs that correspond to the

internal arcs of the infinite net. Ttrus the second net is an even closer

approximation to the behaviour of the infinite net. If we continue this

argwnent ad infinitr-rn roe get a segeunce of net behaviours the limit of

the sequence of behaviours beirrg the behaviour of the infinite net.

(AI) Theorsn (the extended Kahn Principle)

AII infinite pure dataflovr nets with finite

fan/in and fa4/out are Kahnian.

Proof Let c be an infinite pure dataflow net

with Intrnrtarity(c) e Q

Outportarity(c) e (^)

L€t C = Internalarcs(c)

Let c e XaC

ViEQ
Let c, be a open net with finite faVin and

fan/out.

tet - ^ ,,-c(i)cti E l\cl

I€t yi e Karnportarity(c(i))

Let x g Kalnportarity(c)

page 171

If we want to prove that c is Kahnian then r.re

must prove that:

pcnflc,x; is the activity of the internal

arcs of c and that

fc(Fcf9(c,x),x) is the activity of the

output arcs of c.

I*t % be the open net formed fran node

zero of Nodes(c) together with the nodes

input and output arcs (including iterated arcs)

Since % i= finite it is Kahnian and thus

given inputs yo e Karnportarity(c(o))

its internal arcs corncute

F%*f
(o) (ao,yo) .

If we arrange for all the input arcs of c(0)

which correqnnd to internal arcs in c to be

starved of input then the internal behaviour of

c(O) is an approximation to the behaviour of the

infinite net. Next r+e take the c(1) to be the

open net corresponding to the first tr.iro nodes

in nodes(c). Since this net if finite it too is

Kahnian and thus given input

v. e Karnportarity(c(1)) ah" internarr1 - ""
behaviour of c(1) is given by

-c(1) .parF'-' (arry1).

ff tte again reguire that the input arcs of c(1)

which coresE)ond to internal arcs in c are again

' starved of input then we get an even better

?

page 172

atr4)roxination to the behaviour of the infinite net.

If we continue this process ad infinitrrn rc
generate two sequences. Ttre first sequence is

<c(i) li e 61
The second is

.lr"r*",t, (a'v1) I i e e >

Obviously the net c is the limit of the sequence

of finite nets:

thi e U<c(i) li e 6) = c

In a similar way the behaviour of c is the 1imit

of the seguence of finite approximations to the

behaviour of c:

lhi e .^,<paiBf(i) {"r,vr) | i e (,J) = pcrfl c,x1

Ttrus the internal behaviour of c is Kahnian.

We can apply a similar argunent to prove that the

behaviour of the output arcs of c is Kahnian

QED

page 173

B. Ensuring functionality of nodes

Ihe definition of open net functionality we developed in chapter 3

defines functionality in terms of infinite objects, namely fJ-sequences

of open net transitions. Ttrus if we think of an open net as a black box,

functionality defines wtrat the black box ccnrputes without regard to the

black boxes internal behaviour. In this section we examine the internal

properties of nodes (i.e. properties of their transition relations) in

search of properties that guarantee node functionality.

The one step Church-Rosser like propertv

Rather than @in looking in detail at the internal behaviour of a

node we shall examine the behaviour of an encapsulated net. Since our

operational model is trury modurarr dtry property associated with the

internal behaviour of an open net, is also associated with the internal

behaviour of the corresponding node. We can think of a net conputation

seguence in terms of a seguence of conpatible net transitions. Each net

transition includes one transition for each node in the

net. Alternativery v,€ can think of net ccmputation in terms of a uni-

directed graph. Each node in the graph corresSnnds to net state and

each arc to a net transition. In addition one of the nodes in the graph

is distinguished as the initial state. rn the diagrain belovr the

infinite sequence of arcs on the extreme left correstrnnds to an infinite
seguence of net transitions each of rhich is a busy wait for each

node. Other paths through the graph

F

page 174

C

represent other possible ways of choosing individual node transitions.

Frcrn chapter 4 roe knovr that if the nodes in the graph are arl
functional then any path through the graph will lead to the network

ccnputing an approximation to the least fixed point solution to the nets

associated set of eguations. fn particular if a totally correct strategy

is used to pick the transitions then exactly the least fixed point

solution we be ccmputed. ltrus our net ccmputations have a Church-Rosser

property. ltris means that vre can set out on any two distinct paths and

after travelling along both paths for an arbitrary length of time r+e

would still be able to choose scrne path that rmuld cause both paths to

meet up again and have the sane overall behaviour. Since our nets have

the encapsulation property then wtrat rrye have just said about nets

applies in a coded form to nodes. In particular rrre can think of node

ccnputation in terms of a uni-directed graph. this time the no,iles of the

graph denote internal states of a node and the arcs node

transitions. one particularly simple hray of guaranteeing that a node is
furctional is to reguire it to have a

C

page 175

church-Rosser like property. rn other words given a choice of paths

through the node ccmputation graph it is always possible at sorne later
stage having taken two distinct paths to join thgn and have the sane

overarr input/output effect. Nodes with this property are said to be

functionally safe. O: the other hand a ftnctionally unsafe node is one

which according to definition Jf.n4 is functional but frqn wtlich it may

not be possible to recover frqn error. An error would be to choose a

path which only ever allqped an initial segrnent of the e4>ected output

to be produced.

Reguiring our nodes to have the Church-Rosser like property is a little
too much because it is furpossible frsn looking at a nodds transitions to
say in general whether the node has this prorperty. We therefore choose

the more useful l-step church Rosser rike property. rtris property

guarantees that wlren it is possible to go frcm one internal state to two

others in one step, then it is trrcssible for these two paths to nreet

after one further single step and for the paths to have the same overall

rl node state r1,

wl t

node s state

rl LJr2 = r1'L)r2, wI Uw2 = w1'(Jw2t

reading and writing effect. TLris means that nodes with this property

rI node state r1,
/\wr/ \ wl,

/\
r state node s

12 \ ,/ 12,
\/

w2 node state w2l

r

page 176

are associated with node conputation graphs of the folloring form:

G

Although we do not give a proof it is'not difficult to prove

that that nodes with the one step Church-Rosser like property are

functional.

Monotone relations and functional nodes

Ttre ideas in this section are in their infancy and should not be

thought of as proved results. fn fact this section contains the seeds

for trnssible future research. We @in by making a snall study of ssne

time dependent nodes to see if rrc can gain scrne understanding of tine

dependenry. tet us begin with an example of a node that behaves in a

similar way to the identity node except under certain conditions v*rere

it produces spurious Ors. The formal definition of this node is as

follovrs:

page 177

<{ g },grlr1,T>
where T is

Vx e L)

(nilrg) -) (nilrnilrO)

(x ,g) -) (ttrnilrx)
So long as this node is strpplied with datons at a faster rate than that

at which it consunes them it behaves exactly like the identity

function. Hovrever as soon as r{re fail to send it datons at a fast enouqh r

rate we find the empty buffer ccnputation cones into use and produces

spurious Ors.

Another exampre of a node that conputes on empty buffers is the

node thst corputes the history function "first":
<{ qxlxeQ iU{ q },q,I,1,T)

where Vxry € (^)

(nilrq) -) (nilrniIrnil)

<x ,g) -) (ttrg*, x)

<niI,q> -) (nilrnil, x)

(y,
%> -> (tt, nil, x)

This node conputes on empty buffers and yet is still functional. Closer

examination of the transitions associated with each node suggests that

nodes which ccnpute on empty buffers must be able to perform the sane

activity no matter r"trat is in the input buffer. we introduce the

folrcwing definition as a ilEans of capturing the above sr:ggestion.

page 178

(BI) Definition Let <D, (o) and <8, < E> be ;nsets

A relation R over D r E is said to be

nonotone

iff
1.| 1

Vd',d'E D er e E

utaou'anddlner->
-t21 2?2ler.-(Ee-andd-Re

we must novr apply this definition to a node transitions relation. Given

a node with n input arcs and m output arcs the noders transition

reration T c <(Bn r Q), (En r o r Bm>> is said to be monotone

iff

V <b,q> , (b',p) € T, (err,g) € T,

(brq) .t ab',p) and ((brg)r(err,g)) € T -)
f <e'rr'rgt) € TI (errrg) (, (er ryr rgt) and ((btrp)r(errrrr9,))

where (b,q) $ ab',p) iff Vi e n b, C b', and q = p

(e,rrg) :i, <e.,E,,g,> iffvi g n j € m

e.Cet=andrCrl
I- I _

and gj I n' j.
n'here x C y iff x = y or x = nil

rf r+e examine our two simple examples r+e wirl see that ,,first,' node

is nronotone and the "would be" identity node is not rnonotone. The reasn

why this node is non-rnonotone is that two ccnpatibre causes have

unccrnpatible effects :

<(nilrq)r(nilrnilrO)) and ((xrq)r(ttrnilrx))
(niI,q) 5 C

(xrq> and yeL (nilrnilro> < a (ttrnilrx).
What we would like prove nor^, is that the nodes which have nrf,notone

page I79

transition relations are functional. Unfortunately this is not the case

since the follcruing node has a monotone transition relation and yet is
nondeterminate:

({ qrq' } rq,2,IrT)

where T is given by the set

Vx,y € L)

(nilrnilrg) -) (niI,niI, g'rnil)
(nil, yrg) -) (ni1, tt, g'rnil)
(x ,nilrg) -> <tt ,nil, g,, y>

(x , yrA) -> <tt , tt, g', y)

(nil rnil rg') -) (nil,nil rg, 1>

(nil, yr9') -) (nil, ttrg, 1>

<x ,nilrg'> -> <tt ,nilrg, I>

(x , yrg, > -> <tt , ttrg, 1>

The node just described cleverly disguises its activity between

statesi and so is able to be monotonic and yet nonteterminate. The

reason that monotonicity of the transition relation failed to guarantee

functionality is that the rnontone relation fails to detect situations in €

which the ccnputations associated with trpo distinct partial causes

overlap in activity. A partiat cause is one in v*rich one or rpre of the

input br:ffers is ernpty. Allovring such overlaps leads inevitable to non-

determinate input/output behaviour. Another trnssible atrproach to finding

a property the guarantees fr:nctionality uses the idea of cause chains. A

cause chain for the above node is
(nil,nilrq>"S (nilryrq) ja (xryrg) .

page 180

G

We claim (althought it requires rigorous proof) that if the

conputing activity associated with each elernent in a cause chain is

non-overlapping and if the total activity for the partial objects in all
conpatible chains is equal to the activity of the of the conplete object

which is the lfunit of these chains then the node is guaranteed to be

functional. In the last example above nre have a chain of partial causes

((nilrnilrg')r(nilryrg')) and the chain of partial causes

((nilrnilrg')r(xrnilrg')) the lirnit of these chains, within the context

of the state g', is (xryrqr). The total activity of the chains of

partial causes is to erase x and y and to output three 1's. On the other

hand the activity associated with the linit cause is to erase x and y

and output one 1. Thus there is overlap in the activity of the partial

causes and so the node is non-functional. Again we repeat that these

ideas are really a topic for further research.

page 181

Extendinq Kahnrs denotational semantics

In this section rte briefly examine trnssible extensions to Kahn's

denotational nodel. ltris is again another area for further research, our

aim in this section is to suggest possible extensions and to provide a

fell references to material that nay be of use.

The table belcm describes the current state (in terms of this
thesis) of operational and denotational nrodels.

Opertational Models Denotational Models

Arcs Nodes Nets

Pipelinedataflow ? ? ?

FJilets ? ? ?

Tdets ? ? ?

Pure Datafrcn Histories History r.east Fixed
Functions Point of a

netrs associated
set of equations

Thre above tabre realIy describes a hierarchy of models, the npst

general model beirg piperine dataflor and the least general pure

dataflorp. Denotationally we kncrrir wtrat the objects are that correstrnnd to
arcs' nodes and nets of a pure dataflorr'net. We non look at the next

lever up in the hierarchy, nanely the T-nets. The F-nets are those

pipeline dataflcry nets wlrich include alI pure datalorr nodes with the

addition of nodes that are tinre sensitive. An exarple of a tinre senstive

node is the node that repeatedly ccpies its inputs to its outtrruts but

tr

page 182

r+henever there is

<{e},9r,1,
where T is

Vx € (J

no input is outputs

T>

a O. Formally yle have

(nilrq) -) (nilrnilrO)

(xrq) -) (ttrnilrx)
We can see that the zero is included each tirne there is a break in the

suprply of inputs. rf we assune that the node never receives a daton

representing o as input, then the occurence of ors in the output tells
us the rate at wtrich the node received its inputs. Novr instead of

relying on the node never receiving inputs, rte introduce a strnciar

object called a hiaton wLrich r+e think of as a unit of delay wtrich

(notionally) travels along with the other datons so that a node can

produce scmething regularry even if it has no real output. using this
simple idea rryre can think of the tine dependent nodes such as the exary>Ie

above as a function over hiatonised histories. In the pure dataflow

model an arc was associated with a pure history and so denotational pe

could not reason about the relative rate of arrival on different input

arcs. For exarpre the history (rr2,3r4,...) terls us nottring about the

way in wtrich the history vras fornred. On the other hand the sequence

(1r*r2,*r3r*,..) tells us the rerative tfune of arrivar of the inputs

(the * denoting a delay). The exarq>re node above does not ccnrpute a

history function, ho*ever, it does ccnpute a ftrnction over hiatonised

histories:

i:HKA -> HI<a where Hr(A = Se(OO { * }) O (OO { * })G)

There is a lot nrore that could be said about T-nets and hiatonics but

this is beyond the scope of this thesis. Incidently the "Brock-Ackemun

ancrnaly" t131 can easily be explained using hiatonics.

page 183

G

An interesting exarple of the use of hiatonics is to be found in the

Ph.D thesis of P.J. Cameron[I4]. Canerons thesis is about the design of

a norFProcedural operating systens language. Hiatonics are used to deal

with the tinre dependent behaviour associated with the scheduling of a

resources such as a set of line printers. Although Cameron makes use of

hiatonics the user of his language never realises that hiatons are used, ,

they are internal to his systen.

Others rrrho have worked with hiatonic are Boussinot [11] and

Park[Al]. Ttrey have been interested in findirg a denotational ssnantics

that is able to describe the operational behaviour of the next level in
our hierarchy, nanery the F-nets. An F-net is roughly speaking pure

dataflow plus the addition of a fair rrerge operator. Without going into

details it sesns as if both authors have been able to formulate a

denotational ssnantics for F{ilets.

page 184

fn conclusion rre are left with the follodng table:

Opertational I'lodels

Arcs Nodes Nets Behaviour

Pipeline dataflot

F-Nets Hiatonised Oracular Ttre (de- hiatonised)

Histories Hiatonised set of solutions

History to the recursive set

F\nctions of eguations over

Hiatonised histories

T-Nets Hiatonised Hiatonised The (de- hiatonised)

Histories History solution to a set

F\:nctions of recusive equations

over hiatonised

Functions

Pure Dataflovr Histories Historv Least Fixed

zun.tion" Point of the

Associated set of

equations

To find a denotational ssnantics for the vftole of pipeline

dataflow is a difficult problen for vrtrich we have not yet found a

satisfactory solution.

Denotational l,lodels

page 185

trr Ackerman *.u".ltilmT". \4L.. A varue
oriented algorithmic language,
Preliminary Reference Manual.

Cornputation Structures Group

II{IT, Canbridge, Massachusetts.

l2l Mans D. A. A Conputation npdel with Dataflovr sequencing

Schoo1 of Hr-unanities and Science,
(Technical Retrnrt CS 117),
Stanford University, California,
Ph.D Ttresis,
(1968) .

t3l Arvind, C,ostelor K. P., Sone relationships betneen aslznchronous
interpreters of a dataflovr language,

Formal description of Programnirg concepts
(8. J. Neuhold Editor), pp 95-119,

North Holland R:blishing CornSnny,
New York,
(1977').

t41 Arnold A. Senantigue des processus ccrnmunicants,

RAIRO, VoI. 15, N. 2, W lg3-149,
(1981) .

t5] Ashcroft E. A., Wadge W., tucid, a Nonprocedural language with iteration,
Ccnurunications of the ACtl,
Vol. 20, N. 7, W 519-525,
(re77l .

16] Ashcroft E. A., Wadge W., Structured Lucid,
I'heory of Coputation Report N. 33,

Detrnrtment of Conputer Science, University of Warwick,
coventry, u.K.,

rvut v'rAvels^uJ v! 'tq!w!v^' |F

(1e80) .

I7l Ashcroft E. A., Wadge W., Lucid, The Dataflor* Programning Ianguage

Academic Press,
(to be pulclished).

t8l De Bakker J., l,lathgnatical fbreory of Program Correctness

Prentice-Hall International
Series in Conputer Science
(1980)

191 Backus J., Can progranning be liberated frcnr the Von Neumann
Sty1e? A functional Style and its Algebra of programs,

Corrnunications of the AC!l,
Vol. 21, N. 8, pp 613-641
(1e78) .

page 186

G

tfOl Bird R., programs and l4achines,
An introduction to the theory of ccnputation,
Publishers J. Wiley, l€w york,
Wiley Series In Conputing,
(1969) .

I11l Bousinnot F., Reseau De Processus Avec Melange Eguitable: un Approche
Du Ttunps Reel,

These de Doctorat D'Etat,
Universite, Paris VII,
(1981) .

tl-2l Brock J. D., Q>erational Sernantics of a Dataflow languag€,
S.M. Ttresis,
Depa.rtment of Electrical Hrgineering and Conpr:ter
Science, t'lIT, Cambrigde, Mais.,
(1978) .

l13l Brock J. D., Ackerman w. B., An Ancnaly in the specification of
Non-determinate Packet Sustans,
Conputation Structures Group,
(Note 33-1)
Iaboratory for Ccrnputer Science, MIT, Canbrigde, Mass.,
(le78) .

t1a1 cameron P., A llon-procedurar operating systans Iangurye,
Ph.D Ttresis (In preparation),
Departrnent of Ccnrputer Science, University of Warwick,
Coventry, U.K.

t15l Conway M. E., Design of a Separable Transition-Diagran
Ccmpiler,
Ccnrnunications of the ACI"I,
Vo1. 6, N. 7, pp 396-4g8l
(1963) .

lrSl Davis A. L., rtre Architecture of and systen Method of DDMI: A
Recursively Structured Data Driven Machine,
Proceeding of the 5th Annual Symposiun on Ccmputer
Architecture,
Conputer Architecture tlews,
vol. 6, N. 7, w 2Lg-2I51
(1e78) .

tfZl Davis A. L., Data Driven lGts: A trlaximally ConcurrenL procedural
Parallel Process kpresentation For Distributed cornputing,
Privately Circulated.

[I8] Gale D. & Stewart F.M. fnfinite games with perfect information,
Contributions to the theory of ganes.
Anna1s of l,tathsnatical str:dies,
Number 28 Princeton University press,
Princeton N.J, pp245-266,
(1953)

page 187

[r9] oennis J. 8., First Version of a Datafrow procedure Language,

Progranrning Slrrposiun: proceedirgs of Collogue sur la
Progrannation, (B. Robinet Editor),
Springer-Verlag Lecture Notes in Ccrnputer Science, N. 19,
pp 362-376,
(re74) .

[20] Dennis J. 8., Misunas D. P., A Preriminary Architecture for a Basic
Dataflcry Processor,

2nd Annual Slzrposium on Canputer Architecture:
Conference Proceedings, pp 126-132,
(1e7s).

[2IJ Faustini A. A., An Qperational Semantics for pure Dataflow,
9th International Colloguitrn on Autcmata,
Languages and Progranuning:
Conference proceedings,
(1982)

[22] Glauert J., A Single Assigrunent Language for Dataflovs CcnrSxrting,

M.Sc. Dissertation,
Departrnent of Ccrnputer Science, University of Manchester,
U.K.
(1978)

[23] Gurd J., Watson I., A Muttilayered Dataflor Ccnrputer Architecture,
Proceedings of the 1977 International Conference on
Parallel Processing (J. L. Baer Editor), p 94,
(1977) .

[24] Hankin C. L., Osnan P. 8., Sharp J. A., A Dataflovr Model of Cornputation,
Detrnrtment of Conputer Science, Westfield College,
Hampstead, Iondon, U.K.,
(re78) .

[25] Henderson P., Functional Operating Systems,

Notes privately circulated,
(r98r)

t261 Kahn G., The Ssnantics of a Sirnple I"anguage
for Parallel Progranuning,

Proceedings of IFIP Congress
(J. L. Rosenfeld Editor),
pp 47L-475,
(1974)

t27l Kahn G., McQueen D., Coroutines and Networks of Parallel Processes,
Proceedings of IFIP Congress (8. Gilchrist Editor),
pp 993-998,
(19771 .

page 188

[28] Karp R. M., Miller R, E. , ProSrerties of a Model of Parallel Cornputations:
Determinary, Fermination and Queueing,

SIAM Journal of Applied Flathsnatics, VoI. 14,
pp 1390-1411,
(1e66) .

[29] KeIIer R. M., Denotational Models with Undeterminate Operators,

Forma1 Description of Progranming Language Concepts,
(8. J. Neuhold Editor), North Holland Publishing
Curqlany, pp 337-356,
New York,
(L977).

[30] Kteene S. C., An Introduction to Metanathematics'

Van Nostrand Conpany Inc.,
New York,
(1e52).

l3f1 Kosinski P. R., Denotational Semantics of Determinate and Non-
Determinate Dataflor Prograns,

Ph.D Thresis,
Department of Ccrnputer Science, MIT, Cambridge, Mass. '(1979) .

[32] Kosinski P. R., A Straightforward Denotational Ssnantics for Non-
Determinate Dataflovr Prograns,

Conference Record of the 5th ACM Symposiun on Principles
of Prograrrnirrg Languages (POPL) , grp 2I4-22I,
(1978) .

[33] Landin P. J., Ttre Next 706 Progratruning Languages,

Conrnunications of the ACM,
VoI. 9, N. 3, pp 157-166
(1966).

l@ [34] Bic L., Protection and security in a dataflol system

Technical re;nrL # 26
(Ph.D. Itresis)
Department of Information and Coq>uter Science
University of California, Irvine
Irvine, CA 927L7
(1s78) .

t35l Lindstrcrn A., Keller, Syrq>ositrn on Functional tanguages
and Cotnputer Architecture,
Invited paper
Goteborg June 1-3,
(1981) .

[35] Manna 2., l'lathsnatical Tlreory of Conputation,
McGran HitI Corputer Science Series,
(1e74).

page 189

[28] Karp R. M., Miller R. E. , Properties of a l,lodel of Parallel Cornputations:
Determinaq/, Termination and Queueing,

SIAIT{ Journal of lpplied t'lathsnatics, Vol. 14'
pp 1390-141I,
(1955) .

[29] Keller R. M., Denotational Models with Undeterminate Q>erators,
Formal Description of Progranrning Language ConcepLs,
(8. J. Neuhold Editor), North HoIIand Publishirg
Canpany, pp 337-366,
New York,
(1977).

t301 Kleene S. C., An Introduction to lletamathsnatics,

Van Nostrand Ccnpany Inc.,
New York,
(1952).

[31] Kosinski P. R., Denotational Semantics of Determinate and Non-
Determinate Dataflovr Prograns,

Ph.D Ttresis,
Department of Corputer Science' MIT' Canbridge, Mass.,
(r97e) .

t3Z1 Kosinski P. R., A Straightforward Denotational Sernantics for Non-
Determinate Dataflovr Prograns,

Conference Record of the 5th ACM Slzmposiun on Principles
of Progranuning Languages (POPL) , ptp 2L4-22L,
(1978) .

[33] Landin P. J., Ttre Next 7AA Prqratmning languages,

Conrnunications of the ACM,
Vol. 9, N. 3, pF 157-156
(1966) .

[34] Bic L., Protection and security in a dataflorr system

Technical report # 26
(Ph.D. Itresis)
Department of Information and Ccnrputer Science
University of California, Irvine
Irvine, CA 927L7
(1978) .

l35l Lindstrcrn A., Kel1er, Slnrqnsiun on Functional Languages
and Corputer Architecture,
Invited paper
C,oteborg June I-3,
(1e81) .

[36] Manna 2., I.{athsnat.ical TLreory of Corputationt
McGravr HiIl Ccrnputer Science Series,
(L974) .

page 189

[37] t'lcllrqf M. D., Coroutines,
Unpublished Merno,
BelI Telephone taboratories, Murray HiIl,
Nevr Jersey,
(1968) .

[38] Minsky M., Finite and Infinite ltachines,
Prentice-Hal1
Series in Autqnatic Ccnputation
George Forsythe, Editor
(L972'

[39] t'lisunas D. P., Error Detection and Recovery in a Dataflocr Ccnputer,
Proceedings of the 1976 International Conference
on Paralle1 Processing, ptp Ll7-L22,
(1975) .

[40] Pilgram P. T., Translating dataflorp into ressage passing actors.
Ph.D Thesis, (in preparation).
Departnent of Ccnputer Science,
University of Warwick,
Coventry CV4 7AL

[4I] Park D. t4. R., private Connunication
(1e81)

[42] Ritchie D. t'{., Thcnqrson K., The IJNIX Operating Systen,
Coranunications of the ACM,
Vol. 17, N. 7, W 365-375,
(1974) .

[43] noariguez J. E., A Graph Moder of pararlel conputation,
Ph.D Thesis,
Iaboratory for Ccnrputer Science,
MIT, Cambridge, Mass.,
(1969) .

[44] Runbaugh J. E., A Dataflow Multiprocessor,
fEEE Transactions on Ccrq>uters,
C-26, 2, W 138-146
(1977).

[4S1 p"* K. S., Stream Oriented Cornputation in Recursive Dataflors
Schemas,

Laboratory for Conputer Science, IIrl 69, MIT,
Canbridge, Mass.,
(1e7s).

[46] wadge w. w. An Extensional Treatment of Dutaflow Deadlock,
Proceedirgs of conference on ssnantics of concurrent
Coputation, EVian,
Sringer-Verlag Lecture Notes on Ccnputer Science, N. 7g
pp 285-299,
(1979) .

(_

pge 190

[47; 1^7u6ne W. W., Reducibility and Determiness in the Baire SPace,
ph.D Ttresis,
Mathematics Faculty,
U.C. Berekley

[48] wieerEr 8., Corputing with Infinite objects,
Theoretical Conputer Science, N. !6, W 133-155,
(1980) .

o [49] wie&ner E., Exaktes Rechen Mit Reellen Zahlen und Anderen
Unendlichen Objekten,
Ph.D Ttresis,
EIII 5975, Zurich,
(1977).

G

C [50] r{anna z. , ltathsnatical Theory of ccnrputation
McGraw-Hi11
Series in Conputer Science
(r974)

[51] Arvind, ciostelow K.P., Plouffe w., An aslmctrronous progranuning
Language and Conputing rnachinen,
TR-I14,
Department of Information and Ccnputer Science,
University of California , Irvine
(1e78)

[52] Yourdon 8., Constantine L. , L., Structered Design:
Fundanentals of a disciptine of Conputer
Programning and systerns design.
Prentice-Ha11
(1e7e)

[511 pil"hie D.M., Thorpson K., rtre uNrx time-sharirg system
Conunmications ACM
V. 17 N.6 p,p365-375
(July 1974).

[54] gs6.roft E. A., proving assertions about paralrel programs
Journal Ccnputer Systens Sci
v.10 N.1 pp1l0-135
(1e7s).

t55l Faustini A.A., Wadge W.W. Ttre qgcle sun test for
Recursive User Defined Function
Ttreory of Canputation Retrnrt
(in Preparation)
Department of Ccnputer Science
University of Wanpick
Coventry

page 191

	WRAP_THESIS_Faustini_1982.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

	WRAP_cs-rr-041.pdf

