THE UNIVERSITY OF

WARWICK

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/47392

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/65690

The eguivalence of an operational and
a denotational semantics

for pure dataflow

by

Antony Azio Faustini

A dissertation submitted for the degree of
Doctor of Philosophy.

Department of Computer Science
University of Warwick
Coventry
UK

April 1982

Contents

p.l #. 1Introduction

Mathematical Notation

p.23 1. A Review of work related to the Kahn principle .
Historically important early models of dataflow

A. Karp and Miller, Computation graphs.

B. Adams, A model of parallel computation with dataflow
Sequencing.
Some contemporary models of dataflow
C. Kahn, A simple language for parallel programming.

D. Arvind and Gostelow, An interpreter for Dennis
Dataflow (DDF).

E. Wiedmer, Computing with infinite objects.
F. Arnold, Semantique des processus communicant.

G. Keller, A language for non-deterministic parallel
programming.

p.55 2. A formal operational semantics for 'pipeline' dataflow -
A. Nodes and non-deterministic infinitestate Automata.
B. Closed nets and closed net computation.
C. Open nets. ‘ .
D. Environment nodes and Test beds.

E. The Encapsulation property.

P.97 3. A Denotational Semantics for Pure Dataflow.
A, Preliminaries.
i. Countable Chain Complete Partial Orders (C3PO's).
ii. Kleene's fixed point theorem.
B. A Denotational Semantics for Dataflow (Kahn).
i. Parallel program schemas.
ii. Fixed point equations.

iii. Using 'where' notation together with
certain transformation rules to
massage expressions involving a fixed
point operator.

C. Nodes, Open Nets and Functionality.

D. An Introduction to Infinite Games of
Perfect Information.

E. Infinite Games and Open Net Functionality.
F. Some Results.

i. History functions computed by open nets are
continuous.

ii. The Universality property.
iii. The Abstraction Property.

p.138 4. A Proof of the Kahn Principle in a Completely
General Context.

A. Relating our Operational Semantics to Kahn's
Denotational Semantics.

i. Constructing dataflow nets using the primitives
juxtaposition and Iteration.

ii. O-Kahnian and Kahnian nets.
B. A Proof of the Kahn Principle.
.C. Some Consequences of the Kahn Principle.
i. An equational dataflow programming language.

ii. Deadlocks and the cycle sum test.

p.169 5. Possible Extensions, Refinements and Future Work.
A. Extending the Equational Dataflow Language.
i. Infinite nets.
ii. Proving the Kahn Principle for infinite
Pure dataflow nets.
B. Properties which Ensure Functionality.
i. The one step Church-Rosser like property.
ii. Monotone transition relations for nodes.
C. Extending the Denotational semantics.
i. Non-functional nodes.

ii. Hiatonics.

p.186 6. Bibliography.

Abstract

In this thesis we prove the equivalence of an operational
and a denotational semantics for pure dataflow.

The term pure dataflow refers to dataflow nets in which the
nodes are functional (i.e. the output history is a function of
the input history only) and the arcs are unbounded fifo queues.

Gilles Kahn gave a method for the representation of a pure
dataflow net as a set of equations; one equation for each arc in
the net. Kahn stated, and we prove, that the operational
behaviour of a pure dataflow net is exactly described by the
least fixed point solution to the net's associated set of
equations.

In our model we do not require that nodes be sequential nor
deterministic, not even the functional nodes. As a conseguence
our model has a claim of being completely general. In particular
our nets have what we call the encapsulation property in that any
subnet can be replaced in any pure dataflow context by a node
having exactly the same input/output behaviour. Our model is also
complete in the sense that our nodes have what we call the
universality property, that is, for any continuous history
function there exists a node that will compute it.

The proof of the Kahn Principle given in this thesis makes
use of infinite games of perfect information. Infinite games
turn out to be an extremely useful tool for defining and proving
results about operational semantics. We use infinite games to
give for the first time a completely general definition of subnet
functionality. In addition their use in certain proofs is
effective in reducing notational complextity.

Finally we look at possible ways of extending Kahn's
denotational model by the introduction of pause objects called
hiatons. Finally we describe interesting ways of refining our
operational model.

Acknowledgements

I would like to thank my supervisor, Bill Wadge
for his continuous interest and encouragement and for
numerous discussions that provided the stimulation for

this research.

I would also like to thank all the members, past
and present, of the Warwick dataflow group who have
devoted many hours of their time to help me with this
research. Special thanks must go to Stephen Matthews

for proof reading.

In addition, the financial support of the Science
Research Council is gratefully acknowledged.

Finally, I would like to thank my wife for her
patience, moral support and for the preperation

of the diagrams that appear in the text.

Chapter O

Introduction

In this thesis we present for the first time, a proof, in a
completely general context, of the equivalence of an operational and a

denotational semantics for pure dataflow.

Dataflow is currently an active area of research, with teams of
researchers working on dataflow machines (Gurd and Watson([23],
Davis[16] ,Misunas[39] ,Dennis[20]...); dataflow programming languages
(CAJOLE[24],ID[51],VAL[1],..) and Software design (Bic[34], Yourdon and
Constantine[52], Cameron{l14] ...). However, the idea of data flowing
between concurrently executing processes is an old one, dating back
nearly twenty years to a paper written by Conway[15]. In this paper
Conway describes how it is possible to divide certain processing
activity into a number of autonomous modules. Conway writes "A program
organization is separable if it is broken up into processing modules
which communicate with each other according to the following
restrictions: (1) the only communication between modules is in the form
of discrete items; (2) the flow of each of these items is along fixed,
one-way paths;". Conway even predicted the advantages of dataflow
in truly distributed systems. He writes "When true parallel processors

are available the fact that the coroutines of a separable program may be

executed simultaneously becomes even more significant".

Recent years have seen an unprecedented interested in parallel
(distributed) computing and the dataflow concept, thought of so many
years ago, is proving to be extremely fruitful. As a result of this

widespread interest there has emerged a number of different dataflow

page 1

models.

In this thesis we are interested in a model of dataflow in which
the computing stations are autonomous machines and the fixed
unidirectional communication lines are unbounded fifo queues along which
discrete items of data flow. A discrete item of data can be any datum
such as a natural number or a matrix of natural numbers or a real number
or a set of real numbers. We shall refer to these discrete units of
data as datons. The asynchronous computing stations in our model can be
thought of as continuously operating 'black boxes' that consume datons
one by one from each of their input arcs and after some internal
computation output datons one by one on each of their output
arcs. Simple dataflow nodes usually produce and consume datons at the
same rate, however the more complex nodes may produce outputs at a
different rate to that at which they consume inputs. The only way in
which our nodes may communicate with another is by sending datons along
the fixed arcs which interconnect the producer and consumer nodes. We
can think of an arc as a 'pipe' along which a producer node dispatches
datons one by one to some consumer node, the producer having no
knowledge of who the consumer is and vice versa. This is analagous to
the way in which two UNIX processes, connected by a UNIX pipe,
comunicate. In our model if an observer is placed on one of the
'pipes' he is able to record its entire activity, a possibly infinite
sequence of datons called the history of the pipe. The model of
dataflow we have just described has been referred to as pipeline
dataflow or stream flow and it has been studied by many including
Adams {2}, Kahn[26], Karp & Miller[28], Arnold{4], Arvind & Gostelow(3]
and McIlroy[37]. Although McIlroy has not published many papers he has

been influential in the incorporation of pipeline dataflow into UNIX [53].

page 2

An example of a dataflow model which is not pipeline dataflow is
that of Kowsinski[31]. In this model the datons are tagged and so the
order in which theyarrive at a computing station is unimportant, all
that has to be done is to match on tags. Arvind and Gostelow[3] have
also investigated such a tagged interpreter. They have shown in a simple
context that the tagged model is sometimes able to compute more than the
pipeline model. (i.e it doesn't have to process its inputs using a fifo
ordering). The tagged model has also been used very successfully, by the
dataflow team of Gurd and Watson[23], as the basis of a dataflow
machine.

However in this thesis we are exclusively interested in pipeline
dataflow. Figure A shows a simple example of a dataflow net which
produces as output the infinite sequence 1,2,6,24,120,..... of

factorials.

page 3

The node labelled TIMES repeatedly awaits the arrival of a daton on both
its input arcs and as soon as both datons arrive they are consumed and-a
daton representing their product is output. The node labelled PLUS
processes similarly except that it outputs the sum of the incoming
datons.

The node labelled ONE is a constant node (having no input arcs)
that produces as output the infinite sequence 1,1,1,1,......

The nodes we have just described are all examples of nodes that
process their inputs, however not all of our nodes process their
inputs. The following nodes, also used in Figure A, are examples of
nodes that manipulate their inputs. The node labelled NEXT awaits the
arrival of its first input daton and as soon as it arrives it is
consumed. Thereafter the node repeatedly awaits of the arrival of inputs
and as soon as a daton is available it is consumed and a copy is
produced as output. The node labelled FBY (followed by) awaits for the
first daton to arrive through the input port labelled '1' and as soon as
this daton arrives it is consumed and a copy of the daton is produced as
the node's first output. Thereafter the node repeatedly awaits the
arrival of datons through the input port labelled 'r' and as soon as a
daton arrives it is comsumed and a copy of the daton is produced as
output. The node labelled DUP (duplicator) repeatedly awaits the
arrival of datons on its input arc and as soon as a daton arrives it is
consumed and a copy is sent along both output arcs.

These are by no means the only nodes we are interested in but even
with this small selection it is possible to describe interesting

dataflow nets.

page 4

Pure Dataflow

All the nodes described in the preVious examples have one property
in common, namely they all compute functions from the histories of their
input lines to the histories of their output lines. For example the NEXT
node computes the history function:

next: <ao,al,a2,....> — <al,a >

oreees
e.qg. if the sequence <1,2,3,4,....> is the entire history of the NEXT
nodes's input line then <2,3,4,....> will be the entire history of the
NEXT node's output line. In a similar way the node labelled PLUS
computes the history function:

plus: (<a0'al"">’<b0’bl'"'>) p— <ao+bo,a1+bl,...>

and the FBY node computes:

fby: (<a0'al"">’<b0’bl'b2"">) — <ao'bb'bl’b2"">

Although all the nodes we have described so far are functional

(i.e. compute history functions) this is not true for all 'pipeline'
dataflow nodes. A classic example of a non-functional node is the MERGE
node. In its simplest form the node passes on down its only output arc
the first daton to appear on either of its input arcs. However if datons
are available on both input arcs one arc is choosen at random and the
first daton in its associated queue is output. The MERGE node is

interesting because it exhibits two properties not possessed by

functional nodes. One of the properties is time-sensitivity, that is,

the rate of input of datons effects more than just the the rate of
output; it effects what is output. A functional node may allow the
input rate to effect the output rate; but it can never allow the input
rate to determine what is output. The other property possesed by MERGE

is internal randomness.

page 5

This property tells use that even if there is no time-sensitive
behaviour (e.g. MERGE begins computation with all the inputs it is ever
to receive queued on its input arcs) the inputs will still be merged in
a non—deterministic manner. It may even be the case that one of the
inputs is eventually ignored completely, thus the merge may be unfair.
Although simple nodes such as PLUS are deterministic,in that there is no
choice in how to compute, the more complex functional nodes do permit a
choice. This choice, unlike the random choice of the MERGE node, is
usually based on a strategy that ensures that the node computes the
required function. If a random strategy were used by these complex
functional nodes then the only possible adverse effect would be that the
entire output history would be an initial segment of that produced by
the correct strategy.

Functionality is extremely important because it allows us to
associate simple mathematical objects with complex operational
entities. In particular it allows us to associate with each arc in a net
a countable sequence of datons (the history of the arc) and with each
node a history function which describes the relationship between a
node's entire input/output activity.

In this thesis we shall use the term pure dataflow to describe

dataflow nets in which all the nodes are functional. Gilles Kahn[26]
was the first to study pure dataflow and he pointed out that a pure
dataflow net can be represented by a set of equations. Kahn stated that
given a pure dataflow net;such as that in figure B,it is poséible to
assign a variable to each arc in the net,and to each node it is possible

to assign a history function computed by the node.

page 6

The set of equations representing a net are generated by associating an
eguation with each output arc in the net. For example the output arc of
node NEXT in figure B (labelled by the letter g) is the result of
applying 'next' (the history function computed by NEXT) to NEXT's
single input arc (labelled by the letter f). This generates the
equation:

g = next (f)

1

plus(d,e)
fby (a,b)

dup, ()

1

dup (c) (@)
?ext(f) Zg
dup (k) (1)
multiply(g,i)
fby (h,3)
dup, (k)

I || | O T £ O S| Y | N | I 1}

bt R TQA PO QA0 T W

(The output) —

Applying this same rule to each output arc in Figure B we generate the
set of equations >h-

It is a well known result that under certain conditions a system of
equations such as Z:B has a least fixed point solution (see [3.B). The
principle that the operational behaviour of a pure dataflow net is

exactly described by the least fixed point solution to the net's

eguations we call the Kahn Principle. Although Kahn was the first to

realise this principle he never published a formal proof nor did he

define precisely the concepts of "node", "net", etc.

- page 7

One of the main objectives of this thesis is to give a satisfactory
operational semantics for pure dataflow and thus give for the first time
a satisfactory proof of the Kahn principle.

The Kahn principle has many important consequences, for example, we
can use sets of equations (such as zé) as a dataflow programming
language. This equational language, which is close to the language
Lucid([6], is above all easy to reason about because it is simply
mathematics as it stands.

An additional consequence is that we have complementary ways of
viewing dataflow. On the one hand we have simple sets of equations, on
the other we have complex operational behaviours. The equivalence of the
operational and the denotational semantics of pure dataflow has been
used by Wadge[46] to give a denotational (extensional) treatment to
dataflow deadlock. A similar approach has been used by Pilgram[40] to

analyse pure dataflow nets for gueueing properties.

page 8

The Inadequacy of current models of pure dataflow

An important objective of this thesis is to give a proof of the
Kahn principle for an operational semantics which has a claim to being
completely general. Current models of pure dataflow restrict themselves
to nets in which nodes are seqguential and deterministic.

A sequential node is, roughly speaking, one in which a node is
either computing or is blocked waiting for input. The nodes we described
earlier such as PLUS, FBY and NEXT are all examples of sequential
nodes.

A deterministic node is, roughly speaking, one in which there is no
choice in behaviour. For example the NEXT node destructively consumes
its first input and thereafter passes on any future input. The
description of the behaviour of node NEXT given in a previous section
allows no choice in the node's behaviour. However the fact that a node
is deterministic does not mean that the node is functional. An example
of a deterministic non-functional node is the node that outputs a copy
of the daton that it has just consumed from the head of the queue
associated with the nodes input arc. If the queue associated with the
node's input arc is empty the node outputs a zero. The reason that this
deterministic node is not functional is that it is time sensitive. On
the other hand as we will see later not all non-deterministic nodes are
non-functional. In fact there are many useful non-deterministic nodes
that are functional. Examples of some of these useful nodes are 'wise'
if-then-else, parallel 'or' and parallel 'and' (see IZ.A for more
details).

Since thn stated his principle there have been three publications,

one by Wiedmer [49], one by Arvind and Gostelow([3], and one by Arnold([4],

page 9

each of which attempts to give a proof of the Kahn principle. The first
of these publications is the paper by Arvind and Gostelow in which they
define a select set of primitive functional nodes and consider only nets
built up using these primitives. As the primitives are sequential and
deterministic they have no difficulty in proving the Kahn principle; for
a extremley limited context.

Almost at the same time as Arvind and Gostelow's paper Edwin
Wiedmer published, in German, his doctoral dissertation in which a
sketch proof is given of the Kahn Principle. In our opinion Wiedmer came
closest to giving a completely general proof of the Kahn
principle. Unfortunately Wiedmer's dissertation is not in English and so
has been ignored by dataflow researchers outside Europe. However a
recent translation of some of his thesis has appeared recently and this
should make his work more accesible (Wiedmer[48]). Wiedmer follows the
advise given by Kahn [26] and gives a formal description of his nodes
and nets in terms of Turing machines, interconnected by one way infinite
tapes. The reason that we stated that Wiedmer came closest to proving
the Kahn principle is that he outlines a definition of functional
behaviour which can handle more than sequential and deterministic
behaviour. The class of history functions computable by his nodes he
calls the 'approximation computable' functions. On the other hand the
class of history functions computable by the sequential and
deterministic nodes described by Kahn, he célls ‘rigidly computable'
functions. Wiedmer is on the right track in that he has broadened his
view as to what operational behaviour assocaited with a node deserves to
be called functional. However, we feel that his operational model is not

very natural as it is outlined in terms of Turing machines connected

page 10

by one way infinite tapes. 1In addition his proof of the Kahn principle
(which is not one of the objectives of his dissertation) is only given
in the form of a sketch proof.

The most Recent attempt to prove the Kahn principle appears in a
recent paper by Andre Arnold{4]. In this paper Arnold claims to give a
satisfactory operational semantics corresponding to Kahn's simple
language for parallel processing. However Arnold restricts his
operational model to sequential nodes that produce as much output as
they consume input. Once again the restriction of the operational model
to this limited context means that there is little difficulty in proving
the Kahn principle. The inadequacy of Arnold's model is demonstrated by
the fact that the simple NEXT described earlier can be realised in
Kahn's language but cannot be realised in Arnold's model. (We have more
to say about this restriction injl.F)

Of the three works mentioned Arnold's is by far the most formal, he
gives precise defintions of nodes, nets, node computations, net
computations etc... In his operational semantics a node is defined in
terms of a seqguential transducer of infinite words. Although the
transducers described may be non-deterministic, it would seem that in
his limited proof of the Kahn principle only deterministic transducers
are used.

We argue that previous operational models of dataflow are not truly
distributed as underlying the disﬁributed nature of these dataflow
models are sequential and deterministic nodes. In addition previous
models lack modularity; in that there are history functions computed by
nets that cannot be realised by sequential nodesl(see j2.A). Gilles

Kahn(26] pointed out that in pure dataflow top down—design finds

page 11

mathematical justification. The reason given by Kahn is that the
decision to implement a history function by a single process or a
network of processes can be delayed without introducing side effects
into the overall system design. Any formal operational model of pure
dataflow wishing to allow top down—-design cannot restrict itself to

sequential and deterministic nodes.

page 12

Our Operational model and a completely general Proof of the

Kahn Principle

In this thesis we prove, for the first time, the Kahn principle in
its most general context. In our model we allow functional nodes to be
both non-sequential and non-deterministic.

A non-sequential node is, roughly speaking, one which is capable of
performing other activities (such as output) while waiting for input -
in other words, it is essentially able to do more that one thing at the
same time. A very simple example of such a node is the 'double identity'
node. This node has two inputs and two outputs and echos the first input
on the first output, and the second input on the second output. Such a
node cannot be sequential because it cannot allow both outputs to 'run
dry' when only one of the inputs does so. This ability to compute while
waiting is essential if our model is to be in any sense general.

To give directly a general operational semantics for pure dataflow
is extremely difficult. The reason for this is that we require nodes to
be completely general and at the same time we regquire them to be
functional. This combination of generality and functionality is very
difficult to capture in one step. In this thesis we solve this problem
in two steps. As a first step we give a formal operational semantics to
the whole of pipeline dataflow. Although this means we include non-
functional nodes it does give us the generality we require. The second
step is to give a precise definition of what it means for a node to
compute a history function. We are then able to use our definition of
functionality to select that subset of pipeline dataflow that deserves

to be called pure dataflow. Using this approach we are able to describe

page 13

any functional node no matter how bizzare its behaviour.

Besides Wiedmer others who have studied pure dataflow have given
restricted definitions of what it means for a node to compute a history
function. Arvind and Gostelow{3] consider only nodes which are all
obviously functional, completely avoiding the question. On the other
hand Kahn[26] assumes (without proof) that the processes definable in
his simple language are all functional. Arnold{4] takes a different
approach and associates with each of his nodes a function from the set
of possible input histories to the powerset of the possible output
histories. In addition he proves that the deterministic nodes compute
history functions that are continuous in the sense of Kahn{26].

In this thesis we present for the first time a completely general
definition of what it means for a node to compute a history
function. Our definition uses a new approach based on infinite games
(see [3E).

In our model we allow functional nodes to be non—-deterministic and
non-sequential and as such our model has a claim to being completely

general. In particular our nets have what we call the Encapsulation

property in that any network of interconnected nodes can be replaced in
any dataflow context by a single node having exactly the same
input/output behaviour. In other words our model is modular in that it
allows top down-design (none of the previous models posseses the
modularity property). In addition our model is complete in the sense
that any continuous history function can be realised by some node.

As our operational semantics is that of pipeline dataflow and our
definition of node functionality is completely general our proof of the

Kahn principle has a claim to be in some sense complete.

page 14

Using a functional programming approach to extend

pure dataflowv

The equational dataflow programming language referred to earlier is
limited in that the programs are built from a finite set of equations in
which the left hand side of every equation is a variable and the right
hand side is a finite expression involving variables, constants and
history functions. A typical program is:

x = fby (1 , x+1)

y = next (x)
z = fby (1 , y*z)
output = z

This set of equations (program) is related to the graph in Figure
A. The least fixed point solution to the equations gives:
x is <1,2,3,4,.....>
y is <2,3,4,5,.....2
z is <1,2,6,24,120,....>
output is <1,2,6,24,120,....>
The infinite sequence corresponding to the variable output is exactly
the output produced by the net in Figure A.
To allow the user to develop programs in a structured way we extend
this 'simple' language by allowing equations defining functions,
including recursive definitions. Some typical user defined functions

(UDF's) are :

]

first (x) fby (x, first(x))

f (x)

Ll

if x leg 1 then 1 else x*f(x-1) fi
The implementation of this extended language (which is similar to

Structured Lucid[6]) involves either dynamically growing nets or

page 15

(notionally) infinite nets (but still pure datflow). The methods of
this thesis extend naturally to such nets and permit us to give, for the

first time, a proof of the correspondingly extended Kahn principle.

page 16

Further extensions and refinements

In our formal model of pipeline dataflow, a node is defined to be a
non—deterministic automaton. In general it is very difficult, simply by
looking at the set of transitions associated with a node, to say whether
or not that node is functional. As possible refinements to our
operational model we look at some intersesting node transition
properties which may guarantee node functionality. One of these
properties is the simple one step Church-Rosser like property. If a node
posseses this property the it is guaranteed to be functional. (note:
note all functional nodes have this property). Other interesting cases
are based on the transition relation associated with a node being in
some sense 'monotonic'.

A more ambitious extension is to extend the denotational semantics
to handle a broader class of nodes and nets (i.e not just pure
dataflow) . One such extension involves changing the basic domain of
histories by introducing a special kind of object called a "hiaton" (
from "hiatus" meaning a pause; the term is due to W. Wadge and
E. A. Ashcroft). A hiaton can be thought of as a unit of delay that
(notionally) travels along with the ordinary datons and allows a node to
produce something regularly even if it has no real output. Hiatonic
streams code up timing information and they can be used to handle nodes
and nets which are time senstive. Frederic Boussinot in his recent
Doctorat D'Etat, entitled "Reseaux de processus avec melange equitable:
une approache du temps reel", presents a denotational semantics based on
hiatonics, for an operational semantics which combines the sequential
model of Arnold[4] and a fair merge operator. Thus Boussinot's

denotational semantics describes a much larger

page 17

class of operational behaviours than does the denotational semantics of
Kahn[26]. Even more recently, David Park[41] has found a denotational
semantics that makes use of the hiaton to describe the operational model
corresponding to a combination of our model of pure dataflow and merge
operators that behave "fairly" (i.e. we call these nets F-nets). The

Park Principle states that the operational behaviour of an F-net is

exactly described by the de-hiatonised set of solutions associated with

the F-net's associated set of hiatonised relations.

page 18

Mathematical Notation

In this thesis we use a particularly simple representation of the
natural numbers due to Von Neumann, it has not gained complete
acceptance but we find it extremely convenient. The number zero is the
empty set, the number one is the set { O },.. in general the number n
is the set { 0,1,2,...,n-1 } of all smaller numbers. This process of
constructing numbers goes on endlessly however, for the purposes of this
thesis we are interested in only the numbers up to the first infinite
ordinal namely:

W(=1{0,1,2,3,4,5,... 1.
Thus (J) represents the natural numbers.

Besides the concepts of sets and numbers two other important
concepts are those of a relation and a function. A relation R between
two sets A and B is represented by a subset (possibly empty) of the set
of all ordered pairs (a,b) of elements a and b from A and B
respectively. If the relation R is such that
Ya€Ad!l beB (a,b) €R then R is said to be a function. Thus a
function is a special kind of relation.

The domain of a function f (written dom(f)) is the set of all left
hand components of elelments of f i.e { a | (a,b) € £ }. Similarly
the range of a function f (written rg(f)) is theset { b | (a,b) €
f }. Notice that the empty set is also a function (the empty
relation). It is the only function whose domain and range are both
empty. Note that here and throughout this thesis we use the
conventional set builder notation {...|... }.

Given two sets A and B, the set BA is the set of all functions from

page 19

A to B.

Sequences in our notation are (by definition) simply functions.
The finite sequences over a set A (= Sg(d)) have the natural numbers as
their domain thus:

sa@) = { 2% [kew }

The infinite sequences over a set A have the ordinal () as their domain
i.e. AQ is the set of all infinite sequences over the set A. In this
thesis we are especially interested in sequences over the natural
numbers in particular we refer frequently to the set of finite and
infinite sequences of natural numbers. Thus for notational convenience
we define this set to be

Ka (=8qg()) L)L)Q)) Since a sequence is a function the length of a
sequence is its domain. For example the sequence

<1,2,7,9> is the function

{ <0,1>,41,2>,<2,7>,43,9> }

and its domanin is thus { 0,1,2,3 } which we know to be the natural
number 4, the length of the sequence. The elements in the range of a
sequence are called the components of the sequence. Since sequences are
just functions, the sequence indexing operation is just function
application. For example the lOth component of the sequence s is simply
s(10). Often it is convenient to use the conventional subscripting $107
we therefore adopt the convention that subscripting denotes function
application. However, we still use the functional subscripting since it
is useful in avoiding multiple levels of subscripting. For example:

instead of sij we write s(i)j

If s is a segunce and n is a natural number, the function sin (s

restricted to n) is simply the initial segment of s of length n (or

page 20

simply s itself if n is greater than the length of s).

In writing expressions denoting sequences we will use a seguence
builder notation which is similar to the set builder notation except
that angular brackets are used instead of curly brackets. Thus <0,1,2,3>
is a sequnce of length 4 and <i | i € (> is the ordered sequence of
natural numbers. This second form of the sequence builder notation is
just a variation of X -notation; the seguence is the value of the

X —expression

xie(.i

Sometimes we will use the direct form together with triple dots to
denote an infinite sequence:

<2,4,6,8,10,...>

We are assuming that the first few values given are sufficient to make
out the pattern for the rest of the sequence. We also use the triple dot
notation for finite sequences

<So'sl"“’Sj—l’sj+1""’sn—1>'

In our notation there is no requirement for a sequence to be
represented using angular bracket notation. Often we can refer to a
sequence by its name alone. Thus instead of writing

<SO'Sl""> or < éi | i € > we simply write s.
If s is a sequence and 1 is a natural number, the function
s}i (s drop i) is simply the sequence s with its ith component
dropped. For example <l,2,3,4>+2 is the sequence <1,2,4>.
If d is some expression then the function
s1id (s insert d at i) is simply the seguence s with the value of
expression d inserted after the ith camponent. For example

<1,2,3,4,5>4,99 is simply <1,2,3,4,99,5>

page 21

Note in general
(st;)4, g8, = (st 1X)4; = s
If s and t are finite sequences then the function
st = <SqreeerSy qrtgreserty 1>
where dom(s) = n and dom(t) = m
In addition to the above notion of sequence we add the generalised
notion of seqguence in which the indexing set is not reguired to be a
natural number or (). These generalised sequences are called "families"
and can be thought of as labelled sets. It should however be apparent
that a family is nothing more than a simple function, the domain of
which is the indexing set. In this thesis we use the notion of a
"family" in conjunction with subscripting.
Let f be a family over elements of a set D indexed by the set I
(in other words f € DI)
Let i€I andd €D
the function
f/i (f drop i) is simply the set { (x,y) | (x,y) € fand x # i }
the function
£/, @ (£ add (i,d)) is simply the set { (i,4) } O £/,
Note
(f/i)/if(i) = (f/i)/if(i) =f
To aid the reader bear in mind the nature of particular objects we
introduce some notatonal conventions.
We will generally use the variables:
i,3,k,n,m for natural numbers.
s,t,u,v,w,... for finite sequences.
o,B,5,... rfor infinite sequences
A,B,C,D,... for sets

page 22

Chapter 1

A Review of Related Work

In this chapter we shall briefly describe what we consider to be
important models of pipeline dataflow. One of the main aims of this

chapter is to assess to what extent the various models relate to the

following topics:

i) A completely formal operational semantics for pipeline

dataflow.

ii) A completely general.definition of what it means for a pipeline

dataflow node to compute a history function.
iii) A proof of the Kahn principle in a completely general context.

A. Computation Graphs

The first paper to attempt to formalise pipeline dataflow was a
paper by Karp and Miller[28] in which they refer to dataflow nets as
computation graphs. A computation graph is defined in terms of a
directed graph the arcs of which are unbounded FIFO queues and the nodes
of which are determinate computing stations.

In this graph based model of computation a node is an operator that
computes after a pre-determined number of operands (i.e. datons) have
arrived along the nodes input arcs. Computation involves the removal of

the operands and the production of a number of datons on the operators

page 23

output arcs. In the networks described by Karp and Miller each node
computes only a finite number of times. Nodes that compute ad infinitum
are considered to be in some sense faulty. This design decision is not
surprising since at the time that Karp and Miller developed their
computation graphs conventional programs which failed to terminate were
considered to be incorrect; correctness being defined as partial
correctness plus termination.

A node in the Karp and Miller model is associated with a single
valued function which determines for each computation step the
relationship between a node's inputs and outputs. A node with n-input
arcs and m-output arcs is associated with an input/output function of
the following form:

I (n-1)

£ % x0 ©) P (m-1)

-> QP X ooe X
where i€n the natural number I(i) denotes the number
of datons required by input arc i for each
computation step.
j €m the natural number O(j) denotes the number
of datons produced by output arc j for each

computation step.

(Remember that throughout this thesis we are assuming that datons are of

type natural number).

Thus in the Karp and Miller model a node is a machine that repeatedly
computes its associated input/output function. As long as the node is
supplied with the appropriate inputs the node will produce the required

outputs thus the node is able to compute ad infinitum if given inputs ad

page 24

infinitum. However in all the examples given by Karp and Miller the
entire input activity of a node is always finite.
The following is an example of a Karp and Miller operator; it has

two input arcs, one output arc and is associated with the input/output

function:
h: O x % -> ()
vaew be W hiab) =fb, + by ifa # O
bb X bl otherwise

This node awaits the arrival of a single daton on its Oth

input arc
and two datons on its ISt input arc. Upon arrival of the required inputs
they are consumed and a single daton is sent on as output. If the daton

th

that arrives along the O~ input arc is non-zero then the value of the

daton output is the sum of the two datons that arrived along the node's

st input arc; if the daton to arrive along the Oth input arc is zero

1
then the daton output is the product of the two datons that arrived
along the nodes IStinput arc. (Thus the claim of Adams [2] and others
that data dependent decisions are not allowed in this model is not
completely correct).

As well as allowing data dependent decisions such as in the last
example many other useful nodes can be realised in this model e.g. plus,
times ...etc.

Now that we have briefly described the Karp and Miller model let us
see how the model relates to the issues set out in the introduction to
this chapter.

The first issue described is that of a completely general model of

pipeline dataflow. It is not difficult, even from our brief description

of this modei; to think of nodes that cannot be realised. An example of

page 25

such a node is the WHENEVER node which requires the arrival of a daton
on both its input arcs and passes on the daton to arrive on its Oth
input arc if the daton to arrive on its ISt input arc is "true"
(i.e.non-zero) and produces no output if the daton to arrive on the lSt
input arc is "false". Thus nodes which vary the number of datons they
output depending on the value of the datons input are not realisable in
the Karp and Miller model. (It is this form of data dependent decision
that is referred to by Adams{2] and others).

However the main limitation of the Karp and Miller model is that
each computation step requires a fixed number of inputs and produces a
fixed number of outputs. This restriction means that many useful nodes
cannot be realised in this model and thus the model cannot be considered
as a completely general model of pipeline dataflow.

The second issue is that of a precise definition of what it means
for a node to compute a history function. We feel that it is not
possible to relate this particular model to this particular issue. The
reason for this is that this model was developed before Kahn{26]
developed the notion of nodes computing history functions. However it
is still possible to think of the entire output activity of a node as
being a function of the entire input activity and in this respect the
nodes in this model are all functional (i.e. they all compute a history
function). The reason for this is that each of a node's computation
steps is associated with a single-valued input/output function and thus
the entire input activity is related to the entire output activity by a
history function derivable from the node's input/output function. This
means that we can think of the Karp and Miller model as the first model

of pure dataflow.

page 26

The third issue mentioned earlier was a proof of the Kahn
principle. Again we feel that it is not possible to relate this
particular model to a proof of the Kahn principle. The reason is again
that the Kahn principle had not been formulated when Karp and Miller

designed their computation graphs.

page 27

B. A model of parallel computation with dataflow seguencing

The next significant development to follow the Karp and Miller
model was the dataflow model described by Duane Adams in his Ph.D
dissertation[2]. One of the interesting goals of this dissertation was a
graphical programming language for dataflow. An important feature of
this language was that nets could be named and used as nodes in other
nets. This feature of the language is similar in certain respects to the
declaration of procedures in a conventional programming language. In
textual programming languages such as Pascal and Algol it is meaningful
for a procedure declaration to contain a reference to itself. In a
similar way Adams allows a net definition to contain references to
itself. The user of the graphical language is asked to think of a net
that is recursively defined in terms of dynamically contracting and
expanding net. In Chapter 5 we will deal with recursively defined nets,
however we think of these recursively defined nets as infinite nets in
which only a finite part is ever active.

The primitive nodes described by the Adams model are divided into
two classes the r-nodes and the s-nodes.

The r-nodes are a simple extension of the Karp and Miller nodes
which allows operators to produce no output for selected inputs. To be
more precise an r-node is a single valued input/output function which is
permitted to return @ (the empty output) for certain inputs. A node
that makes use of this extension is the WHENEVER node described in the
previous section. This node is not realisable by any operator in the
Karp and Miller model but in the Adams model it is realisable in terms

of the following r-node:

page 28

The single valued function associated with each computation step of the
WHENEVER node is the following:
wvr @ (O x () —-> 0
s.t. Vabe() wr(a,b) =4b if a #0
{Q) otherwise
where @ denotes the empty output

Although nodes like WHENEVER can be realised by r-nodes it is not
difficult to think of more complex nodes that cannot be realised in
terms of r-nodes. An example of such a node is the node with one input
arc and one output arc that repeatedly awaits the arrival of a daton on
its input arc and as soon as it becomes available consumes it and
produces as output n-copies of the consumed input, where n is egual to
the value of the consumed input. For example if the node receives as
input a daton representing the number 4 then four datons each
representing the natural number 4 are output. The fact that the node
just described varies the number of datons output depending on the value
of the daton input means that it cannot be realsied by any r-node. In
fact the node just described cannot be realised by any node in the Adams
model.

The second class of primitive nodes are what Adams describes as the
s-nodes. These nodes are able to compute by ignoring some but never all
of their inputs. An example of such a node is the ALTERNATE merge node
which has two input arcs and one output arc. This node begins
computation by ignoring its ISt input arc and passing on the daton to
arrive on its Oth input arc, after which it ignores its Oth input arc
and passes on whatever arrives on its ISt input arc. The node continues
merging the éatons from alternate input arcs ad infinitum, hence the
name ALTERNATE merge node.

page 29

In the Adams model an s—-node has a boolean flag associated with
each of its input arcs. Initially the arcs of an s-node are either L
(locked) or U (unlocked), if an arc is locked it means that no input is
expected or if input does arrive it is ignored. If an arc is unlocked
then input is expected on that arc and until input arrives the node is
blocked waiting for input. Thus an s-node with n—-input arcs is
associated with a vector of boolean flags, one for each input arc. This
vector is called the nodes input status. For example a two input s—node
may have an initial input status of (U,L) which means that the nodes Oth
input arc is initially unlocked and that the ISt input arc is initially
locked. S-nodes repeatedly await for a daton to arrive on each of their
unlocked input arcs; on arrival of the required inputs, the nodes
compute, erasing the required inputs, possibly outputing datons on some
or all output arcs and possibly changing the current input status. An
s-node with n-input arcs and m—output arcs is thus associated with a
single-valued input/output function of the form:
s: (OB H x (Lo hH™ = (O Qg H™ Lo HP
where @ denotes either the empty output or the empty input.
The only restriction to this input/output function is that it is not
permissible to have an input status in which all input arcs are locked.
The single valued function associated with the ALTERNATE merge node
is :
alt : (OB H2x (LU= (PO Og nxLun?

s.t.%¥Ya,b € alt(a,d,u,L)

(a,L,U)

alt(glblLlU) (bIUIL)

where the initial input status is (U,L)

page 30

Even with this more general model it is not difficult to find nodes
which cannot be realised. One such node is the NEXT node which consumes
its first input and passes on any future input. The reason why nodes
like NEXT cannot be realised is that their behaviour cannot be described
by a unique single valued function.

Let us now look at how the Adams model of dataflow relates to the
topics described at the beginning of the chapter.

The firét topic is that of a completely general model of pipeline
dataflow. As we have already seen there are many nodes that cannot be
described by the Adams model. This means that we cannot think of the
Adams model as a completetly general model of pipeline dataflow.

The second topic is that of a precise definition of what it means
for a node to compute a history function. With respect to this topic the
Adams model is identical to the Karp and Miller model in that they were
both developed before Kahn[26] came up with the idea of a node computing
a history function. However, it is still possible to think of the
entire output activity of an s-node or an r-node as being a function of
the entire input activity. In other words the nodes in this model are
functional. Given any particular node in the model the history function
associated with the node is derivable from a node's single valued
input/output function. Although we do not provide a proof it is not
difficult to see that the Adams model is another pure dataflow model.

The third topic that was mentioned in the introduction to this
chapter was that of a proof of the Kahn principle. Again with respect to
this topic the Adams model is identical with that of Karp and Miller in
that both models where developed before Kahn[26] formulated the Kahn
principle.rfherefore we see no point in trying to relate this model to

the last topic.

page 31

C. A simple language for parallel processing

One of the most significant contributions to the development of
pipeline dataflow was the 1974 IFIP paper of Gilles Kahn[26]. The reason
for its importance is that Kahn gives for the first time a denotational
semantics for an important subset of pipeline dataflow. In addition Kahn
describes an operational semantics in terms of a textual dataflow
language. In our opinion Kahn's textual language can be thought of as a
generalisation of the graphical dataflow language of Adams.

The model of computation underlying Kahn's language is based on the
directed graph the nodes of which are continuously operating computing
stations and the arcs of which are unbounded fifo queues.

The computing stations in the Kahn model are much more general than
in previous models. In particular a computing station has a possibly
unbounded amount of internal memory with which it is able to remember
all previous inputs.

Kahn was also the first to think of dataflow programs as
continuously operating. Designers of previous models restricted
themselves in that their dataflow models were based on the traditional

notion of a correct program terminating.

page 32

Kahn's textual language is similar to ALGOL but with the addition
of a few extra features. These new features are based on the process
declaration, which is used to define a computing station. The process
declaration is similar to an ALGOL procedure declaration except that in
the heading of the process we declare how it is linked to its outside
world. In other words the input and output arcs are given formal names
(similar to formal parameters of a procedure). The body of a process is
a usual ALGOL program except for the use of two primitive procedures
called PUT and.GET. The primitive procedure PUT(E,A) places a daton
whose value is equal to the expression E onto the output arc named
A. The primitive function GET(A) returns as as its result the value of
the daton at the head of the fifo gueue associated with input arc A.
Nothing can ever prevent a computing station from placing output on an
output arc but if a GET(A) is invoked and the queue associated with
input arc A is empty then the computing station is forced to wait until
a daton shows up.

The NEXT node which was not realisable in the previous models is
defined by the following Kahn process:

process next (integer in x; integer out y);

begin

integer temp;

temp : = GET(x);

while true do PUT(GET(x),y):
end;

Unlike previous models of pipeline dataflow the Kahn model allows
nodes to have_nemory. A simple example of such a node is one that

outputs the running total of the datons input. In Kahn's textual

page 33

language this would be written as follows:
Process runtoatal (integer in x; integer 6ut y)i
begin

integer sum;

sum : = O;

repeat
sun : = suntGET(x);
PUT (sum,y) ;

end;

end;

Even with these few examples we can see that Kahn's language is
extremely powerful. In fact in a later paper with McQueen{27] they look
more closely at an implementation of this language based on co-
routines. In the 1974 IFIP's paper Kahn points out that all processes
definable in his language are functional (something he does not prove).

Some of the restrictions imposed by Kahn on his model are that
computing stations (i.e. the nodes) have to follow a sequential program
and that at any given time a computing station is either computing or
waiting for input on one of its input arcs but not both.

Now that we have briefly described Kahn's textual language let us
look at the operational model underlying the language and see how this
model relates to to the topics listed in the introduction to this
chapter.

The first topic to consider is whether or not the operational model
underlying Kahn's language is a completely general model of pipeline

dataflow. Since the nodes in this model must be sequential then the

page 34

underlying model cannot be completely general. In fact it is not
difficult to think of nodes that are functional but cannot be realised
in Kahn's language. A simple example of a functional node that cannot
be realised in Kahn's textual languagé is the DOUBLEID node. This node
has two input arcs and two output arc and passes onto its Oth output arc

th input arc and passes onto its ISt output arc

whenever appears on its O
whatever appears on its ISt input arc. If we try to code this up in
Kahn's language we get the following process:
process doubleid(integer in x,y; integer out p,q);
begin
repeat
PUT (GET (x) ,p) ;
PUT (GET (y) ,q) ;
end;
end;

If the process is always given an infinite number of inputs on both
input arcs then the node produces the correct output. However if one of
the input arcs dries up then the whole node is blocked waiting for
inputs. Thus the process is unable to compute the general double
identity function (i.e. identity: (Ka2—>Ka)2).

 We must therefore conclude that the Kahn model is not suitable as a
completely general model of pure dataflow . This is not surprising since
as we explained in chapter O the topics of generality and functionality
are difficult to capture directly. Thus the operational model underlying
Kahn's textual language is not a completely general model of pipeline

dataflow nor is it a completely general model of pure dataflow. However

the Kahn model can be thought of as a compleletly general model of pure

page 35

dataflow in which the nodes are are sequential and deterministic.

The second topic is that of a precise definition of what it means
for a computing station to compute a history function. Unfortunately
Kahn never defined precisely the concepts of "nodes", "nets", etc. and
as a result never gave a formal definition of what it means for a node
to compute a history function. In his IFIP's paper he used the fact that
all processes definable in his language compute history functions but he
never gave a proof of this. In particular he does not state whether or
not processes may have formal parameters that are called by name. We
assume that these are not allowed as otherwise processes could have side
effects and hence not be functional.

In chapter O we briefly described what is meant by the Kahn
principle, we now examine to what extent Kahn proved his principle. In
fact it turns out to the surprise of many computer scientists that Kahn

never published a formal proof of the Kahn principle.

page 36

D. An asynchronous interpreter for the dataflow language DDF

The first published paper to attempt a proof of the Kahn principle
was that of Arvind and Gostelow[3]. In their paper they describe an
interpreter called the queued interpreter (QI) which is thought of as a
machine for the excecution of programs for an early dataflow language of
Jack Dennis[19]. This language is referred to by Arvind and Gostelow as
DDF (Dennis DataFlow).

A program in DDF is, roughly speaking, a directed graph whose arcs
are unbounded fifo queues and whose nodes are choosen from the following

5 prﬂnitives:

3 The results of all firings
7 4 of a function or predicate
2 _3 3] _ operator under Q7.
f =N\— f
£(7,4)
f(2,3)
4 The results of a gate
2 . if-true operator, where
3 ff, tt denote false and true

——(T) A\~ ——(T) respectively.

4 +4 The merge operator
1 3 4

T Hhet h

page 37

The D-Box operator
(produces an initial daton)

3 D(7) N\~ D(7) |

~N W N

) o

[*__apply A\ H[‘__apply The apply operator

G(3)
F(4)

According to Arvind and Gostelow dataflow is based upon two
principles :

(a) An operator fires (produces an output) whenever the
inputs required by that operator are present.
(b) All operators are functional and produce no side effects.

This view of dataflow is exactly the same as that of Karp and
Miller[28] (i.e. each set of inputs is required to produce a set of
outputs) and so many of the remarks made about the Karp and Miller model
(see section A) also apply to this model.

Let us now examine to what extent this model relates to the issues
set forth in the introduction to this chapter.

The queued interpreter just described is based on five primitive
operators and as such we cannot think of this model as a completely
general model of pipeline dataflow. (i.e. there are infinitely many pure

dataflow nodes).

page 38

The 5 primitive nodes used by Arvind and Gostelow are all obviously
functional and so the more fundamental problem of defining what it means
in general for a node to compute a history function is completely
avoided.

The proof of the Kahn principle given by Arvind and Gostelow is not
pPresented in a very formal way. For example there is no precise
definition of a dataflow net computation. Presumably the assumption is
that the model is so simple that no foraml definition of computation is
hecessary. Moreover even if it was presented formally their proof is
only for nets built using the 5 primitives described earlier. Thus the

proof of the Kahn principle is for a very limited context.

page 39

E. Computing with infinite objects

A second attempted proof of the Kahn principle is outlined in the
Ph.D. thesis of Edwin Wiedmer[49]. In this thesis Wiedmer is interested
mainly in exact computations over the real numbers. However in the
second part of his thesis he describes some of the theoretical issues
underlying computation over finite or infinite objects. Using infinite
sequences of natural numbers to represent the reals he describes
machines which compute operations over these infinite objects (i.e.the
reals). Each machine reads in natural numbers one by one from its input
arcs and produces one by one natural numbers on its output arc. The
entire history of the machine's input activity denotes the real numbers
given to the machine as input and the entire history of the machine's
output activity, the real numbers produced as output. More complicated
operations over the reals often require a network of machines. Wiedmer
thinks of these networks as dataflow nets the arcs of which are
unidirectional communication lines and nodes of which are continuously
operating computing stations.

Wiedmer follows the advise of Gilles Kahn{26] and defines nodes as
Turing machines and arcs as one way infinite tapes upon which a Turing
machine reads and writes. A node with n input arcs and one output arc is
defined to be a Turing machine with n input tapes and 1 output
tapes. The Turing machine has a separate read head for each input tape
and a separate write head for the output tape. Once an item has been
read from a square on an input tape the read head is forced to move to
the next square away from the Turing machine. (Initially all heads are

over the square nearest the Turing machine). In a similar way once a

page 40

write has been performed the write head moves to the next square away
from the Turing machine. The diagram illustrates a computation step for

a one/input one/output Turing machine:

2 :
6 6 | «—
3| < 3
1 1

T.M. A~ T.M.

2 2
<« T4
—|

In addition a node (i.e.Turing machine) is able to use an auxiliary
tape (not shown in the diagram) onto which it can record all the inputs
it has received and all the results of intermediate computations.

Now that we have given a brief description of the model let us
relate it to the issues listed in the introduction to this chapter. The
fact that Wiedmer uses Turing machines as nodes means that his nodes
are, at least in terms of computability, the most general form for a
node. However we feel that Turing machines are not a very natural model
of dataflow. Nodes are no longer simple black boxes rather they are
Turing machines together with those portions of the tape which have been
read or written on. Arcs are no longer pipes along which datons flow but
rather they are infinite one-way tapes along which a read or write head
travels. Thus the model of Wiedmer is not a very natural model of
pipeline dataflow.

page 41

One of the most important aspects of Wiedmer's work is his
definition of what it means for a node (Turing machine) to compute a
history function. He is the first to realise that Kahn's definition of
node functionality, based on processes that communicate using only PUT
and GET primitives, is not compeletely general. In fact Wiedmer refers
to functions computable by Kahn's process as 'rigidly computable
functions'. The function f(a,b) = max{ a,b } where a,b are finite
sequences of natural numbers; is given as an example of a function not
camputable using the simple language for parallel programming described
by Kahn.

Wiedmer refers to functions computable by his machines as
'approximation computable functions'. What Wiedmer means by this is that
Turing machines are allowed to compute given only an approximation to
the input i.e. even when inputs are absent. This means that his Turing
machines are able to realise nodes such as the DOUBLEID node, in fact
any non-sequential node may be realised.

Although Wiedmer's definition of node functionality is more general
than that of Kahn we still feel that it is not an adequate
definition. The reason for this is that Wiedmer's Turing machines are
determinislic and we feel that a completely general definition of node
functionality should include nodes that are not only non-sequential but
also non—determinislic. The reason we say this is that a completely
general defintion of node functionality should be able to describe any
node that computes a history function no matter how bizarre its

behaviour is.

page 42

The remainder of Wiedmer's work is extremely sketchy; for example
there is no definition of a network of machines nor is there a
definition of a net computation (this is not surprising since these
issues were not of major importance in Wiedmer's work). Towards the end
of part two of Wiedmer's thesis we find a schetch proof of the Kahn
principle which is based on nodes being Turing machines, the proof is

not a very convincing one.

page 43

F. Semantique des processus communicant

Recently Andre Arnold[4] published a paper in which he attempts to
prove the Kahn principle. The author claims that the main goal of his
paper is to give a satisfactory operational semantics corresponding
exactly to Gilles Kahn's denotational semantics for pure dataflow
(i.e. the Kahn principle). However there seems to be a substantial error
in this work in that it is not general enough to cover all Kahn's
networks.

Operationally a node in the Arnold model has the following
properties:

i) they have a finite number of input and output arcs.
ii) each input arc is an unbounded fifo queue.
iii) each node has an unbounded amount of internal memory. (it
is thus able to remember all previous inputs).
iv) to function each process must acquire datons on certain
input arcs, if these are not present the process is blocked

waiting for input.
These properties are all included in the following formal definition.

F1 Definition: A process with n-input arcs and 1 output arc is a

tuPle <zor cse rzn rqu761R>
where

Sor e rS, are possibly infinite alphabets such

that 5o 1is the alphabet of

the output arc and p2l} 1<i<n

h

is the alphabet of the it input arc.

page 44

'Q is a possibly infinite set of states
% € Q the initial state

6:Q—>:P([n]) where [n) = { 1,...,n }
R is a set of rules

The mapping & associates with each possible state the set of
numbers that denote the input arcs on which the process must receive
inputs. Thus mapping & has a similar function to the input status
flags of Adams.

The set of rules describes for each state: the datons necessary to
enable the node to compute and also the activity that should be
performed when computation is enabled. This activity may involve
changing state and outputing one or more datons on the output arc. The
following is a formal definition of a rule:

F2 Definition: each rule is of the form
<q;u1,...,un>—><u;q'>
with g, g' € Q
A *
and u € > 2o
(Eg is the set of finite sequences
over zb)
u; €3, if i € 6(q)
u; =/\ (empty sequence) if i ¢ 8(q)

The formal operational semantics given by Arnold are extremely
precise. In particular he gives precise definitions to concepts such as
nodes, nets, computation sequences, .. etc. As can be seen from the
last definition Arnold allows nodes to be non—deterministic in that more
than one rule may have the same left hand side. Although non-

deterministic‘nodes are allowed in this model they are never used to

page 45

describe nodes that compute history functions. Thus the nodes which
compute history functions are sequential and deterministic.

The substantial error referred to earlier is to do with Arnold's
definition of a node. To be more precise Arnold requires his nodes to
produce at least as much output as they receive input. This means that
essential filter nodes like NEXT and WHENEVER that produce less output
than they receive input cannot be realised as Arnoldian processes. These
simple filters can certainly be realised as Kahnian processes and thus
Arnold's claim that his operational model is equivalent to Kahn's is ,
certainly false. The reason that Arnold requires that his nodes compute ‘ID
at least as much output as they receive input is that he requires his
nodes to compute history functions with a special property. To
understand this property we must describe a metric space over infinite
sequences of natural numbers in which the distance between two objects
is defined to be 1/N where N is the amount of agreement over the initial
segments of the two objects. The fact that Arnold requires his nodes to
produce at least as much output than they receive input corresponds to a
node computing a contraction mapping on the metric space described
above. It is a well known result that under certain conditions (
contraction mappings give unique fixed points. Arnold is able to use
these facts in some of his proofs.

Let us now relate Arnold's model to the topics set out in the
introduction to this chapter.

Already we have seen that there are many useful functional nodes
that cannot be realised as Arnoldian processes. Thus Arnold's model
cannot be thought of as a completely general model of pipeline

dataflow.

page 46

As a result of the restriction to the definition of node we find
that the definition of what it means for a node to compute a history
function is correspondingly restricted. The following is the definition
of what it means for a node to compute a function overs histories. This
definition is imporﬁant because it is the first to formally define what
it means for a node to be functional. Arnold uses two versions of this
definition. The first is for processes that are sequential and
deterministic, in this case the function ; is a history function. The
second is for processes that are non-determinate and sequential, in this
case the function ; is a set valued function and this is the version of
the definition shown below.

F3 Definition: The function
s x>k)
associated with P (P a process) is such that
;(Vl,...,Vh) is the set of results of the

() —derivations starting from the initial

configuration < A ,q O’Vl""’vn>'

Note that if the process is deterministic then there is only one
possible () —derivation starting from the initial state. In our opinion
this definition is restricted in that it assumes that a node always
begins computation with infinite amounts of data on all its input arcs.
We feel that this assumption is not realistic because in any real system
the input arcs may be empty to begin with and even at intermediate
stages in the computation. We are thus led to conclude that Arnold's
definition of node functionality is not completely general since he does

not allow non-deterministic nodes to compute functions.

page 47

The third topic listed in the introduction to this chapter is
concerned with proving the Kahn principle. Of all the published proofs
of the Kahn principle the most precise is that of Arnold. However since
Arnold's model is unable to describe nodes that produce less output than
they receive input the proof of the Kahn principle is only a simple case
of the more general Kahn Principle.

Of all the models of dataflow we have surveyed the model of Arnold
is the closest to ours, although we developed our models separately they
are surprisingly similar in many ways. For this reason we conclude this
section by describing a few of the important definitions and ideas
contained in Arnold's work. We begin by looking at an example of a
non-deterministic process: Example Let P be a process with n-input arcs
and 1 output arc defined by

Tor1 Q%6 B>

where 5, =5, = { a,b }
Q=1{9y9.,9}

S5(@=1{1}V g e
and the rules are:
<q0;a> -> <a;q1>
<qb;a> -> <b;q2>
<qb;b> -> <b;q2>
<ql;a> -> <a;ql>
<q2;a> -> <a;q1>
<q2;a> -> <b;q2>
<q2;b> -> <b;q2>
This is an example of a non—deterministic process that produces

different results depending on what infinite input sequence is

page 48

supplied. For example if a W is supplied as input then either a W or
b W will be output. If b Q is supplied as input then b Q is produced
as output. Of all the work we have reviewed Arnold's is the only one to
give a formal definition for a dataflow net.
(F4) Definition: Let Pl"”’Pk be k processes Pi having
ny input arcs and m, output arcs.

Let p €()

Let n = nl+n2+...+nk

Let m = ml+m2+. ..-!-mk
A dataflow net is given by the k processes the natural
number p and two injections:
n :[n] ->[p]
G :[m] ->[p]

The intuitive meaning of this definition is the following:

The jth input port of process Pi (1<3«K ni) is given the number

n +nl+...+ni_l+j where n. = O. In the same way the j'th output port of

0 0
process Pi is given the number mo+ml+...-l~mi_1+j. The arcs of the net
are numbered from 1 to p. The natural number n (1) is thus the number
of the arc connected to input port number 1 and the natural number

6 (1) is the number of the arc connected to output port number 1. We
therefore suppose that n ([n]) OQS&(Im]) = [p]

Figure F5 An example of a data flow net.

The net consists of 3 processes Pl ' P2 and P3 each having 2 input ports

and two output ports .The two injections n and & from [6]->[8] are

- page 49

given by the following table:

n o]
1 3 5
2 1 6
3 2 7
4 4 8
5 6 3
6 7 4

The following is a graphical representation of the net.

(1) (2)

P(1) P(2)

1 (e (7)Y (8)

P(3)
(3) (4)

A modular operational semantics ?

Gilles Kahn gave a lot of importance to the fact that a network of
processes could be considered as a single process (even though it was
not true in his model). Motivated by this consideration Arnold proves
that his operational model has this encapsulation property. However we
find Arnold's result rather misleading because it is not true in
general. The reason for this is that Arnold assumes that his nodes
always receive infinite amounts of input on all input arcs and in

page 50

reality this may not be the case. For example the DOUBLEID node
described earlier can be written as a single process in Arnold's
notation and it can replace two seperate single identity nodes in any
context provided an infinite amount of input is given to both input arcs
of the DOUBLEID node. However if one of the inputs dries up the node is
blocked waiting for input and is thus unable to compute the DOUBLEID
function. Thus Arnold's encapsulation property is for the limited
context in which sequential and deterministic nodes compute in an
envirorment in which they are never starved of input. Thus the
Encapsulation property is trivially true for Arnoldian nets. In chapter
2 we prove that our model of dataflow has the encapsulation property in

a completely general sense.

page 51

G. A language capable of expressing all pipeline Dataflow computations

In this, the last section of the current chapter, we describe a
programming language proposed by Robert Keller{29]. Keller extends
Kahn's simple language for parallel processing by the addition of two
new primitive nodes called poll and choice. Keller is mainly interested
in dataflow nets in which nodes may behave non—-deterministically, and as
a consequence, the new primitives both introduce non-determinism into
what is otherwise a sequential and deterministic language. Keller
states that non-determinate behaviour can be introduced into a language
in two ways. One way is through time dependency, this form of non-
determinate behaviour is caputred by the poll primitive. The other form
of non-determinate behaviour is randomness within a computing station
and this form is captured by the choice primitive. Keller introduces
these primitives into Kahn's language in the following way:

The poll primitive checks to see if the fifo queue associted with a
particular arc is empty or not. We can think of this in terms of a
boolean procedure in ALGOL which returns true if the queue it is looking
at is non-empty and false otherwise. This can be expressed with a
primitive of the following form:

NONEMPTY (<arc name>) The inclusion of this primitive into Kahn's
language enables processes to detect an empty input arc and thus avoid
being blocked waiting for input. This enables Keller's processes to
realise nodes like the DOUBLEID node mentioned earlier.

The choice primitive randomly chooses between different
activities. We can think of this in terms of a boolean procedure in
AILGOL whichréeturns a random truth value and when used in conjunction

with a conditional primitive such as if-then-else allows a process to

page 52

non—deterministically choose between different computations. This
primitive may be expressed in the following form:

CHOICE()

Although we do not provide a proof we claim that the addition of these
two primitives to Kahn's language means that the extended language is
able to describe any pipeline dataflow computation. For example here is
the DOUBLEID node:
process doubleid(integer in x,y; integer out p,q);
begin
repeat
if NONEMPTY (x) then PUT (GET (x) ,p) ;
if nonempty(y) then PUT (GET (x) ,q) ;
end;
end; Another example is the unfair MERGE node:
process merge (integer in x,y; integer out z);
begin
repeat
if NONEMPTY (x) and NONEMPTY (y) then
if CHOICE() then PUT (GET (X) , z)
else PUT(GET(y),z)
fi;
fi;
if NONEMPTY (x) then PUT (GET (x) ,z) fi;
if NONEMPTY (y) then PUT(GET (y) ,z) fi;
end;

end;

page 53

Keller, like many others, assumes that Kahn gave a proof of the Kahn
principle in [26] and thus does not address the issue. As a conseguence
Keller is not interested in non-deterministic and non-sequential nodes
that are functional. Rather he is intersted in nodes with non-
determinate input/output behaviour.

In the following chapter we develop our own formal operational
semantics for pipeline dataflow. The reason we do this rather than adopt
Keller's language is that we want to be able to reason formally about
dataflow nets and dataflow computations and this is very difficult to do
from a language like Keller's. For example in Chapter 5 we prove that
nodes with a partcularly simple property, namely the 1 step Church-
Rosser like property, are functional. A corresponding proof for

processes defined in Keller's language would be extremely difficult.

page 54

Chapter 2

A Formal Operational Semantics for Pipeline Dataflow

The main result of this chapter is a precise formulation of a
completely general operational semantics for pipeline dataflow. In
section A we present a formal definition of a pipeline dataflow node in
terms of a non—-deterministic automaton. In section B we examine networks
of these nodes. The two main result of section B are: (1) a formal
definition of closed pipeline dataflow nets and (2) a formal definition
of closed net computations. 1In Section C we show how the formalism of
section B can be re-used to describe open nets and open net
computation.

To support our claim that our operational semantics is completely
general in section E, we prove that our model has the encapsulation

property in a completely general sense.
A. Nodes and non-deterministic automata

The nodes in our model of pipeline dataflow will be continuously
operating automomous computing stations connected to one another via
pipes which are unbounded fifo queues and along which they endlessly
exchange information.

To save notational complexity and without loss of generality we
assume that the discrete units of data that travel along the pipes
(i.e. the datons) represent only natural numbers.

A computing station in our model consumes datons one by one from

its input arcs and outputs datons one by one on the computing stations

page 55

output arcs. In terms of input/output behaviour our model is not
sequential in that each node computation may simulténeously produce and
consume datons on all its input and output arcs. Although we do not
provide a proof we claim that all input/output behaviour$can be
expressed by our model.

A simple node in our model usually consumes datons at the same rate
at which it produces them. However, we allow more general nodes that
may produce output at a different to that at which they consumes
inputs.

The justification for reasoning about computing stations as
continuously operating black boxes is that many applications such as
operating systems and database systems are best thought of in terms of
continuously operating autonomous processes. A practical example of this
is a network of UNIX processes connected to each other via UNIX pipes.

In our formal operational semantics each computing station (node)
is associated with a set of internal states and at any given moment a
node is in one of these states. When a node is first "activated" it
moves automatically into a known initial state. Thereafter it may move
to other internal states depending upon what the node is to compute. We
can think, informally, of the internal state of a node as having two
distinct roles.

One role is as a "marker", marking the current step in the
algorithm that specifies a node's behaviour. The initial state is a
marker to the first step in such an algorithm. For example consider a
node with two internal states, one input arc and one output arc. In its
initial state the node consumes its first input, produces no output and

moves into a -second state. In its second state the node consumes its

page 56

next input and produces as output a copy of the consumed input. If we
require this last step to be repeated ad infinitum we arrange for the
node to remain permanently in its second state. As you ha&e probably
realised the node just described is our old friend the NEXT node.

A second role or use of internal states is as memory. We feel that
is is not unreasonable to think of a node requiring access to all of its
previous inputs in order to produce its next output. As nodes are
continuously operating this may require a possibly unbounded amount of
internal memory. (Some authors such as Arvind and Gostelow[3] restrict
themselves to a subset of pipeline dataflow in which nodes have only one
state (i.e. no memory). As a result of these restrictions these models
are certainly not general models of pipeline dataflow. In addition they
lack the encapsulation property—- subnets have memory, in the form of
daton queues, but nodes have none). An example of a node that uses
internal state as memory is the node that produces on its one output arc
the running total of the datons it has consumed through its one input
arc. In the case of this node we think bf the initial state as
initialising the running total to zero. The node repeatedly awaits the
arrival of a daton on its input arc and as soon as one becomes available
it is consumed, the value of the consumed daton (a natural number) is
added to the internal state and a daton representing the new running
total is output. Since the sum of two natural numbers is always a
natural number, a countably infinite number of internal states enables
the node to record succesive running totals and thus the node works
correctly for any input history.

bAlthough we can informally think of internal states as having two

distinct functions this does not mean that nodes need separate internal

page 57

states for each of these functions. On the contrary, our nodes may
'code up' both of these functions within a single internal state.

We think of our computing stations as black-boxes connected to
their outside world through input and output pipes through which they
communicate with one another. Now it is certainly possible for a node
that consumes datons at a very slow rate to receive inputs from a node
that produces datons very quickly. If this is the case then the pipe
connecting the two nodes should be able to store the surplus datons in
the order in which they arrived. This is the justification for the
earlier decision to take pipes as unbounded fifo queues.

In our model we require our nodes to consume datons one by one from
their associated input arcs. To formalise this reasoning we associate a
one place input buffer with each of a nodes input arcs. This one place
buffer is empty if the fifo queue assoicated with the buffers input arc
is empty, otherwise it holds the daton at the head of the input arcs
associated fifo queue. Our nodes are able to consume a daton from an
input arcs by issuing a command to erase the corresponding input
buffer.

The contents of each one place input buffer together with the
internal state gives a snapshot description a node which we call the
cause of computation. With every possible cause our nodes (are required)
to associate some effect. An effect may be to erase some or all of the
nodes input buffers; it may be to change the internal state, or it may
be to output a daton on some or all of the output arcs, or a combination
of these 3 activities. Therefore unlike the model of Arnold([4], which
becomes blocked if an unexpected input arrives, our model is able to

cope with ali possible input situations.

page 58

To illustrate the idea of causes and effects we turn to our old

friend the NEXT node. This node has two internal states %Y (the initial
state) and 9. A snapshot of this node computing may reveal that the
node is in its initial state % with a 5 in its input buffer. We denote
this cause of computation by the ordered pair <5,qo>. A later snapshot
may reveal that the node is in state q with an empty input buffer. We
denote this cause by the ordered pair <nil,q1>, the nil meaning that the
input buffer is empty. As we are assuming that datons are all of type
natural number the following is the set of all possible causes for the

NEXT node:

{ <nil,qo>,<nil,q1>,<0,qo>,<O,ql>,<l,qb>,<1,ql>.... }

If our nodes are to compute for any input then it is essential that for
each possible cause wé associate at least a single effect. For the NEXT
node we could associate causes with effects in the following way. For
all those causes in which the state component is % and the input buffer
is non-empty we would associate an effect which is to consume the
contents of the input buffer, not to change internal state and to output
the consumed input. For example the cause <2,q1> is associated with the
effect <tt, nil, 2>. The tt meaning erase the input.buffer, the nil
meaning do not change state and the 2 meaning output a daton whose value
is 2. Similarly for all those causes in which the state is % and the
input buffer is non-empty we would associate an effect which is to erase
the contents of the input buffer, to change internal state to 9 and not
to output anything. For example the cause <2,qo> is associated with the
effect <tt, q nil>. The tt meaning erase the contents of the input

buffer, the % meaning move to the new state 4 and the nil meaning do

page 59

not produce any output. The two remaining causes <nil,qo> and <nil,ql>
are both associated with the busy wait <nil, nil, nil>. The first nil
meaning the do not erase the input buffer, the second meaning do not
change internal state and the third meaning do not produce any output.

Provided the node just described computes indefinitely it will
compute the following history function:

next: Ka -> Ka

s.t. V& € Ka next(® = < T TR >
note: a = < ob,o&,o2,... >

The following diagram illustrates a possible computation sequence for

the node just described:

8 9
7 3
7 8 9
H busy E compute E compute E compute N
wait 8 g

As we saw in the previous example if one or more of the input
buffers associated with a cause is empty then it is still possible to
associate an effect with that cause. In some cases the effect may be to
do nothing, we call this busy waiting.

On the other hand the effect may be to cause some activity, this is
called computing on empty buffers. It is possible for sequential nodes
(e.g. Arnold's{4]) to compute when some of their buffers are empty, but
only if they completely ignore the contents of these buffers. Using
Kahn's GET primitive, for example, it is possible to wait for the

appearance of a daton down the first arc and output it when it arrives

page 60

even if the second buffer is empty. But when a GET is invoked, the node
must do just that and has no way of knowing whether or not anything has
arrived in the other buffer.

The more general nodes which we allow, however, are capable of
performing other activities (such as output) while waiting for input on
certain arcs - in other words, they are essentially able to do more than
one thing at the same time. It is precisely these more general nodes
that have been ignored in previous models. A very simple example of
such a node is the DOUBLEID node. This node hés two inputs and two
outputs and echos the first input on the first output, and the second
input on the second output. Such a node cannot be sequential because it
cannot allow both outputs to 'run dry' when only one of the inputs does
so. This ability to compute while waiting is essential if our model is
to be in any sense general. In fact any model that is unable to compute
in this way will be deprived of the encapsulation property.

The following formal definition of a node is based on the informal
ideas presented above. A node is specified by: the number of input and
output arcs; the initial internal state; the set of all possible

internal states, and the collection of all possible cause/effect pairs.

page 61

(Al) Definition A node is a sequence <Q,qg,n,m,T>
where
Q is a countable set with nil & Q
(the set of all possible internal states)
qa€eQ
(the initial internal state)
n,m € ()
(the number of input/output ports resp.)
T C (anQ) x (Enxéme)

(the transition relation)

such that
BW (CT
where
BW = { <,nil™™1 | ce @ x) 3
B= () O {nil}
é = Q O {nil}
E= { tt, nil }

To facilitate later work we introduce the following auxiliary
functions:
Let N be a node <Q,q,n,m,T>
(i) States(N) is Q
(1i) Initialstate(N) is g
(iii) Inportarity(N) is n
(iv) Outportarity(N) is m

(v) Transitions(N) is T

page 62

Let t € Transitions(N)

(1)
(ii)
(iii)

(iv)

Buffers(t) is tOlInportarity(N)
Newstate(t) is tl(Inportarity(N))
Prod(t) is < tl(Inportarity(N)+l+j) | J € Outportarity (N)>

Erase(t) is tll Inportarity (N)

page 63

Node trancitions

Let us examine in more detail the concept of a trancition
relation. Given a node n (= <Q,q,n,m,T>), the transition relation T ic
a subset of (Bn xQ) x (En x0x Bm) i.e. a set of cause effect paire.

A typical cause is of the form <b

O'ooo
thth .
input buffer., If bi 1s nil then the i~° input buffer

bn_l,q> where bi denotes the
status of the i
is empty, if bi is some natural number say 7 then the ith input buffer
contains the natural number 7. The g camponent of our typicel cause is
& node state.

A typical effect is of the form <e0""’en—l’z’bo’""bm—1> where

. - . . .th .
the e, denotes the activity associated with the i input buffer. If €

tho, .
her the conternts of the i input buffer is not to be erased.

is nil &
7€ - £ th o L ;
If the e, is tt then the contents of the i input buffer is to be
-
erased. The z comporient denotes the activity associated with the node's
state. 1f z is nil then this means thzt the node's state should remain
should be

unchanzed, If z is q_.,, then this means the node's state
ew

changed to the state o The bi camponent denotes the acitivity
associated with the node's output arcs. If bi is nil then nothing is to
be sent along the ith output arc. If bi is some natural number say 5
then that means that the natural number say 5 is to be sent along the
.th
1 output arc.

At this point let us digress to camment upon the somewhat
unconventional 'next state' relation used in definition 2.1. Those

faniliar with traditional automata theory may feel a little uneasy in

the use of nil to specify no change in state. In standard autcmata

page 64

theory the next state relation is a relation over States x States and
not over States x (States() { nil }). At this point in the thesis we
cannot justify this unconventional next state relation but the reasons
for its inclusion will become apparent when in Chapter 5 we define a one
step Church-Rosser like property for node's.

To familiarise the reader with our definition of a node we present
several examples of node's. The first few examples are elementary but
the later ones are complex and are meant to show the generality of our
definition.

Example 1

The following is the formal definition of a node having two input
arcs, one output arc and one internal state. The node in this example
repeatedly awaits the arrival of datons on both its input arcs and as
soon as both inputs arrive they are consumed and a daton representing

their sum is output.

page 65

<{gl, g 2,1, T>

where T = { <<nil,nil,g>,<nil,nil,nil,nil>>,

<< 0,nil,g>,<nil,nil,nil,nil>>,
<< 1,nil,g>,<nil,nil,nil,nil>>,

<< 2,nil,q>,<nil,nil,nil,nil>>,

- -

<<nil, O,g>,<nil,nil,nil,nil>>,
<<nil, 1,9>,<nil,nil,nil,nil>>,

<<nil, 2,9>,<nil,nil,nil,nil>>,

L]
-

»

- -

<< 0, 0,g>,< tt, tt,nil, O0>>,
<< 0, 1,9,< tt, tt,nil, 1>>,

<< 0, 2,q>,< tt, tt,nil, 2>>,

-

<< 1, 0,9>,< tt, tt,nil, 1>,
<« 1, 1,,< tt, tt,nil, 2>>,

<< 1, 2,0>,< tt, tt,nil, 3>>,

i .

<<100, O,g>,< tt, tt,nil,100>>,

<<100, 1,q>,< tt, tt,nil,101>>,

-

Example 2
This example is the formal defintion of our o0ld friend the NEXT
node. This node has two states, one input arc and one output arc. Unlike

the last example the node does not process datons it simply manipulates

page 66

them. To be more precise the node dicards its first input but thereafter
passes on any future inputs.
< { 94y }, g 1,1, 7>
where T = {
<<ni1,q0>,<nil,nil,ni1>>,
<< 0,99>,< tt, qy,nil>>,

<< 1,q9>,< tt, qqnil>>,

-
» -
" -

<<nil,ql>,<nil,nil,ni1>>,
<< 0,g;>,< tt,nil, 0>,
<< l,ql>,< tt,nil, 1>,

<< 2,ql>,< tt,nil, 2>,

Example 3
The following is the formal definition of a node that has a
countably infinite number of states, one input arc and one output
arc. This is a naive example of a functional node that camputes on empty
buffers. In fact the node computes the following history function:
first: Ka -=> Ka

s.t Y& € Ka first(o) = < 0y Gyrees >

page 67

The formal definition of this node is:

< { q; | ie @ } O{qg}l}, g,ll,1m

where T = { <nil,g,<nil,nil,nil>>,
<< 0,9,< tt,qo, 0>>,

<K 1,9, tt,ql, 1>>,

<<nil,q0>,<ni1,ni1, o>>,
<< O,qo>,< tt,nil, O>>,

<< l,qo>,< tt,nil, O>>,

[4

<<ni1,ql>,<ni1,nil, 1>>,

< 0,gy>,< tt,nil, 1>,
<« 1,gp>,< teynil, 1>,

e -

>,<nil,nil, 99>>,

<<nil,q99
<< 0,gg¢>,< tt,nil, 99>>,
<< l,q99>,< tt,nil, 99>>,

a L d

}

Up to this point in the thesis we have defined the set of

. .

transitions associated with a node by writing down every individual
member of that set. We chose such a verbose method of defining the set
of transitions so as to avoid any misunderstanding of what we mean by a
set of transitions. It is now time to introduce a more concise
notation. To do this we have defined a notation similar to that of

Rodriguez[43] Instead of writing transitions as a countable set of

page 68

ordered pairs such as
{ <<nil,qo>,<nil,nil,nil>>,

<< O,qo>,< tt,nil, 0>>,

we shall write a table of transition rules such as the following:
<nil,qo> ~> <nil,nil,nil>

< 0,qp —> < tt,nil, O

This does not in itself simplify the notation it simply gives the
transitions more of an operational flavour.

To simplify the notation we shall not include in our transition
tables those transitions associated with busy waiting (i.e. transitions
whose right hand side are all nil's). Thus we adopt the convention that
any cause not included in the transition table is assumed to be paired
with a busy wait.

In addition we simplify our notation by use of transition
schemas. For example the schema

Yx e

<x,qo> -> < tt,nil,x>

corresponds to the transition table
<O,qo> -> < tt,nil, 0>

<l,qo> => < tt,nil,1>

<2,qp> => < tt,nil, 2>

page 69

Using our new notation the PLUS node described earlier becomes
<{q}rQI2rer>
where T is given by the following transition schema

YV x,y € <x,v, > < tt, tt,nil,x+y>

More General nodes

All the examples of nodes given in the previous section possess the
property that each cause determines a single effect. Nodes with this
property we call determinate nodes. In addition the nodes of the
previous section were all deterministic with respect to their
input/output behaviour. In all previous models of dataflow with the
exception of Wiedmer(49], all determinate nodes are deterministic with
respect to their input/output behaviour. However in our model a
determinate node's input/output behaviour may be non-
deterministic. These nodes we call time sensitive or time dependent
nodés and they are characterized by the ability to compute on empty
buffers. In Keller's language[29] it is nodes that use the empty buffer
test that may be time senstive. In the previous section we saw an
example of a determinate node that computed on empty buffers, namely
example 3. the following is an example of a node that computes on empty

buffers and is time sensitive:

Example 4

This node has one internal state, one input arc, one output arc and if
its input buffer is full it erases the buffer and outputs a copy of the
erased daton. However if the input buffer is empty it outputs a zero

(i.e. it computes on an empty buffer). Thus if this node receives

page 798

inputs faster than it can process them, then it will compute the
identity function. However if there are delays to the input they will
cause spurious zeros to appear as a part of the node's output. Formally
we have:
<{ g },q 1,1, 17>
where T is given by
Vx€Q
<nil,@> -> <nil,nil, O>

< X,g> => < tt,nil, x>

Non-sequential nodes

All of the example nodes we have given so far can all be written up
using Gilles Kahn's simple language for parallel programming. However
the following two examples both of which compute history functions
cannot be programmed in Kahn's language.

Example 5

The first of these examples is the DOUBLEID node. This node has one
internal state, two input arcs and two output arcs and echos on its
first output arc the datons that it receives on its first input arc and
echos on its second output arc the datons that it receives on its second
input arc. There is no sequential process (i.e. Kahnian or Arnoldian)
that corresponds to this node. The DOUBLEID node has the following

formal definition:

page 71

<{ g },q9,2,2,T>
where T is
Vxy €
< X,nil,g> -> < tt,nil,nil, x,nil>
<nil, y,q> -=> <nil, tt,nil,nil, >

< X, ¥, -> < tt, tt,nil, x, v

A more complex example of a non-sequential node is the following:

Example 6

The following is an example of a non-sequential node with determinate
input/output behaviour. The node we define is called 'parallel or' but
first let's look at the 'simple or' whose formal definition is
<{ g },q, 2,1, R>
where R is all the transitions of the form
<X,y,9> => < tt, tt,nil, xor y >
Vxye€ {10}

(1 and O denote True & False respectively)

The simple ‘or' awaits for a daton to arrive on both input arcs and on
arrival they are both consumed and their logical 'or' is output. The

parallel version of this node takes advantage of the following

equalities:
lory=1
xorl=1

Vvx,ye{1,0}.

page 72

Our parallel version awaits the arrival of a daton in either buffer as
soon as a 1 arrives on either input, it outputs a 1. For the sake of
argument let us assume that a 1 arrives in the left buffer; the node
erases the 1 and outputs a copy without waiting for the corresponding
right input. Our node then records using internal memory that it is one
ahead on the left input. If another 1 arrives in the left input and
still nothing arrives in the right input then another 1 is output and
the node records that it is two ahead on the left input. The node can
carry on like this indefinitely or until a O arrives in the left input
in which case it must allow right hand input to catch up. This is only
half of the explaination, the other can be extracted from the following
formal definition
< | Bil ie@ }, By 2,1, R>
where R is
YvYx,ye {1,0}

< X, Yy B.> -> < tt, tt, nil,x or y>

0
< 1,nil, BO> -> < tt,nil, Bl’ i>
<nil, 1, B2i> -> <nil, tt,B21+2, »
< 1,nil,B,. 1> => < tt,nil,B,. o, 1>
< 1, Y'B21+l> -> < tt, tt, nil, 1>
< x, l’B2i+2> ~-> < tt, tt, nil, 1>
< x,nil,Bzi+2> -> < tt,nil, BZi’ nil>
< X, O,B2.+2> j
<nil, y’BZi+3> —?ﬂ<nil, tt,B2i+1, nil>
< 0 ¥iByiig” ~
<nil, v, Bl> -> /fnil, tt, BO'. nil>
< 0, v, Bl> ~//

“page 73

Note that the even states b2, b4,... code up the deficit of
the left input whilst the odd states bl’ b3,... code up
the deficit of the right input.

In a similar way we could define other non-sequential nodes such as

'parallel and', and 'wise' if-then-else.

Non—-deterministic nodes

So far all the nodes we have defined have been deterministic in
that each ggggg has been associated with a single effect. However our
formal defintion of node (Al) also allows us to describe nodes that are
non—-deterministic. The following is a classic example of a non-
deterministic node with non-determinate input/output behaviour.

Example 7

The node we shall describe is called the unfair MERGE node. It is
used in various other forms in many models of dataflow. For example
Davis[17] defines a more general form of this node and calls it an
Arbiter cell. Our MERGE node has one internal state, two input arcs and
one output arc. The node continuously awaits the arrival of a daton in
either of its input buffers, outputing the first daton to arrive in
either buffer. If datons arrive simultaneously a random choice is made

as to which daton is to be output.

page 74

A formal defintion of the unfair MERGE node is the following:
<{ g },q,2,1, 7>
where T is
YV x,x € ()
< x,nil,g> -> < tt,nil,nil,x>
<nil, y,q> -> <nil, tt,nil,y>
< X, ¥,9 => < tt,nil,nil,x>

< %X, ¥Y,@ —=> <nil, tt,nil,y>

We usually write the last two entries in the above schema as
<X,¥,3 => <nil, tt,nil,y>

< tt,nil,nil,x>

The reason for this is that they both have the same cause

The MERGE node is a classic example of a non-deterministic node that has
non-determinate input/output behaviour. Unlike other authors we allow
our functional nodes to be non-deterministic. However, we shall have
more to say about this in the next chapter. The following is an example

of a non—-deterministic functional node.

Example 7

The following node computes the identity function but the transitions
code up different internal activities. One activity is to build up an
internal memory (queue) of inputs, and the other is to output stockpiled
datons. The node is non-deterministic because each cause has associated
two possible effects, one stockpiling the other outputing. A computation
in which all but finitely many operations are stockpiling would

page 75

be 'unfair' and would fail to produce the required outputs. Formally we
have the following definition:
<{ g lien }tO{g gl 1, T>
where T is

VxeW 1esa(W)

<nil, g@> -> <nil, nil, nil>
< x, @ => < tt, Teysr nil>

< tt, nil, x>
<nil,q1> -> <nil'qtai1(l)’hd(l)>

<x,q)> > < tt, ql‘x,hd(1)>

<nil,qy gy /a1

page 76

B. Closed nets and closed net computation

In this section we develop a precise formal definition for closed
dataflow nets. In addition we formally define dataflow computation for
the closed nets. A closed net is roughly speaking a directed graph in
which every arc has a source and destination node. Since all arcs have a
source node the net is unable to receive inputs from its external
envirorment (i.e. there are no input arcs) and in a similar way there
are no output arcs. The more complex nets which allow input and output

are dealt with in the next section,‘The following diagram illustrates a

Figure E, A closed
dataflow net in which
nodes are tagged by
natural numbers

typical example of a closed net. In this thesis we deal

exclusively with dataflow nets built up from pipes (the arcs) and
automata (the nodes). Another possible approach is that of structured
nets in which the nodes may themselves denote dataflow nets. This
approach would be a generalisation of the named nets used by Adams. As
illustrated in the above diagram the nodes of our unstructured net can
be labelled with distinct natural numbers. This enables us to uniquely
identify each node in a net even if two or more nodes are identical as

automata. Moreover if the natural numbers used as tags come from the set

page 77

n, where n is the number of nodes in a net, then we can denote the nodes
in a net as a sequence. For example the seguence associated with the net
in the above diagram would be

<DUP, NEXT, +, 2, 1, FBY, FBY>

Note in this sequence DUP refers to the automaton that computes the copy
function.

In the previous section we saw that within the context of each node
it is possible to assign a unique label to each of a nodes input ports
and a unique set of labels to each of a nodes output ports. Thus within
the context of an entire network the ports of each node are uniquely
labelled by an ordered pair <x,y>, where x denotes the node number and y
the port number. The set of ordered pairs that uniquely determine each
input port is called the set of destinations (denoted by D) and the
corresponding set for output ports is called the set of sources (denoted
by S).

We can now use the set of sources and destinations in an elegant
way to define an arc in terms of a source/destination pair. The source
being the output port of a node (i.e. an element of S) and the
destination the input port to a node (i.e. an element of D).

Now that we have some idea as to what we mean by an arc and a node
we must look at the way in which we want to combine them. Since we are
defining closed subnets we must ensure that every source is associated
with a destination and that every destination is associated with some
source. To ensure that our closed nets are well formed we require that
within the set of source/destination pairs that describe the

interconnections of a net,no source or destination is included more than

page 78

once. Thus to ensure that our net is well formed we require that the set
of source/destination pairs define a bijective map from S to D. If

this is the case then the following net constructs will be excluded:

i) A splitting arc ii) Merging arcs
() () ()

However we get the same effect as i) and ii) by using a) and b)

respectively:

a) A duplicator node b) An unfair merge node
() () ()

() () ()

Thus we define a closed net to be a sequence of nodes and a set of
source destination pairs such that the number of source pairs is equal
to the number of destination pairs. In addition each source determines a
unique destination pair and vice versa. This leads us to the following

definition of a closed net:

page 79

(Bl) Definition A closed net is an ordered pair < F, A >
where
F:k -> N wherek €(and N is the
set of all nodes.

A :S ->D 1is a bijection

where
S=1{ <, | i € dom(F) and
j € Outportarity(Fi) }
D={ <i,3 | 1 € dom(P) and

j € Inportarity(P i) }
Example
The diagram below illustrates the closed net described by the
following formal definition:
<F, A>
where
F = <ONE, FBY, PLUS, ONE>
where

i€4 F i € N (the set of all nodes)

page 80

The following table gives the input/output arity of the various nodes:

i

@

A= {

Inportarity(F i) Outportarity(F i)

0
2
2

)

<<8,8>,<1,

<<2,8>,41,

1

1

1

1
B>, <<1,0>,<2,1>>,

1>>, <<3,0>,42,8>> }

Figure F, A closed Dataflow net showing node and port numbering

The following are auxiliary functions that will facilitate later

formalism:

Let M be a closed net < F,A >

(1)
(ii)

(i11i)

(1)
(ii)

(iii)

Nodes(M) = P

Arcs(M) = A

Size (M) = dom(P) (the number of nodes in the net)
Let a (= <<s,n>,<d,m>>) be an element of Arcs (M)

Tonode(a) = d

Toport(a) = m

Fromode(a) = s

page 81

Closed Net Computation

Now that we have defined closed nets formally let us turn our
attention to closed net computation.

The current state of a closed net is roughly speaking made up of
two objects. Firstly a vector of states that records for each node in
the net the current state of each node. The second is a function that
associates with each arc in the net the current contents of the arcs
fifo queue (the queue function). For a closed net in its initial state
the node state vector records each node as in its initial state and the
queue function records all arcs as being empty. A closed net
computation involves the closed net computes in moving from one net
state to another via a net transition. A net transition is a vector of
node trasnsitions such that the vector contains one transition for each
node in the net. A net computation is then a countable sequence of net
transitions, a finite sequence defining a partial net computation and an
infinite sequence defining a camplete net computation. Formally we have
the following definitions:

(B2) Definition Let N be a closed net
The state of N is an ordered pair < S,A >

where
S € Xi € Size (N) States(Nodes(N)i)
A : Arcs(N) -> Sg((J)

The initial state of N is a state

of N (< S,A >) such that

Y a € Arcs(N) A(a) = A

VY j € Size(N) Sj = Initialstate(Nodes(N)j)

page 82

We will also find the following auxiliary functions of use later:
Let N be a closed net

Let T (= < S,A>) be a state of N

(i) Queues(T) A

(ii) States(T)

S

Net computation involves all the nodes in a net performing a node
computation. Since each node computes by choosing a compatible node
transition we define a net transition to be a sequence of node
transitions. This leads to the following formal definition:

(B3) Definition Let N be a net
T is said to be an N-transition iff
T € Xi € Size (N) Transitions(Nodes(N)i)

A net cannot compute using a random N-transition it must use the
transitions available to it in a particular context. For example the ﬂth
node of a net has a state and buffer contents which define a cause it
must use a transition that is compatible with that cause, this applies

to all nodes in the net. This gives us the following definition of

compatibility

page 83

(B4) Definition Let N be a net
Let S be a state of N
Let t be an N-transition
t is said to be N-compatible with S
iff
.

(i) Y a € Arcs(N)

BUffer(tTonode(a))Toport(a) =1 nil 1if Queue(S) (a) =/\

Queue (S) (a) |1 otherwise

(i) Vi e Size(N)

State (ti) = States(S) i

page 84

We are now in a position to define formally what it means for a

node to move from one state to another.
(B5) Definition Let N be a closed net
Let C and D be states of N
D is said to be t—derivable from C over N
t
(C —ﬁ_> D)

iff

(1) t is N-compatible with C

(ii) D is such that
a) ¥V i € Size(N)

States (D)i = { States (A)i if Newstate(ti) = nil

Newstate (ti) otherwise

b) ¥ a € Arcs(N)

r . ~
tail (Queues(A) (a) Prod (tE‘romnode (a)

Queues(B) (a) = =

Queue (A) (a)AProd (t)

Fromnode (a)
otherwise

—

if Brase (tronode (a) MToport (a) =

Fromport(a)
tt

Fromport (a)

Now that we have formally defined what it means for a node to move

from one state to another we can easily define what it means for a node

page 85

to make a finite

(B6) Definition

(B7) Definition

or infinite sequence of moves or computation steps.
Let k € ()
Let N be a closed net
Let C and D be states of N
D is said to be finitely derivable from C
*
(C —ﬁ-> D)
iff
3 a sequence EgreeerBp 1> of
N-states and a sequence <t ,...,tk> of

0

N-transitions such that

C _EQ> E _E.]_'> tE:];
N O N *** N

Let N be a closed net

Y
> B,y > D

Let C be an (Jsequence of N-states
C is said to be an N-state chain
iff
34 an (J-sequence of N-transitions T
such that Vi € ()

Ty
C. _ﬁ_> Ci +

i 1

page 86

C. Open Nets and Open Net Computation

In this section we will show how the definitions developed in the
last section can be applied to open nets and open net computation. The
essential difference between an open net and a closed net is that the
open nets have arcs which have no source node called the input arcs and
arcs which have no destination called the output arcs. A simple open net

is illustrated in the following diagram:

FRY i

CUP

To enable us to think of an open net in terms of a closed net we borrow
the idea of an enviromnment from Minsky([38]. For our application we can
think of the enviromment as an anonymous dataflow node. Thus any open
net when connected to its environment becomes a closed net. For example
when we connect the simple net shown above an enviromment node with one
input arc and one output arc we get the closed net illustrated in the

following diagram:

r 3

Anonymous
Node

page 87

The environemnt node turns out to be very useful for two reasons. The
first is that it converts an open net into a closed net and thus allows
us to define open net computation in terms of closed net
computation. The second is that the addition of an environment node
allows us to define an open net through a simple extension to the
definition of a closed net. The only problem we are faced with is what
is an enviromment node. We shall deal with this problem in the next
section and for the moment we think of the enviromment node as an
unknown or anonymous node.

let us now look at the technical details of using an envirorment
node in the definition of an open net. In the above diagram we see that
the anonymous node that was used to close the open net has been tagged
with the natural number 4 (i.e. the size of the open net). Now if we
recall in definition Bl a closed net is defined to be a sequence of
nodes and a set of source/destination pairs (a bijective mapping). The
problem with using this definition for open nets is that the source
destination pairs do not usually form a bijection. The reason for this
is that some of the arcs have no source node and others have no
destination node. However, we can use the idea of an environment node to
over come this technical difficulty. The above diagram shows that with
the addition of an enviromment node all arcs once again have unique
sources and destinations. Although we have used the envirorment node to
allow us to describe input and output arcs in terms of sources and
destination pairs we need not consider the envirorment node as being a
part of the open net. These ideas give rise to the following formal

definition:

page 88

(Cl) Definition An open net (subnet) is a sequence < F,A, n,m>
such that
n,m € ()
F:xk > N k €()and
N is the set of all nodes
A : S ->D a bijection
where
S=1{ <i,3> | i € dom(F) and j € Outportarity(F,) }
O { <dom(P),k> | kem }
D={ <i,j> | i € dom(F) and j € Inportarity(F i) }

O { <Gom®),k> | kem }

The formal definition for the simple open net illustrated above is:
<F, A 1,1>
where F =<1, +, FBY, DUP >

Inportarity(F i) Outportarity(F i)

i=0 0] 1
i=1 2 1
i=2 2 1
i=3 1 2

A= { <<0,0>,<1,1>>,<<1,0>,<2,1>>,
<<4,0>,<2,0>>,<<3,0>,<4,0>>,

<K2,0>,<3,0>>,<<3,1>,<1,0>> }

page 89

We now introduce some auxiliary functions that we make use of later.

Let Y be an open net < F,A, n,m>

(i)
(ii)
(iii)
(iv)

(v)

(vi)

(vii)
(viii)
(ix)

(x)

Inportarity (P) =n

Outportarity (P) =m

Size (P) = dom(F)

Arcs(P) = A

Let a (= Ks,n>,Kd,m>>) € A
(a) Fromode(a) = s
(b) Fromport(a) = n
(c) Tonode(a) = d
(d) Toport(a) = m

Internalarcs(P) ={ a€ A | Fromnode(a) # Size(P) and
Tonode (a) # Size(P) }

Transitions (P) = Transitions (Nodes (P) i)

X e Size(P)

Nodestates (P) States (Nodes (P) i)

= Xi € Size (P)
Inputarcs(f)) = { a €A | Fromnode(a) = Size (P) }

Outputarcs(p) = { a€eA | Tonode(a) = Size (p) }

The fact that any open net can be attached to an environment node

of compatible input/output arity means that the problem of defining open

net camputation has been reduced to that of closed net computation. As

we already have a formal definition of closed net computation the only

remaining problem is to define précisely what we mean by an envirorment

node. However before we do this we introduce one more definition which

we shall make use of later.

page 90

(C2) Definition Let p be an open net
The internal state of P is an ordered pair
<S§, A>
where S € Nodestates (P)
A: Internalarcs (P) =>Sq(()
The initial state of P (Initialstate(P))
is a state of P (= <5,A>) such that
Y aé€ Arcs(p) A(a) =/\
%/ j € Size (P) Sj = Initialstate (Nodes(P)j)

page 91

D. Enviromment Nodes and Test Beds

In this section we complete the definition of open net
functionality by giving a precise meaning to the notion of an
enviromment node. We know roughly speaking that the behaviour of an open
net's real environment is non-determinate. By this we mean that the real
environment can behave in an unpredicatable manner. The only possible
description of the real environment is that it supplies datons to the
input arcs of an open net at an unknown rate and removes datons from the
output arcs of an open net at an unknown rate. However since our
Operational semantics is supposed to be completely general we should be
able to simulate, using one of our nodes, the behaviour of an open net's
real environment. The node we require is the one that is able to
simulate all possible input/output behaviours. In fact using the
notation we developed in section A we have no trouble in defining such a
node. None of the other models we have described is able to define the
environment node.

For example an open net with two input arcs and one output arc is
closed by an environment node with 1 input arc and two output arcs. the
following is a formal definition of an environment node with one input
arc and two output arcs:

<{ g },q 1,2, 1>
where T is
Vx,v,2€ 0 O {nil}
Y a,b & { tt,nil }

<x,v¥,9> -> <a,b,nil,z>

page 92

The environment node just described can be used with any open net with 2
input arcs and one output arc. In general an open net may have n input
arcs and m output arcs and so if we want to close any given open net we
shall require the following family of envirorment nodes,
Environment (n,m) :
Y n,m € ()
<{ g },gqnmT>
where T is
V%“nmmy%“””%dewu{nﬂ}
Vagr...ra 7 € { nil,tt }

<x0,...,xn_l,q> -> <ao,...,an_l,nil,zo,...,z >

m-1
Thus given any open net we can close it by connecting the net to a
compatible enviromment node. As a consequence we are able to use the
definition of closed net computation to describe open net computation.
To make this idea more precise we introduce the concept of a test
bed function. A test bed function has as its domain the set of all open
nets and as its range the set of all closed nets. To be more precise the
test bed function takes an open net and a compatible envirorment node
and maps it to the corresponding closed net. The test bed function is

formally defined as follows:

page 93

(D1) Definition Let O be the set of all open nets

Let C be the set of all closed nets

Let P e 0
let n = Inportarity(P)
Let m = Outportarity(P)

T: O -> C (the test bed function)
such that

T(P) is a closed net with

Nodes (¥ (P)) = Nodes (P)AEnvironment (n,m)

Arcs (T (P)) = Arcs (P)

page 94

E. The Encapsulation Property

In this section we prove that any open net can be replaced in any

pipeline dataflow context by a black box equivalent single node.

Informally speaking, two compatible open nets are black box equivalent

iff given the same inputs at the same rate they produce and consume the

same datons at the same rate.

(E1) Theorem (the encapsulation property)

(1)

(ii)

(iii)

(iv)

Let P be an open net
There exists a single node (N) which is black box

equivalent to <B

Proof We can construct N as follows:

The node N and the open net P have the same number of input and
output arcs. Inportarity(N) = Inportarity(P) Outportarity(N) =
Outportarity(P)

The states of node N are the internal states of the open net p
States(N) = étates(P)

The initial state of N is the initial state of P
Initialstate(N) = Initialstate(P)

The transitions of N are the internal transitions of P

Transitions(N) = Transitioné(P) (i.e. via some coding)

Now that we have shown that N exists we prove that it is black

box equivalent to pe

page 95

Let P' be the open net consisting of the node N and its
input/output arcs.

For any (Jy-configuration sequence for T(P) there exists an

(J-configuration seguence T(P') in which the behaviour of

the enviromment is equivalent to that of Y(P) and such that

"P and P' are indistinguishable as black boxes.

This must be the case since P' is always able to simulate

(via the transition coding) any possible transition of pe

Thus the two open nets are black box equivalent.

Note: since the two nets are

indistinguishable as black boxes within the context of a

testbed (hence the v's in the above) they are indistinguishable

within the context of any pipeline dataflow context.

QED

page 96

Chapter 3

Relating our operational semantics for pipeline dataflow to

Kahn's Denotational semantics for pure dataflow

In the last chapter we formulated a completely general operational
semantics for pipeline dataflow and thus achieved one of our goals. In
this chapter we will fbrmulate a completely general definition of what
it means for an open net to compute a history function thus achieving
another of our goals. Thus the single most important result of this
chapter is the characterization of open net functionality in terms of a
two player infinite game of perfect information. This definition of
functionality we claim is completely general and we use it to prove
several important results. The first result is that the history
functions computed by functional open nets are continuous in the sense
of Kahn, the second is that every continuous history function is the
function computed by some node and finally that every open net can be
replaced in any pure dataflow context by some node. However before we do
this we include two brief sections in which we briefly explain some of
the important ideas underlying our results. The first section describes
some elementary background information on the fixed point theory of
recursion and the second gives more details of Kahn's denotational

semantics for pure dataflow.

page 97

A. Some Mathematical Preliminaries

To understand Kahn's denotational semantics for pure dataflow it is
necessary to have at least some elementary knowledge of the fixed point
theory of recursion. In this section we present some of the basic ideas
underlying this theory. For a more complete presentation the reader is
referred to Bird[10] or Manna[50].

We begin with some elementary definitions.

(Al) Definition A binary relation < over a set S
is a partial ordering of S
iff
Y x,y,z2 €S

(1) x <x (reflexive)

(ii) x < y and y < x implies x = y (anti-symmetric)
(iii) x <y and y < z implies x < z (transitive)
The structure < S,< > is called a partially
ordered set or poset for short.
For the sake of brevity and when the context is unambiguous we will
denote the poset < S , < > by its set i.e. S.
(A2) Definition Let < S , < > be a poset,
Let x be an infinite sequence of elements of §,
x is said to be an increasing chain
iff

Viewx; <x.

page 98

(A3) Definition The structure < S , < > is a domain or countable
chain complete partial order (C3PO)
iff
(1) <8, £ > is a poset,
(ii) S contains a minimal element,
(iii) Any increasing chain in S has a lub in S,
In the introduction to this thesis we defined the set Ka of countable
sequences of natural numbers. In Ka we included the empty sequence N
. The following is a binary relation which we will make great use of in
this and subsequent chapters.
(Ad4) Definition C is a binary relation over Ka such that
Vx,y€Ka xCy
iff
X is an initial segment of y.
For example <1,2,3,4> C <1,2,3,4,5,6>.
(A5) Proposition The structure < Ka, C > is a poset
Proof Straightforward.
In this and subsequent chapters we shall also use an extended form of
the binary relation C . The extension we have in mind is the following:
(A6) Definition Let n € (),
¢, is a binary relation over Ka" such that
‘v’x,yeKan xC Y
iff

Vieénx; Cy;

page 99

(A7) Proposition For any n € ()
the structure < Kan, Qn > is a C3pO
Proof (1) < Ka", Q-n > is a poset, straightforward,
(ii) { A " is the least element,
(iii) Every increasing chain in Ka" has a
lub in Kan, straightforward.

In the introduction to this thesis we stated that in the denotational
semantics nodes would be associated with functions over countable
seqguences of natural numbers (Ka). We will thus make use of the

 following definitions:

(A8) Definition Let < A, SA > and < B, SB > be C3P0O's,

Let £ : A -> B,
f is said to be monotonic
iff
Yabea
a SA b implies f(a) SB f(b).
(A9) Definition Let < A, SA > and < B, SB > be C3P0's,
Let £ : A -> B,
f is said to be continuous
iff
(i) £ is monotonic,
(ii) For every increasing chain x in A
EOL e) = Ly g (ff X))
The concept of continuous function, C3PO and fixed point (i.e. a

fixed point of a function h is any value x for which h(x) = x) are all

brought together in the following important theorem due to Kleene.

page 100

(A10) Theorem (The first recursion theorem, Kleene)
Let ,< > be a C3PO,
Let f: D -> D be a continuous function,
f possesses a fixed point x given by
x = LI n e Lfn(6d)
where &, is the least element in D and

£ 6d) = f(....f(f(6D))...).

n-times
Moreover x is the least fixed point of f under the partial ordering

SD' This theorem is used by Gilles Kahn[26] to give a denotational

semantics for pure dataflow.

page 101

B. Kahn's Denotational Semantics for Pure Dataflow

In our opinion there is no doubt that one of the single most
important contributions to the study of dataflow was the Kahn
principle. For completeness we include, in this section, a brief
description of Kahn's work [26].

Kahn noted that it is possible to associate a countable sequence,
called a history with each arc in a pipeline dataflow net. The history
of an arc denotes the entire sequence of objects to have travelled upon
that arc. The order of the objects in the sequence corresponds to the
order in which the objects travelled along the arc. In Kahn's model
different arcs can carry objects of different types and thus the type of
the objects in a history is determined by the type of the arc
(e.g. integer, matrix, real ...etc). However in our model the only
objects that flow along arcs are natural numbers and thus a history is
simply a countable sequence of natural numbers or in other words an
element of Ka. We should point out that it is essential not to confuse a
queue with a history. A queue is a dynamic (operational) object that
grows and shrinks as a result of the computational activity of the nodes
attached to either end of an arc. On the other hand a history is a
static (denotational) object that is the entire record of all the datons
to have travelled along an arc.

A further observation of Kahn was that it is possible for computing
stations with memory of their own to compute functions from the
histories of their inputs to the history of their output. In other
words a node with n input arcs and 1 output arc could compute a function

from Ka"' to Ka. Kahn refers to these functions as history functions.

page 102

We should point out that in the operational model we developed in the
last chapter it is possible to describe nodes that do not compute
history functions; one such node is the unfair MERGE node. The history
of the MERGE node's inputs determines a large set of possible outputs,
some would say it computes a relation. Thus the goal we pursue in the
remainder of this chapter, is that of choosing a subset of our model in
which the nodes all compute history functions. In Kahn's restricted
operational model all the nodes compute continuous history functions.
Kahn explains the restriction to functional pipeline dataflow nodes in
the following terms:
(1) Monotonicity means that receiving more input at a computing
station can only provoke it to send out more output. Indeed it
is a crucial property since it allows parallel operation. A
machine may not need all input to start computing, since future
inputs concern only future outputs,
(ii) Continuity prevents any station from deciding to send some

output only after it has received an infinite amount of input.

We call dataflow nets in which all the nodes compute history functions

Pure Dataflow nets.

Fixpoint equations

Rather than study the behaviour of a complex machine, Kahn wanted
to study the properties of the solution to a set of equations. To
achieve this he associated with each parallel program schema p (dataflow
graph) a set_gb of equations over sequence domains, in such a way that a

set of sequences is a possible solution to Z§ iff it is a possible set

page 183

of histories for the arcs of the dataflow graph. Kahn gives the
following rules for constructing zb:
(i) to each arc h in the net associate a variable X,

(ii) if XgresssX _, are the variables associated with the input arcs

and io,...,in_1 are the set of sequences fed in as inputs
include the equations

X. = 1

0 0

Xn—l

(iii) for each node f, with n input arcs (xo,...xn_l) and m output

= 1n-1
arcs

(yO""’ym—l) include the m equations

Yo = fo(xo,...,xn_l)

° (-4

Y1 = Epey Kores-r¥py)

Clearly, the histories of the arcs of the graph p have to satisfy the
system Zb. Moreover since Zf is a set of fixpoint equations over a C3PO
where the operators are continuous, such a system admits a unique

minimal solution, the least fixed point solution (see AlO).

page 104

The minimum solution { y(xo),...,y(xn_l) } of the system
Zb = { X, = Ti(xo,...,xn_l)i €En}

where the A\ terms are continuous operators

is given by

Ly ey Boreeer®y)

where

X, = Ti(xo,...,xn_l) i€n jeqQ
An alternative and more consise way of writing this expression is by
using the p operator. If f is a function from a C3PO D into itself then
the least fixed point of f is given by the following expression
P (=Ll o £(AL)).
Thus the solution for the system of eguation Zb becomes:
px v(x).

The following is an example of a dataflow net and its associated set of
equations. Note that the Upper case letters in the graph denote the
names of nodes and the corresponding lower case letters in the set of

equations denote the function(s) computed by the node.

Open net p
x, =1
/N
x1 = f(x%,xz)
X, = g,(x,)
2 _ 2871
X3 "gl(xl) Zp
X, = ko (x,)
x5 = k{x §A
x> =h (% 1Xe)
x6 = hl(x3 x5)
7 glo377s

page 185

The principle that the operational behaviour of a pure dataflow net
is exactly described by the least fixed point solution to the nets
equation we call the Kahn Principle. Many computer scientists believe
that the Kahn principle was proved by Kahn. However Kahn never
published a formal proof of this principle nor did he define precisely
the concepts of "node", "net" etc. In the remainder of this chapter we
formulate a precise definition of what it means for a pipeline dataflow

node to compute a history function.

iii Using 'where' notation together with certain transformation

rules to massage expressions involving fixed point operators

The first to use 'where' notation in Computer Science was P.J.
Landin in his renowned paper "The next 700 Programming Languages" (see
Landin{33]). In this thesis wet?ﬁhere' notation as a meta-language to
prove certain results about the operational behaviour of nets. Our
'where' notation is a minor variant of Landin's 'where', namely our
'where' clause corresponds to Landin's 'where rec'. In his paper Landin

shows how 'where' expressions can be thought of as a formal system in

which precise proofs can be carried out using a number of transformation

page 106

rules. A simple example of a 'where' expression is the following:
a where

a = ¢ where

end
end
In this example it is obvious that the value of the variable 'a' is
1. The following example is more complex:
'Es g where

F(a) where

Q
]

a =1

end

end

If we were using Landin's 'where' the value of the above expression
would be F(2) since Landin's 'where' associates the outermost occurence
of the variable 'a' with the 'a' in F(a). However, our 'where'
corresponds to Landin's 'where rec' and so it would associate the
innermost 'a' with F(a). Thus the value of the our 'where' expression is
F(l1). 1In A.ii we saw how to associate a set of equations with a pure
dataflow net. In the chapter 4 we will prove that the operational
behaviour of a pure dataflow net is exactly the least fixed point of the
net's associated set of equations. To do this we will need to prove that
different expressions involving the least fixed point operator p are
equivalent. We saw in section A.ii how the expression

px v(x)

corresponds to the least fixed point solution to a set of equations.

page 107

In this thesis we use the transformations defined below to massage
expressions which involve p (the fixed point operator). A simple example
of such an expression is

p x £(x)

See section A.i for more details about C3PO's. The transformation rules
given below can all be verified using standard fixed point theory

(e.g. see De Bakker[8]).

Our transformation rules

(a0) Given the fixed point expression:
pakF (a)
we can express this, without changing the meaning,
using the following ‘where' notation:
a where a = F (a)
We call this transformation
p elimination.
(al) Conversley, given a 'where' expression:
a where a = F (a)
we can express this, without changing the meaning,
as the following fixed point expression:
paF (a)
We call this transformation
p introduction.
(b0) Given a 'where' expression
we can add a new equation to the right hand arm of
the ‘where' without changing the meaning of the expression so long

as the new equation defines a variable not already used. For

page 108

example we can add the eqguation z = 10 to

a where
a=717
end
giving us
a where
a=7
z = 10
end

Both 'where' expression have the same value.

(bl) Conversely, we can remove an equation provided the variable
defined by the equation is not used anywhere else in the
'where' expression.

(cO) Another transformation is the substitution of a variable
for its definition. This does not change the
meaning of the 'where' expression.

(cl) Conversely, given an expression which is equal to some
variable, it is possible to change the expression for the
variable without changing the meaning of the 'where'
expression.

(80) Finally, as our 'where' expressions are defined over a
C3PO any variable defined in terms of itself corresponds
to the recursive definition and so the fixed point theorem
(Al0) applies. Hence we can take a fixed point without

changing the meaning of the 'where' expression.

page 109

For example:

a where
a=b
b = F(b)
end

can be transformed into:

a where
a=b '
b = p b F(b) "
end

without changing the meaning of the 'where' expression.
(dl) Conversley, given an equation which contains a fixed

point operator in the normal form (i.e x = pxf(x)),

we can remove the fixed point operator, leaving a

recursive definition. This transformation does not change

the meaning of the 'where' expression.

The following is an example of how we prove that

pAF@R) =pAF(F@R)) -
p A F(a)
¥ (p elimination)
A where A = F(A) ’
¢ (substituition of a variable for its definition)
A where A = F(F(a))
b (p introduction)

pAPFP(F(A))

QED

C. Open Net Funcionality

In this section we examine what it means to say that an open net
computes a history function. To be more precise, what does it mean to
say that an open net, with n input arcs and one output arc, computes a
function f:Ka" -> Ka.

Functionality is an extemely important property as it allows us to
reason about an open net in terms of a simple mathematical object,
namely a history function. This is in contrast to the complex
operational nature of an open net (i.e. internal net state, net
transitions etc.).

To begin with let us look at functionality in nodes. Remember that
a node together with its input and output arcs is an an open net. Given
a node we know, roughly speaking, that the node computes a history
function if and only if the node's entire output activity is determined
only by the node's entire input activity. As we stated earlier there
are two ways in which a node may fail to be functional:

(i) 1if there is randomness within the node itself

(ii) if the rate of input of datons effects more than the rate of
output of datons (i.e. the node is time-sensitive)

The classic example of a node that is both time-sensitive and
random is the unfair MERGE node. For convenience we restate its formal

definition:

page 111

< {q}l,q21m1m
where T is
YV x,y € ()
< X,nil,@ -> < tt,nil,nil, x>
<nil, vy,q> -> <nil, tt,nil, v>
< X, y,@ => < tt,nil,nil, x>

<nil, tt,nil, >

The merge node is time sensitive in that the node's output activity is
dependent upon the rate of arrival of the node's inputs. The following

diagrams illustrate this time dependency:

MERGE
2
1

zH H

A. A possible sequence of events

1
2
1

B. An alternative sequence of events

1
2 1

In both sequences A and B, the entire 1nput activity of the merge node

is (<2>,<1,1>). In sequence A the input datons arrive in the following
order (/\ ,<1>), (<2>,<1>) and (<2>,<1,1>). This results in the node
outputing the sequence <1,2,1>. 1In sequence B the same inputs arrive in
a different way namely (<2>, A), (<2>,<1>) and (<2>,<1,1>). This
results in the node outputing the sequence <2,1,1>. Thus the example
show that the merge node is indeed time-senstive.

page 112

On the other hand if the sequences (<2>,<1,1>) are placed on the
node's input arcs at the beginning of the computation, hence preventing

any time sensitive behaviour, we see the node's randomness at work.

Here are two possible sequences of events

1
2 1 2 1 2
W W MERGE MERGE
2
1 1 1
1 1
1
2 1 2 1 1
1
1 2
1

In both cases the node starts with the same inputs but produces a
different output for each sequence. The reason for this is that the
node had to choose non-deterministically between the following two
transitions:

\/x,y € ()

< X, vy, @ => < tt,nil,nil,x>

<nil, tt,nil,y>
Other authors who have given a definition of node functionality
have usually assumed the following naive definition of node
functionality.

page 113

A node is said to compute a history function f iff given a as input
there exists an infinite computation sequence which accumulates f (o) on

the nodes output arcs.

In addition these authors insist that the node begins computation with
all the inputs it is ever to receive already queued up on the nodes
input arcs.

For a variety of reasons this "obvious" definition turns out to be
both unrealistic and incorrect.

To begin with a node will never (when in use) have an infinite
sequence of datons on its input arcs. On the contrary the input arcs
are usually empty to begin with and even at intermediate stages in the
computation. The contents of the input arcs of any 'real' node is
determined by the rate at which the node's environment supplies inputs
and the rate at which the node consumes inputs. The proposed definition
fails because it requires that a node functions correctly (i.e. computes
f) only when supplied datons at a faster rate than that at which the
node consumes input. It could be argued that the above definition is
adequate if nodes are incapable of computing on "empty buffers" and we
would agree with this. As our nodes may compute on "empty buffers" we
require a more general definition of functionality.

There is an interesting way to repair the inadequacy of the above
definition and although we do not use the repaired version it will be of
interest to examine how we could repair the definition.

The above definition requires that all the datons that a node ever
receives are placed on the nodes input arcs before ccmp&%tion

begins. This usually means placing an infinite sequence of natural

page 114

numbers on each of the nodes input arcs. Our main objection to this is
that it is unrealistic because datons arrive one by one and often with
pauses between successive datons. These pauses mean that those nodes
that can compute on an "empty buffer" would do so and often with
disasterous effect. For example consider the node that produces a zero
when its buffer is empty and outputs a copy of its buffer otherwise.
This node has the following formal definition:
<{ g },q 1,1, 7>
where T is‘
YVx€W
<nil,q@> -> < nil,nil, O>

< X, =-> < tt,nil,x>

If we initialise this node's input arc with the infinite sequence
<,2,3,4,5,...> , then according to the above definition this net would
compute the identity function. If convinced of this by the above
definition we incorporated this "identity node" into a 'real' data flow
net then it could use its "empty buffer" computation with disastrous
effect. for example if there was a delay before the arrival of the
first daton (say a six) then one or more zeros may have been output
before the six was output.

To repair our hypothetical definition of functionality we extend
the notion of a history to include timing information. To do this we
introduce the notion of a unit of delay called a hiaton (Greek for
pause). This term was coined by E. A. Ashcroft and W. W. Wadge and is
denoted by '*'. Now instead of initialising an input arc with a

sequence from Ka (the set of histories) we initialise an input arc from

page 115

the set (QO { * })C)(the set of hiatonic sequences). We can then
restate the definition of functionality as follows:

A net is said to compute a history function f iff given any hiatonic
sequence o as input there exists a computation s?quence that produces
f(del (o)) as output.

Where del is a function that removes all hiatons from a hiatonic
sequence thus producing a pure history.

It is possible to formalise functionality using hiatonic, however,
we shall not do so prefering to stay with pure histories, at least util ‘
we have proved the Kahn principle. However we shall use a a denotational
semantics based on hiatonics in chapter 5 when we look at ways to extend
Kahn's denotational semantics to handle a broader class of operational
behaviours. Let us now return to the main theme of this section namely
the formulation of a precise definition for node functionality.

A second problem with the obvious definition of node functionality
proposed earlier is that it requires only that f(a) be possible as the
output history, but not necessary. Since in our operational model
functional nodes may be non-deterministic, the distinction between iEﬁ
possible and necessary is crucial. We can certainly define a node that
can output a random sequence of datons and in fact the envirorment node
with n input arcs and 1 output arc would, according to our hypothetical
definition, compute every history function £:Ka" -> Ka.

The fact that our functional nodes may be non—-deterministic means
that we cannot repair the last problem by requiring that every sequence
of transition produce f(o) as output. This requirement would be too
restrictive because it rules out any sort of control or direction of the

activity of a node. Such control is however necessary because our nodes

page 116

are non-deterministic devices capable of doing more than one activity
(e.g. input and output) at the same time. If computation proceeds at
random one vital activity may be neglected even though the computation
as a whole never stops. Wé call such a situation "livelock" a term
coined by E. A. Ashcroft[54].

A good example of a node which is non-deterministic and yet
functional is the node that computes the identity function but whose
transitions code up different internal activities. One activity is to
build up an internal stockpile (a queue), another is to output
stockpiled datons. The formal definition of this node was given in
chapter 2 (example 7 p.75). The node is obviously non-deterministic and
any computation sequence in which all but finitely many operations are
stockpiling would be in livelock and hence fail to produce the required
output.

We could of course avoid all these problems by restricting
ourselves to deterministic and sequential nodes, but we reject this
course since we would like to define the class of all dataflow nodes
that compute history functions, including non-sequential and non-
deterministic nodes.

With this in mind we formulate a more "dynamic" version of the
obvious "static" definition above.

The problem with the above definition of functionality is that it
assumes that the underlying computation is sequential. We can think of
sequentiality in terms of our node transtions as associating with each

"cause" only one “"effect".

page 117

However in this thesis we are looking for a more general definition, one
which makes sense even when the underlying computation is non-sequential
and non—-deterministic. In other words our definition should also be
applicable to nodes which allow more than one possible effect to be
associated with each cause. Example 7 on page 75 defines a non-
deterministic node that computes the identity function and in which each
cause is associated with two effects. One effect is to internally
stockpile datons and the other is to output internally stockpiled
datons. If we choose transitions using a strategy that chooses only
finitely many output effects then the node will not compute the identity
fuction because of livelock. (i.e. it will spend most of its time
building up an internal stockpile of datons that it may never be able to
output) .

From this example it is obvious that the definition of
functionality that we require must be one which allows a node to be used
in conjunction with a "fair" strategy for avoiding livelock.

Our definition of node functionality is defined in terms of a two
player infinite game of perfect information. However before we deal
with infinite games or our definition of functionality we should point
out that whatever in this section about nodes is also applicable to open
nets in general. \

wa howe ot

page 118

D. Infinite Games

In this section we present some background information on the
theory of infinite games. However for more detail the reader is referred
to Gale and Stewart[18] and Wadge[47].

An infinite game is a game in which a particular 'round' need not
terminate, so that the outcome of the contest can only be determined by
examining the entire history of the contest.

Simple but interesting examples of infinite games can be
constructed by extending the standard chessboard infinitely in one or
more directions, and by suitably modifying the rules. Consider, for
example, the position shown in the diagram (the board extends

infinitely in the direction of the dots).

[
.

1=

White's goal is to checkmate Black's king, and Black's
goal is to avoid checkmate. This game is genuinely infinite because
Black can win, but cannot achieve certain victory after any finite
number of moves, i.e. we cannot in general conclude that Black has won

without examining the entire record of the game,

page 119

This game nevertheless has a finite aspect in that one of the
players (wWhite) cannot win without terminating the game: we might call
such a game "half-finite". But it is easy to devise games which are not
even half-finite. For example we could retain the above board and
position but change the rules so that White's goal is instead to get
arbitrarily far away from the Black king, i.e. to play so that no matter
how large an integer n is, there will be a peint in the game after which
White's king will never be less than n moves away from the Black
king. Then clearly neither player can ever win in any finite number of
moves, and it will always be necessary to look at the entire history of
the game to determine the winner.

It is not difficult to give a precise definition of 'infinite game'
provided we restrict ourselves to games in which

(i) there are only 2 players.

(ii) each player on each move has only countably many choices for
his next move.
(iii) there are no infinite stages in the game i.e. all rounds are of

length ().

The history of a particular 'round' of such a game can be 'coded-up' as
a pair < &, B> of elements of Qk)and thus the game is completely
determined by the subset W of (,.9‘) X (.&‘) consisting of all histories of
codes of bouts in which 'II' is the winner. We therefore assume for
simplicity that each player on each move plays a natural number, and

define the game to be the set W itself.

page 120

(D1) Definition An (infinite) game is a subset of(JQ x(JJ

We can now formalise the notion of a strategy. It is clear that a
strategy for 'II' in one of these games is a function from Sgq to () which
takes as its argument the sequence <x(@),2(1),...,x(n-1)> for each n of
'I's first n moves and gives as its result player 'II's nth move
B(n). For our purposes it is more convenient to have a startegy for 'II'
yield the entire history <B(#),B(1),...,B(n-1)> of 'II's moves up to
that point. Strategies for player 'I' are defined in a similar manner.
(D2) Definition
(i) A strategy for 'II' is a monotonic function ¥ from Sq to Sq
s.t. 1Y (s)| = Is| for every s in Sq
(ii) A strategy of 'I' is a monotonic function P from Sg to Sqg s.t.
|P(S)| = |sl+l for every s in Sq.
note we often abbreviaté Sq(()) to sq.

It should be noted that this defintion implies that the games we are
studying are games of perfect information, i.e. games in which each
player has complete knowledge of his opponents moves up to that point.

Now if Y is a strategy for 'II' , we let Y denote the corresponding
function from Lf)to L&)which takes as its argument the entire history of
'I's moves and gives as its result the entire history of 'II's
moves. Thus Y is a winning strategy for 'II' for the game W iff

<&, Y (> is in

page 121

W for every o, and the notion of a winning strategy for 'I' is
similarly defined.
(D3) Definition For any monotonic function Y from
Sg to 5q and any oe(.&‘)
Y@ = U gpy Y@l
note that if) is a strategy (either for 'I' or for 'II') then Y (&

will be in (,}‘) for every o,

(D4) Definition For any game W
(i) A winning strategy for 'II' for W is a strategy Y for 'II'
such that <0,7(a)> € W for every a in («P
(1i) A winning strategy for 'I' for W is a strategy & for 'I' such
that <g(B),B> € - W for every B in (,\P
The study of the infinite almost always concerns in some way or another,
the question of determinedness. A game is determined iff one of the
players has a winning strategy (i.e. if the game determines a winner)
Since every finite game is determined, and since also draws are not
possible in infinite games (as we have defined them) it might be
plausible to conclude that every infinite game is determined. This
conclusion is however not justified. The question of determinedness is
also beyond the scope of this thesis and the reader is refered to
Wadge [47].

Now it is certainly true that it cannot be the case that both
players 'I' and 'II' have winning strategies for a game W. Given two
strategies & and ¥ for 'I' and 'II' respectively, we can 'play them off’
against each other and form a unique element <a,B> of L&‘) X (,5') called the

clash of § and Y. This is a term introduced by the logician J. Addison.

page 122

If <a,p> is the clash of 6 and Y then & =(8(B) and B =';(0). If Gand Y
are both winning strategies the clash <o,3> would have to be in both W
and - W, impossible. Thus given two strategies for 'I' and 'II'
respectively, one must be 'superior' to thé other.

This argument does not however, imply that every game is
determined. It may be that given any strategy for 'I', player 'II' has a
strategy which is superior, but that given, any strategy for player
'II', player 'I' has a strategy which is superior. In fact it is
possible using the unrestricted axiom of choice, to construct (by

'‘diagonalising' over strategies) a game which is not determined.

page 123

E. Infinite Games and Open Net Functionality

In this section we relate certain kinds of infinite games and open
net functionality. The use 6f infinite games allows us to express in a
natural way, the dynamic nature of net computation. As a consequence we
are able to give a natural and completely general definition of open net
functionality.

In the customary manner we begin by giving an informal,
anthropomorphic explanation of the connection between infinite games and
open net functionality. Let us assume that an argument has arisen
between two individuals whom we shall call 'I' and 'II'. The argument is
whether a certain open net computes a particular history
function. Indivitual 'II' claims that the open net computes a history
function. However individual 'I' demands that he be allowed to test out
the open net on some sample inputs to see if it really does compute a
history function.

Individual 'II' accepts 'I's challenge and produces an open net
which is packaged to look like a black box with the open net's input and
output arcs protruding. Player 'II' then invites player 'I' to make a
move by placing a daton on some or all the black boxes input arcs. After
'I' has placed inputs on the black boxes input arcs player 'II' moves by
choosing a compatible open net transition. The effect of this transition
may cause a daton to fall out of some or all of the black boxe's output
arcs. The contest between these two individuals then continues in this

fashion ad infinitum.

page 124

The goal of 'I' in this contest is to discredit 'II's black box and
so 'I' may try all kinds of activity to test out whether 'II's black box
really does compute a particular history function. For example 'I' may
try to supply datons at different rates hoping there is a time sensitive
node within 'II's black box, he may completely stop placing datons on
the input arc hoping that 'II's black box will move into a state that
over produces output. If at any finite stage the accumulated outputs of
'II's black box are not an initial segment of the particular history
function applied to the accumulated inputs then 'I' will be able to
discredit 'II's black box. If 'I' is unable to discredit 'II's black
box at any finite stage he may be able to do it by examining the entire
history of the contest. To do this player 'I' examines the entire input
to 'II's black box and if this input was o and player 'II' claimed that -
his black box computed the history function f then the entire output of
'IT's black box must be f(o), If this is the case then 'II's claim is
totally correct and 'I' is the loser. However if 'II's black box
produces as output only an initial segment of f(a) then 'II's claim is
only partially correct and thus 'I' is able to discredit 'II's black
box.

Let us now make some mathematical sense of this anthropomorphic
description. The situation just described fits in very naturally with
the formalism we developed in the last chapter. In particular the
context in which the game is played is well suited to the idea of open
nets computing within test beds. If we place this game in the context

of a test bed we can think of player 'II' as a controller of the open

page 125

net and player 'I' as the controller of the envirorment node. This

situation is illustrated in the following diagram:

PLAYER II ST PLAYER I
6 ENVIRONMENT 8
N ER NODE 1
—— Y
/\ / \

[
‘ (.

Controller of the
environment node

Controller of
the open net

(Note: it is customary in infinite games to think of player'II'

as the 'good' player and 'I' as his 'evil' opponent) In this context
player 'II' makes a move by choosing a compatible open net transition
and player 'I' makes a move by choosing an environment node transition.

The two players are now able to engage in their contest, an

infinite game. Player 'II' (the open net controller) must use a
strategy which ensures that the open net produces the correct output.
This strategy must be totally correct no matter how the input arrives
from the environment node (i.e. no matter what rate the controller of
the environment node decides to produce datons). The fact that an open
het computes a history function does not mean that player 'II' succeeds
no matter what choices he makes (remember open nets may be non-
determinate allowing a choice of open net transitions); it means only
that he has a strategy to ensure success in his battle against a hostile

opponent (player 'I').

page 126

Our definition of open net functionality formalises this

anthropomorphic view in terms of winning strategies for two player

infinite games. The idea that nodes require controlling strategies in

order to choose transitions suggests an infinite game with the following

rules

Let & be an open net with n input arcs and m output arc.

Let f: (Ka" -> Ka)™

The rules of the infinite game G(f,5) are:

(1)

(ii)

(iii)

(iv)

(v)

The game begins with the open net in its initial state

(i.e. all the nodes in their initial internal state and all the
internal arcs empty.). and the input/output arcs of the open
net empty. In other words v(5) (the testbed for &) is in its
initial state.

The two players alternate in making moves 'I' playing first.

On each of his moves 'I' places a daton on some or all of the
open nets input arcs (possibly none). What 'I' really does is‘
choose an enviromment node transition which has the effect of
producing datons on some or all of the open nets input arcs. In
addition 'I's choice of transtion may result in some datons
being consumed from the open net's output arcs.

Each of 'II's moves involves choosing one of a nonempty set of
possible open net transitions. In other words the controller of
the open net chooses a compatible open net transition. There
will always be at least one possible transition to choose from
and usually more than one.

Given that 'I's infinite sequence of moves produced an input

history o € Ka". Player 'II' wins iff 'II's infinite seguence

page 127

of moves produce for each output arc i (€ m) the output history
fi(o).

Note that in conventional infinite game theory a move for a player is
usually associated with a natural number (see section D). However, in
the our infinite game we have said that a move for player 'II' is a net
transition (similarly for player 'I'). To be precise we should have
labelled each possible net transition with a natural number (notice that
the set of net transitions is countable). In this way Player 'II's
choice of natural number would be associated with some open net
transition (similarly for Player 'I'). To avoid this coding we choose to
describe a move directly in terms of an approppriate transition. Thus
the following definitions of strategy take a move as being some net
transition, in the case of player 'II' and an environment node
transition in the case of player 'I'.

In our game a strategy for player 'II' is a monotonic function Y
that takes a finite sequence of moves for 'I' and produces a finite
sequence of (responses) moves for 'II'.

(E1) Definition Let & be an open net

Let n = Inportarity(5)

Let m = Outportarity (&)

A strategy for 'II' for G(f,5) is a monotonic function
y:(Transitions(Environment(n,m)))Sq -> (Transitions(é))Sq

such that

YV ae (Transitions(Environment(h,m)))Sq

Y| = lal

page 128

(E2) Definition Let & be an open net with
n input arcs and m output arcs
Let f:(Ka" -> Ka)™
Let O be the set of all finite and infinite
sequences of moves for 'II' in G(f,d)
Let X be the set of all finite and infinite
sequences of moves for 'I' in G(f,0)
(i) Output: (0 -> Ka)m
such that Vo €0 j€Em

Outputj (o) =T Prod(o (i)

i € dom(o) Fromnode (y (3)) (Fromport (y ()
where y(j) = Arcs™L &) (Size (5),]) ,<Size () ,3>>
(ii) Input: (I => Ka)n
such that Yt € I j € n

Input)y = T

i € dom(t) Frod(t;);

A A A . .
Note Tfi e n¥i = ¥g X1+ ¥p-1 P finite
~ -~ ~ . . 3
x xl X eee n infinite

(note a’nlz ml%a = o)

page 129

(E3) Definition Let & be an open net with n input arcs and
m output arcs
Let f:(Kan -> Ka)m
Let Y be a strategy for 'II' for G(§,f)
Let I be the set of all infinite sequences

of moves for 'I'.

Let A = { ae Environment (n,%) \ InPut(o.) =al}

(i) Y is said to be a totally correct
strategy for 'II'
iff
V a € A output (Y (a)) = £(o)
(ii) Y is said to be a partially correct
strategy for 'II'
iff
Y a€aA Output(?(a)) C f(o)
The use of infinite games allows the following definition of
functionality:
(E4) Definition An open net § is said to compute a history function f
iff there exists a totally correct strategy for
player 'II' in G(f,5) and any other strategy Y

for 'II' is a partially correct strategy.

page 130

F.

S

ome Results

In this section we prove some results about open nets that compute

history functions. For notational simplicity we prove the results with

respect to open nets that compute functions of the form:

f:Kar1 -> Ka.

The methods used in proving these results extend readily

to the more general case in which nodes compute functions of the form

£f: (Ka" -> Ka)™ where n,m € ().

(F1) Theorem

Proof

Eve

ope

Let

Let

ILet

Let

ry history function computed by an

n net is monotonic.

n € ()

P be an open net such that

Inportarity(P) = n
Outportarity(f)) =1

f : Ka© -> Ka be the function computed by p

Y be a totally correct strategy for 'II' in G(f,P)

Let o, BeKan such that a C B

Iet B

Ilet A= { A€ Environment(n,l)(") | Input(A)

{BE€ Environment(n,l)(“) | Input(B) =B }

o}

(see E2 for a definition of the function Input)
In what follows we prove that f(x) c£f@B).
To begin with we know that & C B and
thus for any sequence A € A we can find a sequence
B € B such that B simulates the moves of A up to

any finite number of moves.

ie.VYneWYAEAIBEB Aln = B|n

Y

page 131

If we apply ¥ to this we get that
VYneEWVYAEAIBEB
Output (Y (Aln)) = Output (Y (Bin)) C Output (Y (B)) = £(B)
(note ¥ (a) = () e (y Y (Alk) and thus

Y(@)In = Y(aln))
Hence Output (Y (3) In) C £(p)

Since Output is continuous we have that

In' €Wn' <n Output(Y(a)) In'=Output (Y (A) In) C £(B)

thus f() C £(B)

QED

page 132

(F2) Theorem Every history function computed by an

open net is continuous.

Proof Iet n € ()
Let P be an open net such that
Inportarity(P) =n
Outportarity(P) =1
Iet f : Ka" -> Ka be the function computed by P
Let Y be a totally correct strategy for 'IT'
for G(f'P)
Iet C be any increasing chain in Ka"
let Ai = { Ai € Environment(n,l)(") | Input(Ai) = Ci}
for all i € ()
Iet A= {A € Environment(n,l)(’“) | Input(a) =(_B ew Cj}
We prove that L_]i €0 f(Ci) = f(l_]i e(«)Ci)
Since f is monotonic (F1l) we have that
Ly gy (€ S (LI ¢y Cy)
However let us assume that
L_Ii € f(Ci) Cf(L__I_,-L ew ;)
We can express this in terms of our infinite game
G(f'P) as:
Y3iew, A eAj, Aen

LJ.

i e Outeut 7 ah) Coutput 7).

page 133

Thus for any A € A, j € (), Aj GAj
?XA) is able to produce at some finite stage
an output that cannot be produced by any
;(Ak) for any k € ();
but this cannot be true since
YneE VYaea Jk E{Ak s.t. Aln=Ak|n
(mmHM=CM)%LL“=
Input(Aﬁ) O Input(Al) O ...)
Thus whatever is output at some finite stage
by 7(A) can also be output at some finite
stage by V(Ak) for some k € () and some Ak € AF.
To be more precise:
Vnewvaeaikeq, aea
Output (¥ (2) In) = output (¥ (&%) In)
Hence
Ly e £€0 ¢ 2L ¢y cp

Thus it must be the case that

QED

page 134

(F3) Theorem Every continuous history function is the
function computed by some node (i.e. some

atomic open net).

Proof Let n € ()
Let f: Ka" -> Ka
We construct a node that when placed together
with its input and output arcs into a test bed
camputes the function f according to E4
Such a node (= N) is defined by the following:
(i) Inportarity(N) = n
(i.e. the function has Ka" as its domain)
(ii) Outportarity(N) = 1
(i.e. the function has Ka as its range)
(iii) State(™) = { <&,B,1> | @« € Sq" and
B € sg and
1e0 }
The o component records the history read
so far; B records what has been output so far;
1 is the running total of datons output so
far.

(iv) Initialstate(N) = < { A 1", A,8>

page 135

(v) Transitions(N) are given by the following
transition schema:
Vae (QO{nil H" beO{ nil },
k€W, a€sq, BEsq
<a,<o,B,k>> => <E,<c"a,B E(o) (k) ,k'>, £ (k)>
where i € n
E, =Itt ifa, £ nil
ff otherwise
k' =fk+1 if IB"£(a) (k)| > IBI
{; otherwise
Let us place this node (i.e. N) together with its input
and output arcs (we call this the open net P')
into a test bed. Once in the
test bed we can begin to play the infinite game
G(f,P'). Since the function f is continuous we
know that giving the node more input can only
cause it to produce more output (i.e. monotonicity)
Thus given a few inputs we know that we can
safely produce the outputs required by the
function definition. In other words future
inputs will not require us to recall those
datons already output. Secondly we know that
the node will never require an infinite amount

of input to produce some output.

page 136

Informally the strategy for Player 'II'
in this game is to consume inputs whenever
possible and to produce an output whenever possible.
Thus on 'II's nth move he will have produced
f(aln) In as output where o is the result of the
first n moves of 'I'. Since the node defined above
is deterministic player 'II' is never in the
postion where he has a choice of moves. Thus

'E' the formal strategy of 'II' is entirely
determined by the moves of 'I'. However no
matter what moves are made by 'I' the strategy

th move he will

of 'II' is such that on 'II' n
have output f(a|n)|n where & is the input
produced by the first n moves of 'I', Thus 'II'
strategy is a totally correct strategy.

QED
'E' (F4) Theorem Every pure dataflow open net can be replaced in
any pure dataflow context by a pure dataflow

node

Proof A direct consequence of theorems F2 and F3

QED

The so called 'encapsulation' property described in Arnold[4] is based

on a theorem-similar to F4.

page 137

Chapter 4

A Proof of the Kahn Principle in a Completely

General Context

In this chapter we give, for the first time, a proof of the Kahn
principle for finite pure dataflow nets. Others who have attempted to
prove the Kahn principle have tried to do so directly. This is extremely
complicated as it involves direct reasoning about open net computation
(e.g. fair (}-sequences of net transitions, etc..). Our proof of the Kahn
principle makes use of infinite games and as a result the proof is less
complex than it would have been had we used a direct approach.

The Kahn principle has many important conseguences one of which is
that sets of equations can be thought of as an equational programming
language similar to Lucid[7]. This type of programming language has been
ignored by many designers of dataflow languages. Another consequence of
the Kahn principle is that we can use the simple denotational semantics
to reason about our operational ideas. A good example of this is the

cycle sum test of Wadge[46]. These consequences are briefly described in

section B.

page 138

A. A proof of The Kahn Principle

In this section we show how all well-formed open pure dataflow nets
can be build up using two particularly simple operations. One of these
operations is the placing side by side of two open nets to form a larger
open net, we call this juxtaposing two nets. The second operation is
called iteration or looping. The idea here is that a net can be formed
from an existing open net by choosing one of the subnets output arcs and
bending it back to feed an arbitrary input arc. Some dataflow groups do
not allow dataflow nets with loops (e.g. Hankin[24]). The reason for
this is that dataflow nets which allow re-cycling (looped arcs) may
deadlock. We deal with the problem of deadlock in section B.

Our approach to proving the Kahn principle is in a number of
stages. To start with we define what it means for an open net to be
Kahnian (i.e. it computes the least fixed point of the net's associated
set of equations). Similarly we say that a net is output Kahnian or O-
Kahnian iff its output behaviour is as predicted by the least fixed
point of the net's associated set of equations. The first results we
prove are that the operations of juxtaposing and iteration preserve O-
Kahnity. Using these results we prove by induction of the size of a net
that all finite pure dataflow nets are O-Kahnian. The Kahn principle is
established by the use of a simple lemma which states that an open net
is Kahnian iff it is O-Kahnian. We now present the technical details of

a proof of the Kahn principle.

page 139

Juxtaposition

We begin by defining precisely what it means to juxtapose (i.e. place

side by side) two open nets.

The Compostion of two
open nets

Let a and b be two open nets.
c = a:b (read a juxtaposed b)
iff
a:b is the unique net ¢ such that
(i) Inportarity(c) = Inportarity(a) + Inportarity (b)
(ii) Outportarity(c) = Outportarity(a) + Outportarity(b)
(iii) Nodes(c) = Nodes(a)” Nodes (b)
(iv) Arcs(c) = { <<ntS,i>,<m,j>> | <<n,i>,<m,3>> e J ()
{ <<n,i>,<m+5,3)>> | <<n,i>,<m,3>> e P} ()
[<«<nts,iH0,<mS,3>> | <<n,i>,<m,i>> e I } ()
{ <<nts,i>,<m#S,3H>> | <<n,i>,<m,i>> € 0 } ()
{ <«n#s,i>,<mt5,3>> | <«n,i>,<m,i>> € B} ()

Internalarcs (a)

where S = Size(a)
N = Inportarity(a)
M = Outportarity (a)

page 140

S|
1]

Inputarcs (a)

-
]

Outputarcs(a)

]

Inputarcs (b)

O = Outputarcs (b)

B = Internalarcs (b)

This large expression simply does re-naming. The internal arcs
of a need no re-naming so they appear as they are; the input
arcs of a need to have their source node updated to the size of
the new net; similarly for the output arcs of a. In the
juxtaposed net b must be completely re-labelled. This means
that the input arcs of b must not only have there source node
updated (i.e. to the size of the new enviromment node); but
also the port numbers must be re-labelled so that they begin
from the Inportarity(a). A similar argument applies to the
output arcs of b. The internal arcs of b must be re-labelled to
take account of their new position in the node sequence that
defines the juxtaposed net. This is also the reason that the
nodes associated with the input and output arcs of b are re-

labelled.

page 141

Tteration
Another important operation over open nets is the iteration
operation. This involves taking an arbitrary output arc and bending it

back to an arbitrary input arc, as illustrated in the diagram:

Bending backtghe jth output
arc to the i~ input arc.

We define this operation precisely as follows:
Let c be an open net
Let i,j € Inportarity(c) ,Outportarity(c) respectively
c' is the new subnet formed by bending back the jth
output arc of c to feed the ith input arc of c.
(1) 1Inportarity(c') = Inportarity(c) ~ 1
(ii) Outportarity(c') = Outportarity(c) - 1
(iii) Nodes(c') = Nodes(c)
(iv) Arcs(c') = Internalarcs(c) () { <i',3'> 1 0
{ <«n-1,p>,<m,@>> | <<n,p>,<m,>> € I & (p<i or p>i) }
{ <<n,p>,<m-1,g>> | <<n,p>,<m,p>> € 0 & (g<j or g>j) }
where I = Inputarcs(c)

O = Outputarcs(c)

i Arcs(c)_l(size(c),i)

j' = Arcs(c) (size(c),])
In this case the only re-labelling is to the input/output
arcs.

page 142

(Al) Lemma Any pure dataflow open net definable in our
operational model can be build using a combination of

1) Juxtaposition: the placing side by side of two
open nets to form a new open net.

ii) Iteration: the bending back of an arbitrary

output arc to an arbitrary input

arc within the same open net.

Proof Layout all the nodes in the net using juxtaposition

and apply iteration to make neccesary interconnections.
QED

Relating our dataflow nets to sets of fixed point equations

If we are to state precisely what we mean to say that a net is
Kahnian then we must be able to relate our dataflow nets with a set of
fixed point equations. To formalise this idea we associate two functions
with each open net c. One function we call EF and the other FF, The
function ES associates a countable sequence of natural numbers with each
internal arc. The actual value of the sequence depends on the history
function computed by the source node of the arc (and of cause that nodes
input arcs). In a similar way the function P associates a countable
sequence of natural numbers with each output arc. Formally we have the
following:

Let ¢ be a pure dataflow open net

n = Inportarity(c)
m = Outportarity(c)
C = Internalarcs(c)

0= Outputarcs(c)

We associate two functions with c

page 143

(i) ES: Ka® xKa" -> KaC
VgeC x€&Ka"
ES(C,x) (@) = Fnodes (€) . oinode (q) (%)

where Fnodes(c) is the sequence of functions that
correspond to the sequence Nodes(c) of
functional nodes.

(ii) FC . KaC x Ka© -> Ka©
Vx€EK" q€EO

F(C,x) (Toport (g)) = Fnodes(c) X)

Fromnode (q) (C s
Where Fnodes(c) is as above.

The function ET can used to associates an equation with each internal
arc in the open net. In a similar way FC can be used to associate an
equation with each of the output arcs of c. For example consider the
open net N defined by the following structure:

<<FBY,DUP,DUP,PLUS>, { dyrGyr--+ 195 Y, 2, 2>

The nodes FBY etc. have been formally defined in chapter 2 and for

notational convenience, in this example we refer to the nodes by their

name. The arcs of N are as follows: d[“

page 144

<<0,0>,<1,0>> q; = <<1,15>,<2,0>> gq, = <<2,1>,<3,1>>

&

<<2,05,<4,1>>

O
w
|

= <3,05,40,1>> g, = <<1,0>,<4,0>> g

Note that we have labelled the input arcs with a sequence of input
variables (the x's) and the output arcs with a sequence of output
variables (the y's). For this example the EN function is

B.N(c,x) = { <y fby(xo,cq3)>, <9y, dupl(cqo)>,

<qy., dupl(cq1)>, <dz, plus(xl,cq2)> }

Note that the fby, dup and plus are not the nodes FBY, DUP and PLUS,
they are the functions computed by these nodes. Fram the above
definition of BN we see that the set of equations associated with the

internal arcs of N are:

cqo = fby(xo,cq3)
cql = dupl(cqo)
cq2 = dupl(cql)
cq3 = plus(xl,cqz)

page 145

For the function FN we have the following definition:

P'(c,x) = { <Toport(q,), dugy (cq)

<Toport(gg), dup, (cql) > }

= < dupo(c), dupl(cql) >

%

From this we see that the equations associated with the output arcs

are:

]

Yo = dup, (cqo)

yl dupl (cq)

Thus given any puri dataflow net ¢ we can use ES and FS to
formalise precisely what it means for a ¢ to compute the least fixed
point of its associated set of equations (A3). However, before we give
this definition we define what it means for the output activity of a net
to compute that predicted by the least fixed point solution to the net's
associated set of equations. Nets which behave in this way are called
Output Kahnian or more concisely O-Kahnian.

(A2) Definition Let c' be a pure dataflow open net

Let x € KaInportarlty(c)

Let c € KaInternalarcs(c)
c¢' is said to be O-Kahnian

iff

the output activity of the net c,

given input x, is

FO(peES(c,x), x)

page 146

(A3) Definition Let c be a pure dataflow open net
Let x € KaInportarlty(c)

Let a € K‘_ﬂInternalarcs(c)

¢ is said to be Kahnian
iff
(i) c© is O-Kahnian
(i1) the activity of the internal arcs
of ¢, given input x, is
chc(c,x)

We now prove that any finitel pure dataflow net is O-Kahnian. The
proof is by induction on the size of the net and uses the following
important lemmas:

(A4) Lemma Let a, b be O-Kahnian nets
Let ¢ be a:b (i.e the juxtaposing of a and b)

¢ is O—Kahnian

Proof Let A = Internalarcs(a)
B = Internalarcs (b)
C = Internalarcs(c)
n = Inportarity(a)

n' = Inportarity(b)
m = Outportarity(a)
m' = Outportarity(b)

aeKaA

b € KaB

ceKaC

x € Kan+n

page 147

Since a and b are O-Kahnian we have from

(A2) that the output activity of a, given z € Ka" is
Fa(paEa(a,z),z).

Similarly the output activity of b, given y € Ka" is

PP (oEP (b, v) ,y) -

It is fairly obvious that the juxtaposing of two

nets will not change their operational behaviour

since the nets do not interact.

Thus the output of ¢, given input z y, will certainly be
Pa(paEa(a,z),thFb(prb(b,y)rY) ceeo(l)

or alternatively we could replace sz by x (€ Kan+n')
with z = x|n and y = <xn’xn+l""'xn+n'—l>

If we are to prove that ¢ is O-Kahnian then we

must prove that the output activity of ¢ given
input x is

FS (pcES(c,x) , %) ceee(2)

Let us begin be expressing F€ and ES in terms of Fa,
Fb, E? and Eb. We can do this because we know

the juxtaposed net relates to the original nets.
However, before we do this we must take into
account the re-naming that is done when the nets are

juxtaposed. To do this we introduce the re-name function:

rn(D,1) = { <<ntl,i>,<m+l,3i>> | <<n,i>,<m,j>> € D }

page 148

Now FC can be written as
C D
F (c,x) = Fa(clh,xln') Pb(c_clh”xn”"’xn+n'—l)
and EC can be written as
A
Ec(c,x) = Ea(clA,xln) (__)Eb(c-CIA,xn,.,xn+n._1)
" where

%b:Karn(B,51ze(a)) x Ka" -> Karn(B,s1ze(a))

’E):Karn(B,size(a)) x Ka" -> Ka"

Note: the essential difference between %’b, 'l\ib and
Fb, Bb is that the set of equations generated
by the first pair differs from the set of equations
generated by the second pair only in only in the names of
-the variables. The reason for this that in the juxtaposed
net the arcs the arcs corresponding to b have been
re-labelled. Thus the least fixed point of both sets of
equations is the same.

Now, if we are to prove that ¢ is O-Kahnian we
must prove that the expression given to use by
the definition of O-Kahnity of ¢ (2) is equivalent the
the expression we obtained from the known
operational behaviour (1). In other word we must
prove that the following expressions are equivalent:
For the first m outputs of ¢ we must prove that

Pa(chc(c,x) |IA,x|n) 1is equivalent to

E‘a(palza(a,xln)

page 149

For the last m' outputs of c we must prove that
%b(pcﬂc(c,x)—pczc(c,x) IA,xn,... ’xn+n'—l)
is equivalent to
Eb(pbzb(b,xn,...,xmn._l)
For the first m outputs we only have to prove
that the arguments of 2 are equivalent:
pch(c,x) IA = paEa(a,xln)
lhs pc EC(c,x) 1A
) (p elimination)
c|A where ¢ = Ec(c,x) end
] (expansion of ES)
c|A where c = Ea(clA,xIn) QO l!\’.‘b(c-CIA,xn,. e 'xn+n'—1)
end
' (adding new equations)
c|A where c = Ea(clh,xln) (__)%b(c-clA,xn, .o ’xn+n‘—1)
a=clA
end
t (substitution of expression for variable)

B (a,xIn) O Bb(c—cll\,xn, ooy xn+n'—l)

a where ¢

a=clA
end
' (replacing a variable by its definition)
a where ¢ = Ea(a,xln) (_)Eb(c—clh,xn,..., xn+n'—1)
a = [E(a,xIn) L)'ﬁb(c-clh,xn,...,xnm._l)] A
end

t (simplification)

page 150

a where ¢c = Ea(a,xln) UEb(c-CIA,xn,..., xn+n'—l)
a= Ea(a,xln)
end
' (removing unused equation)

a where a = Ea(a,x|n) end
f (p introduction)
pa Ba(a,x)
This the the rhs
For the last m' outputs of c we must prove that:
ﬁ‘b(chc(c,x)—chc(c,x) IA’xn""’xn+n'-l)

is equivalent to
Fb(PbEb(b,Xn, sse X

Since 'i'b and Fb have the same meaning (except for the re-naming

n+n'—l) 1Xpree. ’xn+n'-l)

of arcs) we must prove that their arguments are equal except
for the re-naming of arcs.

Essentially this means proving that
pch(c,x)—chc(c,x) A = prb(b,xn,...,xn+n._1)
1lhs pch(c,x)— PcEc(c,x) IA

t (p elimination)

c—c|A where ¢ = Ec(c,x) end

) (expansion of EF)
c—c|A where ¢ = E2(c|A,xIn) (__)'fzb(c—clh,xn,..,xn_'_n,_l)
end
) (add new equations)

page 151

c—c|A where ¢ = Ea(cIA,xln) (__)Eb(c—clh,xn,..,xn+n._l)
a=clA
b = c—cl|A
end
t (substitute expression for variable)
b where c = BP(a,xIn)(_)ﬁp(b,xn,..,xn+n._l)
a = clA
b = c~clA
end
t (remove c)
®
b where a = [Ea(a,xln)(_) (b,xn,..,xn+n._l)]|A
b= [E(a,xIn) QB (byx e X0 g)]-
(@, xIn) QB (b,x_,..px 1 1)]IA
end
) (simplification)

b where a = Ea(a,xln)
A
b=EP(b,x %, i)
end
f (removing unused eguation)
here b = B2 (b a
b where b = (’xn""xn+n'—l) en
) (p introduction)
pEEP (b, x_ e,)

This is the rhs except for the re-naming associated
with ?}).

Thus we have proved that ¢ is O-Kahnian.

QED

page 152

(A5) Lemma

Proof

Let c be an O-Kahnian pure dataflow open net.
Let i € Inportarity(c)

Let j € Outportarity(c)

Let c' be the result of looping back the jth

output arc of ¢ to feed the ith input arc of c.

c¢' is O-Kahnian

Let C' = Internalarcs(c')

Let C = Internalarcs(c)

Let n = Inportarity(c)

Let m = Outportarity(c)

Let x € Ka"

Let x' € Ka" *

Let ¢ € KaC

Let c' € Kacl

letg = <Arcs(c)—1(Size(c),i),Arcs(c)(Size(c),j)>
(i.e the looped arc)

Thus C' =CQ){ g}

Since ¢ is O-Kahnian we know that the output activity
of ¢ given input x is:

Fp(chF(c,x),x)

We want to prove that the output activity of ¢' given
input x' is:

Fc (PC'EC (C' lx')lx')

page 153

Since we know the relationship between the o0ld net
and the iterated net we can express Fc'
and Ec' in terms of FC and ES:

FS (et x') = ESe'/ g x (e)y
ES (o hx') = EO(e/x'h (¢!)/ FO (e /0 xh (e) s
Since ¢ is O-Kahnian it computes a sequence of functions
£:(Ka" -> Ka)"
To be more precise it computes
f=Xxx Fc(chc(c,x),x)
This means we can use infinite games.
Let v be a totally correct strategy for the game G(f,c).
We prove that there is a totally correct strategy v' for
G(f',c') such that

B = anxt e xor oxgyepefy) (02)xt s 0xt o) 0y g mi,

c' is the open net with n-1 input and m-1 output arcs formed by bending

back the jth output arc of c to feed the ith input arc of c.

page 154

v' is a totally correct strategy derived from v using an auxiliary game
in which v is applied to
x' and the output from the jth output arc. Note that in infinite games
is a standard technigue to have a strategy play against itself.
Since 7' is derived from v, the first output of the each of the output
arcs of ¢' is
Vke€mm#j
fk(x'o,..,x'i_l,lﬁL,x'i,..,x'n_z)Il
(since ¢' has no input on its ith input arc).
The second output will be
fk(x'o,..,x‘i_l, 0 ,X'iieax 5)I12
where o = fj(X'O""xji—l"r&’x'i’"'x'n—z)'1
(since v is playing against itself).
If we continue the process we get the following that the rth of ¢' is:
fk(x'o,..,x'i_l, °._, ,x'i,..,x'n_z)lr
where o _, = fj(x'o,..,x'i_l, O _rX'sreerx' o) lr-1
Thus ¢' certainly does compute
£' = xx' f(X'QiPZ(f(X'fiZ))jHj
Thus the infinite game argument defines for us the operational
behaviour of the output arcs of c¢'.
If we want to prove that c¢' is O-Kahnian then we must prove that, given
input x', the output activity of ¢' is:
FS (ue'E (c',x') ,x") (=£'(x"))
Since we can express FC in terms of FS and EC we have:
£'(x') = FS((uc'ES (c'x"))/ g x'§j(|.1c'Ec' NPty e (2)
Thus we must prove that the expression we have derived from the known

operational behaviour (2) is equivalent to the expression we have from

page 155

the definition of O-Kahnity for ¢' i.e. (1). As we are trying to show
the equivalence between two expression each of which is the result of an
application of Pc, then all we need do is to show that each expression
has equivalent arguments for F<.

The first argument of FC as given by the expanded definition of the
O-Kahnity of c¢' is: |
(pc'ﬂc'(c',x'))b
The first argument of FC as given by the infinite game solution is:

PZ(FC(chc(c,X'+iZ),X’*iZ))j

(pc'E (e',x')),
t (p elimination)
c'b where ¢' = Ec' (c',x')
t (expansion of EC')
c'b where c' = Ec(c'/b,x'fi(a'b))/ch(c'/b,x'ki(c'

b))j
end
v (adding new egquations)
' 1 = g€ ' ' ' 1 '
¢’y where c' = E"(c'/,x Qi(a b))/bF‘c(c /prx' 4 (c b))j
c = c'/b
z = c'b
end
t (substitution of an expression for a variable)

Z where ¢’ I‘.’c(c,x'Qiz)/b!"c(c,x'fiz)j

= ~t
c c /b
— 1
z =c'y
end
v (eliminate c¢')

page 156

z where c = [EF(c,x'?iz)/bFC(c,x'4iZ)j]/b

N
i

[Bc(c,X'+iZ)/ch(c,X' ’iz)j]b
end

t (simplification)

z where ¢ Ec(c,x'éiz)
z = Fc(c,x'+iz)j
end
Y (taking a fixed point)
z where c = chc(c,x'Qiz)
z = Fc(c,x'+iz)j
end
v (replace a variable by its definition)
z where z = Fc(pcﬂc(c,x'4iz)j end
v (h introduction)
pz Fc(chF(c,x'éiz),x'Qiz)j
This is the output activity predicted by the infinite game

i.e. the rhs.

The second argument of (1) in its expanded form is:
]

(pc'ES (c',x") My

The second argument of (2) is:

chc(c,X'+ip2(F°(pch(c,X'+iz),X'+i2))j)

(pC‘Ec' (c'yx'))/
t (p elimination)
c'/b where c¢' = Ec'(c',x')

' (expansion of Ec')

page 157

c'/b where c' = Ec(c'/b,x'%i(a'b))/ch(C'/b,X'+i(C'b))j
end
{ (adding new equations)

c'/b where c' = Ec(c'/b,x'Oi(a'b))/bFC(c'/b,x'Qi(c'b))j

c = c'/b
= !
z c'y
end
i (substitution of an expression for a variable)

c where c' = !I:c(c,x'Qiz)/bi'c(c,x'biz)j

c = c'/b
z = c'b
end
f (eliminate c')

c where c

[E%(c,x"};2) / FC (e x" hy2) 1/,
[E%(c,x"4;2) / FS (e x" Y y2) 1

N
n

end

t (simplification)

c where ¢ Ec(c,x'liz)

z = F‘c(c,x'Qiz)j
end
t (taking a fixed point)
¢ where c = chc(c,x'}iz)
zZ = !":(c,x'+iz)j
end
' (replace a variable by its definition)

page 158

¢ where ¢ = pcﬁc(c,x"iz)
Z = Pc(pcﬂc(c,x'4iz),x'4iz)j
end
) (taking a fixed point)
¢ where ¢ = chc(c,x'4iz)
z = szc(chc(c,x'iiz),x‘fiz)j
end
v (replacing a variable by its definition)
¢ where ¢ = BF(c,x'Qiszp(chc(c,x'fiz)j)
end
v (p introduction)
chF(c,x'Qiszc(chF(c,x'!iz),x'#iz)j
This is the output activity predicted by the infinite game
Thus we have that ¢ is O-Kahnian.
QED
(A7) Theorem All finite pure dataflow open nets are O-Kahnian
Proof By induction on the size of the open net
(i.e. the number of nodes within a net)
base step (n = 1) all open nets containing
a single node are O-Kahnian
(all nodes compute history functions)
assume all nets of size n-1 are O-Kahnian
i) adding an extra node using juxtaposition

is O-Kahnian (see A3).

page 159

ii) applying an arbitrary number of iterations
to any net arising from i) preserves
O-Kahnianity (see A4).

Hence all pure dataflow open nets are O-Kahnian.

QED
(A8) Definition Let ¢ be a open net.
¢ is the output net of ¢
iff
€ is an open net derived from ¢ such that
every internal arc of ¢ is an output arc of
C (i.e. each internal arc is cut and a
duplicator node is used to re-connect the
severed arc, the second output of the duplicator
becomes an output arc of o).

The following diagram shows an open net c and its corresponding c.

1 The net ¢

page 160

(A9) Theorem Let ¢ be any pure dataflow open net.

c is Kahnian iff € is O-Kahnian
Proof ¢ Kahnian = > € is O-Kahnian

If ¢ is Kahnian then tapping off all
internal arcs (using duplicator nodes) will not
change the operational behaviour of that part
of the net € that corresponds to the‘
original net. The only effect operationally is to
duplicate arc activity. Denotationally the net c
is associated with a set of equations that
differs from the set of equations for ¢,
by the addition of extra equations, the
rhs of which involve a duplicate function. It
would not be difficult using the techniques we
used to prove (A7) to show that & is O-Kahnian.
¢ is O-Kahnian = > ¢ is Kahnian
The set of equations associated with ¢
differs from the set of eguations for ¢ only by
the addition of extra equations involving duplicator
functions. Removing these extra equations
obviously corresponds to the removal of the
duplicator nodes used to tap off the internal
arcs of c. This will have no effect on the
operational behaviour of the net c. Again using
the techniques we used to prove (A7) it is not
difficult to prove that c is Kahnian.

QED

page 161

(Al0) Theorem (The Kahn Principle)

All finite pure dataflow open nets are Kahnian.

Proof From (A7) we have that every pure dataflow open
net is O-Kahnian.
Given any finite pure dataflow open net ¢, the
corresponding output net c is O-Kahnian.
However, theorem A9 tells us that if c is
O-Kahnian then ¢ is Kahnian. Thus all
pure dataflow open nets are Kahnian.

QED
A proof of the Kahn principle for certain kinds of infinite nets is

given in Chapter 5.

page 162

C. Some Consequences of the Kahn Principle

In this section we examine two interesting consequences of the Kahn
principle. The first is that pure dataflow programs are not graphs but
rather sets of equations. We can think of these equations as an
equational dataflow language. We believe the programs in this language
are concise and elegant. The second consequence is that we can reason
about operational activity denotationally. An interesting example of

this is the cycle sum test for dataflow deadlock.

An equational dataflow language

Great amounts of resources have been poured into research projects
all over the world with the sole aim of developing a dataflow
language. Jack Dennis at MIT is developing a language called VAL[1l];
Arvind and Gostelow a language called ID[51] and Osman, Hankin and Sharp
a language called CAJOLE[24].

On the other hand we get an elegant equational dataflow programming
language for "free" (i.e. via the Kahn principle). Here are some
examples of some simple “standard" programs:

(i) The fibonacci program

F=1fby (2 fby (F + 2))
G = next F
OUTPUT = F

(ii) A program to generate the stream of factorials

I =1 fby (I+l)
F =1 fby (F*(next I))
OUTPUT = F

page 163

Note: fby appears as an infix operator.

The equational programmer uses circularity to bring about
repetition. This idea is far more general than the simple iterations of
our two simple programs. (Advanced equational programming is beyond the
scope of this thesis and the reader is referred to Ashcroft and
Wadge[7]). The equational programs we have written so far are extremely
simple; but by adding one or two more powerful operators the language
can become quite powerful. An example of one of these advanced operators
is called "upon". The following is an operational definition of "upon":
As long as O's (representing falses) arrive down its second input arc it
sends copies of the last daton it consumed from its first input
arc. When a 1 (representing true) arrives on its first input arc, the
node consumes the next daton on its first input arc and send copies
until the next 1 arrives. For example if the history
4,2,3,9,8,... arrives along the first input arc and
o,1,0,1,1,1,0,... arrives along the second input arc the the history of
the output arc is 4,4,2,2,3,9,8,8,...

We can now use this node (or rather the history function computed by

the node) in the following merge program:

AA = A upon AA < BB
BB = B upon BB < AA

C = if AA < BB then AA else BB fi
ouTPUT = C

page 164

If A and B are sequences in increasing order then the output will be
the ordered merge. If we add to the above program the following
equations:

D

1 fby C

A = 2*D

B = 3*D

OUTPUT = D

We have a new program, without inputs, that produces as output all
numbers of the form 2i, 3j in increasing order. Thus even with very few

operators we can write interesting programs.

Deadlock and the cycle sum test

In all but trivial dataflow programs we find that variables are
defined directly or indirectly in terms of themselves. The fact that a
variable is defined in terms of itself means that its corresponding arc
in the network is part of some loop. Thus the datons that travel around
that loop are endlessly re-cycled. However, this may not always be the
case because it is possible that the loop runs dry. The following two
programs illustrate the situation:

(i) x=x+1

The loop is permanently dry.

(ii) x = 1 fby (next (1 fby(next x)))

The loop is able to produce the output 1 before seizing up.

More complex deadlocks may occur which depend on the value of certain

variables. For example:

x =9 fby next y

y = 3* x upon p

page 165

This program dealocks almost immediately unless the first value of P is
0.

Thus we have the situation where certain programs like the one
above deadlock and yet others like fibonacci and merge go on forever
(given enough inputs).

In [46] Wadge describes how it is possible to decide on what
programs will deadlock. He notices that in healthy programs a variable
depends on itself in such a way that the present value of the variable
depends on at most the previously computed value. On the other hand in
programs which deadiock a variable requires a present or future value of
itself. This observation suggests some sort of requirement which ensures
that the present value of a variable is dependent only on its previous
values. To make this idea more precise we need to state in an exact way
the ways in which the outputs of various nodes depend on their
inputs. For example:

(1) A = BKC
The value of A depends on the present value of B and C.
(ii) A = next B

A depends on the value of B one time step in the future.

i.e. the first 3 values of A require the first 4 values

of B.

(iii) A=C fby D
A depends on the present value of C and on the value of
D one time step in the past.
i.e. The first 3 values of A depend on the first 3

values of C and the first two values of D.

page 166

These dependencies are clearly cumulative and thus given

A =3 fby (5 fby B)

The first 3 values of A regquire only the first value of B.

Effects may also cancel each other, thus

A = 9 fby next B

The first n values of A depend on the first n values of B.

This observation lead Wadge to assign the following numbers to the
input arcs of the various operators:

(i) O is assigned to each of the data operators such as +,%,..

(ii) O and -1 respectively are assigned to the arguments of fby

(iii) +1 is assigned to the argument of next.

(iv) O and -1 respectively are assigned to the arguments of upon.

When operations are composed their numbers are added; to find the way
in which the value of a whole expression can depend on the values of
variables occuring in it, we consider the expression as a tree, trace
paths from the root of the tree to the variable; and add up the number
associated with the operators on the path. For example if the expression
is

(9 fby(next B + next C)) upon (next (P fby B))

the path to P goes through the second argument of upon(-1), the
argument of next (+1) and the first argument of fby (#). The sum of
this is O and so we may conclude that in general the present value of
the expression could depend on the present value of P.

Given the graph of a program we can tell wether a variable depends

on its own present or future values. What we do is to form the path sums
of all paths which start at the arc which corresponds to the variable in

question. (i.e. all cycles containing the arc). If the cycle sum is

page 167

negative,the dependency of the variable on itself is healthy. To ensure
the whole program is healthy we repeat the cycle sum test for each
variable. Equivalently we make sure that every cycle in the graph has a
negative cycle sum.

The importance of Wadge's paper is that although the concept of
deadlock is operational he goes on (via the Kahn principle) to give a
denotational proof of the cycle sum test. Such a proof is beyond the
scope of this thesis.

Note: In this thesis we have numbered the time dependencies in the
opposite way to which Wadge numbered them in his paper. The reason for
this is that it is compatible with the extended version of the cycle sum
test (see Faustini and Wadge[55]). The extended cycle sum test allows
the cycle sum test to be applied to equational programs which may

include recursive defined user functions.

page 168

Chapter 5

Possible extensions and refinements

In this chapter we briefly examine ways in which to extend the
denotational semantics to handle a broader class of behaviours (i.e. not
just pure dataflow). In addition we look at ways describing functional
nodes in terms of their internal properties; we see this as a refinement
to the operational semantics. However, before we look at these
extensions and refinements we prove the Kahn principle for certain kinds
of infinite net.

A. A Functional Programming Approach to Extend Pure Dataflow

The Kahn principle as we stated it in chapter 4 was defined only
for finite nets. The next question we ask ourselves is does the
principle hold for infinite pure dataflow nets? As far as our
operational model is concerned there is no problem in defining infinite
nets, but this in itself is no justification for proving the extended
Kahn principle. However, if we look at the denotational semantics and in
particular the related equational dataflow programming language, we
immediately find an excellent reason for wanting to prove the extended
Kahn principle. The equational dataflow programming language described
in (I4.B) is limited in that the programs can only be defined in terms
of a simple finite set of equations. To allow the user to develop
programs in a structured way we need to extend this 'simple' language by

allowing equations defining functions, including recursive

page 169

definitions. Some typical user defined functions (UDF's) are :
upon(x,p) = first x fby if p then upon(next x ,next p)
else upon(x, next p) fi
whenever (x,p) = if first p then first x fby whenever (next x, next p)
else whenever (next x, next p) fi

merge (a,b) = valof

aa = upon(a, aa < bb)

bb

upon (b, bb < aa)
result = if aa < bb then aa else bb fi
end

The implementation of this extended language (which is similar to
Lucid[6]) involves either dynamically growing nets or (notionally)
infinite nets (but still pure datflow). The methods of this thesis
extend naturally to such nets and permit us to give, for the first time,
a proof of the correspondingly extended Kahn principle. Notice that even
though the nets are required to be infinite they always have a finite
number of input and output arcs. Nets with a finite number of input arcs
and a finite number of output arcs are said to have finite fan/out an
fan/in. The way we prove the extended Kahn principle is to build the
infinite net as the limit of a seguence of finite nets. We begin by
taking a single node, for convenience we choose the first node in the
sequence of nodes associated with the infinite net's formal
description. This node together with its associated input/output arcs
(which may include iterated arcs) is a finite pure dataflow net. Since
the pure dataflow net is finite we know that the net is Kahnian. In
addition we know how the zeroth node relates to the infinite net. The

reason this is important is that we will place no input on those input

page 170

arcs that are associated with internal arcs in the infinite net. Thus
the behaviour of the single node together with its input/output arcs is
an approximation to the behaviour of the infinite net. Next we take the
first and second node in the infinite nets node sequence. This time
there are two nodes which may themselves be interconnected (the same way
as they are interconnected in the infinite net). Again we choose not to
give the second net any input on the inputs that correspond to the
internal arcs of the infinite net. Thus the second net is an even closer
approximation to the behaviour of the infinite net. If we continue this
argument ad infinitum we get a segeunce of net behaviours the limit of

the sequence of behaviours being the behaviour of the infinite net.

(A1) Theorem (the extended Kahn Principle)
All infinite pure dataflow nets with finite
fan/in and fan/out are Kahnian.
Proof Let ¢ be an infinite pure dataflow net
with Inportarity(c) € ()
Outportarity(c) € ()
Let C = Internalarcs(c)

Let ¢ € Kac

vieQ
Let c; be a open net with finite fan/in and

fan/out.

Let a, € ka1

Let v e KaInportarlty(c(l))

Let x € KaInportarlty(c)

page 171

If we want to prove that c is Kahnian then we
must prove that:

chc(c,x) is the activity of the internal
arcs of ¢ and that

Pc(chc(c,x),x) is the activity of the

output arcs of c.

Let % be the open net formed from node

zero of Nodes(c) together with the nodes
input and output arcs (including iterated arcs)
Since % is finite it is Kahnian and thus
given inputs Yo € KaInportarity(c(O))

its internal arcs compute

pa B @y,

If we arrarge for all the input arcs of c(#)
which correspond to internal arcs in c¢ to be
starved of input then the internal behaviour of
c(0) is an approximation to the behaviour of the
infinite net. Next we take the c(l) to be the
open net corresponding to the first two nodes
in nodes(c). Since this net if finite it too is
Kahnian and thus given input

Inportarity(c(1)) , s iernal

Yy € Ka
behaviour of c(l) is given by

palEc(l)(al,yl).

If we again require that the input arcs of c(1)

which coresspond to internal arcs in ¢ are again

- starved of input then we get an even better

page 172

approximation to the behaviour of the infinite net.
If we continue this process ad infinitum we
generate two sequences. The first sequence is
<c(i) i e Q>

The second is

<paiB‘c(i) (ai,yi) lieW>
Obviously the net ¢ is the limit of the sequence
of finite nets:

1 ci)lie@>=c¢

1mi e (.J<
In a similar way the behaviour of ¢ is the limit
of the sequence of finite approximations to the
behaviour of c:

. (1) . =
llmi e Q<PaiEc (ai,yi)l ie)> = chc(C,X)
Thus the internal behaviour of ¢ is Kahnian.

We can apply a similar argument to prove that the

behaviour of the output arcs of ¢ is Kahnian

QED

page 173

B. Ensuring functionality of nodes

The definition of open net functionality we developed in chapter 3
defines functionality in terms of infinite objects, namely (J-sequences
of open net transitions. Thus if we think of an open net as a black box,
functionality defines what the black box computes without regard to the
black boxes internal behaviour. In this section we examine the internal
properties of nodes (i.e. properties of their transition relations) in

search of properties that guarantee node functionality.

The one step Church-Rosser like property

Rather than begin looking in detail at the internal behaviour of a
node we shall examine the behaviour of an encapsulated net. Since our
operational model is truly modular, any property associated with the
internal behaviour of an open net, is also associated with the internal
behaviour of the corresponding node. We can think of a net computation
seqguence in terms of a sequence of compatible net transitions. Each net
transition includes one transition for each node in the
net. Alternatively we can think of net computation in terms of a uni-
directed graph. Each node in the graph corresponds to net state and
each arc to a net transition. In addition one of the nodes in the graph
is distinguished as the initial state. In the diagram below the
infinite éequence of arcs on the extreme left corresponds to an infinite
sequence of net transitions each of which is a busy wait for each

node. Other paths through the graph

page 174

represent other possible ways of choosing individual node transitions.

From chapter 4 we know that if the nodes in the graph are all
functional then any path through the graph will lead to the network
computing an approximation to the least fixed point solution to the nets
associated set of equations. In particular if a totally correct strategy
is used to pick the transitions then exactly the least fixed point
solution we be computed. Thus our net computations have a Church-Rosser
property. This means that we can set out on any two distinct paths and
after travelling along both paths for an arbitrary length of time we
would still be able to choose some path that would cause both paths to
meet up again and have the same overall behaviour. Since our nets have
the encapsulation property then what we have just said about nets
applies in a coded form to nodes. In particular we can think of node
computation in terms of a uni-directed graph. This time the nodes of the
graph denoterinternal states of a node and the arcs node
transitions. One particularly simple way of guaranteeing that a node is
functional is to require it to have a

page 175

Church-Rosser like property. In other words given a choice of paths
through the node computation graph it is always possible at some later
stage having taken two distinct paths to join them and have the same
overall input/output effect. Nodes with this property are said to be
functionally safe. On the other hand a functionally unsafe node is one
which according to definition J3.E4 is functional but from which it may
not be possible to recover from error. An error would be to choose a
path which only ever allowed an initial segment of the expected output
to be produced.

Requiring our nodes to have the Church-Rosser like property is a little
too much because it is impossible from looking at a nodes transitions to
say in general whether the node has this property. We therefore choose
the more useful l-step Church Rosser like property. This property
guarantees that when it is possible to go from one internal state to two
others in one step, then it is possible for these two paths to meet

after one further single step and for the paths to have the same overall
node state

Wl / \\ Wl

node state node state
r2 \3(\ //z//
w2 node state

rl(J)r2 =rl1'()r2" wl(Ow2 =wl' (Qw2'

reading and writing effect. This means that nodes with this property

page 176

are associated with node computation graphs of the following form:

Although we do not give a proof it is not difficult to prove
that that nodes with the one step Church-Rosser like property are
functional.

Monotone relations and functional nodes

The ideas in this section are in their infancy and should not be
thought of as proved results. In fact this section contains the seeds
for possible future research. We begin by making a small study of some
time dependent nodes to see if we can gain some understanding of time
dependency. Let us begin with an example of a node that behaves in a
similar way to the identity node except under certain conditions where
it produces spurious O's. The formal definition of this node is as

follows:

page 177

<{ g },q 1,1, T>
where T is

Vx€eQ

<nil,q> -> <nil,nil,o>

<X ,qQ> => < tt,nil,x
So long as this node is supplied with datons at a faster rate than that
at which it consumes them it behaves exactly like the identity
function. However as soon as we fail to send it datons at a fast enough
rate we find the empty buffer computation comes into use and produces
spurious O's.

Another example of a node that computes on empty buffers is the
node thst computes the history function "first":
< { qx|xe(~) tO{ 9 Y ,9,1,1, 7>

where ¥ x,y € ()

<nil,qg > -=> <nil,nil,nil>

<x ,9> = <tt,qx, x>

<nil,qx> -> <nil,nil, x>

<y, qx> -> <tt, nil, x>
This node computes on empty buffers and yet is still functional. Closer
examination of the transitions associated with each node suggests that
nodes which compute on empty buffers must be able to perform the same
activity no matter what is in the input buffer. We introduce the

following definition as a means of capturing the above suggestion.

page 178

(Bl) Definition Let <D, L p> and <E, < > be posets

A relation Rover D x E is said to be

monotone
iff
\/dl,dz €D el €E
a' < d® aaalrel -
3 ez, e1 < e2 and d2 R e2

E

We must now apply this definition to a node transitions relation. Given
a node with n input arcs and m output arcs the node's transition
relation T g_<<Bn x0 >, <E" xQ x B™> is said to be monotone
iff
Y <, , <b',p> € T, <e,r,g> € Ty
<b,> SC <b',p> and <<b,q>,<e,r,g>> € T ->
J<e',xr',g'> € T; <e,r,g> < <e',r',g'> and <<b',p>,<e’,r',g'>>
where <b,q> <c <b',p> iffVYi €n bi Q_b'i and g = p
<e,r,g> SE <e',r',g'> iff Vi€nj€Em
e;Ce'sandr Cr'
and gj Q_g'j~
where x C y iff x = y or x = nil
If we examine our two simple examples we will see fhat "first" node
is monotone and the "would be" identity node is not monotone. The reason
why this node is non-monotone is that two compatible causes have
uncompatible effects:
<<nil,g>,<nil,nil,0>> and <<x,q>,<tt,nil,x>>
<nil, S-C <X,q9> and yet <nil,nil,0> S-C <tt,nil,x>.

What we would like prove now is that the nodes which have monotone

page 179

transition relations are functional. Unfortunately this is not the case
since the following node has a monotone transition relation and yet is
non—-determinate:
< q,9" },q9,2,1,™>
where T is given by the set

YV x,y €0

<nil,nil,g> -> <nil,nil, q',nil>

<nil, y,g> -> <nil, tt, q',nil>

<x ,nil,q> -> <tt ,ni1, qg', v

X, y,@ =><tt, tt, q',

<nil,nil,qg'> -> <nil,nil,q, >

<nil, y,q'> -> <nil, tt,q, D>

<x ,nil,g'> =-> <tt ,nil,q, 1>

x , y,.9'> > <ttt , tt,g, D

The node just described cleverly disguises its activity between

states; and so is able to be monotonic and yet non-determinate. The
reason that monotonicity of the transition relation failed to guarantee
functionality is that the montone relation fails to detect situations in
which the computations associated with two distinct partial causes
overlap in activity. A partial cause is one in which one or more of the
input buffers is empty. Allowing such overlaps leads inevitable to non-
determinate input/output behaviour. Another possible approach to finding
a property the guarantees functionality uses the idea of cause chains. A
cause chain for the above node is

<nil,ni1,q>V_§C <nil,y,q> SC <X,Y,9> .

- page 180

We claim (althought it requires rigorous proof) that if the

computing activity associated with each element in a cause chain is
non-overlapping and if the total activity for the partial objects in all
'compatible chains is equal to the activity of the of the complete object
which is the limit of these chains then the node is guaranteed to be
functional. In the last example above we have a chain of partial causes
<<nil,nil,qg'>,<nil,y,q'>> and the chain of partial causes
<<nil,nil,q'>,<x,nil,q'>> the limit of these chains, within the context
of the state g', is <x,y,q'>. The total activity of the chains of
partial causes is to erase x and y and to output three 1's. On the other
hand the activity associated with the limit cause is to erase x and y
and output one 1. Thus there is overlap in the activity of the partial
causes and so the node is non-functional. Again we repeat that these

ideas are really a topic for further research.

page 181

Extending Kahn's denotational semantics

In this section we briefly examine possible extensions to Kahn's
denotational model. This is again another area for further research, our
aim in this section is to suggest possible extensions and to provide a
few references to material that may be of use.

The table below describes the current state (in terms of this

thesis) of operational and denotational models.

Opertational Models Denotational Models
Arcs Nodes Nets

Pipeline dataflow ? ?

F-Nets ? ? 7
T-Nets ? ? ?

Pure Dataflow Histories History Least Fixed

Functions Point of a
net's associated

set of equations
The above table really describes a hierarchy of models, the most

general model being pipeline dataflow and the least general pure
dataflow. Denotationally we know what the objects are that correspond to
arcs, nodes and nets of a pure dataflow net. We now look at the next
level up in the hierarchy, namely the T-nets. The T-nets are those
pipeline dataflow nets which include all pure datalow nodes with the
addition of nodes that are time sensitive. An example of a time senstive

node is the node that repeatedly copies its inputs to its outputs but

page 182

whenever there is no input is outputs a O. Formally we have
<{gl}l,ql, 1, ™

where T is

Vxelw

<nil,g> => <nil,nil,0>

< Xx,@ -> < tt,nil,x>
We can see that the zero is included each time there is a break in the
supply of inputs. If we assume that the node never receives a daton
representing O as input, then the occurence of O's in the output tells
us the rate at which the node received its inputs. Now instead of
relying on the node never receiving inputs, we introduce a special
object called a hiaton which we think of as a unit of delay which
(notionally) travels along with the other datons so that a node can
produce something regularly even if it has no real output. Using this
simple idea we can think of the time dependent nodes such as the example
above as a function over hiatonised histories. In the pure dataflow
model an arc was associated with a pure history and so denotational we
could not reason about the relative rate of arrival on different input
arcs. For example the history <1,2,3,4,...> tells us nothing about the
way in which the history was formed. On the other hand the sequence
<1,%,2,*,3,*,..> tells us the relative time of arrival of the inputs
(the * denoting a delay). The example node above does not campute a
history function, however, it does campute a function over hiatonised
histories:

i:HKA -> HKA where HKA = Sq(WO { * }) O @O { * HV

There is a lot more that could be said about T-nets and hiatonics but
this is beyond the scope of this thesis. Incidently the "Brock-Ackerman
anomaly” [13] can easily be explained using hiatonics.

page 183

An interesting example of the use of hiatonics is to be found in the
Ph.D thesis of P.J. Cameron[l4]. Camerons thesis is about the design of
a nonm—procedural operating systems language. Hiatonics are used to deal
with the time dependent behaviour associated with the scheduling of a
resources such as a set of line printers. Although Cameron makes use of
hiatonics the user of his language never realises that hiatons are used,
they are internal to his system. |

Others who have worked with hiatonic are Boussinot([11] and
Park[41]. They have been interested in finding a denotational semantics
that is able to describe the operational behaviour of the next level in
our hierarchy, namely the F-nets. An F-net is roughly speaking pure
dataflow plus the addition of a fair merge operator. Without going into
details it seems as if both authors have been able to formulate a

denotational semantics for F-Nets.

page 184

In conclusion we are left with the following table:

Opertational Models

Pipeline dataflow

F-Nets

T-Nets

Pure Dataflow

Denotational Models

Arcs

?

Hiatonised

Histories

Hiatonised

Histories

Histories

Nodes

?
Oracular
Hiatonised
History

Functions

Hiatonised
History

Functions

History

Functions

Nets Behaviour

?

The (de- hiatonised)
set of solutions

to the recursive set
of equations over
Hiatonised histories
The (de- hiatonised)
solution to a set

of recusive equations
over hiatonised
Functions

Least Fixed

Point of the
Associated set of

equations

To find a denotational semantics for the whole of pipeline

dataflow is a difficult problem for which we have not yet found a

satisfactory solution.

page 185

(1]

[2)

(3]

(4]

(5]

(6]

[7]

(8]

[9]

6 BIBLIOGRAPHY

Ackerman W. B., Dennis J. B. VAL.. A Value
oriented algorithmic language,
Preliminary Reference Manual.

Computation Structures Group
MIT, Cambridge, Massachusetts.
Adams D. A. A Computation model with Dataflow sequencing

School of Humanities and Science,
(Technical Report CS 117),
Stanford University, California,
Ph.D Thesis,

(1968) .

Arvind, Gostelow K. P., Some relationships between asynchronous
interpreters of a dataflow language,

Formal description of Programming concepts
(E. J. Neuhold Editor), pp 95-119,

North Holland Publishing Company,

New York,
(1977).

Arnold A. Semantique des processus communicants,
RATRO, Vol. 15, N. 2, pp 103-144,
(1981).

Ashcroft E. A., Wadge W., Lucid, a Nonprocedural language with iteration,

Communications of the ACM,
Vol. 28, N. 7, pp 519-526,
(1977).

Ashcroft E. A., Wadge W., Structured Lucid,
Theory of Computation Report N. 33,

Department of Computer Science, University of Warwick,
Coventry, U.K.,
(1988).

Ashcroft E. A., Wadge W., Lucid, The Dataflow Programming Language

Academic Press,
(to be published).

De Bakker J., Mathematical Theory of Program Correctness

Prentice-Hall International
Series in Computer Science
(1989)

Backus J., Can programming be liberated from the Von Neumann
Style? A functional Style and its Algebra of Programs,

Communications of the ACM,
Vol. 21, N. 8, pp 613-641
(1978).

page 186

[10]

[11]

(12]

[13]

[14]

(15]

[16]

(17]

(18]

Bird R.,

Bousinnot F.,

Brock J. D.,

Programs and Machines,
An introduction to the theory of camputation,

Publishers J. Wiley, New York,

Wiley Series In Computing,
(1969) .

Reseau De Processus Avec Melange Equitable: Un Approche
Du Temps Reel,

These de Doctorat D'Etat,
Universite, Paris VII,
(1981).

Operational Semantics of a Dataflow Language,

S.M. Thesis,

Department of Electrical Engineering and Computer
Science, MIT, Cambrigde, Mass.,

(1978) .

Brock J. D., Ackerman W. B., An Anomaly in the Specification of

Cameron P.,

Conway M. E.,

Davis A. L.,

Davis A. L.,

Non—-determinate Packet Sustems,

Computation Structures Group,

(Note 33-1)

Laboratory for Computer Science, MIT, Cambrigde, Mass.,
(1978) .

A Non-procedural Operating Systems Language,

Ph.D Thesis (In preparation),
Department of Computer Science, University of Warwick,
Coventry, U.K.

Design of a Separable Transition-Diagram
Compiler,

Communications of the ACM,
VOl. 6, N. 7' pp 396"408'
(1963) .

The Architecture of and System Method of DDM1: A
Recursively Structured Data Driven Machine,

Proceeding of the 5th Annual Symposium on Computer
Architecture,

Computer Architecture News,

Vol. 6, N. 7, pp 218-215,

(1978) .

Data Driven Nets: A Maximally Concurrent Procedural
Parallel Process Representation For Distributed Computing,

Privately Circulated.

Gale D. & Stewart F.M. Infinite games with perfect information,

Contributions to the theory of games.
Annals of Mathematical studies,
Number 28 Princeton University Press,
Princeton N.J. pp245-266,

(1953)

page 187

[19] Dennis J. B., First Version of a Dataflow Procedure Language,

Programming Symposium: Proceedings of Colloque sur la
Programmation, (B. Robinet Editor),

Springer-Verlag Lecture Notes in Computer Science, N. 19,
pp 362-376,
(1974).

[20] Dennis J. B., Misunas D. P., A Preliminary Architecture for a Basic
Dataflow Processor,

2nd Annual Symposium on Computer Architecture:
Conference Proceedings, pp 126-132,
(1975).

[21] Faustini A. A., An Operational Semantics for Pure Dataflow,

9th International Colloquium on Automata,
Languages and Programming:

Conference proceedings,

(1982)

[22] Glauert J., A Single Assignment Language for Dataflow Computing,
M.Sc. Dissertation,

Department of Computer Science, University of Manchester,
U.K.
(1978).

[23] Gurd J., Watson I., A Multilayered Dataflow Computer Architecture,

Proceedings of the 1977 International Conference on
Parallel Processing (J. L. Baer Editor), p 94,
(1977).

{24] Hankin C. L., Osman P. E., Sharp J. A., A Dataflow Model of Computation,

Department of Computer Science, Westfield College,
Hampstead, London, U.K.,
(1978).

[25] Henderson P., Functional Operating Systems,

Notes privately circulated,
(1981)

[26] Kahn G., The Semantics of a Simple Language
for Parallel Programming,

Proceedings of IFIP Congress
(J. L. Rosenfeld Editor),

pp 471-475,

(1974)

[27] Kahn G., McQueen D., Coroutines and Networks of Parallel Processes,

Proceedings of IFIP Congress (B. Gilchrist Editor),
pp 993-998,
(1977).

page 188

[28]

[29]

[38]

[31]

(32]

[33]

(34]

[35]

[36]

Karp R. M., Miller R. E., Properties of a Model of Parallel Computations:
Determinacy, Termination and Queueing,

SIAM Journal of Applied Mathematics, Vol. 14,
pp 1390-1411,
(1966) .

Keller R. M., Denotational Models with Undeterminate Operators,

Formal Description of Programming Language Concepts,
(E. J. Neuhold Editor), North Holland Publishing
Company, pp 337-366,

New York,

(1977).

Kleene S. C., An Introduction to Metamathematics,

Van Nostrand Company Inc.,
New York,
(1952).

Kosinski P. R., Denotational Semantics of Determinate and Non-
Determinate Dataflow Programs,

Ph.D Thesis,

Department of Computer Science, MIT, Cambridge, Mass.,
(1979).

Kosinski P. R., A Straightforward Denotational Semantics for Non-
Determinate Dataflow Programs,

Conference Record of the 5th ACM Symposium on Principles
of Programming Languages (POPL), pp 214-221,
(1978).

Landin P. J., The Next 700 Programming Languages,

Communications of the ACM,
Vol. 9, N. 3, pp 157-166
(1966).

Bic L., Protection and security in a dataflow system

Technical report # 26

(Ph.D. Thesis)

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

(1978).

Lindstrom A., Keller, Symposium on Functional Languages
and Computer Architecture,
Invited paper
Goteborg June 1-3,
(1981).

Manna 2., Mathematical Theory of Computation,

McGraw Hill Computer Science Series,
(1974) .

page 189

(28]

(29]

[39]

[31]

(32]

[33]

[34]

[35]

[36]

Karp R. M., Miller R. E., Properties of a Model of Parallel Computations:
Determinacy, Termination and Queueing,

SIAM Journal of Applied Mathematics, Vol. 14,
pp 1390-1411,
(1966) .

Keller R. M., Denotational Models with Undeterminate Operators,

Formal Description of Programming Language Concepts,
(E. J. Neuhold Editor), North Holland Publishing
Company, pp 337-366,

New York,

(1977).

Kleene S. C., An Introduction to Metamathematics,

Van Nostrand Company Inc.,
New York,
(1952).

Kosinski P. R., Denotational Semantics of Determinate and Non-
Determinate Dataflow Programs,

Ph.D Thesis,
Department of Computer Science, MIT, Cambridge, Mass.,
(1979).

Kosinski P. R., A Straightforward Denotational Semantics for Non-
Determinate Dataflow Programs,

Conference Record of the 5th ACM Symposium on Principles
of Programming Languages (POPL), pp 214-221,
(1978).

Landin P. J., The Next 760 Programming Languages,

Communications of the ACM,
vol. 9, N. 3, pp 157-166
(1966) .

Bic L., Protection and security in a dataflow system

Technical report # 26

(Ph.D. Thesis)

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

(1978).

Lindstrom A., Keller, Symposium on Functional Languages
and Computer Architecture,
Invited paper
Goteborg June 1-3,
(1981).

Manna Z., Mathematical Theory of Computation,

McGraw Hill Computer Science Series,
(1974) .

page 189

(37]

[38]

[39]

(48]

[41]

[42]

[43]

[44]

[45]

[46]

McIlroy M.

Minsky M.,

Misunas D.

Pilgram P.

Park D. M.

Ritchie D.

Do'

R-’

M.,

Coroutines,

Unpublished Memo,

Bell Telephone Laboratories, Murray Hill,
New Jersey,

(1968) .

Finite and Infinite Machines,

Prentice-Hall

Series in Automatic Computation
George Forsythe, Editor

(1972)

Error Detection and Recovery in a Dataflow Computer,

Proceedings of the 1976 International Conference
on Parallel Processing, pp 117-122,
(1976) .

Translating dataflow into message passing actors.
Ph.D Thesis, (in preparation).

Department of Computer Science,
University of Warwick,
Coventry CV4 7AL

Private Communication
(1981)

Thompson K., The UNIX Operating System,

Communications of the ACM,
Vol. 17, N. 7, pp 365-375,
(1974).

Rodriguez J. E., A Graph Model of Parallel Computation,

Ph.D Thesis,

Laboratory for Computer Science,
MIT, Cambridge, Mass.,

(1969) .

Rumbaugh J. E., A Dataflow Multiprocessor,

Weng K. S.,

Wadge W. W.

IEEE Transactions on Computers,
C-26, 2, pp 138-146
(1977).

Stream Oriented Computation in Recursive Dataflows
Schemas,

Laboratory for Computer Science, ™ 68, MIT,
Cambridge, Mass.,
(1975).

An Extensional Treatment of Dataflow Deadlock,

Proceedings of Conference on Semantics of Concurrent
Coputation, Evian,

Sringer-Verlag Lecture Notes on Computer Science, N. 70
pp 285-299,

(1979).

page 190

(47]

(48]

(49]

[58]

[51]

[52]

(53]

[54]

[55]

Wadge W. W., Reducibility and Determiness in the Baire Space,
Ph.D Thesis,
Mathematics Faculty,
U.C. Berekley

Wiedmer E., Computing with Infinite Objects,

Theoretical Computer Science, N. 16, pp 133-155,
(1980) .

Wiedmer E., Exaktes Rechen Mit Reellen Zahlen und Anderen
Unendlichen Objekten,

Ph.D Thesis,
ETH 5975, Zurich,

(1977).
Manna Z., Mathematical Theory of Computation
McGraw-Hill
Series in Computer Science
(1974)

Arvind, Gostelow K.P., Plouffe w., An asynchronous Programming
Language and Computing machine",

TR-114,
Department of Information and Computer Science,

University of California , Irvine
(1978)

Yourdon E., Constantine L., L., Structered Design:
Fundamentals of a discipline of Computer
Programming and systems design.

Prentice-Hall
(1979)

Ritchie D.M., Thompson K., The UNIX time-sharing System

Communications ACM
V. 17 N.6 pp365-375
(July 1974).

Ashcroft E. A., Proving assertions about parallel programs

Journal Computer Systems Sci
V.16 N.1 ppll@-135
(1975) .

Faustini A.A., Wadge W.W. The cycle sum test for
Recursive User Defined Function

Theory of Computation Report
(in Preparation)

Department of Computer Science
University of Warwick
Coventry .

page 191

	WRAP_THESIS_Faustini_1982.pdf
	University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

	WRAP_cs-rr-041.pdf

