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1. INTRODUCTION

Suppose that the set
©1i . “ai “ni
= .. = <€i < - . B XX, i, j

R {x1 X, vee X 1, 1€<i<m, clJ € 4, xJ xel, M,j}
is a set of defining relations for the abelian group G and let C be an
m>n matrix with C = (Cij)° In this paper, the computational complexity
of the problem of computing the order and the structure of a group G,
given R, is examined.

The complexity of an algorithm is measured in elementary operations.

An elementary operation is a Boolean operation on a single binary bit or

pairs of bits. The size s of an mn matrix C = (Cij)’ is the number

m +n + loglCl
where 1Cl = max{]|c,.|}.
i,j

It is shown that in the case of a finite group G, represented by a
matrix C of size s, the order and the structure of G can be computed in
polynomial time. This computation requires 0(s° M(s2)) elementary operations,
where M(n) denotes the number of elementary operations required for the
multiplication of two integers of length at most n bits.

Also it is given an upper bound for the time required to compute the
structure of an infinite group G is also given. This computation requires
0(2r+€) elementary operations, where r is the rank of the matrix representing
the group G.

Sims in [4] formulated the classical algorithm for the sbove problem
without analysing its computational complexity.

NOTATION
RowC(i) and COLC(i) will be used to denote the i-th row and the i-th

colum of a matrix C respectively.



An integer row-column operation (IRC operation) is said to be:

(i) The multiplication of all the elements of a row(column) by -1
or (ii) The interchange of two rows(columns)
or (iii) The addition of an integer multiple of row(colummn) to a

different row(columm).

2 THE_COMPUTATION OF THE D T
Suppose that an abelian group G is represented by an mxn matrix C
with integer entries, where m is the number of defining relations and n
is the number of generators. Then it is not difficult to show that the
group G is finite if and only if
rankQ(C) =n
where Q denotes the field of rationals.

Hence one can decide whether or not G is finite by means of

Gaussian elimination on C.

2.1 PROCEDURE DET

Procedure DET(C)
Comment This procedure computes the determinant (for square matrix only)

and the rank of an mxn matrix'C(W.l.o.g. m > n is assumed)

i< o0
1. while < C is not in echelon form > do
i« i+l;
if ¢; = O then < interchange ROW(i) and ROW(j) where cji+0’j>i >
uj <« cji / i for i < j g m;
3. ROW(j) <« ROW(3) - uj ROW(i) for i < j & m;
4. end

Return DET(C) =1 i3 (if C is square), RANK(C) = i;
i
end [J



PROPOSITION 2.2 The procedure DET correctly computes the determinant

and the rank of a matrix C in 0(s3M(8?)) elementary operations, where s

is the size of the matrix C.

Proof

Let C(l) denote C at the beginning of the i-th iteration of loop

Dy)

1-4. Step 3 requires at most mn multiplications or O(mmn M(loglC

elementary operations. Hence the procedure requires at most

o (i)
0( 3 mn M(loglC'"
i=1

1)) elementary operations.

Now using the formula (12) in L21 (p.26), one can see that
1Py = occanen®)

Hence the procedure terminates in O(m?n M(log(mfel ™)) = 0(s3 M(s2)).

REMARK Step 3 of the procedure DET can be expressed as the matrix

multiplication R.C, where

1
..' 0
’°1
R = Hiele
O : "‘
. 0
. 1
¥m
+

i-th column
Hence it may be helpful to use the fast matrix multiplication
algorithms (see [3] for the computation of step 3. It is worth mentioning
here that Strassen's algorithm for matrix multiplication (see [1]) is not
suitable for matrix multiplication over the rationals, since it uses a
large number of additions and an addition over the rationals costs three

integer multiplications.

COROLLARY 2.3 There exists an algorithm which decides whether or not an

abelian group G represented by a matrix C, is finite or infinite in

0(s3 M(s2)) elementary operations. O



Bt SHE ALGORLIEM, TOR FINITE GROUPS.

3.1 THE I.R.C. OPERATIONS

The I.R.C. operation transforms the matrix C of the set of defining
relations of an abelian group G to a matrix C* which represents the same
group. The interchange of rows yields the set of defining relationms

c..
reordered, the multiplication of a row by -1 substitutes the relation HXi o

.. i
for the relation I X, 1J-1 and the addition of an integer multiple of a
i c.. c, .
row to a different row substitutes the relations {II X, Jl=1, il %, k1=1}.
i i

The interchange of columns corresponds to the renaming of the generators,
the multiplication of a colum by -1 is the substitution of the generator x

for the generator x and the addition of an integer multiple of a column to a

different column substitutes {xyp, y} for {x, y}.

3.2 BACKGROUND FOR THE ALGORITHM

A. Given an mxn matrix C representing a finite abelian group G,

the algorithm transforms C via IRC operations to the matrix of the form

‘11
- o
.0
-C
nn

0
o]
o]

where c,, c. . 1 <£1ign. The form of the matrix implies that
re €4 | i+l, i+1, ~ i

G =& X see X Zc
11 nn
where 2, is a cyclic group of order ci s for 1 ¢ i & n.
ii
B. In the case m = n = rank(C), the order |G| of the group G can

be computed by means of Gaussian elimination, since

|G| = det(C).



In the case m > n = rank(C), there exist n linearly independent rows
of C over the rationals,say, ROW(ji), l1gign, IfC'= (ROW(jl),...,
ROW(jn))T represents an abelian group F, then the order of the group F is

|F| = det(C")
Moreover, since G is a subgroup of F, it follows that

|F| = 0 (mod|G|) (3.1)
Hence, if one knows the order IGI of group G represented by C, then it is
not difficult to see that the matrix C'' = (c'5 ), with c1J = cij(modIGI)
representing the same group. And gimilarly, if one knows a multiple of lG[
(e.g. |F| above), then the matrix C''' = (ci3') with Cé" = cij(modIFl)

represents the same group.

3.3 THE ALGORITHM

INPUT : An mxn matrix C representing a finite abelian group G
OUTPUT : The canonical structure and the order of the group G
PROCEDURE ELIMINATEROW(C,p,D)
Comment The procedure transforms C via IRC operations to a matrix
having ROW(p) = (al,gz,...,ap,o,...,o). The parameter D is a multiple
of the order of the group if one is known, else D = o(x mode := X, ¥ X € %)
vhile ¢ ; $ 0 for some p <i gn do

A <« index{|c x! = min {lcle > 0}}
p<J <n

< Interchange COL(A) and COL(p) >;
< : H
Compute e, £s P < kgn =& <, + £ with !f |< Cpp 2 >;
COL(k) <« COL(k) - e  COL(p) (mod D) for p<kgn
end

Return C;

end .



In a similar way the procedure ELIMINATECOL(C ,p,D) is defined.
PROCEDURE DIAG(C,D)

Comment This procedure transforms the matrix C via IRC operations to

a matrix C' = (c'ij) with 5 = 0 for i % j.
p + 03
(i) vwhile cij+ 0 for some i % j do
p * ptl;
(ii) _vl_ti_i_l_e_<cpi+0forsomep<i\<n>§g
(iii) ELIMINATEROW(C,p,D) ;
(iv) ELIMINATECOL(C,p,D) ;
(v) end (step (ii))
(vi) end (step (i))

Return C;

end .

The main algorithm is the following:

Begin
1. D « det(C) (If C non—-square, D« 0)!
If D =0 then
2, D « < a minor determinant of C of rank r = rank(C) >;
3. G <+ DIAG(C,D);
4. < Transform C via IRC operations to a matrix C such that the
sequence {cll""’crr} is sorted by increasing order > ;
T
5‘ D “ "n Cii,
i=1
6, while < cg; t Ci41,i+1 for some 1 g i g r> do
Begin
< : .. lc. i
let a: ¢, + Cutl, a4l for some 1 < o £ r and C11|C1+1’i+1 i<o >
7. < compute Vv,t eyl ot teo,tV with |v] < |coa|/2 >;
8. o 0 c c
. « DIAG( _z“c aa
a+l,a+l oTe} v
9. end (step 6)

end. || -6 -



PROPOSITION 3.4  Algorithm 3.3 correctly computes the order and the structure

of the finite abelian group G in 0(s® M(s2)), where s is the size of the

matrix C.

The correctness of the algorithm follows from observations in
§3.1 and §3.2.

Steps 1-2 require 0(83M(s2)) elementary operations by Proposition 2.2
and the remarks of §3.2B. Moreover

log|D| s log(m! Tel™ < g2 (3.2)

Since D ¥ 0, it is not difficult to show that the procedure
ELIMINATEROW (respectively ELIMINATECOL) requires O(us2M(log|D]))=0(us?M(s?))
elementary operations, where p is the number of iterations required by the

loop of the procedure. Moreover
(1) (i-1)

o cppl s | o |/2 (3.3)
where Cpp denotes cpp at the i-th iteration of the loop of the procedure
ELIMINATEROW (respectively ELIMINATECOL) .

Suppose now that in the procedure DIAG the loop (ii)-(v) requires g
iterations, and that uj,vj, 1 <j< g, denotes the number of iterations of
the loop of the procedure ELIMINATEROW and ELIMINATECOL respectively at the
j—~th iteration of the loop (ii)-(v). Then using (3.3) we have

T (p.+v.) § log|D| < s2

j=1
Hence loop (ii)~(v) requires 0(s* M(s2)) elementary operations and moreover
procedure DIAG terminates in 0(s5 M(s2)) elementary operations.

Now step 4 requires 0(s3 log s) elementary operations by using an a
sorting algorithm which requires O(s log 8) comparisons (see [11]).

In a similar way, as above,one can show that steps 7-8 require

((s? M(s2)) elementary operatioms. Moreover, loop 6-~9 requires at most



n
T log D = 0(s3) iterations and thus loop 6-9 requires 0(s> M(s2))
i=1

elementary operations.

From the above analysis the proposition follows. [J

4, __THE ALGORITHM FOR INFINITE GROUPS

Suppose that an infinite abelian group G is represented by an mxn
matrix C, with r = rank(C) < n. In this case, the matrix C is transformed

via IRC operations to an mxn matrix of the form

I
C* 0 (4.1)

where C* is an mxr matrix with rank(C*) = r. Then one can apply
algorithm 3.3 to C* to obtain the structure of G.
The transformation can be done in a similar way as in algorithm 3.3

using the following algorithm:

ALGORITHM 4.1

INPUT : an m*n matrix C representing the infinite abelian group G
OUTPUT : The order and the canonical structure of G.
rerank(C);
1. For p = ltor do
if < ij = 0, for all p £ j € n > then
Begin
A <« index{ROW(}) : c>‘j % 0 for some p < j < nl};
< Interchange ROW(}A) and ROW(p) >;
end
ELIMINATEROW(C,p,) ;

2. end

& as it is in (4.1)

e*
< Apply algorithm 3.3 on C* >
end., 0




PROPOSITION 4.2 Algorithm 4.1 correctly computes the structure of the

. + .
group G in 0(2t ®) elementary operations.

It is not difficult to conclude its correctness.
Let C(i) denote the matrix C at the i~th iteration of the loop of the
procedure ELIMINATEROW. Then one can show
U IPERIL
Now since
19 < Dy
PP PP
the number of iterations of the loop of the procedure ELIMINATEROW is

at most log!Cl.

Hence one can show that after r iterations of loop 1-2 the size of
the matrix C is bounded by
m + n + log(lch2h)

and thus the proposition follows. U
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