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Image scoring in ad-hoc networks: An
investigation on realistic settings

Henry Franks, Nathan Griffiths, and Arshad Jhumka

Department of Computer Science, University of Warwick, CV4 7AL, UK

Abstract. Encouraging cooperation in distributed Multi-Agent Systems
(MAS) remains an open problem. Emergent application domains such as
Mobile Ad-hoc Networks (MANETs) are characterised by constraints
including sparse connectivity and a lack of direct interaction history.
Image scoring, a simple model of reputation proposed by Nowak and Sig-
mund, exhibits low space and time complexity and promotes cooperation
through indirect reciprocity, in which an agent can expect cooperation
in the future without repeat interactions with the same partners. The
low overheads of image scoring make it a promising technique for ad-
hoc networking domains. However, the original investigation of Nowak
and Sigmund is limited in that it (i) used a simple idealised setting,
(ii) did not consider the effects of incomplete information on the mech-
anism’s efficacy, and (iii) did not consider the impact of the network
topology connecting agents. We address these limitations by investigat-
ing more realistic values for the number of interactions agents engage
in, and show that incomplete information can cause significant errors
in decision making. As the proportion of incorrect decisions rises, the
efficacy of image scoring falls and selfishness becomes more dominant.
We evaluate image scoring on three different connection topologies: (i)
completely connected, which closely approximates Nowak and Sigmund’s
original setup, (ii) random, with each pair of nodes connected with a con-
stant probability, and (iii) scale-free, which is known to model a number
of real world environments including MANETs.

1 Introduction

The emergence of cooperation remains an open problem in the agent commu-
nity. Although significant progress has been made in a number of domains, few
proposed techniques are fully applicable given the challenges of emergent do-
mains such as MANETs. These domains are characterised by unique constraints
such as low computational capacity, high agent turnover, lack of centralised au-
thority, sparse connectivity and lack of single ownership, and therefore require
low-overhead, distributed solutions. Investigating such mechanisms for promot-
ing cooperation has become a major theme of research in open MAS.

Nowak and Sigmund’s [16] image scoring mechanism biases partner selection
towards cooperative individuals while requiring low space and time overheads.
Agents maintain a subjectively perceived image score of other agents, based on



observation of the interactions those agents participated in. This image score is
then used to aid decision making in future interactions.

Nowak and Sigmund (N&S) found that cooperation does emerge, but is often
cyclic as non-cooperative agents invade populations of unconditionally coopera-
tive agents and gain higher payoffs, causing the population to be subsequently
dominated by conditionally cooperative agents, who are then superseded by un-
conditionally cooperative agents. Agents in the setup used by N&S are randomly
chosen and paired from the entire population for interactions, with the total num-
ber of interactions per round (m) being at most one order of magnitude larger
than the number of agents in the population (n).

Our paper is organised as follows. We discuss in Section 2, given our illustra-
tive domains, why the assumptions made by N&S are unrealistic. In Section 3,
we discuss our investigation of image scoring on completely connected, random,
and scale-free connecting topologies, and with a higher ratio of interactions to
agents (m/n). Our view is that many domains have a high ratio of m/n. Tak-
ing data routing in MANETs as an example, an interaction might represent the
transfer of a packet between nodes, such that m may be several orders of mag-
nitude larger than the number of agents. Given the modification of this ratio,
agents observe a smaller proportion of the total interactions. The distance be-
tween an agent’s subjective perception of an image score and its absolute value
is thus increased, leading to incorrect choices in actions. We show the effect of
these errors on emergent cooperation and explore the efficacy of image scoring
given common social network topologies in Section 4. Finally, we discuss the im-
plications of our work on the wider problem of incomplete information in open
MAS, and identify further work, in Section 5.

2 Background

Several cooperation mechanisms have been proposed for MAS, typically incor-
porating notions of trust or reputation. Many such mechanisms are effective in
constrained domains, but rarely fully address the challenges posed by ad-hoc or
mobile networks. In this paper we focus on image scoring, which appears suited
to such domains, but has not to our knowledge been investigated with these con-
straints in mind. In this section we introduce the image scoring approach, give
an overview of the motivating domain, and discuss how the social connections
between individuals can be represented by a network topology.

2.1 Image scoring

N&S introduced and extensively investigated image scoring, a simple instantia-
tion of reputation modelling indirect reciprocity, in which cooperation emerges
without requiring subsequent interactions with the same individuals [16, 17]. This
property is key to its suitability in open decentralised systems. In the formula-
tion used by N&S, each round consists of m pairings of agents, such that two
agents are randomly selected from the population to act as donor and recipient



in a pairing, or interaction. The donor can cooperate, conferring benefit b on the
recipient at personal cost c (where b > c), or choose non-cooperation, with no
change in payoffs. For the purposes of our discussion, we denote non-cooperation
as defection, although non-cooperation is not explicitly malicious. Agents main-
tain an image score of others, in the range [−5, 5]. A number of agents will
observe each interaction and adjust their perceived image score of the donor,
Idonor, accordingly. Cooperation increases the perceived image score by 1 and
defection decreases it by 1. Each agent has a strategy, k, which is an integer in
the range [−5, 6]. A donor will cooperate with a recipient if its strategy, k, is
less than or equal to the recipient’s image score, namely if k ≤ Irecipient. Thus,
k = 6 implies the donor will never cooperate, regardless of another’s image score,
whereas k = −5 implies unconditional cooperation. If an agent has no observa-
tions of the potential partner, it assumes an image score of 0. After a round, the
most successful strategies are propagated to the next round proportionally to
the net benefit gained by agents using them (see Section 3 for more detail). N&S
characterise the strategy space as: k ≤ 0 denotes cooperation, since agents will
interact with most other agents, and k > 0 denotes defection (also termed selfish
by N&S). We further divide the cooperative strategy space into unconditionally
cooperative (−5 ≤ k ≤ −2), conditionally cooperative (−2 < k ≤ 0).

N&S observe cooperation, using a population size of n = 100 and m = 125
interactions per round. With these settings, each agent is chosen for an interac-
tion (as donor or recipient) 2.5 times on average per round. Two variations of
observability are considered by N&S: full observability where all agents observe
an interaction, and partial observability where a proportion of agents observe.
N&S assert that as m increases cooperation becomes more likely with full ob-
servability where image scores are universally known. Given partial observability
(N&S consider 10 randomly selected observers per interaction), increasing m in-
creases the likelihood that agents have not witnessed all interactions of a given
agent, since only a proportion of agents observe each interaction. This leads to
a disparity between the perceived image score and its absolute value.

2.2 Motivating Application Domains

MANETs are self-organising wireless networks characterised by lack of central
authority and high turnover, with limited computation, connectivity, memory
and energy resources. Vehicular Ad-hoc Networks (VANETs) are a subset of
these in which the majority of nodes are vehicles, imposing additional con-
straints of intermittent, sparse connectivity and a dynamic connecting topology
(although computational capacity and energy are less restricted). We are con-
cerned with features of these domains (such as complex connecting topologies)
but we do not attempt to model a realistic environment. These features limit re-
sources, constrain connectivity, and lead to incomplete information about others
due to partial observability and sparse connectivity.

Research on cooperation in VANETs has focused on network security and
routing [3, 9, 13] and content distribution [22]. Since vehicles have intermittent



contact1 and few repeat interactions, techniques requiring a history of direct in-
teractions, including many traditional trust and reputation mechanisms, are not
appropriate. Trust and reputation have been used to address routing problems
in MANETs [2, 11, 19]. Several mechanisms show encouraging results but require
historical interaction data that may not always be available. Since image scoring
has less reliance on historical data it is potentially more suited to the constraints
of VANETs, and so is our focus in this paper.

The connection properties of these domains make it challenging to achieve
cooperation. MANETs exhibit scale-free properties in their connections [20], and
VANETs exhibit extremes of sparse connectivity (e.g. a free-flowing motorway)
and highly clustering (e.g. a traffic jam). Typical applications, such as data
sharing, imply that the number of interactions between agents is significantly
larger than the population size. N&S do not consider such a setting, and in this
paper we investigate the performance of image scoring in this context.

We aim to explore (i) the efficacy of image scoring given assumptions repre-
senting features of these domains, (ii) the effect of incomplete information, and
(iii) the characteristics of network topology that affect the levels of emergent
cooperation achieved through image scoring.

2.3 Topologies

The populations considered by N&S do not have any form of connecting topology,
and donor-recipient pairs are randomly selected from the entire population. In
realistic application domains, agent populations are situated on some connecting
topology that restricts agents’ observations and interactions. The setup used by
N&S can be viewed as a completely connected topology (where each agent is
directly connected to each other agent), with interaction partners and observers
chosen from the neighbour-set of an agent. This is an idealised topology that
does not accurately reflect the networks that underlie real-world systems.

We investigate image scoring using three connection topologies: a completely
connected topology, a random network that has topological assumptions closer
to realistic settings, and a scale-free topology which is known to model many
real-world networks, including ad-hoc networks [20].

In random networks each pair of nodes is connected with a probability p [8].
Completely connected topologies are idealised in assuming that an agent is con-
nected to every other agent, whereas a random topology allows investigation of
situations where agents are only connected to a small proportion of the rest of
the population, as is the case in many real world environments.

Scale-free networks are a subset of random networks in which the node degree
d for each node is given by the probability distribution P (d) ≈ d−γ , where γ is
some arbitrary constant2. Many real-world networks have scale-free properties,

1 Ott and Kutscher [18] estimate 50-60% packet loss for vehicles passing and commu-
nicating with a roadside access point.

2 In networking literature, k is typically used to denote node degree. We use d to
prevent confusion with use of k for agent strategy.



including the world wide web, the internet, social network graphs, collaboration
networks of researchers, cellular networks and phone call pattern networks [1].
These properties make scale-free networks suitable for use when investigating
many domains of multi-agent systems, including ad-hoc networks [20].

3 Experimental Setup

We reproduced the original setup used by N&S as follows: each agent is associ-
ated with a strategy k, chosen uniformly at random in the range [−5, 6]. Each
agent maintains a matrix of image scores calculated from observing other agents
interact and its own image score, which allows us to calculate the number of
misclassified interactions (see below). Image scores are initialised at 0 and con-
strained to the range [−5, 5]. A number of pairs,m, of agents are randomly chosen
from a population of n agents each round, with one agent being designated as
the donor and the other as the recipient. If the donor’s strategy is less than or
equal to its perception of the image score of the recipient, kdonor ≤ Irecipient,
then it confers a benefit b on the recipient at a cost c to itself, with b > c (we
adopt the values of b = 1, c = 0.1 used by N&S). An agent assumes an image
score of 0 if it has no data on the recipient. If the donor acts altruistically and
donates (cooperates), then its image score increases by one, and the observers
of that interaction increase their perception of the donor’s image score by one
(the recipient’s image score remains the same). If the donor does not cooperate,
then its image score falls by one, and observers of the choice not to cooperate
decrease their perceived image score of the donor by one.

N&S consider both complete and partial observability of interactions. In the
partial observability settings, N&S allow 10 agents, chosen at random, to observe
each interaction. To allow investigation of the effects of changing the number of
observers, we define an observability parameter, o, in the range [0, 1], as the
probability of observing an interaction of a neighbour. Observers are selected
at random from the union of the neighbour-set of the donor and recipient for
each interaction. If Ni denotes the set of neighbours for a given agent i, then the
average number of observers of an interaction is given by o×|Ndonor∪Nrecipient|.
Thus, given n = 100, an observability of o = 0.1 is equivalent (given a completely
connected topology) to the original setup of N&S. Observability, in the static (i.e.
time invariant) connection topologies investigated in this paper, can be viewed
as a simple abstract model of constraints such as hardware or communications
failure, or the intermittent connectivity characteristic of VANETs.

After m interactions have been performed, offspring are generated in pro-
portion to an agent’s final payoff. N&S do not give more precise details and so
in our simulations we use the following mechanism. If agent ai has fitness fi,
where fi is equal to its net benefit (the sum of the costs incurred and benefits
received), then F is the net population benefit such that F =

�n
i=0 fi. An agent

will produce n×fi
F offspring. The strategy of the offspring is an exact copy of the

parent strategy, with a small probability µ of mutation such that the strategy
is set to a random value (we adopt the value of µ = 0.001 used by N&S). N&S



found that strategies do not converge to a single value except for o = 1 and
µ = 0, but instead go through cycles as selfish agents become dominated by con-
ditionally cooperative agents (termed discriminators by N&S), who only help
other cooperative individuals. These agents are then superseded by uncondition-
ally cooperative agents (also termed altruists by N&S), who are subsequently
invaded by selfish agents (termed defectors by N&S).

N&S used parameters of n = {20, 50, 100} andm = {125, 200, 300, 500, 1000},
which are unrealistic in many instantiations of open MAS. Consider a typical
data routing problem in MANETs: a cooperative interaction represents suc-
cessful packet transmission between two agents. The number of interactions
is thus likely to be large, such that m is much greater than n (i.e the ra-
tio of m/n is significantly greater than 10, the maximum ratio considered by
N&S). To investigate the effects of scaling m and the ratio m/n, we simu-
lated m = 1000, 5000, 10000, 20000, 50000 for n = 100 (i.e. a maximum ratio
of m/n = 500). It would be useful to also investigate the effects of scaling n for
various values of m/n, but this is beyond the scope of this paper, and will be
considered in future work.

Along with the characterization of the strategy space identified above (Sec-
tion 2.1), we describe interaction choices as follows. Interactions in which an
agent cooperated based on its perceived image score of the recipient, when it
should have defected based on the actual image score, or vice-versa, are mis-
classified interactions. An interaction is termed incorrect cooperation if an agent
cooperates when it should have defected. An incorrect defection is an interaction
in which an agent defects (i.e. does not donate to the recipient) when it should
have cooperated. The number of misclassified interactions is the sum of the
incorrect cooperations and incorrect defections. Incorrect defections are detri-
mental to the society since they cause the donor’s image score to fall, leading to
fewer agents donating to the donor in the future, thus undermining the levels of
indirect reciprocity in the society. Incorrect cooperations are undesirable since
they allow selfish agents to gain higher payoff, and thus become more likely to
have their strategies propagated. Note that the absolute value of an agent’s im-
age score that is maintained (to allow calculation of misclassified interactions)
includes any incorrect cooperations or defections that that agent has made — it
is the result of an agent’s actual actions rather than how they should have acted
given complete information.

4 Results and Discussion

Our investigation focused on two main metrics: the strategy distribution for the
population and the numbers of misclassified interactions. We conducted four
types of simulation: (i) a replication of the original setup described by N&S
without a connecting topology, (ii) using a completely connected topology, (iii)
using a random topology and (iv) using a scale-free topology. For each type, we
investigated the effects of varying both m and topological parameters such as
p in a random topology or the number of edges for a scale-free topology. The



results given are averaged over 10 runs for each parameter configuration, giving
a standard deviation ranging from 1–14%. We used t = 10000 generations of
evolution and, unless otherwise stated, o = 0.1.

4.1 Effect of the Number of Interactions

First we replicated the original setup of N&S, using n = 100 agents, o = 0.1
(i.e. an average of 10 agents observing each interaction), b = 1, c = 0.1 and
µ = 0.001, and varied the number of interactions per round. Figure 1(a) shows
the proportion of the population within each strategy category averaged over all
generations, while varying m. Due to the cyclic nature of strategies identified by
N&S, analysing results at an arbitrarily chosen generation (e.g. the final genera-
tion of t = 10000) is unlikely to provide a representative view of the simulation.
For m = 1000 we observe a highly cooperative society in which only 1.07% of
agents have a strategy k > 0 (selfish). Out of all the interactions performed, 0.6%
were misclassified (i.e. around 6 interactions were misclassified per round). As
m increases, we see two effects: (i) the population becomes more selfish and (ii)
the proportion of misclassified interactions rises. Figure 1(b) shows the percent-
age of interactions over the entire simulation that were misclassified for varying
values of m. At m = 50000, the selfish proportion of the population has risen
to 31.4%. The proportion of misclassified interactions has risen to 3.5%, or an
average of 1751 per round. Figure 2(a) shows the average strategy, sampled ev-
ery 100 generations, for a representative run with m = 1000. The two horizontal
lines show the delineation of our strategy classes, with everything above the top
line classified as selfish, everything inside the lines being conditionally cooper-
ative, and everything below the bottom line corresponding to unconditionally
cooperative. We see the cycles between strategy classes described by N&S, but
with the population remaining mostly cooperative.

It is interesting to note that the proportion of misclassified interactions falls
very slightly from m = 20000 to m = 50000, while the selfish proportion of
agents still rises. As later results show, the resultant strategy distribution of the
population is important in determining the number of misclassified interactions.
Image scoring, through indirect reciprocity, induces a feedback effect in which
cooperative actions cause more cooperative actions, and vice-versa for defection.
In a cooperative society, the donor is more likely to cooperate and the recipient is
more likely to have cooperated in the past. Thus it is more likely that that choice
to be cooperative is correct, even if the donor has not observed many interactions
of the recipient. The same is true, vice-versa, for defecting societies. When a
society is mixed between cooperators and defectors however, uncertainty about
a recipient’s strategy is higher and the level of incorrect choices rises. We witness
this effect from m = 20000 to m = 50000, where the population becomes much
more selfish (20% for m = 20000 to 31.4% for m = 50000) but the proportion of
misclassified interactions is more stable (with a slight drop from 3.75% to 3.5%).

The ratio of m/n is clearly important in determining the level of coopera-
tion emergent in the population. An interesting effect emerges when we look at
the misclassification of cooperative and defective interactions separately. This



(a) (b)

Fig. 1. Results showing, for differing values of m, n = 100, o = 0.1, µ = 0.001, b =
1, c = 0.1, (a) the proportion of population displaying each strategy type and (b) the
percentage of all interactions that were misclassified (y-axis shows 0–10% for clarity).

(a) (b)

Fig. 2. (a) Average strategy over time, sampled every 100 generations, for m = 1000,
for representative run from Figure 1, and (b) interactions misclassified as proportion of
interaction type for simulation runs in Figure 1, that is, the proportion of cooperations
that are incorrect is the number of interactions in which the donor donated incorrectly
divided by the total number in which the donor donated (as opposed to the total
number of interactions as denominator).



is illustrated in Figure 2(b), which shows the percentage of actions which were
incorrect for all actions of that type (cooperation or defection), for varying val-
ues of m. At m = 1000, only 0.24% cooperative interactions are misclassified,
meaning that of all the interactions in which the donor donated, only 0.24%
were incorrect given the absolute image score of the recipient. However, 26.4%
of defections were misclassified, meaning that in 26.4% of the interactions in
which the donor did not donate it should have done so. Given a society in which
approximately 90% of the agents are cooperative, this makes sense, since any
interactions of the recipient which the donor did not observe are likely to be co-
operative, and thus increase the actual image score of the recipient. The donor’s
perception of the image score is likely to be lower than its absolute value, and the
agent chooses defection. In a society that is mostly selfish, this effect is reduced.
Indeed we see this as m increases to 50,000, and the society becomes markedly
more selfish, the proportion of defections that are misclassified rises (to a peak
of 62%) and then falls again (for the reasons discussed above).

These results show two important relationships: the proportion of (i) mis-
classified interactions due to incomplete information and (ii) selfish strategies
both increase as the ratio m/n increases, leading to a decrease in cooperation
emerging in the society.

4.2 Effects of Network Topology

The above results are for an environment without a social network topology con-
necting agents. We also investigated the effects of incomplete information given
three different topologies: completely connected, which closely approximates the
setup above, random, and scale-free. Instead of pairs of agents being chosen
randomly, the donor is now selected at random from the population and the
recipient is chosen at random from the donor’s neighbour set.

Figure 3(a) shows the strategy distributions obtained while varying m in a
completely connected topology. Figure 3(b) shows the corresponding percentage
of misclassified interactions, with the maximum proportion reaching 6.87% at
m = 20000. The results are almost identical to Figure 1, supporting our claim
that a completely connected topology closely approximates the original setup
used by N&S. The proportions of misclassified interactions follow the same trend,
with a slight drop as the diversity of the population strategy distribution falls at
m = 50000. We found no statistically significant difference between the results
for no topology and a completely connected topology using a two-tailed t-test.

Completely connected topologies are, however, highly unrealistic. Random
topologies represent a useful middle ground between a completely connected
topology and scale-free. In a random topology, each pair of agents is connected
with a probability p. Given 100 agents, a completely connected graph will in-
volve n(n−1)

2 = 4950 edges. A connection probability p = 0.1, with 100 agents,
will mean each agent is connected to, on average, 4.95 other agents3 (assuming

3 4950 potential edges with connection probability p = 0.1 gives 495 edges for the
entire population. Given 100 agents, this equals 4.95 edges per agent on average.



an undirected graph, as used in this investigation). By varying p, we can explore
the effects of more sparse or more connected topologies. Given that sparse con-
nectivity is a major feature of many open MAS, especially VANETs, it is useful
to evaluate the effect this can have on emergent cooperation.

Figure 4(a) shows the effects of varying p, using n = 100,m = 1000, o =
0.1 and t = 10000. Observability is kept constant, and thus with p = 0.1 and
o = 0.1, it is likely that only one agent will observe an interaction on average:
assuming the donor and recipient neighbour sets are distinct, the total number
of neighbours is around 10 (on average)4. While this assumption may not always
hold (e.g. when the neighbour sets of the donor and recipient overlap), it provides
a useful upper bound. Since fewer and fewer agents will observe an interaction as
p falls, it becomes less beneficial to cooperate and selfishness becomes dominant
in the society. At p = 0.01, selfishness is highly dominant: with so few edges,
not enough agents will observe a cooperation to make it beneficial in the long
run. As p rises from 0.001 to 0.1, cooperation becomes more viable, since enough
agents will observe a cooperation to allow indirect reciprocity to have an effect.
However, above p = 0.1, we see selfishness start to rise again. As p rises past this
point, a smaller proportion of an agent’s neighbours observe each interaction,
and thus the effects of incomplete information become more pronounced. Figure
4(b) shows this effect, with a maximum percentage of misclassified interactions
of 2.09% at p = 0.5. At p = 0.01, where most of the population is selfish, there
are almost no misclassified interactions. As p rises past 0.1 a higher proportion
are misclassified. It is evident that there is a minimum number of observers
necessary for cooperation to emerge.

In the random topology, we require a minimum number of interactions (as
noted by N&S) for cooperation to prevail, and this number is dependent on how
many agents observe each interaction. Figure 6(a) shows the effects of varying m
for a small value of p = 0.1. Each agent is connected to far fewer neighbours than
in the completely connected topology, and we see that at m = 1000, which is
enough for cooperation in completely connected topologies, selfish agents prevail.
At m = 5000, we see the more familiar highly cooperative strategy distribution.
Once again, as m rises after establishing cooperation, we see selfishness repre-
senting a slightly higher proportion of the strategies in the population. It is much
less prevalent than in the completely connected topology, however, and the use
of a random topology appears to aid the establishment of cooperation.

Comparing the random topology to the completely connected topology, we
find that the level of selfishness is different with statistical significance. Calcu-
lated t-values for a two-tailed t-test range from 0.031 at m = 1000 to 6.37×10−20

atm = 50000. The statistical significance becomes increasingly strong asm rises,
showing that random topologies significantly affect the operation of image scor-
ing. The levels of cooperators are not consistently significantly different. We
witness the same trend, that the proportions become more significant as m in-
creases. At m = 50000, the levels of unconditional and conditional cooperators

4 Given 4.95 average neighbours per agent as above.



(a) (b)

Fig. 3. (a) Strategy classifications and (b) levels of misclassified interactions, using a
completely connected topology, with all other settings as Figure 1.

(a) (b)

Fig. 4. (a) Strategy classifications and (b) levels of misclassified interactions, using a
random topology, varying p, with m = 1000 and all other settings as Figure 1.

(a) (b)

Fig. 5. (a) Strategy classifications and (b) levels of misclassified interactions, for scale-
free topology, varying m, using 1000 edges in total, and with all other settings as Figure
1.



are significantly different from completely connected topologies, with t-values of
0.003 and 0.009 respectively.

(a) (b)

Fig. 6. Strategy results for (a) random topology, varying m, p = 0.1, and (b) scale-
free topology, varying total number of edges, m = 1000, and with all other settings as
Figure 1.

Finally, we simulated image scoring using agents connected by a scale-free
topology, as generated by Eppstein’s generating algorithm [7]. The algorithm is
parameterised by r, the number of iterations, and the total numbers of edges in
the network. As r tends to infinity, the node degree distribution tends towards
a power-law. In all simulations, we use r = 100000.

Figure 6(b) shows the results of varying the number of edges in the popu-
lation. We see a similar effect to random topologies at very low numbers, with
selfishness being dominant. As the number of edges rises the selfish proportion of
the population continues to fall, which differs from random topologies in which
the selfish proportion rises after some threshold value of p is reached. Figure
5(a) shows similar effects for varying m (up to 75,000). We still require a certain
number of interactions to allow cooperation to emerge, but once it has emerged
the level of selfishness remains very low, and the levels of unconditional cooper-
ation in the population are far higher than for the other topologies investigated.
Scale-free topologies appear to aid image scoring’s robustness to selfish action.
Figure 5(b) strengthens this view: the levels of misclassified interactions are very
low and fall as m rises, with a maximum total of 1.13% at m = 1000. This is
partially due to the fact that the population is very highly cooperative, and as
before, it is harder for an agent to choose incorrectly. However, we find no sta-
tistically significant difference in the strategy distributions between random and
scale-free topologies.

Scale-free topologies are known to have beneficial properties regarding in-
formation propagation and robustness to untargeted malicious action. For ex-



ample, Delgado [6] used a model of social convention emergence to show that
complex (i.e. scale-free and/or small-world) networks are more efficient than reg-
ular graphs with the same average node degrees, and that scale-free networks
are as efficient at spreading information as fully-connected graphs. Barabasi and
Albert also noted the remarkable fault-tolerance of scale-free networks [1]. The
robustness of scale-free networks is partially derived from their clustering: there
are highly-internally connected groups with relatively few links to the rest of
the population. In the context of our investigation, we hypothesise that this
grouping effect allows image scoring to act with a much smaller average connec-
tivity, since there will be many such groups in which agents are highly visible
to other agents within that group. As discussed previously, visibility of agents
is important for the efficacy of image scoring. We use visibility to denote the
combination of observability and topological connectivity, since both influence
how many agents might observe an interaction. Sen [20] demonstrated the ex-
istence of scale-free topological structure in mobile ad-hoc networks, and many
other real-world networks are known to be scale-free [1]. The robustness of image
scoring on scale-free networks is thus highly important, as it demonstrates the
broad applicability of the technique.

We learn three important lessons from these results:

1. The level of incorrect interaction choices is dependent on the probability of
having witnessed a recipient’s interactions. This probability is based on a
number of factors, including the degree of a node, the observability in the
population, and the number of interactions.

2. Incomplete information has an observable effect on levels of emergent coop-
eration. N&S note in their original paper that when moving from their initial
model, equivalent to observability = 1, to observability of 0.1 a larger num-
ber of interactions are needed to establish cooperation. Our results corrobo-
rate this and establish that higher levels of incomplete information (whether
caused by low node degree or high numbers of interactions) lead to more
selfish societies.

3. The levels of cooperation are highly dependent on the underlying topologi-
cal structure of the social network. Random graphs, and to a lesser extent,
scale-free networks, significantly reduce the detrimental effects of incomplete
information and aid the emergence of high levels of cooperation.

5 Summary and Further Work

Image scoring, as a model of the emergence of cooperation via indirect reci-
procity, shows promising results and is highly applicable to modern open MAS
domains such as MANETs and VANETs. We have explored the application of
image scoring in settings more approximate to the realities of these domains than
the original formulation of N&S, by scaling the number of interactions each agent
engages in and introducing an underlying connection network. Changing from
a completely connected to a random topology shows statistically significant dif-
ferences in the levels of selfishness emergent in the population. While scale-free



networks are not consistently significantly different from random networks in
terms of the levels of selfishness and cooperation, there do appear to be some
benefits exhibited which require further investigation.

We have also shown that raising the ratio of m/n significantly increases
the level of incomplete information in the society, with up to 62% of defection
actions (in the completely connected topology scenario) being taken incorrectly.
However, our investigation is limited with respect to the number of agents: given
our illustrative domains, the number of agents in the population is likely to be
far higher. We aim to investigate the effects of group size in future work, with
a specific exploration of the relationship between m, n, and the ratio of m/n to
levels of selfishness and incomplete information in the society.

We plan to further investigate the effects of scale-free topologies on image
scoring, specifically investigating the effect of clustering on levels of cooperation
and the ability of selfish agents to invade groups of cooperators. Within groups
of highly clustered agents in scale-free networks there will be high visibility of
interactions, and these clusters may therefore be very robust to selfish action.
Scale-free topologies display high robustness against non-targeted malicious ac-
tion, and we hypothesise that this will benefit image scoring.

A key effect to note from our results is that of visibility of interactions (as
defined by node degree and our observability parameter) on the levels of cooper-
ation observed. Many open MAS domains are characterised by sparse topologies
and our results appear to show the efficacy of image scoring is reduced in such
settings. To mitigate this effect we plan to investigate the use of gossiping al-
gorithms (which exhibit low overheads and are highly robust) to spread results
of interaction observations, thus removing the need for direct observation. Som-
merfeld et al. [21] have reported on this effect in human subjects with promising
results. Gossiping has been applied successfully within the specific topological
challenges of VANETs [3, 5] and MANETs [4], and also within the domain of
reputation mechanisms [2, 15].
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