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ABSTRACT
We present the performance analysis of a port of the LU
benchmark from the NAS Parallel Benchmark (NPB) suite
to NVIDIA’s Compute Unified Device Architecture (CUDA),
and report on the optimisation efforts employed to take
advantage of this platform. Execution times are reported
for several different GPUs, ranging from low-end consumer-
grade products to high-end HPC-grade devices, including
the Tesla C2050 built on NVIDIA’s Fermi processor.

We also utilise recently developed performance models of
LU to facilitate a comparison between future large-scale dis-
tributed clusters of GPU devices and existing clusters built
on traditional CPU architectures, including a quad-socket,
quad-core AMD Opteron cluster and an IBM BlueGene/P.
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1. INTRODUCTION
As the High Performance Computing (HPC) industry fo-
cuses on an exascale computing platform in the 2015-2018
timeframe, it is becoming clear that the design of such large
systems is likely to lead to the development of radically dif-
ferent architectures to that of contemporary, general-purpose-
processor machines. Apart from the challenge of physical
size, the power consumption of an exascale system based on
similar technologies to today would likely be significant –
unless substantial improvements in efficiency are obtained
over the coming years. Whilst power efficiencies in existing
designs will undoubtedly appear, these alone are unlikely to
be sufficient to enable an exascale reality; new architectures
with new ways of constructing algorithms will be required.

One potential solution to these problems may come through
the utilisation of “many-core” accelerators, such as general
purpose graphics processing units (GPGPUs) or the up-
coming “many-integrated core” (MIC) cards from Intel (i.e.
Knight’s Ferry and Knight’s Corner). These devices feature
large numbers of simple processing engines and/or the abil-
ity to simultaneously execute large numbers of threads in
silicon real-estate which is comparable to existing processor
designs. They therefore exhibit high levels of spatial and
power efficiency for the amount of parallelism offered, pro-
viding more GFLOP/s of processing capability per Watt.

This high level of parallelism is not without cost however,
as it results in a smaller amount of memory per-core (or per-
thread) than would be found in traditional distributed mem-
ory solutions. Applications constructed under the assump-

tion of few, high-power processing cores with large memories
and high memory bandwidth are unlikely to port easily or
exhibit good performance without some degree of modifi-
cation. For organisations with limited low-level hardware
expertise, or with few resources to port sizable legacy ap-
plications, selecting which optimisations and approaches to
use in production is proving to be a difficult choice.

In this paper, we implement the LU benchmark from the
NAS Parallel Benchmark (NPB) suite [5] on GPUs employ-
ing NVIDIA’s Compute Unified Device Architecture (CUDA).
The performance of the original unmodified FORTRAN 77
code is then compared to our implementation executing on
single GPU devices and clusters of GPUs. The execution
times presented in this paper are for the complete time to
solution of the original problem – not a subset which has
been identified as being particularly amenable to GPU ac-
celeration. This paper makes the following contributions:

• We present the first known documented study of port-
ing the LU benchmark to the CUDA GPU architec-
ture. The benchmark constitutes a representative ap-
plication regularly used in performance assurance and
procurement studies for production-grade HPC envi-
ronments around the world;

• The GPU-accelerated solution is executed on a selec-
tion of GPUs, ranging from workstation-grade, com-
modity GPUs to NVIDIA’s HPC products. This is
the first known work to feature an independent per-
formance comparison of the Tesla C1060 and C2050
cards for a realistic scientific wavefront application;

• The performance of a single-GPU implementation is
compared to that of the original FORTRAN 77 imple-
mentation from the NPB suite executing on a high-end
Intel (Nehalem) processor, demonstrating the utility of
GPU-acceleration at workstation scale;

• Performance modelling is used to compare GPU clus-
ter performance to that of existing CPU clusters, in-
cluding a quad-socket, quad-core AMD Opteron clus-
ter and an IBM BlueGene/P;

• We present the first documented performance analysis
of an LU Class E problem on petascale-capable GPU
hardware. We aim to address the question of whether
CPU- or GPU-based architectures are the best current
technology for large wavefront problems.

The remainder of this paper is structured as follows: Section
2 discusses previous work; Section 3 describes the operation
of the LU benchmark; Section 4 provides details of our GPU



implementation; Section 5 presents a performance compari-
son of the CPU and GPU codes running on single worksta-
tions; Section 6 compares the execution time of our GPU
implementation to that of traditional CPU clusters through
the use of supporting performance models and simulations;
finally, Section 7 concludes the paper.

2. RELATED WORK
The performance of pipelined wavefront applications is well
understood for conventional multi-core processor based clus-
ters [12, 17] and a number of studies have investigated the
use of accelerator-based architectures for the Smith-Waterman
string matching algorithm (a 2D wavefront application) [4,
18, 16]. However, performance studies for GPU-based imple-
mentations of 3D wavefront applications (either on a single
device or at cluster scale) remain scarce; to our knowledge,
this is the first such port of LU to a GPU.

Two previous studies [9, 19] detail the implementation of
a different 3D wavefront application, the Sweep3D bench-
mark [1], on accelerator-based architectures. The first of
these [19] describes an implementation of the Sweep3D bench-
mark that utilises the Cell B.E. The performance benefits of
several optimisations are shown, demonstrating a clear path
for the porting of similar codes to the Cell B.E. architecture.

In the second study [9], the Sweep3D benchmark is ported
to a CUDA GPU and executed on a single Tesla T10 pro-
cessor. Four stages of optimisation are presented: the intro-
duction of GPU threads, using more threads with repeated
computation, using shared memory and using a number of
other methods that contribute only marginally to perfor-
mance. The authors document good speed up, extrapolat-
ing that their GPU solution is almost as fast as the Cell B.E.
implementation in [19].

These studies suggest that accelerator-based architectures
are a viable platform for pipelined wavefront codes. How-
ever, one must be cautious when reading speedup figures:
in some studies the execution times are presented for an op-
timised GPU code and an un-optimised CPU code [8]; in
other work we do not see the overhead of transferring data
across the PCI-Express (PCIe) bus [10]; in some the CPU
implementation is serial [22], in others, parallel CPU and
GPU solutions are run at different scales [13], or the CPU
implementation is run on outdated hardware [9]. This is not
the first paper to dispute such speedup figures [15, 23] and
others have highlighted the importance of hand-tuning CPU
code when aiming for a fair comparison [6, 7].

In this paper, performance comparisons are presented from
two standpoints: (i) a single workstation comparison, where
the performance of single GPUs is compared to that of single
CPUs using all of the available cores, forming a full device-
to-device comparison; and (ii) a strong-scaling study, com-
paring the performance of CPU and GPU clusters. We be-
lieve that this will allow comparison at both small and large
scales and permits an exploration of the likely performance
of future GPU clusters based on benchmarked performance
data from existing cluster resources.

3. THE LU BENCHMARK
The LU benchmark belongs to the NAS Parallel Bench-
mark (NPB) suite, a set of parallel aerodynamic simulation
benchmarks. The code implements a simplified compressible
Navier-Stokes equation solver which employs a Gauss-Seidel
relaxation scheme with symmetric successive over-relaxation

(SSOR) for solving linear and discretised equations. The
reader is referred to [5] for a discussion of the mathematics.

In practice, the three-dimensional data grid used by LU is
of size N3 (i.e. the problem is always a cube), although the
underlying algorithm works equally well on grids of all sizes.
As of release 3.3.1, NASA provide seven different application
“classes” for which the benchmark is capable of performing
verification: Class S (123), Class W (333), Class A (643),
Class B (1023), Class C (1623), Class D (4083) and Class
E (10203). GPU performance results for Classes A through
C are presented in Section 5; due to the significant resource
demands associated with Classes D and E, benchmarked
times and projections are shown for clusters in Section 6.

In the MPI implementation of the benchmark, this data
grid is decomposed over a two-dimensional processor array
of size Px × Py, assigning each of the processors a stack of
Nz data “tiles” of size Nx/Px ×Ny/Py × 1. Initially, the al-
gorithm selects a processor at a given vertex of the processor
array which solves the first tile in its stack. Once complete,
the edge data is communicated to two of its neighbouring
processors. These adjacent processors – previously held in
an idle state via the use of MPI-blocking primitives – then
proceed to compute the first tile in their stacks, whilst the
original processor solves its second tile. Once the neighbour-
ing processors have completed their tiles, their edge data is
sent downstream. This process continues until the last tile
in the Nz dimension is solved at the opposite vertex to the
original processor’s starting tile, resulting in a “sweep” of
computation through the data array.

Such sweeps, which are the defining features of pipelined
wavefront applications, are also commonly employed in par-
ticle transport codes such as Sweep3D and Chimaera [17].
This class of algorithm is therefore of commercial as well
as academic interest not only due to its ubiquity, but also
the significant time associated with its execution at super-
computing sites such as NASA, the Los Alamos National
Laboratory (LANL) in the US and the Atomic Weapons
Establishment (AWE) in the UK.

The pseudocode in Algorithm 1 details the SSOR loop
that accounts for the majority of LU’s execution time.

Algorithm 1 Pseudocode for the SSOR Loop

for iter = 1 to max iter do

for k = 1 to Nz do
call jacld(k)
call blts(k)

end for

for k = Nz to 1 do
call jacu(k)
call buts(k)

end for

call l2norm()
call rhs()
call l2norm()

end for

Each of the subroutines in the loop exhibit different paral-
lel behaviours: jacld and jacu are embarrassingly parallel
and pre-compute the values of arrays then used in the for-
ward and backward wavefront sweeps; blts and buts are re-
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Figure 1: Execution Times for FORTRAN 77 and C

sponsible for the forward and backward sweeps respectively;
l2norm computes a parallel reduction (on user-specified it-
erations); and rhs carries out three embarrassingly parallel
stencil update operations. The number of loop iterations is
configurable by the user at both compile- and run-time, but
is typically 250 - 300 in Classes A through E.

4. GPU IMPLEMENTATION
Version 3.2 of the LU benchmark, on which our work is
based, is written in FORTRAN 77 and utilises MPI for com-
munication between processing-elements. The GPU imple-
mentation makes use of NVIDIA’s CUDA. The standard
language choice for developing CUDA programs is C/C++
and thus the first stage in our porting of LU was to convert
the entire application to C. To provide a comparison of the
performance trade-offs for CFD codes in using single or dou-
ble precision floating-point arithmetic, the ported version of
the benchmark was also instrumented to allow the selection
of floating-point type at compile time.

Figure 1 shows a performance comparison of the original
FORTRAN 77 code with our C port, running on an Intel
X5550 in both single (SP) and double (DP) precision. The
execution times given for the C port are prior to the use of a
GPU (i.e. all mathematics are ported and running on only
the CPU). As shown by the graph, the original FORTRAN
77 implementation is approximately 1.4x faster than our C
port running on identical hardware. The fact that the C
code is slower demonstrates that the performance improve-
ments shown in Sections 5 and 6 come from the utilisation
of the GPU, rather than from any optimisations introduced
during the process of changing programming language.

At the time of writing, the maximum amount of memory
available on a single CUDA GPU is 6GB (available in the
Tesla C2070). At least 10GB is required to solve a Class
D problem, thus the use of MPI is necessary if the code
is to be able to solve larger and higher fidelity problems.
Our CUDA implementation retains and extends the MPI-
level parallelism present in the original benchmark, mapping
each of the MPI tasks in the system to a single GPU.

The parallel computation pattern of wavefront applica-
tions involves a very strict dependency between grid-points.
Lamport’s original description of the Hyperplane algorithm
in [14] demonstrated that the values of all grid-points on
a given hyperplane defined by i + j + k = f can be com-
puted in parallel, with the parallel implementation looping

over f rather than i, j and k. In order to ensure that the
dependency is satisfied, it is necessary that we have a global
synchronisation barrier between the solution of each hyper-
plane; since the CUDA programming model does not sup-
port global synchronisation within kernels, each hyperplane
must be solved by a separate kernel launch.

4.1 Minimisation of PCIe Transfers
We port all subroutines within the loop to the GPU, thus
eliminating the need to transfer memory between the device
and host whilst iterating; the entire solution grid is trans-
ferred to the GPU prior to the SSOR loop, and the results
are transferred back to the CPU when it is complete.

A similar optimisation is required for efficient utilisation
of MPI. Since the CUDA card itself does not have access to
the network, any data sent via MPI must first be transferred
to the CPU and, similarly, any data received via MPI must
be transferred to the GPU. Packing / unpacking the MPI
buffers on the CPU requires a copy of the entire data grid –
doing this on the GPU significantly decreases the data sent
across the PCIe bus and allows elements of the MPI buffers
to be packed / unpacked in parallel.

In the CPU implementation of LU, each call to blts or
buts processes a single tile of grid-points of size Nx/Px ×
Ny/Py×1, stepping through i and j in turn for some fixed k.
Our GPU implementation can process grid-points in blocks
of arbitrary depth (i.e. Nx/Px × Ny/Py × kblock), which
has two advantages: (i) the number of MPI messages (and
PCIe transfers) in each iteration decreases, at the expense of
sending larger messages; and (ii) GPU parallel resources are
utilised more efficiently, since 3D wavefronts feature larger
hyperplanes than their 2D counterparts. However, setting
kblock too high causes delay to downstream GPUs (which
are waiting on data). Due to this performance trade-off, it
is necessary to identify the optimal value of kblock through
empirical evaluation or modelling.

4.2 Coalescence of Memory Accesses
We ensure that each memory access is coalesced, in keeping
with the guidelines in [21]. The simplest way to achieve this
is to ensure that all threads access contiguous memory.

However, the embarrassingly parallel sections of the code
require a different memory arrangement to the wavefront
sections. Therefore, we launch a rearrangement kernel be-
tween these sections to swap memory layouts. Though this
kernel involves some uncoalesced memory accesses, which is
largely unavoidable since it reads from one memory layout
and writes to another, the penalty is incurred only once –
rather than for every memory access within the methods
themselves. The lack of global synchronisation within ker-
nels prevents memory rearrangement in place, so we make
use of a separate rearrangement buffer on the GPU.

4.3 Memory/Compute Tradeoffs
In the original benchmark, the jacld and jacu subroutines
use the values of a grid-point and three neighbours (20 values
total) to calculate 100 values per grid-point, which are then
stored in four arrays. These values are then read by the
blts and buts subroutines, where they are used in relatively
few arithmetic operations. The high latency of GPU global
memory makes these accesses particularly expensive.

By reimplementing the jacld and jacu subroutines as
four templated functions (with 25 template options each),



GeForce Tesla
8400GS 9800GT C1060 C2050

Cores 8 112 240 448
Clock

1.40GHz 1.38GHz 1.30GHz 1.15GHz
Rate
Global

0.25GB 1GB 4GB 3GB∗
Memory
Shared

16kB 16kB 16kB 16kB†
Memory
Compute

1.1 1.1 1.3 2.0
Capability

Table 1: Specification of NVIDIA GPUs Used

Device Compiler Options

Intel X5550
(Fortran)

Sun Studio 12
(Update 1)

-O5 -native
-xprefetch
-xunroll=8 -xipo
-xvector

Intel X5550
(GPU Host)

GNU 4.3
-O2 -msse3
-funroll-loops

GeForce
8400GS/9800GT

NVCC -O2 -arch="sm 11"

Tesla
C1060/C2050

NVCC -O2 -arch="sm 13"

Table 2: Configuration for Workstation Experiments

the blts and buts kernels need only retrieve the original 20
array values from memory, before computing the 100 values
at the point in code where they are required. In addition to
decreasing the number of memory accesses in our kernels,
this decreases the amount of memory required (by removing
the need to store the 100 calculated values between kernels).

5. WORKSTATION PERFORMANCE
Our first set of experiments investigates the performance of a
single workstation executing the LU benchmark in both sin-
gle and double precision. Classes A, B and C were executed
on a traditional quad-core CPU, along with a range of con-
sumer and high-end NVIDIA GPUs, including a Tesla C2050
built on the newest “Fermi” architecture. The full hardware
specifications of the GPUs used in these experiments can be
found in Table 1. The CPUs used in all of the worksta-
tions are “Nehalem”-class 2.66GHz Intel Xeon X5550s, with
12GB of RAM and each has the ability to utilise two-way
simultaneous multi-threading (SMT). Table 2 lists the com-
piler configurations used for each platform.

The graphs in Figures 2a and 2b show the resulting execu-
tion times in single and double precision respectively. Due
to their compute capability, the GeForce consumer GPUs
used in our experiments appear in the single precision com-
parison only. It is clear from these graphs that the GPU
solution outperforms the original FORTRAN 77 benchmark
for all three problem classes when run on HPC hardware;
the Tesla C1060 and C2050 are approximately 2.5x and 7x
faster than the original benchmark run on an Intel X5550.

Our results also demonstrate the architectural improve-
ments made by NVIDIA between each revision of the CUDA
architecture: for our GPU implementation of the LU bench-
mark in single precision, the 9800GT is 8x faster than the

∗2.65GB with ECC-enabled.
†48kB is available if the programmer selects higher shared
memory instead of larger L1 cache.
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Figure 2: Workstation Execution Times

8400GS; the C1060 is 4x faster than the 9800GT; and the
C2050 is 2.5x faster than the C1060. These performance
gains are not simply the result of an increased core count;
although the C2050 has only 4x as many cores as a 9800GT
(and the clock rate of those cores is lower), it is approxi-
mately 10x faster. Improved memory bandwidth, relaxed
criteria for coalescence of memory accesses and the intro-
duction of an L2 cache are among the hardware changes we
believe are responsible for these improvements.

Although the execution times of both consumer cards are
worse than that of the Intel X5550, we believe that the per-
formance of more recent consumer cards with higher com-
pute capability (e.g. a GeForce GTX 280, 480 or 580) would
be more competitive; it is our understanding that the dif-
ference between the consumer and HPC cards is largely one
of memory and quality control, suggesting that the perfor-
mance of newer consumer cards may be closer to the CPU.

Unexpectedly, the performance hit suffered by moving
from single to double precision in the CPU and GPU im-
plementations of the benchmark is comparable. This is sur-
prising because, according to NVIDIA documentation, the
ratios of double to single precision performance for the Tesla
C1060 and C2050 are 12:1 and 2:1.

Our results also demonstrate that the C2050’s ECC mem-
ory is not without cost; firstly, and as shown in Table 1,
enabling ECC decreases the amount of global memory avail-



Actual Predicted
Machine Nodes Min. Mean Max. Analytical Sim. Sim.

(No Noise) (w/ Noise)

GPU Cluster
(Class C)

1 (1 × C1060) 153.26 153.30 153.37 153.26 147.15 147.15
4 (4 × C1060) 67.06 67.25 67.58 70.45 66.43 69.32
8 (8 × C1060) 52.72 52.92 53.08 52.72 50.50 54.05

16 (16 × C1060) 44.29 44.46 44.51 44.47 42.85 46.08

GPU Cluster
(Class D)

4 (4 × C1060) 1359.93 1367.65 1372.85 1417.57 1375.28 1393.84
8 (8 × C1060) 735.53 736.60 737.47 744.24 723.83 745.47

16 (16 × C1060) 414.31 414.97 415.45 424.65 413.13 433.10

AMD Cluster
(Class C)

1 (16 Cores) 220.58 224.00 228.98 176.63 217.62 227.38
2 (32 Cores) 89.75 95.74 104.14 93.84 116.24 124.67
4 (64 Cores) 66.41 73.26 83.41 50.37 62.54 69.44
8 (128 Cores) 42.48 44.98 46.28 28.74 35.83 41.19

AMD Cluster
(Class D)

64 (1024 Cores) 142.37 152.50 162.57 87.34 89.41 124.54
128 (2048 Cores) 100.09 105.54 111.20 53.03 54.23 88.23

BlueGene/P
(Class C)

32 (128 Cores) 59.44 59.45 59.45 57.76 55.63 58.32
64 (256 Cores) 34.45 34.28 34.33 32.14 29.91 32.37
128 (512 Cores) 20.89 20.92 20.94 19.50 17.45 19.53
256 (1024 Cores) 13.84 13.86 13.87 12.12 10.33 11.98

BlueGene/P
(Class D)

32 (128 Cores) 920.16 920.20 920.26 934.26 922.67 938.85
64 (256 Cores) 474.67 474.75 474.80 486.79 476.34 489.94
128 (512 Cores) 266.61 266.66 266.70 253.56 244.64 255.02
256 (1024 Cores) 144.46 144.55 144.60 133.12 126.22 133.77

Table 3: Validations for the GPU Cluster, the AMD Cluster and the BlueGene/P (Times in Seconds)

able to the user from 3GB to 2.65GB; secondly, it leads to
a significant reduction in performance. For a Class C prob-
lem run in double precision, execution times are almost 15%
lower when ECC is disabled.

6. PERFORMANCE AT SCALE
The substantial rate at which the compute performance of
GPUs has improved has lead to significant interest in their
use as an accelerator at cluster scale. Whilst a number of
large machines utilising GPUs have recently appeared in the
TOP500 supercomputer list [3], they have yet to become
commonplace. Analysis of the likely performance of codes
executing on large scale GPU-based clusters is of interest to
organisations who want to assess whether porting to such
an architecture will be of benefit.

The experimental systems used in this study are an IBM
BlueGene/P (DawnDev) and a commodity AMD Opteron
cluster (Hera), both located at LLNL. DawnDev is an IBM
BlueGene/P system and thus follows the tradition of IBM
BlueGene architectures: a large number of lower perfor-
mance processors (850MHz PowerPC 450d), a small amount
of memory (4GB per node) and a proprietary BlueGene
torus high-speed interconnect. Hera on the other hand utilises
densely packed quad-socket, quad-core nodes featuring high
performance AMD Opteron 2.3GHz processors and 32GB
of memory per node. Hera uses the InfiniBand DDR high-
speed interconnect and exemplifies a typical large capacity
resource (127 TFLOP/s peak).

Compiler options used in the benchmarking are as follows:
for the BlueGene/P, IBM XLF with -O4 -qunroll -qipa

-qhot; for the AMD Opteron cluster, PGI 8.0.1 with -O4

-Munroll -Minline; the setup for the GPU clusters remains
as reported in Table 2.

6.1 Analytical Model
In order to assess the performance of LU, we employ a re-
cently published reusable model of pipelined wavefront com-
putations from [17], which abstracts the parallel behaviour
common to all wavefront implementations into a generic

model. When combined with a limited number of bench-
marked input parameters, the model is able to accurately
predict execution time on a wide variety of architectures.

For an in-depth explanation of the model and its parame-
ters, the reader is referred to [17]. The behaviour of a code’s
wavefront section is captured using the following parame-
ters: a grind-time per grid-point (Wg), which is used to cal-
culate the compute time on a given processor prior to com-
munication (W ), and a time-per-byte, used in conjunction
with message sizes (MessageSizeNS and MessageSizeEW )
to calculate the communication times between processors.
The value of Wg can be obtained via benchmarking or a low-
level hardware model; the time-per-byte can be obtained via
benchmarking (for a known message size) or a network sub-
model. A Tnonwavefront parameter represents all compute
and communication time spent in non-wavefront sections of
the code and can similarly be obtained through a collection
of benchmarks or sub-models.

Our application of the reusable wavefront model makes
use of both benchmarking and modelling, with Wg recorded
from benchmark runs and the message timings of all ma-
chines taken from architecture-specific network models. The
network models use results from the SKaMPI [20] bench-
mark, executed over a variety of message sizes and core/node
counts in order to account for contention.

For the GPU cluster, the network model was altered to
include the PCIe transfer times associated with writing data
to and reading data from the GPU. The PCIe latencies and
bandwidths of both cards were obtained using the “band-
widthTest” benchmark provided in the NVIDIA CUDA SDK;
the MPI communication times employed are taken from
benchmarks on a small InfiniBand cluster.

6.2 Simulation
In order to verify our findings, we also employ a perfor-
mance model based on discrete event simulation. We use the
WARPP simulator [11], which utilises coarse-grained com-
pute models as well as high-fidelity network modelling to
enable the accurate assessment of parallel application be-



Nodes
Time Power Peak
(s) (kW) (TFLOP/s)

Tesla
C1060

1024 367.84 192.31 79.87

Tesla
C2050

128 330.27 30.46 65.92

BlueGene/P 2048 262.51 32.77 6.95
AMD
Opteron

256 315.47 97.28 32.69

Table 4: Comparison for a Fixed Execution Time

haviour at large scale. A key feature of WARPP is that
it also permits the modelling of compute and network noise
through the application of a random distribution to compute
or networking events. In this study, we present two sets of
runtime predictions from the simulator: a standard, noise-
less simulation; and a simulation employing noise in data
transmission times (see Table 3). In these noise-based sim-
ulations, the network events have a Gaussian distribution
(with a standard deviation consistent with benchmarked
data) applied to MPI communications. The simulator is
therefore able to create a range in communication costs,
which reflect the delays caused by other jobs and background
networking events.

6.3 Model Validation and Projections
Validations of the analytical model and simulations are pre-
sented in Table 3. The AMD cluster was heavily loaded
and this is evident in the runtime results. Model accuracy
varies between the machines, but exceeds 90% for most runs
on the BlueGene/P and the GPU clusters; model accuracy
is approximately 80% on the AMD-cluster when accounting
for additional network noise.

Such high levels of accuracy and correlation between the
mathematical and simulation-based models – in spite of the
presence of other jobs and background noise – provide a
significant degree of confidence in predictive accuracy.

Figures 3a and 3b present model projections for the exe-
cution times of Class D and E problems, respectively. For
each, projections are provided from the analytical model
and from a simulation with network noise applied. Both
modelling techniques provide similar runtime projections.

A cluster of Tesla C2050 GPUs provides the best per-
formance at small scale for both problem sizes – up to 4x
faster than a small AMD cluster and over 10x faster than
a partially configured BlueGene/P rack. As the number of
nodes increases, the BlueGene/P and AMD cluster demon-
strate higher levels of scalability; the execution times for the
CPU-based clusters continue to decrease as the number of
nodes is increased, whilst those for the GPU clusters tend to
plateau at a relatively low number of nodes. These scalabil-
ity issues are not due to PCIe or MPI overheads, but rather
the decreasing amount of parallelism per node associated
with a decrease in subdomain size and kblock value.

Table 4 lists the power consumption (calculated from TDP)
and theoretical peak for each of the four machines modelled.
It should be noted that these power figures are for compute
only and therefore do not include the power consumption
of network switches or cooling – in the case of the GPU
clusters, we also do not include the power consumption of
the host CPU. Nonetheless, these figures are interesting and
allow us to draw comparisons across the architectures.

Although the Tesla C2050 cluster consumes the least power,
it also has the second highest theoretical peak processing
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Figure 3: Model Projections

rate. This demonstrates that although GPU-based solu-
tions will no doubt continue to achieve high placements in
rankings like the TOP500 [3] and Green500 [2], the level
of sustained application performance may in fact be simi-
lar to that of existing cluster technologies – and lower as a
percentage of theoretical peak.

7. CONCLUSIONS
Despite the impressive performance gains over a single quad-
core Intel Nehalem and the considerable claims of the power
of GPU devices elsewhere in academic literature, the results
in this paper demonstrate that achieving performance at
scale is still a challenge with such devices. For clusters of
GPUs, the effects of data movement and decreasing amounts
of parallelism per node must be considered if applications
are to scale well.

This paper provides, with quantitative evidence, an in-
sight into the performance that we might expect from future
accelerator-based architectures; our results demonstrate that
existing machines offer much lower peak performance than
that expected of future GPU-based clusters, but equivalent
sustained application performance. Accelerator-based ma-
chines will clearly provide exceptional advances in compute
ability, but the performance gains demonstrated for single
workstations will not easily be achieved at larger scales.

Our results also raise interesting questions about the fu-



ture direction of HPC architectures. On the one hand, we
might expect to see smaller clusters of SIMD or GPU nodes
which will favour kernels of highly vectorisable code; on the
other, we might expect highly parallel solutions typified by
the BlueGene/P, where “many-core” will mean massively
parallel quantities of independently operating cores. There-
fore, the choice that application programmers will be faced
with is one of focusing on low-level code design (to exploit
instruction-level and thread-level parallelism) or higher-level,
distributed scalability.
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