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Abstract
Pattern recognition in histopathological image analysis requires new techniques and

methods. Various techniques have been presented and some state of the art techniques
have been applied to complex textural data in histological images. In this paper, we
compare the novel Adaptive Discriminant Wavelet Packet Transform (ADWPT) with a
few prominent techniques in texture analysis namely Local Binary Patterns (LBP), Grey
Level Co-occurrence Matrices (GLCMs) and Gabor Transforms. We show that ADWPT
is a better technique for Meningioma subtype classification and produces classification
accuracies of as high as 90%.

1 Introduction

Meningioma subtype classification is a real-world problem from the domain of Histological
Image Analysis. Meningiomas are tumours of the Meninges (covering of the brain and the
nervous system). Histological images are real world data and are considerably different from
synthetic textural data. Histological images have a uniquely complex texture which repre-
sents a new set of issues. The texture in histological images such as Meningiomas is more
or less non-homogenous i.e. different areas in an image may have different textural proper-
ties which in turn may represent different patterns. Hence, textural analysis and subsequent
recognition is not straightforward. Moreover, intra-class variation amongst the samples be-
longing to the same class is high and to make matters worse inter-class differences amongst
the samples is low. This could be seen in the Meningioma subtype images depicted in the
Figure1.

Diagnosis of Meningiomas is still carried out by human experts. Its hampered by the fact
that the reviewing of the histological slides is time consuming, prone to error and the inter-
rater variability amongst the experts is considerable [2] which makes the therapy regimens
biased. Definition of diagnostic criterion for all tumour entities within the World Health
Organization (WHO) Classification of Tumours [4] has been problematic. Hence, there is
a need for an automated computer based technique to introduce more objectivity in to the
analysis. Most Meningiomas are benign [8] which means that neuropathologists are spend-
ing most of their time analysing and diagnosing benign tumours. Consequently, their is an
urgent need to develop automated techniques to aid the neuropathologist.
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a. b.
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Figure 1: Various Meningioma Images belonging to each subtype a. Meningiothelial, b.
Fibroblastic, c. Transitional, d. Psammomatoes

Some of the results on Meningioma subtype classification have been presented in [10]
[9] [12] [5] [11] [1]. Many techniques have been used in literature for texture classification.
Randen and Husoy [13] presented a paper on comparing various texture analysis techniques
for Brodatz texture classification. In this paper we compare the novel Adaptive Discrimi-
nant Wavelet Packet Transform (ADWPT) with Gray Level Co-occurrence Matrix (GLCM),
Gabor Transform (GT) and Local Binary Patterns (LBPs) for Meningioma subtype classifi-
cation. This paper presents comparative results between these techniques.

2 Methods

2.1 Gabor Transform

Gabor analysis of the textures was carried out as proposed by Ma and Manjunath [6]. Four
scales and six orientations were used to provide texture representations at various scales and
orientations. Energy feature is used to construct the feature set. The mean and variance as
suggested by Ma and Manjunath was also computed and classification results generated.

2.2 Local Binary Patterns

LBP [7] with a radius of 1 and 8 neighbourhood pixels was used in the analysis. Other radii
and number of pixels were also used with no apparent improvement in results.

2.3 Adaptive Discriminant Wavelet Packet Transform

ADWPT was carried out up to the fourth level. The subband selection for the most discrim-
inant decomposition was obtained using the Fisher Discriminant. A detailed discussion of
ADWPT is presented in [10] and [11].

2.4 Gray Level Co-occurrence Matrix (GLCM)

GLCM analysis was carried for four directions i.e.0o, 45o, 90o and135o with distances set
from 1 to 5. This generated 20 GLCM matrices for each image.
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2.5 Classification using Support Vector Machines (SVMs)

A gaussian kernel is used and a search for the best parameter is carried out. Matlab version
of SVMs [14] developed by Chang and Lin [3] are used for classification.

3 Results and Discussion

Figure2 shows the projections on the first three principal components performed after PCA
analysis of the features acquired for the two best feature sets i.e. GLCM and ADWPT re-
spectively. The other figures have not been included due to lack of space. The 3D plots
show that ADWPT performs much better than LBP, GLCM and Gabor Transform. In case of
ADWPT, psammomatous is separated well with transitional also found on the edge forming
a relatively separate cluster. GLCM produces comparative results to Gabor but is not able to
differentiate psammomatous well. LBP performs the worst with no clusters seen.

The classification results given in Table1 again prove that ADWPT provides the best
differentiation amongst the meningioma subtypes followed by Gabor and GLCM with LBP
providing the worse results. There were a total of 960 meningioma images with 240 images
per subtype. 20% of the data is used for testing i.e. 1 patient per subtype while the rest used
for training. Daubechies 8-tap filter was the wavelet filter used.

Table 1:5-fold cross validated classification accuracy results using Support Vector Machines
for LBP, GLCM, Gabor Transform and ADWPT (Fishers Discriminant) (F=Fibroblastic,
M=Meningiotheliamatous, P=Psammomatous, T=Transitional)

Feature F M P T Avg
ADWPT 79 89 97 89 89
GT 49.2 64.2 95 60.8 67.3
GLCM 68.3 74.2 75 60 69.4
LBP 12.5 65.6 66.7 70.9 53.9

The results in table1 clearly show that ADWPT performs much better than GLCM, GT
and LBP for meningioma subtype classification. The selection of subbands using the AD-
WPT provides a mechanism for selecting the optimal wavelet packet representation. This
enables the extraction of good features for classification. GT and GLCM acquire classifi-
cation accuracies of around 67% and 69% respectively which is lower than ADWPT. LBP
provides the worst classification accuracies of 53.9%.

4 Conclusion

The paper shows that ADWPT performs much better than the two spatial analysis tech-
niques namely GLCM and LBP and the spatial-frequency analysis technique namely Gabor
Transform included in the study. In the future we will compare the technique with spatial
frequency analysis techniques such as Short time fourier transform and the wavelet packet
algorithm implemented by Al-Kadi [1]. A more detailed analysis with various other feature
and scales may be carried out for GLCMs as well.
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Figure 2:Projections on the first 3 principal components obtained using the PCA analysis of
the a. GLCM-based Energy features and b. ADWPT (Fisher Distance) based Energy feature-
set (Fibroblastic (F), Meningiotheliamatous (M), Psammomatous (P) and Transitional (T))


