
http://wrap.warwick.ac.uk/   

 
 

 
 
 
 
 
 
 
Original citation: 
Rajpoot, K., Noble, A., Grau, V. and Rajpoot, Nasir M. (Nasir Mahmood) (2008) Feature 
detection from echocardiography images using local phase information. In: 12th Medical 
Image Understanding and Analysis (MIUA 2008), Dundee, Scotland, 2-3 Jul 2008 
 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/47625         
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
A note on versions: 
The version presented in WRAP is the published version or, version of record, and may 
be cited as it appears here.For more information, please contact the WRAP Team at: 
publications@warwick.ac.uk 
 
 
 

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/47625
mailto:publications@warwick.ac.uk


Feature Detection from Echocardiography Images Using 

Local Phase Information 

Kashif Rajpoota, Alison Noblea, Vicente Graua, Nasir Rajpootb‡ 

a Department of Engineering Science, University of Oxford, Oxford. 
b Department of Computer Science, University of Warwick, Coventry. 

Abstract. Ultrasound images are characterized by their special speckle appearance, low contrast, and low signal-

to-noise ratio. It is always challenging to extract important clinical information from these images. An important 

step before formal analysis is to transform the image to significant features of interest. Intensity based methods do 

not perform particularly well on ultrasound images. However, it has been previously shown that these images 

respond well to local phase-based methods which are theoretically intensity-invariant and thus suitable for 

ultrasound images. We extend the previous local phase-based method to detect features using the local phase 

computed from monogenic signal which is an isotropic extension of the analytic signal. We apply our method of 

multiscale feature-asymmetry measurement and local phase-gradient computation to cardiac ultrasound 

(echocardiography) images for the detection of endocardial, epicardial and myocardial centerline. 

1 Introduction 

Cardiovascular disease (CVD) is the main cause of human deaths in the developed world. Nearly half of all deaths in 

Europe [1] and more than one third of all deaths in the UK [2] are caused by CVD. Cardiac functional imaging is a 

non-invasive way to acquire dynamic images of the heart through which functional assessment and disease diagnosis 

can be made. In cardiac imaging, echocardiography (cardiac ultrasound) is the simplest, low-cost, and highly 

effective choice of image acquisition. However, these images are known to have low signal-to-noise ratio, low 

contrast, and high amounts of speckle. Further analysis (e.g., registration or segmentation) on these images is bound 

to be badly influenced from these artifacts. 

We approach the problem of feature detection from echocardiography images in an attempt to extract the important 

features – namely: endocardial and epicardial boundaries, and the myocardial centerline – which are potentially 

helpful in any subsequent processing. The method is developed using an approach that is not much affected by the 

speckle or low contrast nature of the ultrasound images. Phase-based processing has attracted a lot of attention in 

echocardiography image analysis, notably by our lab. In [3], the authors presented a local phase-based method of 

endocardial and epicardial boundary feature detection from feature asymmetry (FA) measure which also took notice 

of the spatio-temporal characteristics of the images. They assumed that endocardial or epicardial boundaries have 

step edge characteristics (thus asymmetry). In [4, 5], the authors used the local phase representation of 

echocardiography images for the registration of multi-view real-time 3-dimensional (RT3D) echocardiography. 

Zhang et al. [6] used the local phase representation of cardiac ultrasound and cardiac magnetic resonance (MR) 

images for multi-modality registration. 

Our work is influenced by the approach of Mulet-Parada and Noble [3] for endocardial and epicardial boundary 

feature detection which showed that a local phase-based method outperforms the conventional intensity-based 

methods. The algorithm in [3] used the quadrature filters for the computation of local phase by employing a filter 

bank of oriented log-Gabor band-pass filters. In contrast, we adapt the monogenic signal [7, 8] which makes use of 

isotropic Riesz filters (thus no specific orientation restriction) for the computation of local phase and extend the idea 

of feature asymmetry measure computation to multiscale. This greatly simplifies the feature asymmetry measure 

computation and gets rid of any potential problems that can possibly be introduced due to the use of oriented band-

pass filters. Moreover, the computational complexity of the technique is reduced and the feature detection is 

improved. The obtained features are important edge indicator and thus potentially useful either for feature-based 

registration or for segmentation using active contour algorithm [9] attempting to segment the endocardial and/or 

epicardial boundary. We also show how to detect the myocardial centerline using the local phase-gradient. The 

myocardial muscle is the most important structure in the echocardiography images and detection of its centre with 

high degree of localization can certainly help in the tracking, segmentation and registration applications. 

The next section describes the relevant background about the analytic signal, its extension to 2D using the oriented 

quadrature filters, and the feature asymmetry (FA) measure. Section 3 gives a detailed explanation of the proposed 

method for feature detection using modified single-scale and multi-scale feature-asymmetry measure and local 
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phase-gradient. Section 4 shows example results on echocardiography images. The paper concludes in the final 

section with an indication of the future directions. 

2 Background 

It is well known that local phase contains the local structural information (e.g., transitions or discontinuities) whereas 

the local amplitude depicts the local energy of the signal. Usually, one needs to construct a complex analytic signal 

from a given 1D signal to perform local analysis (e.g., local phase computation). The complex analytic signal is 

formed by considering the original signal 𝑓(𝑥) as the real part and its Hilbert transform 𝐻 𝑓  as the imaginary part.  

𝑓𝐴 𝑥 = 𝑓 𝑥 + 𝑖𝐻 𝑓 𝑥      (1) 

The local phase is then computed from this complex analytic signal: 

𝜑 𝑥 = 𝑎𝑟𝑐𝑡𝑎𝑛 𝐻 𝑓 𝑥  /𝑓 𝑥     (2) 

In practice, the analytic signal and the local phase are computed from a quadrature pair of band-pass filters (i.e., 

filters which are 𝜋 2  phase shift version of each other.) One such example is the log-Gabor filter: 

𝐺 𝜔 = 𝑒𝑥𝑝 −
 𝑙𝑜𝑔  𝜔 𝜔0   

2

2 𝑙𝑜𝑔  𝑘 𝜔0   
2   (3) 

where 𝜔0 is the centre frequency and 𝑘 is related to the band-width of the band-pass filter. Using the quadrature filter 

pair, the local phase is practically computed from the filter responses: 

𝑒𝑣𝑒𝑛 𝑥 = 𝑓 𝑥 ∗ 𝑅𝑒  𝐹−1 𝐺 𝜔         and           𝑜𝑑𝑑 𝑥 = 𝑓 𝑥 ∗ 𝐼𝑚  𝐹−1 𝐺 𝜔    

𝜑 𝑥 = 𝑎𝑟𝑐𝑡𝑎𝑛 𝑜𝑑𝑑 𝑥 𝑒𝑣𝑒𝑛 𝑥      (4) 

where ∗ denotes the convolution operator, 𝐹−1 . .   represents the inverse Fourier transform, and 𝑅𝑒(. . ) and 𝐼𝑚(. . ) 

extract the real and imaginary part from the complex function, respectively. 

The local phase 𝜑 𝑥  denotes the measure of the local symmetry (±𝜋 2 ) or asymmetry (0 or  𝜋) of the signal. The 

local symmetry of the signal is often termed as even symmetry (ridges or valleys) while the local asymmetry is 

termed as the local odd symmetry (step edges). Thus, the concept of symmetry is naturally a 1D concept and the 

above description of analytic signal and local phase computation holds only for 1D signals. Mathematically, the 

Hilbert transform is restricted for a 1D function. Therefore, a straightforward extension of the above concept to 2D 

and higher dimensions is generally invalid. 

Usually, the extension to 2D local analysis is performed using the construction of an oriented filter bank which holds 

the 1D local symmetry or asymmetry concepts. The 2D extension of the 1D log-Gabor filter (3) is: 

𝐺 𝜔, 𝜑 = 𝑒𝑥𝑝 −  
 𝑙𝑜𝑔  𝜔 𝜔0   

2

2 𝑙𝑜𝑔  𝑘 𝜔0   
2 +

 𝜑−𝜑0 
2

2𝜎𝜑
2    (5) 

where 𝜑0 is the filter orientation and 𝜎𝜑
2 is the filter spread. The local analysis of 2D images performed using the log-

Gabor filter is computed as: 

𝑒𝑣𝑒𝑛 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 ∗ 𝑅𝑒  𝐹−1 𝐺 𝜔, 𝜑                and     𝑜𝑑𝑑 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 ∗ 𝐼𝑚  𝐹−1 𝐺 𝜔, 𝜑    

𝜑 𝑥, 𝑦 = 𝑎𝑟𝑐𝑡𝑎𝑛 𝑜𝑑𝑑 𝑥, 𝑦 𝑒𝑣𝑒𝑛 𝑥, 𝑦     (6) 

In local analysis, Kovesi [10] and Morrone & Owens [11] have shown that the significant features (step edges, 

ridges, valleys, etc.) in the image have their unique phase response and that the phase is congruent for these features. 

In the current work, we are only interested in the computation of endocardial or epicardial features which behave like 

step edges [3] and have a phase response of nearly 0 or  𝜋. It has been shown, originally in Kovesi’s work [10], and 

later in Mulet-Parada’s adaptation [3] for echocardiography images that the FA measure is actually the phase-

congruency measure computed only for the step edges. Mulet-Parada [3] employed the FA measure of Kovesi [10] 

that can be computed directly from the quadrature pair filter responses: 

𝐹𝐴2𝐷
𝑀𝑃 𝑥, 𝑦 =  

  𝑜𝑑𝑑𝑚  𝑥,𝑦  − 𝑒𝑣𝑒𝑛𝑚  𝑥,𝑦  −𝑇𝑚  

 𝑜𝑑𝑑𝑚
2  𝑥,𝑦 +𝑒𝑣𝑒𝑛𝑚

2  𝑥,𝑦 +𝜀
𝑚   (7) 

where 𝑚 is the filter orientation, 𝜀 is a small constant to avoid division by zero, 𝑇𝑚  is the orientation specific 

threshold and the  . .   operator zeros the negative values. The role of 𝑇𝑚  and the zeroing operator is to respond only 

to features within the orientation range of the filter. The orientation specific threshold is computed by, 

𝑇𝑚 = 𝑒𝑥𝑝
𝑙𝑜𝑔 𝑚𝑒𝑎𝑛   𝑜𝑑𝑑𝑚

2  𝑥,𝑦 +𝑒𝑣𝑒𝑛𝑚
2  𝑥,𝑦   

   (8) 



3 Method 

Due to the nature of extension using oriented filters, as described above, of the local analysis theory to 2D, we face 

the complexity of dealing with an oriented filter bank and an additional parameter about the selection of the number 

of appropriate orientations. In this section, we present our modification to the FA measure for the detection of 

endocardial and epicardial features. We make use of the recently introduced isotropic extension of the analytic signal 

concept to 2D in the monogenic signal framework of Felsberg [7, 8]. The monogenic signal framework extends the 

analytic signal concept to 2D by the introduction of a vector valued odd filter (Riesz filter) whose Fourier domain 

representation is:  

 𝐻1 𝑢, 𝑣 , 𝐻2 𝑢, 𝑣  =  𝑖
𝑢

 𝑢2 + 𝑣2
, 𝑖

𝑣

 𝑢2 + 𝑣2
  

The monogenic signal is then formed by combining the original 2D signal with the Riesz filtered components: 

𝑓𝑀 𝑥, 𝑦 = [𝑓 𝑥, 𝑦 , 𝑓 𝑥, 𝑦 ∗ 𝑕1 𝑥, 𝑦 , 𝑓 𝑥, 𝑦 ∗ 𝑕2 𝑥, 𝑦 ] 

where 𝑕1 𝑥, 𝑦 and 𝑕2 𝑥, 𝑦  are the spatial domain representation of 𝐻1 𝑢, 𝑣  and 𝐻2 𝑢, 𝑣 , respectively. Similar to 

the oriented filter case described in last section, the 2D image is first filtered using a band-pass filter, for example: 

log-Gabor filter, 

𝐺 𝑢, 𝑣 = 𝑒𝑥𝑝 −  
 𝑙𝑜𝑔   𝑢2+𝑣2 𝜔0   

2

2 𝑙𝑜𝑔  𝑘 𝜔0   
2     (9) 

It must be noted that the above log-Gabor filter is an isotropic band-pass filter, unlike the oriented band-pass filters 

(5) used in the last section. Therefore, in practice, the monogenic signal is often constructed as: 

𝑓𝑀 𝑥, 𝑦 = [𝑔 𝑥, 𝑦 ∗ 𝑓 𝑥, 𝑦 , 𝑓 𝑥, 𝑦 ∗ 𝑔 𝑥, 𝑦 ∗ 𝑕1 𝑥, 𝑦 , 𝑓 𝑥, 𝑦 ∗ 𝑔 𝑥, 𝑦 ∗ 𝑕2 𝑥, 𝑦 ] 

where 𝑔 𝑥, 𝑦  is the spatial domain representation of the log-Gabor filter 𝐺 𝑢, 𝑣 . We have found that the monogenic 

signal components can be represented by scalar valued even and odd filtered responses with the following simple 

trick: 

𝑒𝑣𝑒𝑛𝑀𝐺 𝑥, 𝑦 = 𝑓𝑀,1 𝑥, 𝑦   and  𝑜𝑑𝑑𝑀𝐺 𝑥, 𝑦 =  𝑓𝑀,2
2  𝑥, 𝑦 + 𝑓𝑀,3

2  𝑥, 𝑦  

and thus the new representation of monogenic signal can be of the same form as the 1D analytic signal (1). 

𝐹𝑀𝐺 = 𝑒𝑣𝑒𝑛𝑀𝐺 𝑥, 𝑦 + 𝑖 ∗ 𝑜𝑑𝑑𝑀𝐺 𝑥, 𝑦    (10) 

It is worth mentioning that the 𝑒𝑣𝑒𝑛𝑀𝐺 𝑥, 𝑦  and 𝑜𝑑𝑑𝑀𝐺 𝑥, 𝑦  filter responses contain the even-symmetry and odd-

symmetry filter responses, respectively. However, interestingly in this case, 𝑜𝑑𝑑𝑀𝐺 𝑥, 𝑦  denotes the odd symmetry 

response as a scalar value in all orientations. However, the simplified monogenic signal representation (10) loses the 

local orientation information (see [7, 8] for details on local orientation) from the original representation but we are 

only interested in the local phase information for our current work which remains unaffected by the trick. 

We can now define the modified FA measure to compute the phase congruency for asymmetric features (i.e., step 

edges) in the image. We recall that endocardial and epicardial features correspond to step edges. The modified FA 

measure is formulated as: 

𝐹𝐴2𝐷
𝐾𝑅 𝑥, 𝑦 =

  𝑜𝑑𝑑𝑀𝐺  𝑥,𝑦  − 𝑒𝑣𝑒𝑛𝑀𝐺  𝑥,𝑦  −𝑇 

 𝑒𝑣𝑒𝑛𝑀𝐺
2  𝑥,𝑦 +𝑜𝑑𝑑𝑀𝐺

2  𝑥,𝑦 +𝜀

   (11) 

In contrast to the conventional FA (7), there is no need of summation operator (since there is no oriented filter bank). 

The threshold 𝑇 is computed in a way similar to (8) but with no orientation selectivity. Thus, the filtering and the FA 

measure are simplified in comparison to the method of Mulet-Parada [3]. Note that the FA in (7) and the modified 

FA of (11) compute the asymmetric feature strength at a single scale. We propose a multiscale FA measure based on 

monogenic signal and the above modified FA measure (11), 

𝐹𝐴2𝐷
𝐾𝑅−𝑚𝑠  𝑥, 𝑦 =  

  𝑜𝑑𝑑 𝑠𝑐𝑀𝐺  𝑥,𝑦  − 𝑒𝑣𝑒𝑛 𝑠𝑐𝑀𝐺  𝑥,𝑦  −𝑇𝑠𝑐  

 𝑒𝑣𝑒𝑛 𝑠𝑐𝑀𝐺
2  𝑥,𝑦 +𝑜𝑑𝑑 𝑠𝑐𝑀𝐺

2  𝑥,𝑦 +𝜀
𝑠𝑐  (12) 

where 𝑠𝑐 represents the scale variable and 𝑇𝑠𝑐  is a scale-specific threshold value calculated similar to (8) but with 

scale selectivity rather than orientation selectivity. Due to the similarity between (7) and (12), it must be clarified that 

the FA of (7) is summed upon different orientations (and not scales) whereas the summation in (12) is computed 

from multiple scales of the band-pass filter (9) used in the computation of monogenic signal. 

In addition to the endocardial and epicardial features, the myocardial muscle centerline is also a very important 

feature in the echocardiography images which can be useful for registration and segmentation. It can be assumed that 



the whole myocardial muscle is a symmetrical feature (a ridge). We have noticed in our experiments that the phase-

gradient computed from the filter response components of the monogenic signal (10) provides a unique and well-

localized response (local minima) to the symmetrical features (i.e., myocardial muscle in this case). The phase-

gradient can be directly computed from the filter responses instead of explicit derivation from the local phase. From 

the polar representation of the complex signal 𝐹𝑀𝐺 , one can derive that the phase-gradient is: 

𝜑𝑀𝐺
′  𝑥, 𝑦 = 𝐼𝑚  

𝐹𝑀𝐺
′  𝑥,𝑦 

𝐹𝑀𝐺  𝑥,𝑦 
 =

𝑒𝑣𝑒𝑛𝑀𝐺  𝑥,𝑦 .𝐼𝑚 𝐹𝑀𝐺
′   − 𝑜𝑑𝑑𝑀𝐺  𝑥,𝑦 .𝑅𝑒 𝐹𝑀𝐺

′  

𝑒𝑣𝑒𝑛𝑀𝐺
2  𝑥,𝑦 +𝑜𝑑𝑑𝑀𝐺

2  𝑥,𝑦 
 (13) 

where 𝐹′  denotes the derivative of 𝐹. Therefore, the phase-gradient computation is considered to be unaffected from 

typical problems associated with the computation of local phase (e.g., phase wrapping). 

4 Results and Discussion 

We present exemplar results of modified single-scale and multi-scale FA and phase-gradient computation for 

echocardiography images. These measures allow the localized detection of endocardial, epicardial, and myocardial 

centerline features. For the computation of the modified FA (11), (12) and local phase-gradient (13), the simplified 

monogenic signal (10) was constructed where an isotropic log-Gabor filter (9) was used for the band-pass filtering of 

the original image. For the feature detection using original FA measure (7), we used the same parameters as in [3]. 

     

     

     

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 1: Results on two frames each of two different echocardiographic sequences. (a) original image frames; (b) FA measure 

(7) using oriented filters technique of Mulet-Parada [3], (c) modified single-scale FA measure (11) from monogenic signal, (d) 

proposed multi-scale FA measure (12) from monogenic signal, and (e) phase-gradient measure computed using (13). 



For the single-scale modified FA computation using (11), we used the log-Gabor filter with bandwidth 𝑘 𝜔0 = 0.55 

(i.e., 2-octaves) and the wavelength set to 36-pixels. In the case of the multi-scale FA (12), three log-Gabor filters 

were used with wavelengths of  30, 36, 42 -pixels and the bandwidth of 𝑘 𝜔0 = 0.55. For phase-gradient 

computation (13), the parameters were the same as for single-scale FA computation. 

The results of feature detection on two frames each of two echocardiographic sequences are shown in Figure 1. The 

FA measure shows a strong value at the step edge location. It is clearly evident that the proposed multi-scale FA 

measure (12) offers refined feature detection results compared to either the previous FA measure (7) or the modified 

single-scale FA measure (11). In the case of phase-gradient measure, the myocardial centerline response is apparent 

as the local regional valley (or minima). We observe that the response of both these operators is excellent and highly 

localized for the myocardium muscle covering the left ventricle chamber. The proposed method finds important 

features efficiently and with high effectiveness. A limitation of the current approach is that it performs only spatial 

filtering which can introduce artificial responses for weaker structures. Mulet-Parada [3] found that spatio-temporal 

filtering reduces any such responses. We are currently working on the extension of our method to spatio-temporal 

echocardiography sequences. It must be mentioned that the monogenic signal extension to higher dimensions (2D+t, 

3D or 3D+t) is straightforward (for example: see [4, 5] for its 3D use). This implies that the extension of our work to 

higher dimension is simple unlike the technique proposed in [3] where extension of band-pass oriented filters to 

higher dimensions is subject to a significantly increased computational burden and design complications. 

5 Conclusions 

We proposed local phase-based methods for the detection of significant features in ultrasound images and showed 

the results of our techniques applied to echocardiography images.  The proposed method has simple formulation, 

multiscale extension, and reduced computational complexity compared to previous related implementations [3]. We 

have shown that the proposed approach is capable of detecting important feature points from echocardiography 

images which include the endocardial, epicardial and myocardial centerline boundaries. The features detected using 

this method may be further useful for subsequent processing in feature-based registration and contour-based 

segmentation. We are currently working on the spatio-temporal feature detection to capture temporal consistency 

from echocardiography images with the hope of further reducing any spurious responses of the current spatial 

approach. We are also working on the utilization of these features in an echocardiography segmentation framework. 
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