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Abstract

Numerical simulations of buoyant, gravity-driven coastal plumes are summarized

and compared to the inviscid geostrophic theory of Thomas & Linden (2007) and

to laboratory studies for plumes flowing along a vertical-wall coastline (those of

Thomas & Linden (2007) and additional experiments performed at Warwick Uni-

versity). In addition, results of two new laboratory studies with different scales

for plumes flowing along a more realistic inclined-wall coastline are presented

and compared to an extended theoretical model from the geostrophic theory of

Thomas & Linden (2007). The theoretical and experimental results for plumes

flowing along inclined-wall coastlines are compared to the inclined-wall experi-

mental studies of Avicola & Huq (2002), Whitehead & Chapman (1986) and Lentz

& Helfrich (2002), to the inclined-wall scaling theory of Lentz & Helfrich (2002),

and to oceanic observations. The lengths, widths and velocities of the buoyant

gravity currents are studied. Agreement between the laboratory and numerical

experiments, and the geostrophic theories for both vertical-wall and inclined-wall

studies is found to depend mainly on one non-dimensional parameter which char-

acterizes the strength of horizontal viscous forces (the horizontal Ekman num-

ber). The best agreement between the experiments and the geostrophic theories

is found for plumes with low viscous forces. At large values of the horizontal

Ekman number, laboratory and numerical experiments depart more significantly

from theory (e.g., in the plume propagation velocity). At very low values of

the horizontal Ekman number (obtained in the large-scale inclined-wall experi-

mental study only), departures between experiments and theory are observed as

well. Agreement between experiments and theory is also found to depend on the

steepness of the plumes isopycnal interface for the vertical-wall study, and on the

ratio between the isopycnal and coastline slopes for the inclined-wall study.

Keywords: Rotating Flows, Buoyancy-Driven Plumes, Topography Effects.
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CHAPTER 1

Introduction

An important objective in physical oceanography is to understand the dynamics

of buoyant discharge and mixing in the coastal ocean. The oceans and coastal

areas of the Earth are indeed complex and dynamic natural systems. Pollution

and human effects can impact these delicate ecosystems drastically.

Buoyant fluid entering the coastal ocean from, for example, an estuary will

typically form a gravity-driven surface flow. The flow develops as a consequence

of the density difference between the discharged, buoyant freshwater and the

denser, more saline ocean water. Such flows are a major source of nutrients, sed-

iments and contaminants to coastal waters, and may help to support diverse and

productive ecosystems. These flows often play an important role in enabling the

exchange of water between coastal channels and the open sea. When the buoy-

ant outflow exceeds length scales larger than the Rossby deformation scale, its

dynamics is affected by the Coriolis force arising from the rotation of the Earth.

As a result, the discharged fresh water is confined to the coastal zone where it

forms a current flowing along the coast in the direction of Kelvin wave prop-

agation. This study concentrates on examining the dynamics and evolution of

gravity-driven coastal currents flowing along a simple vertical-wall coastline, and

along a more realistic coastline topography as represented by inclined coastlines.

Firstly, laboratory studies for gravity-driven coastal currents flowing along

a vertical-wall coastline (those of Thomas & Linden (2007) and additional ex-

periments performed at Warwick University) are combined with numerical sim-

ulations employing the Regional Ocean Modeling System (ROMS) to further

investigate departures from the geostrophic theory of Thomas & Linden (2007).

A particular attention is paid to the internal dynamics of the plumes, the occur-

rence of instabilities within them, and the role of viscous forces in their evolution.

2
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Secondly, the geostrophic model of Thomas & Linden (2007) for gravity-driven

coastal currents flowing along vertical-wall coastlines is extended to the more

realistic case of inclined coastlines. The prediction of the extended model is com-

pared to two new laboratory studies for coastal currents flowing along inclined

coastlines and to the experimental studies of Avicola & Huq (2002), Whitehead &

Chapman (1986) and Lentz & Helfrich (2002) who also carried out experiments

for coastal currents flowing along sloping walls. The extended model and the

five experimental studies are as well compared to the scaling theory of Lentz &

Helfrich (2002) for inclined-wall coastal currents. Both, the extended geostrophic

model and the scaling theory of Lentz & Helfrich (2002), are finally compared

to oceanic observations. Lastly, a small set of laboratory experiments for coastal

currents flowing along vertical-wall coastlines when decreasing the ambient ocean

depth is examined.

The plan of this thesis is as follows. In the first part of this thesis, the gen-

eral background on gravity-driven coastal currents, some previous numerical and

experimental studies, and the methods (theoretical, experimental, numerical) em-

ployed here are reviewed. The second part uses the vertical-wall laboratory and

numerical studies together to explore the kinematic properties of the buoyancy-

driven plumes, and to identify their non-dimensional dependencies. The internal

dynamics of the plumes are also investigated. The third part presents the re-

sults of the two new inclined-wall laboratory studies and compared them to the

extended geostrophic model, the experimental studies of Avicola & Huq (2002),

Whitehead & Chapman (1986) and Lentz & Helfrich (2002), and the scaling the-

ory of Lentz & Helfrich (2002). The extended geostrophic model and the scaling

theory of Lentz & Helfrich (2002) are compared as well to oceanic observations.

The results of the study for vertical-wall coastal currents when decreasing the

ambient ocean depth are lastly explored. A final part offers a summary and

concluding remarks.



CHAPTER 2

General background

A gravity current, also called density current or buoyancy current, is the flow

of one fluid within another caused by the density difference between the fluids.

The density difference between two fluids, or between different parts of the same

fluid, can exist because of a difference in temperature, salinity, or concentration

of suspended sediment. It is characterised by the reduced gravity∗, g′, defined by

g′ =
ρ2 − ρ1

ρ1

g, (2.1)

where ρ1 and ρ2 are the densities of the two fluids and g = 981 cm s−2 is the

acceleration due to gravity. Gravity currents are primarily horizontal, occurring

as either top or bottom boundary currents, or as intrusions at some intermediate

level, and are associated with strong density fronts. On the ocean surface, the

front of a gravity current sometimes forms a colour change in the water, but more

often can be seen from foam and floating debris which collect along the line of

converging flow. These fronts may have multiple lines, as shown in Figure 2.1

taken at Trondheim in Norway.

Much of the dynamics of gravity currents has been discovered from laboratory

experiments in which salt water was released from behind a lock gate into a

large tank of freshwater. Figure 2.2 is a photograph of this type of laboratory

experiment from Simpson & Britter (1979), using shadowgraphy, which displays

the side view of a gravity current moving from left to right in lock-exchange flow.

The structure of the leading front in Figure 2.2 is typical of the structure of a

gravity current. There is a raised part, which is called the head, and a following

shallower part, called the tail. In the tail and in the ambient fluid ahead, the

∗ The reduced gravity represents the effective change in the acceleration of gravity acting
on one fluid in contact with a fluid of different density due to buoyancy forces.

4
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Figure 2.1: Foam fronts observed in the Flakk Fjord at Trondheim in Norway
(from Ellingsen (2004)).

Ambient freshwater 

Head of the 
gravity current 

Tail of the gravity 
current 

Gravity current of salt water 

Figure 2.2: Shadowgraph of a gravity current in lock-exchange flow (from Simp-
son & Britter (1979)).
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pressure is hydrostatic. At the head the ambient fluid is displaced upwards over

the gravity current; consequently, the pressure there is not hydrostatic. The

main transfer of momentum (between the gravity current and the ambient fluid)

occurs at the head, and so this is the most dynamically significant part of the

flow. Indeed, the formation of the ”head” may be considered to be the fluid’s

response to the imposed difference in hydrostatic pressure (Hacker (1996)).

There are many examples of gravity currents occurring in the environment,

which are discussed in Simpson (1987). One particular example of gravity cur-

rents produced by direct inputs of buoyancy, and of particular interest for this

thesis, is in the estuarine environment, where the freshwater from a river meets

the saltier sea water.

2.1 Coriolis effects on gravity currents

When gravity currents occur on length and time scales which are sufficiently large,

their dynamics are influenced by the rotation of the Earth and they undergo a

Coriolis force, FC = −2Ω×u, where u represents the velocity vector of a gravity

current fluid particle, and Ω is the angular velocity vector of the Earth, pointing

out of the ground in the northern hemisphere. The Earth is taken as a perfect

sphere. This sphere rotates about its North Pole-South Pole axis. At any given

latitude ϕ, the north-south direction departs from the local vertical. Figure 2.3

depicts the traditional choice for a local Cartesian framework of reference: the

x-axis is oriented eastward, the y-axis, northward, and the z-axis, upward. The

corresponding unit vectors are denoted (i, j,k). In this framework, the Coriolis

force is expressed as

FC = (−f∗w + fv)i− fuj + f∗uk, (2.2)

where u, v and w are the components of the velocity vector u in the x-, y- and

z-directions, respectively, and f = 2Ω sinϕ is the Coriolis parameter, whereas

f∗ = 2Ω cosϕ is the reciprocal Coriolis parameter. In the northern hemisphere,

f is positive; it is zero at the equator and negative in the southern hemisphere.

In contrast, f∗ is positive in both hemispheres, but it vanishes at the poles.

Generally, the f -terms are important, whereas the f∗-terms can be neglected

(Cushman-Roisin (1994)). Thus in the preceding framework, the Coriolis force

is simply
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Figure 2.3: Definition of a local Cartesian framework of reference on a spherical
Earth. The coordinate x is directed eastward, y northward, and z upward (from
Cushman-Roisin (1994)).

FC = fvi− fuj. (2.3)

In the absence of boundaries, a gravity current is deflected from its initial

course by the Coriolis force, to the right in the northern hemisphere, and to the

left in the southern hemisphere and is constrained to form an eddy. A stationary

equilibrium may be reached in which Coriolis forces balance the radial pressure

gradient†. This is called geostrophic balance, the circulating region of the gravity

current is called a geostrophic eddy. Further release of potential energy is only

possible through instability processes or through viscous dissipation (Griffiths

(1986) and Hacker (1996)). The familiar ”highs” and ”lows” of weather maps

are examples of geostrophic eddies in the atmosphere; similar flows occur in the

oceans (although on a smaller scale) and are called mesoscale eddies. The process

described above through which a geostrophic flow may be established, is called

Rossby or ”geostrophic” adjustment (Rossby (1938)).

In the vicinity of a boundary, velocities normal to the boundary, and hence

Coriolis forces parallel to the boundary, must vanish. The constraints of the

rotation are broken, and a gravity current flows along the boundary (Griffiths

†This is strictly the case if the radius of curvature of the region of the gravity current is
large; otherwise centrifugal forces are also important in the final balance.



2. General background 8

(1986)). Boundaries may be mountain ranges, coastlines, or a sloping ocean

bottom. River outflows are localized sources of fresh, less dense water that (in

the absence of advecting currents) are confined by Coriolis forces to spread in

only one direction along the coast. The coast may have any orientation, but the

gravity current must have the coast on its right-hand side when looking in the

direction of the flow in the northern hemisphere, or on its left in the southern

hemisphere. When the gravity current is stable, the flow approaches a state of

geostrophic equilibrium and the interface at the edge of the region of fresh fluid

slopes in order to provide a hydrostatic pressure gradient to balance the Coriolis

force exerted on the flow.

2.2 Potential vorticity

The Rossby adjustment process may also be understood in terms of the conser-

vation of the potential vorticity (Hacker (1996)). In fluid dynamics, vorticity is

the curl of the fluid velocity. In the simplest sense, vorticity is the tendency for

elements of the fluid to ”spin”. More formally, vorticity can be related to the

amount of ”circulation” or ”rotation” (or more strictly, the local angular rate

of rotation) in a fluid. In the study of geostrophic flows, since the horizontal

flow field has no depth-dependence, there is no vertical shear and no eddies with

horizontal axes (Cushman-Roisin (1994)). Thus, the absolute vorticity of a fluid

particle, for a geostrophic flow, is

f + ξ (2.4)

where f is the ambient vorticity and ξ = ∂v
∂x
− ∂u

∂y
is the relative vorticity of

the fluid particle. The vorticity vector is strictly vertical, and the preceding

expression merely shows this vertical component. The potential vorticity, q, of a

fluid parcel is the ratio of its absolute vorticity to its height, h:

q =
f + ξ

h
. (2.5)

From the momentum and continuity equations of geostrophic flows, it can

be shown that, in the absence of dissipation, the fluid parcel’s volume and its

circulation are conserved, implying the conservation of their ratio defined as the

potential vorticity, q (Cushman-Roisin (1994)). Thus, the potential vorticity can

be interpreted as the circulation per unit volume at a point in a fluid flow field.
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Figure 2.4: Conservation of volume and circulation of a fluid parcel undergo-
ing squeezing or stretching, implying conservation of potential vorticity (from
Cushman-Roisin (1994).

The best example to explain this conservation principle is that of a ballerina

spinning on her toes; with her arms stretched out, she spins slowly, but with her

arms brought against her body, she spins more rapidly. Likewise in homogeneous

geophysical flows, when a parcel of fluid is squeezed laterally (its cross-sectional

area ds decreasing), its vorticity must increase (f + ϕ increasing) to conserve

circulation (see figure 2.4).

2.3 Governing non-dimensional parameters

The length scale RD, called the Rossby radius of deformation, and defined as

RD =

√
g′H
f

, (2.6)

where f is the Coriolis parameter, g′ is defined in (2.1) and H is the height scale

of the flow, is the fundamental length scale in all problems involving buoyancy

forces and background rotation, since it is the length scale over which a density

interface will slope in order to balance a buoyancy driven flow. In the Rossby

adjustment process, RD indicates the distance over which the fluid spreads before

balance between the pressure gradient and Coriolis forces is obtained. The width

of a gravity oceanic coastal current is expected to scale on RD.

The associated dimensionless number is the Rossby number, Ro, defined as

Ro =
U

fL
, (2.7)
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where U and L are, respectively, characteristic velocity and horizontal length

scales of the flow. Ro compares inertial to Coriolis forces and is fundamental

in geophysical fluid dynamics, where it characterizes the importance of Coriolis

accelerations arising from planetary rotation. For a fluid system strongly affected

by Coriolis forces, Ro << 1.

The relative importance of friction is measured by the Ekman number, Ek,

which is the ratio of viscous to Coriolis forces. This number is defined as

Ek =
ν

fD
, (2.8)

where ν is the kinematic viscosity and D is a characteristic (horizontal or vertical)

length scale of the flow. It gives a measure at which stresses at a boundary

are communicated to the fluid interior. For geophysical flows, this number is

exceedingly small; it is very small even in the laboratory.

The Reynolds number, Re, which compares inertial to viscous forces, is de-

fined as

Re =
UD

ν
. (2.9)

In most cases of geophysical interest, the Reynolds number is quite large. The

densimetric Froude number, Fr, defined as

Fr =
U√
g′H

, (2.10)

is a ratio of inertial to buoyancy forces. Finally, the Burger number, Bu, defined

as

Bu = (
Ro

Fr
)2, (2.11)

indicates the importance of the stratification of the flow. This number is often

of order one for many atmospheric phenomena, meaning that both stratification

and rotation play nearly equal roles in governing vertical and other motions in

the fluid.



CHAPTER 3

Overview of prior studies

Buoyant outflows occur commonly and have been studied in various localities

throughout the world. They can be formed from processes other than river

discharges: for example, outflows from oceanic straits in which there are signifi-

cant density differences can also form coastal currents. Many field investigations

have been carried out during the last century along coastlines throughout the

world to study the dynamics of these currents and understand the impacts they

can have on near shore marine activities and biological population. Examples

of buoyancy-driven coastal currents include the Columbia River Plume (Hickey

et al. (1998)), the Delaware Coastal Current ((Munchow & Garvine, 1993a;b)),

the Hudson River outflow (Chant et al. (2008)) and the Algerian Current (Oba-

ton et al. (2000)), among others. The reader is referred to Chant (2011) for a

detailed review of the systems observed and their properties.

Garvine (1995) developed a classification of buoyant outflows as either ”small-

scale” or ”large-scale” dependent upon the cross-shore Kelvin number, K, the

ratio of the plume width to the baroclinic Rossby radius, RD. ”Small-scale”

outflows, with Kelvin numbers less than 1, are those in which inertial effects are

greater than rotation, and outflows tend to spread laterally and to be trapped

by advection near the source. An example of this type of ”small-scale” outflow

is the Connecticut river plume (Garvine (1977)). ”Large-scale” outflows have a

Kelvin number on the order 1 or greater; such outflows are dominated by the

Earth’s rotation and form coastally trapped currents that flow in the direction

of Kelvin wave propagation. It is this latter category with which this study is

concerned. Figure 3.1, from Chant et al. (2008), illustrates some of the observed

properties of ”large-scale”river plumes for the case of the Hudson River. Note in

particular the presence of the bulge of buoyant water near the estuary mouth and

11
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the narrow coastal current emanating from it. The coastal current flows in the

direction of Kelvin wave propagation, that is with the coast on its right (northern

hemisphere).

Figure 3.1: Hudson river outflow. The image was obtained from MODIS at
17 : 13 GMT . Blue arrows show CODAR field, black arrows result from shelf
moorings and white arrows from NOAA mooring at the Narrows. The color bar
(right side) is for surface salinity from the shiptrack shown in the figure (from
Chant et al. (2008)).

3.1 Prior studies on coastal current dynamics

The coastal current is the most common structure observed in field studies (e.g.

Figure 3.1). It is a region of downshelf transport of buoyant fluid (downshelf is

defined as the direction of Kelvin wave propagation). Previous laboratory and

numerical studies have examined the dynamics of the coastal currents.
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Early laboratory experiments (e.g. Stern et al. (1982)) examined the propa-

gation of a coastal current formed from a dam-break. The study of Stern et al.

(1982) focused primarily on the geometry and propagation of the leading edge

(nose) of the coastal current. Thomas & Linden (2007) investigated the dynam-

ics of a coastal current when the freshwater was discharged continuously from a

point source. In their experimental study, the width, the depth and the propaga-

tion speed of coastal currents moving along a vertical wall were determined. The

experimental data were compared to their theoretical model based on geostrophy,

continuity and conservation of potential vorticity (described in greater detail in

Chapter 4). Overall, good agreement between the experiments of Thomas &

Linden (2007) and their theory was obtained.

On the numerical side, many studies found that the coastal current was largely

in geostrophic equilibrium. Chao & Boicourt (1986) divided the plume into

two dynamically distinct regions: a bulge region near the estuary mouth and a

downstream coastal current. They looked at the dynamics at the river mouth.

Chao & Boicourt (1986) found that the nose of the coastal current advances faster

in the estuary region than down the coast and suggested that mixing near the

estuary mouth was responsible for the coastal current slowing down.

Whitehead & Chapman (1986) conducted experiments of a coastal current

propagating along a vertical wall which ultimately encountered a sloping bottom

and continued to flow along the sloping wall. They observed that the sloping

bottom had a dynamically significant effect on the evolution of the coastal cur-

rent: indeed coastal currents were seen to decelerate and widen in the region

of the sloping bottom. However, Whitehead & Chapman (1986) did not offer a

dynamical explanation for their results.

Attempts to classify the dynamics of coastal currents have been undertaken.

With their numerical study, Chao (1988) proposed a classification scheme based

upon an internal Froude number and a dissipation parameter. Csanady (1984)

and Wright (1989) simulated a surface-to-bottom density front (i.e. plumes from

which the buoyant water is in contact with the bottom, also referred to as bottom-

advected plumes (Figure 3.2(b))) over a sloping bottom and a flat continental

shelf, respectively, and noted that offshore transport of buoyant water in the bot-

tom boundary layer contributed to the cross shelf movement of bottom advected

plumes. Pursuing this result, Chapman & Lentz (1994) examined the role of

bottom friction on the development of a coastal current. They suggested that

the along-shore flow of the coastal current produced a bottom Ekman layer. This
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Ekman layer may transport fluid offshore, and the coastal current may spread

offshore to the point at which the along-shore velocity, and therefore the bottom

Ekman layer flux, would decrease to zero.

Yankovsky & Chapman (1997) produced a scaling for a gravity current flowing

over a continental shelf which distinguishes a surface-advected gravity current

(Figure 3.2(a)), which is isolated from the bottom, with a bottom-trapped gravity

current (Figure 3.2(b)), for which the buoyant water is in contact with the bottom

and bottom friction is important in the establishment of the coastal current. They

showed that in equilibrium the depth where the front intersects the bottom is

the same depth as the depth for a gravity current flowing along a vertical wall.

However, Yankovsky & Chapman (1997) examined whether the structure of a

gravity current more closely resembles the surface-trapped or slope-controlled

case for the region near the source and not for the coastal current away from

the source. To investigate this latter issue, Lentz & Helfrich (2002) proposed a

scaling theory for gravity currents flowing over a sloping bottom. Lentz & Helfrich

(2002) also simulated gravity currents flowing along an inclined coastline in the

laboratory : their experimental results were found to be consistent with their

scaling theory.

Avicola & Huq (2002) simulated in the laboratory surface-advected and bottom-

trapped plumes flowing over a continental shelf. They derived a theoretical model

based on the assumption that the frontal dynamics are those of a Margules front.

The theoretical expressions obtained by Avicola & Huq (2002) are similar to

those obtained by Thomas & Linden (2007) (who assumed geostrophic equilib-

rium). Avicola & Huq (2002) classified the dynamics of coastal currents into

a two-variable non-dimensional parameter space comprising an ambient depth

parameter and a bottom slope parameter. Their resulting parameter space was

found to delineate surface-advected currents to bottom-trapped currents.

3.2 Prior studies on the bulge region

The recirculating bulge region can be described as a large (relative to the coastal

current width) freshwater lens rotating clockwise (in the northern hemisphere)

located downstream to the source region. These features are rarely seen in nature

(e.g. Figure 3.1), although they are quite common in numerical and laboratory

experiments.
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Figure 3.2: Sketches depicting (a) a surface-advected plume and (b) a bottom-
trapped plume. The large arrows indicate the direction of the coastal plumes and
the small arrow represents offshore transport in the bottom Ekman layer (from
Chapman & Lentz (1994)).

Yankovsky & Chapman (1997) used a gradient wind balance∗ to predict the

maximum size of the recirculating bulge. They predicted a maximum recirculat-

ing bulge radius for surface-advected plumes. Nof & Pichevin (2001) analytically

hypothesized a mechanism for the bulge growth rate, based upon momentum

conservation arguments.

For his numerical simulations, Garvine (2001) noted that a buoyant outflow

in deep water will form a recirculating bulge and a coastal current, while an

outflow in shallow water will form an upshelf intrusion and a coastal current.

Avicola & Huq (2003a) experimentally examined the growth and characteristics

of a recirculating bulge formed from a surface-advected plume exiting a strait or

an estuary. When recirculating bulges formed, Avicola & Huq (2003a) determined

that the freshwater storage within the bulge was approximately 60% to 70% of

the source freshwater flux. Similarly, Horner-Devine et al. (2006) found that

the growth of the bulge and the accumulation of fluid within it coincided with

a reduction in the coastal current transport to approximately 50% of the inflow

∗Gradient wind balance is a balance between Coriolis, centrifugal and pressure gradient
forces.
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discharge. They further determined that the freshwater transport varied inversely

proportional with the inflow Rossby number. Avicola & Huq (2003b) attempted

to explain the role of the bay exit geometry in the formation of the recirculating

bulge by varying the bay exit angle and the radius of curvature.

Fong & Geyer (2002) found that in the absence of an ambient flow field, the

downstream coastal current carried a portion of the freshwater, while the fresh-

water remaining recirculated in a continually growing bulge in the vicinity of the

estuary mouth. With the support of another set of numerical simulations,Fong &

Geyer (2002) concluded that an external forcing agent (like an ambient current)

was required for transporting all the discharged freshwater downstream.

3.3 Prior studies on the stability of a coastal current

It is important to understand the mechanisms driving the stability of coastal cur-

rents because in oceanography they establish the exchanges between the coast

and the open sea. For instance, the circulation of the Western Mediterranean is

influenced by instabilities of the Algerian Current (Figure 3.3), which are mani-

fested in the form of mesoscale meanders and vortices.

Griffiths & Linden (1981a) studied the stability of an axisymmetric gravity

current along a vertical wall. The wavelength and phase velocities of the dis-

turbances observed by Griffiths & Linden (1981a) agreed with their baroclinic

instability model of two-layer flow, which takes frictional dissipation caused by

Ekman layers into account. Griffiths & Linden (1981b) defined θ as the square

of the ratio of the internal Rossby radius of deformation to the horizontal length

scale of the flow, and δ as the fraction of the total fluid depth occupied by the

layer inside the front. They argued that for θ >> 1 and δ > 0.1, unstable distur-

bances obtain most of their energy from the potential energy of the flow, while

for δ < 0.1, extraction of the kinetic energy from the shear becomes the dominant

driving mechanism.

Chabert D’Hières et al. (1991) investigated the stability of density-driven

boundary currents and compared the results obtained with the Algerian current.

For large Burger numbers, the gravity currents simulated by Chabert D’Hières

et al. (1991) were stable, but as the Burger number decreased, increasing numbers

of anticyclonic disturbances developed and grew along the axis of the currents.

Rivas et al. (2005) showed that the presence of an inclined bottom stabilizes
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Figure 3.3: Advanced very high resolution radiometer (AVHRR) IR image on
22 July 1980, showing a series of well-developed cyclonic and anticyclonic eddies
∼ 50 km in diameter. In both figures, A stands for Algiers. The eddies are
underlined and labelled in the bottom view to show that, going eastward, the
cyclones (C) decrease while the anticyclones (A) increase (From Millot (1985)).

gravity currents.

Many additional processes (e.g., wind forcing, coastline irregularities, and

bottom boundary layers) may modify the evolution and properties of buoyancy-

driven coastal currents (Chant (2011)). However, the concern of this PhD re-

search is to study the dynamics of surface-advected and bottom-trapped coastal

plumes moving along straight and inclined coastlines in the absence of wind forc-

ing.



Part II

Methods



CHAPTER 4

Geostrophic Theory

In this chapter, a theoretical analysis is performed to derive a set of equations

giving the profile of gravity-driven coastal currents simulated in the laboratory.

An ideal fluid system is considered, consisting of two moving layers, stacked one

upon the other, each having a uniform density. The upper layer of freshwater,

with density ρ1, flows above the ambient salt water layer of density ρ2. Since

only processes in the coastal current are investigated herein, the lowest layer will

be assumed to be deep and at rest.

4.1 Summary of the results for coastal currents flowing

along a vertical coastline

Thomas & Linden (2007) considered gravity-driven coastal currents flowing along

a vertical coastline. Their flow geometry and the nomenclature employed in the

analysis of the problem are illustrated in Figure 4.1.

The curvature of the circular wall is neglected and a Cartesian coordinate

system (x, y, z) is introduced. The origin of the coordinate system coincides

with the outlet of the source from which the buoyant freshwater discharges. It is

assumed that the velocity components in the y- and z-directions are negligible in

comparison to the velocity component, u, in the x-direction. All variations in the

x-coordinate direction are also neglected so that ∂
∂x

= 0. Therefore the plume

velocity is expressed as u = (u(y, z), 0, 0).

Frictional effects are ignored and the plume is assumed to be steady and in

geostrophic balance; that is, the Coriolis acceleration term in the cross-plume

direction is balanced by the cross-plume pressure gradient component. The pres-

sure is considered to be hydrostatic, and, as the freshwater is released from a

19
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FIG. 2. Thomas& Linden, J. Fluid Mech.
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Figure 4.1: Sketch illustrating the nomenclature employed to develop the theo-
retical model for coastal currents flowing along a vertical wall (from Thomas &
Linden (2007)).

continuous point source, it is further assumed that it is released with zero poten-

tial vorticity.

Using conservation of mass, angular momentum and potential vorticity, the

detailed analysis in Thomas & Linden (2007) shows that the current width, w0,

its depth, h0, its length, l(t), and its constant propagation speed, u0 = l/t, are

given respectively by

w0 = (
g′q0

Ω3
)
1
4 , h0 = (

4Ωq0

g′
)
1
2 , l =

3

4
(q0g

′Ω)
1
4 t , u0 =

3

4
(q0g

′Ω)
1
4 , (4.1)

where q0 is the constant volumetric discharge rate at the source, Ω is the rotation

rate of the turntable and g′ is defined in (2.1). As discussed in Thomas &

Linden (2007), w0 is equivalent to the Rossby deformation radius, RD, based on

the depth of the coastal current. The results of (4.1a-d) can be expressed in

dimensionless form by non-dimensionalizing all lengths by w0 and by introducing

the non-dimensional time T = Ωt. Using capital letters to denote non-dimensional

variables, one obtains:

W = 1 , H = 2I
5
4 , L =

3

4
T , U0 =

L

T
=

3

4
, (4.2)

where
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I =
Ωq

1
5
0

g′
3
5

(4.3)

is a dimensionless parameter. Reference to (4.2b) reveals that H = h0/w0; there-

fore, the parameter I characterizes the height-to-width aspect ratio of the coastal

current (see Thomas & Linden (2007)). Note that I also characterizes the isopy-

cnal slope separating the two layers. Thomas & Linden (2007) noted that coastal

currents with low I values (low Ω, q0 with high g′), thus coastal currents with a

small isopycnal slope, are wide and shallow, while coastal currents with high I

values (high Ω, q0 with low g′), thus coastal currents with a large isopycnal slope,

are deep and narrow.

The Rossby number, R0, is defined as:

R0 =
u0

fw0

=
3

8
, (4.4)

the Froude number, Fr, as:

Fr =
u0√
g′h0

=
3

4
√

2
, (4.5)

the Burger number, Bu, as:

Bu = (
Ro

Fr
)2 =

1

2
, (4.6)

the Reynolds number, Re, as:

Re =
u0w0

ν
=

3q
1/2
0 g′1/2

4νΩ1/2
, (4.7)

the horizontal Ekman number, EkH , as:

EkH =
ν

fw2
0

=
νΩ1/2

2q
1/2
0 g′1/2

, (4.8)

and finally, the vertical Ekman number, EkV , as:

EkV =
ν

fh2
0

=
νg′

8Ω2q0

, (4.9)

using (4.1a-b-d) and ν = 0.01 cm2 s−1 for the kinematic viscosity of water.

Equations (4.7) and (4.8) give
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Re =
3

8EkH
. (4.10)

Thus the Reynolds number, Re, and the horizontal Ekman number, EkH , are

inversely proportional. In the whole study presented here, the use of the hor-

izontal Ekman number, EkH , is preferred to the use of the Reynolds number,

Re, as the fluid system is assumed to be in geostrophic equilibrium and thus,

Coriolis forces are assumed to be dominant. The non-dimensional ambient depth

parameter (Avicola & Huq (2002)) is defined as

h0

HD

, (4.11)

where h0 is the theoretical vertical-wall coastal current height defined in (4.1(b)).

HD is the coastal wall depth if the coastline is a simple vertical wall, that is, HD

is just the height of the ambient salt water, HSW , in the circular tank. If the

coastline is an inclined wall of slope, α, with the horizontal, HD = αw0, where w0

is the theoretical vertical-wall coastal current width defined in (4.1(a)). When

the topography is a bottom slope, h0/HD = H/α, where H is the theoretical

non-dimensional coastal current height defined in (4.2(b)). The h0/HD ratio, for

an inclined coastline, is also the ratio of the isopycnal slope, H, of the coastal

current with the bottom slope, α.

4.2 Generalization of the analysis to coastal currents flow-

ing along inclined boundaries

Here the problem and the nomenclature of Thomas & Linden (2007) are general-

ized to the case of coastal currents flowing over an inclined coastline as illustrated

in Figure 4.2. For the inclined-wall case in Figure 4.2, the flow geometry has two

distinct regions. Region A is the zone where the coastal current depth is simply

determined by the solid boundary of the incline, while region B is the zone where

the coastal current depth is determined by the interface between the buoyant out-

flow and the ambient water.

As in Thomas & Linden (2007), the curvature of the circular wall is neglected.

Two Cartesian coordinate systems (x, y, z) and (x′, y′, z′) are introduced as

illustrated in Figure 4.2. The origin of the coordinate system (x, y, z) coincides

with the outlet of the source from which the buoyant, freshwater discharges while
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the coordinate system (x′, y′, z′) is a translation of the coordinate system (x,

y, z) along the y-axis such that y = wA + y′, where wA is the coastal current

width in region A. The width of region B is referred to as wB. The fluid heights

in regions A and B are hA(y) and hB(y′), respectively.

It is assumed that the velocity components in the y-, y′- and z-, z′-directions

are negligible in comparison to the velocity component in the x-, x′-direction.

Furthermore, all variations in the x-, x′-coordinate direction are ignored so that
∂
∂x

= ∂
∂x′

= 0. Therefore uA = (uA(y, z), 0, 0) and uB = (uB(y′, z′), 0, 0), where

uA and uB are the fluid velocities in regions A and B respectively, and uA and

uB are their component in the x-, x′-direction.

As in Thomas & Linden (2007), frictional effects are ignored and it is assumed

that the coastal current is in geostrophic balance.

Figure 4.2: Schematic of the view, along the across-shore direction, of a coastal
current flowing over an inclined wall in the laboratory.

The potential vorticity, q, defined by

q =
f − ∂uA

∂y

hA
, (4.12)

in region A, and

q =
f − ∂uB

∂y′

hB
, (4.13)

in region B, is conserved by vertical fluid columns (Cushman-Roisin (1994)).

Thus:
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∂q

∂t
= 0, (4.14)

everywhere in the coastal current. Furthermore, as the freshwater is released from

a continuous point source, one can subsequently assume that it is released with

zero potential vorticity (Griffiths (1986) and Thomas & Linden (2007)). Hence

q = 0, (4.15)

in the buoyant outflow. Using (4.12) and (4.13), (4.15) implies

∂uA
∂y

= f, (4.16)

and

∂uB
∂y′

= f. (4.17)

Integrating equations (4.16) and (4.17) over y and y′ respectively gives

uA = fy +K, (4.18)

and

uB = fy′ + L. (4.19)

where K and L are constants. Conservation of angular momentum requires that

uA = 0 at y = 0 (Thomas & Linden (2007))∗, thus K = 0. Furthermore, by

continuity, the flow velocity in region A must be equal to the flow velocity in

region B at the point of the intersection, y = wA, equivalent to y′ = 0, hence L

= fwA. Finally, one obtains:

uA = fy, (4.20)

and

∗As the fresh water is injected vertically upwards, its alongshore and across-shore velocity
components are zero at the source and thus, the buoyant outflow has zero angular momentum
at the source. Due to conservation of angular momentum, the buoyant outflow should have
zero angular momentum when returning back to the outer boundary and hence, the alongshore
velocity should be zero at the wall.
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uB = f(y′ + wA). (4.21)

In region B, the fluid system consists of the two layers of fluid. Thus the

model can be represented as a single moving layer above a motionless abyss. From

Cushman-Roisin (1994), the reduced-gravity shallow water model can describe

the fluid system, and is reduced, with the previous assumptions, to:

fuB = −g′∂hB
∂y′

, (4.22)

where f = 2Ω is the Coriolis parameter. Differentiating with respect to y′ (4.22),

substituting for ∂uB
∂y′

in (4.17) and integrating twice over y′ gives:

hB = − f
2

2g′
y′

2
+My′ +N, (4.23)

where M and N are constants. However at y′ = 0, hB = hi, where hi is the

height at which the interface between the freshwater and the ambient salt water

intersects the sloping bottom.Therefore:

hB = − f
2

2g′
y′

2
+My′ + hi. (4.24)

Differentiating (4.24) with respect to y′ and substituting for ∂hB
∂y′

in (4.22) and

for uB in (4.21) gives:

M = −f
2wA
g′

. (4.25)

With (4.25), (4.24) shows that the interface between the current in region B and

the ambient water is given by:

hB = − f
2

2g′
y′

2 − f 2wA
g′

y′ + hi, (4.26)

Assuming that the width and depth of the coastal current at any downstream

location remain constant in time, continuity requires that the volumetric flow

rate, q0, from the source must equal the volumetric flow rate across any cross-

section of the coastal current. Then:

q0 =

wA∫
0

hA(y)uA(y)dy +

wB∫
0

hB(y′)uB(y′)dy′. (4.27)
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Substituting (4.20),(4.21),(4.26) and,

hA(y) = tan(α)y, (4.28)

in (4.27), and using

wA =
hi

tan(α)
, (4.29)

after integration, one obtains:

q0 =
fhi

3

3 tan2(α)
+
g′hi

2

2f
. (4.30)

Since (4.30) is a third-order polynomial, the solutions for hi can only be obtain

numerically. However from Yankovsky & Chapman (1997) and Lentz & Helfrich

(2002), hi = h0, defined in (4.1b), which is the coastal current depth (see Fig-

ure 4.1) obtained by Thomas & Linden (2007) for coastal currents flowing along

vertical walls. In order to compare hi from (4.30) to h0 from (4.1b), the ratio

hi/h0 was numerically computed using (4.30) and (4.1b) with the values for the

rotation rate, Ω, the flow rate, q0, the reduced gravity, g′, and the sloping angle,

α, being the values used in the large-scale inclined-wall experiments presented

in section 5.2 (for which the coastal current depth was measured). An average

of the hi/h0 values found was then calculated with the standard deviation to

obtain hi/h0 = 0.76 ± 0.2. The inclined-wall depth, hi, is then estimated to be

the three-quarters of the vertical-wall depth, h0. However, the experimental data

presented in section 9.3 yield experimental evidence that the depth for coastal

currents flowing along an inclined wall is better predicted by the vertical-wall

depth, h0, rather than by the inclined-wall depth, hi. Therefore, similarly to

Yankovsky & Chapman (1997) and Lentz & Helfrich (2002), it is assumed from

here that hi = h0, and from (4.26), the interface between the coastal current in

region B and the ambient water is thus given by:

hB = − f
2

2g′
y′

2 − f 2wA
g′

y′ + h0, (4.31)

with

wA =
h0

tan(α)
. (4.32)

With (4.32) and the fact that, for a vertical-wall coastline, tan(α) → ∞, the
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equation (3.10) of Thomas & Linden (2007), describing the depth profile of a

coastal current flowing along a vertical wall, is recovered from (4.31).

The width of a coastal current flowing along an inclined wall, wi, is simply wi

= wA + wB. The value of wB is found from the condition, in (4.31), hB(wB) =

0, which yields:

0 = w2
B + 2wAwB −

2g′h0

f 2
. (4.33)

This leads to a quadratic equation with two solutions for wB. It turns out that

one of the two solutions always yields negative values for wB. Hence, this solution

has no physical relevance. Consequently, the other solution must be the correct

one:

wB = −wA +
√
w2
A + w2

0, (4.34)

where w0, defined in (4.1a), is the coastal current width (see Figure 4.1) obtained

by Thomas & Linden (2007) for coastal currents flowing along vertical walls.

Using (4.32) and (4.2b), (4.34) can be written as:

wB = −wA + w0

√(
H

tan(α)

)2

+ 1. (4.35)

From (4.35) and the fact that wi = wA + wB, the width, wi, of a coastal current

flowing along an inclined wall can be expressed as:

wi = w0

√(
H

tan(α)

)2

+ 1. (4.36)

For a vertical-wall coastline, wi = w0 is recovered.

The total volume, V , of the coastal current of length, li, is given by:

V = li

wA∫
0

hA(y)dy + li

wB∫
0

hB(y′)dy′. (4.37)

Substituting (4.31) and (4.28) in (4.37), after integration, one obtains:

V = li(
tan(α)

2
w2
A −

f 2

6g′
w3
B −

f 2

2g′
w2
BwA + h0wB). (4.38)

From the condition, in (4.31), hB(wB) = 0, wA can be rewritten as:
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wA = −wB
2

+
g′h0

f 2wB
. (4.39)

Replacing (4.39) in the third term of (4.38) gives:

V = li(
tan(α)

2
w2
A +

f 2

12g′
w3
B +

h0

2
wB). (4.40)

From (4.40) and the fact that V = q0t, the nose displacement of the coastal

current is:

li =
q0t(

tan(α)
2

w2
A + f2

12g′
w3
B + h0

2
wB

) . (4.41)

For a vertical-wall case, the equation (3.19) of Thomas & Linden (2007) describing

the length of a coastal current flowing along a vertical wall (see Figure 4.1) is

recovered from (4.41).

Equation (4.41) implies that the coastal current head travels at constant

speed, ui, given by:

ui =
li
t

=
q0(

tan(α)
2

w2
A + f2

12g′
w3
B + h0

2
wB

) . (4.42)

For a vertical-wall case, ui = u0, defined in (4.1d), which is the head propagation

speed for coastal currents flowing along vertical walls obtained by Thomas &

Linden (2007) (see Figure 4.1).

The above results can be conveniently expressed in dimensionless forms. As in

Thomas & Linden (2007), the non-dimensional time T = Ωt is used and all lengths

are non-dimensionalized by w0. Using capital letters to denote non-dimensional

variables, (4.41) is written as:

Li =
T

− H
tan(α)

(
4
3

(
H

tan(α)

)2

+ 1

)
+ 4

3

((
H

tan(α)

)2

+ 1

) 3
2

, (4.43)

where H, defined in (4.2b), is the dimensionless depth obtained by Thomas &

Linden (2007) for coastal currents flowing along vertical walls. Thus, the dimen-

sionless propagation speed, Ui, is:
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Ui =
1

− H
tan(α)

(
4
3

(
H

tan(α)

)2

+ 1

)
+ 4

3

((
H

tan(α)

)2

+ 1

) 3
2

. (4.44)

The dimensionless width, Wi, is then given by:

Wi =

√(
H

tan(α)

)2

+ 1, (4.45)

and the dimensionless depth, Hi, is simply:

Hi = H. (4.46)

The horizontal lengths can also be non-dimensionalized by wi. In this case, (4.41)

is written as:

(Li)wi
=

Li√(
H

tan(α)

)2

+ 1

, (4.47)

the dimensionless propagation speed, (Ui)wi
, is:

(Ui)wi
=

Ui√(
H

tan(α)

)2

+ 1

, (4.48)

and the dimensionless width, (Wi)wi
, is simply:

(Wi)wi
= 1. (4.49)

From equations (4.43), (4.47), (4.44), (4.48) and (4.45), the non-dimensional

coastal current lengths, Li and (Li)wi
, propagation velocities, Ui and (Ui)wi

, and

width, Wi, respectively, are all functions of H/ tan(α). However, for small values

of α, H/ tan(α) ∼ H/α. Therefore, for coastlines with small inclination angles, α,

the non-dimensional coastal current lengths, Li and (Li)wi
, propagation velocities,

Ui and (Ui)wi
, and width, Wi, are expected to depend on the ambient depth

parameter, h0/HD (= H/α).
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4.3 Predictions of the inclined-wall model

4.3.1 Variations of the non-dimensional theoretical inclined-wall

velocity Ui

Figures 4.3(a)-(b) display the non-dimensional theoretical inclined-wall coastal

current velocity, Ui, as a function of the bottom slope, α (for different values of

H), and, as a function of the non-dimensional coastal current height H, defined

in (4.2b) (for different values of α), respectively.

Figures 4.3(a)-(b) show that the non-dimensional theoretical inclined-wall

coastal current speed, Ui, has a maximum value, independent of the experimental

conditions. In order to find where the maximum of Ui is, the sign of its partial

derivatives with respect to H and α needs to be studied to find where the partial

derivatives cancel. The denominator in (4.44) is always different from zero, thus

Ui is well defined. Differentiating Ui with respect to α gives:

∂Ui
∂α

=

−4H3

sin2(α) tan2(α)
− H

sin2(α)
+ 4H2

tan(α) sin2(α)

((
H

tan(α)

)2

+ 1

) 1
2

(
− H

tan(α)

(
4
3

(
H

tan(α)

)2

+ 1

)
+ 4

3

((
H

tan(α)

)2

+ 1

) 3
2

)2 . (4.50)

The denominator in (4.50) is squared, therefore it is always positive. Hence, the

partial derivative (4.50) has the same sign as its numerator. Thus:

∂Ui
∂α
≥ 0 (4.51)

⇒ 4H2

tan(α) sin2(α)

((
H

tan(α)

)2

+ 1

) 1
2

≥ 4H3

sin2(α) tan2(α)
+

H

sin2(α)
. (4.52)

Multiplying both sides of the inequality in (4.52) by tan2(α) sin2(α) and taking

the square gives:

4H2 tan(α)

((
H

tan(α)

)2

+ 1

) 1
2

2

≥
(
4H3 +H tan2(α)

)2
. (4.53)
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(a) Ui as a function of α, for different values of H. Crosses indicate
the maxima of Ui, found at α = arctan(2

√
2H), for the different

values of H.

(b) Ui as a function of H, for different values of α. Crosses indicate
the maxima of Ui, found at H = tan(α)/2

√
2, for the different values

of α.

Figure 4.3: Variations of the non-dimensional theoretical inclined-wall coastal
current velocity, Ui, as a function of the bottom slope, α, and, the non-
dimensional height, H.
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Using the fact that H > 0, tan(α) > 0 and that the functions root and arctan

monotonically increase, (4.53) yields:

α ≤ arctan(2
√

2H). (4.54)

Therefore, with H held constant, the non-dimensional propagation speed, Ui, of

a coastal current flowing over an inclined coastline increases until α reaches the

maximum value arctan(2
√

2H) (because ∂Ui/∂α ≥ 0 for α ≤ arctan(2
√

2H)).

After α has reached this maximum value, Ui decreases (because ∂Ui/∂α ≤ 0 for

α ≥ arctan(2
√

2H)).

Similarly, by differentiating Ui with respect to H, one finds:

∂Ui
∂H

=

4H2

tan3(α)
+ 1

tan(α)
− 4H

tan2(α)

((
H

tan(α)

)2

+ 1

) 1
2

(
− H

tan(α)

(
4
3

(
H

tan(α)

)2

+ 1

)
+ 4

3

((
H

tan(α)

)2

+ 1

) 3
2

)2 . (4.55)

The denominator in (4.55) is squared, therefore it is always positive. Hence, the

partial derivative (4.55) has the same sign as its numerator.

∂Ui
∂H
≥ 0 (4.56)

⇒ 4H2

tan3(α)
+

1

tan(α)
≥ 4H

tan2(α)

((
H

tan(α)

)2

+ 1

) 1
2

. (4.57)

Multiplying both sides of the inequality in (4.57) by tan3(α) and taking the square

gives:

(
4H2 + tan2(α)

)2 ≥

4H tan(α)

((
H

tan(α)

)2

+ 1

) 1
2

2

. (4.58)

Using the fact that H > 0, tan(α) > 0 and that the function root monotonically

increases, (4.58) yields:

H ≤ tan(α)

2
√

2
. (4.59)

Therefore, with α held constant, the non-dimensional propagation speed, Ui,
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of a coastal current flowing over an inclined coastline increases until H reaches

the maximum value tan(α)/2
√

2 (because ∂Ui/∂α ≥ 0 for H ≤ tan(α)/2
√

2).

After H has reached this maximum value, Ui decreases (because ∂Ui/∂α ≤ 0 for

H ≥ tan(α)/2
√

2). It is interesting to note that:

α = arctan(2
√

2H)⇔ H =
tan(α)

2
√

2
. (4.60)

The crosses on Figures 4.3(a)-(b) indicate the maxima of Ui found at α =

arctan(2
√

2H) (for the different values of H) and at H = tan(α)/2
√

2 (for the

different values of α). After calculation, the value of the non-dimensional the-

oretical inclined-wall coastal current speed, Ui, at the maximum is found to be

0.8485.

Using (4.2b) and (4.3), one can rewrite (4.44) in terms of the experimental

parameters Ω, q0 and g′:

Ui =
1

− 2Ω
5
4 q

1
4
0

tan(α)g′
3
4

(
4
3

(
2Ω

5
4 q

1
4
0

tan(α)g′
3
4

)2

+ 1

)
+ 4

3

((
2Ω

5
4 q

1
4
0

tan(α)g′
3
4

)2

+ 1

) 3
2

. (4.61)

Figures 4.4(a)-(c) display the non-dimensional theoretical inclined-wall coastal

current velocity, Ui, as a function of the rotation rate, Ω (for different values of

α, with q0 = 20 cm3 s−1 and g′ = 5 cm s−2), as a function of the flow rate, q0

(for different values of α, with Ω = 1.5 rad s−1 and g′ = 5 cm s−2), and as a

function of the reduced-gravity, g′ (for different values of α, with Ω = 0.5 rad s−1

and q0 = 20 cm3 s−1).

After differentiating (4.61) with respect to the different experimental parameters

and studying the sign of each partial derivative, one obtains:

∂Ui
∂Ω
≥ 0 ⇒ Ω ≤ (tan(α))

4
5 g′ 35

4q
1
5
0

, (4.62)

∂Ui
∂q0

≥ 0 ⇒ q0 ≤
(tan(α))4g′3

210Ω5
, (4.63)

∂Ui
∂g′
≥ 0 ⇒ g′ ≤ 2

10
3 Ω

5
3 q

1
3
0

(tan(α))
4
3

. (4.64)
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(a)

(b)

(c)

Figure 4.4: Variations of Ui, as a function of (a) Ω, for different values of α,
with q0 = 20 cm3 s−1 and g′ = 5 cm s−2,(b) q0, for different values of α, with
Ω = 1.5 rad s−1 and g′ = 5 cm s−2, (c) g′, for different values of α, with
Ω = 0.5 rad s−1 and q0 = 20 cm3 s−1. Crosses indicate the maxima of Ui,
found at (a) Ω = (tan(α))4/5g′3/5/4q1/5

0 , (b) q0 = (tan(α))4g′3/210Ω5, (c) g′ =

210/3Ω5/3q
1/3
0 /(tan(α))4/3.
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Thus, when looking at Ui as a function of Ω (with q0, g′ and α kept constant),

Ui has a maximum at Ω = (tan(α))
4
5 g′ 35/(4q

1
5
0 ). Similarly, when looking at Ui

as a function of q0 (with Ω, g′ and α kept constant), Ui has a maximum at

q0 = (tan(α))4g′3/(210Ω5) and when looking at Ui as a function of g′ (with Ω, q0

and α kept constant), Ui has a maximum at g′ = 2
10
3 Ω

5
3 q

1
3
0 /(tan(α))

4
3 . The crosses

on Figures 4.4(a)-(c) indicate the maxima of Ui found at Ω = (tan(α))
4
5 g′ 35/(4q

1
5
0 )

(for the different values of α, with q0 = 20 cm3 s−1 and g′ = 5 cm s−2), at

q0 = (tan(α))4g′3/(210Ω5) (for the different values of α, with Ω = 1.5 rad s−1

and g′ = 5 cm s−2) and at g′ = 2
10
3 Ω

5
3 q

1
3
0 /(tan(α))

4
3 (for the different values of α,

with Ω = 0.5 rad s−1 and q0 = 20 cm3 s−1).

From Figures 4.3(a)-(b) and Figures 4.4(a)-(c), the non-dimensional inclined-

wall coastal current velocity, Ui, after having reached its maximum value, de-

creases and approaches zero for very large values of H (see Figure 4.3b), Ω (see

Figure 4.4a) and q0 (see Figure 4.4b), while it approaches 0.75 (that is, the value

of the non-dimensional vertical-wall coastal current velocity, U0, of Thomas &

Linden (2007) from (4.2d)) for very large values of α (see Figure 4.3a) and g′ (see

Figure 4.4c).

4.3.2 Comparison between the inclined-wall velocity, ui, and the

vertical-wall velocity, u0

To compare the difference between the theoretical inclined-wall and vertical-wall

coastal current velocities, their ratio, ui/u0, which is equivalent to Ui/U0 =

(4/3)Ui (using (4.2d)), is studied. Therefore, the ui/u0 ratio varies similarly

to Ui (the same variations and the same maxima). Using (4.44), one obtains:

ui
u0

=
1

− H
tan(α)

((
H

tan(α)

)2

+ 3
4

)
+

((
H

tan(α)

)2

+ 1

) 3
2

. (4.65)

Figures 4.5(a)-(b) display the ratio, ui/u0, of the predicted inclined-wall

coastal current speed to the predicted vertical-wall coastal current speed as a

function of the bottom slope, α (for different values ofH), and, as a function of the

non-dimensional coastal current height, H (for different values of α). The crosses

on Figures 4.5(a)-(b) indicate the maxima of ui/u0 found at α = arctan(2
√

2H)

(for the different values of H) and at H = tan(α)/2
√

2 (for the different values of

α). The solid line in Figures 4.5(a)-(b) identifies ui = u0, i.e when inclined-wall
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coastal currents propagate at same speed as vertical-wall coastal currents.

Figures 4.5(a)-(b) reveal that inclined-wall coastal currents can be faster or

slower than their counterparts, or can have same speed as vertical-wall coastal

currents. Inclined-wall coastal currents are faster than the vertical-wall coastal

currents (ui/u0 > 1) at higher α (Figure 4.5a) and at lower H values (Figure

4.5b), thus for steep angles and, wide and shallow coastal currents (lower H val-

ues). At lower α (Figure 4.5a) and at higher H values (Figure 4.5b), thus for

gentle slopes and, narrow and deep coastal currents (larger H values), inclined-

wall coastal currents are slower than vertical-wall coastal currents. The extent of

the α-interval for which inclined-wall coastal currents are faster than vertical-wall

coastal currents decreases with increasing H values (Figure 4.5a). Similarly, the

extent of the H-interval for which inclined-wall coastal currents are faster than

vertical-wall coastal currents decreases with decreasing α values (Figure 4.5b).

The value of the speed ratio, ui/u0, at the maximum, independent of the exper-

imental conditions, is found after calculation to be equal to 1.1314.

Figures 4.6(a)-(c) display the ratio, ui/u0, of the predicted inclined-wall coastal

current speed to the predicted vertical-wall coastal current speed as a function

of the rotation rate, Ω (for different values of α, with q0 = 20 cm3 s−1 and

g′ = 5 cm s−2), as a function of the flow rate, q0 (for different values of α, with

Ω = 1.5 rad s−1 and g′ = 5 cm s−2), and as a function of the reduced-gravity, g′
(for different values of α, with Ω = 0.5 rad s−1 and q0 = 20 cm3 s−1). The solid

line in Figures 4.6(a)-(c) identifies ui = u0.

In terms of the experimental parameters Ω, q0 and g′, inclined-wall coastal

currents are faster than vertical-wall coastal currents at lower Ω (Figure 4.6(a)),

lower q0 (Figure 4.6(b)) and higher g′ values (Figure 4.6(c)). Figures 4.6(a)-(c)

and figures similar to Figures 4.6(a)-(c) show that the extent of the Ω-interval

for which inclined-wall coastal currents are faster than vertical-wall coastal cur-

rents decreases with decreasing α (Figure 4.6a), decreasing g′ and increasing q0,

the extent of the q0-interval for which inclined-wall coastal currents are faster

than vertical-wall coastal currents decreases with decreasing α (Figure 4.6b), in-

creasing Ω and decreasing g′, and finally, the extent of the g′-interval for which

inclined-wall coastal currents are faster than vertical-wall coastal currents de-

creases with decreasing α (Figure 4.6c), increasing Ω and increasing q0.

From Figures 4.5(a)-(b) and Figures 4.6(a)-(c), after the ui/u0 ratio has

reached its maximum value, it decreases and approaches zero for very large

values of H (Figure 4.5b), Ω (Figure 4.6a) and q0 (Figure 4.6b), while it ap-
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(a) ui/u0 as a function of α, for different values of H. Crosses indicate
the maxima of ui/u0 found at α = arctan(2

√
2H), for the different

values of H.

(b) ui/u0 as a function of H, for different values of α. Crosses indicate
the maxima of ui/u0 found at H = tan(α)/2

√
2, for the different values

of α.

Figure 4.5: Variations of the ratio, ui/u0, of the predicted inclined-wall coastal
current speed to the predicted vertical-wall coastal current speed as a function
of the bottom slope, α, and, the non-dimensional height, H.
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(a)

(b)

(c)

Figure 4.6: Variations of ui/u0 as a function of (a) Ω, for different values of
α, with q0 = 20 cm3 s−1 and g′ = 5 cm s−2,(b) q0, for different values of α,
with Ω = 1.5 rad s−1 and g′ = 5 cm s−2, (c) g′, for different values of α,
with Ω = 0.5 rad s−1 and q0 = 20 cm3 s−1. Crosses indicate the maxima of
ui/u0, found at (a) Ω = (tan(α))4/5g′3/5/4q1/5

0 , (b) q0 = (tan(α))4g′3/210Ω5, (c)

g′ = 210/3Ω5/3q
1/3
0 /(tan(α))4/3.



4. Geostrophic Theory 39

proaches 1, that is ui v u0 and thus inclined-wall coastal currents have same

propagation speed than vertical-wall coastal currents, for very large values of α

(Figure 4.5a) and g′ (Figure 4.6c). Therefore, the inclined-wall coastal current

velocity is found to approach zero and to be much lower than the vertical-wall

coastal current velocity for the gentlest slopes and, the narrowest and deepest

coastal currents, while the inclined-wall coastal current velocity approaches the

vertical-wall coastal current velocity for the steepest slopes and, the widest and

shallowest coastal currents.



CHAPTER 5

Experimental methods

The utility of the scaling analysis was examined through a program of two com-

plementing sets of experiments, using different experimental facilities. The two

facilities had substantially different spatial scales enabling the investigation of a

wide range of the independent experimental parameters. Small-scale laboratory

experiments were conducted at the Fluid Dynamics Research Center (School of

Engineering, University of Warwick, United Kingdom) on a rotating turntable

supporting a 1 m diameter fluid-filled tank. Large-scale experiments were con-

ducted at the Norwegian University of Science and Technology (NTNU) (Trond-

heim, Norway) using the 5 m Coriolis turntable. The experimental procedures

and techniques are described in detail below. The experimental set-up at the

NTNU was designed to mirror the small-scale study on a larger scale.

5.1 Small-scale experiments

The goal of the experiments was to simulate estuarine discharges of buoyant

freshwater into an environment of salty, denser ocean water along an inclined

coastline. The arrangement of the experimental small-scale facility is shown in

Figure 5.1.

The experiments were carried out in a transparent, circular acrylic tank with

a radius of 0.5 m. The tank was placed on a rotating turntable to simulate the

rotation of the Earth and introduce Coriolis effects on the flow. An inclined wall

of slope α (represented in Figure 4.2), where α is the angle between the inclined

wall and the horizontal bottom of the tank , was installed into the tank. Two

different inclined walls, made from PETG Copolyester sheet, were used for this

study and can be seen in Figures 5.2(a)-(b).

40
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Figure 5.1: Small-scale turntable at the Fluid Dynamics Research Center (Uni-
versity of Warwick).
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(a) α = 18.5 ◦ (b) α = 59.2 ◦

Figure 5.2: The two inclined walls for the small-scale experimental study

The tank was filled with salt water of a specified density ρ2 representing ocean

water, while freshwater of density ρ1, with ρ1 < ρ2, was stored in a separate,

co-rotating smaller reservoir mounted on the turntable. The freshwater was sup-

plied from the reservoir to the source by means of a calibrated peristaltic pump

(505Di/L microprocessor controlled high-accuracy dispenser 350 rpm, Watson-

Marlow). The accuracy of the pump was ± 0.5%. A pulsation dampener (Cole-

Parmer) was used to reduce the pulsations produced by the pump on the buoyant

outflow. The source, for these experiments, was a pipe with a diameter of 0.7 cm,

which was adjusted to be level with the surface of the dense salt water. Gauze

was added at the source outlet to diffuse the fresh fluid. The buoyant outflow,

simulating estuarine discharges, was released continuously and with a constant

specific volumetric discharge rate q0. Similarly to Thomas & Linden (2007), the

fluid was discharged vertically upwards, rather than horizontally as would be the

case in the natural environment. The purpose of the vertical discharge direction

was to minimize momentum flux effects and mixing of freshwater and salt water

near the source (Thomas & Linden (2007)).

An Y SI EC300 conductivity/temperature meter (Cole-Parmer) was em-

ployed to measure the salinity and the temperature of the salt water prior to the

start of the experiment. The salinity and temperature accuracies were ± 0.2%

and ± 0.2 ◦C, respectively. The density of the salt water was determined from

both its salinity and its temperature. The density difference between the fresh-

water and the salt water was characterized in terms of the reduced gravity, g′,

defined previously in equation (2.1). The turntable was set to a specified rotation
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Small-scale vertical-wall experiments Small-scale inclined-wall experiments
α 90◦ 18.5◦, 59.2◦

Ω 0.491 rad s−1 ≤ Ω ≤ 1.525 rad s−1 0.49 rad s−1 ≤ Ω ≤ 1.515 rad s−1

g′ 2.92 cm s−2 ≤ g′ ≤ 18.77 cm s−2 2.98 cm s−2 ≤ g′ ≤ 18.85 cm s−2

q0 3.17 cm3 s−1 ≤ q0 ≤ 28.28 cm3 s−1 3.11 cm3 s−1 ≤ q0 ≤ 28.29 cm3 s−1

HD 2.3 cm ≤ HD ≤ 12.4 cm 0.55 cm ≤ HD ≤ 8.43 cm
I 0.109 ≤ I ≤ 1.52 0.107 ≤ I ≤ 1.508

EkH 1.55× 10−4 ≤ EkH ≤ 1.67× 10−3 1.53× 10−4 ≤ EkH ≤ 2× 10−3

EkV 5.87× 10−5 ≤ EkV ≤ 2.89× 10−2 5.92× 10−5 ≤ EkV ≤ 3.09× 10−2

Re 230 ≤ Re ≤ 2419 187 ≤ Re ≤ 2452
h0/HD 0.06 ≤ h0/HD ≤ 2.04 0.12 ≤ h0/HD ≤ 6.77

Table 5.1: Summary of the ranges of the independent parameters in the small-
scale experiments.

rate Ω before each experiment, to within a ∆ T = 0.1 s. Depending upon the

rotation period of an experiment, this corresponds to a relative rotation error

of between 0.0038 and 0.0372 rad s−1. The ambient ocean fluid was allowed to

reach solid body rotation before each experiment was begun. The table spun in

a clockwise direction; thus, f was negative and the coastal current moved along

the inclined wall by keeping the coast to its left. Experiments were terminated

before the coastal current was allowed to reach the source. Griffiths & Hopfin-

ger (1983) found that a covering lid was unnecessary as any motions induced

by evaporative convection and surface wind stress were not detectable in their

long-time-exposure photographs of particle motions. Therefore no cover over the

turntable was used in the experiments. Water temperature was allowed to equi-

librate to room temperature before experiments to minimize thermal differences.

In total, five parameters were varied for these experiments: the rotation rate,

Ω, the flow rate at the source, q0, the reduced gravity, g′, the total depth of the

salt water in the tank, HSW , and the bottom slope, α. The purpose of varying

the total depth of the salt water in the tank was to study the depth at which

the bottom of the tank would interact with the coastal current and which ef-

fects it would cause on it. To this end, some vertical wall experiments were also

carried out. Table 5.1 summarizes the range of the values of the relevant param-

eters for the small-scale experiments. Velocities and geometrical information of

coastal currents were measured with time from video records by two means: dye

visualization and PIV methods.
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5.1.1 Dye visualization of coastal currents

Circular
Tank

SideView
VideoCamera

Conductivity
Meter

Rotating
Turntable

Figure 5.3: Side-view video camera for capturing the coastal current height pro-
file.

The buoyant outflow was marked using small concentrations of food coloring,

while the ambient water was clear, in order to facilitate visualization of the coastal

current.

The experiments were filmed with two video cameras simultaneously. One

color video camera (model TK−C1481BEG, JV C) was rigidly mounted on the

superstructure of the rotating turntable and filmed the coastal current through a

large mirror mounted at the top of the tank (Figure 5.1). This camera provided

information on the general aspect of the coastal current and its nose displacement

as a function of time. The second color video camera (model WV − F15HSE,

Panasonic) was positioned next to the turntable and filmed the flow through the

transparent side wall of the acrylic tank (Figure 5.3). This camera scanned the

coastal current height at the wall of the tank once per turntable revolution.

A white calibration disc, made from PETG Copolyester sheet, was fixed to the

bottom of the tank. Radial lines, all spaced 0.1 radians apart (except the last one

which was spaced ∼ 0.08 radians away), and circumferential lines, spaced 3 cm

apart, were drawn on it. This allowed for coastal current length measurements

from the top-view video camera. Details for each experiment are provided in

Appendix B.
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The coastal current width was not inferred from dye concentrations, as dye

concentrations can vary from experiment to experiment. Also, the use of dye

concentrations to infer width is ambiguous because dye may occupy regions that

are not dynamically active (e.g., the dye may be advected or mixed to a region

in which the velocities and pressure gradients are small) (Avicola & Huq (2002)).

Thomas & Linden (2007) discuss in greater detail in their Section 4.5 why dye

measurements are not a good indicator for coastal current width and give error

estimates for dye measurement of the coastal current width. Rather, width infor-

mation was determined using Particle Image Velocimetry techniques (PIV ) (see

Brend (2009) for a good literature review on PIV ).

5.1.2 Particle Image Velocimetry Measurements

Measurements of the coastal current width and its surface velocities were made us-

ing a 2-component PIV system shown in Figure 5.4. This consisted of a pco.2000

2048 x 2048 pixel CCD camera (PCO A.G.), and a triggerable MS 300 strobo-

scope (IMPO Electronic A/S). The camera was fitted with a f : 1.4 50 mm lens

and was aimed upwards at a large mirror mounted at the top of the tank. The

stroboscope was mounted at the top of the tank, aimed directly towards the area

being viewed by the camera. Both devices were triggered by a microPulse timing

generator, under the control of proControl software (Etalon Research Ltd.). This

allowed simple adjustment of the inter-frame pulsing period (∆ t), with values of

between 80 - 190 ms used for the majority of the experiments.

100 micrometers diameter white polyamide seeding particles were mixed into

the ambient salt water, then allowed to float on top of the surface water. The

freshwater was free from particles as they would obstruct the source outlet. The

salt water was dyed dark blue using food coloring to obtain a good contrast be-

tween the particles and the background. To avoid coagulation of the floating

particles, they were first mixed with a small quantity of antistatic wetting agent

(TETENAL Mirasol 2000 Antistatic), prior to being added to the salt water.

Care was taken to avoid excessive amounts of foam being generated, and any

bubbles that formed on the water surface were burst prior to recording the PIV

images. At a high rotation rate (i.e for Ω > 1 rad s−1), the salt water sur-

face tilted sufficiently, due to the centrifugal forces, to bring the majority of the

particles in the ambient water near the wall. Therefore, when discharging the

freshwater in the tank, particles mixing in the coastal current were concentrated
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Figure 5.4: PIV setup.
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only in the portion of the coastal current next to the wall, giving poor quality

measurements. Due to the lack of seeding in the coastal currents at a high rota-

tion rate, the PIV experiments were limited to low rotation rate conditions (i.e

Ω ≤ 1 rad s−1). Two series of PIV measurements were made for each experimen-

tal condition, at a rate of either 1 or 2 Hz: the first series of measurements (called

experiments D, C and B) were taken between 63 cm and 187 cm downstream

from the source while the second series of measurements (called experiments J ,

H and F ) were done between 43 cm and 115 cm downstream from the source.

The second series of measurements are preferred to the first ones as more data

can be extracted (due to the measurements position from the source). Details

for each PIV condition are provided in Appendix D.

The optical system was spatially calibrated using a thick black plastic target

sheet, which was placed at the bottom of the tank. This was covered with white

crosses on a 40 mm grid (with the central position differentiated by a circle); these

marks were in turn used to calculate a polynomial camera calibration model. The

captured PIV images were processed in DaV is 7.1 (LaV ision GmBH), using

multi-pass cross-correlation with a final window size of 32 pixels and 50% overlap.

The PIV measurements produced a time-series of ”vector maps”, which were ap-

proximately 279 x 275 vectors in size, each comprising two-component velocity

measurements, recorded in Cartesian coordinates. Sixty-one profiles (each con-

taining 150 samples) stretched towards the tank wall in the radial direction were

extracted from each map, and the tangential and radial components of velocity

at each point along the profile computed. The profiles covered the range r = 0

to 52 cm (the tank radius was 50 cm), with 2◦ spacing between profiles. There-

fore 1/3 of the tank was covered by the PIV measurements, with the coastal

current source positioned further upstream. The profiles were next grouped into

3 ”sectors” (each covering a 40◦ segment of the tank), and the velocity profiles

within each sector were averaged.

Variations in the surface velocity values were observed in the PIV data. These

variations were suggested to be caused by tank ”sloshing” (they were found to be

periodic, with a period matching the turntable rotation period). Tank sloshing

may have occurred because of poor turntable motor drive-train or by off-centre

mounting of experimental materials on the turntable. In order to estimate the

frequency of the disturbances introduced by the tank sloshing, a FFT was calcu-

lated using data extracted from the spatially averaged time-series data. Then the

data were smoothed in the time-domain using a sliding-window averaging-filter
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whose size was equal to the wavelength of the temporal disturbance. Figure 5.5

illustrates the improvement on the along-shore velocity profiles after time and

spatial averages were made: it displays, in order, a raw single profile, a spatial

averaged profile, and a spatial and temporal averaged profile for the along-shore

velocity from the PIV experiment J07 (listed in Table D.2) extracted at the

fixed along-shore distance, dS, downstream from the source with dS = 77.5 cm.

To obtain the width, one needs to identify the seaward limit of the coastal

current. Some of the measurements for the coastal current width were inferred

using the position of the maximum value for the gradient of the azimuthal velocity

in the across-shore direction. The velocity value found at this position defined

a velocity threshold value and the coastal current location was then determined

wherever the velocity value was greater than the threshold value. This method

did not work for all experiments, as spatial perturbations in some experiments

were sufficiently important to disturb the width measurements: indeed in some

experiments, the velocity threshold value was not found at the front of the coastal

current but farther away in the ambient salt water. Thus, for these experiments,

a velocity threshold value was chosen (after several tests) and after examination,

was found to be approximately 35% of the value for the maximum velocity in the

coastal current. Coastal current widths measured with this latter method were

found to be similar to the coastal current width obtained using the maximum

value for the gradient of the azimuthal velocity in the across-shore direction (when

this last method worked).

Figure 5.6 illustrates the second width extraction method for the PIV exper-

iments. The top image displays the azimuthal velocity for one PIV experiment

(experiment J10 listed in table D.2), measured at a fixed distance downstream

from the source, ds = 77.5 cm, as a function of time (the color bar next to the top

image represents velocity (cm s−1)). The y-axis represents the radial position.

The velocity threshold value is chosen to be 1.7 cm s−1, thus all the velocity

values from the top image above the value of 1.7 cm s−1 determine the coastal

current and are displayed in the bottom image of figure 5.6 (the velocity thresh-

old value of the coastal current from figure 5.6 is ∼ 34% of the maximum speed,

umax = 5.04 cm s−1).

The acquisition and processing of the PIV data was performed in conjunction

with Dr. Andrew Skeen. The next section describes the large-scale experiments.

They were conducted in a similar manner as the small-scale experiments; there-

fore only the differences are highlighted.
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(a) Raw single along-shore velocity profile.

(b) Spatial averaged along-shore velocity pro-
file.

(c) Spatial and temporal averaged along-shore
velocity profile.

Figure 5.5: Results of the spatial and time averages on a single along-shore
velocity profile extracted from the PIV experiment J07 at the fixed distance,
dS, downstream from the source with dS = 77.5cm. The colour bar on the
figures is for velocity (cm s−1).
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Figure 5.6: PIV width extraction method (the colour bar on the top image
represents velocity (cm s−1)).
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5.2 Large-scale experiments

The rotating basin at the NTNU in Trondheim is shown in Figure 5.7. It has a

diameter of 5 m and a depth of 50 cm. Three independent sources of water with

different salinities allow the simulation of stratified, rotational geophysical flows.

Rotation periods can be chosen from 10 s to 27 h.

Hinged Plate

Coriolis Basin

Freshwater Source

Overflow Weir

Driving Wheel

Inclined Mirror

Figure 5.7: Picture of the Coriolis basin.

Figure 5.8 shows the construction of the rotating turntable in the cross-

section. Three beams rising in a pyramid from the platform support the upper

part. The unique feature of the design is that it is suspended like a horizontal

wheel, with one axle in the ceiling and one in the floor. The weight is reduced

by means of a hydraulic air cushion under a submerged skirt. With this arrange-

ment, the forces are reduced to a minimum and it is not necessary to use thrust

bearings. It is possible to align the axis to within 2× 10−5 radians from the ver-

tical. Vertical motions induced by shifting weights do not affect the simulation

as long as the accelerations are much less than gravity (Vinger & McClimans

(1980)). The water and electricity supply systems are also shown in Figure 5.8.

There are four circular troughs mounted to the ceiling, intended for salt and
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Figure 5.8: A cross-section of the 5 m diameter rotating turntable at the NTNU
in Trondheim (from Vinger & McClimans (1980)).

freshwater supplies, waste water and dyed water for studying the dispersion from

various discharges. The slip rings are used for power supply to the table. All

data are recorded and stored on the platform for later treatment.

Figure 5.9: Turntable drive mechanism.

The arrangement of the experiments is illustrated in Figure 5.7. In order to

facilitate experiments with different coastline inclination angles, a hinged trans-

parent acrylic plate was mounted across the diameter of the Coriolis tank. Again,

the inclination angle, α, is the angle between the plate and the horizontal bot-
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tom of the Coriolis basin. The rotational speed of the basin was varied by means

of a Kopp variable speed drive and one rim-drive positive traction wheel (Fig-

ure 5.9). With normal operating conditions, the rotational velocity was controlled

to within 2%. The supply of freshwater to the rotating basin was measured by

means of a standard rotameter (shown in Figure 5.10). The accuracy of this flow

measurement was estimated to be ± 3%. Freshwater was released continuously,

with a constant volumetric discharge rate, from a small source, with a diameter of

7.6 cm, mounted on the inclined plate as illustrated in Figure 5.11. The Coriolis

basin was filled with salt water to a height HSW = 40 cm.

Figure 5.10: Rotameter for measuring the flow rate, q0, at the source.

The compensation source of entrained seawater was supplied through a sponge

at the bottom of the basin, along the left-hand wall (when looking through Fig-

ure 5.7). An overflow weir, seen in Figure 5.7, was mounted along the left wall

closer to the near end of the basin. The height of the weir regulates the water

depth in the basin with the given flow. At the start of each run, the water level in

the sump was the same as the final equilibrium. The pump was turned on when

the nose of the coastal current was within 50 cm from the sink. The outflow was

pumped up along the green leg to a trough at the ceiling. This procedure enabled

the flow to reach a steady state.

The table spun in an anti-clockwise direction; thus, f was positive and the
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Freshwater Source

Hinged Plate
Inclined Mirror

Figure 5.11: Freshwater Source.

coastal current moved along the plate by keeping the coast to its right. For vi-

sualization purposes, the freshwater discharged at the source was dyed while the

ambient salt water was clear. The experiments were filmed with a number of

video cameras simultaneously. One overhead video camera, mounted near the

ceiling, with a wide-angle lens, viewed the entire diameter of the tank. This

enabled viewing the general aspect of the coastal current and measuring its nose

displacement as a function of time. Lines were drawn every 10 cm on the hinged

plate (Figure 5.11) to serve as length scales for the coastal current length mea-

surement. The width of the coastal current was additionally filmed with higher

spatial resolution by a second overhead video camera viewing an enlarged section

of the coastal currents located just downstream of the centre of the tank. A stick

with ticks every centimetre was disposed above the water surface within the field

of view of the second video camera to evaluate the coastal current width. The

width was only estimated with dye visualizations as PIV experiments were not

possible when these large-scale experiments were carried out. The coastal cur-

rent depth, hi, was measured as illustrated in Figure 5.12. Mirrors slanting 45 ◦

from the vertical, placed along the coast, allowed for the visual observation of

the thickness of the coastal current through the transparent inclined plate which

had ticks in the vertical direction every centimetre. An overhead camera, shown

in Figure 5.13, filmed h′i from which hi = h′i sinα is obtained. Experiments for

four different inclination angles α were conducted at Trondheim. The ranges

over which the independent experimental parameters varied are summarized in

Table 5.2. The details of each experiment are provided in Appendix C.
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Figure 5.12: Illustration of the method to measure the coastal current depth.
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Figure 5.13: Camera recording the coastal current depth.
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Large-scale vertical-wall experiments Large-scale inclined-wall experiments
α 90◦ 25.9◦, 40◦, 50◦, 60◦

Ω 0.105 rad s−1 ≤ Ω ≤ 0.608 rad s−1 0.104 rad s−1 ≤ Ω ≤ 0.621 rad s−1

g′ 2.84 cm s−2 ≤ g′ ≤ 21.39 cm s−2 2.7 cm s−2 ≤ g′ ≤ 21.35 cm s−2

q0 110 cm3 s−1 ≤ q0 ≤ 920 cm3 s−1 100 cm3 s−1 ≤ q0 ≤ 920 cm3 s−1

HD 40 cm 3.85 cm ≤ HD ≤ 49.1 cm
I 0.173 ≤ I ≤ 1.172 0.042 ≤ I ≤ 1.164

EkH 2.74× 10−5 ≤ EkH ≤ 1.24× 10−4 1.86× 10−5 ≤ EkH ≤ 2.26× 10−4

EkV 1.57× 10−5 ≤ EkV ≤ 1.24× 10−3 1.64× 10−5 ≤ EkV ≤ 2.4× 10−2

Re 3026 ≤ Re ≤ 13676 1661 ≤ Re ≤ 20120
h0/HD 0.13 ≤ h0/HD ≤ 0.57 0.04 ≤ h0/HD ≤ 3.47

Table 5.2: Summary of the ranges of the independent parameters in the large-
scale experiments.
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Numerical methods

The circulation model used in this study, to reproduce the vertical-wall coastal

currents simulated in the small-scale study of Thomas & Linden (2007) and in the

small-scale experiments described in Section 5.1.2, is the Regional Ocean Model-

ing System (ROMS, http://marine.rutgers.edu/po/index.php?model=roms),

which has been developed and is supported by a consortium of institutions in-

cluding Rutgers University and UCLA∗. ROMS has been developed for, and

applied to, a wide variety of coastal marine applications, including studies of

buoyancy-driven coastal currents (e.g., the idealized studies of the Hudson River

by Zhang et al. (2009) and the realistic simulations of the Columbia River plume

by Liu et al. (2009)). The current chapter, Chapter 7 and Chapter 8 have been

published in Grégorio et al. (2011). Section 6.1, describing the configuration of

ROMS, was written for and contributed to Grégorio et al. (2011) by Prof. Dale

Haidvogel†.

6.1 Numerical configuration

ROMS utilizes consistent temporal averaging of the barotropic mode to guaran-

tee both exact conservation and constancy preservation properties for tracers and

therefore more accurately resolves barotropic processes, while preventing alias-

ing of unresolved barotropic signals into the slow baroclinic motions. Accuracy

of the mode-splitting is further enhanced due to redefined barotropic pressure-

gradient terms to account for the local variations in the density field (i.e., the

pressure-gradient truncation error is greatly reduced). Vertical interpolation is

∗University of California, Los Angeles, USA
†Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901,

USA
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based on conservative parabolic splines. Finally, ROMS uses orthogonal curvi-

linear coordinates in the horizontal, an essential feature here, as described below.

Shchepetkin & McWilliams (2005) describe in detail the algorithms that com-

prise the ROMS computational kernel, and Haidvogel et al. (2007) discuss the

validation of ROMS in a variety of oceanic settings.

The ROMS model employs the hydrostatic approximation in the vertical

equation of motion, traditional in models of the large-scale ocean circulation.

This assumption is not problematic, as this study is based on a rotationally

dominated regime. However it does introduce one complication. This has to do

with the method of injection of buoyant fluid. In the laboratory setting, this is

accomplished via direct vertical insertion. This option is not readily available to

ROMS, wherein the hydrostatic assumption precludes independent specification

of vertical fluid motion.

In configuring ROMS for these simulations, several alternatives were there-

fore considered for introduction of buoyancy. These options included the addition

of light fluid via a specified rain field, the use of nudging (a relaxation term in

the density equation), and horizontal injection of light fluid via an attached es-

tuary. A hybrid of the latter two approaches was eventually adopted, as shown

schematically in Figure 6.1.

The annular geometry of the laboratory experiments is reproduced easily in

ROMS by choosing a polar coordinate system, and adopting periodic boundary

conditions at the matching edge in the azimuthal direction. A singularity at

the center of the circle is avoided by cutting away a small section in the center,

yielding a donut shape (Figure 6.1a). A small estuary containing buoyant (density

ρ1) fluid at the surface, is attached to the sidewall of the donut which is itself

initially filled with denser fluid (ρ2 > ρ1). A strong nudging term within the

estuary (but not within the annulus!) maintains a supply of light water within

the estuary throughout the simulation.

For consistency with the laboratory experiments, in which no horizontal mo-

mentum is introduced with the light water, the injection of buoyant fluid in

ROMS is allowed to take place by gravitational adjustment. At the initial in-

stant, there exists a vertical density front between the cap of fresh water in the

estuary and the adjacent dense water in the annulus. This front is gravitationally

unstable and, once allowed to evolve in time, slumps into the annulus, producing
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(a) Top view of the ROMS configuration.

(b) Vertical section of density taken along the dashed line
in Figure 6.1a. The x-axis is along the radial direction,
and the y-axis is along the vertical direction. Color bar
is for density (in kg m−3). Only the upper 5 cm of the
water column is shown.

Figure 6.1: ROMS configuration.
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a source of buoyancy just outside the mouth of the estuary‡ (Figure 6.1b). The

rate of buoyancy injection (i.e., the analogue of q0 in the laboratory frame) is

therefore not an independently specified parameter in this approach. However,

it may be determined a posteriori§.

As discussed further below, simulations with ROMS were conducted both

with and without explicit levels of horizontal viscosity (The value of diffusivity

in the density equation was set to zero in all cases.). The sidewall boundary

conditions in the momentum equations are either free-slip (without viscosity) or

no-slip (non-zero viscosity). No-flux sidewall boundary conditions are applied in

the density equation.

The ROMS simulations were conducted at Rutgers University by Pr. Dale

Haidvogel and Dr. Ezgi Taskinoglu¶, however the data analysis of the numerical

simulations was performed by the author of this thesis. The numerical solutions

are obtained on a polar grid having 128 points (stretched towards the outer

annular wall) in the radial direction and 512 points around the circumference;

60 equally spaced levels are used in the vertical direction. The finest resulting

grid spacing is of order two millimeters. The required time step used for the

simulations was two milliseconds. This is the smallest-scale application thus far

produced with ROMS.

6.2 Flow rate extraction

As was specified in 6.1, the volumetric flow rate in ROMS is not an independent

specified parameter. Thus, its value has to be determined from the output data

files for the different simulations. To get a value for the flow rate, the volume-

averaged density, ρmean, has to be computed first, from the output data files, in

the annulus (excluding the estuary) as a function of time. With this quantity,

the volume of buoyant freshwater added in the annulus can be found.

Assuming that an equal amount of dense water is being subtracted while the

buoyant water is added, at any given time, the volume-averaged density, ρmean,

is given by:

‡Note that there is no net source of mass, as in the laboratory setting. Buoyant fluid is
discharged from the estuary at the surface, and denser ambient water enters the estuary at
depth. Surface density in the estuary is kept fresh by the density nudging term.
§Since the rate of buoyancy injection is not independently prescribed, the values of the

dimensionless parameter I cannot be matched a priori to those of the laboratory experiments.
¶SRA International, Inc., 1201 New Road, Linwood, NJ 08221, USA
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ρmean =
(V − dV )ρ2 + dV ρ1

V
, (6.1)

where V is the volume in the annulus (excluding the estuary), dV is the volume

of buoyant freshwater added in the annulus, ρ2 and ρ1 are the density values for

the dense and buoyant waters, respectively.

By rearranging (6.1), the volume of freshwater added in the annulus at a given

time is expressed as:

dV = V

(
ρ2 − ρmean
ρ2 − ρ1

)
. (6.2)

With this information, the rate at which the freshwater is added per unit of time

can be estimated. Figures 6.2a-c display the volume-averaged density, ρmean, de-

parting from its background value as a function of time, the volume of freshwater,

dV , added in the annulus as a function of time, and the rate, QFW , at which

the freshwater is added in the annulus as a function of time, respectively, for one

specific run.

In each laboratory experiment, the flow rate is kept constant. In order to

compare ROMS with the laboratory experiments and therefore to have a con-

stant value characterising the flow rate in the different simulations, the mean of

the flow rate, QFW , for each run, is taken to be this constant value.

6.3 Data extraction methods

In the next chapter, the results for the plume length, width and velocity obtained

in theROMS simulations are presented and compared to laboratory experiments.

The nose displacement of the coastal currents in ROMS was extracted from

the surface density field, as follows. First, the background density value was

subtracted from the surface density field, for each time step. Thus non-zero

values of the density anomaly on the surface defined the coastal current. Then, for

each time step, the maximum azimuthal location of a negative density anomaly,

proceeding in the direction of plume propagation, defined the azimuthal location

of the plume head. The ROMS plume length data are compared to the small-

scale experimental data of Thomas & Linden (2007) (see their paper for data

extraction details for the plume length).

The width of the coastal plumes in ROMS was extracted in a similar fashion
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(a) Volume-averaged density, ρmean, departing from
its background value as a function of time, t.

(b) Volume of freshwater, dV , added in the annulus
as a function of time, t.

(c) Rate, QFW , at which the freshwater is added in
the annulus as a function of time, t.

Figure 6.2: The different steps to find the flow rate in the ROMS simulations;
the figures display results for one specific run (plume 153, Table 7.1).
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to the length, that is, from the surface density field. First, the background

density value was subtracted from the surface density field, for each time step.

Then, at one fixed azimuthal position, for each time step, the maximum radial

location of a negative density anomaly, proceeding in the direction of the annulus

center, defined the width. The ROMS plume width and surface velocity data

are compared to the PIV experimental data presented in 5.1.2.

6.4 Comparison between the numerical, experimental and

theoretical approaches

The geostrophic theory, the laboratory experiments and the numerical simula-

tions all differ somewhat in their formulation and assumptions. For example,

the theory is for steady, inviscid flow, makes no specification of how the buoyant

water is introduced, and ignores bulge formation entirely. The laboratory and

numerical models are both able to offer a more complete picture of the combined

bulge / coastal current system, but they too differ in several respects, most no-

tably in how they introduce their buoyant flows. Table 6.1 summaries several

specific attributes of the three approaches. An interesting issue addressed in the

next chapter is just how robust the plume properties are in the face of these

differing methodological choices and assumptions.

Method Theory Experiment ROMS
Forcing Unspecified Vertical Estuarine

injection adjustment
Specified yes yes no

mass flux?
∫
u× area plume

Specified yes yes no
buoyancy rate?

Dynamics Geostrophic Real fluid Discretized
hydrostatic PE

Viscosity Inviscid Finite Ekman Inviscid or
number finite Ekman number

Table 6.1: Summary of the characterizations for the theory, the laboratory ex-
periments and the ROMS simulations.
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CHAPTER 7

ROMS simulations

The theory of Thomas & Linden (2007) assumes an inviscid ocean. To begin,

ROMS was therefore configured with zero explicit horizontal viscosity (By virtue

of its spatial and temporal discretization, ROMS carries some implicit smooth-

ing. It is therefore possible to conduct simulations with explicit values of horizon-

tal viscosity and diffusivity set to zero.). Ten “inviscid” experiments were run. In

order to match the laboratory experiments, simulations with the lateral viscosity

set to the molecular value of 10−2 cm2 s−1 were also conducted. Seven “vis-

cous” experiments were carried out. These seven numerical simulations precisely

duplicate seven of the inviscid simulations, except for the inclusion of lateral vis-

cosity. The parameters for the ROMS experiments are summarized in Table 7.1

and their values, listed in order, are the bottom slope, α (◦), the Coriolis pa-

rameter, f (s−1), the reduced gravity anomaly, g′ (cm s−2), the averaged flow

rate, q0 (cm3 s−1), the ambient ocean depth, HD (cm), the theoretical plume

depth, h0 (cm), the theoretical plume width, w0 (cm), the dimensionless param-

eter, I, the horizontal Ekman number, EkH , the vertical Ekman number, EkV ,

the Reynolds number, Re, and the non-dimensional ambient depth parameter,

h0/HD. The ambient ocean depth, HD, in the inviscid and viscous numerical

simulations was sufficient (except for the simulation number 136) to ensure that

the plume properties were not affected by the bottom of the annulus. Therefore

this chapter is only concerned about the simple case of a surface-advected plume

moving along a straight coastline.

65
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Plume 118 120 125 126 128 130
α 90 90 90 90 90 90
f 1 1 2 3 3 3
g′ 5.4 21.6 5.4 5.4 21.6 43.2
q0 9 20.97 5.03 3.54 11.12 22.17
HD 12.5 12.5 12.5 12.5 12.5 12.5
h0 1.83 1.39 1.93 1.98 1.76 1.75
w0 4.44 7.76 2.28 1.54 2.9 4.1
I 0.282 0.145 0.502 0.702 0.384 0.291

EkH 0 0 0 0 0 0
EkV 3× 10−3 5.15× 10−3 1.34× 10−3 8.47× 10−4 1.08× 10−3 1.08× 10−3

Re ∞ ∞ ∞ ∞ ∞ ∞
h0/HD 0.15 0.11 0.15 0.16 0.14 0.14

Plume 131 132 134 136 148 (126) 149 (131)
α 90 90 90 90 90 90
f 1 2 2 3 3 1
g′ 43.2 43.2 21.6 32.4 5.4 43.2
q0 30.54 28.97 15.91 10.27 3.5 31.23
HD 12.5 12.5 12.5 3 12.5 12.5
h0 1.19 1.64 1.72 1.38 1.97 1.2
w0 10.14 5.95 4.31 3.15 1.54 10.19
I 0.103 0.205 0.275 0.297 0.701 0.104

EkH 0 0 0 0 1.41× 10−3 9.63× 10−5

EkV 7.07× 10−3 1.86× 10−3 1.7× 10−3 1.75× 10−3 8.57× 10−4 6.92× 10−3

Re ∞ ∞ ∞ ∞ 266 3896
h0/HD 0.1 0.13 0.14 0.11 0.16 0.1

Plume 150 (134) 151 (125) 152 (118) 153 (128) 155 (130)
α 90 90 90 90 90
f 2 2 1 3 3
g′ 21.6 5.4 5.4 21.6 43.2
q0 16.2 5.04 9.47 12.76 15.97
HD 12.5 12.5 12.5 12.5 12.5
h0 1.73 1.93 1.87 1.88 1.49
w0 4.32 2.28 4.5 3.01 3.78
I 0.276 0.502 0.285 0.395 0.273

EkH 2.67× 10−4 9.59× 10−4 4.94× 10−4 3.69× 10−4 2.33× 10−4

EkV 1.67× 10−3 1.34× 10−3 2.85× 10−3 9.4× 10−4 1.5× 10−3

Re 1403 391 759 1017 1609
h0/HD 0.14 0.15 0.15 0.15 0.12

Table 7.1: Experimental parameters of the ROMS simulations: plumes 118 to
136 have no lateral viscosity while plumes 148 to 155 have the lateral viscosity
set to the molecular value of 10−2 cm2 s−1.
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7.1 Introductory Remarks

As discussed in Section 6.2, ROMS internally determines its own buoyancy injec-

tion rate, the analogue of q0
∗. One can anticipate that the value of q0 in ROMS

will depend on the values of the other experimental parameters, the rotation

rate, Ω, and the reduced gravity, g′. From Table 7.1, q0 is seen to increase as Ω

decreases and as g′ increases. One final experiment, plume 136, was conducted

in which the depth of the annulus/estuary was reduced from 12.5 cm to 3.0 cm,

with no accompanying reduction in the thickness of the freshwater cap in the

estuary. The resulting value of q0 (Table 7.1) is suggestive of a dependence on

depth. However, this possibility has not been pursued. The value of the flow rate

did not change appreciably by the addition of lateral viscosity.

7.2 Qualitative aspects of the coastal currents

Figure 7.1(a) is a picture of a laboratory experiment from Thomas & Linden

(2007), obtained with the video camera mounted on the rotating turntable, which

shows a plume viewed from above the circular tank, looking vertically downwards

onto the fluid surface. The dyed coastal current appears dark on the picture.

Figure 7.1(b) is a picture from an inviscid numerical simulation, which displays

the density field at the surface. A comparison of the pictures in Figures 7.1(a)-(b)

reveals a great degree of qualitative similarity. The buoyancy-driven flows are,

in both cases, characterized by a stationary “bulge” of fresh water retained near

the buoyant outflow, and a propagating plume of fresh water. In both settings,

the Coriolis parameter is positive; therefore the turntables rotate cyclonically, as

do the plumes, keeping the wall to their right.

In both the laboratory and numerical observations, when the source is turned

on a buoyant outflow disperses along the coastline. This outflow can be decom-

posed into a growing anti-cyclonic bulge and a coastal plume flowing downstream

of the bulge. For some experimental parameters combinations, the rate of elon-

gation of the plumes shows little decrease during the whole experiment, while for

some other experimental parameter combinations, the coastal plume is observed

to accelerate at the start of the experiment, then to decelerate to a nearly constant

propagation speed. Finally, for some experiments, instabilities are seen to form

∗Henceforth, referred to this simply as q0.
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Source outlet
(a)

(b)

Current head
Anticyclonic bulge

Figure 7.1: Top view of a coastal current simulated, (a) in the laboratory, (b)
numerically. The images are taken at T=30. I = 0.301 ± 0.026, EkV = (1.4 ±
0.3)× 10−3, ROMS: EkH = 0, Laboratory experiment: EkH = 2.68× 10−4. In
(b), the color bar is for density(in kg m−3).
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and evolve along the edge of the buoyant plumes. These features are illustrated

next, and their dynamical implications are pursued below in Chapter 8.

7.3 Coastal current length

Figure 7.2a and Figure 7.3a show raw data for the plume length, l, as a function

of time, t, for the inviscid and viscous numerical experiments, respectively, while

Figure 7.2b and Figure 7.3b redisplay the data in non-dimensional form. In

Figure 7.2b and Figure 7.3b, data are non-dimensionalized by w0 and the solid

line superposed on the figures is the theoretical prediction of Thomas & Linden

(2007), namely, L = (3/4)T . The majority of the numerical experiments were

terminated when the plume nose got back to the source. The remaining cases –

plumes 118, 125, 126, 148 and 152 – were stopped before the plume re-entered

the source region.

The experiments of Thomas & Linden (2007) showed that the plume speed

increases when increasing the values of the flow rate, q0, the rotation rate, Ω, and

the reduced gravity, g′. From Figure 7.2a and Figure 7.3a, and from Table 7.1,

increasing the values of g′ and q0 increases the plume speed, in agreement with

theory.

A comparison between Figure 7.2 and Figure 7.3 reveals that while in Fig-

ure 7.2 the velocity of all the plumes shows little diminution during the plume

propagation along the annulus, the plume velocity in Figure 7.3 is consistently

higher in the vicinity of the source than further downstream (as it was also

observed in the simulations of Chao & Boicourt (1986)) and plumes slow down

substantially during the simulations (especially for the plumes 148 and 151 which

have the lowest flow rate, in agreement with the experimental findings of Thomas

& Linden (2007)).

Figure 7.4 compares the simulations with lateral viscosity to their correspond-

ing inviscid numerical simulations and to the small-scale laboratory experiments

and the geostrophic model of Thomas & Linden (2007) for the non-dimensional

plume length, L. Experiments with similar values for the parameter I, the hori-

zontal and vertical Ekman numbers, EkH and EkV , respectively, are expected to

be analogous. Details of the small-scale experiments of Thomas & Linden (2007)

are listed in Appendix A. The non-dimensionalizing factor of Ω for the time was

different in the ROMS and laboratory experiments shown in Figure 7.4b, thus
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(a) Summary of the plume length, l, as a function of
time, t.

(b) Summary of the non-dimensional plume length, L,
as a function of the non-dimensional time, T . The solid
line represents the theoretical prediction, L = (3/4)T , of
Thomas & Linden (2007). The dashed line is parallel to
the theoretical prediction, shifted upwards to facilitate
visual comparison with the numerical results.

Figure 7.2: Nose propagation of the inviscid plumes.
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(a) Summary of the plume length, l, as a function of
time, t.

(b) Summary of the non-dimensional plume length, L,
as a function of the non-dimensional time, T . The solid
line represents the theoretical prediction, L = (3/4)T ,
of Thomas & Linden (2007).

Figure 7.3: Nose propagation of the viscous plumes.
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explaining why the curves of the ROMS experiments for the plume length are

shorter than the curve of the laboratory experiment.

From Figure 7.2b and Figure 7.4, two conclusions may be drawn. First, the

rate of elongation of the plumes in the inviscid simulations always exceeds the

estimate given by the geostrophic theory. Second, the non-dimensional plume

lengths in the inviscid simulations are comparable to the laboratory experiments

with very low values for the horizontal Ekman number, however plumes from the

inviscid simulations have a more rapid rate of elongation than plumes from the

laboratory experiments (Figure 7.4a).

To quantify the speed at which the inviscid plumes advance, a single data fit

of the form L = a+bT for the dimensionless time, T , was computed for four of the

ten numerical simulations, when the plume flows at a nearly constant speed. The

constant b in the fit is simply the plume speed. The plumes reach a nearly steady

velocity around T = 60. Therefore the fit was computed for the four numerical

simulations for which data exists for T ≥ 60. From the values determined for a

and b, averages and associated standard deviations were then calculated to find

an averaged fit, L = (21.32± 3.75) + (0.91± 0.12)T . The value of the constant b,

for the fit L = a+ bT in the ROMS inviscid numerical simulations, differs from

the theoretical value of 3/4 by approximately +20%.

From Figure 7.3b and Figure 7.4, the simulations with the lateral viscosity

set to the molecular value no longer follow the geostrophic theory, but rather

reproduce the results of the laboratory experiments. The discrepancies between

the geostrophic model and the viscous numerical simulations (and therefore the

laboratory experiments) are most significant when the lateral viscous forces are

the greatest (that is for high values of the horizontal Ekman number, EkH).

7.4 Coastal current width

Figures 7.5(a)-(b) display the non-dimensional plume width, W , as a function

of the dimensionless time, T , measured at the non-dimensional distance, DS,

downstream from the source, with DS = 12, for all the inviscid and viscous nu-

merical simulations, respectively, while Figure 7.6 displays the non-dimensional

plume width, W , as a function of the dimensionless time, T , measured at the

distance, dS, downstream from the source, with dS = 57.8 cm, for all the PIV

vertical-wall experiments. Width data are non-dimensionalized by w0. The width
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(a) I = 0.3 ± 0.033, EkV = (1.46 ± 0.32) × 10−3,
L22T & plume 150: EkH = (2.73 ± 0.06) × 10−4,
plume 134 : EkH = 0.

(b) I = 0.542± 0.057, EkV = (1.26± 0.03)× 10−3,
L57T & plume 151: EkH = (1.16 ± 0.2) × 10−3,
plume 125 : EkH = 0.

Figure 7.4: Comparison of the non-dimensional plume length, L, as a function of
the non-dimensional time, T , for inviscid and viscous numerical simulations, and
laboratory experiments of Thomas & Linden (2007). The solid line represents
the theoretical prediction, L = (3/4)T .
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measurements for the laboratory experiments were done at a fixed (dimensional)

distance downstream from the source (instead of a fixed non-dimensional dis-

tance downstream from the source as for the numerical simulations) to facilitate

data extraction and comparison between each laboratory experiment. For some

numerical and laboratory experiments, width measurements were stopped before

the end of the experiments due to the presence of instabilities in the plumes.

Width data from two laboratory experiments are not displayed in Figure 7.6 as

one experiment was too unstable and width extraction was not possible, and one

experiment had data not usable.

In the majority of the laboratory and numerical experiments, the plume

widths continue to increase and do not approach a steady value over the duration

of each experiment. From Figures 7.5(a)-(b) and Figure 7.6, the non-dimensional

width measurements closely cluster around a single curve, growing as T
1
2 (as

Lentz & Helfrich (2002) and Thomas & Linden (2007) also found).

Of the ten inviscid numerical simulations and of the seven viscous numer-

ical simulations, nine inviscid numerical simulations and six viscous numerical

simulations could be compared to the PIV experiments as one inviscid and one

viscous simulation had no available laboratory experiment comparable to it. Fig-

ures 7.7(a)-(b) show the non-dimensional plume width, W , as a function of the

dimensionless time, T , measured at the non-dimensional distance, DS, down-

stream from the source, with DS = 28.8 and DS = 10, respectively, for one invis-

cid simulation, one viscous simulation, and one PIV laboratory experiment. In

Figure 7.7a, the laboratory and numerical experiments have a large EkH value

while in Figure 7.7b, the laboratory and numerical experiments have a small

EkH value. The width measurements of the numerical and laboratory experi-

ments from Figure 7.7a were stopped before the end of the experiments due to

the presence of instabilities in the plumes. The non-dimensionalizing factor of Ω

for the time was different in some of the compared cases, thus leading to different

non-dimensional curve lengths for the width. The overall agreement between the

inviscid and viscous simulations and the laboratory experiments is found to be

quite good (even if the plumes with high EkH values from the numerical sim-

ulations cross the measurement position before the plumes from the laboratory

experiments). A comparison between the non-dimensional widths for the invis-

cid and viscous numerical simulations reveals that adding lateral viscosity does

not change very much the plume width, but it seems that at later times, plume

width in the viscous simulations grows larger than plume width in the inviscid
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(a)

(b)

Figure 7.5: Summary of the non-dimensional plume width, W , as a function
of the dimensionless time, T, for (a) all the inviscid numerical simulations and
(b) all the viscous numerical simulations. The width was measured at the non-
dimensional distance, DS, downstream from the source, with DS = 12. The black
curve on the figures of equation 0.2(T )

1
2 is just to show that plume widths grow

as T
1
2 .



7. ROMS simulations 76

Figure 7.6: Summary of the non-dimensional plume width, W , as a function of
the dimensionless time, T, for the PIV vertical-wall experiments. The width was
measured at the distance, dS, downstream from the source, with dS = 57.8 cm.
The black curve on the figure of equation 0.2(T )

1
2 is just to show that plume

widths grow as T
1
2 .

simulations.

Figures 7.8(a)-(b) display a summary of the values for the non-dimensional

plume width, W , as a function of the dimensionless parameter, I, and the hor-

izontal Ekman number, EkH , respectively, for the inviscid and viscous ROMS

simulations from Figures 7.5(a)-(b), and for the PIV laboratory experiments

from Figure 7.6. The black line on the figures identifies W = 1, i.e agreement

between experiments and theory. To quantify the non-dimensional plume width,

W , in Figures 7.8(a)-(b), W was averaged for each experiment from the last

data point to the data point such that the non-dimensional time interval, ∆T ,

of the measurements, was 10 < ∆T < 60 in the numerical simulations and

10 < ∆T < 250 in the laboratory experiments (the non-dimensional time inter-

val length depended on the experiment duration). The standard deviation was

calculated for each value found for W .

From Figures 7.8(a)-(b), W increases as I and EkH increase. Despite the

important experimental data scatter, best agreement between the theory and,

the laboratory and numerical experiments, for the plume width, is found for

plumes with low I and EkH values. These results are consistent with the results

of Thomas & Linden (2007) who also found that the best agreement between
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(a) I = 0.558 ± 0.08, EkV = (1.26 ± 0.11) × 10−3, Inviscid
simulation: EkH = 0, Viscous simulation and laboratory
experiment: EkH = (1.29± 0.34)× 10−3.

(b) I = 0.126 ± 0.03, EkV = (5.73 ± 1.79) × 10−3, Inviscid
simulation: EkH = 0, Viscous simulation and laboratory
experiment: EkH = (1.26± 0.29)× 10−4.

Figure 7.7: Comparison of the non-dimensional plume width, W , as a function
of the dimensionless time, T, between one inviscid numerical simulation, one
viscous numerical simulation and one laboratory experiments. The width was
measured at the non-dimensional distance, DS, downstream from the source,
with (a) DS = 28.8 and (b) DS = 10.
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their small-scale experiments and their theory for the plume width was met for

plumes with low I values and large Re values (at least for the largest Re values

from their small-scale study), where Re is the Reynolds number defined in (4.7).

However from (4.10), large Re value is equivalent to small EkH value (as Re

is inversely proportional to EkH). This study using PIV measurements for the

plume width recovers the same results than the study of Thomas & Linden (2007)

who used dye visualization for the plume width measurements.

7.5 Coastal current velocity

In order to compare the theoretical geostrophic velocity to the inviscid and vis-

cous numerical simulations, one look at the ratio, Umax = umax

u0
, of the numer-

ical/experimental maximum surface velocity, umax, to the theoretical velocity,

u0. The maximum surface velocity, umax, is measured at a fixed azimuthal po-

sition downstream from the source, for each time step. Thus at early time, the

maximum surface velocity is extracted from the plume nose and at later time,

it is extracted from the coastal plume. The measurement position is far enough

from the source so by the time the plume crosses it, the plume is supposed in

geostrophic equilibrium.

Figures 7.9(a)-(b) display the maximum non-dimensional plume velocity, Umax,

as a function of the dimensionless time, T , measured at the surface and at the non-

dimensional distance, DS, downstream from the source, with DS = 12, for all the

inviscid and viscous numerical simulations, respectively, while Figures 7.10(a)-

(b) display the maximum non-dimensional plume velocity, Umax, as a function

of the dimensionless time, T , measured at the surface and at the distance, dS,

downstream from the source, with dS = 57.8 cm, for all the PIV vertical-wall

experiments of Figure 7.6. The PIV experiments were divided in two figures

(Figure 7.10(a) for the short experiments and Figure 7.10(b) for the long exper-

iments).

From Figures 7.9(a)-(b), one can see that the maximum value for Umax is in

the front of the coastal current for the inviscid and viscous numerical simulations,

and is much larger than 1 (thus the maximum surface velocity for the numerical

simulations is much larger than the geostrophic prediction in the coastal current

nose). For some numerical simulations (e.g. plumes 118, 152), Umax decreases

along the whole plume, while for some other numerical simulations (e.g. plumes
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(a)

(b)

Figure 7.8: Summary of the (averaged) non-dimensional plume width, W , as a
function of (a) the dimensionless parameter, I, and (b) the horizontal Ekman
number, EkH , respectively, for the viscous and inviscid numerical simulations,
and for the PIV laboratory experiments. The black line on the figures identifies
W = 1, that is agreement between experiments and theory. The error bars are
standard deviation errors of the averaged non-dimensional plume width.
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136, 153), Umax decreases until it reaches a nearly constant value located inside

the coastal current. In contrast to the numerical results, the minimum value

of Umax for the laboratory experiments (minimum value which is much smaller

than 1) is found in the coastal current nose (Figures 7.10(a)-(b)) and there Umax

increases until it reaches its maximum value located just behind the nose. Af-

ter Umax has reached its maximum value, for some laboratory experiments (e.g

experiment J04) Umax decreases along the whole plume while for some other

laboratory experiments (e.g. experiments J01, J07) Umax decreases to attain a

nearly constant value. For the unstable numerical and laboratory experiments

(e.g. plumes 126, 151 or experiments J03, J05), the maximum velocity does not

reach a constant value but instead is seen to fluctuate along the coastal current.

Figure 7.11 displays the maximum non-dimensional plume speed, Umax, as a

function of the dimensionless time, T , measured at the dimensionless distance,

DS, downstream from the source, with DS = 10, for one inviscid and one viscous

simulation, and for one PIV laboratory experiment. The measurements were

taken at the freshwater surface for the laboratory experiment and the viscous

simulation, and at the freshwater surface (N = 60) and around 9 mm below the

freshwater surface (N = 56) for the inviscid simulation.

For plumes with lower values for the horizontal Ekman number (e.g., plume

149 in Figure 7.11), adding lateral viscosity in the simulations does not signif-

icantly influence the value of the maximum velocity, Umax, as T evolves. For

plumes with higher values for the horizontal Ekman number (e.g. plume 125 in

Figure 7.9a and plume 151 in Figure 7.9b), adding lateral viscosity changes the

value of the maximum velocity considerably as T evolves: plumes with lateral

viscosity have values for Umax much lower than the inviscid plumes.

For all the inviscid simulations and for the viscous simulations with the lowest

values for the horizontal Ekman number, the maximum velocity is larger than

the theoretical prediction at the surface (Figures 7.9(a)-(b)). The value of the

maximum velocity was investigated at different vertical levels, and was found

to approach the geostrophic velocity, u0, inside the plume just below the water

surface (around 9 mm below the freshwater surface in Figure 7.11). Thus the

value of the maximum velocity of the plumes from the inviscid simulations and

from the viscous simulations with the lowest values for the horizontal Ekman

number lies near the value of the theoretically predicted geostrophic velocity just

below the freshwater surface inside the coastal current.

Nine of the ten inviscid numerical simulations and six of the seven viscous
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(a)

(b)

Figure 7.9: Summary of the maximum non-dimensional plume speed, Umax, as a
function of the dimensionless time, T, for (a) all the inviscid numerical simulations
and (b) all the viscous numerical simulations. Umax was measured at the non-
dimensional distance, DS, downstream from the source, with DS = 12. The
black line on the Figure 7.9b identifies Umax = 1, that is agreement between
experiments and theory.
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(a)

(b)

Figure 7.10: Summary of the maximum non-dimensional plume speed, Umax, as
a function of the dimensionless time, T, for the PIV vertical-wall experiments.
Umax was measured at the distance, dS, downstream from the source, with dS =
57.8 cm. The black line on the figures identifies Umax = 1, that is agreement
between experiments and theory.
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numerical simulations could be compared to the PIV laboratory experiments.

For plumes with the lowest values of the horizontal Ekman number, reasonably

good agreement for the maximum velocity is found between the inviscid and

viscous simulations, and the laboratory experiments, inside the coastal current

(Figure 7.11). As relatively good agreement was found between laboratory ex-

periments and numerical simulations for the maximum plume velocity inside the

coastal plume, one might expect from the prior discussion that the maximum ve-

locity from the laboratory experiments with the lowest values for the horizontal

Ekman number will also approach the geostrophic velocity just below the water

surface. It is interesting to see that the geostrophic equilibrium is obtained (i.e.

that the maximum velocity reaches a nearly constant value) at the same non-

dimensional time in the plume for the inviscid and viscous simulations, and for

the corresponding laboratory experiment (Figure 7.11). Less good agreement is

found between the inviscid numerical simulations and the laboratory experiments

with the highest EkH values.

Figure 7.11: Maximum non-dimensional plume speed, Umax, as a function of the
dimensionless time, T, measured at the non-dimensional distance, DS, down-
stream from the source, with DS = 10, for one inviscid simulation, one viscous
simulation and one laboratory experiment. Umax was measured at the surface
for the laboratory experiment and the viscous simulation, and, at the surface
(N = 60) and around 9 mm below the surface (N = 56) for the inviscid simula-
tion. I = 0.126±0.03, EkV = (5.73±1.79)×10−3, Inviscid simulation: EkH = 0,
Viscous simulation and laboratory experiment: EkH = (1.26± 0.29)× 10−4.

Figures 7.12(a)-(b) display a summary of the values for the maximum non-

dimensional plume speed, Umax, as a function of the dimensionless parameter, I,
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and the horizontal Ekman number, EkH , respectively, for the inviscid and viscous

ROMS simulations from Figures 7.9(a)-(b), and for the PIV laboratory experi-

ments from Figures 7.10(a)-(b). The black line on the figures identifies Umax = 1,

i.e agreement between experiments and theory. To quantify the maximum non-

dimensional plume speed, Umax, in Figures 7.12(a)-(b), Umax was averaged for

each experiment from the last data point to the data point such that the non-

dimensional time interval, ∆T , of the measurements, was 15 < ∆T < 240 in

the numerical simulations and 15 < ∆T < 200 in the laboratory experiments

(in Figure 7.9, Umax for the plume from the laboratory experiment was averaged

from T = 25, while Umax for the plumes from the inviscid and viscous numerical

simulations was averaged from T = 20.). The standard deviation was calculated

for each value found for Umax.

Figures 7.12(a)-(b) suggest an underlying dependence on the parameters I

and EkH , although the dependence on EkH is tighter and scatter in the PIV

experiments is great in both cases. From the PIV laboratory experiments and

most clearly from the viscous numerical simulations displayed in Figure 7.12a,

the value of Umax decreases as I increases†.

From Figure 7.12b, it is clear that Umax decreases as EkH increases. For high

values of the horizontal Ekman number, plumes are slower than the theoretical

prediction while for very low EkH values, the plumes are faster than the theory

(in particular, all the inviscid plumes (for which EkH = 0) are faster than the

theory). Figure 7.12b confirms the results obtained in Section 7.3. Combining the

results of this section with the preceding section, plumes with large I and EkH

values, that is deep and narrow plumes in a fluid system in which viscous forces

are important, are slower and larger than the theoretical geostrophic prediction,

and plumes with small I and EkH values, that is wide and shallow plumes in a

fluid system in which viscous forces are negligible, are faster than the theoretical

prediction.

†A figure similar to Figure 7.12a can be constructed from the experiments of Thomas &
Linden (2007) for the experimental mean velocity, umean. Experimental mean plume speed of
Thomas & Linden (2007) is found to be slower than the theoretical prediction for the largest
values of I (that is for the deepest and the narrowest plumes).



7. ROMS simulations 85

(a)

(b)

Figure 7.12: Summary of the (averaged) maximum non-dimensional plume speed,
Umax, as a function of (a) the dimensionless parameter, I, and (b) the horizontal
Ekman number, EkH , respectively, for the viscous and inviscid numerical simu-
lations, and for the PIV laboratory experiments. The black line on the figures
identifies Umax = 1, that is agreement between experiments and theory. The er-
ror bars are standard deviation errors of the averaged maximum non-dimensional
plume speed.
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7.6 Plume-edge instabilities

As mentioned in 7.2, instabilities along the outer plume edge were seen to develop

in some of the numerical and laboratory experiments. Figure 7.13 shows the

surface density field taken at the non-dimensional time T = 168 for the unstable

plumes 148 and 151 from the viscous numerical simulations. Well-developed

instabilities are seen along the plume edge. One can see from Figure 7.13 the

rapid mixing of fresh and ambient waters within the growing instabilities.

Figure 7.14 displays an I-EkH diagram summarizing the stability properties

of the plumes simulated in the inviscid and viscous numerical simulations, and

in the PIV laboratory experiments. The formation of instabilities is shown to

depend on the magnitude of the parameters I and EkH . In particular, for finite

EkH values, plumes with an I value greater than approximately 0.3 are unstable.

Interestingly, the range of instability for the lowest EkH values (e.g., the inviscid

ROMS simulations) is somewhat reduced, with instabilities appearing for values

of I greater than approximately 0.6.

The dimensionless parameter I is the ratio of the theoretical plume height to

the theoretical plume width; it therefore characterizes the isopycnal slope. Large

values of I imply plumes that are deep and narrow. Plumes with high I values

will have therefore potential energy available to be released into the growing

disturbances observed in the experiments. This suggests that the instabilities

observed for experiments with high I values are predominantly baroclinic, as

the energy source for baroclinic instabilities is the potential energy in the fluid

system.

From Griffiths & Linden (1981b), unstable disturbances are expected to be

baroclinic for θ >> 1 and δ > 0.1, where θ is the square of the ratio of the inter-

nal Rossby radius of deformation to the horizontal length scale of the flow, and

δ is the fraction of the total fluid depth occupied by the layer inside the front.

Here, the internal Rossby radius of deformation, R, is equal to
√

2w0, where w0

is the theoretical plume width of Thomas & Linden (2007). Figures 7.5(a)-(b)

and Figure 7.6 reveal that the measured width of the unstable coastal currents

from the laboratory and numerical simulations were larger than w0 and R, giving

θ > 1 for all the unstable experiments presented in this chapter. Furthermore,

by inspecting the ratio of the plume depth to the total fluid depth for all the

numerical and laboratory unstable experiments, this ratio is found to be always

greater than 0.1. Thus the two criteria of Griffiths & Linden (1981b) to have
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(a)

(b)

Figure 7.13: Surface density field showing the unstable plumes (a) 148 and (b)
151 from the viscous numerical simulations. Color bar is for density (in kg m−3).
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Figure 7.14: I-EkH diagram displaying the parametric locations where the
plumes are found to be stable/unstable. The dashed line is suggestive of the
stability boundary.

baroclinic disturbances are met in the laboratory and numerical unstable simu-

lations presented here. By considering also that these numerical and laboratory

unstable experiments produced quite deep (and narrow) plumes (medium to large

I values), which thus have available potential energy (which is the energy source

of baroclinic instabilities) to be released into the disturbances observed, one may

conclude that the instabilities observed in the plumes simulated in this study are

baroclinic.



CHAPTER 8

Departures from the theory: Internal

structure and dynamics

The geostrophic theory of Thomas & Linden (2007) assumes that the buoyant

plume is steady, x-invariant and inviscid. It further requires the plume velocity to

vanish at the coast, and to achieve its maximum strength where the density front

intersects the surface. Although the bulk properties of the plumes observed in

the laboratory and simulated in ROMS are in generally good agreement with the

theoretical predictions, some departures from the theory are nonetheless evident.

Some of these are explored next.

8.1 Internal velocity structure and momentum balances

The geostrophic theory is clearly not meant to represent the early evolution of

the bulge and developing plume. Therefore it is perhaps not surprising that the

early-time properties of the plume may differ from the theoretical predictions.

One advantage of the ROMS numerical simulations is that the internal struc-

ture of the plumes and the accompanying dynamical balances may be readily

investigated.

Figures 8.1(a)-(c) and Figures 8.1(b)-(d) display cross-sections in the y-z

plane of the time-averaged non-dimensional Coriolis term in the v-momentum

equation, and the time-averaged non-dimensional pressure gradient term in the

v-momentum equation, respectively, taken at the alongshore distance upstream

from the nose, dN = 5 cm, and at the times, t = 4.25 s (Figures 8.1(a)-(b)) and

t = 36.25 s (Figures 8.1(c)-(d)), for the viscous plume 150. The Coriolis and

pressure gradient terms in Figure 8.1 are non-dimensionalized by (fu0) where f

89
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is the Coriolis parameter and u0 is the theoretical geostrophic velocity. The time

average in Figure 8.1 is taken over 0.5 seconds.

At t = 4.25 s, the flow is already nearly geostrophic; the Coriolis and pres-

sure gradient terms in the cross-shore momentum equation nearly balance (Fig-

ures 8.1(a)-(b)). At later time, the Coriolis and pressure gradient terms still

nearly balance but the magnitude of the Coriolis and pressure gradient terms is

smaller than at early time, especially in the viscous simulations (Figures 8.1(c)-

(d)). The next largest terms are those making up the total time rate of change

(local acceleration and advection; not shown), but these are much smaller and

have no clear spatial pattern. Lastly, explicit viscous forces are smaller by one to

two orders of magnitude. The dynamical balance was only available for viscous

simulations (and their inviscid companion) with a low EkH value. A numerical

simulation with a high EkH value is expected to have the magnitude of the lateral

viscous forces getting greater at later time.

Figures 8.2(a)-(c) and Figures 8.2(b)-(d) display cross-sections in the y-z plane

of the time-averaged non-dimensional alongshore velocity, U , for the inviscid

plume 134 and the viscous plume 150, and the time-averaged density field for

the inviscid plume 134 and the viscous plume 150, respectively, taken at the

alongshore distance upstream from the nose, dN = 5 cm, and at the time, t =

4.25 s. Figures 8.3(a)-(c) and Figures 8.3(b)-(d) display cross-sections in the y-z

plane of the non-dimensional alongshore velocity, U , for the inviscid plume 125

and the viscous plume 151, and the density field for the inviscid plume 125 and

the viscous plume 151, respectively, taken at the alongshore distance upstream

from the nose, dN = 5 cm, and at the time, t = 4 s. The time average in

Figure 8.2 is taken over 0.5 seconds. The along-shore velocity in Figures 8.2(a)-

(c) and Figures 8.3(a)-(c) is non-dimensionalized by the theoretical geostrophic

velocity, u0.

The initial structure of the density field within the developing plume has a

strong sloping front. The isopycnal slope is rather linear for the simulations

with low EkH values (and their inviscid companion, Figures 8.2(b)-(d)), while it

is more quadratic for the simulations with large EkH values (and their inviscid

companion, Figures 8.3(b)-(d)). At early time, stratification occurs mainly in the

coastal current coincident with the strong coastal jet. The accompanying along-

shore velocity (Figures 8.2(a)-(c) and Figures 8.3(a)-(c)) exceeds the theoretical

estimate by a factor larger than two and does not go to zero at the wall (as

required by the theory), instead the alongshore velocity has a maximum value at
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(d)

(a)

(c)

(b)

Figure 8.1: Cross-section in the y-z plane of (a)-(c) the non-dimensional Coriolis
term in the v-momentum equation, and (b)-(d) the non-dimensional pressure
gradient term in the v-momentum equation, taken at the alongshore distance
upstream from the nose, dN = 5 cm, and at the times (a)-(b) t = 4.25 s and
(c)-(d) t = 36.25 s for the viscous plume 150.
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(a) (b)

(c) (d)

Figure 8.2: Cross-section in the y-z plane of (a)-(c) the non-dimensional along-
shore velocity, U , for the inviscid plume 134 and the viscous plume 150, respec-
tively, and (c)-(d) the density field for the inviscid plume 134 and the viscous
plume 150, respectively, taken at the alongshore distance upstream from the nose,
dN = 5 cm, and at the time, t = 4.25 s. The color bar in the right images is for
density (in kg m−3).
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(a) (b)

(c) (d)

Figure 8.3: Cross-section in the y-z plane of (a)-(c) the non-dimensional along-
shore velocity, U , for the inviscid plume 125 and the viscous plume 151, respec-
tively, and (c)-(d) the density field for the inviscid plume 125 and the viscous
plume 151, respectively, taken at the alongshore distance upstream from the nose,
dN = 5 cm, and at the time, t = 4 s. The color bar in the right images is for
density (in kg m−3).



8. Departures from the theory: Internal structure and dynamics 94

the wall.

Figures 8.4(a)-(c) and Figures 8.4(b)-(d) display cross-sections in the y-z plane

of the time-averaged non-dimensional alongshore velocity, U , for the inviscid

plume 134 and the viscous plume 150, and the time-averaged density field for

the inviscid plume 134 and the viscous plume 150, respectively, taken at the

alongshore distance upstream from the nose, dN = 5 cm, and at the time, t =

36.25 s. The time average is taken over 0.5 seconds and the along-shore velocity

is non-dimensionalized by the theoretical geostrophic velocity, u0.

A comparison between Figure 8.2 and Figure 8.4 reveals that at later time,

plumes are shallower and narrower. The alongshore velocity is also smaller at

later time, especially for the viscous simulations (Figure 8.4(c)). Stratification

appears to be confined to the seaward edge of the jet.

Figures 8.5(a)-(c) and Figures 8.5(b)-(d) display cross-sections in the y-z plane

of the non-dimensional alongshore velocity, U , for the viscous plumes 150 and

151, and the density field for the viscous plumes 150 and 151, respectively, taken

at the alongshore distance upstream from the nose, dN = 50 cm, and at the time,

t = 36 s. The along-shore velocity is non-dimensionalized by the theoretical

geostrophic velocity, u0.

Farther from the coastal current nose, the frontal structure accompanying the

plume is both wider and deeper (from a comparison between Figure 8.4(d) and

Figure 8.5(b)). Furthermore, in the viscous simulations, the azimuthal velocity

structure is a U -shape (Figures 8.4(a)-(c)) with a boundary layer at the wall

in which the alongshore velocity vanishes for the plumes with large EkH values

(Figure 8.4(c)), in agreement with theory.

Figure 8.6 and Figure 8.7 display the variations along the radial position of

the alongshore velocity, u (Figure 8.6a and Figure 8.7a), the across-shore velocity,

v (Figure 8.6b and Figure 8.7b), and the vertical velocity, w, (Figure 8.6c and

Figure 8.7c), taken at the free surface, at different alongshore distances upstream

from the plume nose, dN , and at the time, t = 40 s, for the inviscid plume 134

and the viscous plume 150, respectively.

An examination of the cross-section in the y-z plane for the radial and vertical

velocity components reveal that the magnitude of the across-shore and vertical

velocities is much smaller than the magnitude of the alongshore velocity, in agree-

ment with Thomas & Linden (2007) assumptions (even if the across-shore and

vertical velocities are found to be the largest in the plume nose region, their mag-

nitude is still below 20% of the magnitude for the azimuthal velocity (Figure 8.6
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(a) (b)

Figure 8.4: Cross-section in the y-z plane of (a)-(c) the non-dimensional along-
shore velocity, U , for the inviscid plume 134 and the viscous plume 150, respec-
tively, and (c)-(d) the density field for the inviscid plume 134 and the viscous
plume 150, respectively, taken at the alongshore distance upstream from the nose,
dN = 5 cm, and at the time, t = 36.25 s. The color bar in the right images is for
density (in kg m−3).
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(c) (d)

Figure 8.5: Cross-section in the y-z plane of (a)-(c) the non-dimensional along-
shore velocity, U , for the viscous plumes 150 and 151, respectively, and (c)-(d)
the density field for the viscous plumes 150 and 151, respectively, taken at the
alongshore distance upstream from the nose, dN = 50 cm, and at the time,
t = 36 s. The color bar in the right images is for density (in kg m−3).
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and Figure 8.7)). In agreement with the previous observations from this section,

the surface alongshore velocity has its maximum value at or near the wall in the

inviscid numerical simulations (Figure 8.6(a)). In the viscous numerical simula-

tions, the surface alongshore velocity approaches zero when getting farther from

the plume nose (Figure 8.7(a)) and when increasing the value of the horizontal

Ekman number (Figure 8.5(c)). In some numerical simulations, large across-

shore velocity magnitudes were observed (of the order of the magnitude for the

azimuthal velocity) but these large radial velocities were due to the presence of

instabilities in the plumes.

Figures 8.8(a)-(b) display the cross-section in the x-z plane of the density field

taken at 4.8 mm from the wall and at the time t = 50 s, for the inviscid plume 134

and the viscous plume 150, respectively. The azimuthal profile of the plume depth

displayed in Figures 8.8(a)-(b) reveals that the plume depth decreases along the

wall but only in the final plume length, contradicting Thomas & Linden (2007)

who suggested that plumes decreased in depth linearly along the coastal wall.

8.2 Mixing in the plumes

It is interesting to inquire whether the mixing associated with the plume-edge

instabilities in the numerical simulations can be quantified. One way to approach

this is to measure, as a function of time, the rate of production of intermediate

water, that is, water with a value of density intermediate between that of the

ambient and buoyant fluids. As viscous effects are confined to the wall boundary

layer (and explicit diffusivity is omitted), mixing of density in the numerical

plumes arises solely from two sources: implicit smoothing due to discretization,

and the mixing associated with the plume-edge instabilities, should the latter

arise.

Figures 8.9(a)-(b) display the non-dimensional volume of intermediate water

in the gravity plume and bulge system as a function of the dimensionless time,

T, and the non-dimensional plume length, L, extracted from Figure 7.2b and

Figure 7.3b, for the inviscid and viscous simulations. The volume of intermediate

water in Figure 8.9 is non-dimensionalized by (q0/Ω). The range of the density

values for the intermediate water in each experiment was chosen to extend from

(1000 + 0.46 ∗∆(ρ)) to (1000 + 0.82 ∗∆(ρ)), thereby occupying 36% of the total

range of the density in the experiments.
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(a)

(b)

(c)

Figure 8.6: Variations along the radial position of (a) the alongshore velocity, u,
(b) the across-shore velocity, v, and (c) the vertical velocity, w, taken at the free
surface, at different alongshore distances upstream from the plume nose, dN , and
at the time, t = 40 s, for the inviscid plume 134.
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(a)

(b)

(c)

Figure 8.7: Variations along the radial position of (a) the alongshore velocity, u,
(b) the across-shore velocity, v, and (c) the vertical velocity, w, taken at the free
surface, at different alongshore distances upstream from the plume nose, dN , and
at the time, t = 40 s, for the viscous plume 150.



8. Departures from the theory: Internal structure and dynamics 100

(a)

(b)

Figure 8.8: Cross-section in the x-z plane of the density field taken at 4.8 mm
from the wall and at the time t = 50 s for the inviscid plume 134 and the viscous
plume 150, respectively.
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(a)

(b)

Figure 8.9: Non-dimensional volume, Vi, of intermediate water in the coastal
plume and bulge system, as a function of (a) the dimensionless time, T , and
(b) the non-dimensional plume length, L, for the inviscid and viscous numerical
simulations.
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Figures 8.9(a)-(b) show that the non-dimensional rates at which intermediate

water is formed have some interesting, and perhaps non-intuitive, dependencies.

Figure 8.9a, in which the rate of mixing is plotted against the non-dimensional

time, T , suggests a time rate of mixing that is rather similar across all numerical

simulations. In particular, the range of values for these rates do not appear to

depend importantly on whether the plumes are stable or unstable. Despite this,

Figure 8.9a does make clear that the total amount of mixing undergone in a single

experiment is much greater for the unstable experiments. The explanation is, of

course, that the viscous plumes are advancing more slowly and therefore take

more time to complete a circuit about the annulus.

If one plots the volume of intermediate water against distance travelled (Fig-

ure 8.9b), a different picture emerges. The unstable plumes are clearly more

effective at mixing per unit distance travelled. One recalls from Section 7.6 that

the addition of viscosity increased the region in I parameter space in which

instabilities were observed to occur. The addition of viscosity also acts to de-

celerate the plumes. The observation that total mixing is enhanced within the

slow-moving plumes therefore appears to be at least consistent with the results

presented above. However, whether the enhanced region of instability accompa-

nying the addition of viscosity is due to the physics or the numerics (or both) is

not immediately obvious.

8.3 Theoretical considerations

As the foregoing sections and chapters illustrate, the assumptions underlying the

geostrophic theory of Thomas & Linden (2007) are only approximately met in the

laboratory experiments and the numerical simulations. Perhaps the most obvious

disagreement pertains to the role of lateral viscosity. Whereas the geostrophic

theory envisions an inviscid ocean, both the laboratory and numerical results

underscore the importance of lateral viscous forces. In particular, the speed of

the buoyant plume is observed to depend on the magnitude of the viscous forces

as measured by the horizontal Ekman number, EkH .

Figure 8.10 shows the departure of the non-dimensional plume length given

by the viscous simulations with ROMS from that predicted by the geostrophic

theory. As noted above, the initial displacement of the plume is faster than the

theory would provide. However, the plumes eventually decelerate and reach a
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Figure 8.10: Difference between the non-dimensional plume length, L, for the
viscous simulations, and the theory of Thomas & Linden (2007), L = (3/4)T .

nearly constant speed that is less than the theoretical value. This suggests that

viscosity is providing a nearly constant decelerating force that partially offsets

the action of the geostrophic pressure gradient.

Linear fits are produced to the curves in Figure 8.10 for T ≥ 50. The slopes

given by these fits represent estimates of the velocity discrepancy between the

geostrophic theory and each of the simulations. Figure 8.11 shows the resulting

estimates of velocity discrepancy plotted against the horizontal Ekman number.

An approximate dependence on the horizontal Ekman number to the one-half

power is observed.

Grégorio et al. (2011) examined the potential role of the viscous forces by a

slight modification of the theory proposed by Thomas & Linden (2007), retain-

ing many of their original assumptions – i.e., x-invariant, rotationally dominated,

steady flow – but introducing molecular viscous forces in the cross-plume direc-

tion. Grégorio et al. (2011) obtained that the velocity discrepancy was propor-

tional to the square root of the horizontal Ekman number (in agreement with the

results from Figure 8.11).
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Figure 8.11: Velocity deficit as a function of the horizontal Ekman number, EkH .
The curve is the best fit for the data of equation 8.4 × (EkH)0.46. The velocity
deficits are simply the slope of the best linear fits for the curves of Figure 8.10
computed from T ≥ 50.



Part IV

Experimental Study



CHAPTER 9

The effect of sloping bottom on coastal

current evolution

Gravity currents in the ocean typically flow along a coast with variable topogra-

phy rather than a vertical wall. In this chapter, experimental results for plumes

flowing along a more realistic topography of an inclined coastline are presented

and compared to the theory described in Chapter 4 and to experimental results

for coastal currents flowing along a vertical coastline. Therefore this chapter is

concerned about the case of surface-advected and bottom-trapped plumes prop-

agating along a sloping bottom.

9.1 Introductory remarks

A typical coastal current flowing along an inclined coastline in the large-scale

Coriolis facility is shown in Figure 9.1. The coastal current flows along the plate

keeping the boundary to its right, and looks qualitatively very similar to coastal

currents flowing along vertical walls. Similar to vertical-wall coastal currents, a

gyre develops near the source region. Aspects relating to the gyre were already

discussed in Thomas & Linden (2007). In their vertical-wall experiments, Thomas

& Linden (2007) observed that the gyre usually surrounds the source extending

into the region just downstream of it. In the inclined-wall experiments however,

there is a trend for the gyre position to slightly shift just upstream of the source

as is the case in Figure 9.1. As for vertical-wall coastal currents, for some exper-

imental parameters combinations, the rate of elongation of the plumes flowing

along an inclined coastline shows little decrease during the whole experiment,

while for some other experimental parameters combinations, the coastal plumes

106
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are observed to accelerate at the start of the experiment, then to decelerate to a

nearly constant propagation speed. Finally for some inclined-wall experiments,

instabilities are seen to develop along the edge of the plume (as in Figure 9.2).

Figure 9.1: A typical coastal current (experiment T35) flowing along an inclined
plate mounted across the diameter of the Coriolis tank at Trondheim. α = 50◦,
I = 0.292, EkV = 6.6× 10−4, EkH = 1.21× 10−4, h0/HD = 0.49.
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Figure 9.2: An unstable coastal current (experiment T32) flowing along an in-
clined wall in the large-scale Coriolis tank at Trondheim. α = 50◦, I = 0.481,
EkV = 2.43× 10−4, EkH = 1.56× 10−4, h0/HD = 0.92.
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9.2 Coastal current length and propagation velocity

9.2.1 Comparison between inclined-wall and vertical-wall experi-

ments

31 small-scale and 56 large-scale experiments were performed in order to investi-

gate the effect of an inclined coastline on coastal current evolution. A further 13

control large-scale experiments were carried out for coastal currents flowing along

a vertical wall. The latter set of experiments was conducted to obtain reference

data for comparison with the 56 inclined-wall large-scale experiments. Details of

the small-scale experiments are summarized in Tables B.2, B.3 and B.4 of Ap-

pendix B while details of the large-scale experiments are listed in Appendix C.

Figures 9.3(a)-(c) show typical small-scale data for the non-dimensional plume

length, Li, as a function of the dimensionless time, T . On each figure, experiments

have equal rotation rate, Ω, equal flow rate, q0, equal reduced gravity, g′, but

different sloping angles, α. Experiments with a sloping angle α = 90◦ are small-

scale experiments of Thomas & Linden (2007). They are compared to small-scale

experiments with sloping angles α = 59.2◦ and α = 18.5◦. Details of the small-

scale experiments of Thomas & Linden (2007) are listed in Appendix A.

Figures 9.4(a)-(c) show typical large-scale data for the non-dimensional plume

length, Li, as a function of the dimensionless time, T . On each figure, experiments

have similar values for the dimensionless parameter I, the horizontal and vertical

Ekman numbers, EkH and EkV , respectively; only the sloping angle, α, differs.

During the large-scale experiments with the bottom slope α = 25.9◦, a camera

was recording the plume width through a mirror mounted on the turntable at

angle 45◦ with the horizontal. The mirror was in the field of view of the cam-

era recording the plume length. This set-up explains why some length data for

the coastal currents flowing along the inclined coastline α = 25.9◦ are unavail-

able on Figures 9.4(a)-(c). Data for the plume length in Figures 9.3(a)-(c) and

Figures 9.4(a)-(c) are non-dimensionalized by w0.

In Figure 9.3a, at early time, the coastal current flowing over the sloping

wall propagates faster than the coastal current flowing over the vertical wall.

Then from T ∼ 6, the plume flowing over the sloping wall starts to decelerate

to finally propagate from T ∼ 13 at same (constant) speed as the plume flowing

along the vertical wall (which, conversely to the plume flowing over the inclined

wall, propagates at nearly constant speed during the whole experiment). In
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(a) I = 0.288±0.018, EkV = (1.72±0.18)×10−3,
EkH = (3.03± 0.16)× 10−4.

(b) I = 0.111±0.005, EkV = (2.83±0.21)×10−2,
EkH = (4.66± 0.21)× 10−4.

(c) I = 1.038± 0.12, EkV = (1.63± 0.28)× 10−4,
EkH = (6.98± 0.69)× 10−4.

Figure 9.3: Comparison of the non-dimensional plume length, Li, as a function
of the dimensionless time, T , for small-scale experiments with different sloping
angles, α.
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(a) I = 0.794±0.022, EkV = (2.43±0.01)×10−5,
EkH = (5.48± 0.41)× 10−5.

(b) I = 0.482±0.024, EkV = (2.53±0.24)×10−4,
EkH = (1.62± 0.08)× 10−4.

(c) I = 0.592±0.013, EkV = (1.44±0.36)×10−4,
EkH = (1.53± 0.3)× 10−4.

Figure 9.4: Comparison of the non-dimensional plume length, Li, as a function
of the dimensionless time, T , for large-scale experiments with different sloping
angles, α.
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Figure 9.4a, the coastal plume flows faster on the sloping wall than on the vertical

wall. In Figure 9.3b and Figure 9.4b, the introduction/variation of the sloping

wall does not change the rate of elongation of the plumes. In Figure 9.3c, the

plume flowing on the incline 18.5◦ propagates slower than the plumes flowing on

the higher incline and on the vertical wall. In Figure 9.4c, at early time, the

plume flowing over the incline 25.9◦ propagates as the plume flowing over the

incline 40◦, and from T ∼ 8, the plume flowing over the incline 25.9◦ slows down

to finally propagate at a nearly constant speed, slower than the speed of the

plume flowing over the incline 40◦.

From experimental observations, introducing an inclined wall (or varying its

sloping angle) can increase (Figure 9.4a) or decrease (Figure 9.3c) the plume

propagation speed. It can also make no difference at all on the whole evolution

of the coastal current (Figure 9.3b). Surprisingly, the introduction of a sloping

wall does not necessarily slow down the coastal current propagation (as noted for

e.g. Whitehead & Chapman (1986)).

9.2.2 Comparison of inclined-wall experiments with inclined-wall

theory

Figures 9.5(a)-(b) and Figures 9.6(a)-(b) compare small-scale and large-scale

data, respectively, for the non-dimensional plume length, Li, as a function of the

dimensionless time, T , with the theoretical prediction for the different sloping

angles according to (4.43). Data for the plume length are non-dimensionalized

by w0. On each figure, experiments have similar values for the dimensionless

parameter I, the horizontal and vertical Ekman numbers, EkH and EkV , respec-

tively.

First of all, the theory developed in Chapter 4 predicts a constant propagation

speed for a coastal current. However, as it was discussed in the previous section,

and similarly to vertical-wall coastal currents, in some experiments, coastal cur-

rents are seen to propagate at a nearly constant speed (Figure 9.6a), while in

some other experiments, the coastal plumes are observed to accelerate at the

start of the experiments, then to decelerate to a nearly constant propagation

speed (Figure 9.5a).

For some experimental parameters combinations, agreement between experi-

ments and theory was found to be quite good (see Figure 9.5b and Figure 9.6b).

However, for some other experimental parameters combinations (usually exper-
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(a) I = 0.111 ± 0.005, EkV = (2.83 ± 0.21) × 10−2, EkH =
(4.66± 0.21)× 10−4.

(b) I = 0.331 ± 0.011, EkV = (1.08 ± 0.06) × 10−3, EkH =
(2.69± 0.08)× 10−4.

Figure 9.5: Comparison of the non-dimensional plume length, Li, as a function
of the non-dimensional time, T, for small-scale experiments with different sloping
angles, α. The solid lines represent the theoretical predictions for the different
sloping angles according to (4.43).
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(a) I = 0.118 ± 0.023, EkV = (2.68 ± 1.14) × 10−3, EkH =
(4.35± 0.23)× 10−5.

(b) I = 0.423 ± 0.02, EkV = (1.95 ± 0.24) × 10−4, EkH =
(9.01± 0.08)× 10−5.

Figure 9.6: Comparison of the non-dimensional plume length, Li, as a function
of the non-dimensional time, T, for large-scale experiments with different sloping
angles, α. The solid lines represent the theoretical predictions for the different
sloping angles according to (4.43).
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iments with low flow rate), the coastal currents slowed down during the experi-

ments to finally propagate at a constant speed smaller than the theoretical pre-

diction (mostly observed in the small-scale study, see Figure 9.5a). Finally, some

coastal currents were seen to propagate faster than the theory (mostly observed

in the large-scale study, see Figure 9.6a).

The easiest way to compare theory and experiments for the plume nose prop-

agation is to examine the plume mean velocity. The measured mean velocity,

uexpi , of the plumes during their propagation from the source along the inclined

wall can be calculated from the last data point for each run as uexpi = li(tend)/tend.

Hence, using Ui = Li/T , Li = li/w0 and T = tΩ, one gets Ui = ui/(Ωw0).

Figure 9.7 summarizes the values of the non-dimensional measured mean

speed, U exp
i , for the plumes flowing along an inclined wall, as a function of the

non-dimensional theoretical inclined-wall plume speed , U th
i (from (4.44)), for

the small-scale and large-scale studies. The solid line in Figure 9.7 identifies

U exp
i = U th

i , i.e agreement between the prediction and the corresponding exper-

imental data point, while the dashed line identifies the best linear fit given by

0.62 U th
i + 0.51 with a correlation of 0.21.

From Figure 9.7, and as it was noted just above, for some experimental pa-

rameters combinations, good agreement is found between experiments and the-

ory, while for some other experimental parameters combinations, experimental

velocities are overestimated or underestimated by the theory. Nonetheless, in the

overall experimental results, the agreement between experimental and theoretical

propagation velocities is quite poor. From Figure 9.7, the coastal currents with

the propagation velocity smaller than the theoretical prediction are mainly sim-

ulated in the small-scale study while the plumes with the propagation velocity

larger than the theory are modelled in the large-scale study. The discrepancy

between the experiments and the theory for the plume propagation speed occurs

for any coastline angle, thus the disagreement between experiments and theory

does not seem to be induced by the value of the coastline angle.

In order to find whether or not the different dimensionless numbers character-

izing the plume dynamics (I, h0/HD, EkV and EkH) have an impact on the dis-

crepancy between the theoretical and experimental plume propagation velocities,

the difference between the non-dimensional experimental and theoretical veloci-

ties is examined. Figures 9.8(a)-(b) and Figures 9.9(a)-(b) summarize the values

of the difference between the non-dimensional measured mean inclined-wall speed,

U exp
i , and the non-dimensional predicted inclined-wall speed, U th

i , as a function



9. The effect of sloping bottom on coastal current evolution 116

Figure 9.7: Non-dimensional measured mean inclined-wall velocity, U exp
i , as a

function of the non-dimensional theoretical inclined-wall velocity, U th
i , for the

small-scale and large-scale inclined-wall experiments. The solid line identifies
U exp
i = U th

i , while the dashed line identifies the best linear fit given by 0.62 U th
i +

0.51 with a correlation of 0.21.
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of the dimensionless parameter, I (defined in (4.3)), the non-dimensional ambi-

ent depth parameter, h0/HD (defined in (4.11)), the horizontal Ekman number,

EkH (defined in (4.8)), and the vertical Ekman number, EkV (defined in (4.9))

respectively, for the small-scale and large-scale inclined-wall experiments. The

solid line on the figures identifies U exp
i = U th

i , i.e. agreement between theory and

experiments.

Figures 9.8(a)-(b) and Figure 9.9(b) reveal that the dimensionless parameter,

I, the non-dimensional ambient depth parameter, h0/HD, and the vertical Ekman

number, EkV , seem to have no influence on the difference between experimental

and theoretical plume velocities. On the other hand, from Figure 9.9(a), there

appears to exist a dependency between the values of (U exp
i −U th

i ) and the values

of the horizontal Ekman number, EkH : except for few data points, the (U exp
i −

U th
i ) values increase as the EkH values decrease. The plumes simulated in the

laboratory are found to be faster than the theoretical prediction ((U exp
i −U th

i ) > 0)

when the values of their horizontal Ekman number, EkH , are very small, that is

when the viscous forces are the most negligible in the fluid system. Conversely,

the plumes are slower than the theory ((U exp
i − U th

i ) < 0) when the EkH values

are large, that is when the viscous forces become important. These results are

consistent with the results found in the numerical Sections 7.3 and 7.5 (one notes

that the inviscid numerical simulations (for which EkH = 0) are expected to

reproduce the best plumes with very low EkH values therefore plumes simulated

in the large scale study). Thus, the magnitude of the lateral viscous forces seems

to have a major impact as well on the propagation speed of coastal plumes flowing

along a sloping wall.

In order to take into account in the velocity discrepancy the fact that for some

experiments, the coastal currents do not propagate at a constant speed, linear

fits are produced, in a similar fashion to Section 8.3, to the curves displaying the

difference between the non-dimensional plume length, Li
exp, for the small-scale

and large-scale inclined-wall experiments, and the inclined-wall theory, Li
th, ac-

cording to (4.43), from the non-dimensional time, T , for which the coastal plumes

propagate at a nearly constant speed. The slopes given by these fits represent esti-

mates of the velocity discrepancy between the geostrophic theory for inclined-wall

plumes and each of the inclined-wall laboratory experiments. Figure 9.10 shows

the resulting estimates of the velocity discrepancy plotted against the horizon-

tal Ekman number, EkH . Similarly to the previous observations of Figure 9.9(a)

and to the results obtained in Section 8.3, a dependence on the horizontal Ekman
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(a)

(b)

Figure 9.8: Difference between the non-dimensional measured mean inclined-
wall speed, U exp

i , and the non-dimensional predicted inclined-wall speed, U th
i ,

as a function of (a) the dimensionless parameter, I, (b) the non-dimensional
ambient depth parameter, h0/HD, for the small-scale and large-scale inclined-
wall experiments. The solid line on each figure identifies U exp

i = U th
i .
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(a)

(b)

Figure 9.9: Difference between the non-dimensional measured mean inclined-
wall speed, U exp

i , and the non-dimensional predicted inclined-wall speed, U th
i , as

a function of (a) the horizontal Ekman number, EkH , (b) the vertical Ekman
number, EkV , for the small-scale and large-scale inclined-wall experiments. The
solid line on each figure identifies U exp

i = U th
i .
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Figure 9.10: Velocity deficit for the small-scale and large-scale inclined-wall ex-
periments as a function of the horizontal Ekman number, EkH .

number is observed. From Figure 9.10, and as it was noted previously in this

section, gravity plumes with a very small EkH value (thus with a large Reynolds

number, Re), are produced in the large-scale study and propagate faster than

the geostrophic velocity, while plumes with a large EkH value, are simulated in

the small-scale study and propagate slower than the geostrophic velocity. It is

also worth to mention that the coastal plumes with very low EkH values (sim-

ulated in the large-scale study) propagate at a nearly constant speed, whereas

the coastal plumes with large EkH values (simulated in the small-scale study)

are seen to slow down during the experiments to finally propagate slower than

the theoretical prediction, and as the EkH value increases, the magnitude of the

plume deceleration gets more important.

From the numerical Sections 7.3 and 7.5, and from the results from this sec-

tion, the coastal currents with very low EkH values are faster than the theoretical

prediction while the coastal currents with high EkH values are slower than the

theory. In this section, it was also observed that the coastal currents slower than

the theory were mainly simulated in the small-scale study, while the coastal cur-

rents faster than the theory were modelled in the large-scale experiments. This

observation can be explained by the size of the experimental facility. Indeed, in

the small-scale study, the flow rate, q0, never exceeded the value of 28.28 cm3 s−1

and the rotation rate, Ω, never dropped off below the value of 0.49 rad s−1, while
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in the large-scale study, q0 never dropped off below the value of 100 cm3 s−1 and

Ω never exceeded the value of 0.621 rad s−1. Then in the small-scale experi-

ments, high Ω values and low q0 values were used, giving large EkH values (thus

coastal currents slower than the theory) whereas in the large-scale experiments,

very small Ω values and very large q0 values were used, giving very small EkH

values (thus coastal currents faster than the theory). In addition, from Figures

9.9(a)-(b) and Figure 9.10, the coastal currents faster than the theory are found

for the lowest values of their horizontal and vertical Ekman numbers, EkH and

EkV , respectively. From the definitions of the horizontal Ekman number, EkH ,

in (4.8), and the vertical Ekman number, EkV , in (4.9), low EkH values imply

high values for the reduced gravity, g′, and the flow rate, q0, and low values for

the rotation rate, Ω, whereas low EkV values imply low g′ values and high Ω and

q0 values. Thus, the coastal currents faster than the theoretical prediction are

expected to be coastal currents with very large flow rate, q0, but very large flow

rates could be produced in the large-scale facility only.

Figure 9.11 displays the non-dimensional measured mean inclined-wall speed,

U exp
i , as a function of the horizontal Ekman number, EkH , for the small-scale

and large-scale inclined-wall experiments. Figures displaying the non-dimensional

measured mean inclined-wall speed, U exp
i , as a function of the dimensionless pa-

rameter, I, the non-dimensional ambient depth parameter, h0/HD, and the verti-

cal Ekman number, EkV , were omitted as they were similar to Figures 9.8(a)-(b)

and Figure 9.9(b), respectively, and, therefore, did not show anything interesting.

From Figure 9.11, the U exp
i values clearly increase as the EkH values decrease.

In all the section, the plume length was non-dimensionalized by the theoretical

vertical-wall plume width ,w0, defined in (4.1a). It is interesting to see what would

happen when non-dimensionalizing the plume length by the theoretical inclined-

wall plume width, wi, defined in (4.36). Figure 9.12 displays the values of the

non-dimensional measured mean inclined-wall velocity, (U exp
i )wi

, as a function

of the non-dimensional theoretical inclined-wall velocity, (U th
i )wi

, with (Ui)wi
=

ui/(Ωwi), for the small-scale and large-scale inclined-wall experiments. The solid

line in Figure 9.12 identifies (U exp
i )wi

= (U th
i )wi

, while the dashed line identifies

the best linear fit given by 1.19 (U th
i )wi

+ 0.08 with a correlation of 0.64. A

comparison between Figure 9.7 and Figure 9.12, and between the slopes of the

best linear fits in each figure reveals that agreement between experiments and

theory is much better when the plume length is non-dimensionalized by wi.

The figures displaying the difference between the non-dimensional experi-



9. The effect of sloping bottom on coastal current evolution 122

Figure 9.11: Non-dimensional measured mean inclined-wall speed, U exp
i , as a

function of the horizontal Ekman number, EkH , for the small-scale and large-
scale inclined-wall experiments .

Figure 9.12: Non-dimensional measured mean inclined-wall velocity, (U exp
i )wi

, as
a function of the non-dimensional theoretical inclined-wall velocity, (U th

i )wi
, for

the small-scale and large-scale inclined-wall experiments. The solid line identifies
(U exp

i )wi
= (U th

i )wi
, while the dashed line identifies the best linear fit given by

1.19 (U th
i )wi

+ 0.08 with a correlation of 0.64.
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mental and theoretical plume velocities as a function of the different dimen-

sionless numbers (I, h0/HD, EkV and EkH), when the plume length is non-

dimensionalized by wi, are not included as the figures obtained were very similar

to Figures 9.8(a)-(b) and Figures 9.9(a)-(b).

Figures 9.13(a)-(b) display the values of the non-dimensional measured mean

inclined-wall speed, (U exp
i )wi

, as a function of the dimensionless parameter, I,

and the non-dimensional ambient depth parameter, h0/HD, respectively, for the

small-scale and large-scale inclined-wall experiments. When non-dimensionalizing

the plume length by wi, it seems to exist a dependency between the non-dimensional

measured mean inclined-wall speed, (U exp
i )wi

, and the dimensionless parameters,

I and h0/HD (this dependency was not observed when the plume length was

non-dimensionalized by w0). From Figures 9.13(a)-(b), the (U exp
i )wi values de-

crease as both the I and h0/HD values increase. Also, and similarly to when

data for the plume length were non-dimensionalized by w0, the (U exp
i )wi values

decrease as the EkH values increase (the figure is not displayed as it is similar to

Figure 9.11).

From the Section 4.2, the non-dimensional theoretical velocities, U th
i and

(U th
i )wi

, are functions of H/ tanα but H/ tanα is a function of I (from (4.2b)),

and, for small values of α, H/ tanα ∼ H/α. Thus U th
i and (U th

i )wi are functions

of I and H/α. Therefore a relation of dependence between the non-dimensional

measured velocities, U exp
i and (U exp

i )wi
, and, the dimensionless numbers, I and

h0/HD, should be found if, of course, agreement between experiments and the-

ory is found: in the first case, that is for U exp
i , the dependence relation is not

observed at all, as the agreement between experiments and theory is quite poor

(see Figure 9.7), while in the second case, that is for (U exp
i )wi

, a dependence re-

lation is partially observed (see Figures 9.13(a)-(b)), as the agreement between

experiments and theory is partially found (see Figure 9.12).

9.3 Coastal current height

In this section, large-scale inclined-wall experimental results for the plume depth

are presented and compared to the theoretical prediction from Chapter 4.

Thomas & Linden (2007) found that the depth of a plume flowing along a

vertical wall decreases with distance from the source, and has a maximum height,

hm, just downstream of the source. Figure 9.14, taken from Thomas & Linden
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(a)

(b)

Figure 9.13: Non-dimensional measured mean inclined-wall speed, (U exp
i )wi, as

a function of (a) the dimensionless parameter, I, (b) the non-dimensional am-
bient depth parameter, h0/HD, for the small-scale and large-scale inclined-wall
experiments.
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(2007), illustrates the height profile of a plume at the wall (y = 0) in the x-z plane

of Figure 4.1. Thomas & Linden (2007) compared the maximum depth, hm, to

their theoretical prediction, h0, given in (4.1b), and found very good agreement

between hm and h0.

FIG. 10. Thomas & Linden, J. Fluid Mech.

Current fluid supplied
from reservoir

(Side view, x-z plane in Fig. 2)

Surface of fluid

Source (outlet vertically upwards)

Current fluid, 1

Ambient
fluid, 2

RL1 RL2 RL3 RL4

hm

Head of current

Figure 9.14: Sketch from Thomas & Linden (2007) illustrating a side-view of a
plume.

In the present study, similarly to the vertical-wall plumes, the depth, hi, of a

plume flowing along an inclined wall was observed to decrease with the alongshore

distance, from the source to the plume head, and to have a maximum value, him ,

a few centimetres downstream of the source. The value of him was monitored

with the video camera shown in Figure 5.12 and Figure 5.13. The recordings

yielded h′im from which one finds him = h′im sinα.

Figure 9.15 displays the maximum measured plume height, him , near the

source, as a function of the theoretical predictions, h0 and hi, for the depth of a

plume flowing along a vertical wall, and along an inclined coastline, respectively.

The solid line in the figure identifies agreement between the experiments and the

predictions, while the blue and red dashed lines identify the best linear fits given

by 0.91 h0 +2.52 with a correlation of 0.88, and 1.51 hi+0.7 with a correlation of

0.8, respectively. Figure 9.15 shows that the maximum measured plume height,

him , is better predicted by the theoretical vertical-wall height, h0 (given in (4.1b)),

rather than by the theoretical inclined-wall height, hi (numerically computed

from (4.30)). The data for the non-dimensional plume height, Hexp
i = him/w0, are

displayed in Figure9.16 as a function of the dimensionless parameter, I. The solid

line included in the figure represents the theoretical prediction, H = 2I5/4, from

equations (4.46) and (4.2b). The dashed line is the best fit to the experimental
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Figure 9.15: Maximum measured plume height, him , near the source, as a function
of the theoretical heights, h0 and hi, for vertical-wall and inclined-wall plumes,
respectively. The solid line identifies agreement between the experiments and the
theories, while the blue and red dashed lines identify the best linear fits given by
0.91 h0 + 2.52 with a correlation of 0.88, and 1.51 hi + 0.7 with a correlation of
0.8, respectively.
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data given by 2.22(I)1.15. Figure9.16 reveals a very good agreement between the

theoretical values, H, and the experimental values, Hexp
i .

Hence, experiments show that the maximum depth, him , of inclined-wall

plumes near the source is well predicted by the depth of vertical-wall plumes

from the models of Thomas & Linden (2007) and Avicola & Huq (2002). For

plumes flowing along inclined walls, Yankovsky & Chapman (1997) argued that,

in equilibrium, the depth of a plume flowing along a vertical coastline should

also be the depth where the front intersects the bottom; these data support the

conclusion of Yankovsky & Chapman (1997).

Figure 9.16: Non-dimensional maximum plume height, Hexp
i , near the source,

as a function of the dimensionless parameter, I, for the large-scale inclined-wall
experiments. The solid line represents the theoretical prediction, H = 2I5/4,
while the dashed line is the best fit line given by 2.22(I)1.15.

9.4 Coastal current width

In this section, PIV small-scale inclined-wall results for the plume width are

presented and compared to the PIV small-scale vertical-wall results introduced

in Section 7.4 and to the theoretical prediction from Chapter 4.

Figure 9.17 displays the non-dimensional plume width, Wi, as a function

of the dimensionless time, T , measured at the distance, dS, downstream from
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the source, with dS = 57.8 cm, for all the PIV vertical-wall and inclined-wall

experiments. Width data are non-dimensionalized by w0. The PIV inclined-wall

experiments precisely duplicate the PIV vertical-wall experiments, except for

the introduction of the sloping wall. For some experiments, width measurements

were stopped before the end of the experiments due to the presence of instabilities

in the plumes. Width data from two vertical-wall experiments are not displayed

in Figure 9.17 as one experiment was too unstable and width extraction was

not possible, and one experiment had data not usable. Width data from three

inclined-wall experiments are also not displayed in Figure 9.17 as the data were

not usable.

From Figure 9.17, for the vertical-wall experiments and for the majority of the

inclined-wall experiments (except two of them) as well, the non-dimensional width

measurements closely cluster around a single curve, growing as T
1
2 (as Lentz &

Helfrich (2002) and Thomas & Linden (2007) also found). After examination of

the experimental parameters, the two inclined-wall experiments, for which the

width measurement expands the furthest offshore in Figure 9.17, have the largest

value for the non-dimensional ambient depth parameter, h0/HD.

Figure 9.17: Summary of the non-dimensional plume width, Wi, as a function of
the dimensionless time, T, for the PIV small-scale vertical-wall and inclined-wall
experiments. The width was measured at the distance, dS, downstream from the
source, with dS = 57.8 cm. The black curve on the figure of equation 0.2(T )

1
2 is

just to show that the majority of the plume widths grows as T
1
2 .
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Figures 9.18(a)-(c) compare the non-dimensional plume width, Wi, as a func-

tion of the dimensionless time, T , measured at the distance, dS, downstream from

the source, with dS = 57.8 cm, for PIV small-scale experiments with different

sloping angles. In some experiments, the introduction/variation of the sloping

wall did not change drastically the plume width (Figure 9.18a), while in some

other experiments, the coastal plumes became wider when flowing along a sloping

wall (especially when flowing along a gentle slope, see Figure 9.18b).

Figure 9.19 and Figure 9.20 display a summary of the values for the non-

dimensional plume width, Wi, as a function of H/ tan(α) and as a function

of the non-dimensional ambient depth parameter, h0/HD, respectively, for the

PIV inclined-wall experiments (and also for the PIV vertical-wall experiments

in Figure 9.20). The solid line in Figure 9.19 represents the theoretical pre-

diction, Wi =
√

(H/ tan(α))2 + 1, according to (4.45). To quantify the non-

dimensional plume width, Wi, in Figure 9.19 and Figure 9.20, Wi was averaged

for each experiment from the last data point to the data point such that the

non-dimensional time interval, ∆T , of the measurements, was 10 < ∆T < 500

(the non-dimensional time interval length depended on the experiment duration).

The standard deviation was calculated for each value found for Wi.

The data for the plume width in Figure 9.19 seem to follow the trend of the

curve representing the theoretical prediction. It will be shown shortly that the

best agreement between experiments and theory for the plume width is found

for plumes with low EkH values. From Figure 9.20, it seems that the non-

dimensional plume width, Wi, increases as the non-dimensional ambient depth

parameter, h0/HD, increases (the h0/HD values increase as the sloping angle

decreases). This last result is consistent with Whitehead & Chapman (1986)

who observed that a coastal current was wider when flowing along an inclined

coastline.

Figure 9.21 displays the non-dimensional plume width, (Wi)wi
, as a function

of the dimensionless time, T , measured at the distance, dS, downstream from

the source, with dS = 57.8 cm, for all the PIV vertical-wall and inclined-wall

experiments from Figure 9.17. Width data in Figure 9.21 (and from now) are

non-dimensionalized by the theoretical inclined-wall plume width, wi, defined

in (4.36). Similarly to Figure 9.17, the non-dimensional width measurements

from Figure 9.21 for the vertical-wall experiments and for the majority of the

inclined-wall experiments (except one of them) closely cluster around a single

curve, growing as T
1
2 . When non-dimensionalizing the width data by w0, the
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(a) I = 0.157±0.001, EkV = (4.69±0.07)×10−3, EkH =
(1.83± 0.01)× 10−4.

(b) I = 0.99±0.007, EkV = (1.69±0.02)×10−4, EkH =
(6.62± 0.02)× 10−4.

Figure 9.18: Comparison of the non-dimensional plume width, Wi, as a func-
tion of the non-dimensional time, T, for PIV experiments with different sloping
angles, α.
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Figure 9.19: Summary of the (averaged) non-dimensional plume width, Wi, as
a function of H/ tan(α) for the PIV small-scale inclined-wall experiments. The
solid line represents the theoretical prediction, Wi =

√
(H/ tan(α))2 + 1. The

error bars are standard deviation errors of the averaged non-dimensional plume
width.

Figure 9.20: Summary of the (averaged) non-dimensional plume width, Wi, as
a function of the non-dimensional ambient depth parameter, h0/HD, for the
PIV small-scale vertical-wall and inclined-wall experiments. The error bars are
standard deviation errors of the averaged non-dimensional plume width.
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plume width measurements are greater for the plumes flowing along the incline

α = 18.5◦ (Figure 9.17), while when non-dimensionalizing the width data by wi

(therefore when taking into account the topography in the non-dimensionalizing

scheme), the plume width measurements are smaller for the plumes flowing along

the incline α = 18.5◦ (Figure 9.21). After examination of the experimental pa-

rameters, the inclined-wall experiment, for which the width measurement expands

the nearest inshore in Figure 9.21, has the largest value for the horizontal Ek-

man number, EkH , combined with a large value for the non-dimensional ambient

depth parameter, h0/HD.

Figure 9.21: Summary of the non-dimensional plume width, (Wi)wi
, as a function

of the dimensionless time, T, for the PIV small-scale vertical-wall and inclined-
wall experiments. The width was measured at the distance, dS, downstream from
the source, with dS = 57.8 cm. The black curve on the figure of equation 0.2(T )

1
2

is just to show that the majority of the plume widths grows as T
1
2 .

Figures 9.22(a)-(b) display a summary of the values for the non-dimensional

plume width, (Wi)wi
, as a function of the non-dimensional ambient depth param-

eter, h0/HD, and the horizontal Ekman number, EkH , respectively, for the PIV

vertical-wall and inclined-wall experiments. The solid line on the Figures 9.22(a)-

(b) identifies (Wi)wi
= 1, that is agreement between experiments and theory.

To quantify the non-dimensional plume width, (Wi)wi
, in Figures 9.22(a)-(b),

(Wi)wi
was averaged for each experiment from the last data point to the data

point such that the non-dimensional time interval, ∆T , of the measurements, was
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10 < ∆T < 500. The standard deviation was calculated for each value found for

(Wi)wi
.

Despite the small data number, Figure 9.22a suggests that the value for

the non-dimensional plume with, (Wi)wi
, decreases as the value for the non-

dimensional ambient depth parameter, h0/HD, increases. It seems also that for

large h0/HD values, agreement between the theory and the experiments for the

plume width is found. Although the important data scatter, but similarly to the

results found in Section 7.4, Figure9.22b suggests that the (Wi)wi
values increase

as the EkH values increase; best agreement between experiments and theory

is found for small EkH values (except for plumes with large h0/HD values for

which agreement between experiments and theory for the plume width seems to

be found, whatever is the value of the horizontal Ekman number, EkH).

In the next chapter, results from other experimental studies and from oceanic

observations are compared to the results presented in this chapter and to the

theory from Chapter 4.
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(a)

(b)

Figure 9.22: Summary of the (averaged) non-dimensional plume width, (Wi)wi
,

as a function of (a) the non-dimensional ambient depth parameter, h0/HD, and
(b) the horizontal Ekman number, EkH , respectively, for the PIV small-scale
vertical-wall and inclined-wall experiments. The solid line on the figures identifies
(Wi)wi

= 1, that is agreement between experiments and theory. The error bars
are standard deviation errors of the averaged non-dimensional plume width.



CHAPTER 10

Comparison of the present theoretical

and experimental results with other

studies

In this chapter, the theory developed in Chapter 4 and the experimental results

presented in Chapter 9 are compared to the experimental results of Whitehead

& Chapman (1986) and Avicola & Huq (2002), and to the theoretical model and

experimental results of Lentz & Helfrich (2002). Oceanic observations are also

compared to the theory from Chapter 4 and to the theoretical model of Lentz &

Helfrich (2002).

10.1 Summary of the experimental set-up of Whitehead &

Chapman (1986), Avicola & Huq (2002) and Lentz &

Helfrich (2002)

Whitehead & Chapman (1986), Avicola & Huq (2002) and Lentz & Helfrich

(2002) conducted experiments for coastal plumes flowing along inclined coastlines.

The experimental set-up of these three studies is briefly reviewed here.

10.1.1 Experiments of Whitehead & Chapman (1986)

Whitehead & Chapman (1986) performed three sets of experiments. In their

first set of experiments (called “Experiment I”), buoyant dyed fluid was pumped

into an 89.8 cm diameter rotating tank at a constant flow rate along a vertical

135
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wall. The resulting gravity current flowed along the wall, encountered a sloping

bottom, with angle α = 11.5◦, and then flowed along the slope. The values of

the rotation rate, Ω, and the reduced gravity, g′, were varied in 12 different runs.

The arrival times of the gravity current nose at 10 cm increments along the slope

over a distance of 50 cm were recorded and are listed in their Table 1. The plume

propagation speed, uexpi , for their experiments was calculated from the last data

point for each run. The plume width and depth were not recorded for these runs.

Details of these 12 runs are listed in Table E.2 of Appendix E.

Their second and third sets of experiments were not considered here as the

coastal current was generated differently than in the experiments presented in

Chapter 5, that is by the release of a reservoir of buoyant fluid, i.e a dam break.

Furthermore, their third set of experiments was exclusively conducted to measure

the shelf-wave phase speeds observed during their experiments.

10.1.2 Experiments of Avicola & Huq (2002)

In their experimental study, Avicola & Huq (2002) used two tanks which were

installed onto a 1.2 m diameter rotating turntable. They carried out 8 experi-

ments, 3 using a tank with a flat bottom (named experiments D, E, F ), and 5

using a tank with a bottom slope, with angle α = 19.1◦ (named experiments A,

B, C, G, H). Dyed freshwater was injected at a constant flow rate. The values

of the rotation rate, Ω, the flow rate, q0, and the reduced gravity, g′, were varied

in the different runs. Details of these 8 experiments are summarized in Table E.1

of Appendix E.

The difference between the inclined-wall experiments presented in this study,

and the experiments of Avicola & Huq (2002) with their sloping bottom tank is

that, instead of having a topography composed of a single sloping wall (as in this

study ; see Figure 4.2 for a schematic of a side-view of a coastal current flowing

along an inclined wall in the experiments presented in Chapter 5), Avicola & Huq

(2002) had a continental shelf composed of a vertical wall, with a coastal wall

depth, HC , and a bottom slope extending offshore for 15 cm uniformly around the

tank (see Figure 10.1 for a schematic of their experimental configuration using the

sloping bottom tank). Then offshore of their continental shelf was a 15 cm abyss.

The ocean ambient depth, HD, for the experiments of Avicola & Huq (2002)

with the sloping bottom tank was computed in Table E.2 as HD = HC + αw0,

where HC is the coastal wall depth, α is the sloping bottom angle and w0 is the
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theoretical vertical-wall plume width defined in (4.1a).

Figure 10.1: Schematic depicting the experimental configuration of Avicola &
Huq (2002) using the sloping bottom tank (from Avicola & Huq (2002)).

Only the experiments G and H of Avicola & Huq (2002) from their 5 experi-

ments with the continental shelf were compared to the theory and experiments of

the present study because in the experiments A, B, C of Avicola & Huq (2002)

with the continental shelf, the theoretical plume depth, h0, was much smaller

than the coastal wall depth, HC , i.e h0/HC < 0.15, and therefore, from what will

be demonstrated in Chapter 11, the plumes simulated in their experiments A, B,

C should not feel any effect from the sloping bottom and should propagate as if

they were flowing along a simple vertical coastline above a deep abyss. As the

theoretical plume depth, h0, for their experiments G and H is larger than the

continental shelf, HC , i.e h0/HC > 1.35, and in order to compare these experi-

ments with the theory from Chapter 4, which was developed for a single inclined

coastline (and not for a continental shelf), the topography in their experiments

G and H is assumed to be a single slope with angle α = 19.1◦.

The data of Avicola & Huq (2002) were collected from their Figure 7 which

summarizes the plume length and width as a function of time for their 8 runs. The

non-dimensional data points for their experiments G and H were reproduced from

enlarged copies of their Figures 7(e)-(f). Either the values of their scale width,

R, tabulated for their experiments G and H in the Table 2 of Avicola & Huq

(2002) are incorrect or some of the listed values for their reduced gravity, g′, their

scale depth, h, and their Coriolis parameter, f , are incorrect. Calculating their

scale width, R, for their experiments G and H with the values for g′, h and f

listed in their Table 2 gives the values for R of 2.01 cm and 5.27 cm, respectively.

These recalculated values of their scale width, R, were used to invert the non-

dimensionalization scheme applied to the data points in the Figures 7(e)-(f) of
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Avicola & Huq (2002) and to obtain the raw data for the plume length and

width from their experiments G and H. Their plume propagation speed, uexpi ,

was afterwards calculated from the last data point for their experiments G and

H. To quantify their plume width, averages of their width measurements were

computed over the last five observations for their experiments G and H.

10.1.3 Experiments of Lentz & Helfrich (2002)

Lentz & Helfrich (2002) conducted 28 experiments, similar to the experiments

presented in this study, investigating buoyant gravity currents flowing along slop-

ing bottoms in a 2.1 m diameter rotating tank. The values of the rotation rate,

Ω, the flow rate, q0, the reduced gravity, g′, and the sloping angle, α, were varied.

The data for their measured plume propagation speed and width are tabulated

in the Table 2 of Lentz & Helfrich (2002) where they are referred to as cp
obs and

Wp
obs, respectively. Their experimental parameters are listed in Tables E.3 and

E.4 of Appendix E.

10.2 Comparison with other experimental study

In this section the experimental results of Avicola & Huq (2002), Lentz & Helfrich

(2002) and Whitehead & Chapman (1986) are compared to the theoretical model

developed in Chapter 4 and the experimental results presented in Chapter 9.

10.2.1 Coastal current propagation velocity

Figure 10.2 summarizes the values of the non-dimensional measured mean inclined-

wall speed, U exp
i , as a function of the non-dimensional theoretical inclined-wall

speed , U th
i (from (4.44)), for the experiments of Avicola & Huq (2002), Lentz

& Helfrich (2002) and Whitehead & Chapman (1986) described in Section 10.1.

Data for the plume velocity are non-dimensionalized by w0 thus Ui = ui/(Ωw0).

The solid line in Figure 10.2 identifies U exp
i = U th

i , i.e agreement between the

prediction and the corresponding experimental data point, while the dashed line

identifies the best linear fit given by 0.95 U th
i + 0.04 with a correlation of 0.89.

A comparison between Figure 9.7 and Figure 10.2, and between the slope

values for the best linear fits in Figure 9.7 and Figure 10.2 reveals that while poor

agreement between the theoretical model from Chapter 4 and the experimental
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results presented in Chapter 9 is found, a very good agreement between the theory

from Chapter 4 and the experiments of Avicola & Huq (2002), Lentz & Helfrich

(2002) and Whitehead & Chapman (1986) is observed.

Figure 10.2: Non-dimensional measured mean inclined-wall velocity, U exp
i , as a

function of the non-dimensional theoretical inclined-wall velocity, U th
i , for the

experiments of Avicola & Huq (2002), Lentz & Helfrich (2002) and Whitehead
& Chapman (1986). The solid line identifies U exp

i = U th
i , while the dashed line

identifies the best linear fit given by 0.95 U th
i + 0.04 with a correlation of 0.86.

Figure 10.3 resumes the values of the ratio, U exp
i /U0, of the non-dimensional

measured mean inclined-wall velocity to the non-dimensional theoretical vertical-

wall velocity, as a function of H/ tan(α), where H is defined in (4.2b), for the

experiments of Avicola & Huq (2002), Lentz & Helfrich (2002) and Whitehead &

Chapman (1986) displayed in Figure 10.2. Data for the plume velocity are non-

dimensionalized by w0. The solid line in Figure 10.3 represents the theoretical

prediction according to (4.65). As above, the figure reveals a very good agreement

between the theory and the experimental data. In particular, the experimental

data points for the lower values of H/ tan(α) support the existence of the region

where Ui/U0 > 1, i.e a parameter region where the coastline inclination angle

leads to plumes that propagate faster than their vertical-wall counterparts.

In Section 9.2.2, it was discussed that agreement between the theory and the

experiments for the plume propagation velocity was better when non-dimensionalizing

the data for the plume length by the theoretical inclined-wall plume width, wi

(i.e by taking into account the topography in the non-dimensionalizing scheme),
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Figure 10.3: Ratio, U exp
i /U0, of the non-dimensional measured mean inclined-wall

velocity to the non-dimensional theoretical vertical-wall velocity, as a function of
H/ tan(α), for the experiments of Avicola & Huq (2002), Lentz & Helfrich (2002)
and Whitehead & Chapman (1986). The solid line represents the theoretical
prediction according to (4.65).

rather than by the theoretical vertical-wall plume width, w0. Figure 10.4 dis-

plays the values of the non-dimensional measured mean inclined-wall velocity,

(U exp
i )wi

, as a function of the non-dimensional theoretical inclined-wall velocity,

(U th
i )wi

, for the experiments of Avicola & Huq (2002), Lentz & Helfrich (2002)

and Whitehead & Chapman (1986) displayed in Figure 10.2. The solid line in

Figure 10.4 identifies (U exp
i )wi

= (U th
i )wi

, while the dashed line identifies the

best linear fit given by 1.04 (U th
i )wi

− 0.005 with a correlation of 0.98. Data are

non-dimensionalized by wi in Figure 10.4 thus (Ui)wi
= ui/(Ωwi). The agree-

ment between the theory from Chapter 4 and the experiments of Avicola & Huq

(2002), Lentz & Helfrich (2002) and Whitehead & Chapman (1986) is indeed

better when the plume length data are non-dimensionalized by wi rather than

by w0 (from a comparison between Figure 10.2 and Figure 10.4, and between the

slope values for the linear fits in Figure 10.2 and Figure 10.4 and their coefficient

of correlation).

From the discussion at the end of Section 9.2.2, one knows that if agreement

between experiments and theory for the plume propagation speed is found, there

will exist a relation of dependence between the non-dimensional measured mean

inclined-wall velocity and, the dimensionless parameters, I and h0/HD. Fig-
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Figure 10.4: Non-dimensional measured mean inclined-wall velocity, (U exp
i )wi

, as
a function of the non-dimensional theoretical inclined-wall velocity, (U th

i )wi
, for

the experiments of Avicola & Huq (2002), Lentz & Helfrich (2002) and Whitehead
& Chapman (1986). The solid line identifies (U exp

i )wi
= (U th

i )wi
, while the dashed

line identifies the best linear fit given by 1.04 (U th
i )wi

− 0.005 with a correlation
of 0.98.

ures 10.5(a)-(b), displaying the values of the non-dimensional measured mean

inclined-wall speed ,U exp
i , as a function of the dimensionless parameters, I and

h0/HD, respectively, for the experiments of Avicola & Huq (2002), Lentz & Hel-

frich (2002) and Whitehead & Chapman (1986) shows that the U exp
i values de-

pend on the I and h0/HD values (as expected due to the very good agreement

found between the theory from Chapter 4 and the experiments of Avicola & Huq

(2002), Lentz & Helfrich (2002) and Whitehead & Chapman (1986) for the plume

propagation speed). From Figures 10.5(a)-(b), the U exp
i values clearly decrease

as the I and h0/HD values increase. Then shallow and wide plumes are faster

than deep and narrow plumes (from Figure 10.5(a)) and surface-advected plumes

are faster than bottom-trapped plumes (from Figure 10.5(b)).

The question now is to understand why a very good agreement is found be-

tween the theoretical model developed in Chapter 4 and the experiments of Avi-

cola & Huq (2002), Lentz & Helfrich (2002) and Whitehead & Chapman (1986),

whereas a poor agreement is found between the theory from Chapter 4 and the

experiments presented in Chapter 9. Figures 10.6(a)-(b) and Figures 10.7(a)-(b)

summarize the values of the difference between the non-dimensional measured
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(a)

(b)

Figure 10.5: Non-dimensional measured mean inclined-wall speed, U exp
i , as a

function of (a) the dimensionless parameter, I, (b) the non-dimensional ambient
depth parameter, h0/HD, for the experiments of Avicola & Huq (2002), Lentz &
Helfrich (2002) and Whitehead & Chapman (1986).
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mean inclined-wall speed, U exp
i , and the non-dimensional predicted inclined-wall

speed, U th
i , as a function of the dimensionless parameter, I, the non-dimensional

ambient depth parameter, h0/HD, the horizontal and vertical Ekman numbers,

EkH and EkV , respectively, for the experiments presented in this study and for

the experiments of Avicola & Huq (2002), Lentz & Helfrich (2002) and Whitehead

& Chapman (1986). The solid line in Figures 10.6(a)-(b) and Figures 10.7(a)-(b)

identifies U exp
i = U th

i , i.e agreement between experiments and theory. Data in

Figures 10.6(a)-(b) and Figures 10.7(a)-(b) are non-dimensionalized by w0 thus

Ui = ui/(Ωw0).

From Figure 10.6(a), the dimensionless parameter I seems to have no influ-

ence on the difference between the theoretical and experimental plume velocities.

Figure 10.6(b) reveals that Lentz & Helfrich (2002) and Whitehead & Chap-

man (1986) used larger values for the non-dimensional ambient depth parameter,

h0/HD, than the present study. Similarly, Figure 10.7(b) shows that Lentz &

Helfrich (2002) employed larger values for the vertical Ekman number, EkV ,

than the present study. It seems from Figure 10.6(b) and Figure 10.7(b) that

agreement between experiments and theory for the plume propagation velocity

is found for experiments with very large h0/HD and EkV values.

In Chapter 7 and Chapter 9, it was found that for sufficiently large values

of the horizontal Ekman number, EkH , the experimental plume propagation

velocity was smaller than the theoretical plume propagation velocity, while for

very small EkH values (obtained in the large-scale study), the plumes in the

laboratory were much faster than the theoretical prediction. From Figure 10.7(a),

Avicola & Huq (2002), Lentz & Helfrich (2002) and Whitehead & Chapman

(1986) simulated coastal plumes with values for the horizontal Ekman number,

EkH , in the range for which agreement between the experiments presented in this

study and the inclined-wall theory was found. This result strengthens the results

from Sections 7.3, 7.5 and 9.2.2: the difference between the experiments and the

geostrophic theory for the plume propagation speed depends on the magnitude

of the lateral viscous forces.

Figure 10.8 displays a (h0/HD)-EkH diagram summarizing the parametric

locations where the plumes are found to be faster/slower than the theory, or to

have same speed than the theory. To build Figure 10.8, plumes in the labo-

ratory were considered slower than the theory when the difference between the

non-dimensional experimental and theoretical velocities was smaller than −0.25,

they were considered faster than the theory when the difference between the non-
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(a)

(b)

Figure 10.6: Difference between the non-dimensional measured mean inclined-
wall speed, U exp

i , and the non-dimensional predicted inclined-wall speed, U th
i ,

as a function of (a) the dimensionless parameter, I, (b) the non-dimensional
ambient depth parameter, h0/HD, for the large-scale and small-scale experiments
of this study, and for the experiments of Avicola & Huq (2002), Lentz & Helfrich
(2002) and Whitehead & Chapman (1986). The solid line on each figure identifies
U exp
i = U th

i .
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(a)

(b)

Figure 10.7: Difference between the non-dimensional measured mean inclined-
wall speed, U exp

i , and the non-dimensional predicted inclined-wall speed, U th
i , as

a function of (a) the horizontal Ekman number, EkH , (b) the vertical Ekman
number, EkV , for the large-scale and small-scale experiments of this study, and
for the experiments of Avicola & Huq (2002), Lentz & Helfrich (2002) and White-
head & Chapman (1986). The solid line on each figure identifies U exp

i = U th
i .
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Figure 10.8: (h0/HD)-EkH diagram displaying the parametric locations where
the plumes are found to be faster/slower than the theory, or to have same speed
than the theory.

dimensional experimental and theoretical velocities was larger than 0.25, other-

wise agreement between experiments and theory for the propagation speed was

considered to be found. From figure 10.8, the plumes faster than the theoretical

prediction are found for very low EkH values. For very low h0/HD values, the

plumes are slower than the theory for medium to large EkH values. The extent

of the EkH-interval for which agreement between the experiment and the theory

is met seems to increase as the h0/HD value increases.

Figure 10.9 displays the non-dimensional measured mean inclined-wall speed,

U exp
i , as a function of the horizontal Ekman number, EkH , for the experiments

presented in this study and for the experiments of Avicola & Huq (2002), Lentz

& Helfrich (2002) and Whitehead & Chapman (1986). Figures displaying the

non-dimensional measured mean inclined-wall speed, U exp
i , as a function of the di-

mensionless parameter, I, the non-dimensional ambient depth parameter, h0/HD,

and the vertical Ekman number, EkV , for the experiments presented in this study

and for the experiments of Avicola & Huq (2002), Lentz & Helfrich (2002) and

Whitehead & Chapman (1986) were omitted as they did not show anything new

from what was seen in Chapter 9. Figure 10.9 confirms the observations from

Section 9.2.2: the U exp
i value increases as the EkH value decreases. Thus the

plume propagation velocities are faster in a fluid system in which viscous forces
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are negligible, and get slower as the lateral viscous forces become important in

the fluid system.

Figure 10.9: Non-dimensional measured mean inclined-wall speed, U exp
i , as a

function of the horizontal Ekman number, EkH , for the large-scale and small-
scale experiments of this study and for the experiments of Avicola & Huq (2002),
Lentz & Helfrich (2002) and Whitehead & Chapman (1986).

10.2.2 Coastal current width

Figure 10.10 displays the measured inclined-wall width, wexpi , as a function of

the theoretical inclined-wall width, wthi , defined in (4.36), for the PIV small-

scale inclined-wall experiments of this study and for the experiments of Avicola

& Huq (2002) and Lentz & Helfrich (2002). The solid line on the figure identifies

wexpi = wthi , i.e agreement between experiments and theory, while the dashed line

identifies the best linear fit given by 0.95 wthi + 3.16 with a correlation of 0.9.

The overall agreement between the experiments displayed in Figure 10.10 and

the inclined-wall theoretical prediction for the plume width is found to be very

good.

Figure 10.11 summarizes the values for the non-dimensional plume width, Wi,

as a function of the non-dimensional ambient depth parameter, h0/HD, for the

PIV small-scale inclined-wall experiments and for the experiments of Avicola &

Huq (2002) and Lentz & Helfrich (2002). The data for the plume width in Fig-
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Figure 10.10: Measured inclined-wall width, wexpi , as a function of the theoretical
inclined-wall width, wthi , for the PIV small-scale inclined-wall experiments and
for the experiments of Avicola & Huq (2002) and Lentz & Helfrich (2002). The
solid line identifies wexpi = wthi , while the dashed line identifies the best linear fit
given by 0.95 wthi + 3.16 with a correlation of 0.9.

ure 10.11 are non-dimensionalized by the theoretical vertical-wall plume width,

w0, which is equivalent to the Rossby deformation radius. From Figure 10.11, de-

spite the data scatter, the plume width values increase as the values for the non-

dimensional ambient depth parameter, h0/HD, increase, thus bottom-trapped

coastal plumes are the widest.

Figures 10.12(a)-(b) display a summary of the values for the non-dimensional

plume width, (Wi)wi
, as a function of (a) the non-dimensional ambient depth

parameter, h0/HD, and (b) the horizontal Ekman number, EkH , respectively,

for the PIV small-scale vertical-wall and inclined-wall experiments and for the

experiments of Avicola & Huq (2002) and Lentz & Helfrich (2002). Data for the

plume width in Figures 10.12(a)-(b) are non-dimensionalized by the theoretical

inclined-wall width, wi, defined in (4.36). The solid line on the figures identifies

(Wi)wi
= 1, that is agreement between experiments and theory. Similarly to the

results found in Section 9.4, Figure 10.12a suggests that the value for the non-

dimensional plume width, (Wi)wi
, decreases as the value for the non-dimensional

ambient depth parameter, h0/HD, increases, and that agreement is found for

large h0/HD values. Although the great data scatter, Figure10.12b suggests that
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Figure 10.11: Summary of the non-dimensional plume width, Wi, as a function of
the non-dimensional ambient depth parameter, h0/HD, for the PIV small-scale
inclined-wall experiments and for the experiments of Avicola & Huq (2002) and
Lentz & Helfrich (2002).

the (Wi)wi
values increase as the EkH values increase and that the best agreement

between experiments and theory is found for small EkH values (except for plumes

with large h0/HD values for which agreement between experiments and theory

for the plume width seems to be found whatever is the EkH value). Therefore,

the geostrophic model predicts the best the plume width for bottom-trapped

coastal plumes whatever is the value of the horizontal Ekman number, and for

surface-advected plumes in a fluid system in which the lateral viscous forces are

small (low EkH values).

10.3 Comparison with the scaling of Lentz & Helfrich (2002)

In this section the scaling proposed by Lentz & Helfrich (2002) is compared to the

theoretical model developed in Chapter 4. Lentz & Helfrich (2002) considered

a gravity current propagating along a boundary with a uniform slope, α. They

assume the coastal current in geostrophic balance, and that in equilibrium the

depth where the front intersects the bottom is the same depth as the depth for

a gravity current flowing along a vertical wall.

They found that the total width, wp, of a gravity current flowing along an
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(a)

(b)

Figure 10.12: Summary of the non-dimensional plume width, (Wi)wi
, as a func-

tion of (a) the non-dimensional ambient depth parameter, h0/HD, and (b) the
horizontal Ekman number, EkH , respectively, for the PIV small-scale vertical-
wall and inclined-wall experiments and for the experiments of Avicola & Huq
(2002) and Lentz & Helfrich (2002). The solid line on the figures identifies
(Wi)wi

= 1, that is agreement between experiments and theory.
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inclined coastline is given by:

wp ∼
√
g′h0

f
+
h0

α
, (10.1)

and that the propagation speed of the coastal current nose is:

cp ∼
1

1√
g′h0

+ f
αg′
, (10.2)

where h0 is the theoretical depth, defined in (4.1(b)), for a plume flowing along

a vertical coastline. In their study, Lentz & Helfrich (2002) found very good

agreement between their experiments and their scaling theory when the coefficient

multiplying the scaling values for wp and cp was 1. In order to compare the scaling

of Lentz & Helfrich (2002) to the theory presented in Chapter 4, the scaling values

for wp and cp from (10.1) and (10.2), respectively, are therefore multiplied by 1.

10.3.1 Coastal current propagation velocity

Figures 10.13(a)-(b) display the measured mean inclined-wall speed, uexpi , as a

function of the theoretical inclined-wall speed, uthi , defined in (4.42), and the

theoretical inclined-wall speed, cp, of Lentz & Helfrich (2002), respectively, for

the small-scale experiments of this study and for the experiments of Avicola

& Huq (2002), Lentz & Helfrich (2002) and Whitehead & Chapman (1986).

Figures 10.14(a)-(b) display similar results than Figures 10.13(a)-(b) for the

large-scale experiments of this study. The solid line in Figure 10.13(a) and

Figure 10.14(a) identifies uexpi = uthi , i.e agreement between the experiments

and the theory of this study, while the solid line in Figure 10.13(b) and Fig-

ure 10.14(b) identifies uexpi = cp, i.e agreement between the experiments and the

theory of Lentz & Helfrich (2002). The dashed line in Figures 10.13(a)-(b) and

Figures 10.14(a)-(b) identifies the best linear fit given by 0.89 uthi + 0.08 with a

correlation of 0.75, 0.65 cp + 0.52 with a correlation of 0.66, 1.65 uthi + 0.35 with

a correlation of 0.73 and 1.17 cp + 2.13 with a correlation of 0.63, respectively. A

comparison between Figures 10.13(a)-(b) and Figures 10.14(a)-(b), and between

the slopes of the best fit lines in each figure reveal that agreement between exper-

iments and theory is best in the small-scale studies (Figures 10.13(a)-(b)) rather

than in the large-scale study (Figures 10.14(a)-(b)) for both theories. Despite

the theory of Lentz & Helfrich (2002) predicted the best the propagation speed

for the plumes from the large-scale study, the agreement between the large-scale



10. Comparison of the present theoretical and experimental results with other studies152

experiments and the theory is still quite poor. On the other hand, both theories

predicted quite well the propagation speed for the plumes from the small-scale

studies with a better agreement found with the theory from Chapter 4.

10.3.2 Coastal current width

Figure 10.15 displays the values of the measured inclined-wall width, wexpi , as a

function of the theoretical inclined-wall width, wp, of Lentz & Helfrich (2002), for

the PIV small-scale inclined-wall experiments and for the experiments of Avicola

& Huq (2002) and Lentz & Helfrich (2002). The solid line identifies wexpi = wp,

while the dashed line identifies the best linear fit given by 0.94 wp + 1.93 with a

correlation of 0.9. A comparison between Figure 10.10 and Figure 10.15 reveal

that while good agreement between experiments and theory for the plume width

is found for both theories, the best agreement is found for the theory of Lentz &

Helfrich (2002).

Figures 10.16(a)-(b) summarize the values of the non-dimensional plume width,

(Wi)wp , as a function of the non-dimensional ambient depth parameter, h0/HD,

and the horizontal Ekman number, EkH , respectively, for the PIV small-scale

vertical-wall and inclined-wall experiments and for the experiments of Avicola

& Huq (2002) and Lentz & Helfrich (2002). The solid line on the figures iden-

tifies (Wi)wp = 1, that is agreement between the experiments and the theory

of Lentz & Helfrich (2002). In Figures 10.16(a)-(b), the width data for the

plumes flowing along a sloping bottom were non-dimensionalized by the theoret-

ical inclined-wall width, wp, of Lentz & Helfrich (2002), while the width data for

the plumes flowing along the vertical-wall coastline were non-dimensionalized by

the Rossby deformation radius, RD =
√
g′h0/f , used by Lentz & Helfrich (2002).

Figures 10.16(a)-(b) confirm the results found in Section 10.2.2: the value for the

non-dimensional plume width decreases as the value for the non-dimensional am-

bient depth parameter, h0/HD, increases and the value for the horizontal Ekman

number,EkH , decreases. Agreement is found for small EkH values and for large

h0/HD values (whatever is the EkH value).

10.4 Comparison with oceanic observations

Oceanic observations are now compared to the theoretical model developed in

Chapter 4 and to the scaling of Lentz & Helfrich (2002). Parameters describing
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(a)

(b)

Figure 10.13: Measured mean inclined-wall speed, uexpi , as a function of (a) the
theoretical inclined-wall speed, uthi , defined in (4.42), and (b) the theoretical
inclined-wall speed, cp, of Lentz & Helfrich (2002), for the small-scale experiments
of this study and for the experiments of Avicola & Huq (2002), Lentz & Helfrich
(2002) and Whitehead & Chapman (1986). The solid line in the figures identifies
(a) uexpi = uthi and (b) uexpi = cp, while the dashed line identifies the best linear
fit given by (a) 0.89 uthi + 0.08 with a correlation of 0.75 and (b)0.65 cp + 0.52
with a correlation of 0.66.
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(a)

(b)

Figure 10.14: Measured mean inclined-wall speed, uexpi , as a function of (a) the
theoretical inclined-wall speed, uthi , defined in (4.42), and (b) the theoretical
inclined-wall speed, cp, of Lentz & Helfrich (2002), for the large-scale experiments
of this study. The solid line in the figures identifies (a) uexpi = uthi and (b) uexpi =
cp, while the dashed line identifies the best linear fit given by (a) 1.65 uthi + 0.35
with a correlation of 0.73 and (b)1.17 cp + 2.13 with a correlation of 0.63.
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Figure 10.15: Measured inclined-wall width, wexpi , as a function of the theoretical
inclined-wall width, wp, of Lentz & Helfrich (2002), for the PIV small-scale
inclined-wall experiments and for the experiments of Avicola & Huq (2002) and
Lentz & Helfrich (2002). The solid line identifies wexpi = wp, while the dashed
line identifies the best linear fit given by 0.94 wp + 1.93 with a correlation of 0.9.

some oceanic coastal currents are summarized in Table 10.1 and their values,

listed in order, are the bottom slope, α (◦), the Coriolis parameter, f (s−1), the

reduced gravity anomaly, g′ (m s−2), the flow rate at the source, q0 (m3 s−1), the

ambient ocean depth, HD (m), the theoretical vertical-wall plume depth, h0 (m),

the theoretical vertical-wall plume width, w0 (m), the observed plume width,

wfieldi (m), the observed alongshore velocity, ufieldi (m s−1), the dimensionless

parameter, I, the horizontal Ekman number, EkH , the vertical Ekman number,

EkV , the Reynolds number, Re, and the non-dimensional ambient depth param-

eter, h0/HD. From the eight buoyant outflow sources tabulated in Table 10.1, six

are river systems (Chesapeake, Columbia, Delaware, Gaspé, Rhine and Rio de la

Plata) and two are strait outflows (Soya and Tsugaru). The values for α, f , g′
and q0 in Table 10.1 are taken from the Table 1 of Avicola & Huq (2002). Three

of the river systems (Delaware, Rhine and Chesapeake) have been characterized

by a non-zero coastal wall depth, HC . This coastal wall depth, HC , has been

estimated at 10 m (Avicola & Huq (2002)). The ocean ambient depth, HD, for

these three river systems in Table 10.1 was then computed as HD = HC + αw0.

As the value of the plume height, h0, for these three river systems is equivalent

to the value of their coastal wall depth, HC , i.e 0.86 ≤ h0/HC ≤ 1.07, and
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(a)

(b)

Figure 10.16: Summary of the non-dimensional plume width, (Wi)wp , as a
function of (a) the non-dimensional ambient depth parameter, h0/HD, and (b)
the horizontal Ekman number, EkH , for the PIV small-scale vertical-wall and
inclined-wall experiments and for the experiments of Avicola & Huq (2002) and
Lentz & Helfrich (2002). The solid line on the figures identifies (Wi)wp = 1, that
is agreement between experiments and theory.
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in order to compare these three river systems with the theory from Chapter 4,

which was developed for a single inclined coastline (and not for a continental

shelf), their topography is assumed to be a single slope with angle α, tabulated

in Table 10.1. The values for the observed plume width and alongshore velocity,

wfieldi and ufieldi , respectively, listed in Table 10.1, are taken from Munchow &

Garvine (1993b) for the Delaware Plume, Framinan et al. (2008) for the Rio de la

Plata Estuary, Simpson et al. (1993) for the Rhine Plume, Lentz et al. (2003) for

the Chesapeake Plume, Hickey et al. (1998) (for the observed alongshore velocity

value) and Thomas & Weatherbee (2006) (for the observed plume width value)

for the Columbia Plume, Mertz et al. (1988) for the Gaspé Current, Matsuyama

et al. (2006) for the Soya Current and Ito et al. (2003) for the Tsugaru Current.

Figures 10.17(a)-(b) display the observed alongshore speed, ufieldi , as a func-

tion of the theoretical inclined-wall speed, uthi , defined in (4.42), and the theoreti-

cal inclined-wall speed, cp, of Lentz & Helfrich (2002), respectively, for the plumes

tabulated in Table 10.1. The solid line in the figures identifies ufieldi = uthi and

ufieldi = cp, respectively, while the dashed line identifies the best linear fit given

by 1.04 uthi +0.06, with a correlation of 0.79, and 0.48 cp+0.25, with a correlation

of 0.55, respectively. Data for the plume velocity are non-dimensionalized by w0.

Figure 10.17a reveals that the inclined-wall theory developed in Chapter4 pre-

dicts quite well the propagation velocity of the plumes tabulated in Table 10.1.

Agreement is not so good when comparing the propagation velocity of the plumes

with the scaling of Lentz & Helfrich (2002) (see Figure 10.17b).

Figure 10.18 summarizes the values of the ratio, U field
i /U0, of the non-dimensional

observed alongshore velocity, U field
i , to the non-dimensional theoretical vertical-

wall velocity, U0, as a function of H/ tan(α), for the plumes tabulated in Ta-

ble 10.1. The solid line on the figure represents the theoretical prediction ac-

cording to (4.65). Data for the plume velocity are non-dimensionalized by w0.

Similarly to the experimental results presented in Section 10.2.1, the oceanic data

points for the lower values of H/ tan(α) support the existence of the region where

Ui/U0 > 1, i.e a parameter region where the coastline inclination angle leads to

plumes that propagate faster than their vertical-wall counterparts.

Figures 10.19(a)-(b) show the observed width, wfieldi , as a function of the

theoretical inclined-wall width, wthi , defined in (4.36), and the theoretical inclined-

wall width, wp, of Lentz & Helfrich (2002), respectively, for the plumes tabulated

in Table 10.1. The solid line in the figures identifies wfieldi = wthi and wfieldi = wp,

respectively, while the dashed line identifies the best linear fit given by 0.85 wthi +
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Outflow Delaware Rio de la Plata Rhine Chesapeake
α 0.04 0.04 0.017 0.057
f 9.09× 10−5 7.27× 10−5 1.15× 10−4 8.7× 10−5

g′ 0.039 0.245 0.038 0.033
q0 16000 25000 19000 18000
HD 12.5 12.5 12.5 12.5
h0 8.64 3.85 10.72 9.74
w0 9029 18897 7850 9217

wfieldi 20000 38000 30000 5000

ufieldi 0.2 0.45 0.175a 0.5
I 0.002 0.001 0.003 0.002

EkH 1.35× 10−10 3.85× 10−11 1.41× 10−10 1.35× 10−10

EkV 1.47× 10−4 9.27× 10−4 7.56× 10−5 1.21× 10−4

Re 2.78× 109 9.74× 109 2.66× 109 2.77× 109

h0/HD 0.53 0.29 0.87 0.51

Outflow Columbia Gaspé Soya Tsugaru
α 0.206 0.687 0.16 1.089
f 1.05× 10−4 1.08× 10−4 1.02× 10−4 9.7× 10−5

g′ 0.118 0.078 0.03 0.03
q0 22000 60000 700000 1000000
HD 12.5 12.5 12.5 3
h0 6.26 12.89 68.99 80.42
w0 11573 13130 19947 22645

wfieldi 10000 20000 32500b 32500c

ufieldi 0.4d 0.65e 1.15f 0.9g

I 0.001 0.002 0.006 0.006
EkH 7.11× 10−11 5.37× 10−11 2.46× 10−11 2.01× 10−11

EkV 2.43× 10−4 5.57× 10−5 2.06× 10−6 1.59× 10−6

Re 5.27× 109 6.98× 109 1.52× 1010 1.87× 1010

h0/HD 0.15 0.08 1.24 0.19

Table 10.1: Parameters used in describing some oceanic coastal currents.

aufieldi has been averaged over [0.15; 0.2]
bwfield

i has been averaged over [30000; 35000]
cwfield

i has been averaged over [25000; 40000]
dufieldi has been averaged over [0.3; 0.5]
eufieldi has been averaged over [0.3; 1]
fufieldi has been averaged over [1; 1.3]
gufieldi has been averaged over [0.5; 1.3]
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(a)

(b)

Figure 10.17: Observed alongshore speed, ufieldi , as a function of (a) the theoreti-
cal inclined-wall speed, uthi , defined in (4.42), and (b) the theoretical inclined-wall
speed, cp, of Lentz & Helfrich (2002), for the plumes tabulated in Table 10.1. The

solid line in the figures identifies (a) ufieldi = uthi and (b) ufieldi = cp, while the
dashed line identifies the best linear fit given by (a) 1.04 uthi + 0.06 with a corre-
lation of 0.79 and (b)0.48 cp + 0.25 with a correlation of 0.55.
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Figure 10.18: Ratio, U field
i /U0, of the non-dimensional observed alongshore ve-

locity to the non-dimensional theoretical vertical-wall velocity, as a function of
H/ tan(α), for the plumes tabulated in Table 10.1. The solid line represents the
theoretical prediction according to (4.65).

6009, with a correlation of 0.67, and 0.54 wp + 11690, with a correlation of

0.55, respectively. From Figure 10.19, despite the theory developed in Chapter 4

predicts the best the inclined-wall width of the plumes listed in Table 10.1, the

agreement is not so good and plume width values are usually underestimated by

the theory.
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(a)

(b)

Figure 10.19: Observed width, wfieldi , as a function of (a) the theoretical inclined-
wall width, wthi , defined in (4.36), and (b) the theoretical inclined-wall width, wp,
of Lentz & Helfrich (2002), for the plumes tabulated in Table 10.1. The solid line
in the figures identifies (a) wfieldi = wthi and (b) wfieldi = wp, while the dashed
line identifies the best linear fit given by (a) 0.85 wthi + 6009 with a correlation
of 0.67 and (b)0.54 wp + 11690 with a correlation of 0.55.



CHAPTER 11

The effect of the ambient ocean depth on

vertical-wall coastal current evolution

This chapter attempts to address how the ambient ocean depth, HD, affects

the development of buoyant coastal currents flowing along a vertical coastline.

Experimental results for coastal currents flowing along a vertical wall with varying

the coastal wall depth, HD (that is the height of the ambient salt water, HSW ,

in the circular tank) are presented here.

11.1 Current length

Twenty five experiments investigating the effect of the ocean depth, HD, on the

nose propagation of a coastal current flowing along a vertical wall were carried

out and are listed in Appendix B, Tables B.1, B.2 and B.3.

Vertical-wall experiments with deep coastal currents were repeated with vary-

ing the coastal wall depth, HD. Results for the different currents were found to

be identical. Figure 11.1 displays the non-dimensional current length, L, as a

function of the dimensionless time, T , for three vertical-wall experiments with

equal rotation rate, Ω, equal flow rate, q0, equal reduced gravity, g′, but differ-

ent ambient ocean depth, HD. From Figure 11.1, decreasing the ambient ocean

depth, HD, does not affect the current nose propagation. Surprisingly, the cur-

rent propagation velocity is identical for a coastal plume flowing above a deep

abyss, i.e a surface-trapped plume, and a coastal plume in contact with the ocean

bottom, i.e a bottom-trapped plume.

Avicola & Huq (2002) distinguish between surface-advected plumes, for which

the value of the non-dimensional ambient depth parameter, h0/HD, is less than

162
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Figure 11.1: Non-dimensional current length, L, as a function of the dimension-
less time, T ,for three small-scale vertical-wall experiments with different ambient
ocean depth, HD.

0.2, and bottom-trapped plumes, for which the h0/HD value is greater than

0.8. From the discussion of their Figure 7, Avicola & Huq (2002) conclude that

there is a significant difference in the propagation speed between surface-advected

and bottom-trapped coastal currents, and that the current length data for the

surface-advected plumes collapse onto another when non-dimensionalized while

the current length data for the bottom-trapped plumes do not collapse. How-

ever, from the above discussion, no difference in the current propagation speed

between surface-advected and bottom-trapped plumes flowing along a vertical-

wall coastline was found and current length data were observed to collapse for

both surface-advected and bottom-trapped plumes, contradicting the conclusion

of Avicola & Huq (2002). Figure 11.2 displays the non-dimensional current

length, L, as a function of the dimensionless time, T , for the surface-advected

plumes of the small-scale experiments of Thomas & Linden (2007). The current

length data for the surface-advected plumes from the small-scale experiments

of Thomas & Linden (2007) do not collapse onto another as it is suggested by

Avicola & Huq (2002). Furthermore, the non-dimensional current length, L, for

the bottom-trapped plume, F , of Avicola & Huq (2002) is seen to collapse with

the non-dimensional current length, L, of the surface-advected plumes from the

small-scale inclined-wall experiments presented in this study (Figure 11.3), con-

tradicting again the conclusion of Avicola & Huq (2002). Therefore, it seems that
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the reason for the experiment F of Avicola & Huq (2002) not to collapse with

the other experiments does not result from the plume being bottom-trapped but

instead comes from the fact that the plume has a large I and EkH values.

Figure 11.2: Non-dimensional current length, L, as a function of the dimension-
less time, T , for the surface-advected plumes from the small-scale experiments of
Thomas & Linden (2007).

11.2 Current surface velocity

PIV experiments were carried out for only two combinations of the experimental

parameters Ω, g′ and q0, to produce two deep currents. For these two deep cases,

experiments were repeated with varying the ambient ocean depth, HD. In all

experiments, instabilities were observed along the coastal currents, making not

possible the current width measurements. The details of these experiments are

listed in the Tables D.1 and D.2 of Appendix D.

Figure 11.4 displays the alongshore velocity, u, as a function of the time, t,

measured at the alongshore distance downstream from the source, ds = 112.43 cm,

for two PIV vertical-wall experiments with equal rotation rate, Ω, equal flow rate,

q0, equal reduced gravity, g′, but different ambient ocean depth, HD. Figure 11.4a

shows a high degree of instabilities in the azimuthal component of the current

velocity, which suggests that the current position is oscillating radially along its

length. Figure 11.4b, on the other hand, shows a much smoother increase in the

current velocity, as well as a more stable radial current position. This observa-

tion is consistent with the results of Whitehead & Chapman (1986) who found
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Figure 11.3: Non-dimensional current length, L, as a function of the dimension-
less time, T , for the surface-advected plumes from the small-scale inclined-wall
experiments presented in this study and for the bottom-trapped experiment, F ,
of Avicola & Huq (2002).

that in the presence of a sloping wall, the gravity current becomes more laminar.

In these experiments, the coastal plumes are observed as well to become more

laminar when they interact with the bottom of the tank.

Figure 11.5 displays the alongshore velocity, u, as a function of the radial

position, measured at the alongshore distance downstream from the source, ds =

112.4 cm, and at the time t = 124.48 s, for three PIV vertical-wall experiments

with equal rotation rate, Ω, equal flow rate, q0, equal reduced gravity, g′, but dif-

ferent ambient ocean depth, HD. The value of the alongshore velocity is smaller

in the experiment with the smallest value for the ambient ocean depth parameter

but this is probably due to the presence of the strong instabilities in this ex-

periment. The across-shore distance occupied by the coastal current/instability

system is the same for the three experiments.

Therefore, the major difference observed on coastal plumes when decreasing

the ambient ocean depth is that currents become more laminar when interacting

with the tank bottom. Of course, this study is not complete and some more

experiments have to be performed to get results, in particular, for the current

width.
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(a) Experiment J02, h0/HD = 0.52.

(b) Experiment J11, h0/HD = 0.85.

Figure 11.4: Alongshore velocity, u (cm s−1), as a function of the time, t (s),
measured at the alongshore distance downstream from the source, ds = 112.4 cm,
for two PIV vertical-wall experiments with different ambient ocean depth, HD.
The color bar in each figure is for velocity (in cm s−1).
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Figure 11.5: Alongshore velocity, u, as a function of the radial position for three
PIV vertical-wall experiments with different ambient ocean depth, HD, measured
at the alongshore distance downstream from the source, ds = 112.4 cm, and at
the time t = 124.48 s.



Part V

Conclusion



CHAPTER 12

Conclusion

In the first part of this thesis, numerical simulations, conducted with the Regional

Ocean Modeling System (ROMS), and investigating the dynamics of gravity-

driven coastal currents flowing along a simple vertical-wall coastline, have been

described. Two complementary studies have been performed: one without ex-

plicit lateral viscosity (inviscid) and another using the molecular value of viscosity.

The purposes of the investigation are two-fold: first, to quantify departures from

the geostrophic theory of Thomas & Linden (2007), and second, to investigate

the internal dynamics of the developing plumes.

The model of Thomas & Linden (2007) assumes steady inviscid plumes prop-

agating along a vertical wall, invariance in the along-shore direction, geostrophic

equilibrium, and a dominant along-shore velocity which vanishes at the coast.

To assess these assumptions, results from the numerical studies have been com-

pared to the geostrophic model of Thomas & Linden (2007), to their small-scale

laboratory vertical-wall experiments, and to a complementary set of laboratory

vertical-wall experiments conducted at Warwick University (the latter using the

PIV method to better identify plume widths and surface velocity fields). The

kinematic properties (lengths, widths, velocities) of the experimental and numer-

ical plumes have been determined and compared. Dependences on the primary

non-dimensional parameters – the non-dimensional isopycnal slope, I, and the

horizontal Ekman number, EkH – have also been determined.

Upon release of the buoyant water in the numerical and laboratory exper-

iments, both an anti-cyclonic bulge growing in the vicinity of the estuary and

a coastal current flowing downstream of the bulge in the direction of Kelvin

wave propagation are found to develop. The rate of elongation of the plumes

in the inviscid numerical simulations typically exceeds the estimate given by the

169
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geostrophic theory, and approaches the best the rate of elongation of the plumes

produced in the laboratory experiments conducted at smallest horizontal Ekman

number. In contrast, the rate of elongation of the plumes in the viscous numerical

simulations duplicates quite well the rate of the elongation of the plumes in the

laboratory experiments at comparable horizontal Ekman number. During the

initial evolution of the plumes from the viscous numerical simulations, the plume

propagation rate is larger than the geostrophic prediction, then the plumes decel-

erate to finally propagate at nearly constant speed. The magnitude of the plume

deceleration is most important at the highest values of the horizontal Ekman

number. The discrepancies between the viscous numerical simulations (and thus

laboratory experiments) and the geostrophic model for the plume propagation

rate are the most significant when the lateral viscous forces are the largest (that

is, for high horizontal Ekman number). The dimensionless number, I (character-

izing the isopycnal slope) is also noticed to have an impact on plume propagation

speed: plumes with a large isopycnal slope (large I), that is plumes which are

deep and narrow, are observed to be slower than the predicted geostrophic ve-

locity.

The width of the plumes is observed to increase over the duration of each

experiment, and to follow a simple curve growing as t1/2. Agreement between

numerical simulation and PIV experiments is found for the plumes with small

horizontal Ekman number. The width of the plumes for the numerical simula-

tions and laboratory experiments at large horizontal Ekman number can only

be compared at early time as instabilities occur in these plumes and make the

width measurement unreliable at later time. Good agreement between the nu-

merical simulations and laboratory experiments is also found for the plume width

at large horizontal Ekman number. When quantifying the plume width with the

geostrophic width of Thomas & Linden (2007), best agreement is found at low

horizontal Ekman number and low isopycnal slope, that is for wide and shallow

plumes in a system in which lateral viscous forces are small. The plume depth

profile in the numerical simulations is observed to decrease along the wall only

in the final portion of the plume length, contradicting Thomas & Linden (2007)

who suggest a linear decrease for the plume depth along the coastal wall.

Maximum surface velocities have been measured and compared for the nu-

merical simulations and PIV experiments at a fixed distance downstream from

the source as a function of time. At early times, the maximum surface velocity

is extracted from the plume nose and at a later time, it is extracted from the
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coastal plume. In the nose region, the maximum surface velocities are the high-

est in the numerical simulations and exceed the theoretical prediction by a factor

of about 2. By contrast, in the laboratory experiments, the maximum surface

velocities are the lowest in the nose and are much slower than the geostrophic

velocity. These differences are suggested to have arisen from differences in the

buoyancy injection mechanisms employed in the laboratory experiments and nu-

merical simulations. Maximum surface velocities of the numerical simulations

compare quite well with the maximum surface velocities of the PIV experiments

at small horizontal Ekman number inside the coastal plume (not at the nose).

From examination of the maximum velocity in the numerical simulations at dif-

ferent vertical levels, the geostrophic velocity given by the theory is not reached

at the surface but instead below the surface.

The internal dynamics of the plumes is examined by producing cross-plume

and along-plume momentum balances. The numerical plumes are found to rapidly

attain geostrophic balance with a maximum velocity in the plume greater than

the theoretically expected geostrophic velocity. This is in agreement with the

observed maximum surface velocities in the numerical and PIV experiments. In

disagreement with the theoretical assumptions, the along-shore velocity in the

numerical simulations does not vanish at the wall (especially in the inviscid nu-

merical simulations in which the along-shore velocity reaches its maximum at

the coastal wall). Instabilities are observed to develop along the plume edge for

some experimental parameter combinations. The formation of the instabilities

observed in the present experiments depends on the magnitude of the horizontal

Ekman number and the dimensionless parameter, I, characterizing the isopycnal

slope. Values of I greater than 0.3 generally produce instabilities in the buoyant

outflow. The instabilities are expected to be predominantly baroclinic as plumes

with large I values are deep and narrow, and then have enough potential energy

(which is the energy source of baroclinic instabilities) available to be released into

the instability process. Furthermore, to strengthen this result, it has been shown

that the unstable experiments presented in this study satisfy the two criteria

of Griffiths & Linden (1981b) to have baroclinic instabilities, that is unstable

plumes have the square of the ratio of the internal Rossby radius of deformation

to the horizontal length scale of the flow larger than 1, and the fraction of the

total fluid depth occupied by the layer inside the front larger than 0.1.

The rate of mixing in the buoyant plumes, estimated from the rate of produc-

tion of water of intermediate density, does not appear to depend importantly on
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whether the plumes were stable or unstable. However, the total amount of mixing

undergone in a single experiment is much greater for the unstable experiments.

The two results are reconciled by noting that the viscous unstable experiments

occupy a longer elapsed time.

Overall, the theory of Thomas & Linden (2007) is found to best reproduce the

coastal currents with the weakest viscous forces (small horizontal Ekman number

in the small-scale study), but substantial departures from the theory occur as the

viscous forces magnitude increases. When combining the results of the first part

of this thesis, the coastal currents are found to be wider and slower than the

theory when the viscous forces are the greatest in the fluid system, while the

coastal plumes are faster than the theoretical prediction when the viscous forces

are the most negligible (as it is the case in the inviscid numerical simulations).

The second part of this thesis is concerned with the dynamics of gravity-

driven coastal currents propagating along a more realistic inclined-wall coastline.

The geostrophic model of Thomas & Linden (2007) has been extended to in-

clined coastlines. Similarly toYankovsky & Chapman (1997) and Lentz & Hel-

frich (2002), the depth for a plume flowing along an inclined coastline has been

assumed to be the same depth as the depth for a plume flowing along a vertical-

wall coastline. The extended model for sloping walls predicts that plumes prop-

agating along an inclined wall do not necessarily slow down compare to plumes

flowing along a vertical wall, they can also be faster or propagate at same speed

than vertical-wall plumes. The predictions of the generalized model have been

compared to two complementary experimental data sets: one large-scale study

conducted in the Trondheim Coriolis facility and one small-scale study performed

at Warwick University (the latter using the PIV method to better identify plume

widths and surface velocity fields). In addition, experimental data for the propa-

gation velocity and the width of the plumes flowing along inclined coastlines from

the studies of Avicola & Huq (2002), Whitehead & Chapman (1986) and Lentz

& Helfrich (2002), and from oceanic observations, have also been compared to

the extended geostrophic model and to the scaling of Lentz & Helfrich (2002).

Dependences on the primary non-dimensional parameters – the non-dimensional

isopycnal slope, I, the horizontal Ekman number, EkH , and the non-dimensional

ambient depth parameter, h0/HD – have also been determined.

Similarly to plumes flowing along a vertical coastline, upon release of fresh-

water along an inclined coastline, both an anti-cyclonic bulge growing in the

vicinity of the estuary and a coastal current flowing downstream of the bulge
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in the direction of Kelvin wave propagation are found to develop. Contrarily to

vertical-wall plumes, there is a trend for the gyre position to slightly shift just

upstream of the source. From experimental observations, plumes propagating

along an inclined coastline can propagate slower than plumes flowing along a

vertical coastline. However, in some laboratory experiments, no difference at all

on the whole evolution of the coastal current can be observed when introducing

an inclined coastline. Equally, during some experiments, coastal plumes are ob-

served to propagate faster over an inclined wall rather than over a vertical wall.

These two latter observations contradict the results of Whitehead & Chapman

(1986) who find that a coastal current flowing over a sloping wall slows down

during the experiment.

A comparison of the inclined-wall experiments from this study for the plume

propagation velocity with the prediction of the extended model reveals a quite

poor agreement. The discrepancy between the experimental and theoretical

inclined-wall plume velocity is seen to depend on the horizontal Ekman number

magnitude: for large values of the horizontal Ekman number (values obtained

in the small-scale study), the plumes in the laboratory are slower than the the-

oretical prediction, while for very low values of the horizontal Ekman number

– thus large values of the Reynolds number (values obtained in the large-scale

study), the plumes in the laboratory are faster than the theoretical prediction.

Generally, the plumes with very low horizontal Ekman number (thus with large

Reynolds number) are observed to propagate at constant speed. As the horizon-

tal Ekman number value increases, the plumes are seen to slow down, to finally

propagate at a constant speed slower than the theoretical prediction, and the

magnitude of the plume deceleration is found to be the most important at the

highest values of the horizontal Ekman number (similar results have been ob-

tained in the vertical-wall study). This result is strengthened by the very good

agreement found for the plume propagation velocity between the extended model

and the experiments of Avicola & Huq (2002), Whitehead & Chapman (1986)

and Lentz & Helfrich (2002) which simulated inclined-wall plumes in the range

of the horizontal Ekman number for which the agreement is found between the

experiments from this study and the extended theoretical model. The agreement

between experiments and theory seems also to depend on the non-dimensional

ambient depth parameter: agreement is always found for the plumes with very

large h0/HD values, thus for the plumes the most in contact with the sloping

wall (bottom-trapped plumes). The extended model has also been compared to
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oceanic observations and it turns out to predict quite well the propagation speed

of these oceanic plumes.

Data from the large-scale laboratory study at the Coriolis facility at Trond-

heim reveal that the plume depth at which the interface between the coastal

plume and the ambient water intersects the inclined coastline is best predicted

by the theoretical depth of a plume flowing along a vertical wall, predicted by

the model of Thomas & Linden (2007). The data for the plume width from

the small-scale inclined-wall experiments presented in this study follow a single

curve growing as t1/2 and collapse with the small-scale vertical-wall plume width

data (except for the two inclined-wall experiments with the largest value for the

non-dimensional ambient depth parameter which expand the furthest offshore).

A good agreement is found between the small-scale experiments of this study,

the experiments of Avicola & Huq (2002) and Lentz & Helfrich (2002), and the

extended model for the plume width. The values of the width for the plumes

flowing along an inclined coastline increase as the values of the non-dimensional

ambient depth parameter increase. Thus the bottom-trapped plumes are the

widest. Best agreement between the experiments and the theory for the plume

width is found for the plumes with large non-dimensional ambient depth param-

eter and with small horizontal Ekman number, that is for strong bottom-trapped

plumes (whatever is the value of the horizontal Ekman number), and for weak

bottom-trapped and surface-advected plumes in a fluid system with weak lateral

viscous forces. Weak bottom-trapped and surface-advected plumes (small h0/HD

values) in a fluid system with large viscous forces (large EkH values) are wider

than the theoretical prediction.

The scaling theory of Lentz & Helfrich (2002) for plumes flowing along an

inclined coastline has also been compared to the extended theory, to the inclined-

wall experiments presented in this study and to the experiments of Avicola & Huq

(2002), Whitehead & Chapman (1986) and Lentz & Helfrich (2002). Similarly to

the extended model, a poor agreement is found between the predicted propagation

speed of Lentz & Helfrich (2002) and the measured plume propagation speed in

the large-scale experiments, while a good agreement is found between the four

small-scale studies and the scaling theory of Lentz & Helfrich (2002) for the plume

propagation speed. The extended model presented in this study agrees the best

with the four small-scale experimental studies for the plume propagation speed

while the scaling theory of Lentz & Helfrich (2002) compares the best with the

small-scale experimental studies for the plume width.
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A last part briefly investigates the impact the bottom of the tank can have

on the evolution of a coastal current flowing along a vertical wall. A set of

experiments have shown that when the non-dimensional ambient depth param-

eter increases (therefore when the depth of the ambient water in the tank is

reduced), the propagation speed for a coastal current flowing along a vertical

coastline does not change. Furthermore, it has been seen that the rate of elon-

gation for a bottom-trapped plume can collapse with the rate of elongation for a

surface-advected plume, contradicting the conclusion of Avicola & Huq (2002).

In agreement with Whitehead & Chapman (1986), coastal currents are observed

to become more laminar when they interact with the ocean bottom. The plume

width could not be studied in this last part as the presence of instabilities in the

coastal currents made the width measurements unreliable.

The main unexpected result for the plumes flowing along an inclined coastline

is that a coastal current flowing over an inclined wall can be slower than a plume

flowing over a vertical wall, as concluded Whitehead & Chapman (1986), and

can also be faster or propagate at same speed than a vertical-wall plume (result

predicted by the extended model and confirmed by experimental observations).

Another important result is that, whether the topography is a sloping wall or

a vertical wall coastline, the lateral viscous forces play an important role in the

coastal current evolution. Indeed, the geostrophic model of Thomas & Linden

(2007) for a vertical coastline and the extended model presented in this study

for a sloping wall predicts the best the experiments with low horizontal Ekman

numbers (for the plume propagation speed and width). When the magnitude

of the viscous forces increases (large EkH values), the plumes, in both studies

(vertical and inclined walls), are seen to slow down to finally propagate at a

constant speed smaller than the geostrophic velocity, and to be larger than the

predicted width. The rate of deceleration of the plumes, in both studies, is

observed to be the most important at largest horizontal Ekman numbers. On

the other hand, the coastal currents with a very low horizontal Ekman number,

therefore with a large Reynolds number, produced in the large-scale study only,

propagate at a constant speed, faster than the geostrophic prediction. When

the viscous forces become significant in the fluid system, that is in the small-

scale study mainly, viscosity must provide a nearly constant decelerating force to

make the flow propagates slower than the theory, while in the large-scale study,

turbulence turns out to be important (large Reynolds number) and must play

a role in the discrepancy between the measured velocity and the geostrophic
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prediction.

Grégorio et al. (2011) examined the potential role of the viscous forces by a

slight modification of the theory proposed by Thomas & Linden (2007), retain-

ing many of their original assumptions – i.e., x-invariant, rotationally dominated,

steady flow – but introducing molecular viscous forces in the cross-plume direc-

tion. Grégorio et al. (2011) obtained that the velocity discrepancy is proportional

to the square root of the horizontal Ekman number. However, Grégorio et al.

(2011) did not consider the case of very low values for the horizontal Ekman num-

ber (thus plumes with large Reynolds number), obtained in larger-scale facilities.

Hence the geostrophic theory needs some further considerations to predict better

experiments with very low horizontal Ekman number (large Reynolds number).

In addition, as it has been discussed, some experiments (usually with quite large

horizontal Ekman number) have been seen to accelerate at the start of the ex-

periments, then to slow down to finally propagate at constant velocity. Temporal

variations seems also to be important during the first stage of the experiments,

and thus, need to be considered in the theory.

In the theoretical chapter of this thesis, the depth for a coastal current flowing

over an inclined wall has been found to be different from the depth of a coastal

current flowing over a vertical wall. However, experimental observations have

showed that the depth of a plume flowing over a sloping bottom is best predicted

by the theoretical vertical-wall plume depth of Thomas & Linden (2007), it is

why it has been assumed in the theory presented in this study that the depth

for a coastal current flowing over an inclined wall is supposed to be equal to the

depth of a coastal current flowing over a vertical wall. In the future, it would

be interesting to compare the theory and the experimental results presented here

with a theory considering that the depth for a plume flowing over an inclined

wall would be defined as in (4.30). Lastly, and in order to approach a real world

situation, it would be interesting to study the dynamics of a coastal plume when

the freshwater discharge is varied during the experiments and when a rough

topography is introduced to reproduce ocean coastline irregularities.
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APPENDIX A

Appendix A

The values of the parameters from Tables A.1 - A.4, listed in order, are the bot-

tom slope, α (◦), the Coriolis parameter, f (s−1), the reduced gravity anomaly,

g′ (cm s−2), the flow rate, q0 (cm3 s−1), the ambient ocean depth, HD (cm), the

theoretical current depth, h0 (cm), the theoretical current width, w0 (cm), the

dimensionless parameter, I, the horizontal Ekman number, EkH , the vertical Ek-

man number, EkV , the Reynolds number, Re, and the non-dimensional ambient

depth parameter, h0/HD.
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Exp. L1AT L2AT L3AT L4T L5T L6T
α 90 90 90 90 90 90
f 2 2 2 2 3 3
g′ 2.03 6.15 16.17 31.8 6.14 16.23
q0 10 10 10 10 10 10
HD 10.4 10.4 10.4 10.5 11.1 11.1
h0 4.44 2.55 1.57 1.12 3.13 1.92
w0 2.12 2.8 3.57 4.22 2.07 2.63
I 1.036 0.533 0.298 0.199 0.8 0.447

EkH 1.11× 10−3 6.38× 10−4 3.93× 10−4 2.8× 10−4 7.82× 10−4 4.81× 10−4

EkV 2.54× 10−4 7.69× 10−4 2.02× 10−3 3.98× 10−3 3.41× 10−4 9.02× 10−4

Re 338 588 954 1337 480 780
h0/HD 0.43 0.25 0.15 0.11 0.28 0.17

Exp. L7T L8T L9T L10T L11T L12T
α 90 90 90 90 90 90
f 3 3 5 5 5 5
g′ 31.27 2 6.13 15.98 31.85 2
q0 10 10 10 10 10 10
HD 11.1 11.1 13.4 13.4 13.4 13.4
h0 1.39 5.48 4.04 2.5 1.77 7.07
w0 3.1 1.56 1.41 1.79 2.12 1.06
I 0.301 1.568 1.335 0.751 0.497 2.614

EkH 3.46× 10−4 1.37× 10−3 1.01× 10−3 6.25× 10−4 4.43× 10−4 1.77× 10−3

EkV 1.74× 10−3 1.11× 10−4 1.23× 10−4 3.2× 10−4 6.37× 10−4 4× 10−5

Re 1083 274 371 600 847 212
h0/HD 0.12 0.49 0.3 0.19 0.13 0.53

Exp. L13T L14T L15T L16T L17T L18T
α 90 90 90 90 90 90
f 1 1 1 1 1 1
g′ 6.11 16.07 31.82 2.03 6.14 16.04
q0 10 10 10 10 20 20
HD 10.2 10.2 10.2 10.2 10.2 10.2
h0 1.81 1.12 0.79 3.14 2.55 1.58
w0 4.7 5.99 7.1 3.57 5.6 7.12
I 0.268 0.15 0.099 0.518 0.306 0.172

EkH 4.52× 10−4 2.79× 10−4 1.98× 10−4 7.85× 10−4 3.19× 10−4 1.97× 10−4

EkV 3.06× 10−3 8.04× 10−3 1.59× 10−2 1.02× 10−3 1.54× 10−3 4.01× 10−3

Re 829 1345 1892 478 1175 1900
h0/HD 0.18 0.11 0.08 0.31 0.25 0.15

Table A.1: Parameters of the small-scale experiments of Thomas & Linden
(2007).
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Exp. L19T L20T L21T L22T L23T L24T
α 90 90 90 90 90 90
f 1 1 2 2 2 2
g′ 31.9 2.02 6.12 15.94 31.78 1.98
q0 20 20 20 20 20 20
HD 10.2 10.2 10.6 10.6 10.6 10.6
h0 1.12 4.45 3.62 2.24 1.59 6.36
w0 8.45 4.24 3.33 4.23 5.02 2.51
I 0.114 0.597 0.614 0.346 0.229 1.208

EkH 1.4× 10−4 5.56× 10−4 4.52× 10−4 2.8× 10−4 1.98× 10−4 7.95× 10−4

EkV 7.98× 10−3 5.05× 10−4 3.83× 10−4 9.96× 10−4 1.99× 10−3 1.24× 10−4

Re 2679 674 830 1339 1891 472
h0/HD 0.11 0.44 0.34 0.21 0.15 0.6

Exp. L25T L26T L27T L28T L29T L30T
α 90 90 90 90 90 90
f 3 3 3 3 5 5
g′ 6.04 15.86 31.58 1.96 6.35 16.15
q0 20 20 20 20 20 20
HD 11.3 11.3 11.3 11.8 13.3 13.3
h0 4.46 2.75 1.95 7.82 5.61 3.52
w0 2.45 3.11 3.7 1.85 1.69 2.13
I 0.928 0.520 0.344 1.824 1.501 0.858

EkH 5.57× 10−4 3.44× 10−4 2.44× 10−4 9.78× 10−4 7.02× 10−4 4.4× 10−4

EkV 1.68× 10−4 4.41× 10−4 8.77× 10−4 5.44× 10−5 6.35× 10−5 1.62× 10−4

Re 673 1091 1539 383 535 852
h0/HD 0.39 0.24 0.17 0.66 0.42 0.26

Exp. L31T L32T L33T L34T L35T L36T
α 90 90 90 90 90 90
f 5 5 1 1 1 1
g′ 31.74 2.28 6.19 16.04 31.74 2.26
q0 20 20 28.12 28.12 28.12 28.12
HD 13 13.3 10.2 10.2 10.2 10.2
h0 2.51 9.37 3.01 1.87 1.33 4.99
w0 2.52 1.31 6.11 7.75 9.19 4.75
I 0.572 2.776 0.326 0.184 0.122 0.597

EkH 3.14× 10−4 1.17× 10−3 2.68× 10−4 1.66× 10−4 1.18× 10−4 4.43× 10−4

EkV 3.17× 10−4 2.28× 10−5 1.1× 10−3 2.85× 10−3 5.64× 10−3 4.02× 10−4

Re 1195 320 1399 2253 3169 846
h0/HD 0.19 0.7 0.18 0.31 0.13 0.49

Table A.2: Parameters of the small-scale experiments of Thomas & Linden
(2007).
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Exp. L37T L38T L39T L40T L41T L42T
α 90 90 90 90 90 90
f 2 2 2 2 3 3
g′ 6.23 16.04 31.5 2.23 6.22 16.13
q0 28.12 28.12 28.12 28.12 28.12 28.12
HD 10.6 10.6 10.6 10.6 11.3 11.3
h0 4.25 2.65 1.89 7.1 5.21 3.23
w0 3.64 4.61 5.46 2.81 2.68 3.4
I 0.65 0.369 0.246 1.205 0.976 0.551

EkH 3.78× 10−4 2.35× 10−4 1.68× 10−4 6.31× 10−4 4.63× 10−4 2.88× 10−4

EkV 2.77× 10−4 7.13× 10−4 1.4× 10−3 9.91× 10−5 1.23× 10−4 3.19× 10−4

Re 993 1593 2232 594 810 1304
h0/HD 0.4 0.25 0.18 0.67 0.46 0.29

Exp. L43T L44T L45T L46T L47T L48T
α 90 90 90 90 90 90
f 3 3 5 5 5 5
g′ 31.66 2.28 6.32 16.14 31.38 2.39
q0 28.12 28.12 28.12 28.12 28.12 28.12
HD 11.3 11.3 13.2 13.3 13.3 13.3
h0 2.31 8.6 6.67 4.17 2.99 10.85
w0 4.03 2.09 1.84 2.32 2.74 1.44
I 0.368 1.783 1.612 0.918 0.616 2.889

EkH 2.05× 10−4 7.65× 10−4 5.93× 10−4 3.71× 10−4 2.66× 10−4 9.64× 10−4

EkV 6.25× 10−4 4.5× 10−5 4.5× 10−5 1.15× 10−4 2.23× 10−4 1.7× 10−5

Re 1827 490 632 1011 1409 389
h0/HD 0.2 0.76 0.51 0.31 0.23 0.82

Exp. L49T L50T L51T L52T L53T L54T
α 90 90 90 90 90 90
f 1 1 1 1 2 2
g′ 6.25 16.07 31.48 2.27 6.27 16.12
q0 3.18 3.18 3.18 3.18 3.18 3.18
HD 10.3 10.3 10.4 10.3 10.6 10.7
h0 1.01 0.63 0.45 1.67 1.42 0.89
w0 3.55 4.5 5.32 2.76 2.11 2.68
I 0.21 0.119 0.08 0.385 0.419 0.238

EkH 7.93× 10−4 4.95× 10−4 3.53× 10−4 1.32× 10−3 1.12× 10−3 6.98× 10−4

EkV 9.83× 10−3 2.53× 10−2 4.95× 10−2 3.57× 10−3 2.46× 10−3 6.34× 10−3

Re 473 758 1061 285 335 537
h0/HD 0.1 0.06 0.04 0.16 0.13 0.08

Table A.3: Parameters of the small-scale experiments of Thomas & Linden
(2007).
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Exp. L55T L56T L57T L58T L59T L60T
α 90 90 90 90 90 90
f 2 2 3 3 3 3
g′ 31.84 2.25 6.37 15.91 30.91 2.25
q0 3.18 3.18 3.18 3.18 3.18 3.18
HD 10.7 10.7 11.1 11.4 11.1 11.3
h0 0.63 2.38 1.73 1.1 0.79 2.91
w0 3.17 1.64 1.57 1.97 2.32 1.21
I 0.158 0.775 0.622 0.359 0.241 1.162

EkH 4.97× 10−4 1.87× 10−3 1.36× 10−3 8.61× 10−4 6.18× 10−4 2.29× 10−3

EkV 1.25× 10−2 8.84× 10−4 1.11× 10−3 2.78× 10−3 5.4× 10−3 3.93× 10−4

Re 755 201 276 436 607 164
h0/HD 0.06 0.22 0.16 0.1 0.07 0.26

Exp. L61T L62T L63T L64T L65T L66T
α 90 90 90 90 90 90
f 5 5 5 5 5 1
g′ 6.29 15.85 31.45 2.22 86.45 86.25
q0 3.18 3.18 3.18 3.18 20 20
HD 13.4 13.4 13.4 13.3 13.3 10.2
h0 2.25 1.42 1.01 3.78 1.52 0.68
w0 1.06 1.34 1.59 0.82 3.24 10.84
I 1.045 0.6 0.398 1.953 0.313 0.063

EkH 1.77× 10−3 1.11× 10−3 7.91× 10−4 2.98× 10−3 1.9× 10−4 8.51× 10−5

EkV 3.96× 10−4 9.97× 10−4 1.98× 10−3 1.4× 10−4 8.65× 10−4 2.16× 10−2

Re 212 337 474 126 1972 4405
h0/HD 0.17 0.11 0.08 0.28 0.11 0.07

Table A.4: Parameters of the small-scale experiments of Thomas & Linden
(2007).
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Appendix B

The values of the parameters from Tables B.1 - B.4, listed in order, are the bot-

tom slope, α (◦), the Coriolis parameter, f (s−1), the reduced gravity anomaly,

g′ (cm s−2), the flow rate, q0 (cm3 s−1), the ambient ocean depth, HD (cm), the

theoretical current depth, h0 (cm), the theoretical current width, w0 (cm), the

dimensionless parameter, I, the horizontal Ekman number, EkH , the vertical Ek-

man number, EkV , the Reynolds number, Re, and the non-dimensional ambient

depth parameter, h0/HD.
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Exp. SW25 SW26 SW27 SW28 SW29 SW30
α 90 90 90 90 90 90
f 3.05 3 2.99 3.01 0.98 3
g′ 3 3.01 7.58 18.72 18.77 3.01
q0 20.15 20.33 20.33 20.33 20.33 20.03
HD 5.6 5.7 5.6 5.7 5.45 4.3
h0 6.4 6.36 4 2.6 1.46 6.32
w0 2.03 2.06 2.6 3.25 7.53 2.05
I 1.438 1.413 0.811 0.475 0.154 1.412

EkH 7.94× 10−4 7.83× 10−4 4.93× 10−4 3.15× 10−4 1.79× 10−4 7.89× 10−4

EkV 8× 10−5 8.24× 10−5 2.08× 10−4 5.07× 10−4 4.79× 10−3 8.33× 10−5

Re 472 479 761 1192 2091 475
h0/HD 1.14 1.12 0.72 0.45 0.27 0.47

Exp. SW31 SW32 SW33 SW34 SW35 SW37
α 90 90 90 90 90 90
f 3 1 1 3 2.04 3
g′ 7.62 3.01 2.92 3.01 3.02 3
q0 20.03 20.03 20.19 28.11 28.11 28.11
HD 4.4 4.4 2.3 12.4 6.9 5.9
h0 3.97 3.65 3.71 7.48 6.16 7.5
w0 2.59 4.69 4.67 2.24 2.99 2.24
I 0.807 0.47 0.478 1.508 1.023 1.512

EkH 4.96× 10−4 4.55× 10−4 4.6× 10−4 6.65× 10−4 5.48× 10−4 6.67× 10−4

EkV 2.12× 10−4 7.51× 10−4 7.29× 10−4 5.96× 10−5 1.29× 10−4 5.93× 10−5

Re 757 824 816 563 685 562
h0/HD 0.9 0.83 1.61 0.6 0.89 1.27

Exp. SW38 SW39 SW40 SW41 SW42 SW43
α 90 90 90 90 90 90
f 2.03 2.03 3.01 1 2.01 2.03
g′ 3 3 3 3.01 3 3.07
q0 19.95 3.19 28.11 19.95 28.11 19.95
HD 6.1 6.1 9 3.85 3 3.1
h0 5.2 2.08 7.51 3.67 6.13 5.13
w0 2.75 1.74 2.23 4.63 3.02 2.77
I 0.957 0.661 1.518 0.476 1.012 0.941

EkH 6.52× 10−4 1.63× 10−3 6.68× 10−4 4.59× 10−4 5.45× 10−4 6.43× 10−4

EkV 1.82× 10−4 1.14× 10−3 5.88× 10−5 7.34× 10−4 1.33× 10−4 1.87× 10−4

Re 575 230 561 816 688 583
h0/HD 0.85 0.34 0.83 0.95 2.04 1.66

Table B.1: Parameters of the small-scale experiments conducted at Warwick.
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Exp. SW44 SW45 SW46 SW47 SW48 SW49
α 90 90 90 90 90 90
f 1.01 3.01 2.04 0.99 2.03 3.02
g′ 3.01 3 2.99 3 3 3.01
q0 19.95 28.11 19.95 19.95 28.11 28.11
HD 3.2 4.1 8.9 8.35 10.45 10.55
h0 3.67 7.52 5.21 3.62 6.16 7.5
w0 4.63 2.23 2.74 4.72 3 2.23
I 0.476 1.52 0.961 0.465 1.021 1.517

EkH 4.59× 10−4 6.69× 10−4 6.53× 10−4 4.54× 10−4 5.48× 10−4 6.67× 10−4

EkV 7.34× 10−4 5.87× 10−5 1.8× 10−4 7.72× 10−4 1.3× 10−4 5.89× 10−5

Re 816 561 574 826 684 562
h0/HD 1.15 1.83 0.59 0.43 0.59 0.71

Exp. SW50 S4 S5 S6 S7 S8
α 90 59.2 59.2 59.2 59.2 59.2
f 2.02 1.01 3.03 3.02 0.98 0.99
g′ 3.06 3 3 3.03 7.59 7.47
q0 19.91 3.11 20.1 3.11 3.11 20.1
HD 6.1 3.01 2.11 1.33 3.88 6.13
h0 5.12 1.45 6.37 2.49 0.9 2.31
w0 2.78 2.91 2.04 1.29 3.76 5.93
I 0.937 0.328 1.428 0.974 0.183 0.27

EkH 6.43× 10−4 1.16× 10−3 7.93× 10−4 2× 10−3 7.21× 10−4 2.87× 10−4

EkV 1.89× 10−4 4.71× 10−3 8.13× 10−5 5.35× 10−4 1.27× 10−2 1.9× 10−3

Re 583 322 473 187 520 1306
h0/HD 0.84 0.48 3.02 1.87 0.23 0.38

Exp. S9 S10 S13 S14 SB1 SB11
α 59.2 59.2 59.2 59.2 59.2 59.2
f 3 3.01 0.99 3.01 2.98 1
g′ 7.53 7.55 18.68 18.52 3.07 3.06
q0 3.11 20.1 3.11 3.11 28.12 3.27
HD 1.68 2.67 4.85 2.1 2.33 3.08
h0 1.57 4 0.57 1.01 7.39 1.46
w0 1.62 2.58 4.69 2.03 2.26 2.98
I 0.56 0.815 0.107 0.328 1.484 0.325

EkH 1.26× 10−3 4.98× 10−4 4.61× 10−4 8.08× 10−4 6.57× 10−4 1.12× 10−3

EkV 1.35× 10−3 2.08× 10−4 3.09× 10−2 3.29× 10−3 6.13× 10−5 4.65× 10−3

Re 297 753 814 464 570 335
h0/HD 0.94 1.5 0.12 0.48 3.17 0.47

Table B.2: Parameters of the small-scale experiments conducted at Warwick.



B. Appendix B 190

Exp. SB15 SB21 SB23 SB27 SB28 SB30
α 59.2 59.2 59.2 59.2 59.2 59.2
f 1.11 2.01 2.98 0.99 1.02 2.05
g′ 18.57 3.09 3.09 18.81 18.69 3.25
q0 3.27 28.29 28.29 3.21 19.92 19.92
HD 2.77 3.15 2.34 4.89 7.55 2.87
h0 0.86 6.06 7.39 0.58 1.47 5.02
w0 2.68 3.05 2.27 4.73 7.3 2.78
I 0.231 0.996 1.48 0.107 0.159 0.921

EkH 6.59× 10−4 5.36× 10−4 6.53× 10−4 4.42× 10−4 1.85× 10−4 6.3× 10−4

EkV 6.39× 10−3 1.35× 10−4 6.13× 10−5 3× 10−2 4.54× 10−3 1.93× 10−4

Re 569 700 574 829 2030 595
h0/HD 0.31 1.92 3.16 0.12 0.2 1.75

Exp. SB31 SB34 SB35 SB36 SB41 SB42
α 59.2 59.2 59.2 59.2 59.2 59.2
f 0.98 2.06 0.98 2.04 2.03 3.02
g′ 3 18.64 3.06 2.98 3.05 3.05
q0 19.92 19.92 19.92 19.92 28.29 28.29
HD 4.91 4.43 4.92 2.82 3.12 2.31
h0 3.61 2.1 3.58 5.22 6.14 7.48
w0 4.75 4.29 4.76 2.73 3.01 2.24
I 0.461 0.325 0.457 0.965 1.014 1.508

EkH 4.53× 10−4 2.64× 10−4 4.49× 10−4 6.56× 10−4 5.42× 10−4 6.61× 10−4

EkV 7.84× 10−4 1.1× 10−3 7.93× 10−4 1.79× 10−4 1.31× 10−4 5.92× 10−5

Re 828 1423 835 572 692 567
h0/HD 0.74 0.47 0.73 1.85 1.97 3.23

Table B.3: Parameters of the small-scale experiments conducted at Warwick.
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Exp. SB43 I1 I2 I4 I5 I6
α 59.2 18.5 18.5 18.5 18.5 18.5
f 2.03 0.99 2.04 0.99 2.06 1.01
g′ 3.06 2.98 3 18.64 18.66 18.68
q0 3.21 19.91 19.91 3.25 3.25 19.91
HD 1.81 1.52 0.88 1.53 0.88 2.36
h0 2.07 3.64 5.21 0.59 0.85 1.47
w0 1.75 4.69 2.74 4.74 2.73 7.31
I 0.657 0.47 0.962 0.108 0.226 0.159

EkH 1.61× 10−3 4.58× 10−4 6.54× 10−4 4.51× 10−4 6.52× 10−4 1.85× 10−4

EkV 1.15× 10−3 7.57× 10−4 1.8× 10−4 2.95× 10−2 6.74× 10−3 4.56× 10−3

Re 233 819 573 831 575 2031
h0/HD 1.14 2.4 5.89 0.38 0.96 0.62

Exp. I7 I9
α 18.5 18.5
f 2.04 2.11
g′ 18.65 3
q0 19.91 3.25
HD 1.4 0.55
h0 2.09 2.14
w0 4.33 1.7
I 0.321 0.689

EkH 2.62× 10−4 1.64× 10−3

EkV 1.13× 10−3 1.04× 10−3

Re 1431 228
h0/HD 1.49 3.89

Table B.4: Parameters of the small-scale experiments conducted at Warwick.
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Appendix C

The values of the parameters from Tables C.1 - C.4, listed in order, are the bot-

tom slope, α (◦), the Coriolis parameter, f (s−1), the reduced gravity anomaly,

g′ (cm s−2), the flow rate, q0 (cm3 s−1), the ambient ocean depth, HD (cm), the

theoretical current depth, h0 (cm), the theoretical current width, w0 (cm), the

dimensionless parameter, I, the horizontal Ekman number, EkH , the vertical Ek-

man number, EkV , the Reynolds number, Re, and the non-dimensional ambient

depth parameter, h0/HD.
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Exp. T1 T2 T4 T5 T6 T7
α 60 60 60 60 60 60
f 0.53 0.53 0.53 0.21 0.21 0.21
g′ 6.42 6.27 6.2 6.06 5.91 5.91
q0 500 250 845 500 230 920
HD 21.28 17.79 24.05 42.42 34.72 49.1
h0 9.1 6.51 12.04 5.86 4.02 8.05
w0 20.32 16.99 22.97 40.51 33.16 46.89
I 0.302 0.267 0.343 0.122 0.106 0.14

EkH 4.55× 10−5 6.51× 10−5 3.56× 10−5 2.93× 10−5 4.37× 10−5 2.19× 10−5

EkV 2.27× 10−4 4.43× 10−4 1.3× 10−4 1.4× 10−3 2.97× 10−3 7.42× 10−4

Re 8239 5757 10526 12802 8574 17149
h0/HD 0.43 0.37 0.5 0.14 0.12 0.16

Exp. T8 T9 T10 T11 T12 T13
α 60 60 60 60 40 40
f 0.21 0.87 0.87 0.87 0.87 0.86
g′ 5.76 6.06 5.91 6.21 5.99 6.51
q0 920 580 230 880 480 200
HD 48.79 15.11 11.89 16.81 9.54 7.9
h0 8.15 12.88 8.22 15.7 11.81 7.27
w0 46.59 14.42 11.36 16.05 13.67 11.31
I 0.142 0.524 0.443 0.564 0.511 0.403

EkH 2.22× 10−5 5.55× 10−5 8.93× 10−5 4.46× 10−5 6.15× 10−5 9.09× 10−5

EkV 7.24× 10−4 6.97× 10−5 1.71× 10−4 4.66× 10−5 8.24× 10−5 2.2× 10−4

Re 16930 6757 4197 8406 6097 4127
h0/HD 0.17 0.85 0.69 0.93 1.24 0.92

Exp. T14 T15 T16 T17 T18 T19
α 40 40 40 40 40 40
f 0.86 0.53 0.53 0.53 0.21 0.21
g′ 6.43 6.5 6.5 6.43 6.58 6.43
q0 880 500 210 900 500 190
HD 11.4 14.31 11.49 16.49 28.87 22.54
h0 15.34 9.01 5.85 12.18 5.62 3.51
w0 16.33 20.5 16.46 23.61 41.35 32.28
I 0.546 0.298 0.251 0.338 116 0.097

EkH 4.36× 10−5 4.51× 10−5 6.97× 10−5 3.38× 10−5 2.81× 10−5 4.61× 10−5

EkV 4.94× 10−5 2.33× 10−4 5.51× 10−4 1.27× 10−4 1.52× 10−3 3.91× 10−3

Re 8603 8321 5383 11083 13340 8129
h0/HD 1.35 0.63 0.51 0.74 0.19 0.16

Table C.1: Parameters of the large-scale experiments conducted at Trondheim.
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Exp. T20 T21 T22 T23 T24 T25
α 40 40 40 25.9 25.9 25.9
f 0.21 0.53 0.53 0.86 0.86 0.87
g′ 6.5 2.99 3.07 3.37 3.37 3.37
q0 920 500 900 920 210 550
HD 32.52 11.82 13.7 6.32 4.38 5.55
h0 7.67 13.26 17.63 21.72 10.36 16.81
w0 48.02 16.93 19.63 14 9.7 12.29
I 0.132 0.472 0.527 0.816 0.606 0.738

EkH 2.09× 10−5 6.63× 10−5 4.9× 10−5 5.9× 10−5 1.23× 10−4 7.64× 10−5

EkV 8.17× 10−4 1.08× 10−4 6.07× 10−5 2.45× 10−5 1.08× 10−4 4.09× 10−5

Re 17984 5655 7658 6354 3039 4907
h0/HD 0.23 1.12 1.29 3.44 2.37 3.03

Exp. T28 T29 T31 T32 T33 T34
α 25.9 25.9 25.9 50 50 50
f 0.87 0.87 0.87 0.87 1.04 1.24
g′ 4.64 4.64 4.34 4.03 4.04 4.04
q0 500 230 100 110 100 130
HD 5.87 4.82 3.85 7.49 6.37 5.99
h0 13.66 9.29 6.33 6.88 7.19 8.92
w0 13 10.67 8.52 8.58 7.3 6.87
I 0.598 0.514 0.453 0.481 0.567 0.708

EkH 6.83× 10−5 1.01× 10−4 1.58× 10−4 1.56× 10−4 1.8× 10−4 1.72× 10−4

EkV 6.19× 10−5 1.33× 10−4 2.87× 10−4 2.43× 10−4 1.85× 10−4 1.02× 10−4

Re 5490 3715 2369 2397 2086 2186
h0/HD 2.33 1.93 1.65 0.92 1.13 1.49

Exp. T35 T36 T37 T38 T39 T40
α 50 50 50 50 50 50
f 0.53 0.21 0.86 1.06 0.21 1.23
g′ 4.11 4.11 4.11 4.04 4.04 4.04
q0 110 110 330 410 395 440
HD 10.86 21.82 9.99 8.99 29.9 8.14
h0 5.34 3.35 11.74 14.64 6.41 16.39
w0 12.45 25 11.45 10.3 34.27 9.33
I 0.292 0.115 0.586 0.761 0.15 0.902

EkH 1.21× 10−4 7.62× 10−5 8.89× 10−5 8.93× 10−5 4.06× 10−5 9.32× 10−5

EkV 6.6× 10−4 4.24× 10−3 8.46× 10−5 4.42× 10−5 1.16× 10−3 3.01× 10−5

Re 3092 4921 4217 4201 9246 4026
h0/HD 0.49 0.15 1.17 1.63 0.21 2.01

Table C.2: Parameters of the large-scale experiments conducted at Trondheim.
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Exp. T41 T42 T44 T45 T46 T47
α 50 50 50 50 50 50
f 1.24 0.82 1.24 1.2 0.21 0.53
g′ 4.04 21.12 21.11 21.12 21.19 21.35
q0 800 870 880 110 100 100
HD 9.41 19.79 14.56 8.89 32.1 16.06
h0 22.18 8.23 10.18 3.54 1.41 2.23
w0 10.78 22.68 16.69 10.18 36.78 18.4
I 1.023 0.255 0.387 0.246 0.042 0.106

EkH 6.93× 10−5 2.36× 10−5 2.89× 10−5 8.04× 10−5 3.52× 10−5 5.57× 10−5

EkV 1.64× 10−5 1.8× 10−4 7.78× 10−5 6.67× 10−4 2.4× 10−2 3.8× 10−3

Re 5411 15858 12972 4667 10654 6732
h0/HD 2.36 0.42 0.54 0.4 0.04 0.14

Exp. T48 T49 T50 T51 T52 T53
α 50 40 40 40 40 40
f 0.53 0.53 0.82 1.02 1.22 1.24
g′ 21.27 2.7 2.77 2.77 2.77 2.77
q0 900 900 510 560 530 110
HD 27.71 13.2 8.34 7.26 6.25 4.17
h0 6.71 18.87 17.4 20.31 21.64 9.93
w0 31.76 18.9 11.94 10.4 8.95 5.97
I 0.166 0.574 0.776 0.981 1.164 0.863

EkH 1.86× 10−5 5.24× 10−5 8.53× 10−5 9.07× 10−5 1.02× 10−4 2.26× 10−4

EkV 4.18× 10−4 5.26× 10−5 4.02× 10−5 2.38× 10−5 1.74× 10−5 8.16× 10−5

Re 20120 7155 4397 4136 3673 1661
h0/HD 0.24 1.43 2.09 2.8 3.47 2.38

Exp. T54 T55 T56 T57 T58 T59
α 40 40 40 40 40 40
f 1.05 0.85 0.53 0.21 0.75 0.64
g′ 2.84 2.84 2.84 2.85 2.85 2.85
q0 130 110 110 110 110 110
HD 4.95 5.6 7.95 15.93 6.13 6.89
h0 9.82 8.1 6.41 4.03 7.61 7.04
w0 7.09 8.02 11.38 22.81 8.78 9.87
I 0.746 0.579 0.363 0.143 0.512 0.438

EkH 1.89× 10−4 1.84× 10−4 1.46× 10−4 9.15× 10−5 1.73× 10−4 1.6× 10−4

EkV 9.83× 10−5 1.8× 10−4 4.6× 10−4 2.94× 10−3 2.3× 10−4 3.14× 10−4

Re 1985 2038 2575 4098 2169 2344
h0/HD 1.99 1.45 0.81 0.25 1.24 1.02

Table C.3: Parameters of the large-scale experiments conducted at Trondheim.
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Exp. T61 T62 T63 T64 T65 T66
α 40 40 90 90 90 90
f 1.02 1.23 0.82 1.01 0.21 0.82
g′ 2.84 2.84 2.84 2.84 2.84 2.84
q0 270 295 300 290 275 530
HD 6.07 5.39 40 40 40 40
h0 13.95 16.01 13.19 14.38 6.38 17.52
w0 8.69 7.73 10.51 8.93 28.66 12.13
I 0.839 1.029 0.689 0.841 0.173 0.77

EkH 1.29× 10−4 1.36× 10−4 1.1× 10−4 1.24× 10−4 5.8× 10−5 8.26× 10−5

EkV 5.02× 10−5 3.16× 10−5 6.97× 10−5 4.78× 10−5 1.17× 10−3 3.97× 10−5

Re 2902 2764 3411 3026 6468 4539
h0/HD 2.3 2.97 0.33 0.36 0.16 0.44

Exp. T67 T68 T69 T70 T71 T72
α 90 90 90 90 90 90
f 1.22 0.83 0.81 1.22 1.21 0.83
g′ 2.84 6.49 6.49 6.49 6.49 21.39
q0 610 550 110 300 910 570
HD 40 40 40 40 40 40
h0 22.86 11.83 5.25 10.6 18.45 6.63
w0 9.37 15 10.16 9.65 12.75 20.4
I 1.172 0.475 0.338 0.619 0.772 0.234

EkH 9.37× 10−5 5.38× 10−5 1.19× 10−4 8.84× 10−5 5.07× 10−5 2.91× 10−5

EkV 1.57× 10−5 8.65× 10−5 4.47× 10−4 7.32× 10−5 2.42× 10−5 2.75× 10−4

Re 4003 6973 3145 4244 7398 12886
h0/HD 0.57 0.3 0.13 0.27 0.46 0.17

Exp. T73 T74 T75
α 90 90 90
f 1.19 1.18 0.84
g′ 21.31 21.25 21.18
q0 580 920 120
HD 40 40 40
h0 8.06 10.09 3.09
w0 15.52 17.61 13.56
I 0.34 0.368 0.176

EkH 3.47× 10−5 2.74× 10−5 6.44× 10−5

EkV 1.29× 10−4 8.35× 10−5 1.24× 10−3

Re 10791 13676 5820
h0/HD 0.2 0.25 0.08

Table C.4: Parameters of the large-scale experiments conducted at Trondheim.
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Appendix D

The values of the parameters from Tables D.1 - D.4, listed in order, are the bot-

tom slope, α (◦), the Coriolis parameter, f (s−1), the reduced gravity anomaly,

g′ (cm s−2), the flow rate, q0 (cm3 s−1), the ambient ocean depth, HD (cm), the

theoretical current depth, h0 (cm), the theoretical current width, w0 (cm), the

dimensionless parameter, I, the horizontal Ekman number, EkH , the vertical Ek-

man number, EkV , the Reynolds number, Re, and the non-dimensional ambient

depth parameter, h0/HD.
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Exp. D01 D02 D03 D04 D05 D06
α 90 90 90 90 90 90
f 2.99 2.04 2.08 0.99 2.1 1.01
g′ 2.99 2.99 2.99 3.01 2.99 2.99
q0 28.27 20.08 20.08 20.08 3.17 3.17
HD 11.9 9 6 6 4.3 4
h0 7.52 5.24 5.29 3.64 2.11 1.46
w0 2.24 2.74 2.7 4.71 1.69 2.93
I 1.511 0.964 0.982 0.467 0.686 0.33

EkH 6.65× 10−4 6.52× 10−4 6.58× 10−4 4.53× 10−4 1.67× 10−3 1.15× 10−3

EkV 5.92× 10−5 1.79× 10−4 1.72× 10−4 7.59× 10−4 1.07× 10−3 4.62× 10−3

Re 472 479 761 1192 2091 475
h0/HD 0.63 0.58 0.88 0.61 0.49 0.37

Exp. D07 D08 D09 D10 D11 D12
α 90 90 90 90 90 90
f 2.1 0.99 2.05 1.01 2.02 1.02
g′ 18.65 18.72 18.74 18.72 3 18.68
q0 20.08 20.08 3.17 3.17 20.08 28.27
HD 4 3.6 4.1 3.9 3.75 3.6
h0 2.13 1.46 0.83 0.58 5.2 1.75
w0 4.23 7.47 2.72 4.63 2.76 7.97
I 0.331 0.155 0.223 0.11 0.953 0.171

EkH 2.65× 10−4 1.81× 10−4 6.57× 10−4 4.61× 10−4 6.48× 10−4 1.55× 10−4

EkV 1.05× 10−3 4.77× 10−3 7.02× 10−3 2.89× 10−2 1.83× 10−4 3.2× 10−3

Re 564 575 570 827 225 325
h0/HD 0.53 0.4 0.2 0.15 1.39 0.49

Exp. J01 J02 J03 J04 J05 J06
α 90 90 90 90 90 90
f 2.05 2.09 2.13 1 1.01 2.04
g′ 2.99 2.99 2.99 2.99 2.99 18.66
q0 3.21 19.99 28.28 3.21 19.99 3.21
HD 9.8 10.1 10.2 10.3 10.3 10.2
h0 2.1 5.29 6.34 1.47 3.68 0.84
w0 1.73 2.69 2.89 2.96 4.63 2.74
I 0.67 0.99 1.08 0.33 0.48 0.22

EkH 1.63× 10−3 6.62× 10−4 5.61× 10−4 1.14× 10−3 4.6× 10−4 6.52× 10−4

EkV 1.11× 10−3 1.71× 10−4 1.17× 10−4 4.64× 10−3 7.27× 10−4 7× 10−3

Re 230 567 669 328 814 575
h0/HD 0.21 0.52 0.62 0.14 0.36 0.08

Table D.1: Parameters of the PIV experiments conducted at Warwick.
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Exp. J07 J08 J09 J10 J11 J12
α 90 90 90 90 90 90
f 2.1 1 1 1.01 2.12 2.11
g′ 18.65 18.63 18.62 18.61 2.98 2.98
q0 19.99 3.21 19.99 28.28 19.99 28.28
HD 10.2 10.1 10.2 10.3 6.3 6.3
h0 2.12 0.59 1.47 1.75 5.33 5.33
w0 4.23 4.67 7.39 7.98 2.66 2.91
I 0.331 0.109 0.157 0.171 1.002 1.071

EkH 2.65× 10−4 4.58× 10−4 1.83× 10−4 1.55× 10−4 6.67× 10−4 5.6× 10−4

EkV 1.06× 10−3 2.89× 10−2 4.66× 10−3 3.21× 10−3 1.66× 10−4 1.18× 10−4

Re 1413 819 2046 2419 562 670
h0/HD 0.21 0.06 0.14 0.17 0.85 1.01

Exp. J13 J14 C01 C02 C03 C04
α 90 90 59.2 59.2 59.2 59.2
f 2.14 2.12 2.01 1.01 2.05 0.98
g′ 2.98 2.98 3 3 18.77 18.85
q0 19.99 28.28 3.17 3.17 20.08 20.08
HD 3.5 3.5 1.86 3.02 4.46 7.76
h0 5.36 5.34 2.06 1.46 2.1 1.45
w0 2.64 2.9 1.75 2.92 4.32 7.51
I 1.011 1.074 0.656 0.33 0.322 0.154

EkH 6.7× 10−4 5.61× 10−4 1.63× 10−3 1.15× 10−3 2.61× 10−4 1.8× 10−4

EkV 1.63× 10−4 1.17× 10−4 1.17× 10−3 4.6× 10−3 1.11× 10−3 4.84× 10−3

Re 560 669 230 325 1436 2080
h0/HD 1.53 1.81 1.14 0.48 0.47 0.19

Exp. C05 C06 H01 H02 H03 H04
α 59.2 59.2 59.2 59.2 59.2 59.2
f 2.03 0.98 2.08 2.08 2.11 1.01
g′ 18.76 18.66 2.98 2.99 2.99 2.99
q0 3.17 3.17 3.21 19.99 28.28 3.21
HD 2.84 4.88 1.77 2.79 3.01 3.04
h0 0.83 0.58 2.11 5.28 6.31 1.47
w0 2.75 4.72 1.71 2.7 2.92 2.94
I 0.22 0.107 0.681 0.983 1.066 0.331

EkH 6.53× 10−4 4.56× 10−4 1.65× 10−3 6.6× 10−4 5.58× 10−4 1.15× 10−3

EkV 7.18× 10−3 3.04× 10−2 1.08× 10−3 1.72× 10−4 1.19× 10−4 4.57× 10−3

Re 574 822 228 568 672 327
h0/HD 0.29 0.12 1.2 1.89 2.1 0.48

Table D.2: Parameters of the PIV experiments conducted at Warwick.
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Exp. H05 H06 H07 H08 H09 H10
α 59.2 59.2 59.2 59.2 59.2 59.2
f 0.99 2.11 2.11 2.12 1 0.98
g′ 2.99 2.99 18.58 18.57 18.57 18.56
q0 19.99 19.99 3.21 19.99 3.21 19.99
HD 4.86 2.76 2.76 4.34 4.84 7.72
h0 3.64 5.31 0.85 2.14 0.59 1.46
w0 4.70 2.67 2.67 4.20 4.69 7.47
I 0.468 0.994 0.231 0.335 0.109 0.155

EkH 4.55× 10−4 6.64× 10−4 6.66× 10−4 2.67× 10−4 4.57× 10−4 1.82× 10−4

EkV 7.6× 10−4 1.69× 10−4 6.48× 10−3 1.03× 10−3 2.92× 10−2 4.79× 10−3

Re 823 565 563 1402 821 2060
h0/HD 0.75 1.92 0.31 0.49 0.12 0.19

Exp. H11 B01 B02 B03 B04 B05
α 59.2 18.5 18.5 18.5 18.5 18.5
f 0.98 1.01 2.04 2.01 2.07 0.98
g′ 18.56 3 3 3.01 3.08 3
q0 28.28 28.28 20.08 20.08 20.08 20.08
HD 8.43 1.50 0.89 0.90 0.88 1.53
h0 1.73 3.68 5.22 5.18 5.19 3.63
w0 8.16 4.65 2.75 2.77 2.73 4.75
I 0.166 0.476 0.960 0.947 0.959 0.463

EkH 1.53× 10−4 4.58× 10−4 6.5× 10−4 6.46× 10−4 6.47× 10−4 4.52× 10−4

EkV 3.4× 10−3 7.32× 10−4 1.8× 10−4 1.85× 10−4 1.79× 10−4 7.73× 10−4

Re 2452 819 577 581 580 830
h0/HD 0.21 2.45 5.88 5.78 5.87 2.36

Exp. B06 B07 B08 B09 B10 B11
α 18.5 18.5 18.5 18.5 18.5 18.5
f 2.08 1.01 0.98 2.05 2.05 0.98
g′ 3 3 3 18.84 18.73 18.72
q0 3.17 3.17 3.17 20.08 20.08 20.08
HD 0.55 0.95 0.97 1.40 1.40 2.43
h0 2.09 1.46 1.44 2.09 2.10 1.45
w0 1.71 2.93 3.00 4.33 4.33 7.50
I 0.677 0.329 0.320 0.320 0.322 0.154

EkH 1.65× 10−3 1.15× 10−3 1.14× 10−3 2.6× 10−4 2.61× 10−4 1.81× 10−4

EkV 1.1× 10−3 4.63× 10−3 4.92× 10−3 1.12× 10−3 1.11× 10−3 4.82× 10−3

Re 227 325 330 1442 1437 2074
h0/HD 3.80 1.54 1.49 1.49 1.50 0.60

Table D.3: Parameters of the PIV experiments conducted at Warwick.
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Exp. B12 F01 F02 F03 F04 F05
α 18.5 18.5 18.5 18.5 18.5 18.5
f 2.1 2.06 2.11 2.12 1.01 0.99
g′ 18.68 2.98 2.98 2.98 2.98 2.98
q0 3.17 3.21 19.99 28.28 3.21 19.99
HD 0.87 0.56 0.86 0.94 0.95 1.53
h0 0.84 2.10 5.32 6.35 1.48 3.64
w0 2.68 1.72 2.67 2.90 2.93 4.72
I 0.228 0.674 0.997 1.075 0.332 0.466

EkH 6.65× 10−4 1.64× 10−3 6.65× 10−4 5.61× 10−4 1.15× 10−3 4.55× 10−4

EkV 6.72× 10−3 1.1× 10−3 1.67× 10−4 1.17× 10−4 4.53× 10−3 7.67× 10−4

Re 564 229 564 668 326 824
h0/HD 0.97 3.78 6.16 6.77 1.56 2.38

Exp. F06 F07 F08 F09 F10
α 18.5 18.5 18.5 18.5 18.5
f 2.08 2.09 1.02 1 1
g′ 18.55 18.54 18.54 18.54 18.54
q0 3.21 19.99 3.21 19.99 28.28
HD 0.87 1.37 1.49 2.38 2.60
h0 0.85 2.12 0.59 1.47 1.75
w0 2.69 4.25 4.61 7.37 8.04
I 0.228 0.330 0.111 0.158 0.170

EkH 6.61× 10−4 2.65× 10−4 4.62× 10−4 1.84× 10−4 1.55× 10−4

EkV 6.65× 10−3 1.06× 10−3 2.79× 10−2 4.62× 10−3 3.27× 10−3

Re 567 1413 811 2040 2426
h0/HD 0.97 1.55 0.40 0.62 0.67

Table D.4: Parameters of the PIV experiments conducted at Warwick.
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Appendix E

The values of the parameters from Table E.1, listed in order, are the coastal wall

depth, HC (cm), the bottom slope, α (◦), the Coriolis parameter, f (s−1), the

reduced gravity anomaly, g′ (cm s−2), the flow rate, q0 (cm3 s−1), the ambient

ocean depth, HD (cm), the theoretical current depth, h0 (cm), the theoretical

current width, w0 (cm), the dimensionless parameter, I, the horizontal Ekman

number, EkH , the vertical Ekman number, EkV , the Reynolds number, Re, and

the non-dimensional ambient depth parameter, h0/HD.

The values of the parameters from Tables E.2 - E.4, listed in order, are the

bottom slope, α (◦), the Coriolis parameter, f (s−1), the reduced gravity anomaly,

g′ (cm s−2), the flow rate, q0 (cm3 s−1), the ambient ocean depth, HD (cm), the

theoretical current depth, h0 (cm), the theoretical current width, w0 (cm), the

dimensionless parameter, I, the horizontal Ekman number, EkH , the vertical Ek-

man number, EkV , the Reynolds number, Re, and the non-dimensional ambient

depth parameter, h0/HD.
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Exp. A B C D E F
HC 7 10.5 7 10 10 2.5
α 19.1 19.1 19.1 90 90 90
f 0.36 2.06 0.9 2.06 0.9 1.26
g′ 2.45 11.21 24.68 10.24 4.89 2.94
q0 1.33 5.84 10.01 6.67 6.67 6.67
HD 8.6 11.42 9.38 10 10 2.5
h0 0.63 1.47 0.85 1.64 1.57 2.39
w0 4.86 2.78 7.22 2.81 4.35 2.98
I 0.111 0.344 0.104 0.373 0.254 0.482

EkH 1.18× 10−3 6.27× 10−4 2.13× 10−4 6.14× 10−4 5.87× 10−4 8.96× 10−4

EkV 7.11× 10−2 2.26× 10−3 1.52× 10−2 1.81× 10−3 4.53× 10−3 1.39× 10−3

Re 319 598 1757 611 639 418
h0/HD 0.07 0.13 0.09 0.16 0.16 0.96

Exp. G H
HC 1.25 0.5
α 19.1 19.1
f 2.06 0.84
g′ 10.24 22.76
q0 7 10.01
HD 2.19 2.96
h0 1.68 0.86
w0 2.85 7.45
I 0.376 0.102

EkH 5.99× 10−4 2.15× 10−4

EkV 1.72× 10−3 1.61× 10−2

Re 626 1747
h0/HD 0.77 0.29

Table E.1: Parameters of the experiments of Avicola & Huq (2002).
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Exp. 1 2 3 4 5 6
α 11.5 11.5 11.5 11.5 11.5 11.5
f 0.48 1.14 2.32 1.68 1.32 0.86
g′ 7.8 7.3 6.9 6.4 5.9 5.4
q0 38 38 38 38 38 38
HD 2.42 1.24 0.72 0.9 1.06 1.43
h0 2.16 3.45 5.06 4.47 4.12 3.48
w0 12.1 6.22 3.6 4.5 5.28 7.13
I 0.145 0.358 0.754 0.571 0.471 0.324

EkH 1.42× 10−4 2.27× 10−4 3.33× 10−4 2.94× 10−4 2.71× 10−4 2.29× 10−4

EkV 4.45× 10−3 7.39× 10−4 1.69× 10−4 2.98× 10−4 4.46× 10−4 9.61× 10−4

Re 2636 1655 1128 1276 1382 1638
h0/HD 0.89 2.77 7.02 4.96 3.9 2.44

Exp. 7 8 9 10 11 12
α 11.5 11.5 11.5 11.5 11.5 11.5
f 1.14 2.12 1.94 1.74 2.52 2.42
g′ 4.9 7.8 7.5 7.2 6.9 6.7
q0 38 38 38 38 38 38
HD 1.13 0.79 0.84 0.9 0.68 0.69
h0 4.2 4.54 4.43 4.29 5.27 5.24
w0 5.63 3.97 4.2 4.51 3.38 3.46
I 0.455 0.64 0.599 0.551 0.818 0.8

EkH 2.77× 10−4 2.99× 10−4 2.92× 10−4 2.82× 10−4 3.47× 10−4 3.45× 10−4

EkV 4.96× 10−4 2.28× 10−4 2.62× 10−4 3.13× 10−4 1.43× 10−4 1.51× 10−5

Re 1356 1254 1286 1330 1082 1088
h0/HD 3.73 5.72 5.27 4.75 7.79 7.57

Table E.2: Parameters of the experiments of Whitehead & Chapman (1986).
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Exp. 1 2 3 4 5 6
α 5.7 5.7 5.7 5.7 5.7 5.7
f 1 1 1 1 1 0.5
g′ 7.53 21.75 21.65 2.32 14.68 22.12
q0 18.3 18.3 18.3 18.3 18.3 18.3
HD 0.58 0.75 0.75 0.43 0.68 1.27
h0 2.2 1.3 1.3 3.97 1.58 0.91
w0 5.76 7.51 7.5 4.29 6.81 12.69
I 0.266 0.141 0.141 0.540 0.178 0.070

EkH 3.01× 10−4 1.7× 10−4 1.78× 10−4 5.43× 10−4 2.16× 10−4 1.24× 10−4

EkV 2.06× 10−3 5.94× 10−3 5.92× 10−3 6.34× 10−4 4.01× 10−3 2.42× 10−2

Re 1245 2116 2111 691 1738 3018
h0/HD 3.83 1.73 1.73 9.25 2.32 0.72

Exp. 7 8 9 10 11 12
α 5.7 5.7 5.7 5.7 16.6 16.6
f 0.5 0.5 0.5 0.5 1 1
g′ 3.79 13.97 8.7 2.11 22.96 3.1
q0 18.3 18.3 18.3 18.3 18.3 18.3
HD 0.82 1.13 1 0.71 2.21 1.34
h0 2.2 1.14 1.45 2.94 1.26 3.44
w0 8.16 11.31 10.05 7.05 7.61 4.62
I 0.201 0.092 0.122 0.286 0.136 0.454

EkH 3× 10−4 1.56× 10−4 1.98× 10−4 4.02× 10−4 1.72× 10−4 4.69× 10−4

EkV 4.14× 10−3 1.53× 10−2 9.51× 10−3 2.31× 10−3 6.27× 10−3 8.47× 10−4

Re 1249 2398 1893 932 2174 799
h0/HD 2.69 1.01 1.44 4.18 0.57 2.57

Exp. 13 14 15 16 17 18
α 16.6 16.6 16.6 16.6 16.6 16.6
f 0.4 0.2 0.5 0.2 0.2 1
g′ 22.81 22.53 12.1 12.17 10.65 4.41
q0 18.3 18.3 18.3 18.3 19.2 19.2
HD 4.38 7.35 3.16 6.3 6.17 1.48
h0 0.8 0.57 1.23 0.78 0.85 2.95
w0 15.11 25.34 10.91 21.72 21.26 5.1
I 0.055 0.028 0.1 0.04 0.044 0.371

EkH 1.09× 10−4 7.79× 10−5 1.68× 10−4 1.06× 10−4 1.11× 10−4 3.84× 10−4

EkV 3.9× 10−2 1.54× 10−1 1.32× 10−2 8.31× 10−2 6.93× 10−2 1.15× 10−3

Re 3426 4816 2232 3539 3391 976
h0/HD 0.18 0.08 0.39 0.12 0.14 1.99

Table E.3: Parameters of the experiments of Lentz & Helfrich (2002).
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Exp. 19 20 21 22 23 24
α 16.6 16.6 16.6 16.6 5.7 5.7
f 0.8 1 1 0.5 1 1
g′ 10.93 22.35 3.55 11.13 2.51 2.41
q0 19.2 19.2 19.2 19.2 19.2 19.2
HD 2.19 2.22 1.4 3.14 0.44 0.44
h0 1.68 1.31 3.29 1.31 3.91 3.99
w0 7.57 7.65 4.83 10.81 4.43 4.39
I 0.172 0.14 0.422 0.106 0.520 0.533

EkH 2.18× 10−4 1.71× 10−4 4.28× 10−4 1.71× 10−4 5.09× 10−4 5.2× 10−4

EkV 4.45× 10−3 5.82× 10−3 9.24× 10−4 1.16× 10−2 6.54× 10−4 6.28× 10−4

Re 1718 2197 876 2193 736 721
h0/HD 0.76 0.59 2.35 0.42 8.83 9.1

Exp. 25 26 27 28
α 5.7 5.7 5.7 5.7
f 0.8 0.7 0.5 0.2
g′ 4.14 8.33 10.33 15.43
q0 19.2 19.2 19.2 19.2
HD 0.59 0.78 1.06 2.33
h0 2.72 1.8 1.36 0.71
w0 5.94 7.82 10.61 23.33
I 0.308 0.177 0.111 0.035

EkH 3.55× 10−4 2.34× 10−4 1.78× 10−4 9.19× 10−5

EkV 1.68× 10−3 4.43× 10−3 1.08× 10−2 1× 10−1

Re 1057 1603 2112 4082
h0/HD 4.59 2.3 1.28 0.3

Table E.4: Parameters of the experiments of Lentz & Helfrich (2002).
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