Selective Adsorption of Lattice Peptides on Patterned Surfaces
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To study the adsorption of individual peptides in implicit solvent, we propose a version of the
Wang-Landau Monte Carlo algorithm that uses a single surface, with no need for a confining wall
or grafting. The new “wall-free” method is both more efficient than the traditional ones, and free
of additional assumptions or approximations. We illustrate it by simulating an HP-model lattice
peptide on planar surfaces with a variety of patterns of adsorption sites, discovering a temperature-
induced switch of surface selection which is due to a balance of energetic and entropic effects.
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Understanding the way in which biomolecules such as
proteins and peptides bind selectively to mineral surfaces
is crucial to a range of applications in nanotechnology
[1-3] and bio-inspired materials design [4-6]. Molecular
simulations give valuable insight into surface selectivity
in peptides [7-10] suggesting causes such as charge, side-
group chemistry, solvent structure, and surface epitaxy,
which may be tested directly against experimental obser-
vations. More idealized, coarse-grained, models have the
complementary task of identifying trends and revealing
regions of parameter space in which “interesting” behav-
ior, such as a switch in adsorption preference, occurs. By
extracting such information from these more economical
and extensive, simulations, we may hope to derive gen-
eral principles for novel materials design. In this paper
we propose an improved method for studying adsorption,
which we illustrate by studying one exemplary peptide
against a wide range of patterned surfaces, discovering a
purely temperature-induced switch in selectivity.

Coarse-grained peptide and protein models frequently
treat the solvent implicitly [11-13], and we restrict our
interest to this case. For illustration, we adopt the sim-
plest peptide model available, the HP model [14]. This is
defined as a chain of monomers on a simple cubic lattice
of unit spacing; each site is either occupied by a sin-
gle monomer bead, or is considered to contain solvent.
Successive monomers in the chain occupy adjacent sites,
and chain crossings are not allowed. The effects of sol-
vent quality and temperature are represented by an inter-
action energy —e between nearest-neighbor non-bonded
beads. The monomers are of two kinds, H and P: only the
H (hydrophobic) beads interact in this way. Interactions
between the P (polar) beads, between H and P beads, and
all solvent interactions, are considered to be integrated
out of the problem. This model has been described as
the “Ising model” of protein simulation [15]. Through-
out this paper we shall consider only a single peptide
chain of this kind, examining its behavior in great detail.

The planar surface of adsorption is defined by z = 0,
with peptide monomers restricted to z > 0. Interactions
between the peptide and the surface again involve only
nearest-neighbor lattice sites. The strength of the surface

interaction will be denoted o; we allow surface sites to
be either interacting or non-interacting, according to a
specified two-dimensional periodic pattern, and moreover
to interact with either, or both, types of bead. I will
represent both the internal conformation and the overall
(z,y) position of the peptide (which is only significant
modulo the periodicity of the pattern of adsorption sites
in the surface). Let nr be the number of internal H-H
contacts, and sp the number of surface interactions, in
state I'; then the peptide energy is Er = —nre — sro,
given that it is in contact with the surface.

Our goal is to obtain the adsorption behavior for a
given peptide against a given patterned surface as a func-
tion of €, o and temperature 7" in the most efficient man-
ner possible, and then compare different surfaces against
one another. We achieve this by determining the den-
sity of states W(n,s) of the adsorbed peptide, which is
proportional to the number of states I' having specified
numbers of contacts np = n and sy = s. The Wang-
Landau Monte Carlo simulation method [16] allows a de-
termination of W(n, s) from a single Monte Carlo run.
The essential element is the replacement of the Boltz-
mann factor in the conventional Monte Carlo acceptance
criterion by the ratio W4 /I/2e¥ resulting in an asymp-
totic distribution of states I' with a density proportional
to the inverse of W. W is initially set equal to 1 every-
where, and the value of W at each visited point (n,s) is
modified according to W — e?W: this tends to result in
uniform sampling of the values (n,s) as the simulation
proceeds. The modification exponent ¢ is progressively
reduced 1 — 0 using a schedule based on the roughness of
the distribution [17-19], resulting in convergence to the
desired W (n, s); details are given elsewhere [20]. We use
the Monte Carlo move set known as “pull moves” [21],
which have been shown to satisfy detailed balance, to
be efficient, and ergodic for systems of this type [22, 23].
Typically we conduct 15 independent Wang-Landau sim-
ulations, each of length 10! moves, for each system.

The novel feature of our study of adsorption thermo-
dynamics is the use of a single surface, and the avoidance
of directly simulating any desorbed states of the peptide.
In principle, the desorbed molecule is free to explore the



infinitely large upper half-space; in other words, the sys-
tem is unbounded. To counter this, two approaches are
in common use [24]. The first is to study a system in
which one end of the polymer is permanently “tethered”
or “grafted” to the surface [25-28]. This has the dis-
advantage of being different from the physical system of
interest. The more common alternative is to add a sec-
ond, confining, wall, parallel to the surface of interest
[15, 22, 29-31]. This is usually called “slab” or “slit”
geometry, and it is also sub-optimal. Firstly, the walls
need to be sufficiently separated to avoid interference; in
principle the slit width dependence should be studied.
Secondly, the desorbed molecule makes long excursions
away from the surface, building up values of W(n, s = 0).
On re-adsorption, a long period elapses during which at-
tempts to desorb are rejected, until the accumulated de-
ficiency in W(n,s > 0) is rectified. A third source of
inefficiency is that a certain fraction of attempted moves
will be rejected due to overlap with the surface of inter-
est, or the confining wall.

Our approach [23] avoids these problems. Each MC
move can be regarded as being combined with the unique
vertical translation that brings the surface into contact
with the peptide: overlaps with the surface, and des-
orbed configurations, never arise. We call these simula-
tions “wall free” because there is no second wall. The
essential element is that the density of states is resolved
according to n and s. For desorbed states, the analogous
quantity, defined with respect to internal contacts alone,
may be expressed Wy(n) = > W(n,s). Consequently,
both relevant quantities may be determined from a single
Wang-Landau run. Partition functions in the constant-
temperature (") ensemble, for both adsorbed and des-
orbed states, are defined

QT) = W(n,s)et et
Qu(T) =Y W(n,s)e™ =3 Wy(n)e™",

where 8 = 1/kT. The free energy, F' = —kTIn (@, and
all relevant thermodynamic quantities, may be calculated
directly for both adsorbed and desorbed states. It is easy
to show, for the single-peptide system, that the mean
number of molecules per lattice site, which provides a
direct measure of the adsorption, satisfies

In((N)/(No)) = In(Q/Qo) = —B(F — Fy) .

We have conducted a wide range of simulations of dif-
ferent HP model peptides against a variety of striped and
checkerboard patterned surfaces. To illustrate the power
of the above strategy to discover a delicate balance be-
tween entropic and energetic effects in surface selectivity,
we concentrate on a particular 36-bead peptide, the dode-
camer (PHP),,, and its adsorption on just three of these
surfaces. All the surfaces attract only the polar (P) beads

FIG. 1: (Color online) Heat capacity C, as a function of in-
verse temperature 1/k7T and surface interaction strength o,
both expressed in terms of internal interaction strength e, for
peptide (PHP),, adsorbed on (a) uniform polar surface P;
(b) checkerboard surface P>x2 and (c) striped surface Pss.
The five principal pseudophases are marked and described in
the text.

in the peptide: the first, P, is uniform, i.e. un-patterned;
on the second, Psx2, the attractive and non-attractive
sites are arranged in a checkerboard of 2 x 2 squares,
while on the third, P53, they appear in parallel stripes,
three lattice spacings in width. These might represent,
for instance, different facets of a nanoparticle. The pep-
tide (PHP),, has a well-defined ground state in the bulk,
comprising a cuboidal 2 x 2 x 3 hydrophobic core, shielded
almost completely by polar beads [32].
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FIG. 2: (Color online) Snapshots of the AC and AE config-
urations on the patterned surfaces of interest. The peptide
is colored blue (polar, P) and yellow (hydrophobic, H); the
monomer beads and the bonds between them are given the
same radius to aid visualization. Surface sites that are attrac-
tive to polar beads are colored dark gray, non-attractive sites
light gray. The AC phase on the uniform surface is essentially
identical to that on Pax2; the AE phase is similar, but more
disordered.

The surface phase diagrams of all three systems, in
the form of heat capacity C as a function of inverse tem-
perature and surface strength (both normalized by the
internal interaction parameter €) are shown in Fig. 1.
Pseudophases are practically identified as regions of low
C, separated by ridges indicating larger energy fluctu-
ations. (A range of other order parameters and free-
energy derivatives also assist in distinguishing the dif-
ferent phases, but here the heat capacity is sufficient).
Common features of the phase diagram are the high-
temperature desorbed-expanded (DE) phase, which is
essentially a self-avoiding random walk in three dimen-
sions, and the low-temperature desorbed-compact (DC)
and surface-adsorbed-globule (SAG) phases, in both of
which the peptide adopts the ground-state cuboid form
[25, 26]. For o/e 2 1, the adsorbed-compact (AC) and
adsorbed-expanded (AE) phases begin to appear. These
phases are similar on P and Psxo, but different from
Ps.3, as illustrated in Fig. 2. The AC-AE transition is
rather broad in the Psy3 case, reflecting the quasi-one-
dimensional nature of both phases, which are largely re-
stricted to a single stripe in order to optimise the surface
energy. The formation of a well-defined AE phase occurs
at larger o and higher T for Psyo than for P and P53,
due (as we shall see) to its lower entropy on Pays.

Comparison of adsorption free energies on the two pat-
terned surfaces (for equal values of o) reveals a dramatic
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FIG. 3: (Color online) Free energy difference AF =

F(P2x2)—F(Psy3) of peptide (PHP),, as a function of inverse
temperature ¢/kT and surface strength o/e.
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FIG. 4: (Color online) Free energy, internal energy, and (neg-
ative) entropy of peptide adsorbed on checked Pay2 surface
relative to striped Psy3 surface. Surface strength (increasing
values indicated by arrows): o/e = 0.5 (black), 1.0 (red), 2.0
(green), 4.0 (blue), 8.0 (magenta). The dashed lines represent
the limiting behavior at low and high temperature (see text).

effect. In Fig. 3, it can be seen that a switch in ther-
modynamic stability (and hence relative adsorption) oc-
curs, at the approximate temperature k7'/e ~ 0.4 of the
AE-AC phase transition, for all values of o/e 2 1. This
switch is due to a balance between energetic and entropic
terms, which is quantified in Fig. 4, and can be under-
stood in part by examining the associated AC and AE
configurations in Fig. 2. The AC phase has a lower en-
ergy on the checked surface: F(Pay2) = —240 — 12,
compared with E(Ps;3) = —240 — 11e. The net energy



difference AE = E(Pax2) — E(Psy3) = —e increasingly
favors Payo at low temperature (see Fig. 4). The abso-
lute entropy of both phases may also be calculated ex-
actly, from the number of valid configurations. On Psyo,
there are six degenerate arrangements (two linear, and
four L-shaped) of the three 12-bead PHP-quartet motifs.
Each of these has 12 positions for the two end-beads,
giving a total degeneracy of 72. On Ps43, there are two
equivalent ways of orienting the zig-zag structure along
the stripe, and two possible positions for each of the end-
beads, giving an overall degeneracy of 8. The net entropy
term AS = S(Paxa) — S(P313) = kIn(9) also favors the
checked surface, but the effect is relatively small in com-
parison with the energetics at low T". These contributions
are indicated in Fig. 4.

At higher temperatures, ¢/kT < 2.5, the situation is
quite different. In this regime, the AE phase has slightly
lower energy on P53 as there are more opportunities for
H-H contacts. More significantly, the entropy difference
strongly favors Ps;3. Figure 2 shows that, for Py2, the
polar beads trace a path along the edges of the squares:
at each corner the intervening hydrophobic bead has a
choice of two equivalent sites, and each adjacent polar
dimer has a choice of two directions. For (PHP),,, ig-
noring the non-overlap constraint and any effect of the
H-H interactions, this gives S(Pax2)/k = 24In2 ~ 16.6
which is very close to the value calculated in our simula-
tions. In comparison, S(Psy3)/k &~ 24.6, similar to that
of a self-avoiding random walk confined to a strip [33].
The net AS = S(Pax2) — S(Psy3) ~ —8k strongly favors
the striped surface, and this is indicated in Fig. 4. As
can be seen in the figure, these approximate calculations
oversimplify the situation: the entropy difference reaches
higher values than this, probably because of the large
fluctuations associated with the AE-AC phase transition
on P33, and because the AE phase on Py does not be-
come properly established until o/e = 4 (see Fig. 1). The
energy and entropy effects combine in such a way that
the free energies become equal at a temperature which is
almost independent of o/e¢ (except at the lowest values,
where there is little adsorption).

Although we find this temperature-induced switch be-
tween surfaces to be uncommon for this peptide, it is not
unique. We observe a similar AF' landscape for Psyo rel-
ative to the uniform P surface, if the surface attraction
strength of the latter is reduced by about 10% relative
to Paxo. Although the AC structures are identical, the
reduction in o disfavors the uniform surface; for the AE
phase, however, it becomes strongly favored by entropy.

We have illustrated the “wall-free” approach with a
simple lattice model, but it may be generalized to the off-
lattice case, in the absence of explicit solvent. Provided
the surface-peptide interaction is of finite range, it should
be possible to resolve the adsorbed density of states ac-
cording to separate internal and surface energies, and to
express the density of states and partition function of the

desorbed state in terms of these. Unlike traditional slit
and end-grafted methods, the wall-free method computes
single-peptide adsorption thermodynamics directly, with-
out additional approximations or assumptions.
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