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Summary 

Reticulons are integral endoplasmic reticulum (ER) membrane proteins that have the ability 

to shape the ER into tubules. It is hypothesised that their unusually long, conserved 

hydrophobic regions cause reticulons to assume a wedge-like topology that induces 

membrane curvature. Here we provide proof of this hypothesis. When overexpressed, an 

Arabidopsis thaliana reticulon (RTNLB13) localises to, and induces constrictions in, cortical 

ER tubules. Ectopic expression of RTNLB13 is sufficient to induce ER tubulation in an 

Arabidopsis mutant (pah1pah2) whose ER membrane is mostly in sheet-like form. By 

sequential shortening of the four transmembrane domains (TMD) of RTNLB13 we show that 

the length of the transmembrane regions correlates directly with the ability of RTNLB13 to 

induce membrane tubulation and to form low-mobility complexes within the ER membrane.  

We also show that full-length TMDs are necessary for residence of RTNLB13 in the ER.    



Introduction 

Reticulons are integral ER membrane proteins which are ubiquitous in eukaryotes and have 

been associated with a wide range of biological functions (Yang and Strittmatter, 2007). In 

particular they have been shown to contribute to shaping mammalian and yeast tubular ER 

membranes (Voeltz et al., 2006; Hu et al., 2008; Shibata et al., 2008).  

Reticulon-like proteins in plants (named RTNLB; Oertle et al., 2003; Nziengui et al., 2007) 

belong to rather large gene families, with the Arabidopsis genome encoding 21 isoforms 

(Nziengui and Schoefs, 2009; Sparkes et al., 2009b). All RTNLBs contain a conserved 

reticulon homology domain (RHD) that comprises two large hydrophobic segments. Such 

segments are in some cases subdivided into smaller transmembrane domains, which results 

in a number of possible transmembrane topologies (Yang and Strittmatter, 2007), including 

a ‘W’ topology with both N and C-termini located in the cytosol (Voeltz et al., 2006). We 

have recently shown that five plant reticulon isoforms (RTNLB1-4 and RTNLB13) appear to 

assume this ‘W’ topology, which is likely shared by all other Arabidopsis RTNLB isoforms 

(Sparkes et al., 2010). Reticulons are enriched in ER tubules and their residence in the ER 

does not require a C-terminal di-lysine motif, which is nonetheless present on most, but not 

all, RTN isoforms (Nziengui et al., 2007). ER location likely depends on the formation of low-

mobility RTN oligomers in the ER membrane (Shibata et al., 2008; Sparkes et al., 2010). 

When reticulons are overexpressed, the tubular ER is constricted, resulting in reduced 

diffusion of soluble proteins within the ER lumen (Hu et al., 2008; Tolley et al., 2008).  

The membrane topology of reticulons is hypothesized to be both necessary and sufficient to 

induce membrane curvature (Zimmerberg and Kozlov, 2006; Shibata et al., 2008), with the 

unusual length of their hydrophobic segments being responsible both for the wedge-shape 

of the proteins and for their capacity to oligomerise (Shibata et al., 2009). Here we provide 



proof of this hypothesis in vivo by showing that ectopic expression of Arabidopsis RTNLB13 

can convert ER cisternal membranes into tubules, and that this effect is abolished when its 

TMDs are shortened to the size predicted for most ER membrane-spanning proteins. We 

also show that the length of the TMD is essential for the ability of RTNLB13 to form 

complexes and to reside in the ER membrane. 

 

Results and Discussion 

Of the 21 putative Arabidopsis reticulon proteins, RTNLB13 is one of the smallest isoforms, 

comprising the RHD and relatively short N and C termini (Tolley et al., 2008). RTNLB13 is 

located in the ER membrane. When expressed transiently in tobacco and Arabidopsis, 

RTNLB13 can induce constrictions in the lumen of the ER (Tolley et al., 2008; Fig 1, panels B-

D). RTNLB13 preferentially partitions in the tubular regions of the ER and is excluded from 

cisternal regions (Sparkes et al., 2010). The propensity of RTNLB13 to localize into high-

curvature membranes depends on the presence of a full length RHD (Sparkes et al., 2010). 

While this indicates that the shape of RTNLB13 is suited to high-curvature membranes, it 

does not directly prove whether RTNLB13 itself is sufficient for the formation of plant ER 

tubules.  

 

To test whether RTNLB13 expression is sufficient to induce ER membrane curvature, thus 

driving the conversion of ER sheets into tubules, we took advantage of the Arabidopsis 

double mutant pah1pah2, which lacks two isoforms of phosphatidic acid phosphatase 

(Nakamura et al., 2009). Cells of this mutant produce more phospholipids and the ER 

architecture is severely affected, existing almost entirely in sheet (cisternal) form (Fig. 1, 

panels E and I) with very few or no detectable tubules (Eastmond et al., 2010). As the plant 



cortical ER, unlike the mammalian ER, is predominantly tubular (Sparkes et al., 2009a; Fig. 

1A), this loss of tubulation is all the more striking. While it is not known how the pah1pah2 

mutation affects the behaviour of endogenously expressed reticulons, the predominance of 

sheets makes the pah1pah2 ER an ideal and unique in vivo system to test the general 

properties of ectopically expressed reticulons. We therefore transfected leaf cells of either 

wild-type or pah1pah2 Arabidopsis plants by particle bombardment with plasmids encoding 

both YFP-RTNLB13 and the luminal ER marker RFP-HDEL and observed ER morphology by 

confocal microscopy (Fig. 1). When expressed in wild-type leaf epidermal cells, YFP-RTNLB13 

induced ER tubule constrictions very similar, although not as pronounced, to those observed 

in tobacco leaf cells (Fig. 1, panels B-D; Tolley et al., 2008; Sparkes et al., 2010). In pah1pah2 

cells, expression of YFP-RTNLB13 caused the sheet-like ER membrane to revert in part to a 

tubular phenotype, which is similar to unperturbed ER (Fig. 1, panels F-H and J-L). This 

indicates that a surfeit of RTNLB13 is capable of inducing ER membrane remodelling and 

tubule formation in vivo. These results are in agreement with previous findings obtained in 

vitro with proteoliposomes, where reticulon dose inversely correlated with the diameter of 

the induced tubules (Hu et al., 2008). 

 

Having established that ectopic expression of RTNLB13 is sufficient to induce ER tubulation, 

we tested the hypothesis that this property depends on the length of its transmembrane 

domains. In accordance with topology predictions, we have previously shown empirically 

(through RoGFP2 fusions, bimolecular fluorescence complementation and protease 

protection) that RTNLB13 N- and C- termini face the cytosol and that its RHD comprises 4 

distinct TMDs forming a ‘W’ topology (Sparkes et al., 2010). Each TMD segment is predicted 

to be 22-23 residues long (Suppl. Fig. S1). This exceeds the predicted length of 17 residues 



for plant ER-located transmembrane helices (Brandizzi et al., 2002; Pedrazzini, 2009). 

Although the structure of the RHD is not known, it is plausible to envisage that, as the TMDs 

are longer than the predicted thickness of the ER membrane, they cannot insert at right 

angles into the membrane. This atypical insertion may contribute to the reticulon’s wedge-

like shape that results in membrane curvature. We therefore hypothesised that sequential 

shortening of each of the four TMDs would attenuate, and ultimately abolish, the curvature-

inducing capacity of RTNLB13. We tested this by generating four YFP-RTNLB13 mutants 

(TM1-4) in which the regions encoding the transmembrane helices were shortened to 17 

residues by deletion of residues at the TMD ends closest to the luminal side of the ER 

membrane, starting from the first TMD in TM1 and with all four TMD shortened in TM4 

(Suppl. Fig. S1B). We expressed these mutants by agroinfiltration of tobacco epidermal cells 

(Fig. 2). When full-length YFP-RTNLB13 was expressed, the ER lumen, as highlighted by the 

ER luminal marker RFP-HDEL, was constricted (Fig 2, A-C; Tolley et al., 2008). Mutants with 

shortened TMDs lost the ability to induce the constriction phenotype (Fig 2, compare panel 

B with panels E, H, K, N). When 3 out of 4 TMD were shortened, the localisation of TM3 

overlapped exactly with normal, unconstricted ER tubules (J-L). When all four TMD were 

shortened (TM4), cisternal sheets also appeared in the ER network, with YFP-RTNLB13-

TM4 being evenly spread over both sheets and tubules (M-O). This is in contrast with the 

tubule-restricted localisation of wild-type RTNLB13 (Sparkes et al., 2010). A similar 

phenotype has been previously reported on overexpression of ER membrane proteins such 

as GFP-calnexin transmembrane domain (Runions et al., 2006).  

 

We then tested if the mutants that have lost the ability to produce tubule constrictions have 

also lost the capacity to induce de novo tubulation, by transiently expressing the TMD 



mutants with the most severe loss of function (TM3 and TM4) into pah1pah2 Arabidopsis 

cells (Fig. 3). Occasional tubules were still visible uponTM3 expression, but the ER 

membrane was mostly in sheet form and the protein partitioned both in sheets and tubules 

(Fig 3, A-C). When TM4 was expressed, the ER membrane appeared to be in sheet form 

and was barely distinguishable from the ER of non RTNLB13-transfected pah1pah2 cells (Fig. 

3, D-F, compare with Fig. 1E).  

 

Taken together, these results indicate that the length of the TMDs in RTNLB13 is likely to be 

responsible for its membrane curvature–inducing properties. When the TMDs are shortened 

to 17 residues, which is the prevalent TMD size for plant ER membrane proteins (Brandizzi 

et al., 2002; Pedrazzini, 2009), RTNLB13 loses both the capacity to form tubules and its 

propensity to inhabit curved membranes. The latter phenotype was also obtained by 

truncating the RHD (Sparkes et al., 2010). Therefore we conclude that both the complete set 

of TMD and their 22-23 residue lengths are necessary for the structural properties of this 

reticulon. 

 

We have recently shown that five plant reticulons isoforms, including RTNLB13, can both 

homodimerise and form heterodimers with other reticulons, and that an RTNLB13 mutant 

lacking 2 of its 4 TMDs is still able to homodimerise (Sparkes et al., 2010).  It is possible that 

shortening of its TMDs affects the capacity of RTNLB13 to interact with itself or with other 

endogenous reticulons, both in the pah1pah2 mutant and in tobacco epidermal cells. As the 

exact complement of reticulons in tobacco and Arabidopsis leaves has not yet been defined 

– and at least 12 distinct isoforms are predicted to be expressed in Arabidopsis leaves 

(Schmid et al., 2005) - it is not possible to test for individual interactions. We therefore 



tested whether the TM mutants can still form an oligomeric complex by measuring their 

relative mobility within the ER membrane by fluorescence recovery after photobleaching 

(FRAP). We performed FRAP on the tubular ER of tobacco leaf epidermal cells expressing 

either YFP-RTNLB13 or YFP-TM4, which has completely lost the capacity to induce 

tubulation. Figure 4 shows that, while YFP-RTNLB13 fluorescence is severely reduced during 

photobleaching (Fig. 4A) and only recovers to about 40% of its original intensity with a T1/2 

of 6.3 s (Fig. 4C), the fluorescence of YFP-TM4 is less drastically reduced, probably due to 

faster diffusion of unbleached protein into the bleaching region (Fig. 4B), and its recovery is 

significantly faster, with a T1/2 of 2.2 s (Fig. 4C). This indicates that TM4 has a significantly 

higher mobility within the ER membrane than the wild-type protein. These results mirror 

those obtained in yeast cells, where an Rtn1p mutant incapable of forming oligomers 

showed a higher mobility than its wild-type counterpart (Shibata et al., 2008).   

Our data therefore provide a link between transmembrane domain length, the capacity to 

oligomerise and the ability to induce tubule formation of RTNLB13. 

 

We have previously shown that the C-terminal dilysine motif present on RTNLB13 (KKSE) is 

not necessary for its residence in the ER membrane. Likewise, an intact RHD is not necessary 

for ER residence of RTNLB1-4 and 13 (Sparkes et al., 2010). Indeed, the presence of either 

the two N-terminal or the two C-terminal TMD was sufficient to maintain ER location 

(Sparkes et al., 2010). We therefore hypothesised that ER residence may also depend on 

TMD length, and that a mutant such as TM4 that has lost the ability to bend the ER 

membrane and to form complexes would no longer reside there, unless rescued by its C-

terminal dilysine motif. To test this, we deleted the KKSE motif from both wild-type and 

TM4 YFP-tagged RTNLB13 (Fig. 5). Deletion of this motif from both N and C terminal eYFP 



fusions to wild-type RTNLB13 did not affect either ER residence or its ability to constrict 

tubules (Fig. 5, A-C; Sparkes et al., 2010). When KKSE was removed from TM4, however, 

the protein showed only a minimal labelling of the ER but was instead found in punctate 

structures (Fig 5, compare panels G-I with D-F). Co-expression with the Golgi marker sialyl 

transferase signal anchor sequence-RFP (ST-RFP) revealed extensive colocalisation, 

indicating that YFP-RTNLB13-TM4-KKSE relocates to the Golgi complex (Fig. 5, G-I). 

Therefore we conclude that the unusual TMD length is also required for the ER localisation 

of RTNLB13. 

 

Our data show that a ‘minimal’ plant reticulon such as RTNLB13 is sufficient to induce tubule 

formation in ER sheets of the pah1pah2 mutant. The extent of membrane reshaping is not 

comparable to that observed in the ER of wild-type plants, where the ER membrane is 

severely constricted. This may depend on the altered lipid composition of the mutant or the 

distribution of, and interaction with, the endogenous reticulons, which remains to be 

determined.  

 

Resizing of the transmembrane regions of RTNLB13 affects its capacity to induce membrane 

curvature, to form complexes within the ER membrane and its very ability to reside in the ER 

membrane. In the absence of any detailed structural information on reticulon proteins, this 

indicates a link  between TMD length and function. It is possible that the shortening of the 

TMD results in a change in the topology of RTNLB13. Where two adjacent TMDs have been 

shortened (for example in mutants TM2 or TM4), their remaining segments may behave 

as a single TMD, therefore converting the topology of the protein from W to a V. In fact, the 

TOPCONS topology prediction algorithm (Bernsel et al., 2008) seems to indicate that this is 



the case for TM2 - 4 (Fig. S1, panel C). Previously, the C terminus of an RTNLB13 truncation 

lacking the two C terminal TMDs was shown to reside in the cytosol. In addition, the C 

terminus of a truncation lacking the last TMD also faced the cytosol, therefore indicating 

that topology of fusions can alter upon deletion of TMD (Sparkes et al., 2010). TOPCONS 

prediction of both fusions confirmed the data (data not shown). We believe the 

experimental verification of this topology change is beyond the scope of this report, but if 

this is the case, our results indicate that the ‘W’ topology of the RHD is indeed essential for 

the interaction and membrane bending properties of RTNLB13. This raises the possibility 

that other reported topologies for some non-plant reticulons (reviewed in Yang and 

Strittmatter, 2007) may reflect a non-structural role for these isoforms. Another method of 

inducing membrane curvature is that of protein scaffolding on the membrane surface 

(Shibata et al., 2009). However, in this investigation we studied RTNLB13, which is the 

shortest plant reticulon with N and C terminal cytoplasmic domains of 20 and 47 amino 

acids respectively. It is therefore unlikely, although not impossible, that these would interact 

/recruit proteins at the surface which in turn would induce curvature of the ER membrane. 

In addition to its loss of membrane-bending capacity, the TM4 mutant of RTNLB13 which 

lacks the dilysine retrieval signal is no longer retained in the ER. As we recently showed that 

RTN lacking the two C-terminal TMD and the C-terminal cytosolic domain are still ER located 

(Sparkes et al., 2010), this indicates that the correct TMD length in both halves of the RHD is 

required for complex formation, which in turn is likely to afford ER residence.  

 

Our FRAP data and the loss of ER residence of TM4 devoid of its ER retrieval signal indicate 

that its ability to interact with endogenous reticulons (and possibily with itself) has been 

severely impaired or abolished. This suggests that homo- or heterotypic protein interactions, 



and the subsequent formation of multimeric complexes, depend on the correct TMD length 

and likely constitute the mechanism that normally retains reticulons in the ER.  

It is possible that, during reticulon evolution, conformation-dependent ER membrane 

localisation, which as we have shown likely depends upon protein-protein interactions 

within the membrane, may have superseded the need for a canonical ER retrieval signal. 

Some Arabidopsis reticulon isoforms have lost this signal (Nziengui et al., 2007). Where the 

dilysine motif persists, however, it can be envisaged that it may act as a safety mechanism 

to protect as yet unassembled RTN monomers from escaping the ER membrane. 

 

The pah1pah2 tubulation assay described here provides a novel experimental tool to test 

reticulon function in vivo. Our data also provide a useful framework for elucidating the role 

of each TMD in the establishment of both homo- and heterotypic reticulon interactions and 

for the identification of additional factors involved in shaping the plant ER membrane.  

 

Materials and Methods 

Recombinant DNA 

All RTNLB13 constructs in this study were generated by PCR using YFP-RTNLB13 (Tolley et al., 

2008) as a template. Shortening of each TMD region and deletion of the KKSE coding 

sequence was performed by fusion PCR using the strategy and the primers shown in Fig. S2. 

All resulting coding sequences were cloned into the XbaI and SacI sites of pVKH18-EN6 

(Batoko et al., 2000) and inserted into Agrobacterium tumefaciens strain EHA105. 

Transient expression  

Transient expression in Nicotiana tabacum leaf epidermal cells was performed by 

agroinfiltration as described (Sparkes et al., 2006), using agrobacteria at an OD600 of 0.05. 



Arabidopsis thaliana leaves were transiently transformed using a Bio-Rad Biolistic® PDS-

1000/He Particle Delivery System as described by Nerlich et al., (2007), except that plasmid 

DNA was coated onto M17 tungsten particles (Bio-Rad).   

Confocal microscopy and FRAP analysis 

Leaf sectors expressing the fluorescent protein fusions were mounted in water and 

observed with a 63X (NA 1.4) oil immersion objective on a Leica TCS SP5 confocal 

microscope. YFP was excited at 514 nm and detected in the 525 to 550 nm range. RFP was 

excited at 561 nm and detected in the 571 to 638 nm range. Simultaneous detection of YFP 

and RFP was performed by combining the settings indicated above in the sequential 

scanning facility of the microscope, as instructed by the manufacturer. 

For photobleaching, the tubular ER was magnified using a 10× zoom for clear tubule 

detection. No drugs were used and stationary regions of the network were targeted for 

bleaching. Images were acquired every 0.66 s. Three prebleaching frames were acquired 

and a region of interest 5 m in diameter bleached at 100% laser intensity for 3 frames.   

After photobleaching, images were taken at 0.66 s intervals for 20 s. Mean fluorescence 

intensity within the bleached area was measured during the recovery phase of FRAP 

experiments using Leica LAS-AF Lite software. Analysis of fluorescence recovery was 

performed as described by Shibata et al. (2008). Briefly, the fluorescence intensity of three 

regions of interest was measured: the photobleached region (PR), a region outside of the 

tubular ER network providing overall background fluorescence (BR), and a region within the 

ER network that was not photobleached to correct for overall observational photobleaching 

and fluorescence variation (CR). The relative fluorescence intensity (I) for each individual 

FRAP experiment was background corrected and normalised using the following equation:  



 

I=[(PRt -BRt )/(PRt0 -BRt0 )*100]x[(100-CRt /CRt0 )/100+1]  

where t0 values were averaged over the pre-bleach scans. Normalised data for each set of 

FRAP experiments were fitted in GraphPad Prism 5.0 using the non-linear equation: 

 I = a + (b-a) (1-e(-Kt) ) 

 

where a equals I0, b is the plateau fluorescence recovery value and K is a rate constant of 

increase. The half-time (t1/2) of fluorescence recovery was derived as ln(2)/K. 

 

Acknowledgments 

We are grateful to Anne-Laure Quettier for help with biolistic transformation. NT was 

supported by a studentship from the BBSRC. This work was supported in part by the 

European Union (LSH-2002-1.2.5-2 "Recombinant Pharmaceuticals from Plant for Human 

Health -Pharma-Planta"). 

 

References 

Batoko, H., Zheng, H.-Q., Hawes, C. and Moore, I. (2000) A Rab1 GTPase is required for 

transport between the endoplasmic reticulum and Golgi apparatus for normal Golgi 

movement in plants. Plant Cell 12, 2201-2217. 

Bernsel, A., Viklund, H., Falk, J., Lindahl, E., von Heijne, G. and Elofsson, A. (2008) 

Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci USA 105, 

7177-7181. 



Brandizzi, F., Frangne, N., Marc-Martin, S., Hawes, C., Neuhaus, J. M. and Paris, N. (2002) 

The Destination for Single-Pass Membrane Proteins Is Influenced Markedly by the Length of 

the Hydrophobic Domain. Plant Cell 14, 1077-1092. 

Eastmond, P., Quettier, A.-L., Kroon, J., Craddock, C., Adams, N. and Slabas, A. (2010) 

PHOSPHATIDIC ACID PHOSPHOHYDROLASES1 & 2 regulate phospholipid synthesis at the 

endoplasmic reticulum in Arabidopsis. Plant Cell 22, in press. 

Hu, J., Shibata, Y., Voss, C., Shemesh, T., Li, Z., Coughlin, M., Kozlov, M. M., Rapoport, T. A. 

and Prinz, W. A. (2008) Membrane proteins of the endoplasmic reticulum induce high-

curvature tubules. Science 319, 1247-50. 

Nakamura, Y., Koizumi, R., Shui, G., Shimojima, M., Wenk, M. R., Ito, T. and Ohta, H. 

(2009) Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically 

with phosphate starvation. Proc Natl Acad Sci USA 106, 20978-20983. 

Nerlich, A., von Orlow, M., Rontein, D., Hanson, A. D. and Dormann, P. (2007) Deficiency in 

phosphatidylserine decarboxylase activity in the psd1 psd2 psd3 triple mutant of 

Arabidopsis affects phosphatidylethanolamine accumulation in mitochondria. Plant Physiol 

144, 904-14. 

Nziengui, H., Bouhidel, K., Pillon, D., Der, C., Marty, F. and Schoefs, B. (2007) Reticulon-like 

proteins in Arabidopsis thaliana: structural organization and ER localization. FEBS Lett 581, 

3356-62. 

Nziengui, H. and Schoefs, B. (2009) Functions of reticulons in plants: What we can learn 

from animals and yeasts. Cell Mol Life Sci 66, 584-95. 



Oertle, T., Klinger, M., Stuermer, C. A. O. and Schwab, M. E. (2003) A reticular rhapsody: 

phylogenic evolution and nomenclature of the RTN/Nogo gene family. FASEB J. 17, 1238-

1247. 

Pedrazzini, E. (2009) Tail-anchored proteins in plants. J Plant Biol 52, 88-101. 

Runions, J., Brach, T., Kuhner, S. and Hawes, C. (2006) Photoactivation of GFP reveals 

protein dynamics within the endoplasmic reticulum membrane. J Exp Bot 57, 43-50. 

Schmid, M., Davison, T. S., Henz, S. R., Pape, U. J., Demar, M., Vingron, M., Scholkopf, B., 

Weigel, D. and Lohmann, J. U. (2005) A gene expression map of Arabidopsis thaliana 

development. Nat Genet 37, 501-6. 

Shibata, Y., Voss, C., Rist, J. M., Hu, J., Rapoport, T. A., Prinz, W. A. and Voeltz, G. K. (2008) 

The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic 

reticulum. J Biol Chem 283, 18892-904. 

Shibata, Y., Hu, J., Kozlov, M. M. and Rapoport, T. A. (2009) Mechanisms shaping the 

membranes of cellular organelles. Ann Rev Cell Dev Biol 25, 329-354. 

Sparkes, I., Runions, J., Hawes, C. and Griffing, L. (2009a) Movement and Remodeling of the 

Endoplasmic Reticulum in Nondividing Cells of Tobacco Leaves. Plant Cell 21, 3937-3949. 

Sparkes, I., Tolley, N., Aller, I., Svozil, J., Osterrieder, A., Botchway, S., Frigerio, L. and 

Hawes, C. (2010) Five plant reticulon isoforms share ER location, topology and membrane 

shaping properties. Plant Cell 22, 1333-1343. 

Sparkes, I. A., Frigerio, L., Tolley, N. and Hawes, C. (2009b) The plant endoplasmic 

reticulum: a cell-wide web. Biochem J 423, 145-55. 



Sparkes, I. A., Runions, J., Kearns, A. and Hawes, C. (2006) Rapid, transient expression of 

fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. 

Nat Protoc 1, 2019-25. 

Tolley, N., Sparkes, I. A., Hunter, P. R., Craddock, C. P., Nuttall, J., Roberts, L. M., Hawes, 

C., Pedrazzini, E. and Frigerio, L. (2008) Overexpression of a Plant Reticulon Remodels the 

Lumen of the Cortical Endoplasmic Reticulum but Does not Perturb Protein Transport. 

Traffic 9, 94-102. 

Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M. and Rapoport, T. A. (2006) A class of 

membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573-586. 

Yang, Y. S. and Strittmatter, S. M. (2007) The reticulons: a family of proteins with diverse 

functions. Genome Biol 8, 234. 

Zimmerberg, J. and Kozlov, M. M. (2006) How proteins produce cellular membrane 

curvature. Nat Rev Mol Cell Biol 7, 9-19. 

 

 

Figure legends 

 

Figure 1. RTNLB13 is sufficient to induce ER tubules in vivo.  

Wild-type (A-D) or pah1pah2 (E-L) Arabidopsis leaves were transfected by particle gun 

bombardment with plasmids encoding the indicated constructs. Transfected leaves were 

visualised by confocal microscopy. Scale bars, 10 m  

 

Figure 2. The length of the TMD of RTNLB13 correlates with its membrane bending 

properties. 



Wild-type tobacco leaf epidermal cells were co-infiltrated with Agrobacterium tumefaciens 

carrying the plasmid encoding ER marker RFP-HDEL (green) and either wild-type YFP-

RTNLB13 (magenta) or mutants thereof, where the indicated transmembrane domains were 

shortened from the predicted length of 24 residues to 17 residues. The cartoons at the right 

show the transmembrane topology of RTNLB13 and indicate (in red) which TMDs have been 

shortened in the different mutants. Note that the diagram may not reflect the actual 

topology of the mutants (see Suppl. Fig. S1C). The images shown are representative of 3 

independent experiments.  Scale bars: A-F, 5 m; G-O, 10 m. 

 

Figure 3. Transmembrane domain length of RTNLB13 correlates with its capacity to induce 

tubules in vivo 

pah1pah2 arabidopsis leaves were transfected by particle gun bombardment with plasmids 

encoding the indicated constructs. Transfected leaves were visualised by confocal 

microscopy. The images shown are representative of 3 independent experiments. Scale bars, 

10 m.  

 

Figure 4. The length of the transmembrane domains of RTNLB13 determines its capacity to 

form oligomeric complexes in the ER membrane. 

Tobacco epidermal cells were transfected with the indicated constructs and subjected to 

FRAP analysis.  

A-B. Representative prebleaching (pre) and 0, 10 and 20 s frames from typical FRAP 

experiments. The circled areas represent the regions undergoing photobleaching. Scale bars, 

m.  



C. Fluorescence intensities normalized to prebleach values of FRAP analyses on YFP-

RTNLB13 and YFP-TM4 were plotted over time. Error bars indicate ± S.E.; n = 7 

independent replicates per construct. The t1/2 values for each construct are shown.    

 

 

Figure 5. The length of the transmembrane domains of RTNLB13 is necessary for its ER 

localisation. 

Tobacco leaf epidermal cells were co-infiltrated with Agrobacterium tumefaciens carrying 

plasmids encoding the indicated constructs. Transfected leaves were visualised by confocal 

microscopy. The images shown are representative of 3 independent experiments. Scale bars, 

10 m. 

 

Supporting information 

Figure S1 

A. Diagrammatic representation of the topology of RTNLB13. The transmembrane domains 

are shown in blue. The regions deleted in the shortened mutant are shown in red. Note that 

it is not known whether the short loops between TMD1 and 2 and TMD 3 and 4 are actually 

exposed to the ER lumen. 

B. Sequence of RTNLB13. The amino acid residues deleted from the TMD are shown in red.  

C. Prediction of transmembrane topology for the proteins described in this study. Prediction 

was performed using TOPCONS (Bernsel et al., 2008). Note the predicted shift in 

conformation from ‘W’ to ‘V’ in mutants TM2-4. 

Figure S2 



Diagrammatic representation of the strategy used to generate the RTNLB13 deletion 

mutants. The primer structure for TM1 is magnified. The dotted lines indicate the target 

region for deletion. TM1 was generated using YFP-RTNLB13 as a template. Two fragments 

were generated by PCR using the P1-P5 and P4-P2  primer pairs. The two fragments were 

then mixed and fused by PCR using the outside primers P1 and P2.  TM1 was used as a 

template for generation of TM2 with P1-P7 and P2-P6. TM2 was the template for 

generation of TM3 with P1-P9 and P2-P8. TM3 was the template for generation of TM4 

with P1-P11 and P2-P10. Deletion of KKSE was performed using primers P1 and P3 using 

either YFP-RTNLB13 or TM4 as templates. 

 


