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a  b  s  t  r  a  c  t

The  final  epidemic  size  (R∞) remains  one  of  the  fundamental  outcomes  of  an  epidemic,  and  measures  the
total  number  of  individuals  infected  during  a “free-fall”  epidemic  when  no  additional  control  action  is
taken. As  such,  it provides  an  idealised  measure  for  optimising  control  policies  before  an  epidemic  arises.
Although  the generality  of  formulae  for calculating  the  final  epidemic  size  have  been  discussed  previ-
vailable online 7 March 2012
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ously,  we  offer  an  alternative  probabilistic  argument  and  then  use  this  formula  to consider  the  optimal
deployment  of  vaccine  in  spatially  segregated  populations  that  minimises  the  total  number  of cases.  We
show  that  for a limited  stockpile  of  vaccine,  the  optimal  policy  is often  to immunise  one  population  to  the
exclusion  of  others.  However,  as  greater  realism  is  included,  this  extreme  and  arguably  unethical  policy,
is replaced  by  an  optimal  strategy  where  vaccine  supply  is  more  evenly  spatially  distributed.
accination

ntroduction

One of the great advantages of epidemiological models is
heir ability to discriminate between a range of plausible control
ptions. For veterinary infections (such as foot-and-mouth dis-
ase (Tildesley et al., 2006, 2009), bovine-viral-diarrhea (Santarossa
t al., 2005) or Johne’s disease (Groenendaal et al., 2002)),
here the main aim is to protect the majority no matter what

he control, determining optimal control strategies is relatively
traight-forward although potentially computationally intensive.
n contrast, with human diseases control options are generally far

ore limited and hence research often focusses on the best means
f deploying vaccine. Four main approaches dominate: the desire
o minimise the basic reproductive ratio (R0) for a given supply of
accine administered prophylactically (Anderson and May, 1982,
984; May  and Anderson, 1984; Hadeler and Mueller, 2007; Tanner
t al., 2008); the related issue of minimising the prevalence of an
ndemic infection by on-going vaccination (McLean and Anderson,
988; Klepac et al., 2011), the highly complex issue of distribut-

ng vaccine during an epidemic so as to minimise total cases or
osts (Clancy and Green, 2007; Gaff and Schaefer, 2009; Salathe
nd Jones, 2010; Brown and White, 2011; Buonomo, 2011; Knipl
nd Roest, 2011; Shim, 2011); and the situation considered here
here prophylactic vaccination is targetted to minimise the total
xpected epidemic size (Longini et al., 1978; Dushoff et al., 2007).
n general three main techniques dominate: the use of simula-
ion or numerical integration to compare strategies (McLean and
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Anderson, 1988; Bansal et al., 2006; Hall et al., 2007; Medlock
and Galvani, 2009; Perisic and Bauch, 2009; Keeling and White,
2011; Salathe and Jones, 2010; Tuite et al., 2010) which is often the
only option with complex transmission models; the use of game
theoretic approaches to compare individual-level decisions with
nationally optimal policy (Bauch et al., 2003; Galvani et al., 2007;
Shim et al., 2009); and more recently the use of methods from con-
trol theory to minimise some associated cost function (often taken
to be proportional to the integral of the prevalence and the square
of the vaccinate rate) (Becker and Starczak, 1997; Clancy and Green,
2007; Gaff and Schaefer, 2009; Brown and White, 2011).

Here we adopt a far simpler approach and goal, to determine the
optimal prophylactic distribution of a limited stockpile of vaccine
between various populations that reduces the overall magnitude
of a subsequent epidemic. The advantage of considering prophy-
lactic vaccination (as opposed to vaccination during an epidemic)
is that the final epidemic size can be calculated with relative ease
even in a heterogeneous population – and more-over the results are
independent of many of the precise assumptions concerning trans-
mission. Here, we first motivate and introduce the general final
epidemic size calculation; before using this quantity to examine
the optimal vaccination policy in spatially segregated populations.

Generality of the final epidemic size

The final epidemic size, defined as the total number of cases
generated during an epidemic, was first formulated by Kermack

and McKendrick (1927).  In determining the final epidemic size,
the usual calculation is to follow the methodology of Kermack and
McKendrick and consider the final proportion (or number) of recov-
ered individuals using the standard SIR model. However, far greater

dx.doi.org/10.1016/j.epidem.2012.03.001
http://www.elsevier.com/locate/epidemics
mailto:M.J.Keeling@warwick.ac.uk
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enerality can be achieved if we utilise a probabilistic formulation.
onsider a single individual that is susceptible at the start of the
pidemic; given that infection is a Poisson process, the probability
hat the individual is still susceptible at the end of the epidemic is:

(Susceptible) = exp (−�) (1)

Barbour and Mollison, 1990) where � is the total force of infection
xperienced by an individual over the course of the entire epidemic
that is the integral over all time of the risk of infection). In a closed
omogeneous population this total force of infection is:

 = R0

N
× Total number of cases = R0

N
Z∞

where N is the total population size, and R0 (the basic repro-
uctive ratio) is the expected number of secondary cases produced
y an infected individual when the entire population is suscepti-
le, and Z∞ is the total number of cases during the epidemic. This
uantity � may  be considered as the integral of the force of infec-
ion (which itself is a rate) over the entire epidemic; hence � is a
imension-less quantity that informs about the total risk of infec-
ion over the epidemic. Therefore, if we assume that the entire
opulation is initially susceptible, and set the final epidemic size
R∞) to be the proportion of the population that get infected (i.e.
∞ = NR∞) we arrive at the well known formula of Kermack and
cKendrick (1927):

∞ = 1 − S∞ = 1 − exp(−R0R∞) (2)

which holds for all distributions of latent and infectious periods
ot just the standard exponential decay of classical ODE mod-
ls. It should be stressed that this equation only holds for a large
opulation size, where invasion can be guaranteed and stochastic
ariability in the final epidemic size is negligible.

We  note that Eq. (2) can be solved using the simple recursive
ormula:

(x+1) = 1 − exp(−R0R(x))

where we choose R(1) = 1 for simplicity. This iterative scheme
apidly converges to the non-trivial solution for all positive values
f R0 and for all non-zero initial conditions.

Given that Eq. (1) holds for all susceptible individuals, it is
rivial to extend the classic final size equation to any structured
opulation, whether this structure reflects age, social or spatial
eterogeneties. In particular, suppose that we can subdivide the
opulation into disjoint classes (denoted by super-scripts); then
he probability that an individual in class i remains susceptible is
iven by:

(Susceptiblei) = exp(−�i) = exp

⎛
⎝−

∑
j

Rij
0

Ni
Zj

∞

⎞
⎠

where Rij
0 is the matrix equivalent of the standard scalar R0, and

easures the expected number of secondary cases produced in
lass i by a single infected individual in class j, assuming that all
embers of the i class are initially susceptible. Ni is the number of

ndividuals in class i, such that
∑

iNi is the total populations size.
hen dealing with numbers (rather than proportions) and assum-
ng that initially Si

0 (≤Ni) individuals in class i are susceptible, we
ave:

i = Si − Si = Si

⎡
⎣1 − exp

⎛
⎝−

∑Rij
0 Zj

∞

⎞
⎠

⎤
⎦ (3)
∞ 0 ∞ 0

j
Ni

In fact this relatively simple equation was first used by Longini
t al. (1978) but remarkably has received little scientific interest
emics 4 (2012) 78–85 79

since (although see Ma  and Earn (2006), Dushoff et al. (2007) for
exceptions).

We can attempt to solve the final size Eq. (3) using simple recur-
sion:

Zi
t+1 = Si

0

⎡
⎣1 − exp

⎛
⎝−

∑
j

Rij
0

Ni
Zj

t

⎞
⎠

⎤
⎦

with initial conditions, Zi
1 = Si

0. Whilst this iterative method is
not guaranteed to converge for all initial conditions, when setting
Zi

1 = Si
0 > Zi∞ monotonic convergence to the solution is guaranteed.

Numerical tests indicate that convergence is relatively quick unless
the basic reproductive ratio is close to one in which case conver-
gence may  take up to one thousand iterations. Alternatively, simple
search algorithms can be utilised that find the solution by minimis-
ing the difference between Zi

t and Zi
t+1. Both methodologies provide

a more computationally efficient method than direct simulation of
the full dynamic equations, and allow a much more simple means of
determining the error in the calculation of the final epidemic size. In
addition, given that the final-size formulae is derived on probabilis-
tic grounds, this implies that our results are robust to changes in
transmission patterns; hence the results are invariant under differ-
ent assumptions about the infectious periods (e.g. assuming fixed
recovery rates or more complex distributions of infectious period
times) or including more complex natural histories such as latent
periods.

We now utilise this result to consider the optimal deployment
of a fixed vaccine stock against a novel epidemic in a spatially struc-
tured environment.

Non-interacting spatial communities

We  begin by initially considering non-interacting spatial com-
munities (hence setting Rij

0 = 0 whenever i /= j), such that the final
epidemic size can be calculated independently for each using Eq.
(2). We  wish to consider the final epidemic size after a proportion
of each community has been vaccinated prophylactically, and to
determine the optimal deployment of a fixed amount of vaccine
(VT) that minimises the total epidemic size. Mathematically, this
can be expressed as:

minimise
∑

i

Zi
∞ where Zi

∞ = (Ni − Vi)

[
1 − exp

(
−Ri

0

Ni
Zi

∞

)]

such that
∑

i

V i = VT and Vi ≥ 0

(4)

We  begin by considering the simplest case of two populations
of different sizes, say N1 = 105 and N2 = 2 × 105; the optimal deploy-
ment of prophylactic vaccination is shown in Fig. 1(a and c). A
striking pattern is observed, when a only small amount of vaccine
is available, it is optimal to vaccinate just the smaller population.
Mathematically, we can attribute this to the non-linear relationship
between the proportion of individuals infected in an epidemic (R∞)
and the proportion of the population that are susceptible (N − V).
Biologically, the intuitive explanation is that one dose of vaccine
in a small population has a proportionally large effect, and takes
that population closer to the critical vaccination threshold, than
one dose in a larger population. Therefore, we observe that for small
amounts of vaccine the optimal solution (in terms of minimising the

total final epidemic size) is to concentrate all of this vaccine into the
smallest population; this pattern continues until we  reach the criti-
cal vaccination threshold of the small population (VT = N1(1 − 1/R0))
at which point it becomes unnecessary to deploy any more
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Fig. 1. Examples of optimal control in isolated populations with homogeneous internal dynamics. The left-hand column has two populations of sizes 100,000 and 200,000,
respectively; whilst the right-hand column has three populations of sizes 100,000, 200,000 and 400,000. Due to the simplicity of the two-population model (left-hand
column) several values of R0 are considered (R0 = 1.5, 2, 5, 10), whereas for the three-population model we  focus on R0 = 2. In the top row (graphs (a) and (b)), we  show the
optimal  distribution of vaccine doses between the different populations as the total amount of vaccine available varies (in both graphs R0 = 2); the dashed horizontal and
vertical  lines correspond to the amount of vaccine required to bring each population to herd immunity. In the middle row (graphs (c) and (d)), we show the proportion of
t the pr
g  the b
t  hom

v
t
t
i

he  available vaccine in each population at the optimum; in graph (c) we  focus on 

raph  (d) the proportions in the three populations are shaded (for R0 = 2). Finally, in
hat  can be achieved through the optimal deployment of vaccination compared to a
accine into the smallest population and our attention switches to
he other. However, at some point (and generally before we reach
he critical threshold for the other population, VT = N2(1 − 1/R0))
t becomes beneficial to concentrate all the vaccine in the larger
oportion in the smaller population and show the curves for different R0 values, in
ottom row (graphs (e) and (f)) we consider the relative reduction in epidemic size

ogeneous distribution ((Rhomogeneous
∞ − Roptimal

∞ )/Rhomogeneous
∞ ).
population and to ignore the smaller hence the optimal strategy
suddenly switches. The position of this switch does not have an
obvious analytical or biological value. However, intuitively it occurs
because close to the critical threshold for population 2, the greater
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enefit comes from being close to this eradication threshold and
ence protecting the majority of a larger population at the expense
f the smaller.

Similar patterns can be seen for a range of populations and sizes,
ig. 1(b and d) shows the optimal prophylactic vaccination deploy-
ent for three populations (N1 = 105, N2 = 2 × 105, N3 = 4 × 105).

rom this we begin to see a general set of rules: for a fixed sup-
ly of vaccine we should first vaccinate the largest population
or combination of populations) in which we can achieve the
ritical vaccination threshold, with the remaining vaccine being
eployed into the smallest remaining population. This pattern of
ll-or-nothing vaccination goes against our basic intuition and
esire to give an equal coverage to all populations, but can be
een to have significant savings in terms of reducing the num-
er of individuals infected (Fig. 1(d and e)). It should be noted
hat although these graphs (Fig. 1(d and e)) are not monotonic,
s the difference between optimal and random vaccination in
on-monotonic, the total number of cases prevented by vac-
ination does decrease monotonically with increasing vaccine
vailability.

nteracting communities

In reality, no communities are completely isolated and so our
ndependence assumption in Eq. (4) is a simplifying approximation.
owever, the methodology developed in Eq. (3) allows us to extend

hese concepts to populations that interact. In particular we  look at
wo examples which extend the results above: a set of coupled spa-
ial communities so that the force of infection within each patch is
elated to both the local and global prevalence of infection; and a set
f uncoupled spatial communities, where the internal populations
an be risk-structured.

For the coupled spatial communities, we set the degree of within
nd between transmission as:

ij
0 =

⎧⎨
⎩

R0�

n
if i /= j

R0

(
1 − (n − 1)�

n

)
if i = j

where n is the number of spatial communities (Keeling et al.,
004). This corresponds closely to the ideal of strong local transmis-
ion, with equal weaker global transmission to other communities.
he balance between the local and global transmission is controlled
y � (� = 0 gives purely local transmission, whilst � = 1 means that
ll individuals experience the same force of infection irrespective
f location); the precise formulation ensures that the expected
umber of secondary cases produced by an infected is indepen-
ent of �. Fig. 2(a and b) shows how the mixing between two
ommunities can change the optimal strategy. For the parame-
ers chosen in Fig. 2(a), when the communities act independently
there is no transmission between them and � = 0) then it is optimal
o exclusively target vaccination towards the smaller population,
owever as the level of interaction increases the optimal strat-
gy rapidly switches to targetting the larger population before
witching again to an even distribution of vaccine. Associated
ith shift towards a more even distribution is a natural weak-

ning of the impact of targetting this prophylactic vaccination
Fig. 2(c)).

In the risk-structured populations (Fig. 3), we again have two
ommunities (with population sizes of 100,000 and 200,000) but
artition both communities into three further groups: at-risk, high-
ransmitters and the remainder – echoing the model framework in

eeling and White (2011).  Here, at-risk individuals comprise 20%
f the population and have greater risk of adverse health outcomes
f infected; high-transmitters are a further 20% of the population,
nd can be thought of as school-age children who  are known
emics 4 (2012) 78–85 81

to be responsible for significant amounts of transmission. The
three risk classes and two communities leads to a model with six
populations, of sizes 20,000, 20,000 and 60,000 for community one,
and 40,000, 40,000 and 120,000 for community two. The cost of
infection in the at-risk group is assumed to be five times larger than
the cost for other groups, capturing the greater impact of infection
in this group, whilst the additional transmission within the group
of high-transmitters is assumed to be to within this group, mim-
icking the observed strong within-school transmission patterns. To
make the system more manageable we again revert to the sim-
plifying assumption that the two  communities do not interact. In
Keeling and White (2011) vaccination within this type of model was
examined for a single population through numerically solving the
associated ODEs; here we take the simplifying approach of using
Eq. (3) which greatly enhances the computational efficiency.

When such additional structure is added to the model, the
optimal prophylactic vaccination policy again becomes more
homogeneous (Fig. 3); although with six risk groups finding the
global optimal solution becomes more problematic. For a small
vaccine supply (less than 20% of the total population size), the avail-
able vaccine is shared equally between the at-risk groups in the
two populations, echoing the single-population finding of other
studies (Medlock and Galvani, 2009; Keeling and White, 2011).
However, if the supply of vaccine is larger it is optimal to target
the high-transmitters in the smaller population only, then the high-
transmitters in the larger population only, then both of these groups
together – echoing the earlier results in Fig. 1. When the supply
of vaccine reaches 40%, it is possible to control the infection (set
R0 = 1) by immunising all at-risk and high-transmission groups. For
supplies above 40% it becomes optimal to begin vaccinating the
remainder of the population, biased towards the smaller popula-
tion at the expense of at-risk and high-transmission groups in this
population.

The findings in Figs. 2 and 3 are typical for a range of parame-
ters. Obviously as � → 0 we regain the non-interacting results of
Fig. 1, whereas as � → 1 the population acts as homogeneously
mixed and the question of where to vaccinate become superfluous.
The patterns observed in Fig. 3 are insensitive to small changes in
parameters; but if either the cost of infection in the at-risk group
becomes relatively low, or the additional transmission within the
high-transmission group becomes very high, it may become bene-
ficial to initially target the high-transmission group (Dushoff et al.,
2007).

Discussion

In planning for future pandemics, such as a novel outbreak
of (pandemic) influenza, one important public-health decision is
how to distribute limited stockpiles of available pre-pandemic
vaccine (Ferguson et al., 2006; Medlock and Galvani, 2009; Lee
et al., 2011; Knipl and Roest, 2011). Pre-pandemic H5N1 vac-
cine is now available and stockpiled by many countries; the UK,
Japan and the USA plan to stockpile, 3.3 million, 10 million and
40 million doses, respectively. The hope is that governments and
public-health agencies will have sufficient advanced warning of
an impending outbreak, that there will be time to administer the
vaccine stockpiles and for the vaccine to induce immunity. How-
ever, a clear question is how to distribute the vaccine to obtain
the maximum benefit from such prophylactic protection, espe-
cially if the time to manufacture a specific vaccine is comparable to
the expected epidemic duration. Similarly, applied questions could

focus on vaccination against livestock infections (such as foot-
and-mouth disease) or wildlife diseases, where supplies are again
limited and where nationally optimal policy make take precedent
over equality of vaccine distribution.
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Fig. 3. Optimal deployment of vaccination in two  (isolated) structured populations. Three groups are considered within each population: at-risk individuals who suffer badly
from  infection (20%, thick black line), a group of high-transmitters who  readily spread and catch the infection (20%, thin black line) and the remainder of the population (60%,
thick  grey line). Graph (a) and (b) show the percentage of each group in each population that should be vaccinated to minimise the total expected adverse effects from the
epidemic. The within-population transmission structure is such that the basic reproductive ratio is 2, individuals in the high-transmission group are four times more likely
to  infected other members of this group compared to all other transmission rates which are equal. The high-risk group is considered to be five times more likely to suffer
adverse effects from infection.
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Appendix A. Final size formula for ‘leaky’ vaccines
M.J. Keeling, A. Shattock

Here we have re-iterated how the well-known and much-used
ormulation for the final-size of an epidemic (or the total number
f expected cases) can be readily extended to deal with complex
eterogeneous populations. The ability to calculate the final-size
apidly (without having to rely on direct simulation/integration)
llows the optimal deployment of a fixed stockpile of vaccine to be
etermined with relative ease.

We  initially focussed on the simplest situation, that of separate,
on-interacting communities. For this situation, a general rule for
he optimal deployment of vaccine could be determined: achieving
he critical vaccination threshold in the largest possible populations
if there is sufficient vaccine to achieve this) whilst distributing the
emainder of the vaccine to the smallest remaining populations.
s such, for a very small vaccine stockpile, the optimal solution is

o concentrate the vaccine exclusively on the smallest populations.
his is comparable to the complex results found in other studies
Forster and Gilligan, 2007; Rowthorn et al., 2009; Klepac et al.,
011) although the underlying mechanism and quantities opti-
ised are difference. All three of these papers examine endemic

nd on-going control, rather than epidemic infections and prophy-
actic vaccination. Both Forster and Gilligan (2007) and Rowthorn
t al. (2009) consider the SIS model, and consider treatment of
nfected individuals, in brief they find that it is optimal to treat
he population that currently has the fewest infected individu-
ls. Klepac et al. (2011) focusses on endemic SIR infections in two
atches with complex vaccination costs, and observes switching as
he global budget for vaccine increases which is highly reminiscent
f our findings.

The findings here however contrast to the well known results
n vaccination in households (Becker and Starczak, 1997; Ball
t al., 2004), which can be considered as very small communi-
ies. These household results acknowledge the stochastic nature
f transmission process, which is necessary for small population
izes. For households the optimised schedule is that the vac-
ine should be sequentially targetted at the households with the
argest number of remaining unvaccinated (susceptible) individ-
als within them. These differences are most likely attributable
o the nature of transmission in the two models – as the house-
old models will hold even for large populations when the impact
f stochasticity is minimal. In household models it is gener-
lly assumed that transmission is density-dependent (despite the
vidence of more complex behaviour (Cauchemez et al., 2009;
raser et al., 2011)) such that the expected number of secondary
ases produced by an initial infected individual increases with
ousehold size, whereas population-level models generally assume

requency-dependent transmission. It is still an open problem to
scertain the optimal deployment of vaccination in households
hen transmission deviates from this density-dependent ideal.

here is therefore much scope for future work in understanding
ow to deal more generally with relatively small population sizes,
hen the impact of stochasticity and the distribution of infec-

ious periods play a significant role. However, it should be noted
hat even from population sizes of only a thousand individuals,
he deterministic calculation of the final epidemic size produces a
lose approximation to the stochastic value as long as the epidemic
akes-off and we are not too close to the threshold value of R0 = 1
Bailey, 1953; Ludwig, 1975).

Although the simple targetting scheme for prophylactic vac-
ination is optimal (in terms of reducing the expected number
f cases), it would be considered by most as highly unaccept-
ble. The idea that certain communities might receive vaccination
hilst others are left unprotected would clearly be unaccept-
ble to the general population (especially those that did not
eceive the vaccine). This inconsistency between optimal and
cceptable policy could be problematic; fortunately the differ-
nce between what is acceptable and what is optimal reduces as
emics 4 (2012) 78–85 83

greater realism is included. The initial investigation assumed that
the two populations behaved independently, however as coupling
is introduced (so that infection can pass between the populations)
then there is an increased region of parameter-space where the
optimal policy is to vaccinate equal proportions of the two popula-
tions. We  also considered adding heterogeneity in terms of risk
groups within each population; again this leads to a more uni-
form vaccination policy being optimal for a substantial range of
vaccine availability and even when the optimal policy is not uni-
form there is little heterogeneity in the targetting of the at-risk
group.

The way  the models have been formulated means that they are
caricatures of real-world vaccination policies. Although we believe
the general finding are robust, a number of changes would be nec-
essary before such models could become practical public-health
tools. Throughout we  have assumed that the vaccine offers com-
plete protection against infection; if this is not true but instead
vaccinated individuals have reduced susceptibility, transmissibil-
ity or consequences of infection, (a so-called leaky-vaccine (Ball
et al., 2004; Arino et al., 2004)) then we need to adopt a structured
population approach (Appendix A). Additionally, we have assumed
throughout that it is possible to vaccinate, immunise and therefore
protect any chosen fraction of the population; in practise only a
proportion of those vaccinated will be successfully protected, there
are often difficulties in achieving vaccination targets (White et al.,
1992; Poland, 2010) and there are groups who will refuse to be
vaccinated. Such effects can be incorporated into the optimisation
process, by placing very high levels of immunisation out of reach –
but the precise bounds would be pathogen and scenario dependent.
Finally, we have assumed throughout a very simplified time-line
in which a fixed stockpile of vaccine is available to be used pro-
phylactically before an epidemic, and then the epidemic ensues
in ‘free-fall’ without any additional control measures. Whilst the
first of these assumptions may  be valid for some outbreaks – many
countries hold stockpiles of pre-pandemic vaccinate against H5N1
influenza – it is likely that both additional vaccine and additional
control measures will be deployed in the face of any large-scale out-
break (Ferguson et al., 2006; Germann et al., 2006; Halloran et al.,
2008; Keeling and White, 2011).

Finally, we consider what practical conclusions can be drawn
from this study. The first is that vaccination programmes that are
both equitable and hence publicly acceptable are likely to be sub-
optimal. However, if we are dealing with a livestock or wildlife
infection the optimal, highly heterogeneous solution may be more
practically desirable. Secondly, the addition of extra structure
that moves models away from the ideal of isolated homogeneous
populations, general leads to an optimal strategy where vacci-
nation effort is more spatially uniform. Finally, although there
are a range of inherent simplifying assumptions made within
the framework, we  believe this methodology provides a robust
and adaptable tool in which to consider optimal prophylactic
vaccination.
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Consider the situation where vaccination does not completely
protect against infection, but instead lowers susceptibility and sub-
sequent transmission if infected. In the simple case of a single
population, the number of cases in the unvaccinated population
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Z∞) and vaccinated population (V∞) are given by:

Z∞ = S0

[
1 − exp

(
−R0

N
Z∞ − �

R0

N
V∞

)]

V∞ = V0

[
1 − exp

(
−�

R0

N
Z∞ − ��

R0

N
V∞

)]
= V0

[
1 −

(
1 − Z∞

S0

)�
]

⇒ Z∞ = S0

[
1 − exp

(
−R0

N
Z∞ − �

R0

N
V0

{
1 −

(
1 − Z∞

S0

)�
})]

here S0 = N − V and V0 = V are the number of susceptible and vac-
inated individuals in the population at the start of the epidemic.
he parameters � and � are the relative susceptibility and trans-
issibility of a vaccinated individual compared to an unvaccinated

ndividual. These equations can now be solved iteratively as before
nd expanded to multiple populations.
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Optimal distribution of vaccine; parameters are as in Fig. 1a
xpect that vaccinated individuals are assumed to have half the sus-
eptibility and half the transmissibility of unvaccinated individuals
� = � = 0.5).

The above figure shows that the impact of leaky vaccination on
he optimal allocation of vaccination is minimal; comparing Fig. 1a
n the main-paper with the above figure, it is clear that making the
accine leaky simply acts to re-scale the points at which changes
n the optimal allocation occur.

The more involved situation where a proportion p of vaccinated
ndividuals are completely protected, whilst the remainder have
owered susceptibility and transmissibility can also be dealt with
n a similar manner, setting S0 = N − V and V0 = (1 − p)V whilst the
emaining pV are fully protected.
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