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Measurement of mixing-induced CP violation in B0
s decays is of prime importance in probing new physics.

So far only the channel B0
s → J/ψφ has been used. Here we report on a measurement using an LHCb

data sample of 0.41 fb−1, in the CP odd eigenstate J/ψ f0(980), where f0(980) → π+π−. A time-
dependent fit of the data with the B0

s lifetime and the difference in widths of the heavy and light
eigenstates constrained to the values obtained from B0

s → J/ψφ yields a value of the CP violating phase
of −0.44 ± 0.44 ± 0.02 rad, consistent with the Standard Model expectation.

© 2012 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

An important goal of heavy flavour experiments is to measure
the mixing-induced CP violation phase in B0

s decays, φs . As this
phase is predicted to be small in the Standard Model (SM) [1], new
physics can induce large changes [2]. Here we use the decay mode
B0

s → J/ψ f0(980). If only the dominant decay diagrams shown in
Fig. 1 contribute, then the value of φs using B0

s → J/ψ f0(980) is
the same as that measured using B0

s → J/ψφ decay.
Motivated by a prediction in Ref. [3], LHCb searched for and

made the first observation of B0
s → J/ψ f0(980) decays [4] that

was subsequently confirmed by other experiments [5,6]. Time-
dependent CP violation can be measured without an angular anal-
ysis, as the final state is a CP eigenstate. From now on f0 will stand
only for f0(980).

In the Standard Model, in terms of CKM matrix elements, φs =
−2 arg[ Vts V ∗

tb
V cs V ∗

cb
]. The equations below are written assuming that

there is only one decay amplitude, ignoring possible small con-
tributions from other diagrams [7]. The decay time evolutions for
initial B0

s and B0
s are [8]

Γ
((−)

B0
s → J/ψ f0

)
= N e−Γst{e�Γst/2(1 + cosφs) + e−�Γst/2(1 − cosφs)

± sinφs sin(�mst)
}
, (1)

where �Γs is the decay width difference between light and heavy
mass eigenstates, �Γs = ΓL − ΓH. The decay width Γs is the av-

✩ © CERN for the benefit of the LHCb Collaboration.

Fig. 1. Dominant decay diagrams for B0
s → J/ψ f0(980) or J/ψφ decays.

erage of the widths ΓL and ΓH, and N is a time-independent
normalisation factor. The plus sign in front of the sin φs term ap-
plies to an initial B0

s and the minus sign for an initial B0
s meson.

The time evolution of the untagged rate is then

Γ
(

B0
s → J/ψ f0

) + Γ
(

B0
s → J/ψ f0

)
= N e−Γst{e�Γst/2(1 + cosφs) + e−�Γst/2(1 − cosφs)

}
. (2)

Note that there is information in the shape of the lifetime distribu-
tion that correlates �Γs and φs . In this analysis we will use both
samples of flavour tagged and untagged decays. Both Eqs. (1) and
(2) are insensitive to the change φs → π −φs when �Γs → −�Γs .

2. Selection requirements

We use a data sample of 0.41 fb−1 collected in 2010 and the
first half of 2011 at a centre-of-mass energy of 7 TeV. This anal-
ysis is restricted to events accepted by a J/ψ → μ+μ− trigger.
The LHCb detector and the track reconstruction are described in
Ref. [9]. The detector elements most important for this analysis
are the VELO, a silicon strip device that surrounds the pp in-
teraction region, and other tracking devices. Two Ring Imaging

0370-2693/ © 2012 CERN. Published by Elsevier B.V. All rights reserved.
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Cherenkov (RICH) detectors are used to identify charged hadrons,
while muons are identified using their penetration through iron.

To be considered a J/ψ → μ+μ− candidate particles of oppo-
site charge are required to have transverse momentum, pT, greater
than 500 MeV, be identified as muons, and form a vertex with fit
χ2 per number of degrees of freedom (ndof) less than 11. We work
in units where c = h̄ = 1. Only candidates with dimuon invariant
mass between −48 MeV to +43 MeV of the J/ψ mass peak are
selected. Pion candidates are selected if they are inconsistent with
having been produced at the primary vertex. The impact param-
eter (IP) is the minimum distance of approach of the track with
respect to the primary vertex. We require that the χ2 formed by
using the hypothesis that the IP is zero be > 9 for each track. For
further consideration particles forming di-pion candidates must be
positively identified in the RICH system, and must have their scalar
sum pT > 900 MeV.

To select B0
s candidates we further require that the two pions

form a vertex with a χ2 < 10, that they form a candidate B0
s vertex

with the J/ψ where the vertex fit χ2/ndof < 5, that this vertex is
> 1.5 mm from the primary, and points to the primary vertex at
an angle not different from its momentum direction by more than
11.8 mrad.

The invariant mass of selected μ+μ−ππ combinations, where
the di-muon pair is constrained to have the J/ψ mass, is shown
in Fig. 2 for both opposite-sign and like-sign di-pion combinations,
requiring di-pion invariant masses within 90 MeV of 980 MeV.
Here like-sign combinations are defined as the sum of π+π+ and
π−π− candidates. The signal shape, the same for both B0

s and B0,
is a double-Gaussian, where the core Gaussian’s mean and width
are allowed to vary, and the fraction and width ratio for the sec-
ond Gaussian are fixed to the values obtained in a separate fit to
B0

s → J/ψφ. The mean values of both Gaussians are required to be
the same. The combinatoric background is described by an expo-
nential function. Other background components are B− → J/ψh− ,
where h− can be either a K − or a π− and an additional π+ is
found, B0

s → J/ψη′ , η′ → ργ , B0
s → J/ψφ, φ → π+π−π0, and

B0 → J/ψ K ∗0. The shapes for these background sources are taken
from Monte Carlo simulation based on PYTHIA [10] and GEANT-
4 [11] with their normalisations allowed to vary. We performed a
simultaneous fit to the opposite-sign and like-sign di-pion event
distributions. There are 1428 ± 47 signal events within ±20 MeV
of the B0

s mass peak. The background under the peak in this inter-
val is 467 ± 11 events, giving a signal purity of 75%. Importantly,
the like-sign di-pion yield at masses higher than the B0

s gives an
excellent description of the shape and level of the background.
Simulation studies have demonstrated that it also describes the
background under the peak.

The invariant mass of di-pion combinations is shown in Fig. 3
for both opposite-sign and like-sign di-pion combinations within
±20 MeV of the B0

s candidate mass peak. A large signal is present
near the nominal f0(980) mass. Other B0

s → J/ψπ+π− signal
events are present at higher masses. In what follows we only use
events in the f0 signal region from 890 to 1070 MeV.

3. S-wave content

Since the initial isospin of the ss system that produces the two
pions is zero, and since the G-parity of the two pions is even,
only even spin is allowed for the π+π− pair. Since no spin-4
resonances have been observed below 2 GeV, the angular distri-
butions are described by the coherent combination of spin-0 and
spin-2 resonant decays. We use the helicity basis and define the
decay angles as θ J/ψ , the angle of the μ+ in the J/ψ rest frame
with respect to the B0

s direction, and θ f0 , the angle of the π+ in

Fig. 2. (a) Invariant mass of J/ψπ+π− combinations when the π+π− pair is re-
quired to be within ±90 MeV of the nominal f0(980) mass. The data have been
fitted with a double-Gaussian signal and several background functions. The thin
(red) solid line shows the signal, the long-dashed (brown) line the combinatoric
background, the dashed (green) line the B− background (mostly at masses above
the signal peak), the dotted (blue) line the B0 → J/ψ K ∗0 background, the dash–
dot line (purple) the B0 → J/ψπ+π− background, the dotted line (black) the sum
of B0

s → J/ψη′ and J/ψφ backgrounds (barely visible), and the thick-solid (black)
line the total. (b) The mass distribution for like-sign candidates. (For interpretation
of the references to colour in this figure, the reader is referred to the web version
of this Letter.)

Fig. 3. Invariant mass of π+π− combinations (points) and a fit to the π±π± data
(dashed line) for events in the B0

s signal region. The region between the vertical
arrows contains the events selected for further analysis.

the π+π− rest frame with respect to the B0
s direction. The spin-0

amplitude is labelled as A00, the three spin-2 amplitudes as A2i ,
i = −1,0,1, and δ is the strong phase between the A20 and A00
amplitudes.

After integrating over the angle between the two decay planes
the joint angular distribution is given by [12]

dΓ

d cos θ f0 d cos θ J/ψ
=

∣∣∣∣A00 + 1

2
A20eiδ

√
5
(
3 cos2 θ f0 − 1

)∣∣∣∣
2
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Fig. 4. Efficiency corrected, background subtracted angular distributions in the π+π− mass region within ±90 MeV of 980 MeV and within ±20 MeV of the B0
s mass for (a)

cos2 θ J/ψ , and (b) cos θ f0 . The solid lines show the expectations for a spin-0 object.
× sin2 θ J/ψ

+ 1

4

(|A21|2 + |A2−1|2
)(

15 sin2 θ f0 cos2 θ f0

)
× (

1 + cos2 θ J/ψ
)
. (3)

Since the B0
s is spinless, when it decays into a spin-1 J/ψ and

a spin-0 f0, θ J/ψ should be distributed as sin2 θ J/ψ and cos θ f0

should be uniformly distributed.
The helicity distributions of the opposite-sign data selected

with reconstructed J/ψπ+π− mass within ±20 MeV of the
known B0

s mass and within ±90 MeV of the nominal f0(980)

mass, are shown in Fig. 4; the data have been background sub-
tracted, using the like-sign data, and acceptance corrected using
Monte Carlo simulation. We perform a two-dimensional unbinned
angular fit. The ratio of rates is found to be

|A20|2
|A00|2 = (

0.1+2.6
−0.1

)
%,

|A21|2 + |A2−1|2
|A00|2 = (

0.0+1.7
−0.0

)
%, (4)

where the uncertainties are statistical only. The spin-2 amplitudes
are consistent with zero. Note that the A20 amplitude corresponds
to CP odd final states, and thus would exhibit the same CP violat-
ing phase as the J/ψ f0 final state, while the A2±1 amplitude can
be either CP odd or even. Thus this sample is taken as pure CP
odd.

4. Time resolution and acceptance

The B0
s decay time is defined here as t = m �d · �p/|�p|2, where

m is the reconstructed invariant mass, �p the momentum and �d
the flight vector of the candidate B0

s from the primary to the sec-
ondary vertices. If more than one primary vertex is found, the one
that corresponds to the smallest IP χ2 of the B0

s candidate is cho-
sen.

The decay time resolution probability distribution function
(PDF) is determined from data using J/ψ detected without any re-
quirement on detachment from the primary vertex (prompt) plus
two oppositely charged particles from the primary vertex with the
same selection criteria as for J/ψ f0 events, except for the IP χ2

requirement. Monte Carlo simulation shows that the time resolu-
tion PDF is well modelled by these events. Fig. 5 shows the t dis-
tribution for our J/ψπ+π− prompt 2011 data sample. To describe
the background time distribution three components are needed, (i)
prompt, (ii) a small long lived background ( fLL1 = 2.64 ± 0.10)%
modelled by an exponential decay function, and (iii) an even

Fig. 5. Decay time distribution for prompt J/ψπ+π− events. The dashed line (red)
shows the long lived components, while the solid line (blue) shows the total. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this Letter.)

smaller component ( fLL2 = 0.46 ± 0.02)% from b-hadron decay de-
scribed by an additional exponential. Each of these are convolved
individually with a triple-Gaussian resolution function with com-
mon means, whose components are listed in Table 1. The overall
equivalent time resolution is σt = 38.4 fs.

The functional form for the time dependence is given by

N(t) = (1 − fLL1 − fLL2) · 3G + fLL1

[
1

τ1
exp(−t/τ1) ⊗ 3G

]

+ fLL2 · [1/τ2 · exp(−t/τ2) ⊗ 3G
]
. (5)

The fractions fLL1 and fLL2, and their respective lifetimes τ1 and
τ2, are varied in the fit. The parameters of the triple-Gaussian time
resolution, 3G , are listed in Table 1. The symbol ⊗ indicates a con-
volution.

A decay time acceptance is introduced by the triggering and
event selection requirements. Monte Carlo simulations show that
the shape of the decay time acceptance function is well modelled
by

A(t) = C
[a(t − t0)]n

1 + [a(t − t0)]n
, (6)

where C is a normalisation constant. Furthermore, the parame-
ter values are found to be the same for simulated B0 → J/ψ K ∗0

events with K ∗0 → K −π+ , as for B0
s → J/ψ f0.

Fig. 6(a) shows the J/ψ K ∗0 mass distribution in data with
an additional requirement that the kaon candidate be positively



500 LHCb Collaboration / Physics Letters B 707 (2012) 497–505
Fig. 6. Distributions for B0 → J/ψ K ∗0 events (a) B0 candidate mass distribution and (b) decay time distribution, where the small background has been subtracted using the
B0 candidate mass sidebands.
Table 1
The PDFs for the invariant mass and proper time describing the signal and back-
ground. P sig

t refers to the decay time distribution in Eq. (9) and A is given in Eq. (6).
Where two numbers are listed, the first refers to the 2011 data and the second to
the 2010 data. If only one number is listed they are the same for both years. The
symbol t̂ refers to the true time.

Pm Pt

Signal

Double-Gaussian (2G) P sig
t (t,q) = R(t̂,q) ⊗ 3G(t − t̂;μ,σ t

1, σ t
2, σ t

3, f t
2, f t

3)

2G(m;m0, σ1, σ2, f2) ·A(t;a,n, t0)

m0 = 5366.5(3) MeV μ = −0.0021(1) ps, −0.0011(1) ps
σ1 = 8.6(3) MeV σ t

1 = 0.0300(4) ps, 0.0295(5) ps

σ2 = 26.8(9) MeV σ t
2/σ t

1 = 1.92(4), 1.88(3)

f2 = 0.14(2) σ t
3/σ t

1 = 14.6(10), 14.0(9)

f t
2 = 0.23(2), 0.27(3)

f t
3 = 0.0136(6), 0.0121(7)

a = 1.89(7) ps−1, n = 1.84(12), t0 = 0.127(15) ps

Long-lived background

Exponential [e−t̂/τ bkg ⊗ 2G(t − t̂;μ,σ t
1, σ t

2, f t
2)] · A(t;a,n, t0)

μ = 0
σ t

1 = 0.088 ps

σ t
2 = 5.94 ps

f t
2 = 0.0137

τ bkg = 0.96 ps
a = 4.44 ps−1, n = 4.56, t0 = 0 ps

Short-lived background

Exponential 2G(t;μ,σ t
1, σ t

2, f t
2) · A(t;a,n, t0)

All parameters are the same as for LL background

identified in the RICH system, and that the K −π+ invariant mass
be within ±100 MeV of 892 MeV. There are 36881 ± 208 sig-
nal events. The sideband subtracted decay time distribution is
shown in Fig. 6(b) and fit using the above defined acceptance
function gives values of a = (1.89 ± 0.07) ps−1, n = 1.84 ± 0.12,
t0 = (0.127 ± 0.015) ps, and also a value of the B0 lifetime of
1.510 ± 0.016 ps, where the error is statistical only. This is in good
agreement with the PDG average of 1.519 ± 0.007 ps [13].

Another check is provided by a recent CDF lifetime measure-
ment of B0

s → J/ψ f0 of 1.70+0.12
−0.11 ± 0.03 ps obtained by fitting

the data to a single exponential [6]. Such a fit to our data yields
1.68 ± 0.05 ps, where the uncertainty is only statistical.

5. Fit strategy

5.1. Likelihood function characterisation

The selected events are used to maximise a likelihood function

L =
N∏
i

P (mi, ti,qi), (7)

where mi is the reconstructed candidate B0
s mass, ti the decay

time, and N the total number of events. The flavour tag, qi , takes
values of +1, −1 and 0, respectively, if the signal meson is tagged
as B0

s , B0
s , or untagged. The likelihood contains three components:

signal, long-lived (LL) background and short-lived (SL) background.
For tagged events we have

P (mi, ti,qi) = Nsigε
tag
sig P sig

m (mi)P sig
t (ti,qi)

+ NLLε
tag
LL P bkg

m (mi)P LL
t (ti)

+ NSLε
tag
SL P bkg

m (mi)P SL
t (ti), (8)

where: (i) P sig
m (mi) and P bkg

m (mi) are the PDFs describing the de-
pendence on reconstructed mass mi for signal and background
events; (ii) P sig

t (ti,qi) is the PDF used to describe the signal de-
cay rates for the decay time ti ; (iii) P LL

t (ti) is the PDF describing
the long-lived background decay rates, and P SL

t (ti) describes the
short-lived background, both of which do not depend on the tag-
ging; (iv) εtag refers to the respective tagging efficiencies for signal,
long-lived and short-lived backgrounds.

For untagged events we have

P (mi, ti,0) = Nsig
(
1 − ε

tag
sig

)
P sig

m (mi)P sig
t (ti,0)

+ NLL
(
1 − ε

tag
LL

)
P bkg

m (mi)P LL
t (ti)

+ NSL
(
1 − ε

tag
SL

)
P bkg

m (mi)P SL
t (ti). (9)

The total yields of the signal and background components are
fixed to the number of events determined from the fit to the
mass distributions (see Section 2). For both, the PDF is a prod-
uct which models the invariant mass distribution and the time-
dependent decay rates. The B0

s mass spectrum is described by a
double-Gaussian for the signal and an exponential function for the
background (see Fig. 2). From Eqs. (1) and (2), the decay time func-
tion for the signal is

R(t,qi) ∝ e−Γst
{

cosh
�Γst

2
+ cosφs sinh

�Γst

2

− qi D sinφs sin(�mst)

}
. (10)

The probability of a wrong tag, ω, is included in the dilution factor
D ≡ (1 − 2ω) (see Section 5.2).

The signal PDF is taken as a product of the decay time func-
tion, R(t,qi), convolved with the triple Gaussian time resolution
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function multiplied with the time acceptance function found from
J/ψ K ∗0 discussed in Section 4. The background decay time PDFs
are determined using the like-sign π±π± combinations. The time
distribution of the like-sign background agrees in both yield and
shape with the opposite-sign events in the upper B0

s mass candi-
date sideband 50–200 MeV above the mass peak.

The background functions and parameters are listed in Table 1.
The short-lived background component results from combining
prompt J/ψ events with a opposite-sign pion pair that is not
rejected by our selection requirements. The long-lived part con-
stitutes ≈ 85% of the background.

5.2. Flavour tagging

Flavour tagging uses decays of the other b hadron in the event,
exploiting information from several sources including high trans-
verse momentum muons, electrons and kaons, and the charge of
inclusively reconstructed secondary vertices. The decisions of the
four tagging algorithms are individually calibrated using B− →
J/ψ K − decays and combined [14]. The effective tagging perfor-
mance is characterised by ε

tag
sig D2, where ε

tag
sig is the efficiency and

D the dilution. We use a per-candidate analysis that uses both the
information of the tag decision and of the predicted mistag proba-
bility to classify and assign a weight to each event. The PDFs of the
predicted mistag are taken from the side-bands for the background
and side-band subtracted data for the signal.

The calibration procedure uses a linear dependence between
the estimated per event mistag probability η and the actual mistag
probability ω given by ω = p0 + p1 · (η − 〈η〉), where p0 and
p1 are calibration parameters and 〈η〉 is the average estimated
mistag probability as determined from the calibration sample. In
the 2011 data p0 = 0.384 ± 0.003 ± 0.009, p1 = 1.037 ± 0.040 ±
0.070, and 〈η〉 = 0.379, with similar values in the 2010 sample.
In this Letter whenever two errors are given, the first is statistical
and the second systematic. Systematic uncertainties are evaluated
by using different channels to perform the calibration including
B0 → D∗+μ−ν , B+ → J/ψ K + separately from B− → J/ψ K − , and
viewing the dependence on different data taking periods. For our
2011 sample ε

tag
sig is (25.6 ± 1.3)% providing us with 365 ± 22

tagged signal events. For signal the mean mistag fraction, 〈η〉, is
0.375 ± 0.005, while for background the mean is 0.388 ± 0.006.
After subtracting background using like-sign events, we determine
D = 0.289 leading to an εD2 of 2.1% [14].

6. Results

Several parameters are input as Gaussian constraints in the fit.
These include the LHCb measured value of �ms = (17.63 ± 0.11 ±
0.02) ps−1 [15], the tagging parameters p0 and p1, and both the
decay width given by the J/ψφ analysis of Γs = (0.657 ± 0.009 ±
0.008) ps−1 and �Γs = (0.123 ± 0.029 ± 0.011) ps−1 [16]; we also
include the correlation of −0.30 between Γs and �Γs .1 The fit has
been validated both with samples generated from PDFs and with
full Monte Carlo simulations.

Fig. 7 shows the difference of log-likelihood value compared to
that at the point with the best fit, as a function of φs . At each
φs value, the likelihood function is maximised with respect to all
other parameters. The best fit value is φs = −0.44 ± 0.44 rad. The
projected decay time distribution is shown in Fig. 8.

1 The final fitted values of these parameters are shifted by less than 2% from their
input values.

Fig. 7. Log-likelihood profile of φs for B0
s → J/ψ f0 events.

Fig. 8. Decay time distribution from the fit for J/ψ f0 candidates. The solid line
shows the results of the fit, the dashed line shows the signal, and the shaded region
the background.

7. Systematic uncertainties

The systematic errors are small compared to the statistical er-
rors. No additional uncertainty is needed for errors on �ms , Γs ,
�Γs or flavour tagging, since Gaussian constraints are applied in
the fit. Other uncertainties associated parameters fixed in the fit
are evaluated by changing them by ±1 standard deviation from
their nominal values and determining the change in fit value of φs .
These are listed in Table 2. An additional uncertainty is included
due to the possible CP even D-wave. This has been measured
at (0.0+1.7

−0.0)% of the S-wave and contributes a small error to φs ,
+0.007 rad, as determined by repeating the fit with the mistag
rate increased by 1.7%. The asymmetry in production between B0

s
and B0

s is believed to be small, about 1%, and similar to the same
asymmetry in B0 production which has been measured by LHCb to
be about 1% [17]. The effect of neglecting a 1% production asym-
metry is the same as ignoring a 1% difference in the mistag rate
and causes negligible bias in φs .

8. Conclusions

Using 0.41 fb−1 of data collected with the LHCb detector,
the decay mode B0

s → J/ψ f0, f0 → π+π− is selected and then
used to measure the CP violating phase, φs . We perform a time-
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Table 2
Summary of systematic uncertainties. Here Nbkg refers to the number of background
events, Nsig the number of signal, Nη′ the number of η′ , α the exponential back-
ground parameter for the B0

s candidate mass, NLL/Nbkg the long-lived background
fraction. The Gaussian signal parameters are the mean m0, the width σ(m); t0, a
and n are the three parameters in the acceptance time function. The resolution in
signal time is given by σ(t), and the background lifetime by τbkg. The final uncer-
tainty is found by adding all the sources in quadrature.

Quantity (Q) ±� Q + Change in φs − Change in φs

Nbkg 10.1 0.0025 −0.0030
Nη′ 3.4 −0.0001 −0.0001
Nsig 46.47 −0.0030 0.0028
α 1.7 · 10−4 −0.0002 −0.0002
NLL/Nbkg 0.0238 0.0060 −0.0063
m0 (MeV) 0.32 −0.0003 0.0011
σ(m) (MeV) 0.31 −0.0026 0.0020
τbkg (ps) 0.05 −0.0075 0.0087
σ(t) (ps) 5% −0.0024 0.0022
t0 (ps) 0.015 0.0060 0.0050
a (ps−1) 0.07 −0.0065 −0.0065
n 0.12 −0.0089 −0.0089
CP-even D-wave 0.0070 0

Total Systematic Error +0.018 −0.017

dependent fit of the data with the B0
s lifetime and the difference

in widths of the heavy and light eigenstates constrained. Based on
the likelihood curve in Fig. 7 we find

φs = −0.44 ± 0.44 ± 0.02 rad,

consistent with the SM value of −0.0363+0.0016
−0.0015 rad [1]. Assum-

ing the SM, the probability to observe our measured value is 36%.
There is an ambiguous solution with φs → π − φs and �Γs →
−�Γs . The precision of the result mostly results from using the
tagged sample, though the untagged events also contribute.

LHCb provides an independent measurement of φs = 0.15 ±
0.18 ± 0.06 [16] using the B0

s → J/ψφ decay. Combining these
two results, taking into account all correlations by performing a
joint fit, we obtain

φs = 0.07 ± 0.17 ± 0.06 rad (combined).

This is the most accurate determination of φs to date, and is con-
sistent with the SM prediction.
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