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Perfect posterior simulation for mixture and
hidden Markov models

Kasper K. Berthelsen, Laird A. Breyer and Gareth O. Roberts

Abstract

In this paper we present an application of the read-once coupling from the past algorithm to
problems in Bayesian inference for latent statistical models. We describe a method for perfect
simulation from the posterior distribution of the unknown mixture weights in a mixture model.
Our method is extended to a more general mixture problem, where unknown parameters exist
for the mixture components, and to a hidden Markov model.

1. Introduction

Following the seminal work in [7] on perfect simulation, considerable effort has gone into
developing the general methodology and extending the range of distributions to which these
methods apply. In this paper, we describe the implementation of a perfect simulation algorithm
for generating samples from the posterior distribution in two different Bayesian latent-variable
models. Our methods are applied first to the posterior distribution of the unknown mixture
weights in a Bayesian analysis of a mixture of known distributions. Secondly, we consider a
Bayesian analysis of a hidden Markov model.

Our approach will be to use and extend a collection of techniques for perfect simulation.
Central to all of our methodology will be the use of the read-once coupling from the past
(roCFTP) algorithm for perfect simulation; see [9]. At the core of this algorithm is the
construction of uniformly ergodic blocks of Markov chain update rules. The main challenge
is to construct these blocks of updates so that they have a significant coalescence probability,
that is, the probability that a block maps the entire state space into just one state should be
non-negligible.

The main example in this paper is the mixture problem where the mixture components
are known but the mixture weights are unknown. For this example, the primary updating
construction makes use of the duality principle (see [5]) by augmenting allocation variables.
This allows the simultaneous update of all potential allocations within a rectangular region
in the allocation space and, crucially, enables us to determine a rectangular region containing
the updated allocations. In some situations, these bounds turn out to be too ‘sloppy’ for our
purposes. This leads us to consider ‘exact’ bounds that circumvent the problem of sloppy
bounds. On the other hand, these exact bounds are comparatively more expensive in terms of
computational complexity.

As an extension of our methodology, we consider a hidden Markov chain setup. In this setup,
allocation variables are no longer a priori identically distributed but, rather, are distributed
according to a Markov chain. Posterior simulation is done using the same basic approach as
for the mixture problem.
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There exist several works on perfect simulation in connection with mixture models. In [6], the
basic update function was used in a CFTP-type algorithm for perfect simulation; the detection
of coalescence was done by tracking a bounding set, similar to what we do. Unlike our method,
however, the method of [6] seems limited to mixtures of at most three components. In [4]
a perfect slice sampler was presented, which turns out to be inefficient for moderately sized
data sets.

The remainder of the paper is organised as follows. In Section 2 we specify the basic mixture
problem and review the roCFTP algorithm. In Section 3 we construct an update function that
has the posterior of interest as its equilibrium distribution. Section 4 is concerned with how to
construct bounds for the image of this update function. These bounds are then used in Section 5
to produce perfect samples of the posterior weight distribution. Furthermore, Section 5 contains
a simulation study comparing different ways of combining the bounds developed in Section 4.
In Section 6 we describe an algorithm for perfect simulation from the posterior transition
probabilities in a two-state hidden Markov model.

2. Problem specification

2.1. The posterior weight distribution

Assume that the data points η1, . . . , ηn are an independent sample from an r-component
mixture

r∑
k=1

mkpk(·),

where the component densities p1, . . . , pr are assumed to be known and the mixture weights
m1, . . . , mr are subject to the restrictions mk > 0 and

∑r
k=1 mk = 1.

Upon introducing a uniform Bayesian prior distribution (Dirichlet D(1, 1, . . . , 1)) for the
unknown weights m= (m1, . . . , mr) on the simplex

S =
{

(m1, . . . , mr) :mk > 0 for all k and
r∑

k=1

mk = 1
}
,

we obtain the posterior distribution

π(m1, . . . , mr | η) =
n∏
i=1

[ r∑
k=1

mkpk(ηi)
]
. (2.1)

As this is typically intractable, it is usual to resort to Monte Carlo methods to explore this
distribution. Mixing of Markov chain Monte Carlo (MCMC) algorithms for this problem is
often problematical. Our goal in perfect simulation is to avoid the burn-in problem associated
with ordinary MCMC approaches.

2.2. Wilson’s read-once CFTP algorithm

The perfect simulation algorithms considered in this paper are all examples of the roCFTP
algorithm introduced in [9]. For completeness, we briefly review the roCFTP algorithm below
and define some of the related notation that will be used throughout this paper.

Assume that we want to sample from a distribution Π on a state space Ω and that we know
how to generate a sequence of independent realisations of a random update function C : Ω→ Ω
with the properties that: (1) it preserves stationarity, that is,

∫
Ω

P[C(x) ∈A]Π(dx) = Π(A) for
all A⊆ Ω; and (2) it has a positive probability of being coalescent, that is, of mapping the
entire state space into a single state. A realisation of a random update function is denoted by
an update function. In what follows, #W will denote the cardinality of the set W .
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Under the above assumptions, we can generate a perfect sample as follows. Generate a
sequence C1, C2, . . . of independent realisations of the random update function C. Let Ti denote
the index of the ith coalescent update function; that is, CTi

is coalescent and hence CTi
(x)

does not depend on x. Then x1 = CT2−1 ◦ . . . ◦ CT1(x) does not depend on x ∈ Ω and, more
importantly, x1 is a sample from Π. In general, if xi = CTi+1−1 ◦ . . . ◦ CTi

(x), then x1, x2, . . .
are independent and identically distributed according to Π. For a proof based on the ideas
of Propp and Wilson’s coupling from the past algorithm, see [9]; for a more algebraic proof,
see [3].

In most cases of interest, the random update function C is a compound made up of
several ‘basic’ random update functions that each satisfy (1) but not necessarily (2). So
Ci = Fi,K ◦ . . . ◦ Fi,2 ◦ Fi,1 where Fi,1, . . . , Fi,K are random update functions that preserve
stationarity. For example, F could represent a Gibbs update of the type described in Section 3.

A further complication is that typically there is no feasible way of telling whether a given
realisation Ci is coalescent or not. In some situations it may be possible to find a criterion
which implies that Ci is coalescent but not the other way round. If such a criterion is fulfilled,
we can declare Ci coalescent. Assume that we are given such a criterion for coalescence. We
then redefine Ti to be the index of the ith update function for which the criterion is satisfied.
Letting xi be defined as before, we obtain a subsample of the original perfect sample which,
crucially, is still a perfect sample from Π; see [3]. So it would seem that the better the criterion
is at detecting coalescent update functions, the more efficient our perfect sampler will be. The
downside is that an effective criterion can come at a high computational cost.

Regarding the detection of coalescence, if Ω is of sufficiently low cardinality, it may be
feasible to check whether each x ∈ Ω results in the same value of Ci(x). In this case, all
coalescent update functions will be detected. When this is not feasible, we shall attempt to
detect coalescence by using bounding sets as follows. Recall that Ci = Fi,K ◦ . . . ◦ Fi,2 ◦ Fi,1.
For each Fi,t with t= 1, . . . , K, assume that given W ⊆ Ω we can construct a bounding set W ′

so that Fi,t(W )⊆W ′, where Fi,t(W ) = {Ft(x) : x ∈W}. For each Ci we initialise by setting
W = Ω. The ability to construct bounding sets then allows us to update W sequentially as
we apply each Fi,t. If after applying the last update function Fi,K we have #W ′ = 1, we
declare Ci to be coalescent; otherwise, we declare Ci non-coalescent. In the remainder of this
paper, whenever W ′ = Ft(W ) we say that W ′ is an exact bounding set. The roCFTP perfect
simulation algorithm using bounding sets is illustrated in Figure 1 and can be summarised in
pseudo-code as follows.

1. Choose arbitrary x in Ω and set s := 0
2. For i= 1, 2, 3, . . .
3. Set W := Ω and xold := x
4. For t= 1, . . . , K
5. Generate Ft and set x := Ft(x)
6. Determine W ′ ⊆ Ω such that Ft(W )⊆W ′
7. Set W :=W ′

8. If #W = 1, set xs := xold and s := s+ 1
Notice that the x0 generated by the algorithm is not part of the sample from Π; only

x1, x2, . . . are. Notice further that each update function Ft is used only once, in contrast to
conventional CFTP algorithms, hence the name ‘read-once’ CFTP.

In practice, it is generally easy to construct Ft so that it preserves stationarity. In some
cases we require more. If Ω is an unbounded state space, we typically want F1 to map Ω into
a bounded region with positive probability. This turns out not to be a problem here. Still, we
need F to be constructed in a way that allows the construction of bounding sets.

In Section 3 we shall consider how to construct a random map F that has (2.1) as its
equilibrium distribution. In Section 4 we show how to construct bounding sets, making perfect
simulation feasible.



PERFECT POSTERIOR SIMULATION 249

Figure 1. Illustration of the roCFTP algorithm. The dark grey regions correspond to bounding sets.
The solid line corresponds to the target process started in the arbitrarily chosen state xinit. In this
example the compound update functions C2 and C5 are declared coalescent; accordingly, T1 = 2,

T2 = 5 and x1 = C4 ◦ C3 ◦ C2(x) (circled) is a sample from Π.

3. The update function: Gibbs sampler updates

It is well known that the Gibbs sampler can be used to approximately simulate from the
posterior distribution (2.1) by means of the data augmentation methodology; see [5]. More
precisely, to simulate from π we define auxiliary variables Z1, . . . , Zn ∈ {1, . . . , r}, which
represent the component allocations of each data point, and use a Gibbs sampler, whose updates
are formally

(M ′1, . . . , M
′
r) ∼ π0(· | Z1, . . . , Zn),
Z ′i ∼ πi(· |M ′1, . . . , M ′r) for i= 1, . . . , n,

where π0(· | z1, . . . , zn) =D(N1(z) + 1, . . . , Nr(z) + 1) with Nk(z) = #{s : zs = k} and

πi(k |m1, . . . , mr) =mkpk(ηi)
/ r∑
j=1

mjpj(ηi) for k = 1, . . . , r. (3.1)

Recall that the Dirichlet distribution D(α1 + 1, . . . , αr + 1) has density on S given by

hα(m1, . . . , mr) =
Γ(r + α1 + · · ·+ αr)

Γ(1 + α1) · · · Γ(1 + αr)
mα1

1 . . . mαr
r .

Implementation of the above Gibbs sampler involves a recursively defined sequence

Xt = (Z1t, . . . , Znt, M1t, . . . , Mrt)

such that Xt+1 = Ft+1(Xt), where F1, F2, . . . are independent and identically distributed
random functions of the form

F (x) = (Z ′1(x), . . . , Z ′n(x), M ′1(x), . . . , M ′r(x)). (3.2)

We now give the details of the construction of F .
To generate a probability vector (M ′1(x), . . . , M ′r(x)) with the Dirichlet D(N1(x) +

1, . . . , Nr(x) + 1) distribution, it suffices to generate independent random variables

G1 ∼ Γ(N1(x) + 1), . . . , Gr ∼ Γ(Nr(x) + 1),
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where Γ(N + 1) denotes a gamma distribution with shape parameter N + 1 and scale
parameter 1, and then set

M ′k(x) =Gk(x)
/ r∑
j=1

Gj(x).

To generate each Z ′s(x), we suggest using the following sequential rejection method.
Generate r independent uniform random variables ξs,1, . . . , ξs,r ∼U[0, 1]. Then, for each
component k = 1, . . . , r in turn, we accept Z ′s(x) = k if:
• pk(ηs)M ′k(x)/

∑r
j=kpj(ηs)M

′
j(x)> ξs,k; and

• no other component j < k has yet been accepted.
This method of generating Z ′s(x) has the advantage of requiring a bounded number of iterations
to return an answer, independently of the weights M ′j(x) or the factors pk(ηs).

3.1. Generating gamma random variables

In the remainder of the paper, we need to simulate Gk ∼ Γ(Nk(x) + 1) simultaneously for a
whole range of values of Nk(x). As the distribution of Gk depends on x only through Nk(x),
we will sometimes use the notation Gk(Nk).

In this section we specify how to generate a monotone random function G : {a, a+
1, . . . , b}→ R, where a, b ∈ N and 1 6 a6 b6 n, such that G(i)∼ Γ(i) and G(i) 6G(i+ 1) for
i= a, . . . , b− 1. The construction of G consists of two steps. First, we construct the skeleton
{J (s), H(s) : s= 1, . . . , L} of G, where {J (i)} ⊂ N and {H(i)} ⊂ R are two random and strictly
increasing sequences of random length L. Second, given the skeleton, the random function G
is constructed by setting, for i= a, . . . , b, G(i) =H(s) whenever J (s) 6 i < J (s+1). In the
following, let g(· ; i) denote the density of a gamma distribution with shape parameter i and
scale parameter 1.

The skeleton is constructed as follows.
1. Generate γ ∼ Γ(a)
2. Set J (1) := a and G(1) := γ
3. Conditionally on γ generate u∼U[0, g(γ; a)]
4. Find the largest i> a such that u6 g(γ; i)
5. Set s := 1
6. Repeat steps 7 to 10 until i> b
7. Set s := s+ 1
8. Generate (γ, u) uniformly from the region {(γ, u) : g(γ; i)< u6 g(γ; i+ 1)}
9. Given (γ, u) find the largest i′ such that u6 g(γ; i′)

10. Set J (s) := i+ 1, G(s) := γ and i := i′

11. Set L := s and J (L+1) := b+ 1
A proof of the correctness of this algorithm is given in Appendix A.

In practice, we sample (γ, u) uniformly from the region {(γ, u) : g(γ; i)< u6 g(γ; i+ 1)}
by first sampling γ from a density proportional to (g(γ − i; i+ 1)− g(γ − i; i))1[γ > i] and
then, conditional on γ, sampling u from U[g(γ; i), g(γ; i+ 1)]. For simulating γ, we introduce
a shifted version γ̃ ≡ γ − i and observe that

g(γ̃; i+ 1)− g(γ̃; i)∝ (1 + γ̃/i)i−1e−γ̃ γ̃/i for γ̃ > 0, (3.3)

where the right-hand side of (3.3) is a normalised probability density. Furthermore,

(1 + γ̃/i)i−1e−γ̃ γ̃/i6 (1/
√
n+ 1)n−1e−

√
n+1g(γ̃; 2,

√
n),

where g(·; 2,
√
n) denotes the density of a gamma distribution with shape parameter equal to 2

and scale parameter equal to
√
n. Hence it is straightforward to sample γ̃ (and hence γ) using

a rejection sampler with gamma-distributed proposals. The constant (1/
√
n+ 1)n−1e−

√
n+1
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corresponds to the expected number of proposals needed until acceptance. This constant is
increasing in i, and as i tends to infinity it tends to e1/2. This ensures that the construction
of G has complexity O(n).

Given G, we further construct two continuous, piecewise linear bounding functions G and G.
Specifically, G is a concave function such that G(i)>G(i), and G is a convex function such
that G(i) 6 g(i). The construction of G and G has complexity O(n).

3.2. The image of F

Regarding the image of F , we observe that in the construction of F , each Z ′s(x) depends on x
only through M ′1(x), . . . , M ′r(x), which in turn depend on x only through N1(x), . . . , Nr(x).
Hence F (x) depends on x only through the numbers Nk(x), and this implies that the image
of F is finite. Thus it is straightforward, at least in principle, to determine the image of F .

The number of valid configurations of (N1, . . . , Nr) such that Nk > 0 and
∑r
k=1Nk = n is

r∑
k=1

(
n− 1
r − k

)(
r

k − 1

)
, (3.4)

which gives an upper bound on the cardinality of F (Ω). If the number is sufficiently low, a
perfect sampler would proceed by tracking each point in F (Ω) through the block. We will
return to this idea in § 4.2.

4. Determining the bounding sets

We now consider how to construct bounding sets for the update function F described in
Section 3. From the construction of F it might appear that we need rather complex bounding
sets, such as the specification of a set of possible allocations for each zs combined with a subset
of the simplex S. However, as noted above, F depends on x only through Nk(x). This leads us
to consider bounding sets of the form W = {x : ak 6Nk(x) 6 bk}. Below we describe a practical
way of computing constants a′k and b′k such that

ak 6Nk(x) 6 bk implies a′k 6Nk(F (x)) 6 b′k (4.1)

or, in other words, F (W )⊆W ′ = {x : a′k 6Nk(x) 6 b′k}. In particular, by setting ak = 0 and
bk = n, we obtain a bounding set that equals Ω.

Suppose that for each data point ηs, we can compute upper and lower bounds HIba[s, k] and
LOb

a[s, k] for the component ratios such that

LOb
a[s, k] 6 pk(ηs)M ′k(x)

/ r∑
j=k

pj(ηs)M ′j(x) 6 HIba[s, k] (4.2)

for all x ∈ {x : ak 6Nk(x) 6 bk}. We shall give details of this calculation in § 4.1. Armed with
these bounds, consider the variety of possible values the sequential rejection method can assign
to Z ′s(x) as x varies over the allowed configurations.
• If ξs,k < LOb

a[s, k], then every single allowed configuration accepts the proposal Zs(x) = k,
provided it has not already accepted Zs(x) = i for i < k.

• If ξs,k <HIba[s, k], then some (but not necessarily all) configurations accept the proposal
Zs(x) = k, so some may still accept a later proposal Zs(x) = j for j > k.

• If ξs,k >HIba[s, k], then none of the configurations accept the proposal Zs(x) = k.
We keep track of the possible outcomes for each k by means of the following two sets:

– LOW(s) = {k : ξs,k < LOb
a[s, k] and ξs,i >HIba[s, i] for all i < k};

– HIGH(s) = {k : ξs,k <HIba[s, k] and ξs,i > LOb
a[s, i] for all i < k}.

Obviously, we have LOW(s)⊆HIGH(s), with the lower set representing the (necessarily
unique) component accepted by all allowable configurations (empty if the configurations
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are split) and the upper set representing all those components which are potentially accepted
by at least one allowable configuration. It is now clear that we obtain (4.1) if we choose

a′k = #{s : LOW(s) = {k}} and b′k = #{s : HIGH(s)⊇ {k}}.

4.1. Calculation of LOb
a[s, k] and HIba[s, k]

For each k = 1, . . . , r, let Gk be an independent realisation of G with corresponding bounding
functions Gk and Gk.

As Gk is a non-decreasing function, we have

pk(ηs)M ′k(x)∑r
j=k pj(ηs)M

′
j(x)

=
pk(ηs)Gk(x)

pk(ηs)Gk(x) +
∑r
j=k+1 pj(ηs)Gj(x)

>
pk(ηs)Gk(ak + 1)

pk(ηs)Gk(ak + 1) + maxl
∑r
j=k+1 pj(ηs)Gj(lj + 1)

, (4.3)

where the maximum is over vectors l belonging to the set

S(a, b) :=
{
l : aj 6 lj 6 bj for all j > k and

r∑
j=k+1

lj 6 n−
∑
i6k

ai

}
.

The sum in the denominator of (4.3) is bounded as follows:
r∑

j=k+1

pj(ηs)Gj(lj + 1) 6
r∑

j=k+1

pj(ηs)Gj(lj + 1). (4.4)

As S(a, b) is a convex set and the right-hand side of (4.4) is a convex function, we can maximise
the right-hand side of (4.4) using a greedy hill-climbing algorithm. Initially, set lj = aj for all
j > k; then, iteratively allocate the remaining available amount n−

∑
j6k ai to the component

which at each state gives the greatest score increase under the restriction l ∈ S(a, b). This
maximisation step has complexity O(n). Accordingly, we set

LOb
a[s, k] =

pk(ηs)Gk(ak + 1)
pk(ηs)Gk(ak + 1) + maxl

∑r
j=k+1 pj(ηs)Gj(lj + 1)

.

Using similar arguments, we obtain

HIba[s, k] =
pk(ηs)Gk(bk + 1)

pk(ηs)Gk(bk + 1) + minl
∑r
j=k+1 pj(ηs)Gj(lj + 1)

,

where the minimum is over vectors l belonging to the set

S(a, b) :=
{
l : aj 6 lj 6 bj for all j > k and

r∑
j=k+1

lj > n−
∑
i6k

bi

}
.

The minimum is obtained by means of a greedy hill-descending algorithm. Initially, set lj = bj
for all j > k; then, iteratively reduce the component which at each state gives the greatest score
decrease under the restriction l ∈ S(a, b).

In summary, the complexity of calculating LOb
a[s, k] and HIba[s, k] is O(n). As this has to

be repeated for all n data points and each component, the total complexity of determining a′

and b′ is O(rn2).
We can apply this bounding set to our perfect simulation algorithm as follows. For each Ci we

initialise by setting aj = 0 and bj = n for j = 1, . . . , r, which implies W = Ω. Then, sequentially
for each Fi,k with k = 1, . . . , K, update a and b according to the scheme above. If, after the
(K − 1)st update, we have aj = bj for j = 1, . . . , r, then we declare Ci coalescent; otherwise,
we declare Ci non-coalescent. The reason we need aj = bj after K − 1 updates is that aj = bj
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implies coalescence in the allocation space but not necessarily in the weight space. Coalescence
in the weight space is obtained after the Kth update.

4.2. Exact bounding set

The bounding set obtained by the method above is, in general, not exact. In fact, the simulation
study in Section 5 shows that in certain cases the bounding sets thus constructed are so sloppy
that coalescence is practically never detected. This leads us to reconsider exact bounds.

Recall that each realisation of F involves generating independent random functions
G1, . . . , Gr, where each Gk is generated as in § 3.1 by first generating the skeleton {J (s)

k , H
(s)
k :

s= 1, . . . , Lk}. This construction of G implies that the cardinality of the image of F is generally
much smaller than (3.4).

To determine the image of F , we first define a basin of attraction: for each s = (s1, . . . , sr)
with sk ∈ {1, . . . , Lk}, define

Basin(s) = {(N1, . . . , Nr) : J (sk)
k − 1 6Nk 6 J

(sk+1)
k − 2}.

Consequently, all states x with (N1(x), . . . , Nr(x)) ∈ Basin(s) are mapped into the same state.
The cardinality of the image of F is therefore at most

∏r
k=1Lk. In practice, the actual number

is generally smaller. To see this, observe that Basin(s) only contains valid configurations of N if
r∑

k=1

(J (sk)
k − 1) 6 n6

r∑
k=1

(J (sk+1)
k − 2),

which is not always the case. Furthermore, several basins of attraction may be mapped to the
same point in Ω.

Obtaining F (Ω) involves evaluating F at a number of points, a calculation of order O(nr).
Empirically, it seems that each Lk is of order

√
n, which implies that the number of points

would be of order O(nr/2). Evaluating F at a single point has complexity O(nr). Hence,
given F , the complexity of obtaining F (Ω) is O(rn(r+1)). This should be compared with the
complexity O(rn2) of obtaining the bounds a and b given above. Based on complexity alone, this
comparison suggests that using exact bounds is feasible only when the number of components
is low.

After determining the exact bounding set W = Fi,1(Ω), a perfect simulation algorithm would
simply proceed by tracking each point in W under subsequent random functions Fi,2, . . . , Fi,K .
If at the end of the block all points in W have been mapped to the same point, we declare Ci
coalescent.

5. Simulation study

This section presents the results of a small simulation study of the proposed algorithm. In
particular, we investigate the pros and cons of the two ways of constructing bounding sets
described in Section 4.

In the following, Ω = {1, . . . , r}n × S and F : Ω→ Ω denotes the random update
function (3.2) described in Section 3. We assume that Ci = Fi,K ◦ . . . ◦ Fi,2 ◦ Fi,1 where
Fi,1, . . . , Fi,K are K independent realisations of F .

Furthermore, we assume that each πi is the density of a normally distributed random variable
with mean µi and common variance σ2. Below we consider, among other things, different
choices of the number of components r and different configurations of the component means
µ= (µ1, . . . , µr).

The first part of our simulation study concerns posterior inference for a single data set
consisting of n= 1000 independent samples from a mixture model with r = 5 Gaussian
components of mean µ= (0, 1, 2, 3, 4) and common variance σ2 = 0.25. Using the roCFTP
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Figure 2. Evolution of the bounds a1 and b1 on N1(x) during five blocks of size K = 100, with three
different choices of the threshold, for the setup with five components described in Table 1. From top
to bottom the threshold is set to be 0, exp(30) and 10015. The grey line corresponds to the target
process. A triangle indicates the time at which exact bounding sets start to be used in each block.

A circle indicates when coalescence is determined, that is, when ak = bK for k = 1, . . . , r.

algorithm described at the end of § 4.1, the top plot of Figure 2 shows how the bounds a1 and b1
on N1(x) evolve during five blocks. As suggested by the plot, declaring C to be coalescent under
this algorithm is very unlikely. Increasing the size of the block makes little difference.

If, instead, we use exact bounding sets as described in § 4.2, the result is very different.
Notice that the construction of the exact bounding set does not involve the bounds ak and bk.
Therefore, whenever we use the exact bounding sets, we plot minx∈W N1(x) and maxx∈W N1(x)
in place of a1 and b1. The bottom plot in Figure 2 shows how these bounds evolve when exact
bounding sets are used. Here, the probability of declaring a block of updates coalescent is
essentially one. Nevertheless, the ‘sloppy’ bounding sets do have some merit. It seems reasonable
to assume that as close as ak and bk can be brought together by these sloppy bounds, they do
so in a computationally cheaper fashion than the exact bounds. This suggests combining the
two ways of constructing bounding sets.

To combine the two types of bounding sets, we first define the ‘volume’
∏r
k=1(bk − ak + 1)

of the bounding set. The basic idea is then to use the non-exact bounding sets until the volume
falls below some threshold. After the threshold is reached, we use exact bounding sets for
the remainder of that block of updates. This idea is similar to the idea of one-shot coupling
introduced in [8], and extends the approach in [2] of tracking a rectangular bounding set until
it becomes so small that a more efficient but generally computationally more expensive method
is deemed sufficiently cheap at this scale.

As for choosing the threshold, there are two special cases. The first is when the threshold is
zero, in which case we never use exact bounding sets. This corresponds to the situation shown
in the top panel of Figure 2. The second case is where the threshold is (n+ 1)r or greater, and
then we use only exact bounding sets. This corresponds to the bottom panel of Figure 2.

In the middle plot of Figure 2, the threshold is set to exp(30)≈ 1013. This threshold is
chosen on the basis of the observed volume of the bounding state when it is in the stable state
of the top plot in Figure 2. Comparing this choice of threshold with the case where only exact
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bounding sets are used, we see that the time until coalescence can be declared is essentially
unaffected. More importantly, as can be seen in Table 1, the average CPU time per sample is
reduced roughly by two-thirds. Hence, by postponing the use of exact bounding sets until the
cheap bounding sets get too sloppy we can speed up the simulation considerably. Table 1 also
shows the running times when the block size is only K = 50. This has very little impact on the
running time compared with the K = 100 case. The reason is that when coalescence happens
(that is, when #W = 1), the remaining updates have very low computational cost relative to
the first update. Based on these observations, one might as well choose K large to ensure a
high probability of coalescence.

The second part of our simulation study examines the intuitive expectation that the better-
separated the true means are, the easier it should be to estimate the unknown weights. Table 2
compares perfect simulation of posterior weights in two situations with three components
(r = 3) that essentially differ only in how well-separated the mixture components are. In both
cases, it appears that using only exact bounds yields the best results. This is explained by
the fact that the complexity of the two types of bounds is very similar when the number
of components is this low. When the computational costs are similar, the exact bounds are
obviously the better choice. Looking at the block size K, we see that, not surprisingly, the
optimum block size increases as the component means become less separated.

5.1. Generalisation: Gaussian mixtures with unknown means

So far, we have described how to generate perfect samples from the posterior weight distribution
when the mixture components are known. It is possible to extend our approach to the case
where the components are specified by unknown parameters. Specifically, we consider the
case where the r components are Gaussian with common, known variance σ2 and individual,
unknown means µ1, . . . , µr. As for the Bayesian setup, we assume a uniform prior on the
weights and a normal prior for each µj . Unfortunately, in practice this extension of our
algorithm seems to be feasible only for fairly small data sets (n < 5) where the data consist

Table 1. Simulation study based on inference for a single data set generated using µ= (0, 1, 2, 3, 4)
and n= 1000. For the algorithm, we have used blocks of size K = 50 and K = 100 and three different

choices of the threshold (Thl). In each entry of the table, the first number shows the average CPU
time per sample, and the number in brackets shows the estimated probability of a block being
declared coalescent. Both CPU time and probability of coalescence are based on running the

algorithm until 100 samples have been generated. ‘NA’ means that no samples were produced within
a reasonable time.

Thl

K 0 exp(30) 10015

50 NA (NA) 72.6 (0.99) 209.3 (1.00)
100 NA (NA) 72.8 (1.00) 217.0 (1.00)

Table 2. Like Table 1, except here we compare the inferences for two data sets generated under
different setups. For both data sets the sample size is n= 1000, but in the left table µ= (0, 1, 2)

while in the right table µ= (0, 0.5, 1).

Thl

K 0 10013

150 1.58 (1.00) 0.53 (1.00)
100 1.52 (1.00) 0.50 (1.00)
50 1.48 (1.00) 0.50 (1.00)
25 1.92 (0.75) 0.50 (0.98)

Thl

K exp(20) 10013

150 1.02 (0.94) 0.80 (0.94)
100 1.41 (0.65) 1.21 (0.59)
50 NA (1.00) NA (NA)
25 NA (1.00) NA (NA)
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of one cluster. In other words, the algorithm works best if the likelihood that the data comes
from just one Gaussian distribution is high. For more details on this, see [1].

6. Hidden Markov models

In this section we extend our approach to perfect simulation of the posterior transition
probabilities in a discrete-state hidden Markov model. This essentially means that instead of
assuming that the allocation variables Z0, . . . , Zn are independent and identically distributed,
we assume that Z = (Z0, . . . , Zn) is a Markov chain. For simplicity, we assume that Z is a two-
state Markov chain with transition matrix Q= {qij : i, j ∈ {1, 2}}; that is, P(Zs+1 = j | Zs =
i) = qij . This implies a state vector x= (z0, . . . , zn, q11, q12, q21, q22).

It is easily seen that this Markov chain has stationary distribution with density proportional
to (1− q22, 1− q11) = (q21, q12). As before, we assume a priori that η1, . . . , ηn are independent
given Z and that ηs|Zs = i∼ pi. Assuming that the Markov chain Z is started in equilibrium,
the joint likelihood for η = (η0, . . . , ηn) and Z given Q is

π(η, Z |Q) =
n∏
s=1

qZs−1Zs

n∏
s=0

pZs
(ηs)(q21 + 1[Z0 = 2](q12 − q21))/(q21 + q12).

To obtain a simple posterior, we assume that the joint prior density for q11 and q22 is
proportional to q12 + q21. The posterior density is then proportional to

n∏
s=0

pzs
(ηs)

n∏
s=1

qzs−1zs
(q21 + 1[z0 = 2](q12 − q21)).

6.1. Specifying the update function

The posterior can be sampled using a Gibbs sampler, upon noticing that conditional on Z
and η the posterior distributions of q11 and q22 are independent and beta:

q11|Z = z, η ∼ beta(N11(x) + 1, N12(x) + 1[z0 = 2] + 1) (6.1)

and
q22|Z = z, η ∼ beta(N22(x) + 1, N21(x) + 1[z0 = 1] + 1),

where
Nij(x) = #{s : 1 6 s6 n, zs−1 = i, zs = j}

is the number of transitions from state i to state j in z. The conditional posterior probabilities
for the allocation variables are

P(Z0 = 1 |Q, η, Z−0) = p1(η0)q21q1z1/[p1(η0)q21q1z1+ p2(η0)q12q2z1 ],
P(Zs = 1 |Q, η, Z−s) = p1(ηs)qzs−11q1zs+1/[p1(ηs)qzs−11q1zs+1+ p2(ηs)qzs−12q2zs+1 ]

for 1 6 s6 n− 1,
P(Zn = 1 |Q, η, Z−n) = p1(ηn)qzn−11/[p1(ηn)qzn−11 + p2(ηn)qzn−12],

where Z−s = (Z0, . . . , Zs−1, Zs+1, . . . , Zn).
As in Section 3, the Gibbs sampler can be expressed as a random update function

F (x) = (Z ′0(x), . . . , Z ′n(x), q′11(x), q′22(x)).

To generate q′11(x) from the beta distribution (6.1), we generate gamma-distributed
variables G11 ∼ Γ(N11(x) + 1) and G12(x)∼ Γ(N12(x) + 1[Z0 = 2] + 1) and then set q′11(x) =
G11(x)/(G11(x) +G12(x)). The variable q′22(x) is generated in a similar way. The gamma-
distributed random variables are generated as in Section 3; that is, each Gij , i, j ∈ {1, 2}, is an
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independent realisation of the random function G described in § 3.1. Then

q′11(x) =G11(N11(x) + 1)/[G11(N11(x) + 1) +G12(N12(x) + 1[Z0 = 2] + 1)],

and q′22(x) is given in a similar way.
To generate Z ′0(x), first generate ξ0 ∼U[0, 1] and then, if

ξ0 6 p1(η0)q′21q
′
1z1/[p1(η0)q′21q

′
1z1+ p2(η0)q′12q

′
2z1 ],

set Z ′0 = 1; otherwise, set Z ′0(x) = 2.
To generate Z ′s(x) for s= 1, . . . , n− 1, first generate ξs ∼U[0, 1] and then, if

ξs 6 p1(ηs)q′z′s−1
q′1zt+1

/[p1(ηs)q′z′s−11q
′
1zs+1

+ p2(ηs)q′z′s−12q
′
2zs+1

],

set Z ′s(x) = 1; otherwise, set Z ′s(x) = 2.
To generate Z ′n(x), first generate ξn ∼U[0, 1] and then, if

ξn 6 p1(ηn)q′z′n−11/[p1(ηn)q′z′n−11+ p2(ηn)q′z′n−12],

set Z ′n(x) = 1; otherwise, set Z ′n(x) = 2.

6.2. Determining the bounding sets

Unlike in Section 4, here F (x) depends on the exact configuration of x. Consequently,
we consider bounding sets of the form W [A] = {x : zi ∈Ai}, where A= (A1, . . . , An) and
A1, . . . , An are non-empty subsets of {1, 2}. Given A and a realisation of F , we give a practical
way of determining A′ = (A′1, . . . , A

′
n) so that x ∈W [A] implies F (x) ∈W [A′].

Assume that for each s we can find bounds LOs[A] and HIs[A] such that

LOs[A] 6 P(Zs(x) = 1 |Q(x), Z−s(x), η) 6 HIs[A] for all x ∈W [A],

where

Z−s(x) = (Z ′0(x), . . . , Z ′s−1(x), zs+1, . . . , zn).

Then, if ξs 6 LO[A]s, we know that for any x ∈W [A] we have Z ′s(x) = 1, hence we set A′s = {1}.
If LO[A]s < ξs 6 HI[A]s, then the state of Z ′s(x) may be either 1 or 2 depending on x, hence
A′s = {1, 2}. Finally, if ξs >HI[A]s, then Z ′s(x) = 2 for all x ∈W [A] and hence A′s = {2}.

When finding the bounds, we consider three separate cases: s= 0, 1 6 s6 n− 1 and s= n.
In all three cases, finding the bounds involves maximisation or minimisation over a (super)set
of possible configurations of N = (N11, N12, N21, N22). To determine this set, we notice that
for the two-state Markov chain considered here, it is clear that the difference between N12 and
N21 is at most one. Further, as

∑2
i=1

∑2
j=1Nij = n, this implies

N12 = b(n−N11 −N22)/2c+ 1[z0 = 1]((n−N11 −N22) mod 2)

and

N21 = b(n−N11 −N22)/2c+ 1[z0 = 2]((n−N11 −N22) mod 2).

Assume we have bounds N ij and N ij such that N ij 6Nij(x) 6N ij for all x ∈W [A] and
i, j = 1, 2. Then N11 6N11 6N11, and given N11, we have N22 6N22 6 min(N22, n−N11).
Given N11 and N22, for each value of z̃ ∈A0 we have

N12 = b(n−N11 −N22)/2c+ 1[z̃ = 1]((n−N11 −N22) mod 2)

and

N21 = b(n−N11 −N22)/2c+ 1[z̃ = 2]((n−N11 −N22) mod 2).
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This leads us to define the set

N [A] = {(N11, N12, N21, N22) :N11 6N11 6N11, N22 6N22 6 min(n−N11, N22),
N12 = b(n−N11 −N22)/2c+ 1[z̃ = 1]((n−N11 −N22) mod 2) and
N21 = b(n−N11 −N22)/2c+ 1[z̃ = 2]((n−N11 −N22) mod 2) for z̃ ∈A0}.

We are now ready to define the bounds. In the s= 0 case,

LO0[A] = min
N∈N [A]
z̃∈A1

p1(η0)(1− q′22(N))q1z̃1(N)
p1(η0)(1− q′22(N))q′1z̃1+ p2(η0)(1− q′11(N))q′2z̃1(N)

where q′11 and q′22 are defined as in § 6.1, q′12(N) = 1− q′11(N) and q′21(N) = 1− q′22(N).
For 1 6 s6 n− 1,

LOs[A] = min
N∈N [A]

z̃∈A′s−1,
˜̃z∈At+1

p1(ηs)q′z̃1(N)q′
1˜̃z

(N)
p1(ηs)q′z̃1(N)q′

1˜̃z
(N) + p2(ηs)q′z̃2(N)q′

2˜̃z
(N)

; (6.2)

and for s= n,

LOn[A] = min
N∈N [A]
z̃∈A′n−1

p1(ηn)q′z̃1(N)
p1(ηn)q′z̃1(N) + p2(ηn)q′z̃2(N)

. (6.3)

Each HIs is defined in exactly the same way as LOs except that minimisation is replaced by
maximisation. Notice that (6.2) and (6.3) involve the set A′s−1, which implies that LOs−1 and
HIs−1 have to be determined before LOs and HIs can be determined.

The minimisation and maximisation over N [A] has a worst-case complexity of O(n2). With
n data points, the worst-case complexity for determining A′ is O(n3).

6.3. Generating perfect samples

As in Section 5 we use Wilson’s read-once algorithm for perfect simulation, but unlike in
Section 5 we do not consider exact bounding sets since they are computationally infeasible
in the present setting.

Table 3 shows the computational costs for two data sets of different sizes. In both cases,
pi is the density of a normally distributed random variable with mean µi and variance σ2.
Furthermore, each Ci is a compound of ten independent update functions. It appears that a
quadrupling of the size of the data set results in a dramatic increase in the computational cost,
as would be expected given the complexity of the algorithm.

7. Discussion

We have introduced a general method for perfect simulation applicable to mixture models.
Although the applicability of our techniques does not extend as far as the class of problems
addressed by MCMC, the methods are exact and more widely relevant than existing methods
for perfect simulation.

Table 3. Computational costs for data sets of different sizes. Each row corresponds to a single data
set. Each data set is a realisation of the hidden Markov model specified by the parameters listed in
the first six columns. The perfect simulation algorithm was run until it had produced 100 perfect

samples. The time taken to produce the 100 perfect samples is shown in the last column.

n µ1 µ2 q11 q22 σ CPU time (seconds)

25 −1 1 0.3 0.6 0.5 18
100 −1 1 0.3 0.6 0.5 102
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Appendix A. Validity of the algorithm in § 3.1

We now show that the random function G presented in § 3.1 has the property that
G(i)∼ Γ(i). The construction of G involves constructing a random number of pairs (γ, u)
of random variables. Let S = {(γ1, u1), (γ2, u2), . . . , (γL, uL)} denote the sequence of these
pairs of random variables. Define the set gi = {(γ, u) : 0 6 u6 g(γ; i)}. By construction,
each set gi ∩ S contains exactly one point from S; let (γ̃i, ũi) be the unique point in
gi ∩ S. We now show by induction that (γ̃i, ũi) is uniformly distributed on gi for all i=
1, 2, . . . , n+ 1. By construction, (γ1, u1) is uniformly distributed on g1 and hence so is
(γ̃1, ũ1). Assume, for i= 1, . . . , κ− 1, that (γ̃i, ũi) is uniformly distributed on gi. Notice
that gκ = (gκ−1 ∩ gκ) ∪ (gκ\gκ−1) and (gκ−1 ∩ qκ) ∩ (gκ\gκ−1) = ∅. By assumption, with
probability |gκ−1 ∩ gκ| we have (γ̃κ−1, ũκ−1) ∈ gκ−1 ∩ gκ, and hence (γ̃κ, ũκ) = (γ̃κ−1, ỹκ−1).
In other words, with probability |gκ−1 ∩ gκ| the point (γ̃κ, ũκ) is uniformly distributed on
gκ−1 ∩ gκ. With probability |gκ−1\gκ|= 1− |gκ−1 ∩ gκ| we have (γ̃κ−1, ũκ−1) ∈ gκ−1\gκ, that
is, (γ̃κ−1, ũκ−1) 6∈ gκ. In this case the algorithm generates a new pair (γ, u) uniformly on
gκ\gκ−1; that is, with probability |gκ−1\gκ| the point (γ̃κ, ũκ) is uniformly distributed
on gκ\gκ−1. Since |gκ\gκ−1|= |gκ−1\gκ|, we are done.
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