
The Library
Mechanism of catalytic cyclohydroamination by zirconium salicyloxazoline complexes
Tools
Allan, Laura E. N., Clarkson, Guy J., Fox, David J., Gott, Andrew L. and Scott, Peter (2010) Mechanism of catalytic cyclohydroamination by zirconium salicyloxazoline complexes. Journal of the American Chemical Society, Vol.132 (No.43). pp. 15308-15320. doi:10.1021/ja106588m ISSN 0002-7863.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1021/ja106588m
Abstract
The mechanism of hydroamination/cyclization of primary aminoalkenes by catalysts based on Cp*LZr(NMe2)(2) = kappa(2)-salicyloxazoline) is investigated in a range of kinetic, stoichiometric, and structural studies. The rate law is found to be d[substrate]/dt = k[catalyst](1)[substrate](0) for all catalysts and aminoalkenes studied. The overall rate is similar for formation of five-and six-membered rings, and a substantial KIE (k(H)/k(D)) is observed, indicating the involvement of N-H bond-breaking in a rate-determining step (ADS) which is not ring-closure. Remarkably, the reaction proceeds at the same rate in THF as it does in toluene, but added non-cyclizable amine slows the reaction, indicating that while the metal is not acting as a Lewis acid in the ADS, the activated substrate is involved. Also in contrast to other catalysts, increasing steric bulk improves the rate, and the origins of this are investigated by X-ray crystallography. Thermodynamic parameters extracted from eight independent kinetic studies indicate moderate ordering (Delta S double dagger = -13 to -23 cal/K.mol) and substantial overall bond disruption (Delta H double dagger = 17 to 21 kcal/mol) in the rate-determining transition state. Secondary amines are unreactive, as is a catalyst with a single aminolyzable site, thus excluding an amido mechanism. A catalytic cycle involving rate-determining formation of a reactive imido species is proposed. Stoichiometric steps in the process are shown to be feasible and have appropriate rates by synthetic and in situ NMR spectroscopic studies. The fate of the catalyst in the absence of excess amine (at the end of the catalytic reaction) is conversion to a metallacyclic species arising from CH activation of a peripheral substituent.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | Q Science > QD Chemistry | ||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Chemistry | ||||
Library of Congress Subject Headings (LCSH): | Catalysis, Zirconium, Ring formation (Chemistry), Amination | ||||
Journal or Publication Title: | Journal of the American Chemical Society | ||||
Publisher: | American Chemical Society | ||||
ISSN: | 0002-7863 | ||||
Official Date: | 3 November 2010 | ||||
Dates: |
|
||||
Volume: | Vol.132 | ||||
Number: | No.43 | ||||
Number of Pages: | 13 | ||||
Page Range: | pp. 15308-15320 | ||||
DOI: | 10.1021/ja106588m | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published | ||||
Funder: | Engineering and Physical Sciences Research Council (EPSRC) |
Data sourced from Thomson Reuters' Web of Knowledge
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |