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Abstract Using 34.7 pb−1 of data collected with the LHCb
detector, the inclusive production of the X(3872) meson in
pp collisions at

√
s = 7 TeV is observed for the first time.

Candidates are selected in the X(3872) → J/ψπ+π− de-
cay mode, and used to measure

σ
(
pp → X(3872) + anything

)
B

(
X(3872) → J/ψπ+π−)

= 5.4 ± 1.3 (stat) ± 0.8 (syst) nb,

where σ(pp → X(3872) + anything) is the inclusive pro-
duction cross section of X(3872) mesons with rapidity in
the range 2.5–4.5 and transverse momentum in the range
5–20 GeV/c. In addition the masses of both the X(3872)

and ψ(2S) mesons, reconstructed in the J/ψπ+π− final
state, are measured to be

mX(3872) = 3871.95 ± 0.48 (stat) ± 0.12 (syst) MeV/c2

and

mψ(2S) = 3686.12 ± 0.06 (stat) ± 0.10 (syst) MeV/c2.

1 Introduction

The X(3872) particle was discovered in 2003 by the
Belle collaboration in the B± → X(3872)K±, X(3872) →
J/ψπ+π− decay chain [1]. Its existence was confirmed
by the CDF [2], DØ [3] and BaBar [4] collaborations. The
discovery of the X(3872) particle and the subsequent ob-
servation of several other new states in the mass range 3.9–
4.7 GeV/c2 have led to a resurgence of interest in exotic
meson spectroscopy [5].

Several properties of the X(3872) have been determined,
in particular its mass [6–8] and the dipion mass spectrum
in the decay X(3872) → J/ψπ+π− [7, 9], but its quan-
tum numbers, which have been constrained to be either
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JPC = 2−+ or 1++ [10], are still not established. Despite
a large experimental effort, the nature of this new state is
still uncertain and several models have been proposed to
describe it. The X(3872) could be a conventional charmo-
nium state, with one candidate being the ηc2(1D) meson [5].
However, the mass of this state is predicted to be far be-
low the observed X(3872) mass. Given the proximity of the
X(3872) mass to the D∗0D̄0 threshold, another possibility is
that the X(3872) is a loosely bound D∗0D̄0 ‘molecule’, i.e.
a ((uc)(cu)) system [5]. For this interpretation to be valid
the mass of the X(3872) should be less than the sum of D∗0

and D0 masses. A further, more exotic, possibility is that the
X(3872) is a tetraquark state [11].

Measurements of X(3872) production at hadron collid-
ers, where most of the production is prompt rather than from
b-hadron decays, may shed light on the nature of this par-
ticle. In particular, it has been discussed whether or not the
possible molecular nature of the X(3872) is compatible with
the production rate observed at the Tevatron [12, 13]. Pre-
dictions for X(3872) production at the LHC have also been
published [13].

This paper reports an observation of X(3872) produc-
tion in pp collisions at

√
s = 7 TeV using an integrated

luminosity of 34.7 pb−1 collected by the LHCb experi-
ment. The X(3872) → J/ψπ+π− selection is optimized on
the similar but more abundant ψ(2S) → J/ψπ+π− decay.
The observed X(3872) signal is used to measure both the
X(3872) mass and the production rate from all sources in-
cluding b-hadron decays, i.e. the absolute inclusive X(3872)

production cross section in the detector acceptance multi-
plied by the X(3872) → J/ψπ+π− branching fraction.

2 The LHCb spectrometer and data sample

The LHCb detector is a forward spectrometer [14] at the
Large Hadron Collider (LHC). It provides reconstruction
of charged particles in the pseudorapidity range 2 < η < 5.
The detector elements are placed along the LHC beam line
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starting with the vertex detector (VELO), a silicon strip de-
vice that surrounds the proton-proton interaction region. It
is used to reconstruct both the interaction vertices and the
decay vertices of long-lived hadrons. It also contributes to
the measurement of track momenta, along with a large area
silicon strip detector located upstream of a dipole magnet
and a combination of silicon strip detectors and straw drift-
tubes placed downstream. The magnet has a bending power
of about 4 Tm. The combined tracking system has a momen-
tum resolution δp/p that varies from 0.4 % at 5 GeV/c to
0.6 % at 100 GeV/c. Two ring imaging Cherenkov (RICH)
detectors are used to identify charged hadrons. The detec-
tor is completed by electromagnetic calorimeters for pho-
ton and electron identification, a hadron calorimeter, and
a muon system consisting of alternating layers of iron and
multi-wire proportional chambers. The trigger consists of a
hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage which ap-
plies a full event reconstruction.

The cross-section analysis described in this paper is
based on a data sample collected in 2010, exclusively using
events that passed dedicated J/ψ trigger algorithms. These
algorithms selected a pair of oppositely charged muon can-
didates, where either one of the muons had a transverse mo-
mentum pT larger than 1.8 GeV/c or one of the two muons
had pT > 0.56 GeV/c and the other pT > 0.48 GeV/c.
The pair of muons was required to originate from a common
vertex and have an invariant mass in a wide window around
the J/ψ mass. The X(3872) mass measurement also uses
events triggered with other algorithms, such as single-muon
triggers. To avoid domination of the trigger CPU time by a
few events with high occupancy, a set of cuts was applied on
the hit multiplicity of each sub-detector used by the pattern
recognition algorithms. These cuts reject high-multiplicity
events with a large number of pp interactions.

The accuracy of the X(3872) mass measurement relies
on the calibration of the tracking system [15]. The spatial
alignment of the tracking detectors, as well as the calibration
of the momentum scale, are based on the J/ψ → μ+μ−
mass peak. This was carried out in seven time periods cor-
responding to known changes in the detector running condi-
tions. The procedure takes into account the effects of QED
radiative corrections which are important in this decay.

The analysis uses fully simulated samples based on the
PYTHIA 6.4 generator [16] configured with the parame-
ters detailed in [17]. The EVTGEN [18], PHOTOS [19]
and GEANT4 [20] packages are used to describe the de-
cays of unstable particles, model QED radiative corrections
and simulate interactions in the detector, respectively. The
X(3872) → J/ψπ+π− Monte Carlo events are generated
assuming that the ρ resonance dominates the dipion mass
spectrum, as established by the CDF [9] and Belle [7] data.

3 Event selection

To isolate the X(3872) signal, tight cuts are needed to re-
duce combinatorial background where a correctly recon-
structed J/ψ meson is combined with a random π+π− pair
from the primary pp interaction. The cuts are defined us-
ing reconstructed ψ(2S) → J/ψπ+π− decays, as well as
‘same-sign pion’ candidates satisfying the same criteria as
used for the X(3872) and ψ(2S) selection but where the two
pions have the same electric charge. The Kullback–Leibler
(KL) distance [21–23] is used to suppress duplicated par-
ticles created by the reconstruction: if two particles have a
symmetrized KL divergence less than 5000, only that with
the higher track fit quality is considered.

J/ψ → μ+μ− candidates are formed from pairs of op-
positely charged particles identified as muons, originating
from a common vertex with a χ2 per degree of freedom
(χ2/ndf) smaller than 20, and with an invariant mass in the
range 3.04–3.14 GeV/c2. The two muons are each required
to have a momentum above 10 GeV/c and a transverse mo-
mentum above 1 GeV/c. To reduce background from the
decay in flight of pions and kaons, each muon candidate
is required to have a track fit χ2/ndf less than 4. Finally
J/ψ candidates are required to have a transverse momen-
tum larger than 3.5 GeV/c.

Pairs of oppositely charged pions are combined with J/ψ

candidates to build ψ(2S) and X(3872) candidates. To re-
duce the combinatorial background, each pion candidate is
required to have a transverse momentum above 0.5 GeV/c

and a track fit χ2/ndf less than 4. In addition, kaons are
removed using the RICH information by requiring the like-
lihood for the kaon hypothesis to be smaller than that for
the pion hypothesis. A vertex fit is performed [24] that con-
strains the four daughter particles to originate from a com-
mon point and the mass of the muon pair to the nominal
J/ψ mass [25]. This fit both improves the mass resolution
and reduces the sensitivity of the result to the momentum
scale calibration. To further reduce the combinatorial back-
ground the χ2/ndf of this fit is required to be less than 5.
Finally, the requirement Q < 300 MeV/c2 is applied where
Q = Mμμππ − Mμμ − Mππ , and Mμμππ , Mμμ and Mππ

are the reconstructed masses before any mass constraint; this
requirement removes 35 % of the background whilst retain-
ing 97 % of the X(3872) signal.

Figure 1 shows the J/ψπ+π− mass distribution for the
selected candidates, with clear signals for both the ψ(2S)

and the X(3872) mesons, as well as the J/ψπ±π± mass
distribution of the same-sign pion candidates.

4 Mass measurements

The masses of the ψ(2S) and X(3872) mesons are de-
termined from an extended unbinned maximum likelihood
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fit of the reconstructed J/ψπ+π− mass in the interval
3.60 < MJ/ψππ < 3.95 GeV/c2. The ψ(2S) and X(3872)

signals are each described with a non-relativistic Breit–
Wigner function convolved with a Gaussian resolution func-
tion. The intrinsic width of the ψ(2S) is fixed to the PDG
value, Γψ(2S) = 0.304 MeV/c2 [25]. The Belle collabora-
tion recently reported [7] that the X(3872) width is less than
1.2 MeV/c2 at 90 % confidence level; we fix the X(3872)

width to zero in the nominal fit. The ratio of the mass reso-
lutions for the X(3872) and the ψ(2S) is fixed to the value
estimated from the simulation, σ MC

X(3872)/σ
MC
ψ(2S) = 1.31.

Studies using the same-sign pion candidates show that
the background shape can be described by the functional
form f (M) ∝ (M − mth)

c0 exp(−c1M − c2M
2), where

mth = mJ/ψ + 2mπ = 3376.05 MeV/c2 [25] is the mass
threshold and c0, c1 and c2 are shape parameters. To im-
prove the stability of the fit, the parameter c2 is fixed to the
value obtained from the same-sign pion sample.

In total, the fit has eight free parameters: three yields
(ψ(2S), X(3872) and background), two masses (ψ(2S) and
X(3872)), one resolution parameter, and two background
shape parameters. The correctness of the fitting procedure
has been checked with simplified Monte Carlo samples,
fully simulated Monte Carlo samples, and samples contain-
ing a mixture of fully simulated Monte Carlo signal events
and same-sign background events taken from the data. The
fit results are shown in Fig. 1 and Table 1. The fit does not
account for QED radiative corrections and hence underesti-
mates the masses. Using a simulation based on PHOTOS [19]
the biases on the X(3872) and ψ(2S) masses are found to be
−0.07 ± 0.02 MeV/c2 and −0.02 ± 0.02 MeV/c2, respec-
tively. The fitted mass values are corrected for these biases
and the uncertainties propagated in the estimate of the sys-
tematic error.

Several other sources of systematic effects on the mass
measurements are considered. For each source, the com-
plete analysis is repeated (including the track fit and the
momentum scale calibration when needed) under an alter-
native assumption, and the observed change in the central
value of the fitted masses relative to the nominal results
assigned as a systematic uncertainty. The dominant source
of uncertainty is the calibration of the momentum scale.
Based on checks performed with reconstructed signals of
various mesons decaying into two-body final states (such

as π+π−, K∓π± and μ+μ−) a relative systematic uncer-
tainty of 0.02 % is assigned to the momentum scale [15],
which translates into a 0.10 (0.08) MeV/c2 uncertainty on
the X(3872) (ψ(2S)) mass. After the calibration procedure
with the J/ψ → μ+μ− decay, a ±0.07 % variation of the
momentum scale remains as a function of the particle pseu-
dorapidity η. To first order this effect averages out in the
mass determination. The residual impact of this variation is
evaluated by parameterizing the momentum scale as func-
tion of η and repeating the analysis. The systematic uncer-
tainty associated with the momentum calibration indirectly
takes into account any effect related to the imperfect align-
ment of the tracking stations. However, the alignment of
the VELO may affect the mass measurements through the
determination of the horizontal and vertical slopes of the
tracks. This is investigated by changing the track slopes by
amounts corresponding to the 0.1 % relative precision with
which the length scale along the beam axis is known [26].
Other small uncertainties arise due to the limited knowl-
edge of the X(3872) width and the modeling of the reso-
lution. The former is estimated by fixing the X(3872) width
to 0.7 MeV/c2 instead of zero, as suggested by the likeli-
hood published by Belle [7]. The latter is estimated by fix-
ing the ratio σX(3872)/σψ(2S) using the covariance estimates

Fig. 1 Invariant mass distribution of J/ψπ+π− (points with statis-
tical error bars) and same-sign J/ψπ±π± (filled histogram) candi-
dates. The curves are the result of the fit described in the text. The inset
shows a zoom of the X(3872) region

Table 1 Results of the fit to the
J/ψπ+π− invariant mass
distribution of Fig. 1

Fit parameter or derived quantity ψ(2S) X(3872)

Number of signal events 3998 ± 83 565 ± 62

Mass m [ MeV/c2] 3686.10 ± 0.06 3871.88 ± 0.48

Resolution σ [ MeV/c2] 2.54 ± 0.06 3.33 ± 0.08

Signal-to-noise ratio in ±3σ window 1.5 0.15

Number of background events 73094 ± 282
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Table 2 Systematic
uncertainties on the ψ(2S) and
X(3872) mass measurements

Category Source of uncertainty �m [ MeV/c2]

ψ(2S) X(3872)

Mass fitting Natural width – 0.01

Radiative tail 0.02 0.02

Resolution – 0.01

Background model 0.02 0.02

Momentum calibration Average momentum scale 0.08 0.10

η dependence of momentum scale 0.02 0.03

Detector description Energy loss correction 0.05 0.05

Detector alignment Track slopes 0.01 0.01

Total 0.10 0.12

returned by the track fit algorithm on signal events in the
data sample, rather than using the mass resolutions from the
simulation. The effect of background modeling is estimated
by performing the fit on two large samples, one with only
Monte Carlo signal events, and one containing a mixture of
Monte Carlo signal events and background candidates ob-
tained by combining a J/ψ candidate and a same-sign pion
pair from different data events: the difference in the fitted
mass values is taken as a systematic uncertainty. The amount
of material traversed in the tracking system by a particle is
estimated to be known to a 10 % accuracy [27]; the mag-
nitude of the energy loss correction in the reconstruction is
therefore varied by 10 %. The assigned systematic uncer-
tainties are summarized in Table 2 and combined in quadra-
ture.

Systematic checks of the stability of the measured ψ(2S)

mass are performed, splitting the data sample according to
different run periods or to the dipole magnet polarity, or ig-
noring the hits from the tracking station before the magnet.
In addition, the measurement is repeated in bins of the p,
pT and Q values of the ψ(2S) signal. No evidence for a
systematic bias is found.

5 Determination of the production cross section

The observed X(3872) signal is used to measure the prod-
uct of the inclusive production cross section σ(pp →
X(3872)+anything) and the branching fraction B(X(3872)

→ J/ψπ+π−), according to

σ
(
pp → X(3872) + anything

)
B

(
X(3872) → J/ψπ+π−)

= Ncorr
X(3872)

ξ B(J/ψ → μ+μ−)Lint
, (1)

where Ncorr
X(3872) is the efficiency-corrected signal yield, ξ

is a correction factor to the simulation-derived efficiency
that accounts for known differences between data and sim-
ulation, B(J/ψ → μ+μ−) = (5.93 ± 0.06) % [25] is the

J/ψ → μ+μ− branching fraction, and Lint is the integrated
luminosity.

The absolute luminosity scale was measured at specific
periods during the 2010 data taking [28] using both Van
der Meer scans [29] and a beam-gas imaging method [30].
The instantaneous luminosity determination is then based on
a continuous recording of the multiplicity of tracks in the
VELO, which has been normalized to the absolute luminos-
ity scale [28]. The integrated luminosity of the sample used
in this analysis is determined to be Lint = 34.7 ± 1.2 pb−1,
with an uncertainty dominated by the knowledge of the
beam currents.

Only X(3872) candidates for which the J/ψ triggered
the event are considered, keeping 70 % of the raw signal
yield used for the mass measurement. In addition, the can-
didates are required to lie inside the fiducial region for the
measurement,

2.5 < y < 4.5 and 5 < pT < 20 GeV/c, (2)

where y and pT are the rapidity and transverse momentum
of the X(3872). This region provides a good balance be-
tween a high efficiency (92 % of the triggered events) and a
low systematic uncertainty on the acceptance correction.

The corrected yield Ncorr
X(3872) = 9140 ± 2224 is obtained

from a mass fit in the narrow region 3820–3950 MeV/c2,
with a linear background model and the same X(3872) sig-
nal model as used previously but with the mass and resolu-
tion fixed to the central values presented in Sect. 4. In this
fit, each candidate is given a weight equal to the recipro-
cal of the total signal efficiency estimated from simulation
for the y and pT of that candidate. A second method based
on the sWeight [31] technique was found to give consistent
results. The average total signal efficiency in the fiducial re-
gion of (2) is estimated to be NX(3872)/N

corr
X(3872) = 4.2 %,

where NX(3872) is the observed signal yield obtained from a
mass fit without weighting the events. This low value of the
efficiency is driven by the geometrical acceptance and the
requirement on the pT of the J/ψ meson.
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The quantity ξ of (1) is the product of three factors. The
first two, 1.024 ± 0.011 [32] and 0.869 ± 0.043, account
for differences between the data and simulation for the ef-
ficiency of the muon and pion identifications, respectively.
The third factor, 0.92 ± 0.03, corresponds to the efficiency
of the hit-multiplicity cuts applied in the trigger, which is
not accounted for in the simulation. It is obtained from a fit
of the distribution of the number of hits in the VELO.

The relative systematic uncertainties assigned to the
cross-section measurement are listed in Table 3, and quadrat-
ically add up to 14.2 %. The cross-section measurement is
performed under the most favored assumption for the quan-
tum numbers of the X(3872) particle, JPC = 1++ [33],
which is used for the generation of Monte Carlo events.
No systematic uncertainty is assigned to cover other cases.
Besides the uncertainties already mentioned on B(J/ψ →
μ+μ−), Lint and ξ , the following sources of systematics on
Ncorr

X(3872) are considered. The dominant uncertainty is due to
differences in the efficiency of track reconstruction between
the data and simulation. This is estimated to be 7.4 % using a
data driven tag and probe approach based on J/ψ → μ+μ−
candidates. An additional uncertainty of 0.5 % per track is
assigned to cover differences in the efficiency of the track
χ2/ndf cut between data and simulation. Similarly, a 3 %
uncertainty is assigned due to the effect of the vertex χ2

cuts.
Other important sources of uncertainty are due to the

modeling of the signal and background mass distributions.
Repeating the mass fit with the X(3872) decay width fixed
to 0.7 MeV/c2 instead of zero results in a 5 % change of the
signal yield. Similarly, the uncertainties due to the X(3872)

Table 3 Relative systematic uncertainties on the X(3872) production
cross-section measurement. The total uncertainty is the quadratic sum
of the individual contributions

Source of uncertainty �σ/σ [%]

X(3872) polarization 2.1

X(3872) decay model 1.0

X(3872) decay width 5.0

Mass resolution 2.5

Background model 6.4

Tracking efficiency 7.4

Track χ2 cut 2.0

Vertex χ2 cut 3.0

Muon trigger efficiency 2.9

Hit-multiplicity cuts 3.0

Muon identification 1.1

Pion identification 4.9

Integrated luminosity 3.5

J/ψ → μ+μ− branching fraction 1.0

Total 14.2

mass resolution are estimated by repeating the mass fit with
different fixed mass resolutions: first changing it by the sta-
tistical uncertainty reported in Table 1, and then changing
it by the systematic uncertainty resulting from the knowl-
edge of the resolution ratio σX(3872)/σψ(2S), as described in
Sect. 4. The combined effect on the X(3872) signal yield
corresponds to a 2.5 % systematic uncertainty.

Using an exponential rather than linear function to de-
scribe the background leads to a change of 6.4 % in signal
yield, which is taken as an additional systematic uncertainty.

The unknown X(3872) polarization affects the total effi-
ciency, mainly through the J/ψ reconstruction efficiency.
The dipion system is less affected, in particular the effi-
ciency is found to be constant as a function of the dipion
mass. The simulation efficiency, determined assuming no
J/ψ polarization, is recomputed in two extreme schemes
for the J/ψ polarization (fully transverse and fully longi-
tudinal) [32] and the maximum change of 2.1 % is taken
as systematic uncertainty. The efficiency of the Q cut de-
pends on the X(3872) decay model. The dipion mass spec-
trum obtained in this analysis does not have enough accu-
racy to discriminate between reasonable models. Comparing
the results obtained with the X(3872) → J/ψρ decay mod-
els used by CDF [9] and by Belle [7], we evaluated a 1 %
systematic uncertainty on the Q-cut efficiency.

Finally, differences in the trigger efficiency between data
and simulation are studied using events triggered indepen-
dently of the J/ψ candidate. Based on these studies an un-
certainty of 2.9 % is assigned.

6 Results and conclusion

With an integrated luminosity of 34.7 pb−1 collected by the
LHCb experiment, the production of the X(3872) particle
is observed in pp collisions at

√
s = 7 TeV. The product

of the production cross section and the branching ratio into
J/ψπ+π− is

σ
(
pp → X(3872) + anything

)
B

(
X(3872) → J/ψπ+π−)

= 5.4 ± 1.3 (stat) ± 0.8 (syst) nb,

for X(3872) mesons produced (either promptly or from the
decay of other particles) with a rapidity between 2.5 and 4.5
and a transverse momentum between 5 and 20 GeV/c.

Predictions for the X(3872) → J/ψπ+π− production at
the LHC are available from a non-relativistic QCD model
which assumes that the cross section is dominated by the
production of charm quark pairs with negligible relative
momentum [13]. The calculations are normalized using ex-
trapolations from measurements performed at the Tevatron.
When restricted to the kinematic range of our measurement
and summed over prompt production and production from
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b-hadron decays, the results of [13] yield 13.0 ± 2.7 nb,
where the quoted uncertainty originates from the experimen-
tal input used in the calculation. This prediction exceeds our
measurement by 2.4σ .

After calibration using J/ψ → μ+μ− decays, the masses
of both the X(3872) and ψ(2S) mesons, reconstructed in the
same J/ψπ+π− final state, are measured to be

mX(3872) = 3871.95 ± 0.48 (stat) ± 0.12 (syst) MeV/c2,

mψ(2S) = 3686.12 ± 0.06 (stat) ± 0.10 (syst) MeV/c2,

in agreement with the current world averages [25], and with
the recent X(3872) mass measurement from Belle [7]. The
measurements of the X(3872) mass are consistent, within
uncertainties, with the sum of the D0 and D∗0 masses,
3871.79 ± 0.29 MeV/c2, computed from the results of the
global PDG fit of the charm meson masses [25].
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