University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

## A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/49105

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.


# Crepant resolutions and $A$-Hilbert schemes in dimension four 

## Sarah Elizabeth Davis

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Mathematics Department, University of Warwick

March 2012

## Contents

Acknowledgements ..... 7
Declaration ..... 8
Abstract ..... 9
1 Introduction ..... 10
1.1 Background ..... 10
1.2 Quotient singularities ..... 12
1.3 The $G$-Hilbert scheme ..... 15
1.4 Calculating $A$ - $\operatorname{Hilb}\left(\mathbb{C}^{3}\right)$ ..... 17
1.5 Hilbert partition definitions ..... 23
2 Resolutions ..... 28
2.1 Resolutions ..... 28
2.2 Unavoidable points ..... 31
2.3 Counter-examples to sufficiency of JunNec ..... 34
2.4 Products of singularities ..... 35
2.5 The search for a sufficient condition ..... 36
2.6 Projective crepant resolutions ..... 38
2.7 Other subdivisions ..... 42
3 Resolution algorithm ..... 48
3.1 Overview of the program ..... 48
3.1.1 Short description of the program ..... 48
3.1.2 Detailed description of the program ..... 50
3.2 Setup ..... 55
3.3 Face pieces ..... 59
3.4 Find a resolution ..... 63
3.5 Justification of algorithm ..... 67
3.6 Examples ..... 69
$4 \quad A$ - $\operatorname{Hilb}\left(\mathbb{C}^{4}\right)$ and crepant resolutions ..... 85
4.1 Examples ..... 85
4.2 The family $\frac{1}{r}(1,1, a, b)$ ..... 88
4.3 $\quad A$-Hilbert schemes for $\frac{1}{r}(1,1, a, b)$ ..... 90
4.4 The case $a$ and $b$ even ..... 91
4.5 Calculating continued fractions ..... 93
4.6 Concatenation of continued fractions ..... 98
4.7 Regular triples ..... 104
4.8 The four dimensional Craw-Reid knock-out contest ..... 106
4.9 Invariant monomials ..... 107
4.10 $A$ - $\operatorname{Hilb}\left(\mathbb{C}^{4}\right)$ and $A$-clusters ..... 114
Bibliography ..... 123

## List of Tables

2.1 Subdivision of the junior simplex at $p_{2}$ first ..... 31
2.2 Subdivision of the junior simplex at $p_{8}$ first ..... 31
2.3 Points on the subdivisions of the junior simplex of $\frac{1}{23}(1,3,4,15)$ ..... 33
3.1 AdjacencyGraph for Example 3.1.2 ..... 52
4.1 Values of $r \bmod 63$ for which $\frac{1}{r}(1,1,7, r-9)$ satisfies JunNec ..... 89
4.2 The inverses of 7 and 9 modulo $r$ ..... 89

## List of Figures

1.1 The Newton polygon for $\frac{1}{5}(1,4)$ ..... 15
1.2 A cluster of $\frac{1}{5}(1,4)$ ..... 16
1.3 All clusters of $\frac{1}{5}(1,4)$ ..... 17
1.4 The regular triangulation of a triangle of side 4 ..... 18
1.5 First step in obtaining a regular triangulation of $\frac{1}{13}(1,2,10)$. ..... 20
1.6 A regular triangulation of $\frac{1}{13}(1,2,10)$. ..... 21
1.7 Ratios on the exception curves in $A$ - $\operatorname{Hilb}\left(\mathbb{C}^{3}\right)$ for $\frac{1}{13}(1,2,10)$. ..... 23
2.1 Triangulations of the rectangle $q_{1}, q_{2}, q_{5}, q_{6}$ ..... 43
2.2 Triangulation of the $x_{1} x_{3}$-plane in the age 2 octahedron ..... 44
3.1 Flowchart for the resolution algorithm ..... 49
3.2 Flowchart for the FindResn algorithm ..... 65
3.3 Not a triangulation: two cones meeting in a subset of an edge ..... 68
3.4 Two cones meeting in a subset of a face ..... 68
4.1 Cross section of the cone $p_{1} e_{4} p_{8} p_{6} e_{1}$ ..... 86
4.2 $\quad A$-Hilb $\mathbb{C}^{4}$ for $\frac{1}{26}(1,1,4,20)$ ..... 91
4.3 Lines out of the vertices for $\frac{1}{50}(1,1,5,43)$ ..... 97
4.4 Lines out of the vertices for $\frac{1}{31}(1,1,3,26)$ ..... 98
4.5 Deleting half-regular triangles of $\frac{1}{57}(1,1,5,50)$ ..... 104
4.6 The result of step 1 for $\frac{1}{57}(1,1,5,50)$ ..... 108
4.7 The result of step 2 for $\frac{1}{57}(1,1,5,50)$ ..... 108
4.8 Half-regular tessellation of $A^{\prime} e_{3} e_{4}$ for $\frac{1}{57}(1,1,5,50)$ ..... 108
4.9 Half-regular triples versus monomials ..... 110
4.10 The dual basis for $\frac{1}{23}(1,1,3,18)$ ..... 115

## Acknowledgements

First of all I'd like to thank my supervisor Miles Reid for his guidance, support and advice over the past five years. He has provided a great deal of encouragement and inspiration for which I am extremely grateful.

I'd also like to thank Gavin Brown, Stephen Coughlan, Alastair Craw, David Holmes, Yukari Ito, Timothy Logvinenko, Diane Maclagan, Alvaro Nolla de Celis, Yuhi Sekiya and Shengtian Zhou for many conversations, explanations and pieces of advice.

Part of this work was carried out during trips to Sogang University and Nagoya University. These trips were funded by the Korean government WCU Grant R33-2008-000-10101-0 and the Graduate School of Mathematics at Nagoya University. I'd like to thank Yongnam Lee and Yukari Ito for making these trips possible. Thanks to Yongjoo Shin, Yuhi Sekiya and Toshihiro Hayashi and everyone at Sogang and Nagoya for making me feel so welcome and giving me a wonderful introduction to Korean and Japanese culture.

The time I've spent in the Mathematics Institute at Warwick has always been enjoyable and I'm very grateful to everyone who's made it fun. Particularly to David, Eleonora, Jorge, Lisa, Matthew, Michael A., Michael D., Mirela, Shengtian, Tara, Tom K., Umar and Saima, Ze and everyone in B0.24.

Many thanks to Ben, Dave, Matthew and Rupert for technical support and patient explanations of how to make my computer work better.

Special thanks are due to Rachel and Charlie, Anna and Dave, David and Martha, Jack, Mavis, Abi and Nicholas for all the dinners, games and chats. Thanks also to everyone at my church for your love and prayers.

I'd really like to thank Matthew and Sally for all the distractions: cats, tea, dinners, games, veggie tales, latin graces; and for all their support.

I'd also like to thank Ben for his patience, encouragement and for helping me to believe in myself.

Grateful thanks to Neil, for always believing in me, for the comfort and encouragement, and for being the calming voice on the end of the phone.

Finally I want to thank my family. Their love, support and encouragement have kept me going; I couldn't have done this without them.

## Declaration

I declare that, to the best of my knowledge, the material contained in this thesis is original and my own work except where otherwise indicated, cited, or commonly known.

The material in this thesis is submitted for the degree of Ph.D. to the University of Warwick only, and has not been submitted to any other university.


#### Abstract

The aim of this thesis is to improve our understanding of when crepant resolutions exist in dimension four.

In three dimensions [BKR01] proved that for any finite subgroup $G \subset \operatorname{SL}(3, \mathbb{C})$ the $G$-Hilbert scheme $G$ - $\operatorname{Hilb}\left(\mathbb{C}^{3}\right)$ gives a crepant resolution of the quotient singularity $\mathbb{C}^{3} / G$.

In four dimensions very little is known about when crepant resolutions exist. In this thesis I present several approaches to this problem. I give an algorithm which determines, for quotients by cyclic subgroups of $\operatorname{SL}(4, \mathbb{C})$ whether or not a crepant resolution exists. This algorithm seeks to find a crepant resolution by performing a tree search.

In Chapter 4, building on the work of [CR02] in three dimensions, I calculate the $A$-Hilbert scheme for a family of abelian subgroups $A \subset S L(4, \mathbb{C})$. I show that this can be used to find a crepant resolution of $\mathbb{C}^{4} / A$.


## Chapter 1

## Introduction

In this thesis I discuss approaches to finding crepant resolutions for four dimensional abelian quotient singularities $\mathbb{C}^{4} / A$ for $A \subset \operatorname{SL}(4, \mathbb{C})$ a finite abelian group. In this chapter I discuss the background to the problem and review some definitions which I will use in later chapters. I give an overview of Craw and Reid's paper [CR02] on which the work of Chapter 4 is based.

### 1.1 Background

In 1978 McKay [McK80] observed a connection between the representation theory of finite subgroups $G \subset \mathrm{SL}(2, \mathbb{C})$ and the resolution of surface singularities arising from the quotient of $\mathbb{C}^{2}$ by the action of $G$. Namely, there is a one-to-one correspondence between the nontrivial irreducible representations of $G$ and the exceptional prime divisors of the resolution $f: Y \rightarrow \mathbb{C}^{2} / G$.

McKay's observation was proved by Gonzalez-Springberg and Verdier [GSV83] and independently by Knörrer [Knö85]; both proofs use case analysis based on the classification of finite subgroups of $\operatorname{SL}(2, \mathbb{C})$.

Interest in a three dimensional version of the McKay correspondence started when Dixon, Harvey, Vafa and Witten introduced the orbifold Euler number [DHVW85], [DHVW86]. This motivated the work of Ito, Markushevich and Roan [Ito95a, Ito95b, BM94, MOP87, Mar97, Roa89, Roa94, Roa96] whose papers together give a case-by-case proof, using the classification of finite subgroups of $\mathrm{SL}(3, \mathbb{C})$, that there exist crepant resolutions $f: \tilde{X} \rightarrow X=\mathbb{C}^{3} / G$ such that the orbifold Euler numbers $\chi(\tilde{X})=\chi(X)$.

In 1992 Reid, see [IR96], made the following conjecture
Conjecture 1.1.1. Let $G \subset \operatorname{SL}(n, \mathbb{C})$ be a finite subgroup. $X=\mathbb{C}^{n} / G$ the quo-
tient space and $f: Y \rightarrow X$ a crepant resolution. Then there exists a basis of $H^{*}(Y, \mathbb{Q})$ consisting of algebraic cycles in one-to-one correspondence with conjugacy classes of $G$.

Let $R$ be any common multiple of the orders of all $g$ in $G, \mu_{R}$ the group of complex $R$ th roots of unity and $\Gamma=\operatorname{Hom}\left(\mu_{R}, G\right)$. Ito and Reid [IR96] prove that there is a canonical one-to-one correspondence between junior conjugacy classes in $\Gamma$ and crepant discrete valuations of $X$. They go on to prove the conjecture in the case $n=3$. This gives a direct proof of the formula for the orbifold Euler number.

The introduction of the $G$-Hilbert scheme by Ito and Nakamura [IN96] provided a new way of finding resolutions. They prove that for finite $G \subset \operatorname{SL}(2, C)$ it is the minimal resolution of $\mathbb{C}^{2} / G$. Nakamura [Nak01] goes on to prove that for $G$ a finite abelian subgroup of $\operatorname{SL}(3, \mathbb{C})$, a smooth crepant resolution of $\mathbb{C}^{3} / G$ is given by $\operatorname{Hilb}^{G}\left(\mathbb{C}^{3}\right)$. Craw and Reid [CR02] explain how to calculate $A$-Hilb $\left(\mathbb{C}^{3}\right)$ explicitly, where $A$ denotes a finite abelian subgroup of $\mathrm{SL}(3, \mathbb{C})$. The same result is proved by Bridgeland, King and Reid [BKR01] for any (not necessarily abelian) subgroup of $\operatorname{SL}(3, \mathbb{C})$.

Ito and Nakajima [IN00] use the $G$-Hilbert scheme to give a general existence proof in two dimensions.

At the same time Dais et al. use toric geometry to investigate the existence problem:

Existence Problem: For which $G \subset \operatorname{SL}(n, \mathbb{C})$ with $n \geq 4$ do there exist (projective) crepant resolutions of $\mathbb{C}^{n} / G$ ?

They prove the existence of a crepant resolution for several families of examples: existence is proved for complete intersections of hypersurfaces [DHZ98], a necessary and sufficient condition is given in [DHH98] for cyclic quotient singularities of the the form $\frac{1}{r}(1,1, \ldots, a, r-a-(n-2))$ in $\operatorname{SL}(n, \mathbb{C})$, and [DHZ06] proves some necessary conditions on quotient singularities and gives more examples of cyclic quotient singularities. One of these necessary conditions is

Condition 1.1.2. Every point of age $n \geq 2$ must be expressible as the sum of $n$ age 1 points.

Work of Firla and Ziegler [FZ99] shows that this condition is not sufficient. They give several examples of rational convex cones which do not admit a Hilbert partition: these cones are toric fans of quotient singularities, where non-admittance of a Hilbert partition is equivalent to non-existence of a crepant resolution.

### 1.2 Quotient singularities

We begin by stating some well known definitions.
Let $G \subset \operatorname{GL}(n, \mathbb{C})$ be a finite subgroup. Let $\mathbb{C}^{n} / G=\operatorname{Spec} \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{G}$ denote the variety given by the quotient of $\mathbb{C}^{n}$ by the action of $G$ on it.

A quasi-reflection is an element $g \in \operatorname{GL}(n, \mathbb{C})$ of finite order such that $g-I_{n}$ has rank 1.

A finite subgroup $G \subset \mathrm{GL}(n, \mathbb{C})$ is small if it contains no quasi-reflections. A theorem of Chevalley and Shepard-Todd, [ST54], [Che55], means we need only consider small subgroups of $\operatorname{GL}(n, \mathbb{C})$.

A variety $X$ is Gorenstein if it is Cohen-Macaulay and the canonical sheaf $\omega_{X}$ is invertible.

Proposition 1.2.1 ([Wat74]). Let $G \subset \mathrm{GL}(n, \mathbb{C})$ be a small subgroup. Then $\mathbb{C}^{n} / G$ is Gorenstein if and only if $G \subset \operatorname{SL}(n, \mathbb{C})$.

A variety $X$ has a resolution of singularities if there exists a proper birational morphism $f: Y \rightarrow X$ such that $Y$ is nonsingular.

Definition 1.2.2 ([Rei87]). A variety $X$ has canonical singularities if it satisfies the following two conditions:

1. for some integer $r \geq 1$ the Weil divisor $r K_{X}$ is Cartier.
2. if $f: Y \rightarrow X$ is a resolution of $X$ and $\left\{E_{i}\right\}$ the family of all exceptional prime divisors of $f$, then

$$
r K_{Y}=f^{*}\left(r K_{X}\right)+\sum_{i} a_{i} E_{i}, \text { with } a_{i} \geq 0
$$

If every $a_{i}>0$ then $X$ is said to have terminal singularities.
$\sum a_{i} E_{i}$ is called the discrepancy of $f$. If all the $a_{i}=0$ then $f$ is called a crepant resolution.

For $G$ a finite subgroup of $\operatorname{SL}(n, \mathbb{C})$, the quotient space $X=\mathbb{C}^{n} / G$ has canonical divisor $K_{X}=0$. Under these conditions, if the resolution $f: Y \rightarrow X$ is crepant then $K_{Y}=f^{*}\left(K_{X}\right)=0$.

Proposition 1.2.3 ([Rei80]). Gorenstein quotient singularities are canonical.

Theorem 1.2.4 ([Rei80]). Let $G \subset G L(n, \mathbb{C})$ be a finite group acting linearly on $\mathbb{C}^{n}$. Suppose $G$ has no quasi-reflections, so that the map $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n} / G=X$ is étale in codimension 1. Then $X$ is canonical if and only if for every element $g \in G$ of order $r$, and $\epsilon$ any primitive root of 1 , the diagonal form of the action of $g$ is

$$
g: x_{i} \rightarrow \epsilon^{a_{i}} x_{i}
$$

such that $0 \leq a_{i}<r$ with $\sum a_{i} \geq r$. We will denote such an element $g$ by $\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right)$.

Remark 1.2.5. $X$ is Gorenstein if and only if $\sum a_{i} \equiv 0 \bmod r$.
From now on we will only consider abelian subgroups of $\operatorname{SL}(n, \mathbb{C})$. This means all our varieties are toric.

For a group $G=\left\langle\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right)\right\rangle$ we consider lattices of the form $L=\mathbb{Z}^{n}+$ $\frac{1}{\mathrm{r}}\left(a_{1}, \ldots a_{n}\right) \supset \mathbb{Z}^{n}$. Let $M=\operatorname{Hom}(L, \mathbb{Z})$ be the dual lattice of $L$. This is the lattice of invariant monomials.

A strongly convex rational polyhedral cone in $L_{\mathbb{R}}$ is a cone $\sigma$, with vertex at the origin, which is generated over $\mathbb{R}_{\geq 0}$ by a finite number of vectors of $L$.

If $\sigma$ is a cone in $L$, the dual cone in $M$ is the set

$$
\sigma^{\vee}=\left\{m \in M_{\mathbb{R}} \mid\langle m, u\rangle \geq 0 \forall u \in \sigma\right\}
$$

Proposition 1.2.6 ([Ful93]). An affine toric variety $U_{\sigma}$ is nonsingular if and only if the cone $\sigma$ is generated by part of a basis for the lattice $L$, in which case

$$
U_{\sigma} \cong \mathbb{C}^{k} \times\left(\mathbb{C}^{*}\right)^{(n-k)}, \quad k=\operatorname{dim}(\sigma) .
$$

A cone is called nonsingular if it is generated by part of a basis for the lattice.
Definition 1.2.7. [IR96] Let $L=\mathbb{Z}^{n}+\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right) \cdot \mathbb{Z}$ be a lattice. Define the age of a point $\left(b_{1}, \ldots, b_{n}\right)$ of $L$ to be

$$
\sum_{i=1}^{n} b_{i} .
$$

Since all of our groups are in $\operatorname{SL}(n, \mathbb{C})$ the age of every lattice point will be an integer. We call the points with age 1 junior points.

We denote by $\bar{a}$ the integer $a \bmod r$, where $r$ is the order of the group $G$, unless otherwise stated. The junior points of $L$ are the points $\frac{1}{r}\left(\overline{k a_{1}}, \overline{k a_{2}}, \ldots, \overline{k a_{n}}\right)$,
for $1 \leq k<r$, such that $\frac{1}{r} \sum_{i=1}^{n} \overline{k a_{i}}=1$, together with the points

$$
e_{1}=(1,0, \ldots, 0), \quad e_{2}=(0,1, \ldots, 0), \ldots, \quad e_{n}=(0,0, \ldots, 1) .
$$

Let $G=\left\langle\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right)\right\rangle$. If $a_{1}=1$, for each $1 \leq b_{1}<r$ there us a unique junior point in $L$ with first coordinate $b_{1}$. Thus, we refer to the junior points $\frac{1}{r}\left(b_{1}, \ldots, b_{n}\right)$ as $p_{b_{1}}$.

These points all lie on the plane $x_{1}+\cdots+x_{n}=1$. We refer to the intersection of this plane with the first orthant as the junior simplex. In dimension four this is a tetrahedron whose vertices are the points $e_{1}, e_{2}, e_{3}, e_{4}$.

Remark 1.2.8. In toric geometry it is well known that a crepant resolution $f: Y \rightarrow X$ is a toric fan of $Y$ whose 1 -skeleton consists only of junior points. See for example [Rei87]. That is, every cone is generated by part of the basis of the lattice (we say it is a basic cone) and this basis consists of rays generated by the junior points. Thus a crepant resolution of $X=\mathbb{C}^{n} / G$ is a triangulation of the junior simplex into $r$ simplices of relative volume 1, where $r$ is the order of the group $G$.

In the four dimensional case, if $p_{1} p_{2} p_{3} p_{4}$ is a simplex its volume is $\frac{1}{4!}$ times the determinant of the matrix $\left(p_{i, j}\right)$ which is the volume of the parallelepiped with vertices $p_{1}, p_{2}, p_{3}, p_{4}$, where $p_{i, j}$ denotes the $j$ th coordinate of $p_{i}$.

In toric geometry the addition of a ray through a point $p$ in the interior of a cone corresponds to performing a blow-up at the point $p$.

Let $G$ be the group generated by $\frac{1}{\mathrm{r}}(1, a)$ and let $L=\mathbb{Z}^{2}+\frac{1}{\mathrm{r}}(1, a) \cdot \mathbb{Z}$ be a lattice. The Hirzebruch-Jung continued fraction $\frac{r}{a}$ is defined to be

$$
\frac{r}{a}=b_{1}-\frac{1}{b_{2}-\frac{1}{b_{3}-\cdots-\frac{1}{b_{k}}}}
$$

We will use the notation $\left[b_{1}, b_{2}, \ldots, b_{k}\right]$ for the Hirzebruch-Jung continued fraction of $\frac{r}{a}$.

For $f_{i} \in L$ we have

$$
f_{i-1}+f_{i+1}=b_{i} f_{i},
$$

where $f_{0}=\frac{1}{r}(0, r), f_{1}=\frac{1}{\mathrm{r}}(1, a), f_{k+1}=\frac{1}{\mathrm{r}}(r, 0)$. The $f_{i}$ generate rays which give the toric fan of the resolution of $\mathbb{C}^{2} / G$.


Figure 1.1: The Newton polygon for $\frac{1}{5}(1,4)$
Example 1.2.9. Let $G$ be the group generated by $\frac{1}{5}(1,4)$ and $L$ be the lattice $\mathbb{Z}^{2}+\frac{1}{5}(1,4) \cdot \mathbb{Z}$. The Hirzebruch-Jung continued fraction is $\frac{5}{4}=[2,2,2,2]$ with

$$
\begin{gathered}
f_{0}=(0,1), \quad f_{1}=\frac{1}{5}(1,4), \quad f_{2}=\frac{1}{5}(2,3), \quad f_{3}=\frac{1}{5}(3,2) \\
f_{4}=\frac{1}{5}(4,1), \quad f_{5}=(1,0) .
\end{gathered}
$$

This gives the Newton polygon of Figure 1.1. Passing to the lattice $M$ of invariant monomials we see that the dual cone of $\langle(1,4),(2,3)\rangle$ has basis $\alpha=x^{4} / y, \beta=$ $y^{2} / x^{3}$, on which $(1,4)$ and $(2,3)$ are positive. The ideal $I=\left(x^{4}=\alpha y, y^{2}=\beta x^{3}\right)$ defines an affine piece of the resolution. The other four affine pieces can be calculated in the same way.

### 1.3 The $G$-Hilbert scheme

Let $G$ be a finite subgroup of $\operatorname{SL}(n, \mathbb{C})$. A $G$-cluster is a $G$-invariant zerodimensional subscheme $Z \subset \mathbb{C}^{n}$ with global sections $H^{0}\left(Z, \mathcal{O}_{Z}\right)$ isomorphic as a $\mathbb{C}[G]$-module to the regular representation of $G$. The $G$-Hilbert scheme, $G$-Hilb $\left(\mathbb{C}^{n}\right)$, is the moduli space of $G$-clusters.

Example 1.3.1. Let $G$ be the group generated by

$$
\left(\begin{array}{cc}
\epsilon & 0 \\
0 & \epsilon^{4}
\end{array}\right)
$$

with $\epsilon^{5}=1$. Since $G$ acts on $\mathbb{C}^{2}$ by

$$
\begin{aligned}
& x \mapsto \epsilon x \\
& y \mapsto \epsilon^{4} y
\end{aligned}
$$

this action leaves the monomials $x^{5}, x y$ and $y^{5}$ invariant.
We wish to pick a monomial in each eigenspace of the group action. That is, for each $0 \leq i \leq 4$, a monomial $u$ which is sent to $\epsilon^{i} u$. An obvious choice would be the monomials $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$.

$$
\begin{aligned}
& y \\
& 1 x x^{2} x^{3} x^{4} x^{5}
\end{aligned}
$$

Figure 1.2: A cluster of $\frac{1}{5}(1,4)$
The remaining monomials of $\mathbb{C}[x, y]$ are in the ideal $\left\langle x^{5}, y\right\rangle$. We have relations $x^{5}=\alpha, y=\beta x^{4}$ and $x y=\gamma$, with $\gamma=\alpha \beta$. Thus $\alpha=x^{5}$ and $\beta=y / x^{4}$ are local coordinates on a copy of $\mathbb{C}^{2}$. The cluster is illustrated in Figure 1.2.

The ideal $I=\left\langle x^{5}=\alpha, y=\beta x^{4}\right\rangle$ defines a $G$-cluster:

$$
Z=\operatorname{Spec}(\mathbb{C}[x, y] /\langle I\rangle)
$$

with

$$
H^{0}\left(Z, \mathcal{O}_{z}\right)=\mathbb{C}[x, y] / I
$$

This is isomorphic to the regular representation of $G$.
Other choices of relations give the different clusters:

$$
\begin{array}{rll}
x^{4}=\alpha y, & y^{2}=\beta x^{3}, & x y=\gamma \\
x^{3}=\alpha y^{2}, & y^{3}=\beta x^{2}, & x y=\gamma \\
x^{2}=\alpha y^{3}, & y^{4}=\beta x, & x y=\gamma \\
x=\alpha y^{4}, & y^{5}=\beta, & x y=\gamma .
\end{array}
$$

Thus we have found five $G$-clusters, see Figure 1.3, which give us $G$ - $\operatorname{Hilb}\left(\mathbb{C}^{2}\right)$. These are exactly the dual cones of the cones of Example 1.2.9 shown in Figure 1.1.

| $1 x x^{2} x^{3} x^{4}$ |
| :--- | :--- | :--- | | $y$ |  |
| :--- | :--- |


| $y^{2}$  <br> $y$  <br> 1  <br> 1 $x$$x^{2}$ |
| :---: |
|  |  |


| $y^{3}$ |  |
| :--- | :--- |
| $y^{2}$ |  |
| $y$ |  |
| 1 |  |
|  | $x$ |


| $y^{4}$ |
| :--- |
| $y^{3}$ |
| $y^{2}$ |
| $y$ |
| 1 |

Figure 1.3: All clusters of $\frac{1}{5}(1,4)$

### 1.4 Calculating $A$ - $\operatorname{Hilb}\left(\mathbb{C}^{3}\right)$

In 1999 Craw and Reid [CR02] gave an explicit construction of the $G$-Hilbert scheme for abelian subgroups of $\operatorname{SL}(3, \mathbb{C})$. This description of their construction follows [CR02] closely.

Let $A \subset \mathrm{SL}(3, \mathbb{C})$ be a finite abelian subgroup. $A$ is generated by elements of the form $\frac{1}{r}\left(a_{1}, a_{2}, a_{3}\right)$ where $r=|A|$ and $0 \leq a_{i}<n$.

Let $\Delta$ be the junior simplex. $\mathbb{R}_{\Delta}^{2}$ is the plane spanned by $\Delta$, and $\mathbb{Z}_{\Delta}^{2}=L \cap \mathbb{R}_{\Delta}^{2}$ is the corresponding lattice.

Definition 1.4.1. Write $\mathbb{Z}^{2}$ for the group of translations of the affine lattice $\mathbb{Z}_{\Delta}^{2}$. A regular triple is a set of three vectors $v_{1}, v_{2}, v_{3} \in \mathbb{Z}^{2}$, any two of which form a basis of $\mathbb{Z}^{2}$, and such that $\pm v_{1} \pm v_{2} \pm v_{3}=0$.

Let $T \subset \mathbb{R}_{\Delta}^{2}$ be a triangle with vertices in $\mathbb{Z}_{\Delta}^{2}$ (so $T$ is a lattice triangle). $T$ is called a regular triangle if each of its sides is a line $L_{i j}$ extending some $\left[e_{i}, f_{i, j}\right]$ and the 3 primitive vectors $v_{1}, v_{2}, v_{3} \in \mathbb{Z}^{2}$ pointing along its sides form a regular triple.

A regular triangle $T$ is affine equivalent to the triangle with vertices $(0,0),(r, 0)$ and $(0, r)$ for some $r \geq 1$. We will call such a $T$ a triangle of side $r$. A regular tessellation of $T$ is the subdivision of $T$ into $r^{2}$ basic triangles with sides parallel to the vectors $(r, 0),(0, r)$ and $(-r, r)$. See Figure 1.4.

Craw-Reid use the Hirzebruch-Jung resolution at each of the vertices of $\Delta$ and an algorithm which contracts the concatenation of the Hirzebruch-Jung continued fractions at each vertex to split $\Delta$ into regular triangles which they then tessellate to give a triangulation of $\Delta$.

Theorem 1.4.2. The junior simplex, $\Delta$, is partitioned by regular triangles.
We now outline their proof.


Figure 1.4: The regular triangulation of a triangle of side 4
At each $e_{i}$ we construct the Newton polygon obtained as the convex hull of the lattice points in $\Delta \backslash e_{i}$. First we consider $e_{1}$ as the origin and $x_{2}, x_{3}$ as local coordinates. Thus the action of $\frac{1}{r}\left(a_{1}, a_{2}, a_{3}\right)$ becomes a $\frac{1}{r}\left(a_{2}, a_{3}\right)$ action. For $a$ and $r$ coprime we rewrite this in the form $\frac{1}{r}(1, b)$, which allows us to compute the Hirzebruch-Jung continued fraction

$$
\frac{r}{b}=\left[b_{1,1}, b_{1,2}, \ldots, b_{1, k_{1}}\right] .
$$

We take the vectors $(0, r),(1, b)$ and $(r, 0)$ and use the continued fraction rule to find the remaining vectors $f_{1, j}$ of the Newton polygon:

$$
f_{1, j-1}+f_{1, j+1}=b_{1, j} f_{1, j} \text { for } j=1, \ldots, k_{1} .
$$

Here $f_{1,0}$ is the primitive vector along the side $\left[e_{1}, e_{3}\right]$ and $f_{1, k_{1}+1}$ that along $\left[e_{1}, e_{2}\right]$. For the remaining $e_{i}$ the corresponding vectors will be denoted $f_{i, 0}, f_{i, 1}, \ldots, f_{i, k_{i}+1}$ and are calculated in the same way.

Write $L_{i, j}$ for the line out of $e_{i}$ extending or equal to the initial segment $\left[e_{i}, f_{i, j}\right]$. The resulting fan at $e_{i}$ corresponds to the Hirzebruch-Jung resolution of the surface singularity $\mathbb{C}_{x_{i}=0}^{2} / A$.

Translating the Newton polygons at $e_{1}, e_{2}$ and $e_{3}$ to a common vertex gives a propellor shape. Note that $f_{i+1,0}=-f_{i, k_{i}+1}$, so multiplying all vectors in one of the propellor blades by -1 inverts that blade and gives a basic subdivision of a half-space. This enables us to express the vectors along the edges of $\Delta$ in terms of their neighbours:

$$
c_{i+1} f_{i+1,0}=f_{i+1,1}-f_{i, k_{i}}
$$

for some $c_{i+1} \in \mathbb{Z}$. If $c_{i+1}>1$ the side $e_{i} e_{i+1}$ is called a long side. Thus we get a cyclic continued fraction

$$
\begin{equation*}
\left[c_{1}, b_{1,1}, b_{1,2}, \ldots, b_{1, k_{1}}, c_{2}, b_{2,1}, \ldots, b_{2, k_{2}}, c_{3}, b_{3,1}, \ldots, b_{3, k_{3}}\right] \tag{1.1}
\end{equation*}
$$

where at least two of the $c_{i}$ are equal to 1 by the following lemma.
Lemma 1.4.3. The junior simplex $\Delta$ has at most one long side.
If $c_{1}=1$ then $f_{1,0}=f_{1,1}-f_{3, k_{3}}$, so we can eliminate $f_{1,0}$ :

$$
\left(b_{1,1}-1\right) f_{1,1}=f_{1,2}-f_{3, k}, \quad\left(b_{3, k_{3}}-1\right) f_{3, k_{3}}=f_{3, k_{3}-1}-f_{1,1} .
$$

This deletes the regular triangle with sides $f_{1,0}, f_{1,1}, f_{3, k_{3}}$, which is equivalent to the contraction of the 1 in the continued fraction:

$$
a, 1, b \rightarrow a-1, b-1 .
$$

These contractions are continued until no more contractions are possible.
Lemma 1.4.4. For brevity, call a chain of contractions taking a cyclic continued fraction (1.1) down to [1,1,1] an MMP.
i. Every contraction of a 1 in an MMP corresponds to a regular triple.
ii. For every regular triple, there is an MMP ending at it.
iii. Every regular triple appears in every MMP.

This leads to an algorithm for calculating the subdivision into regular triangles. We first calculate the lines $L_{i, j}$ out of the vertices of $\Delta$. Call the corresponding continued fraction entry, $b_{i, j}$, the strength of $L_{i, j}$. The lines $L_{i, j}$ are extended subject to the following rule. When two or more lines meet, the line with greater strength is extended, but its strength decreases by 1 . Lines meeting with equal strength kill each other. This continues until all lines have been defeated. This partitions $\Delta$ into regular triangles. The final step is to take the regular tessellation of these regular triangles. Denote this by $\Sigma$.

Example 1.4.5. Let $A \subset \mathrm{SL}(3, \mathbb{C})$ be a finite subgroup generated by $\frac{1}{r}\left(a_{1}, a_{2}, a_{3}\right)=$ $\frac{1}{13}(1,2,10)$. We consider the cyclic quotient singularity $\mathbb{C}^{3} / A$.

We obtain the singularity at $e_{i}$ by setting $x_{i}=0$, thus eliminating $a_{i}$. We use this to find the Hirzebruch-Jung continued fraction at each $e_{i}$ :

At $e_{1}: \frac{1}{13}(2,10)=\frac{1}{13}(1,5)$ so we have $\frac{13}{5}=[3,3,2]$.
At $e_{2}: \frac{1}{13}(10,1)=\frac{1}{13}(1,4)$ so we have $\frac{13}{4}=[4,2,2,2]$.
At $e_{3}: \frac{1}{13}(1,2)$ so we have $\frac{13}{2}=[7,2]$.

We may now compute the fans corresponding to the resolution of the singularities $\mathbb{C}_{x_{i}=0}^{2} / A$.

At $e_{1}$ we have $f_{1,0}+f_{1,2}=3 f_{1,1}$ and

$$
f_{1,0}=(-13,0,13), f_{1,1}=(-6,1,5) .
$$

Thus

$$
\begin{aligned}
& f_{1,2}=3 f_{1,1}-f_{1,0}=(-5,3,2) \\
& f_{1,3}=3 f_{1,2}-f_{1,1}=(-9,8,1) \\
& f_{1,4}=2 f_{1,3}-f_{1,2}=(-13,13,0) .
\end{aligned}
$$

Similarly at $e_{2}$ and $e_{3}$,

$$
\begin{gathered}
f_{2,0}=(13,-13,0), \quad f_{2,1}=(4,-5,1), \quad f_{2,2}=(3,-7,4) \\
f_{2,3}=(2,-9,7), \quad f_{2,4}=(1,-11,10), \quad f_{2,5}=(0,-13,13) \\
f_{3,0}=(0,13,-13), \quad f_{3,1}=(1,2,-3), \quad f_{3,2}=(7,1,-8), \quad f_{3,3}=(13,0,-13) .
\end{gathered}
$$

Figure 1.5 shows the lines $L_{i, j}$ corresponding to the $f_{i, j}$.


Figure 1.5: First step in obtaining a regular triangulation of $\frac{1}{13}(1,2,10)$.
Since the example is coprime, there are no long sides, so all $c_{i}=1$. The concatenation of continued fractions is

$$
[1,3,3,2,1,4,2,2,2,1,7,2] .
$$

The second 1 denotes the regular triple $f_{2,0}=f_{2,1}-f_{1,3}$. Contracting this one corresponds to deleting the regular triangle $f_{2,0}, f_{2,1}, f_{1,3}$. The continued fraction
becomes

$$
[1,3,3,1,3,2,2,2,1,7,2] .
$$

Continuing this calculation (Lemma 1.4.4 says it doesn't matter which order we contract the 1 s in) tells us how to extend the lines $L_{i, j}$ to give Figure 1.6. The dashed lines are the regular tessellation of the regular triangle with sides $L_{1,1}, L_{1,2}$ and $L_{3,1}$.


Figure 1.6: A regular triangulation of $\frac{1}{13}(1,2,10)$.
Theorem 1.4.6. Let $\Sigma$ denote the toric fan determined by the regular tessellation of all regular triangles in the junior simplex $\Delta$. The toric variety $X_{\Sigma}$ is Nakamura's $A$ - $\operatorname{Hilb}\left(\mathbb{C}^{3}\right)$.

Corollary 1.4.7. [Nak01] $A$ - $\operatorname{Hilb}\left(\mathbb{C}^{3}\right) \rightarrow \mathbb{C}^{3} / A$ is a crepant resolution.
To prove Theorem 1.4.6, Craw and Reid show that passing to the dual basis of $\Sigma$ in $M$, the lattice of invariant monomials, gives exactly the $A$-clusters of Nakamura's theorem:

Theorem 1.4.8. (I). For every finite diagonal subgroup $A \subset \mathrm{SL}(3, \mathbb{C})$ and every A-cluster $Z$, generators of the ideal $\mathcal{I}_{Z}$ can be chosen as the system of 7 equations

$$
\begin{align*}
x^{l+1} & =\xi z^{b} t^{f}, \quad z^{b+1} t^{f+1}=\lambda x^{l}, \\
z^{m+1} & =\eta x^{d} t^{c}, \quad x^{d+1} t^{c+1}=\mu z^{m}, \quad x y z t=\pi,  \tag{1.2}\\
t^{n+1} & =\zeta x^{a} z^{e}, \quad x^{a+1} z^{e+1}=\nu t^{n} .
\end{align*}
$$

Here $a, b, c, d, e, f, l, m, n \geq 0$ are integers, and $\xi, \eta, \zeta, \lambda, \mu, \nu, \pi \in \mathbb{C}$ are constants satisfying

$$
\lambda \xi=\mu \eta=\nu \zeta=\pi .
$$

(II). Moreover, exactly one of the following cases holds:

$$
" u p " \quad\left\{\begin{array}{l}
\lambda=\eta \zeta, \mu=\zeta \xi, \nu=\xi \eta, \pi=\xi \eta \zeta \\
l=a+d, m=b+e, n=c+f
\end{array}\right.
$$

or

$$
\text { "down" }\left\{\begin{array}{l}
\xi=\mu \nu, \quad \eta=\nu \lambda, \quad \zeta=\lambda \mu, \quad \pi=\lambda \mu \nu \\
l=a+d+1, \quad m=b+e+1, \quad n=c+f+1 .
\end{array}\right.
$$

Example 1.4.9 (Example 1.4.5 continued). The regular triangle $f_{3,1}=\frac{1}{13}(1,2,-3)$, $f_{1,2}=\frac{1}{13}(-5,3,2), f_{2,1}=\frac{1}{13}(4,-5,1)$ of side 1 has dual basis

$$
\xi=x^{2} / y, \quad \eta=y^{2} / z^{3}, \quad \zeta=z^{4} / x
$$

which gives equations $x^{2}=\xi y, y^{2}=\eta z^{3}, z^{4}=\zeta x$. It is not hard to see that the other equations of (1.2) can be generated from these, and thus they define the ideal $\mathcal{I}_{Z}$ of the cluster $Z$.

The triangle $f_{1,1}, f_{1,2}, f_{3,1}$ is a regular triangle of side 2 . The sides of the dual to the this triangle are cut out by

$$
\xi=x^{2} / y, \quad \eta=y^{5} / z, \quad \zeta=z^{3} / y^{2} .
$$

The regular tessellation is given by pushing in the sides of the triangles by $i, j$ and $k$ steps, for $0 \leq i, j, k \leq r-1$ integers, respectively. The case $i+j+k=r-1$ gives triangles which have the same orientation as the original triangle - they are referred to as "up" - and the cases $i+j+k=r+1$ gives triangles which have the opposite orientation to the original triangle - they are "down" triangles. Pushing the first side in by $i$ steps corresponds to multiplying $\xi$ by $(x y z)^{i}$. Thus the four triangles of the regular tessellation have dual basis

$$
\begin{array}{rrr}
\xi=x^{2} / y, & \eta=y^{5} / z, & \zeta=z^{2} / x y^{3} \\
\xi=x^{2} / y, & \eta=y^{4} / x z^{2}, & \zeta=z^{3} / y^{2} \\
\xi=x / y^{2} z, & \eta=y^{5} / z, & \zeta=z^{3} / y^{2} \\
\xi=x / y^{2} z, & \eta=y^{4} / x z^{2}, & \zeta=z^{2} / x y^{3} . \tag{1.4}
\end{array}
$$

The dual bases of the regular triangles are shown as ratios in Figure 1.7.


Figure 1.7: Ratios on the exception curves in $A-\operatorname{Hilb}\left(\mathbb{C}^{3}\right)$ for $\frac{1}{13}(1,2,10)$.

The dual basis of (1.3) gives relations

$$
x^{2}=\xi y, \quad y^{5}=\eta z, \quad z^{2}=\zeta x y^{3} .
$$

It is easy to see that these give rise to relations

$$
y^{2} z=\lambda x, \quad x z^{2}=\mu y^{4}, \quad x^{2} y^{4}=\nu z
$$

which satisfy the "up" case of Theorem 1.4.8.
The relations for (1.4) are

$$
y^{2} z=\lambda x, \quad x z^{2}=\mu y^{4}, \quad x y^{3}=\nu z^{2} .
$$

These generate

$$
x^{2}=\xi y, \quad y^{5}=\eta z, \quad z^{3}=\zeta y^{2} .
$$

which satisfy the "down" case of Theorem 1.4.8.

### 1.5 Hilbert partition definitions

Firla and Ziegler consider cones in a slightly different way. These definitions are taken from [FZ99].

A pointed, rational, polyhedral cone $C \subseteq \mathbb{R}^{n}$ is a set

$$
\begin{aligned}
C & =\operatorname{cone}\left\{a^{1}, \ldots, a^{m}\right\} \\
& :=\left\{\lambda_{1} a^{1}+\cdots+\lambda_{m} a^{m} \in \mathbb{R}^{n}: \lambda_{i} \in \mathbb{R}, \lambda_{i} \geq 0 \text { for } i=1, \ldots, m\right\}
\end{aligned}
$$

where $a^{1}, \ldots, a^{m} \in \mathbb{R}^{n}$ are rational vectors.
A finite set of integer vectors $h^{1}, \ldots, h^{k}$ is a Hilbert basis of $C$ if each integral vector in $C$ is a nonnegative integral combination of $\left\{h^{1}, \ldots, h^{k}\right\}$.

Definition 1.5.1. Let $\mathcal{C}=\left\{C^{1}, \ldots, C^{r}\right\}$ be a set of subcones of a cone $C$. We call a facet $F$ of a subcone $C^{i}$ an interior facet if $F \nsubseteq \delta C$, where $\delta C$ denotes the boundary of $C$. We enumerate $\mathcal{F}:=\left\{F^{1}, \ldots, F^{s}\right\}$ the set of all interior facets of the cones in $\mathcal{C}$.

A point $g_{0} \in \operatorname{int}(C)$ is called a generic point (with respect to $\mathcal{C}$ ) if it is not contained in the boundary of any of the subcones $C^{i}$.

Definition 1.5.2. Let $C$ be a rational polyhedral pointed cone and $\mathcal{C}=\left\{C^{1}, \ldots, C^{r}\right\}$ be a finite family of subcones.

The family $\mathcal{C}$ is a cover of $C$ if every point of $C$ is contained in one of the subcones $C^{i}$, that is, if $C=\cup_{i=1}^{r} C^{i}$.
$\mathcal{C}$ is a binary cover of $C$ if

1. every generic point $g_{0} \in C$ is contained in an odd number of subcones $C^{i}$, and
2. every interior facet $F^{j}$ is a facet of an even number of subcones $C^{i}$.

A cover $\mathcal{C}$ is a partition if the intersection of any two subcones $C^{i} \cap C^{j}$ is a face of both cones, that is, if $\mathcal{C}$ forms a polyhedral complex.
$\mathcal{C}$ is a regular partition if additionally the complex is given by the domains of linearity of a piecewise linear convex function on $C$.

A cone $C \subseteq \mathbb{R}^{n}$ is simplicial if it is generated by a linearly independent set of vectors. A simplicial cone $C$ is unimodular if it is generated by a subset of a basis of the lattice $\mathbb{Z}^{n}$, that is, if $C=\operatorname{cone}\left\{a^{1}, \ldots, a^{k}\right\} \subseteq \mathbb{R}^{n}$ for some set $\left\{a^{1}, \ldots a^{n}\right\}$ of integral vectors with $\left|\operatorname{det}\left\{a^{1}, \ldots, a^{n}\right\}\right|=1$.

Proposition 1.5.3. (The Hilbert Cover Hierarchy) [FZ99, Proposition 3] Let $C \subseteq$ $\mathbb{R}^{n}$ be an n-dimensional pointed rational polyhedra cone, and let $\mathcal{U}=\left\{C^{1}, \ldots, C^{s}\right\}$
be the (finite) set of all $n$-dimensional unimodular subcones of $C$ that are generated by a subset of the Hilbert basis $\mathcal{H}=\mathcal{H}(C)$.

Each of the following properties of $C$ implies the following ones:
Regular Hilbert Partition: Some subset $\mathcal{C} \subseteq \mathcal{U}$ is a regular partition of $C$. Hilbert Partition: Some subset $\mathcal{C} \subseteq \mathcal{U}$ is a partition of $C$.
Binary Hilbert Cover: Some subset $\mathcal{C} \subseteq \mathcal{U}$ is a binary cover of $C$.
Hilbert Cover: $\mathcal{U}$ is a cover of $C$.
Integral Carathéodory Property: Every integral vector $x \in C \cap \mathbb{Z}^{n}$ can be written as a nonnegative integral combination of at most $n$ elements of the minimal Hilbert basis $\mathcal{H}(C)$.

It is clear that the existence of a Hilbert partition is equivalent to the existence of a crepant resolution in the sense of Remark 1.2.8. Their Hilbert basis $\mathcal{H}$ corresponds to our set of junior points and their unimodular cones are exactly what we call basic cones.

Firla and Ziegler consider cones of the form

$$
C\left[a_{1}, a_{2}, \ldots, a_{n}\right]:=\text { cone }\left(\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 \\
a_{1} & a_{2} & \ldots & a_{n-1} & a_{n}
\end{array}\right)
$$

That is the cone spanned by the first $n-1$ unit vectors together with $a=$ $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$.

In four dimensions, their aim of finding a partition of the cone $C\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$ is equivalent to finding a triangulation of the the first orthant in a lattice of the form $L=\mathbb{Z}^{4}+\frac{1}{r}\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$. We now show how to translate between these two notations.

Since $L \cong \mathbb{Z}^{5} /\left(b_{1}, b_{2}, b_{3}, b_{4},-r\right)$, there is a short exact sequence

$$
\begin{equation*}
0 \rightarrow \mathbb{Z} \xrightarrow{A} \mathbb{Z}^{5} \xrightarrow{B} \mathbb{Z}^{4} \rightarrow 0 \tag{1.5}
\end{equation*}
$$

where the map $A$ is given by

$$
\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
-r
\end{array}\right)
$$

Computing the Smith normal form of $A$ shows that the cokernel of $A$ is $\mathbb{Z}^{4}$ and allows us to find the integer kernel $K$ of $A$. Thus we have a short exact sequence

$$
0 \rightarrow \mathbb{Z}^{4} \xrightarrow{K} \mathbb{Z}^{5} \xrightarrow{A^{T}} \mathbb{Z} \rightarrow 0
$$

Dualising this shows that the map $B$ in (1.5) is equal to the transpose of $K$. Now, for $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}$ considered as the standard basis vectors of $\mathbb{Z}^{5}$, the vectors $B e_{1}, B e_{2}, B e_{3}, B e_{4}, B\left(b_{1}, b_{2}, b_{3}, b_{4},-r\right)$ generate a cone in $\mathbb{Z}^{4}$. The last vector is generated by the rest, so we require only the first four. These can be mapped to the vectors generating $C\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$ by an appropriate matrix of determinant one.

Example 1.5.4. Let $L=\mathbb{Z}^{4}+\frac{1}{39}(1,5,8,25) \cdot \mathbb{Z}$. Consider the cone generated by the standard basis vectors and the vector $\frac{1}{39}(1,5,8,25)$.

The Smith normal form of

$$
A=\left(\begin{array}{c}
1 \\
5 \\
8 \\
25 \\
-39
\end{array}\right)
$$

is $U A V=(1,0,0,0,0)$, where $U=(1) \in \mathrm{GL}(1, \mathbb{Z})$ and $V \in \mathrm{GL}(5, \mathbb{Z})$ is

$$
\left(\begin{array}{ccccc}
1 & -5 & -8 & -25 & 39 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Now $K$ is the last four columns of $V$, and $B$ is the transpose of $K$ :

$$
B=\left(\begin{array}{ccccc}
-5 & 1 & 0 & 0 & 0 \\
-8 & 0 & 1 & 0 & 0 \\
-25 & 0 & 0 & 1 & 0 \\
39 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Applying $B$ to the vectors $e_{1}, e_{2}, e_{3}, e_{4}, \frac{1}{39}(1,5,8,25)$ gives

$$
(-5,-8,-25,39),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1) .
$$

It is clear that $(0,0,0,1)$ is generated by the rest, so we have the cone generated by

$$
(-5,-8,-25,39),(1,0,0,0),(0,1,0,0),(0,0,1,0) .
$$

We want a cone $C\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$ with $a_{i}>0$. The matrix

$$
G=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

takes these vectors to

$$
(14,31,34,39),(0,0,1,0),(0,1,0,0),(1,0,0,0),
$$

which is the cone $C[14,31,34,39]$ in the notation of [FZ99].

## Chapter 2

## Resolutions

Four dimensional Gorenstein quotient singularities do not always have a crepant resolution. Terminal singularities $\frac{1}{\mathrm{r}}(i, r-i, j, r-j)$ are obvious examples which cannot be resolved in this way. However there are also many non-terminal singularities for which no crepant resolution exists. This problem leads to many questions: For which singularities does a crepant resolution exist? Is there an invariant which obstructs the existence of a crepant resolution? Is there a higher dimensional analogue of crepant resolutions for higher dimensional singularities?

In this chapter several approaches to these questions are discussed.

### 2.1 Resolutions

A traditional way of obtaining a resolution was to perform blow-ups. In toric examples this is equivalent to barycentric subdivision: given a point $p$ in a tetrahedral simplex $e_{1} e_{2} e_{3} e_{4}$ we cut along the plane segment $p e_{i} e_{j}$ for each $i, j \in$ $\{1,2,3,4\}$ with $i \neq j$ to obtain four smaller tetrahedral simplices:

$$
p e_{2} e_{3} e_{4}, \quad e_{1} p e_{3} e_{4}, \quad e_{1} e_{2} p e_{4}, \quad e_{1} e_{2} e_{3} p
$$

In some cases a chain of such subdivisions will lead to a crepant resolution.
Example 2.1.1. Consider the quotient singularity $\frac{1}{17}(1,3,3,10)$. This has five junior points

$$
\begin{gathered}
p_{1}=\frac{1}{17}(1,3,3,10), p_{2}=\frac{1}{17}(2,6,6,3), p_{6}=\frac{1}{17}(6,1,1,9), \\
p_{7}=\frac{1}{17}(7,4,4,2), p_{12}=\frac{1}{17}(12,2,2,1)
\end{gathered}
$$

Subdividing at $p_{1}$ gives

$$
\begin{equation*}
p_{1} e_{2} e_{3} e_{4}, \quad e_{1} p_{1} e_{3} e_{4}, \quad e_{1} e_{2} p_{1} e_{4}, \quad e_{1} e_{2} e_{3} p_{1} \tag{2.1}
\end{equation*}
$$

which have volume $1,3,3,10$ respectively. Now, $p_{2}=\frac{1}{10}\left(3 p_{1}+e_{1}+3 e_{2}+3 e_{3}\right)$ so is inside $e_{1} e_{2} e_{3} p_{1}$. Subdividing this simplex at $p_{2}$ yields:

$$
\begin{equation*}
p_{2} e_{2} e_{3} p_{1}, \quad e_{1} p_{2} e_{3} p_{1}, \quad e_{1} e_{2} p_{2} p_{1}, \quad e_{1} e_{2} e_{3} p_{2} \tag{2.2}
\end{equation*}
$$

which have volume $1,3,3,3$ respectively. Since $p_{6}=\frac{1}{3}\left(p_{1}+e_{1}+e_{4}\right)$, it is contained in the face $p_{1} e_{1} e_{4}$, and so the second and third simplices of (2.1) can each be subdivided at $p_{6}$ into three volume 1 simplices. Since $p_{7}$ and $p_{12}$ lie on the line $e_{1} p_{2}$, the second, third and fourth simplices of (2.2) are each split into three volume 1 simplices by consecutive subdivision at $p_{7}$ and $p_{12}$. This procedure results in 17 simplices of volume 1 :

$$
e_{1} e_{2} e_{3} p_{12} .
$$

Considering these simplices as basic cones gives the toric fan of the crepant resolution of $\frac{1}{17}(1,3,3,10)$.

Unfortunately, a chain of consecutive barycentric subdivision does not always lead to a resolution. In fact, as the following example demonstrates, the resolution obtained depends on the order of subdivision.

Example 2.1.2. Let $L=\mathbb{Z}^{4}+\frac{1}{23}(1,3,4,15) \mathbb{Z}$ be a lattice. There are three points of $L$ in the interior of the junior simplex: $p_{1}=\frac{1}{23}(1,3,4,15), p_{2}=\frac{1}{23}(2,6,8,7)$ and $p_{8}=\frac{1}{23}(8,1,9,5)$. The points $e_{4}, p_{1}$ and $p_{2}$ are collinear.

Subdividing at $p_{2}$, then at $p_{1}$ and $p_{8}$ gives the simplices:

$$
\begin{aligned}
& \Delta_{1}=\Delta\left(p_{1}, e_{2}, e_{3}, e_{4}\right), \quad \Delta_{2}=\Delta\left(p_{1}, e_{2}, e_{3}, p_{2}\right), \quad \Delta_{3}=\Delta\left(e_{1}, p_{8}, e_{3}, e_{4}\right) \text {, } \\
& \Delta_{4}=\Delta\left(e_{1}, p_{8}, p_{1}, e_{4}\right), \quad \Delta_{5}=\Delta\left(p_{1}, p_{8}, e_{3}, e_{4}\right), \quad \Delta_{6}=\Delta\left(e_{1}, p_{8}, e_{3}, p_{2}\right), \\
& \Delta_{7}=\Delta\left(\left(e_{1}, p_{8}, p_{1}, p_{2}\right), \quad \Delta_{8}=\Delta\left(p_{1}, p_{8}, e_{3}, p_{2}\right), \quad \Delta_{9}=\Delta\left(e_{1}, e_{2}, p_{1}, e_{4}\right),\right. \\
& \Delta_{10}=\Delta\left(e_{1}, e_{2}, p_{1}, p_{2}\right), \quad \Delta_{11}=\Delta\left(e_{1}, e_{2}, e_{3}, p_{2}\right) .
\end{aligned}
$$

Subdividing first at $p_{8}$ gives the simplices:

$$
\begin{aligned}
\Delta_{1}^{\prime} & =\Delta^{\prime}\left(p_{1}, e_{2}, e_{3}, e_{4}\right), & \Delta_{2}^{\prime}=\Delta^{\prime}\left(p_{1}, e_{2}, e_{3}, p_{2}\right), & \Delta_{3}^{\prime}=\Delta^{\prime}\left(p_{8}, p_{1}, e_{3}, e_{4}\right) \\
\Delta_{4}^{\prime} & =\Delta^{\prime}\left(p_{8}, p_{1}, e_{3}, p_{2}\right), & \Delta_{5}^{\prime}=\Delta^{\prime}\left(p_{8}, p_{2}, p_{1}, e_{4}\right), & \Delta_{6}^{\prime}=\Delta^{\prime}\left(p_{8}, e_{2}, p_{1}, p_{2}\right) \\
\Delta_{7}^{\prime} & =\Delta^{\prime}\left(p_{8}, e_{2}, e_{3}, p_{2}\right), & \Delta_{8}^{\prime}=\Delta^{\prime}\left(e_{1}, p_{8}, e_{3}, e_{4}\right), & \Delta_{9}^{\prime}=\Delta^{\prime}\left(e_{1}, e_{2}, p_{8}, e_{4}\right) \\
\Delta_{10}^{\prime} & =\Delta^{\prime}\left(e_{1}, e_{2}, e_{3}, p_{8}\right) & &
\end{aligned}
$$

The volume of each simplex is calculated by taking the determinant of the matrix with the coordinates of each vertex as its rows. For $\Delta_{9}$ the volume is

$$
\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 3 & 4 & 15 \\
0 & 0 & 0 & 1
\end{array}\right|=4,
$$

so $\Delta_{9}$ is singular. To calculate the type of singularity on $\Delta_{9}$ note that

$$
p_{1}=\frac{1}{23}\left(e_{1}+3 e_{2}+4 e_{3}+15 e_{4}\right)
$$

so

$$
e_{3}=\frac{1}{4}\left(23 p_{1}-e_{1}-3 e_{2}-15 e_{4}\right) .
$$

Taking the coefficients modulo 4 gives

$$
\frac{1}{4}\left(3 p_{1}+3 e_{1}+e_{2}+e_{4}\right) .
$$

Taking $p_{1}, e_{1}, e_{2}, e_{4}$ as a basis of $L$ shows that $\Delta_{9}$ has the terminal singularity $\frac{1}{4}(3,3,1,1)$. Permuting the coordinates gives $\frac{1}{4}(1,3,1,3)$. Hence

$$
L\left(\Delta_{9}\right)=\mathbb{Z}^{4}+\mathbb{Z} \cdot \frac{1}{4}(1,3,1,3)
$$

Tables 2.1 and 2.2 show the singularities on the simplices obtained by each of these orders of subdivision.

The simplices of volume one are nonsingular, so the third column is left blank. Since subdivision has been performed at all junior points the singularities on the simplices with volume greater than one are all terminal. Each resolution has three singular cones, but different order in which subdivisions were performed has led to different singularities. Thus the singularities on the resolution are not invariants

Barycentric subdivision of the junior simplex in $L=\mathbb{Z}^{4}+\frac{1}{23}(1,3,4,15) \cdot \mathbb{Z}$

| Simplex | Volume | Singularity |
| :--- | :---: | :---: |
| $\Delta_{1}$ | 1 |  |
| $\Delta_{2}$ | 1 |  |
| $\Delta_{3}$ | 1 |  |
| $\Delta_{4}$ | 1 |  |
| $\Delta_{5}$ | 1 |  |
| $\Delta_{6}$ | 1 |  |
| $\Delta_{7}$ | 1 |  |
| $\Delta_{8}$ | 1 |  |
| $\Delta_{9}$ | 4 | $\frac{1}{4}(1,3,1,3)$ |
| $\Delta_{10}$ | 4 | $\frac{1}{4}(1,3,1,3)$ |
| $\Delta_{11}$ | 7 | $\frac{1}{7}(2,5,1,6)$ |

Table 2.1: Subdivision of the junior simplex at $p_{2}$ first

| Simplex | Volume | Singularity |
| :--- | :---: | :---: |
| $\Delta_{1}^{\prime}$ | 1 |  |
| $\Delta_{2}^{\prime}$ | 1 |  |
| $\Delta_{3}^{\prime}$ | 1 |  |
| $\Delta_{4}^{\prime}$ | 1 |  |
| $\Delta_{5}^{\prime}$ | 1 |  |
| $\Delta_{6}^{\prime}$ | 1 |  |
| $\Delta_{7}^{\prime}$ | 2 | $\frac{1}{2}(1,1,1,1)$ |
| $\Delta_{8}^{\prime}$ | 1 |  |
| $\Delta_{9}^{\prime}$ | 9 | $\frac{1}{9}(5,4,1,8)$ |
| $\Delta_{10}^{\prime}$ | 5 | $\frac{1}{5}(3,2,4,1)$ |

Table 2.2: Subdivision of the junior simplex at $p_{8}$ first
of the resolution.

### 2.2 Unavoidable points

In Example 2.1.2, it was shown that different resolutions may be obtained by different orders of subdivision. If a simplex has volume greater than one then there are lattice points in the interior of the simplex. In Example 2.1.2, these lattice points must have age greater than one, since the junior simplex was subdivided at every age one point.

The first subdivision of Example 2.1.2 gave a resolution which was covered by eleven pieces, three of which were singular, having singularities $\frac{1}{4}(1,3,1,3)$, $\frac{1}{4}(1,3,1,3), \frac{1}{7}(2,5,1,6)$.

The singularity $\frac{1}{4}(3,1,3,1)$ was on the piece $\Delta_{9}$, which has coordinates in
terms of $e_{1}, e_{2}, p_{1}, e_{4}$. We have

$$
\begin{aligned}
\frac{1}{4}\left(3 p_{1}+3 e_{1}+e_{2}+e_{4}\right)= & \frac{1}{4}\left(\frac{1}{23}(3,9,12,45)\right)+\frac{1}{4}\left(\frac{1}{23}(69,0,0,0)\right) \\
& +\frac{1}{4}\left(\frac{1}{23}(0,23,0,0)\right)+\frac{1}{4}\left(\frac{1}{23}(0,0,0,23)\right) \\
= & \frac{1}{4}\left(\frac{1}{23}(72,32,12,68)\right) \\
= & \frac{1}{23}(18,8,3,17) \\
= & p_{18} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{1}{4}\left(2 p_{1}+2 e_{1}+2 e_{2}+2 e_{4}\right) & =p_{12} \\
\frac{1}{4}\left(p_{1}+e_{1}+3 e_{2}+3 e_{4}\right) & =p_{6}
\end{aligned}
$$

Thus these age 2 points must appear on this resolution of $\frac{1}{23}(1,3,4,15)$.
The results of this calculation and the analogous calculation for the second subdivision are displayed in Table 2.3. The first column contains the points $\frac{1}{23}(\overline{n 1}, \overline{n 3}, \overline{n 4}, \overline{n 15})$ and any others which were shown to appear on the resolution from this calculation. A $\checkmark$ in the third or fourth column indicates this point belongs to a singular cone.

The age 1 points must appear on the resolution, however they do not arise from the singularities on the affine pieces. This calculation will not say whether any age 3 points appear on the resolution, since the singularities being considered are terminal, and these will only show the age 2 points.

The table shows that in this example, any age 2 points which are the sum of age 1 points does not necessarily appear as a divisor on the resolution, whereas any points not of this form must appear on the resolution; they are unavoidable. This leads to the following:

Lemma 2.2.1. If a resolution is crepant every age two point must be the sum of two age one points.

Since this a necessary condition for the existence of a crepant resolution we will call the condition
"Every every age two point must be the sum of two age one points"

| Point | Age | Subdivision at $p_{2}$ first | Subdivision at $p_{8}$ first |
| :--- | :---: | :---: | :---: |
| $\frac{1}{23}(1,3,4,15)$ | 1 | $p_{1}$ | $p_{1}$ |
| $\frac{1}{23}(2,6,8,7)$ | 1 | $p_{2}$ | $p_{2}$ |
| $\frac{1}{23}(3,9,12,22)$ | 2 | $p_{3}=p_{1}+p_{2}$ | $p_{3}=p_{1}+p_{2}$ |
| $\frac{1}{23}(4,12,16,14)$ | 2 | $p_{4}=2 p_{2}$ | $p_{4}=2 p_{2}$ |
| $\frac{1}{23}(5,15,20,6)$ | 2 | $\checkmark$ | $\checkmark$ |
| $\frac{1}{23}(6,18,1,21)$ | 2 | $\checkmark$ | $\checkmark$ |
| $\frac{1}{23}(7,21,5,13)$ | 2 | $\checkmark$ | $\checkmark$ |
| $\frac{1}{23}(8,1,9,5)$ | 1 | $p_{8}$ | $p_{8}$ |
| $\frac{1}{23}(9,4,13,20)$ | 2 | $p_{9}=p_{1}+p_{8}$ | $p_{9}=p_{1}+p_{8}$ |
| $\frac{1}{23}(10,7,17,12)$ | 2 | $p_{10}=p_{2}+p_{8}$ | $p_{10}=p_{2}+p_{8}$ |
| $\frac{1}{23}(11,12,21,19)$ | 2 | $\checkmark$ | $\checkmark$ |
| $\frac{1}{23}(12,13,2,19)$ | 2 | $\checkmark$ | $\checkmark$ |
| $\frac{1}{23}(13,16,6,11)$ | 2 | $\checkmark$ | $\checkmark$ |
| $\frac{1}{23}(14,19,10,3)$ | 2 | $\checkmark$ | $\checkmark$ |
| $\frac{1}{23}(15,22,14,18)$ | 3 | age 3 | age 3 |
| $\frac{1}{23}(16,2,18,10)$ | 2 | $p_{16}=p_{1}+p_{2}$ | $p_{16}=p_{1}+p_{2}$ |
| $\frac{1}{23}(17,5,22,2)$ | 2 | $\checkmark$ | $\checkmark$ |
| $\frac{1}{23}(18,8,3,17)$ | 2 | $\checkmark$ | $\checkmark$ |
| $\frac{1}{23}(19,11,7,9)$ | 2 | $\checkmark$ | $\checkmark$ |
| $\frac{1}{23}(20,14,11,1)$ | 2 | $\checkmark$ | $\checkmark$ |
| $\frac{1}{23}(21,17,15,16)$ | 3 | age 3 | age |
| $\frac{1}{23}(22,20,19,8)$ | 3 | age 3 | age 3 |
| $\frac{1}{23}(24,3,4,15)$ | 2 | $p_{1}+e_{1}$ | $\checkmark$ |
| $\frac{1}{23}(26,6,8,7)$ | 2 | $p_{2}+e_{1}$ | $\checkmark$ |
| $\frac{1}{23}(8,24,9,5)$ | 2 | $\checkmark$ | $p_{8}+e_{2}$ |

Table 2.3: Points on the subdivisions of the junior simplex of $\frac{1}{23}(1,3,4,15)$
the junior necessity condition or JunNec.
Proof of 2.2.1. This is well known. If $Y$ is a crepant resolution of $X$ then the toric fan of $Y$ consists only of basic cones. If $p$ is an age two point it must lie in a cone of $Y$, but then it must be a $\mathbb{Z}$-linear combination of the generators of the cone. Since the cone is basic these generators correspond exactly to the age one points of the lattice.

It is clear that every point of age greater than one must be expressible as the sum of age one points.

Example 2.2.2. A crepant resolution of the quotient singularity $\frac{1}{17}(1,3,3,10)$
was computed in Example 2.1.1. Its junior points were

$$
\begin{gathered}
p_{1}=\frac{1}{17}(1,3,3,10), p_{2}=\frac{1}{17}(2,6,6,3), p_{6}=\frac{1}{17}(6,1,1,9) \\
p_{7}=\frac{1}{17}(7,4,4,2), p_{12}=\frac{1}{17}(12,2,2,1)
\end{gathered}
$$

This singularity has a crepant resolution, and all of the age two points of the form $\frac{1}{17}(\overline{n 1}, \overline{n 3}, \overline{n 3}, \overline{n 10})$ are the sum of two of the $p_{i}$ :

| Point | As sum of juniors |
| :--- | :---: |
| $\frac{1}{17}(1,3,3,10)$ | $p_{1}$ |
| $\frac{1}{17}(2,6,6,3)$ | $p_{2}$ |
| $\frac{1}{17}(3,9,9,13)$ | $p_{1}+p_{2}$ |
| $\frac{1}{17}(4,12,12,6)$ | $p_{2}+p_{2}$ |
| $\frac{1}{17}(5,15,15,16)$ | $p_{1}+p_{2}+p_{2}$ |
| $\frac{1}{17}(6,1,1,9)$ | $p_{6}$ |
| $\frac{1}{17}(7,4,4,2)$ | $p_{7}$ |
| $\frac{1}{17}(8,7,7,12)$ | $p_{2}+p_{6}$ |
| $\frac{1}{17}(9,10,10,5)$ | $p_{2}+p_{7}$ |
| $\frac{1}{17}(10,13,13,15)$ | $p_{1}+p_{2}+p_{7}$ |
| $\frac{1}{17}(11,16,16,8)$ | $p_{2}+p_{2}+p_{7}$ |
| $\frac{1}{17}(12,2,2,1)$ | $p_{12}$ |
| $\frac{1}{17}(13,5,5,11)$ | $p_{1}+p_{12}$ |
| $\frac{1}{17}(14,8,8,4)$ | $p_{2}+p_{12}$ |
| $\frac{1}{17}(15,11,11,14)$ | $p_{1}+p_{2}+p_{12}$ |
| $\frac{1}{17}(16,14,14,7)$ | $p_{2}+p_{2}+p_{12}$ |

If the converse to Claim 2.2.1 was true it would provide an easy criterion for finding crepant resolutions. Unfortunately this is not the case.

### 2.3 Counter-examples to sufficiency of JunNec

Example 2.3.1. Let $A$ be the group generated by $\frac{1}{39}(1,5,25,8)$ with corresponding lattice $L=\mathbb{Z}^{4}+\frac{1}{39}(1,5,25,8) \mathbb{Z}$.

There are eight points of $L$ in the interior of the junior simplex:

$$
\begin{array}{lll}
p_{1}=\frac{1}{39}(1,5,25,8), & p_{2}=\frac{1}{39}(2,10,11,16), & p_{5}=\frac{1}{39}(5,25,1,8), \\
p_{8}=\frac{1}{39}(8,1,25,5), & p_{10}=\frac{1}{39}(10,11,2,16), & p_{11}=\frac{1}{39}(11,16,10,2), \\
p_{16}=\frac{1}{39}(16,2,11,10), & p_{25}=\frac{1}{39}(25,8,5,1) . &
\end{array}
$$

Claim 2.3.2. The quotient singularity $\frac{1}{39}(1,5,25,8)$ satisfies JunNec, but does not admit a crepant resolution.

This can be tested using the Magma code described in Chapter 3, see section 3.6 for details.

This example was also considered by Robert Firla and Günter Ziegler in [FZ99]. The cone $C[14,31,34,39]$ of [FZ99, Example10] is exactly the first orthant of $L=\mathbb{Z}^{4}+\frac{1}{39}(1,5,25,8) \mathbb{Z}$, as described in Example 1.5.4. They show that it admits no Hilbert partition; existence of a Hilbert partition is equivalent to existence of a crepant resolution.

Nine more examples of cones with $r \leq 100$ (in the lattice notation) which satisfy JunNec but admit no Hilbert partition are given in [Fir97, §4.2]. Considering these as cones in a lattice $L=\mathbb{Z}^{4}+\frac{1}{\mathrm{r}}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ shows that the cones $C[15,43,51,54]$ and $C[21,39,49,54]$ correspond to the quotient singularities $\frac{1}{54}(1,3,11,39)$ and $\frac{1}{54}(1,5,15,33)$ respectively. These are the same singularity up to change of coordinates.

It is somewhat surprising that these are the only eight examples with $r \leq 100$ for which JunNec holds, but for which there is no crepant resolutions.

### 2.4 Products of singularities

Firla and Ziegler observe that all except the smallest of their examples - that is all except $\frac{1}{39}(1,5,8,25)$ - do not have unimodular facets. That is, there are junior points of the form $\frac{1}{r}(a, b, c, 0)$, up to permuting coordinates. This is a consequence of one of the $a_{i} \mathrm{~s}$ not being coprime to $r$.

Observation: All the four dimensional simplicial cones found by Firla and Ziegler to have a binary Hilbert cover but no Hilbert partition come from groups whose order is not prime.

It is possible to express each group as the product of groups of lower order:

| Notation 1 | Notation 2 | Product group |
| :--- | :--- | :--- |
| $\frac{1}{39}(1,5,8,25)$ | $(14,31,34,39)$ | $\frac{1}{3}(1,2,2,1) \times \frac{1}{13}(1,5,8,12)$ |
| $\frac{1}{54}(1,3,11,39)$ | $(15,43,51,54)$ | $\frac{1}{2}(1,1,1,1) \times \frac{1}{27}(14,15,19,6)$ |
| $\frac{1}{78}(1,5,20,52)$ | $(26,58,73,78)$ | $\frac{1}{2}(1,1,0,0) \times \frac{1}{3}(2,1,1,2) \times \frac{1}{13}(11,3,12,0)$ |
| $\frac{1}{88}(1,11,32,44)$ | $(44,56,77,88)$ | $\frac{1}{11}(7,0,4,0) \times \frac{1}{8}(3,1,0,4)$ |
| $\left.\frac{1}{90}(1,9,35,45)\right)$ | $(45,55,81,90)$ | $\frac{1}{2}(1,1,1,1) \times \frac{1}{5}(2,3,0,0) \times \frac{1}{9}(1,0,8,0)$ |
| $\frac{1}{96}(1,8,39,48)$ | $(48,57,88,96)$ | $\frac{1}{3}(1,2,0,0) \times \frac{1}{32}(1,8,7,16)$ |
| $\frac{1}{96}(1,11,36,48)$ | $(48,60,85,96)$ | $\frac{1}{3}(1,2,0,0) \times \frac{1}{32}(1,11,4,16)$ |
| $\frac{1}{96}(1,15,32,48)$ | $(48,64,91,96)$ | $\frac{1}{3}(1,0,2,0) \times \frac{1}{32}(1,15,0,16)$ |

This observation is insufficient to explain the non-existence of a crepant resolution. The product of two terminal singularities need not be a terminal singularity, and may have a crepant resolution. The product

$$
\begin{equation*}
\frac{1}{3}(1,2,1,2) \times \frac{1}{5}(1,2,4,3)=\frac{1}{15}(8,1,2,4) \tag{2.3}
\end{equation*}
$$

is not terminal and does have a crepant resolution. The cones

| $p_{2} e_{2} e_{3} e_{4}$, | $p_{4} p_{2} e_{2} e_{3}$, | $p_{8} p_{2} e_{2} e_{4}$, | $p_{8} p_{4} p_{2} e_{2}$, | $p_{1} p_{2} e_{3} e_{4}$, |
| :--- | :--- | :--- | :--- | :--- |
| $p_{1} p_{4} p_{2} e_{3}$, | $p_{1} p_{8} p_{2} e_{4}$, | $p_{1} p_{8} p_{4} p_{2}$, | $e_{1} p_{4} e_{2} e_{3}$, | $e_{1} p_{8} e_{2} e_{4}$, |
| $e_{1} p_{8} p_{4} e_{2}$, | $e_{1} p_{1} e_{3} e_{4}$, | $e_{1} p_{1} p_{4} e_{3}$, | $e_{1} p_{1} p_{8} e_{4}$, | $e_{1} p_{1} p_{8} p_{4}$, |

which were produced by the program described in Chapter 3, form a crepant resolution.

However permuting the coordinates of the second group in the product (2.3) gives $\frac{1}{3}(1,2,1,2) \times \frac{1}{5}(1,4,2,3)=\frac{1}{15}(8,7,4,11)$, which is terminal and therefore can not have a crepant resolution.

It would be interesting to know whether or not this observation is connected to the non-existence of a crepant resolution in each of these cases.

### 2.5 The search for a sufficient condition

Since the examples of Firla and Ziegler do not have a crepant resolution they cannot be resolved via a chain of barycentric subdivisions. Thus somewhere JunNec must fail after a barycentric subdivision.

Condition 2.5.1. There exists a junior point $p$ of the junior simplex, subdividing at which preserves the junior necessity condition.

This condition requires that after subdivision at the point $p$, the singularities on the new cones all satisfy the junior necessity condition.

The smallest example $\frac{1}{39}(1,5,25,8)$ does not satisfy Condition 2.5.1. Consider the junior simplex in the lattice $L=\mathbb{Z}^{4}+\mathbb{Z} \cdot \frac{1}{39}(1,5,8,25)$. Subdivision at $p_{1}$ gives the four simplices

$$
p_{1} e_{2} e_{3} e_{4}, \quad e_{1} p_{1} e_{3} e_{4}, \quad e_{1} e_{2} p_{1} e_{4}, \quad e_{1} e_{2} e_{3} p_{1}
$$

The first of these has relative volume 1 , and so is nonsingular, but the others have the singularities $\frac{1}{5}(4,4,2,0), \frac{1}{8}(7,7,3,7)$ and $\frac{1}{25}(14,24,20,17)$ respectively. Now consider the lattices generated by each of these singularities. In the $\frac{1}{5}(4,4,2,0)$ and $\frac{1}{25}(12,24,20,17)$ cases, every age 2 point is the sum of two age 1 points. However this is not true for $\frac{1}{8}(7,7,3,7)$. The age 1 points are

$$
\frac{1}{8}(1,1,5,1), \quad \frac{1}{8}(2,2,2,2)
$$

and there is no way to make $\frac{1}{8}(5,5,1,5)$ as a $\mathbb{Z}$-linear combination of these.
The order of subdivision does not matter here. Subdividing the junior simplex at any junior point leads to a simplex whose singularity does not satisfy JunNec.

This led to the following conjecture:
Conjecture 2.5.2. There exists a crepant resolution if and only if every age two point is the sum of two age one points and Condition 2.5.1 is satisfied.

However, this conjecture is false. This condition is satisfied by $\frac{1}{54}(1,3,11,39)$, however this example does not have a crepant resolution, so cannot have a complete chain of barycentric subdivisions. Subdivision at the points $\frac{1}{54}(18,0,36,0)$ and $\frac{1}{54}(36,0,18,0)$ preserves JunNec, but it is not preserved by subsequent subdivisions.

On the other hand, the junior simplex of the lattice $L=\mathbb{Z}^{4}+\frac{1}{67}(1,5,8,53) \mathbb{Z}$, also does not satisfy the condition, and no order of barycentric subdivisions leads to a crepant resolution. This can be seen by observing that following a barycentric subdivision at any of the junior points, the singularity on at least one of the resulting cones does not satisfy JunNec.

However, there does exist a crepant resolution; examples can be found using the Magma program described in Chapter 3.

The ideal situation would be to find a refinement of the conjecture to give necessary and sufficient conditions on the existence of a crepant resolution in dimension four and above. It is not clear how this could be achieved. Further understanding of the examples of Firla and Ziegler may help to find such a refinement.

### 2.6 Projective crepant resolutions

The quotient singularity $X /\left\langle\frac{1}{67}(1,5,8,53)\right\rangle$ cannot be resolved to a crepant resolution by a chain of blow-ups. We will see that this does not mean that it does not have a projective crepant resolution.

Let $\Sigma$ be the toric fan of the resolution of $X /\left\langle\frac{1}{67}(1,5,8,53)\right\rangle$ consisting of the following cones

| $e_{4} e_{3} e_{2} p_{1}$ | $e_{4} e_{3} p_{1} p_{14}$ | $e_{4} e_{3} p_{14} p_{27}$ | $e_{4} e_{3} p_{27} e_{1}$ | $e_{4} e_{2} p_{1} p_{9}$ | $e_{4} e_{2} p_{9} p_{17}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $e_{4} e_{2} p_{17} p_{42}$ | $e_{4} e_{2} p_{42} e_{1}$ | $e_{4} p_{1} p_{9} p_{17}$ | $e_{4} p_{1} p_{14} p_{27}$ | $e_{4} p_{1} p_{17} p_{42}$ | $e_{4} p_{1} p_{27} e_{1}$ |
| $e_{4} p_{1} p_{42} e_{1}$ | $e_{3} e_{2} p_{1} p_{2}$ | $e_{3} e_{2} p_{2} p_{3}$ | $e_{3} e_{2} p_{3} p_{4}$ | $e_{3} e_{2} p_{4} p_{9}$ | $e_{3} e_{2} p_{9} p_{14}$ |
| $e_{3} e_{2} p_{14} p_{19}$ | $e_{3} e_{2} p_{19} p_{43}$ | $e_{3} e_{2} p_{43} e_{1}$ | $e_{3} p_{1} p_{2} p_{14}$ | $e_{3} p_{2} p_{3} p_{14}$ | $e_{3} p_{3} p_{4} p_{14}$ |
| $e_{3} p_{4} p_{9} p_{14}$ | $e_{3} p_{14} p_{19} p_{43}$ | $e_{3} p_{14} p_{27} e_{1}$ | $e_{3} p_{14} p_{43} e_{1}$ | $e_{2} p_{1} p_{2} p_{9}$ | $e_{2} p_{2} p_{3} p_{9}$ |
| $e_{2} p_{3} p_{4} p_{9}$ | $e_{2} p_{9} p_{14} p_{19}$ | $e_{2} p_{9} p_{17} p_{42}$ | $e_{2} p_{9} p_{19} p_{43}$ | $e_{2} p_{9} p_{42} e_{1}$ | $e_{2} p_{9} p_{43} e_{1}$ |
| $p_{1} p_{2} p_{9} p_{17}$ | $p_{1} p_{2} p_{14} p_{27}$ | $p_{1} p_{2} p_{17} p_{27}$ | $p_{1} p_{17} p_{27} p_{42}$ | $p_{1} p_{27} p_{42} e_{1}$ | $p_{2} p_{3} p_{9} p_{17}$ |
| $p_{2} p_{3} p_{14} p_{27}$ | $p_{2} p_{3} p_{17} p_{27}$ | $p_{3} p_{4} p_{9} p_{18}$ | $p_{3} p_{4} p_{14} p_{18}$ | $p_{3} p_{9} p_{17} p_{18}$ | $p_{3} p_{14} p_{18} p_{28}$ |
| $p_{3} p_{14} p_{27} p_{28}$ | $p_{3} p_{17} p_{18} p_{42}$ | $p_{3} p_{17} p_{27} p_{42}$ | $p_{3} p_{18} p_{27} e_{1}$ | $p_{3} p_{18} p_{28} e_{1}$ | $p_{3} p_{27} p_{28} e_{1}$ |
| $p_{4} p_{9} p_{14} p_{18}$ | $p_{9} p_{14} p_{18} p_{28}$ | $p_{9} p_{14} p_{19} p_{28}$ | $p_{9} p_{17} p_{18} p_{42}$ | $p_{9} p_{18} p_{28} p_{43}$ | $p_{9} p_{18} p_{42} e_{1}$ |
| $p_{9} p_{18} p_{43} e_{1}$ | $p_{9} p_{19} p_{28} p_{43}$ | $p_{14} p_{19} p_{28} p_{43}$ | $p_{14} p_{27} p_{28} e_{1}$ | $p_{14} p_{28} p_{43} e_{1}$ | $p_{18} p_{27} p_{42} e_{1}$ |
| $p_{18} p_{28} p_{43} e_{1}$. |  |  |  |  |  |

We will show that this resolution is projective by showing that the ample cone is nonempty.

We have the short exact sequence

$$
0 \rightarrow M \xrightarrow{A} \mathbb{Z}^{\Sigma(1)} \xrightarrow{B} \operatorname{Pic}\left(X_{\Sigma}\right) \rightarrow 0
$$

where $\Sigma(1)$ is the set of rays of the fan $\Sigma$,

$$
A=\left(\begin{array}{cccc}
1 & 5 & 8 & 53 \\
2 & 10 & 16 & 39 \\
3 & 15 & 24 & 25 \\
4 & 20 & 32 & 11 \\
9 & 45 & 5 & 8 \\
14 & 3 & 45 & 5 \\
17 & 18 & 2 & 30 \\
18 & 23 & 10 & 16 \\
19 & 28 & 18 & 2 \\
27 & 1 & 15 & 24 \\
28 & 6 & 23 & 10 \\
42 & 9 & 1 & 15 \\
43 & 14 & 9 & 1 \\
67 & 0 & 0 & 0 \\
0 & 67 & 0 & 0 \\
0 & 0 & 67 & 0 \\
0 & 0 & 0 & 67
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ccccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 & 0 & -8 & 0 & 3 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -6 & 0 & 9 & 1 & -4 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 1 & -12 & 0 & 18 & 0 & -7 & -4 & 2 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & -16 & 0 & 24 & 0 & -9 & -5 & 3 & 0 \\
0 & 0 & 0 & 0 & 5 & 1 & 0 & 0 & 0 & -30 & 0 & 45 & 0 & -17 & -9 & 5 & 0 \\
0 & 0 & 0 & 0 & 10 & 0 & 0 & 0 & 0 & -60 & 1 & 90 & 0 & -34 & -18 & 11 & 0 \\
0 & 0 & 0 & 1 & 11 & 0 & 0 & 0 & 0 & -66 & 0 & 99 & 0 & -37 & -20 & 12 & 0 \\
0 & 0 & 0 & 0 & 16 & 0 & 0 & 1 & 0 & -96 & 0 & 144 & 0 & -54 & -29 & 18 & 0 \\
0 & 0 & 1 & 0 & 25 & 0 & 0 & 0 & 0 & -150 & 0 & 225 & 0 & -84 & -45 & 28 & 0 \\
0 & 0 & 0 & 0 & 30 & 0 & 1 & 0 & 0 & -180 & 0 & 270 & 0 & -101 & -54 & 34 & 0 \\
0 & 1 & 0 & 0 & 39 & 0 & 0 & 0 & 0 & -234 & 0 & 351 & 0 & -131 & -70 & 44 & 0 \\
1 & 0 & 0 & 0 & 53 & 0 & 0 & 0 & 0 & -318 & 0 & 477 & 0 & -178 & -95 & 60 & 0 \\
0 & 0 & 0 & 0 & 67 & 0 & 0 & 0 & 0 & -402 & 0 & 603 & 0 & -225 & -120 & 76 & 1
\end{array}\right)
$$

is found by calculating the Smith normal form of $A$.

We want to calculate the nef cone of $X_{\Sigma}$. In toric geometry this is just the cone of globally generated divisors. Combinatorially this corresponds to

$$
\bigcap_{\sigma \in \Sigma} \operatorname{pos}\left(\left[D_{i}\right]: i \notin \sigma\right) .
$$

The columns of $B$ correspond to the divisors $D_{i}$, so for each cone of the resolution we take $B_{\sigma}$ to be the submatrix containing the columns $B_{i}$ of B such that $i$ is not in $\sigma$.

Consider a cone $\sigma$ in $N$. Its rays are generated by 4 rows of $A$; label these $\alpha, \beta, \gamma, \delta$. Now take $B_{\sigma}=\left(b_{i, j}\right)$ where $1 \leq i \leq 13, j \neq \alpha, \beta, \gamma, \delta$, that is, all columns of B except columns $\alpha, \beta, \gamma, \delta$.

We invert $B_{\sigma}$ to find the equations of the hyperplanes defining the 13 dimensional nef cone in $\operatorname{Pic}\left(X_{\Sigma}\right)$.

Let $\sigma$ be the cone $p_{1} p_{2} p_{9} p_{17}$, generated by the rays $\frac{1}{67}(1,5,8,53), \frac{1}{67}(2,10,16,39)$, $\frac{1}{67}(9,45,5,8), \frac{1}{67}(17,18,2,30)$. These correspond to the first, second, fifth and seventh rows of $A$. We take $B_{\sigma}$ to be $B$ with the first, second, fifth and seventh columns omitted

$$
B_{\sigma}=\left(\begin{array}{ccccccccccccc}
0 & 0 & 0 & 0 & 0 & 5 & 0 & -8 & 0 & 3 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -6 & 0 & 9 & 1 & -4 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & -12 & 0 & 18 & 0 & -7 & -4 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & -16 & 0 & 24 & 0 & -9 & -5 & 3 & 0 \\
0 & 0 & 1 & 0 & 0 & -30 & 0 & 45 & 0 & -17 & -9 & 5 & 0 \\
0 & 0 & 0 & 0 & 0 & -60 & 1 & 90 & 0 & -34 & -18 & 11 & 0 \\
0 & 1 & 0 & 0 & 0 & -66 & 0 & 99 & 0 & -37 & -20 & 12 & 0 \\
0 & 0 & 0 & 1 & 0 & -96 & 0 & 144 & 0 & -54 & -29 & 18 & 0 \\
1 & 0 & 0 & 0 & 0 & -150 & 0 & 225 & 0 & -84 & -45 & 28 & 0 \\
0 & 0 & 0 & 0 & 0 & -180 & 0 & 270 & 0 & -101 & -54 & 34 & 0 \\
0 & 0 & 0 & 0 & 0 & -234 & 0 & 351 & 0 & -131 & -70 & 44 & 0 \\
0 & 0 & 0 & 0 & 0 & -318 & 0 & 477 & 0 & -178 & -95 & 60 & 0 \\
0 & 0 & 0 & 0 & 0 & -402 & 0 & 603 & 0 & -225 & -120 & 76 & 1
\end{array}\right)
$$

We use the inverse,

$$
B_{\sigma}^{-1}=\left(\begin{array}{ccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -3 & 2 & 0 \\
0 & 0 & 0 & 3 & 1 & 0 & 0 & 0 & 0 & -1 & -5 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -2 & 2 & 0 \\
-3 & 0 & 0 & 11 & 0 & 0 & 0 & 0 & 0 & -2 & -2 & 2 & 0 \\
0 & 0 & 0 & 3 & 0 & 1 & 0 & 0 & 0 & -2 & -3 & 3 & 0 \\
-2 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & -3 & -1 & 2 & 0 \\
0 & 1 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & -3 & -2 & 3 & 0 \\
0 & 0 & 0 & 6 & 0 & 0 & 0 & 0 & 0 & -5 & -2 & 4 & 0 \\
0 & 0 & 0 & -6 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 \\
0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & -7 & 5 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1
\end{array}\right)
$$

of $B_{\sigma}$ to find the hyperplanes defining the cone:

$$
\begin{array}{ll}
x_{9}-2 x_{11}+x_{12} \geq 0, & x_{7}-3 x_{11}+2 x_{12} \geq 0, \\
3 x_{4}+x_{5}-x_{10}-5 x_{11}+4 x_{12} \geq 0, & x_{8}-x_{10}-x_{11}+x_{12} \geq 0, \\
x_{3}-x_{10}-2 x_{11}+2 x_{12} \geq 0, & -3 x_{1}+11 x_{4}-2 x_{10}-2 x_{11}+2 x_{12} \geq 0, \\
3 x_{4}+x_{6}-2 x_{10}-3 x_{11}+3 x_{12} \geq 0, & -2 x_{1}+8 x_{4}-3 x_{10}-x_{11}+2 x_{12} \geq 0, \\
x_{2}+3 x_{4}-3 x_{10}-2 x_{11}+3 x_{12} \geq 0, & 6 x_{4}-5 x_{10}-2 x_{11}+4 x_{12} \geq 0, \\
-6 x_{4}+x_{10}+x_{11}-x_{12} \geq 0, & 3 x_{4}-7 x_{11}+5 x_{12} \geq 0, \\
x_{11}-2 x_{12}+x_{13} \geq 0 . &
\end{array}
$$

We take the union of all the hyperplanes from each $\sigma$ in $\Sigma$, which gives us the cone of globally generated divisors. PORTA [CL09] converts the hyperplanes into the rays of the cone.

This cone is 13 dimensional, so we choose 13 rays which generate the cone:

$$
\begin{aligned}
& (-3,0,1,2,3,7,9,13,22,32,41,60,79), \\
& (-3,2,4,6,11,23,25,37,58,72,93,128,163), \\
& (0,-6,-10,-12,-24,-46,-48,-70,-106,-120,-155,-204,-252), \\
& (0,-6,-10,-12,-24,-46,-48,-70,-106,-119,-155,-204,-252), \\
& (0,-3,-5,-6,-12,-23,-24,-35,-53,-60,-78,-103,-128), \\
& (0,-3,-5,-6,-12,-23,-24,-35,-53,-60,-78,-103,-127), \\
& (0,-3,-5,-6,-12,-23,-24,-35,-53,-60,-78,-102,-126), \\
& (0,-2,-4,-5,-10,-19,-20,-30,-45,-50,-65,-85,-105), \\
& (0,-1,-2,-2,-4,-8,-8,-12,-18,-20,-26,-34,-42), \\
& (0,-1,-1,-1,-2,-4,-4,-6,-9,-10,-13,-17,-21), \\
& (1,-4,-8,-10,-19,-37,-40,-59,-90,-104,-135,-180,-225), \\
& (2,-6,-11,-14,-27,-53,-57,-83,-128,-148,-192,-256,-320), \\
& (2,-3,-6,-8,-15,-30,-33,-48,-74,-88,-114,-154,-194),
\end{aligned}
$$

We take their sum to find a point $v$ in the interior of the cone:

$$
v=(-1,-36,-62,-74,-147,-282,-296,-433,-655,-735,-955,-1254,-1550)
$$

and pull this back to a point $w$ in $\mathbb{Z}^{\Sigma(1)}$ :

$$
w=(140,6,-125,-79,-79,-73,3,-122,-40,0,-110,0,-35,0,-3,0,283)
$$

Since $w$ is in the interior of the cone

$$
\begin{aligned}
D= & 140 D_{1}+6 D_{2}-125 D_{3}-79 D_{4}-79 D_{5}-73 D_{6}+3 D_{7}-122 D_{8}-40 D_{9} \\
& +0 D_{10}-110 D_{11}+0 D_{12}-35 D_{13}+0 D_{14}-3 D_{15}+0 D_{16}+283 D_{17}
\end{aligned}
$$

is certainly an ample divisor and so the resolution is projective.

### 2.7 Other subdivisions

An obvious alternative to the question "when does a crepant resolution exist?" is the question "why do some singularities have no crepant resolution?". Terminal singularities, $\frac{1}{r}(i, r-i, j, r-j)$, do not have a crepant resolution since there are no non-trivial junior points in the lattice $L=\mathbb{Z}^{4}+\frac{1}{r}(i, r-i, j, r-j) \cdot \mathbb{Z}$. Instead we consider the octahedron containing all the age 2 points, that is the octahedron


Figure 2.1: Triangulations of the rectangle $q_{1}, q_{2}, q_{5}, q_{6}$
with vertices $e_{i}+e_{j}$ for $i, j=1, \ldots 4, i \neq j$.
However a subdivision which includes any of the vertices of the simplex can not correspond to an economic resolution [Rei87].

Example 2.7.1. Let $L=\mathbb{Z}^{4}+\frac{1}{7}(1,6,3,4) \cdot \mathbb{Z}$. There are six points inside the age 2 octahedron:

$$
\begin{array}{lll}
q_{1}=\frac{1}{7}(1,6,3,4), & q_{2}=\frac{1}{7}(2,5,6,1), & q_{3}=\frac{1}{7}(3,4,2,5), \\
q_{4}=\frac{1}{7}(4,3,5,2), & q_{5}=\frac{1}{7}(5,2,1,6), & q_{6}=\frac{1}{7}(1,6,4,3) .
\end{array}
$$

These points are clearly coplanar and $q_{1}, q_{2}, q_{5}, q_{6}$ are the vertices of a rectangle. The six ways to triangulate this rectangle are shown in Figure 2.1, with the rectangle being drawn in the $x_{1}-x_{3}$ plane.

Claim 2.7.2. There is no way to tessellate the first orthant using only basic cones.
We calculate all the basic simplices. There are only four simplices with one interior point:

$$
\Delta_{1}=q_{1} e_{2} e_{3} e_{4}, \Delta_{2}=q_{2} e_{1} e_{2} e_{3}, \Delta_{3}=q_{5} e_{1} e_{2} e_{4}, \Delta_{4}=q_{6} e_{1} e_{3} e_{4}
$$

Start by assuming that we must have all of these. By comparing faces of the $\Delta_{i}$ with faces of the other basic simplices we can uniquely find neighbours for some of the faces. At some point we must choose a triangulation on the rectangle


Figure 2.2: Triangulation of the $x_{1} x_{3}$-plane in the age 2 octahedron
$q_{1}, q_{2}, q_{5}, q_{6}$. We will use

$$
q_{1} q_{2} q_{4}, \quad q_{1} q_{3} q_{4}, \quad q_{3} q_{4} q_{6}, \quad q_{3} q_{5} q_{6}
$$

The simplex $\Delta_{1}$ contains the face $q_{1} e_{3} e_{4}$. We take $\Delta_{5}=q_{1} q_{2} e_{3} e_{4}$ since it is the only other simplex to contain this face. Now $\Delta_{5}$ contains the face $q_{2} e_{3} e_{4}$, so must have $\Delta_{6}=q_{2} q_{3} e_{3} e_{4}$ as its neighbour. The simplex $\Delta_{6}$ contains the face $q_{2} q_{3} e_{4}$, but because of our choice of triangulation, there is no other simplex containing this face. So it is not possible to cover the space using this triangulation of the rectangle $q_{1} q_{2} q_{5} q_{6}$. Further analogous calculations show that none of the triangulations lead to a triangulation of the whole space. Bouvier and GonzalezSprinberg [BGS95] also show that this example does not have a crepant resolution.

It is possible to find a triangulation using $\frac{1}{2}(1,1,1,1)$ simplices. We start by choosing a triangulation of the $x_{1}-x_{3}$ plane in the age 2 octahedron, as shown Figure 2.2. We turn each of these triangles into two tetrahedra by adding the vertex $e_{1}+e_{2}$ or the vertex $e_{3}+e_{4}$ respectively.

Comparing faces and checking the dimensions and singularity of possible tetrahedra shows that we need the four tetrahedra $f_{12} f_{23} f_{13} e_{2}, f_{12} f_{13} f_{14} e_{1}, f_{34} f_{23} f_{13} e_{3}$, $f_{34} f_{24} f_{14} e_{4}$ to tile the first orthant. Here $f_{i j}:=e_{i}+e_{j}$.

There is a question as to whether or not crepant resolution is the correct thing to do in dimension four and above, but this does not seem to help answer that
question.
In a further attempt to answer the question "why do some singularities have no crepant resolution?". We move to an example which is not terminal, but still appears to have no crepant resolution due to having too few junior points. We explored ways of finding additional points which would allow a subdivision into basic cones.

Suppose, instead of taking barycentric subdivision at a point, we do a similar operation around a line segment. Consider the line segment $p_{1} p_{2}$ in the tetrahedral simplex $e_{1} e_{2} e_{3} e_{4}$. Let $H_{1}$ be the plane containing $p_{1}, p_{2}, e_{1}$ and $H_{2}$ be the plane containing $p_{1}, p_{2}, e_{2}$. Consider the pencil of planes $\lambda H_{1}+\mu H_{2}$. If $p_{1}, p_{2}$ are not collinear with any of the $e_{i}$ and the line segment $p_{i} p_{j}$ is not parallel to an edge $e_{i} e_{j}$ then, as $\mu$ and $\lambda$ vary the pencil of planes sweeps through each of the vertices $e_{i}$ in turn. Thus we take the cones $p_{1} p_{2} e_{i} e_{j}$ where $e_{i}$ and $e_{j}$ are consecutive as $\lambda H_{1}+\mu H_{2}$ sweeps through. This gives a partial subdivision of the original tetrahedron.

The question we wanted to answer was: in the case where there are only two junior points $p_{1}, p_{2}$, does extending the line segment $p_{1} p_{2}$ to the faces of the tetrahedron provide a resolution into basic simplices. This would allow us to consider chains of such subdivisions. However, the answer to the question is no, as the following examples will illustrate.

Example 2.7.3. Consider the quotient singularity $\frac{1}{17}(1,3,5,8)$, which does not have a crepant resolution. Let $L=\mathbb{Z}^{4}+\frac{1}{17}(1,3,5,8) \cdot \mathbb{Z}$. This has two junior points in the interior of the junior simplex:

$$
p_{1}=\frac{1}{17}(1,3,5,8), \quad p_{7}=\frac{1}{17}(7,4,1,5) .
$$

Take the four hyperplanes containing $p_{1}, p_{7}$ and one of the $e_{i}$ :

$$
\begin{array}{ll}
H_{1}:\left(x_{2}+x_{3}-x_{4}=0\right) & H_{2}:\left(x_{1}+3 x_{3}-2 x_{4}=0\right) \\
H_{3}:\left(x_{1}-3 x_{2}+x_{4}=0\right) & H_{4}:\left(x_{1}-2 x_{2}+x_{3}=0\right)
\end{array}
$$

The pencil of planes $\lambda H_{1}+\mu H_{2}$ sweeps through each of the vertices $e_{i}$ in turn. By projecting to a plane perpendicular to the line we see that the order the pencil sweeps through the vertices is $e_{1}, e_{3}, e_{2}, e_{4}$. This tells us that subdividing around the line segment $p_{1} p_{7}$ gives the cones:

| Cone | Singularity |
| :--- | :---: |
| $e_{1} p_{1} p_{7} e_{4}$ | - |
| $e_{1} p_{1} e_{3} p_{7}$ | - |
| $p_{1} e_{2} e_{3} p_{7}$ | $\frac{1}{3}(1,2,1,2)$ |
| $p_{1} e_{2} p_{7} e_{4}$ | $\frac{1}{2}(1,1,1,1)$ |

These do not cover the whole of the junior simplex. We add in the cones at either end of the line segment $p_{1} e_{2} e_{3} e_{4}$ and $e_{1} e_{2} p_{7} e_{4}$, and compare faces to find any missing cones. We now have:

| Cone | Singularity |
| :--- | :---: |
| $p_{1} e_{2} e_{3} e_{4}$ | - |
| $e_{1} e_{2} p_{7} e_{4}$ | - |
| $e_{1} e_{2} e_{3} p_{7}$ | $\frac{1}{5}(1,4,2,3)$ |
| $e_{1} p_{1} e_{3} e_{4}$ | $\frac{1}{3}(1,2,1,2)$ |

The line segment can be extended to meet the face $e_{2} e_{3} e_{4}$ and $e_{1} e_{2} e_{4}$ at the points $\frac{1}{17}\left(0, \frac{17}{6}, \frac{34}{6}, \frac{51}{6}\right)$ and $\frac{1}{17}\left(\frac{17}{2}, \frac{17}{4}, 0, \frac{17}{4}\right)$ respectively. This does not help us to subdivide the cones further as these points are contained within basic cones.

The only way to subdivide $p_{1} e_{2} p_{7} e_{4}$ into two basic cones would be to subdivide at a point on one of the edges $p_{1} e_{2}, p_{1} p_{7}, p_{1} e_{4}, e_{2} p_{7}, e_{2} e_{4}$, or $p_{7} e_{4}$. Each of these edges, however, are common to at least one basic cone, and adding an additional point would also require further subdivision of the basic cone. It is not clear how to proceed from here.

It may be worth noting that the cones with $\frac{1}{3}(1,2,1,2)$ singularity can be further subdivided by taking a point in the faces $e_{2} e_{3} p_{7}$ and $e_{1} e_{3} e_{4}$. These faces are not common to any other cone.

We now look at an example where the points $p_{1}$ and $p_{2}$ are collinear with one of the $e_{i}$.

Example 2.7.4. Let $L=\mathbb{Z}^{4}+\frac{1}{8}(1,1,1,5) \cdot \mathbb{Z}$. The two junior points in the interior of the junior simplex

$$
p_{1}=\frac{1}{8}(1,1,1,5), \quad p_{2}=\frac{1}{8}(2,2,2,2) .
$$

are collinear with the vertex $e_{4}$.
Subdivision around the line segment $p_{1} p_{2}$ gives:

| Cone | Singularity |
| :--- | :--- |
| $e_{1} p_{1} e_{3} p_{2}$ | - |
| $p_{1} e_{2} e_{3} p_{2}$ | - |
| $e_{1} e_{2} p_{1} p_{2}$ | - |
| $p_{1} e_{2} e_{3} e_{4}$ | - |
| $e_{1} p_{1} e_{3} e_{4}$ | - |
| $e_{1} e_{2} p_{1} e_{4}$ | - |
| $e_{1} e_{2} e_{3} p_{2}$ | $\frac{1}{2}(1,1,1,1)$ |

The idea was that we could subdivide the cone $e_{1} e_{2} e_{3} p_{2}$ at the point where the extended line segment $p_{1}, p_{2}$ meets the face $e_{1} e_{2} e_{3}$. This is the point $\frac{1}{8}\left(\frac{8}{3}, \frac{8}{3}, \frac{8}{3}, 0\right)$, which is contained in $e_{1} e_{2} e_{3} p_{2}$. However subdivision at this point cannot give two basic cones.

Subdivision at the point $\frac{1}{8}(0,4,4,0)$ (respectively $\left.\frac{1}{8}(4,0,4,0), \frac{1}{8}(4,4,0,0)\right)$ would give a resolution into eight basic cones, which is what we wanted. However, again, any of these would require further subdivision of a basic cone.

## Chapter 3

## Resolution algorithm

In order to find all crepant resolutions of a particular singularity I have written a Magma program to find triangulations of the junior simplex. The code is written from first principles and relies on only basic Magma functions.

This chapter is organised as follows. I start by giving an idea of what the program does, followed by a more detailed description of the program which is illustrated by a flowchart. I use pseudocode to discuss the details of each algorithm in turn. The MAGMA program is available at http://www.warwick.ac.uk/ staff/S.E.Davis/Thesis/ResolutionAlgorithm.m. Examples of the program in action are given at the end of the chapter.

Throughout this section we will use typewriter-style to distinguish variables in Magma, for example CrepantCones, and small caps to distinguish functions, for example HasCrepRes.

### 3.1 Overview of the program

### 3.1.1 Short description of the program

We find all the basic cones having vertices in the set of junior points of the singularity (this includes $e_{1}=(1,0,0,0)$ etc.). We then find cones whose faces form part of the faces of the junior simplex, and choose a subset of these which cover all the faces of the junior simplex. We continue by finding the neighbours of each cone that has already been chosen. We use a decision tree to choose between these neighbours until we obtain a crepant resolution or prove the nonexistence of one.


Figure 3.1: Flowchart for the resolution algorithm

### 3.1.2 Detailed description of the program

Let $G$ be the cyclic subgroup of $\operatorname{SL}(4, \mathbb{C})$ generated by $\frac{1}{r}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, and let $X$ be the quotient singularity $\mathbb{C}^{4} / G$.

Definition 3.1.1. [IR96] Let $L=\mathbb{Z}^{4}+\frac{1}{r}\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \cdot \mathbb{Z}$ be a lattice. Define the age of a point $\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ of $L$ to be

$$
\sum_{i=1}^{4} b_{i}
$$

Since all of our groups are in SL the age of every lattice point will be an integer. We call the points with age 1 junior points.

Denote by $\overline{k a_{1}}$ the integer $k a_{1} \bmod r$. The junior points of $L$ are the points $\frac{1}{r}\left(\overline{k a_{1}}, \overline{k a_{2}}, \overline{k a_{3}}, \overline{k a_{4}}\right)$, for $1 \leq k<r$, such that $\frac{1}{r} \sum_{i=1}^{4} \overline{k a_{i}}=1$, together with the points

$$
e_{1}=(1,0,0,0), \quad e_{2}=(0,1,0,0), \quad e_{3}=(0,0,1,0), \quad e_{4}=(0,0,0,1)
$$

If $a_{1}=1$ we refer to the junior point $\frac{1}{r}(a, b, c, d)$ as $p_{a}$, where $a$ is the first coordinate of the point.

These points all lie on the plane $x_{1}+x_{2}+x_{3}+x_{4}=1$. We refer to the intersection of this plane with the first orthant as the junior simplex. This is a tetrahedron whose vertices are the points $e_{1}, e_{2}, e_{3}, e_{4}$.

Recall from Remark 1.2.8 that the existence of a crepant resolution $f: Y \rightarrow X$ is equivalent to the 1-skeleton of the toric fan of $Y$ consisting only of junior points.

The following description of how the program works is illustrated by Figure 3.1, which shows the main steps in the algorithm. Further details are given in sections 3.2-3.4.

We find all cones of the form $p_{1} p_{2} p_{3} p_{4}$, where $p_{i}$ are any junior points. Such a cone is basic if the vectors $p_{1}, p_{2}, p_{3}, p_{4}$ generate the lattice $L$. We calculate the determinant of the matrix

$$
\left(\begin{array}{llll}
p_{1,1} & p_{1,2} & p_{1,3} & p_{1,4}  \tag{3.1}\\
p_{2,1} & p_{2,2} & p_{2,3} & p_{2,4} \\
p_{3,1} & p_{3,2} & p_{3,3} & p_{3,4} \\
p_{4,1} & p_{4,2} & p_{4,3} & p_{4,4}
\end{array}\right)
$$

where $p_{1, i}$ denotes the $i$ th coordinate of $p_{1}$. This is the volume of the parallelepiped
with vertices $p_{1}, p_{2}, p_{3}, p_{4}$, whose volume is 4 ! times that of the simplex $p_{1} p_{2} p_{3} p_{4}$. The condition that the vectors $p_{1}, p_{2}, p_{3}, p_{4}$ generate the lattice $L$ is equivalent to $\frac{1}{r}$ times the determinant of matrix (3.1) being equal to $\pm 1$. If the cone $p_{1} p_{2} p_{3} p_{4}$ is basic, we say the simplex $p_{1} p_{2} p_{3} p_{4}$ has relative volume 1 . The junior simplex has relative volume $r$ so a resolution requires $r$ cones. In Magma we store the set of all basic cones in an ordered list called CrepantCones.

Two crepant cones are neighbours if they share a common face and have opposite orientation. That is, they have three vertices in common, but the signs of the determinants of their matrices as in (3.1) are opposite. A search through the faces of every cone in CrepantCones reveals all pairs of cones with a shared common face. A further check on the determinants of these cones shows which of these pairs are neighbours. We will store this information in a table called the AdjacencyGraph. We fix an order on the vertices of each cone and number the faces by the index of the missing vertex; for example, the face $p_{2} p_{3} p_{4}$ is considered to be face 1 of the cone $p_{1} p_{2} p_{3} p_{4}$. Let $i, j$ run through CrepantCones. In the $(i, j)$ th entry of the AdjacencyGraph we record the index of the common face of cones $i$ and $j$, as labelled in cone $i$, if they are neighbours, and we record a 0 if the cones $i$ and $j$ are not neighbours (this includes the case $i=j$ ). Note that the table is not symmetric.

Example 3.1.2. Let $e_{1}=(1,0,0,0), e_{2}=(0,1,0,0), e_{3}=(0,0,1,0), e_{4}=$ $(0,0,0,1), p_{1}=\frac{1}{7}(1,1,1,4)$ and $p_{2}=\frac{1}{7}(2,2,2,1)$. Consider the cones

$$
\begin{gathered}
C_{1}=e_{1} e_{2} p_{1} p_{2}, \quad C_{2}=e_{1} p_{1} e_{3} p_{2}, \quad C_{3}=p_{1} e_{2} e_{3} p_{2}, \quad C_{4}=e_{1} e_{2} p_{1} e_{4} \\
C_{5}=e_{1} p_{1} e_{3} e_{4}, \quad C_{6}=p_{1} e_{2} e_{3} e_{4}, \quad C_{7}=e_{1} e_{2} e_{3} p_{2} .
\end{gathered}
$$

Cones $C_{1}, C_{2}$ share a common face $e_{1} p_{1} p_{2}$. Since $e_{2}$ is the vertex missing from $C_{1}$, this face is considered to be the second face of $C_{1}$ (it is the third face of $C_{2}$ ). The first face of $C_{1}$, that is $e_{2} p_{1} p_{2}$, is common to $C_{3}$, the third face is common to $C_{7}$ and the fourth face is common to the $C_{4}$. It is not hard to check that these pairs of cones are actually neighbours. The first cone has no face in common with the fifth or sixth cone. This information is recorded in the first row of the AdjacencyGraph, Table 3.1. The $(1,2)$ th entry tells us that $C_{1}$ shares its second face with $C_{2}$. The 3 in the $(2,1)$ th entry shows that the common face of cones $C_{2}$ and $C_{1}$ is the third face of $C_{2}$. In this example the AdjacencyGraph tells us a unique triangulation of the junior simplex as every pair of neighbours is unique. Note that cones $C_{4}, C_{5}, C_{6}, C_{7}$ have only three neighbours because one of each of
$\left.\begin{array}{lll}{[ } & {[0,2,1,4,0,0,3],} & \\ \quad[3,0,1,0,4,0,2], & \\ {[3,2,0,0,0,4,1],} & \\ {[4,0,0,0,2,1,0],} & \\ {[0,4,0,3,0,1,0],} & \\ {[0,0,4,3,2,0,0],} & \\ {[3,2,1,0,0,0,0]}\end{array}\right]$
Table 3.1: AdjacencyGraph for Example 3.1.2
their faces is a face of the junior simplex.
The algorithm uses the AdjacencyGraph to find the number of cones at each face of a given cone. If cone $C_{1}$ has a face with exactly one neighbouring cone $C_{2}$, we know that if $C_{1}$ is part of a resolution then $C_{2}$ must also be part of that resolution. Note that it is possible that $C_{1}$ is not the only neighbour of $C_{2}$ at their common face, so the converse is not true. If $C_{2}$ is the only neighbour to $C_{1}$ at a given face we say that $C_{2}$ is a forced neighbour of $C_{1}$. By considering forced neighbours and the forced neighbours of forced neighbours of a cone $C$, we can find a set of cones which must belong to any resolution containing $C$. We store the set of all such cones in a list called the ConeChain of $C$.

For every basic cone $C$ there exists a ConeChain (of length at least one). In Example 3.1.2, the ConeChain of the first cone contains all seven cones. Cones $2,3,4$ and 7 are the unique neighbours at faces $2,1,4$ and 3 of the first cone respectively. Cone 5 is a unique neighbour at the fourth face of cone 2 and cone 6 is a unique neighbour at the fourth face of cone 3 .

We are looking for a triangulation of the junior simplex. So far we know how the cones fit together, but we must also make sure we choose cones which do not overlap. We use the toric geometry definitions in Magma to check the dimension of the intersection of every pair of crepant cones. If the dimension is 4 then the cones have nontrivial intersection and cannot appear in the same resolution. We record this information in a table called the OverlapGraph.

We use the OverlapGraph to make a table called ConeChainOverlapGraph which tells us whether or not two cone chains have nontrivial intersection. We check whether the ConeChain of cone $C$ contains cones which overlap - i.e. does the ConeChain go over itself? If the ConeChain of $C$ overlaps itself it cannot be part of the resolution. We make a list called AllowedCones containing all cones whose ConeChain do not overlap with themselves.

We find the set of junior points which lie on the four triangular faces of the junior simplex. We find all the crepant cones which have three vertices from this set. These cones have a face at a face of the junior simplex, and as such, have at most three neighbours. We call the set of all such cones FaceCones.

We choose the first FaceCone, $C$, and create a list FaceTiling, to which we add the cone $C$. We ignore any FaceCones which have a non-proper intersection with any of the ConeChains of the cones in FaceTiling. We continue choosing cones from FaceCones until all have been chosen or discarded.

If we don't find a FaceTiling, a different cone is chosen first until all options have been tried, if there is still no FaceTiling then no crepant resolution exists. Otherwise, let ChosenCones be the list containing all the cones in FaceTiling and in the ConeChains of these cones.

We exclude from AllowedCones any cones which have a non-proper intersection with a cone in ChosenCones.

If ChosenCones contains $r$ cones we are done, otherwise we need to make a choice of neighbour at each of the remaining faces of the ChosenCones.

We find the subset of AllowedCones which have a common face with at least one of the ChosenCones. For each face of the cones in ChosenCones, we find the cones which also contain this face. If none of these cones are already in the ChosenCones we need to choose between them. (We also check whether the cones are valid - i.e. do they not overlap with anything in ChosenCones - at this stage. This will be described in more detail later.) We save each of these sets in a list called Choices.

If any of the sets in Choices is empty or Choices itself is empty then we must choose a different face tiling. If Choices is nonempty and if any of the sets in Choices contains exactly one cone, $C$, then $C$ is forced and we add the ConeChain of $C$ to ChosenCones.

We remove from Choices every set containing any element of the ConeChain of $C$ and remove from every set in Choices any cone that was overlapping with a newly chosen one. Then we remove from the sets of Choices any cone which overlaps with the ConeChain of $C$.

If every set of Choices contains at least two cones, we choose the first cone from the first set, and follow the same procedure as for the forced cone $C$ above. We continue to choose cones until Choices is empty or we have an empty set in Choices.

If Choices is empty and we do not have $r$ cones, we must make some more sets
of choices. The algorithm for doing this will be explained in section 3.4. If the new Choices is nonempty we can continue to make choices as before. If Choices is empty or contains an empty set we undo the last choice we made. We remove the last cone chosen from ChosenChones and make a new list Choices. We continue as before.

If we have undone all the choices we made, we can try to find a different FaceTiling. If this is possible we run through the algorithm again. Otherwise, we have been unable to find a resolution.

The algorithm will also find all crepant resolutions. In this case, once a resolution has been found it undoes the last choice made, and continues as above.

Example 3.1.3. Consider the singularity $\frac{1}{17}(1,1,6,9)$. There are five junior points in the lattice $L=\mathbb{Z}^{4}+\frac{1}{17}(1,1,6,9) \cdot \mathbb{Z}$ :

$$
\begin{gathered}
p_{1}:=\frac{1}{17}(1,1,6,9), \quad p_{2}:=\frac{1}{17}(2,2,12,1), \quad p_{3}:=\frac{1}{17}(3,3,1,10), \\
p_{4}:=\frac{1}{17}(4,4,7,2), \quad p_{6}:=\frac{1}{17}(6,6,2,3) .
\end{gathered}
$$

We find 33 basic cones

| $p_{1} e_{2} e_{3} e_{4}$ | $p_{2} p_{1} e_{2} e_{3}$ | $p_{3} p_{1} e_{2} e_{4}$ | $p_{3} p_{1} e_{2} e_{3}$ | $p_{3} p_{2} e_{2} e_{3}$ | $p_{3} p_{2} p_{1} e_{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $p_{4} p_{1} e_{2} e_{4}$ | $p_{4} p_{2} p_{1} e_{2}$ | $p_{4} p_{3} e_{2} e_{4}$ | $p_{4} p_{3} p_{1} e_{2}$ | $p_{4} p_{3} p_{2} e_{2}$ | $p_{6} p_{3} p_{1} e_{2}$ |
| $p_{6} p_{4} p_{1} e_{2}$ | $p_{6} p_{4} p_{3} e_{2}$ | $e_{1} p_{1} e_{3} e_{4}$ | $p_{2} e_{1} e_{2} e_{3}$ | $e_{1} p_{2} p_{1} e_{3}$ | $e_{1} p_{3} e_{2} e_{4}$ |
| $e_{1} p_{3} p_{1} e_{4}$ | $e_{1} p_{3} p_{1} e_{3}$ | $e_{1} p_{3} p_{2} e_{3}$ | $e_{1} p_{3} p_{2} p_{1}$ | $e_{1} p_{4} p_{1} e_{4}$ | $e_{1} p_{4} p_{2} e_{2}$ |
| $e_{1} p_{4} p_{2} p_{1}$ | $e_{1} p_{4} p_{3} e_{4}$ | $e_{1} p_{4} p_{3} p_{1}$ | $e_{1} p_{4} p_{3} p_{2}$ | $e_{1} p_{6} p_{3} e_{2}$ | $e_{1} p_{6} p_{3} p_{1}$ |
| $e_{1} p_{6} p_{4} e_{2}$ | $e_{1} p_{6} p_{4} p_{1}$ | $e_{1} p_{6} p_{4} p_{3}$ |  |  |  |

By considering the faces of these we find the four cones which have a face on the faces of the junior simplex:

$$
p_{1} e_{2} e_{3} e_{4}, \quad e_{1} p_{1} e_{3} e_{4}, \quad e_{1} p_{3} e_{2} e_{4}, \quad p_{2} e_{1} e_{2} e_{3}
$$

We want to find the neighbours of each of these cones. We look to see which cones share a common face with the fourth cone, $p_{2} e_{1} e_{2} e_{3}$. We set an order on the vertices and number the faces by the index of the vertex missing from $p_{2} e_{1} e_{2} e_{3}$, and record the number of the common face in the AdjGraph :

$$
\begin{aligned}
& {[0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,0,} \\
& 0,0,0,0,0,3,2,4,0,0,0,0,0,0,0,0]
\end{aligned}
$$

This tells us that there is a choice of neighbour at the second and third faces, but a unique neighbour at the fourth face. This unique neighbour turns out to be the cone $p_{2} e_{1} e_{2} p_{4}$. We find that the ConeChain of $p_{2} e_{1} e_{2} e_{3}$ is

$$
\left\{p_{2} e_{1} e_{2} e_{3}, \quad e_{1} e_{2} p_{4} p_{2}, \quad e_{1} e_{2} p_{4} p_{6}, \quad e_{1} e_{2} p_{3} p_{6}, \quad e_{1} p_{3} e_{2} e_{4}\right\}
$$

The union of the ConeChains of the edge pieces give us the ChosenCones:

$$
\begin{equation*}
p_{2} e_{1} e_{2} e_{3}, \quad e_{1} e_{2} p_{4} p_{2}, \quad e_{1} e_{2} p_{4} p_{6}, \quad e_{1} e_{2} p_{3} p_{6}, \quad e_{1} p_{3} e_{2} e_{4}, \quad p_{1} e_{2} e_{3} e_{4}, \quad e_{1} p_{1} e_{3} e_{4} \tag{3.2}
\end{equation*}
$$

We must now make choices as to which neighbour we should take at each face. For $p_{2} e_{1} e_{2} e_{3}$ we have a choice between the cones $e_{1} p_{1} e_{3} p_{2}$ and $e_{1} p_{3} e_{3} p_{2}$. Choosing $e_{1} p_{1} e_{3} p_{2}$, we get the ConeChain

$$
\begin{gathered}
p_{1} e_{2} e_{3} e_{4}, \quad p_{2} p_{1} e_{2} e_{3}, \quad e_{1} p_{1} e_{3} e_{4}, \quad e_{1} p_{2} e_{2} e_{3}, \quad e_{1} p_{2} p_{1} e_{3} \\
e_{1} p_{3} e_{2} e_{4}, \quad e_{1} p_{4} p_{2} e_{2}, \quad e_{1} p_{6} p_{3} e_{2}, \quad e_{1} p_{6} p_{4} e_{2}
\end{gathered}
$$

which forces us to take

$$
\begin{equation*}
e_{1} p_{1} e_{3} p_{2}, \quad p_{1} e_{2} e_{3} p_{2} \tag{3.3}
\end{equation*}
$$

as all the other cones in the ConeChain are already in the ChosenCones. We choose $p_{1} e_{2} p_{4} p_{6}$ over $p_{3} e_{2} p_{4} p_{6}$ as a neighbour for $e_{1} e_{2} p_{4} p_{6}$. This has ConeChain

$$
\begin{array}{llll}
p_{1} e_{2} p_{4} p_{6}, & p_{1} e_{2} p_{4} p_{2}, & e_{1} p_{1} p_{4} p_{2}, & e_{1} p_{1} p_{4} p_{6},  \tag{3.4}\\
e_{1} p_{1} p_{3} p_{6}, & e_{1} p_{1} p_{3} e_{4}, & p_{1} e_{2} p_{3} e_{4}, & p_{1} e_{2} p_{3} p_{6},
\end{array}
$$

Thus there are seventeen cones: the seven cones of (3.2), the two cones of (3.3) and the eight cones of (3.4), and these are a resolution of the singularity $\frac{1}{17}(1,1,6,9)$.

If we chose $p_{3} e_{2} p_{4} p_{6}$ instead of $p_{1} e_{2} p_{4} p_{6}$, we would obtain a resolution, but only after making more choices of neighbours.

### 3.2 Setup

The algorithm works by first computing the cones which sit at the faces of the junior simplex. The idea is first to tile the faces and then to work inwards using the ConeChains. We start by finding the FaceCones. There cannot be more than one of these for each face $e_{i} e_{j} e_{k}$. This is because, as the group is cyclic, we can't have $\frac{1}{r}(a, b, c, 1)$ and $\frac{1}{r}(d, e, f, 1)$ unless $a=d, b=e$, and $c=f$, so we can't have
two distinct basic cones $e_{1} e_{2} e_{3} p_{a}$ and $e_{1} e_{2} e_{3} p_{d}$.
We find the junior points lying on the faces of the junior simplex. We then find cones in CrepantCones whose faces form part of the junior simplex. We call this set FaceCones. It may contain more than four cones, and we may have to make a choice between the cones.

Lemma 3.2.1. For cyclic groups of order $r \geq 4$ there are at least four FaceCones.
Proof. We begin by proving that there are four cones of the form $e_{i} e_{j} e_{k} p$ if and only if there are no junior points lying on the faces of the junior simplex.

Suppose there is no crepant cone of the form $e_{1} e_{2} e_{3} p$. We know that if there were a point $p=\frac{1}{r}\left(d_{1}, d_{2}, d_{3}, 1\right)$ in the unit box inside the lattice $L=\mathbb{Z}^{4}+$ $\frac{1}{r}\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \cdot \mathbb{Z}$ then $p$ would have to be a junior point. Thus, since no such $p$ exists, $r$ and $a_{4}$ must have a common factor, say $s$. Let $d=\frac{r}{s}$ and let

$$
\alpha_{i}=d a_{i} \quad \bmod r
$$

for $1 \leq i \leq 4$. Now $\alpha_{4}=0$ and

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}=\text { either } r \text { or } 2 r .
$$

Now $\left(a_{4}-1\right) d a_{i}=a_{4} d a_{i}-d a_{i}=r-\alpha_{i} \bmod r$ for all $i$. So

$$
r-\alpha_{1}+r-\alpha_{2}+r-\alpha_{3}=\text { either } r \text { or } 2 r .
$$

Thus, either $\frac{1}{r}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, 0\right)$ has age 1 or $\frac{1}{r}\left(r-\alpha_{1}, r-\alpha_{2}, r-\alpha_{3}, 0\right)$ has age 1 . So we have at least one junior point on the face $e_{1} e_{2} e_{3}$.

Conversely, suppose $p$ is a junior point on the face $e_{1} e_{2} e_{3}$, so that we can write $p=\frac{1}{r}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, 0\right)$. Then the cone $e_{1} e_{2} e_{3} q$ cannot be basic for any junior point $q$, since the cones $p e_{2} e_{3} q, e_{1} p e_{3} q$ and $e_{1} e_{2} p q$ are all contained in it and are generated by vectors in the lattice.

We prove that each cone has at most one face contained in a face of the junior simplex. Suppose not. Let $i, j, k, l \in\{1,2,3,4\}$ be distinct. Without loss of generality we can assume $i=1, j=2, k=3, l=4$. Up to symmetry, there are the following options:

1. There is one vertex at $e_{1}$. The other three vertices lie on the edges $e_{1} e_{2}, e_{1} e_{3}$, $e_{1} e_{4}$.
2. There is one vertex at each of $e_{1}$ and $e_{2}$. The other two vertices lies on the edges $e_{1} e_{3}, e_{1} e_{4}$.
3. There is one vertex at $e_{1}$. A vertex lies on each of the edges $e_{1} e_{2}, e_{1} e_{3}$. One vertex lies on the face $e_{1} e_{2} e_{4}$.
4. There is one vertex at each of $e_{1}$ and $e_{2}$. One vertex lies on the edge joining $e_{1}$ to $e_{3}$. One vertex lies on the face $e_{1} e_{2} e_{4}$.
5. There is one vertex at $e_{1}$, one vertex on an edge $e_{1} e_{2}$ and one vertex on each of the faces $e_{1} e_{2} e_{3}, e_{1} e_{2} e_{4}$.
6. There is one vertex at each of $e_{1}$ and $e_{2}$, and one vertex on each of the faces $e_{1} e_{2} e_{3}, e_{1} e_{2} e_{4}$.
7. There are two vertices on the line $e_{1}, e_{2}$, and one vertex on each of the faces $e_{1} e_{2} e_{3}, e_{1} e_{2} e_{4}$.
8. There is a vertex at each of $e_{1}, e_{2}, e_{3}$, and one vertex on the edge $e_{1} e_{4}$.
9. There is a vertex at each of $e_{1}, e_{2}, e_{3}$, and one vertex on the face $e_{1} e_{2} e_{4}$.

In the first six cases, the vertices of the cone will give us, at worst, an upper triangular matrix:

$$
\left|\begin{array}{cccc}
r & 0 & 0 & 0 \\
r-a & a & 0 & 0 \\
b_{1} & b_{2} & b_{3} & 0 \\
c_{1} & c_{2} & 0 & c_{4}
\end{array}\right|
$$

This is a basic cone if $a b_{3} c_{4}=r^{2}$.
If these points come from a cyclic group action, say by $\frac{1}{r}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, then we have:

$$
\begin{array}{lll}
\alpha a_{2}=a & \beta a_{2}=b_{2} & \gamma a_{2}=c_{2} \\
\alpha a_{3}=\lambda_{1} r & \beta a_{3}=b_{3} & \gamma a_{3}=\nu_{1} r \\
\alpha a_{4}=\lambda_{2} r & \beta a_{4}=\mu_{1} r & \gamma a_{4}=c_{4},
\end{array}
$$

with $\alpha, \beta, \gamma, \lambda_{1}, \lambda_{2}, \mu_{1}, \nu_{1}$ strictly positive integers. Thus

$$
\begin{aligned}
r^{2} & =a b_{3} c_{4} \\
& =\alpha a_{2} \beta a_{3} \gamma a_{4} \\
& =\alpha a_{2} \beta a_{4} \gamma a_{3} \\
& =\mu_{1} \nu_{1} \alpha a_{2} r^{2} .
\end{aligned}
$$

This is a contradiction, so the first six cases cannot happen.
Consider a cone of the form

$$
\left|\begin{array}{cccc}
r-a & a & 0 & 0 \\
r-b & b & 0 & 0 \\
c_{1} & c_{2} & c_{3} & 0 \\
d_{1} & d_{2} & 0 & d_{4}
\end{array}\right|
$$

Without loss of generality, assume $b>a$. This is a basic cone if

$$
(r-a) b c_{3} d_{4}-a(r-b) c_{3} d_{4}=r^{3}
$$

If these points come from a cyclic group action, say by $\frac{1}{r}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, then we have:

$$
\begin{array}{ll}
\alpha a_{3}=c_{3} & \beta a_{3}=\mu r \\
\alpha a_{4}=\lambda r & \beta a_{4}=d_{4},
\end{array}
$$

with $\alpha, \beta, \lambda, \mu$ strictly positive integers. Hence

$$
\begin{aligned}
r^{3} & =(r-a) b c_{3} d_{4}-a(r-b) c_{3} d_{4} \\
& =r(b-a) c_{3} d_{4} \\
& =(b-a) \lambda \mu r^{3} .
\end{aligned}
$$

This disproves the seventh case.
Consider a cone of the form

$$
\left|\begin{array}{cccc}
r & 0 & 0 & 0 \\
0 & r & 0 & 0 \\
0 & 0 & r & 0 \\
r-d & 0 & 0 & d
\end{array}\right|
$$

We must have $d=1$ if this is to be a basic cone.
If these points come from a cyclic group action, say by $\frac{1}{r}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, then we have:

$$
\alpha a_{1}=\kappa r-1 \quad \alpha a_{2}=\lambda r \quad \alpha a_{3}=\mu r \quad \alpha a_{4}=\nu r+1 .
$$

Thus $a_{2}$ and $r$ share a common factor, and $a_{1}, a_{4}$ are coprime to $r$.
Write $r=a b$ and $a_{2}=a c$ such that $\operatorname{hcf}(b, c)=1$. Then $\alpha a_{2}=\alpha a c=\lambda a b$, so $\alpha$ divides $b$. Hence $\alpha a_{4} \neq 1 \bmod r$ since $\alpha$ and $r$ are not coprime.

The ninth case is similar.

Thus for each of the four faces of the junior simplex there is at least one cone, one of whose faces is part of that face and none of its other faces are part of another face of the junior simple.

This lemma means that if we have four face cones of the form

$$
p_{1} e_{2} e_{3} e_{4}, \quad e_{1} p_{2} e_{3} e_{4}, \quad e_{1} e_{2} p_{3} e_{4}, \quad e_{1} e_{2} e_{3} p_{4}
$$

we do not need to search for any more face cones.

### 3.3 Face pieces

The code consists of two main functions HasCrepRes and FindResn. Algorithm 1 shows how HasCrepRes works and sets up the data required for FindResn, which will be described in Algorithm 2. Both algorithms initiate tree searches. The function HasCrepRes finds a tiling of the faces of the junior simplex, then calls FindResn to complete the search for a crepant resolution with these initial conditions. If FindResn fails to find a resolution the initial face tiling is changed, and the algorithm runs until a resolution is found or all possible face tilings have been tested. The algorithms here are pseudocode; the Magma code is available at http://www.warwick.ac.uk/staff/S.E.Davis/ Thesis/ResolutionAlgorithm.m

The input for HASCREPRES is the singularity $\frac{1}{r}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ expressed as r , $\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$. We begin by setting up all the objects we need. We make the list, CrepantCones, of crepant cones; the list, OverlapGraph, of which cones overlap, the list, AdjacencyGraph, of neighbours at each face; the list, ConeChains, of cones forced by each cone; the list, Juniors, of junior points; the list, FaceCones, of cones which sit on the faces of the junior simplex; and ConeChainOverlapGraph, the table of which ConeChains overlap.

The full algorithm contains extra optimisation: after we have created ConeChainOverlapGraph we restrict ourselves to working only with the subset AllowedCones of CrepantCones consisting of cones whose ConeChains do not overlap themselves.

We start the repeat loop (Algorithm 1, line 9) with ChosenFaces = [ ]. We will choose cones from FaceCones one at a time. This will put restrictions on which cones we may choose next, so we create a list PossibleFaces, which is initially equal to FaceCones. We will need to keep track of the order in which we

```
Algorithm 1 HasCrepRes
    function HasCrepRes( \(\mathrm{r},\left[a_{1}, a_{2}, a_{3}, a_{4}\right]\) )
        CrepantCones \(:=\) MakeCrepantCones(r, \(\left.\left[a_{1}, a_{2}, a_{3}, a_{4}\right]\right)\)
        OverlapGraph := MakeOverlapGraph(CrepantCones)
        AdjacencyGraph := MakeAdjacencyGraph(CrepantCones)
        ConeChains := MakeConeChains(CrepantCones, AdjacencyGraph)
        Juniors := FindJuniors(r, \(\left[a_{1}, a_{2}, a_{3}, a_{4}\right]\) )
        FacePieces := FindFaces(Juniors,CrepantCones)
        ConeChainOverlapGraph := MakeMatrix(ConeChains,OverlapGraph)
        repeat
            ChosenFaces:= [ ]
            FaceSteps := [[ ChosenFaces, FacePieces ]]
            run MakeFaceTiling(FaceSteps, ConeChains)
            ChosenCones \(:=\) the union of the ConeChains of cones in FaceTiling
            if length(ChosenCones) \(\neq \mathrm{r}\) then
                run FindResn(ChosenCones)
                                    \(\triangleright\) Look for a tiling of the interior of the junior simplex.
            end if
            if we haven't found a resolution then
                run UndoLastFace(FaceSteps)
                                    \(\triangleright\) Undo the last choice of face we made.
            end if
        until we have a resolution or there are no choices of FaceCones left
    return False if no resolution exists,
        True and a Resolution otherwise.
    end function
```

have chosen cones for the FaceTiling; we do this using the list FaceSteps:

```
FaceSteps =
    [[ChosenFaces1,PossibleFaces1],[ChosenFaces2,PossibleFaces2],...].
```

We want to choose FaceCones which tile the faces of the junior simplex. If FaceCones contains exactly four cones there is only one way to do this. We may, however, have to make a choice. This is done by the following function:

```
function MakeFaceTiling(FaceSteps, ConeChains)
    \(\mathrm{n}:=\) length(FaceSteps)
    ChosenFaces:=FaceSteps [n, 1]
    PossibleFaces :=FaceSteps[n, 2]
                                    \(\triangleright\) Look at last entries of FaceSteps.
    while PossibleFaces \(\neq[]\) do
        Append [ChosenFaces, PossibleFaces] to FaceSteps
                            \(\triangleright\) Save the last choice we made.
        Cone1 := PossibleFaces [1]
            \(\triangleright\) Choose the first cone.
    NewFaces := ConeChains [Cone1] \(\cap\) PossibleFaces
        Append NewFaces to ChosenFaces
                        \(\triangleright\) Add in all PossibleFaces forced by Cone1.
        for Cone in ChosenFaces do
            Exclude from PossibleFaces any cone whose ConeChain overlaps
with that of Cone
        end for
        end while
    FaceSteps \(:=\) FaceSteps \(\cup\) [FaceTiling, PossibleFaces]
return FaceSteps
end function
```

Here, FaceSteps [n, 1] means take the first entry of the nth row of FaceSteps. At line 6 we save the last choice we made: we are saving the choices we made in the last iteration of the while loop. On the first iteration we save our original data for a second time, so

## FaceSteps =

[[ChosenFaces1,PossibleFaces1], [ChosenFaces2,PossibleFaces2]].
with

```
ChosenFaces1 = ChosenFaces2 = [ ]
```

and

```
FaceCones1=FaceCones2=FaceCones.
```

Since we do not save the last choice at the end of the while loop we save once we have exited the loop (line 14)

When PossibleFaces becomes empty, FaceTiling is the last set of ChosenFaces in FaceSteps. The cones of FaceTiling may force some interior cones, so we take the union of the ConeChains of all cones in FaceTiling. We call this list ChosenCones.

If ChosenCones contains $r$ cones we have a resolution and there is no more to do. If not, we run the function FindResn, which is described in Algorithm 2. Again, if this returns a resolution we are done. If not, we see if it is possible to choose a different FaceTiling. The next algorithm uses FaceSteps to undo the last choice we made whilst setting up FaceTiling:

```
function UndoLastFACES(FaceSteps)
    \(\mathrm{n}:=\) length(FaceSteps)
    LastFaceTiling := FaceSteps[n,1]
    PenultimateFaceTiling := FaceSteps[n-1,1]
    LastPossibleFaces := FaceSteps[n,2]
    PenultimatePossibleFaces := FaceSteps[n-1,2]
    JustAdded := PenultimateFaceTiling \(\cap\) LastFaceTiling
                                    \(\triangleright\) Compare the newly added cones
    while JustAdded is empty do
```

$\triangleright$ There are no newly added cones $\triangleright$ delete the last entry of FaceSteps

$$
\mathrm{n}:=\mathrm{n}-1
$$

$\triangleright$ and reset the variables.
10: LastFaceTiling := FaceSteps [n, 1]
11: PenultimateFaceTiling := FaceSteps[n-1,1]
12: LastPossibleFaces := FaceSteps[n,2]
13: PenultimatePossibleFaces := FaceSteps[n-1,2]

```
    JustAdded := PenultimateFaceTiling \(\cap\) LastFaceTiling
end while
\(\triangleright\) There are newly added cones
Delete FaceSteps [n]
```

$\triangleright$ delete the last entry of FaceSteps
Delete JustAdded [1] from PenultimatePossibleFaces
FaceSteps[n-1] := [PenultimateFaceTiling, PenultimatePossibleFaces]
$\triangleright$ remove the first cone of JustAdded from PenultimatePossibleFaces.
return FaceSteps
end function
Magma does not rearrange the order of the cones in LastFaceTiling so the first cone of JustAdded (see line 7) is the cone the choice of which forced all other cones in JustAdded. (Recall that we update FaceSteps after every choice, so all cones in JustAdded are forced by this choice.) If JustAdded is empty no cones were chosen in the last step, so we go back to a step where cones were added (if one exists). The function deletes the last entry of FaceSteps and resets the variables. Once we have reached a step where JustAdded is not empty the last entry of FaceSteps is deleted and the chosen cone is removed from PenultimatePossibleFaces, so that it cannot be chosen at this step again.

Note that when we calculate JustAdded in Magma we don't change the order of the cones. Thus, the first entry of JustAdded is the cone we chose the last time we made a choice. Any other cones in JustAdded were forced by the first cone. By deleting the first entry of JustAdded from PenultimatePossibleFaces we prevent ourselves from choosing the same cone again, unless we change our earlier choices of cones.

### 3.4 Find a resolution

The function FindResn is summarised in Algorithm 2. It is also demonstrated in the flowchart of Figure 2.

On line 10 the notation Saved := Saved $\cup$ [[Cones,Choices]] means append [[Cones, Choices]] to the end of Saved without changing the order of the previous entries of Saved.

```
Algorithm 2 FindResn
    function FindResn(ChosenCones)
        Choices := MakeChoices(ChosenCones)
        Cones := ChosenCones
        Saved := [[Cones, Choices]]
        while Choices is not empty do
            while no Choice in Choices is empty and length(Cones) \(<\mathrm{r}\) cones
    do
            while there is a Choice in Choices which contains exactly one
                    cone do
                    run MakeUniqueChoice with that Choice
                    end while
                    Saved := Saved \(\cup\) [[Cones, Choices]]
                    Cones, Choices := MAKEAChOICE(Cones,Choices)
                    if Choices is empty then
                Choices := MakeChoices(Cones)
                Saved:= Saved U [[Cones,Choices]]
                    end if
            end while
            if there are not r cones in Cones then
                Saved \(:=\) UndoLAStSTEP(Saved)
            end if
        end while
    return Saved
    end function
```



Figure 3.2: Flowchart for the FindResn algorithm

FindResn is called by HasCrepRes, which has already set up a FaceTiling of the junior simplex and taken any cones which are forced by this tiling. The idea now is to work inwards, making the choice of which cone to add at each face where there is no neighbouring cone. The first step is to find the available choices at every face. This is done by the function MakeChoices.

The input for MakeChoices is ChosenCones. Suppose a cone has no neighbouring cone in ChosenCones at one of its faces, but has at least one neighbouring cone from CrepantCones at the same face. We must add one of these neighbouring cones to the triangulation. The function MakeChoices finds all faces where there is no neighbour in ChosenCones and saves the set of possible neighbours at each of these faces as a list, which we refer to as an $n$-choice, where $n$ is the number of possible neighbours in that list. The list of all n -choices is called Choices. Before MakeChoices returns Choices it removes any overlapping cones from Choices.

Having found which cones may be neighbours to our ChosenCones, we define (line 4) a list of pairs called Saved. To start with Saved is just the pair consisting of the set ChosenCones and the set Choices, which was the output of MakeChoices.

We must choose a cone from each set in Choices. If there are any 0-choices we are not able to find a resolution so we have to make a change (at line 6 we skip to line 16). Any 1 -choices are forced cones. If there are any such choices we enter the while loop at line 7 and the function MakeUniqueChoice is called. This function takes the cone, $C$, in the first 1-choice of Choices and adds $C$ and its ConeChain to Cones. Every time a cone, $D$ belonging to the ConeChain of $C$ appears in an n -choice of Choices that n -choice is excluded, as these choices have just been made. Any cone (other than $D$ ) in this n-choice now cannot appear in the triangulation. We call the set of all such cones NotAllowed.

The function MakeUniqueChoice goes on to remove all the cones (and their ConeChains) in NotAllowed from Choices. Note that this may lead to an empty n-choice in Choices.

The ConeChain of $C$ has been added to Cones. Now no cone whose ConeChain overlaps with the ConeChain of $C$ can be chosen. The function MakeUniqueChoice removes any such cone from the sets of Choices. Again this may leave an empty $n$-choice in Choices. The function MakeUniqueChoice is now complete and we return to line 7 .

If we have no 1 -choices we proceed to line 9 . We must decide between
the elements in the n -choices. We do this using MakeAChoice. This function takes the first n -choice in Choices and takes the first cone, $C$, in it. It proceeds as in MakeUniqueChoice: it adds in the ConeChain of $C$, removes any n-choices it has made by doing this and removes any overlapping cones.

If Choices is empty (line 12) we run MakeChoices again to make a new set of choices if this is possible.

If we have made the wrong choice (we failed to find a resolution because we ran out of choices or were unable to make a choice at a certain face) we enter the if statement at line 17 . The function UndoLastStep deletes the last entry and edits the penultimate entry of Saved. We may edit the second entry of Saved, but as this was originally the same as the first, it is deleted when the tree search terminates.

We will refer to the entries of the last pair in Saved as LastCones and LastChoices. Similarly PenultimateCones and PenultimateChoices are the entries of the penultimate pair in Saved.

The function UndoLaStStep is very similar to the UndoLastFaces function of HasCrepRes. We delete the last entry of Saved until we get to a point where we added cones to LastCones. We delete the cone we chose from the penultimate list of choices, and delete the last entry of Saved. This leaves us in a position to make a new choice of cone.

The algorithm then terminates if we find a resolution or when we have explored all possible arrangements of cones. The variable Saved is returned in both cases.

### 3.5 Justification of algorithm

We will now justify that the algorithm terminates and that it finds a crepant resolution if one exists.

Let $T$ be the set of all triangulations of $\left\{a_{1}, \ldots, a_{n}, e_{1}, e_{2}, e_{3}, e_{4}\right\}$, the set of junior points including vertices.

Claim 3.5.1. Every triangulation $\Delta$ of $T$ can be expressed as the union of cone chains.

Proof. Suppose not. Suppose $\Delta$ cannot be expressed as a union of cone chains. Then either:

- There exists one cone which does not belong to a cone chain. This is impossible since every cone has a cone chain;
- An element of a cone chain is missing. If this were the case, one cone in the cone chain would have been replaced with a different cone with a common face. However, cone chains are the set of forced neighbours, so there are no further cones with this face.

Thus every triangulation can be expressed as the union of cone chains.
A problem would occur if we chose a set of cone chains whose union was not a triangulation. We show that this cannot happen by first showing that it is not possible to pick two cones in such a way that we cannot obtain a triangulation.

Since the cones are basic, it is not possible for two cones to meet at a vertex which is not a vertex of both of the cones. This means they can't meet in part of an edge either:


Figure 3.3: Not a triangulation: two cones meeting in a subset of an edge

It is, however, possible for two cones to meet at a subset of a face, or a subset of volume 3 .


Figure 3.4: Two cones meeting in a subset of a face

We can have the arrangement of Figure 3.4 with the missing vertex of the red cone coming out of the page and the missing vertex of the blue cone going into the page. If this happens we would not be able to find neighbours to the cones at the faces drawn, as the possible neighbouring cones of the blue cone would overlap with the red cone and vice versa. If this happened during the algorithm it would undo some of the previous steps until either the blue cone or the red cone had been discarded.

The algorithm would not choose this arrangement with both the missing vertices coming out of the page. This would mean the red and blue cone intersect
with nonzero volume which is not allowed (this is the same situation as both the red and the blue cone missing the same vertex).

The algorithm does not allow us to pick cones which meet in a subset of volume three, as we use the overlap data to check this at each step. Now we can consider the cone chains.

Given a single cone chain $C$, if a pair of cones of $C$ intersect with dimension greater than three then $C$ cannot appear as part of any resolution (as this contradicts the definition of triangulation). We will exclude any cone chain where this happens.

Any pair of cone chains are allowed to meet in an edge, a face or in a whole cone. If their intersection was something other than one of these we would not have a triangulation. As we have just seen, the algorithm does not allow cones to meet in a subset of volume three, and cones cannot meet in part of an edge. Thus the only possible bad intersection would be if a pair of cones, one from each cone chain, met in a subset of a face, as in Figure 3.4. But this would again lead to there being two faces in the resolution where it would be impossible to find neighbours.

Thus if we have a union of cone chains which contains $r$ distinct basic cones, none of which have a bad intersection, then we must have a resolution. The basic cones can be thought of as simplices of relative volume 1 , where the junior simplex has relative volume $r$. Thus these $r$ basic cones must triangulate the junior simplex.

The algorithm works by first finding a face tiling and then working inwards. In fact, the order in which we choose the cones does not matter, as we check every combination until a resolution is found. The use of the face tiling gives a smaller set of cones to start from. Any resolution must certainly include a face tiling.

The algorithm must find a resolution if one exists as we search through every possible combination of cones.

### 3.6 Examples

Example 3.6.1. Consider the quotient singularity $\frac{1}{7}(1,1,1,4)$. This was discussed in Example 3.1.2. The example has two junior points and there are exactly seven basic cones.

```
> r:=7;A:=[1,1,1,4];
> Juniors:=FindJuniors(r,A);
```

```
> Juniors;
[
    [ 1, 1, 1, 4 ],
    [ 2, 2, 2, 1]
]
> CrepantCones := MakeCrepantCones(r,A);
> #CrepantCones;
7
CrepantCones;
[
    [ 1/7, 1/7, 1/7, 4/7 ],
    [ 2/7, 2/7, 2/7, 1/7 ],
    [ 1, 0, 0, 0 ],
    [0, 1, 0, 0 ]
    ],
    [
        [ 1/7, 1/7, 1/7, 4/7 ],
        [ 2/7, 2/7, 2/7, 1/7 ],
        [ 1, 0, 0, 0 ],
        [0, 0, 1, 0 ]
    ],
    [
        [ 1/7, 1/7, 1/7, 4/7 ],
        [ 2/7, 2/7, 2/7, 1/7 ],
        [ 0, 1, 0, 0 ],
        [0, 0, 1, 0 ]
    ],
    [
        [ 1/7, 1/7, 1/7, 4/7 ],
            [ 1, 0, 0, 0 ],
            [0, 1, 0, 0 ],
            [0, 0, 0, 1 ]
    ],
    [
        [ 1/7, 1/7, 1/7, 4/7 ],
```

```
[ 1, 0, 0, 0 ],
[ 0, 0, 1, 0 ],
[0, 0, 0, 1 ]
    ],
    [
        [ 1/7, 1/7, 1/7, 4/7 ],
        [ 0, 1, 0, 0 ],
        [ 0, 0, 1, 0 ],
        [0, 0, 0, 1]
    ],
    [
        [ 2/7, 2/7, 2/7, 1/7 ],
        [ 1, 0, 0, 0 ],
        [ 0, 1, 0, 0 ],
        [0, 0, 1, 0 ]
    ]
]
```

It is not hard to see that the face tiling is the last four cones.
> FacePieces := FindFaces(Juniors, CrepantCones);
> FacePieces;
[4, 5, 6, 7]

In fact the cone chain of cone 4 is all of CrepantCones.

```
>AdjacencyGraph := MakeAdjacencyGraph(CrepantCones);
> ConeChains := MakeConeChains(CrepantCones,AdjacencyGraph);
> ConeChains[4];
[4, 1, 2, 3, 5, 6, 7 ]
> OverlapGraph := MakeOverlapGraph(CrepantCones);
> ConeChainOverlapGraph := MakeConeChainOverlaps(ConeChains,
                                    OverlapGraph);
> AllowedCones := [1..#CrepantCones];
> for i in [1..#ConeChainOverlapGraph] do
for> if ConeChainOverlapGraph[i,i] then
for|if> Exclude(~AllowedCones,i);
for|if> Exclude(~}\mp@subsup{~}{}{~}\mathrm{ FacePieces,i);
```

```
for|if> end if;
for> end for;
> #AllowedCones;
7
```

Since all of the basic cones are allowed, they are the unique crepant resolution of $\frac{1}{7}(1,1,1,4)$.

Example 3.6.2. A crepant resolution of the quotient singularity $\frac{1}{17}(1,3,3,10)$ was computed via barycentric subdivision in Example 2.1.1. This Magma output shows how the algorithm works on this example.

```
> r:=17;A:=[1,3,3,10];
> Juniors:=FindJuniors(r,A);
> Juniors;
[
    [ 1, 3, 3, 10 ],
    [ 2, 6, 6, 3 ],
    [ 6, 1, 1, 9 ],
    [ 7, 4, 4, 2 ],
    [ 12, 2, 2, 1]
]
> CrepantCones := MakeCrepantCones(r,A);
> #CrepantCones;
33
> FacePieces := FindFaces(Juniors,CrepantCones);
> FacePieces;
[ 33, 30, 20, 31 ]
```

There are 33 basic cones, four of which are face cones, so form a face tiling of the junior simplex.

```
>AdjacencyGraph := MakeAdjacencyGraph(CrepantCones);
> ConeChains := MakeConeChains(CrepantCones,AdjacencyGraph);
> ConeChains [33];
```

[ 33, 32, 23, 5, 20 ]

In this example the cone chains of face cones are short. In fact the face tiling forces only 7 cones:

```
> OverlapGraph := MakeOverlapGraph(CrepantCones);
> ConeChainOverlapGraph := MakeConeChainOverlaps(ConeChains,
                                    OverlapGraph);
> AllowedCones := [1..#CrepantCones];
> for i in [1..#ConeChainOverlapGraph] do
for> if ConeChainOverlapGraph[i,i] then
forlif> Exclude(~AllowedCones,i);
forlif> Exclude(~FacePieces,i);
for|if> end if;
for> end for;
> #AllowedCones;
33
> ChosenFaces := FacePieces;
> ChosenCones := MakeForced(ConeChains,ChosenFaces);
> #ChosenCones;
7
> ChosenCones;
[ 33, 23, 5, 30, 20, 31, 32 ]
```

Since there are not yet 17 cones, more cones must be chosen. The faces of cones in ChosenCones where there is no neighbour in ChosenCones are considered. A search for possible neighbours at these faces yields a set of choices:

```
> Choices := MakeChoices(CrepantCones, ChosenCones,AdjacencyGraph,
    ConeChainOverlapGraph, AllowedCones);
> Choices;
[
    [ 19, 29 ],
    [ 18, 28 ],
    [4, 22 ],
    [ 3, 21],
    [ 2, 4 ],
    [ 1, 3 ],
    [ 12, 26 ],
    [ 10, 28 ],
    [ 13, 17 ],
    [ 12, 16 ],
```

```
    [ 13, 27 ],
    [ 11, 29 ],
    [ 15, 25 ],
    [ 14, 24]
]
```

Cones 19 and 29 are neighbours of cone 33:

```
> CrepantCones[33];
```

[
[ 12/17, 2/17, 2/17, 1/17],
$[1,0,0,0]$,
$[0,1,0,0]$,
[ 0, 0, 1, 0 ]
]
> CrepantCones[19];
[
[ 1/17, 3/17, 3/17, 10/17],
[ 12/17, 2/17, 2/17, 1/17],
$[1,0,0,0]$,
$[0,0,1,0]$
]
> CrepantCones [29];
[
$[6 / 17,1 / 17,1 / 17,9 / 17]$,
[ 12/17, 2/17, 2/17, 1/17],
$[1,0,0,0]$,
$[0,0,1,0]$
]
>

Exactly one of these cones must belong to the resolution. The algorithm will pick cone 19 first.

```
> cone:=Choices[1,1];
```

> cone;
19
> ConeChains[cone];

```
[ 19, 33, 11, 13, 12, 15, 14, 3, 23, 4, 5, 18, 30, 31, 20, 32, 10 ]
```

> \#ConeChains [cone];

17
> \&and[\&and[OverlapGraph[i,j] : j in [i+1..17]]: i in [1..16]]; false

The cone chain of cone 19 contains 17 cones. These cones do not overlap so they form a tiling of the junior simplex, and thus correspond to a resolution of the quotient singularity $\frac{1}{17}(1,3,3,10)$.

If instead cone 29 is picked, its cone chain contains only 9 cones, so more choices must be made. However first the list of choices must be updated. It is clear now cones 19 and 11 cannot appear in a resolution containing cone 29, since these both appear in a set in choices that also contains 19. Since cone 28 is in the cone chain of cone 29 , cones 18 and 10 must also be removed from choices.

```
> cone:=Choices[1,2];
> cone;
29
> ConeChains[cone];
[ 29, 33, 28, 30, 31, 32, 23, 5, 20 ]
> #ConeChains[cone];
9
> Choices2,NotAllowed:=MakeAChoice(Choices,cone,ConeChains);
> Choices2;
[
    [4, 22 ],
    [ 3, 21],
    [ 2, 4],
    [ 1, 3 ],
    [ 12, 26],
    [ 13, 17 ],
    [ 12, 16 ],
    [ 13, 27],
    [ 15, 25],
    [ 14, 24 ]
]
> NotAllowed;
[ 19, 18, 10, 11 ]
```

After running the algorithm further this leads to a resolution.

```
> C,D:=HasCrepResns(r,A);
> #D;
40
> for i in [1..#D] do
for> D[i]:=Sort(D[i]);
for> end for;
> SetToSequence(SequenceToSet(D));
[
    [ 3, 4, 5, 6, 7, 12, 13, 20, 23, 24, 25, 28, 29, 30, 31, 32, 33 ],
    [ 3, 4, 5, 10, 11, 12, 13, 14, 15, 18, 19, 20, 23, 30, 31, 32, 33 ],
    [ 3, 4, 5, 8, 9, 12, 13, 14, 15, 20, 23, 28, 29, 30, 31, 32, 33 ],
    [ 3, 4, 5, 16, 17, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 ],
    [ 1, 2, 5, 12, 13, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33 ]
]
```

The algorithm shows that the are five different crepant resolutions of $\frac{1}{17}(1,3,3,10)$. Choosing cone 19 gave the second of these, whereas cone 29 belongs to each of the other four resolutions.

Example 3.6.3. Consider the quotient singularity $\frac{1}{18}(1,1,3,13)$. In this example 3 divides 18, so there is a junior point lying on a face of the junior simplex. Thus there are more face pieces.

```
> r:=18;A:=[1,1,3,13];
> Juniors:=FindJuniors(r,A);
> Juniors;
[
    [ 1, 1, 3, 13 ],
    [ 2, 2, 6, 8],
    [ 3, 3, 9, 3 ],
    [ 6, 6, 0, 6 ],
    [7, 7, 3, 1 ]
]
CrepantCones := MakeCrepantCones(r,A);
#CrepantCones;
```

```
> FacePieces := FindFaces(Juniors,CrepantCones);
> FacePieces;
[ 11, 14, 15, 29, 30, 9, 31, 32, 10 ]
```

These face pieces overlap so the algorithm chooses a face tiling:

```
> ChosenFaces;
```

[ 11, 15, 14, 30, 31, 10, 32 ]
> CrepantCones[ChosenFaces];
[
[
$[1 / 18,1 / 18,1 / 6,13 / 18]$,
$[1 / 3,1 / 3,0,1 / 3]$,
$[0,1,0,0]$,
$[0,0,0,1]$
],
[
[ $1 / 18,1 / 18,1 / 6,13 / 18]$,
[ 0, 1, 0, 0 ],
[ 0, 0, 1, 0 ],
$[0,0,0,1]$
],
[
$[1 / 18,1 / 18,1 / 6,13 / 18]$,
$[1,0,0,0]$,
$[0,0,1,0]$,
$[0,0,0,1]$
],
[
$[1 / 3,1 / 3,0,1 / 3]$,
[ 7/18, 7/18, 1/6, 1/18],
$[1,0,0,0]$,
$[0,0,0,1]$
],
[
$[1 / 3,1 / 3,0,1 / 3]$,
[ 7/18, 7/18, 1/6, 1/18],
$[0,1,0,0]$,

```
        [0,0,0,1]
    ],
    [
        [ 1/18, 1/18, 1/6, 13/18 ],
        [ 1/3, 1/3, 0, 1/3 ],
        [ 1, 0, 0, 0 ],
        [0, 0, 0, 1 ]
    ],
    [
            [ 7/18, 7/18, 1/6, 1/18 ],
            [ 1, 0, 0, 0 ],
            [ 0, 1, 0, 0] ],
            [0, 0, 1, 0 ]
    ]
]
```

The algorithm continues as in the previous examples, by finding the forced cones and then searching for a tiling of the interior of the junior simplex. The algorithm will choose a different face tiling if this one does not lead to a tiling of the junior simplex, or if it is searching for all resolutions.
[
$[1,2,5,6,10,11,14,15,16,17,20,21,25,26,27,28,29,32]$,
$[1,2,5,6,10,11,14,15,18,19,20,21,22,23,27,28,29,32]$,
$[3,4,5,6,12,13,14,15,18,19,20,21,27,28,29,30,31,32]$,
$[3,4,5,6,7,8,10,11,14,15,18,19,20,21,27,28,29,32]$ ]

Four different tilings have been found, only one of which contains the face tiling above.

Example 3.6.4. The quotient singularity $\frac{1}{13}(1,1,4,7)$ does not have a crepant resolution.

```
> HasCrepRes(13, [1,1,4,7]);
false []
```

It is easy to see why this happens; there are only 11 crepant cones.

```
> r:=13; A:=[1,1,4,7];
> Juniors := FindJuniors(r,A);
> Juniors;
[
    [ 1, 1, 4, 7 ],
    [ 2, 2, 8, 1],
    [4, 4, 3, 2 ]
]
> CrepantCones := MakeCrepantCones(r,A);
> #CrepantCones;
```

11

Now consider the the age 2 points of the lattice $\mathbb{Z}^{4}+\frac{1}{13}(1,1,4,7)$.

```
> Pts:=Pts(r,A);
```

$>$ Age2:=[P : P in Pts | \& +P eq $2 * \mathrm{r}]$;
> Age2;
[
$[3,3,12,8]$,
$[5,5,7,9]$,
$[6,6,11,3]$,
$[7,7,2,10]$,
$[8,8,6,4]$,
$[10,10,1,5]$
]
> JunNec (r, A);
false [ 7, 7, 2, 10 ]

The function $\operatorname{JunNec}(\mathrm{r}, \mathrm{A})$ checks whether every age 2 point is the sum of two age 1 points. In this case it fails for $[7,7,2,10]$ and $[10,10,1,5]$.

Example 3.6.5. The code shows that $\frac{1}{39}(1,5,8,25)$ has no crepant resolution. First calculate the junior points in the lattice $\mathbb{Z}^{4}+\frac{1}{39}(1,5,8,25) \cdot \mathbb{Z}$ :

```
> r:=39;
> A:=[1,5,8,25];
> Juniors := FindJuniors(r,A);
> Juniors;
```

```
[
    [ 1, 5, 8, 25 ],
    [ 2, 10, 16, 11 ],
    [ 5, 25, 1, 8 ],
    [ 8, 1, 25, 5 ],
    [ 10, 11, 2, 16 ],
    [ 11, 16, 10, 2 ],
    [ 16, 2, 11, 10 ],
    [ 25, 8, 5, 1 ]
]
```

There are only eight interior lattice points, which is relatively small given the order of the group.

The algorithm computes all basic cones, of which there are 161. It uses this to find a face tiling, before starting to fill the interior of the junior simplex.

```
> CrepantCones := MakeCrepantCones(r,A);
```

> \#CrepantCones;
161
> FacePieces:=FindFaces(Juniors,CrepantCones);
> FacePieces;
[ 132, 149, 161, 63 ]
> CrepantCones [FacePieces];
[
[
[ 5/39, 25/39, 1/39, 8/39 ],
[ 1, 0, 0, 0 ],
[ $0,1,0,0]$,
$[0,0,0,1]$
],
[
[ 8/39, 1/39, 25/39, 5/39 ],
[ 1, 0, 0, 0],
$[0,0,1,0]$,
[ 0, 0, 0, 1 ]
],
[

```
        [ 25/39, 8/39, 5/39, 1/39 ],
        [ 1, 0, 0, 0 ],
        [ 0, 1, 0, 0 ],
        [0, 0, 1, 0 ]
    ],
    [
        [ 1/39, 5/39, 8/39, 25/39 ],
        [ 0, 1, 0, 0 ],
        [ 0, 0, 1, 0 ],
        [0, 0, 0, 1 ]
    ]
]
```

Here the face tiling is unique as the $a_{i}$ are coprime to $r=39$.
Cones whose cone chains overlap themselves are not permitted in the resolution. In this example only 97 of a possible 161 cones have cone chains which do not overlap.

```
>AdjacencyGraph := MakeAdjacencyGraph(CrepantCones);
> ConeChains:=MakeConeChains(CrepantCones,AdjGraph);
> OverlapGraph := MakeOverlapGraph(CrepantCones);
> ConeChainOverlapGraph := MakeConeChainOverlaps(ConeChains,
                                    OverlapGraph);
```

> AllowedCones := [1..\#CrepantCones];
> for i in [1..\#ConeChainOverlapGraph] do
for> if ConeChainOverlapGraph[i,i] then
forlif> Exclude( ${ }^{\sim}$ AllowedCones,i);
forlif> Exclude(~FacePieces,i);
forlif> end if;
for> end for;
> \#AllowedCones;
97

The next step in the algorithm is to add in the cone chains of each of the cones in the face tiling. The first cone in the face tiling is cone 132. Its cone chain contains itself and 21 other cones. The other cones of the face tiling (cones 149, $161,63)$ are contained in this cone chain, so the only cones which are forced by the face tiling belong to the cone chain of cone 132.

```
> FacePieces[1];
```

132
> ConeChains [132];
[ $132,121,156,62,61,146,149,42,45,63,19,80,4,34,115$,
$143,159,161,120,130,142,147]$
> \#ConeChains[132];
22
> ChosenFaces:=FacePieces;
> ChosenCones:= MakeForced(ConeChains,ChosenFaces);
> \#Fo;
22

At this stage, there are no unique neighbours at any face of any cone in the set Fo of chosen cones. Thus a search through all faces reveals the possible neighbours at that face.

```
> Choices := MakeChoices(CrepantCones, ChosenCones,AdjacencyGraph,
ConeChainOverlapGraph, AllowedCones);
```

> \#Choices;
20
> Choices;
[
[ 124, 128],
[ 9, 38 ],
[ 1, 2, 3],
$[85,110,140]$,
[ 111, 141 ],
[ 89, 144 ],
[ 90, 144 ],
[ 17, 59 ],
[ 52, 57],
[ 18, 59],
[ 9, 12],
[ 52, 152],
[ 68, 108 ],
[ 111, 113],
[ 124, 157],

```
[ 26, 29 ],
    [ 24, 116, 118 ],
    [ 26, 117],
    [ 68, 71 ],
    [ 7, 36, 41]
]
```

Cones 124 and 128 are neighbours of cone 130 .

```
> CrepantCones[130];
```

[
[ 5/39, 25/39, 1/39, 8/39],
[ 25/39, 8/39, 5/39, 1/39],
[ 1, 0, 0, 0],
$[0,1,0,0]$
]
> CrepantCones [124];
[
[ 5/39, 25/39, 1/39, 8/39 ],
[ 11/39, 16/39, 10/39, 2/39],
[ 25/39, 8/39, 5/39, 1/39 ],
[ 0, 1, 0, 0 ]
]
> CrepantCones [128];
[
[ 5/39, 25/39, 1/39, 8/39],
[ 16/39, 2/39, 11/39, 10/39 ],
[ 25/39, 8/39, 5/39, 1/39],
[ 0, 1, 0, 0 ]
]

Exactly one of these must belong to the resolution.
The algorithm runs a tree search on the set of choices, making more if necessary, until it has tried every possible choice. The function returns false, which shows that it has not found a resolution, and the variable resolution is empty.

```
> time boolean,resolution:=HasCrepRes(39,[1,5,8,25]);
Time: 271.750
```

```
> boolean;
false
> resolution;
[]
```

Thus this singularity has no crepant resolution.

## Chapter 4

## $A$ - $\operatorname{Hilb}\left(\mathbb{C}^{4}\right)$ and crepant resolutions

Unlike in dimension three where the $A$-Hilbert scheme is a crepant resolution of $\mathbb{C}^{3} / A$ for $A$ any finite abelian subgroup of $\operatorname{SL}(3, \mathbb{C})$, we see that in dimension four $A-\operatorname{Hilb}\left(\mathbb{C}^{4}\right)$ may be discrepant or even singular. We restrict to looking at the family $\frac{1}{r}(1,1, a, b)$. Considering only those examples which satisfy condition JunNec 2.2 .1 we calculate the $A$-Hilbert scheme and show that it is at worst a blow-up of a crepant resolution $\mathbb{C}^{4} / G$.

### 4.1 Examples

Nakamura [Nak01] proved that the $A$-Hilbert scheme $A$-Hilb $\left(\mathbb{C}^{3}\right)$ gives a crepant resolution of $\mathbb{C}^{3} / A$. In four dimensions this is not necessarily true, even for examples which satisfy JunNec (Condition 2.2.1). In fact, even if $\mathbb{C}^{4} / A$ is crepant $A$ - $\operatorname{Hilb}\left(\mathbb{C}^{4}\right)$ maybe discrepant or even singular. We give some examples.

For small values of $r$ the $A$-Hilbert scheme $A$ - $\operatorname{Hilb}\left(\mathbb{C}^{4}\right)$ and the crepant resolution are the same.

Example 4.1.1. Take $\frac{1}{8}(1,1,2,4)$. This has 3 internal junior points

$$
p_{1}=(1,1,2,4) \quad p_{2}=(2,2,4,0) \quad p_{4}=(4,4,0,0)
$$

There are exactly 8 basic cones inside the junior simplex and these form the unique crepant resolution.

$$
\begin{array}{llll}
e_{4} e_{3} e_{2} p_{1} & e_{4} e_{3} p_{1} e_{1} & e_{4} e_{2} p_{1} p_{4} & e_{4} p_{1} p_{4} e_{1} \\
e_{3} e_{2} p_{1} p_{2} & e_{3} p_{1} p_{2} e_{1} & e_{2} p_{1} p_{2} p_{4} & p_{1} p_{2} p_{4} e_{1} .
\end{array}
$$

Calculating the affine pieces of the $A$-Hilbert scheme gives exactly the same cones.

In the following example $A$-Hilb is discrepant even though there is a crepant resolution.

Example 4.1.2. Consider the lattice $L=\mathbb{Z}^{4}+\frac{1}{12}(1,2,3,6)$. This has five internal junior points:

$$
\begin{array}{ll}
p_{1}=(1,2,3,6), & p_{2}=(2,4,6,0), \quad p_{4}=(4,8,0,0), \\
p_{6}=(6,0,6,0), & p_{8}=(8,4,0,0) .
\end{array}
$$

There is a crepant resolution given by

$$
\begin{array}{llllll}
p_{1} e_{2} e_{3} e_{4} & p_{2} p_{1} e_{2} e_{3} & p_{4} p_{1} e_{2} e_{4} & p_{4} p_{2} p_{1} e_{2} & p_{6} p_{1} e_{3} e_{4} & p_{6} p_{2} p_{1} e_{3} \\
p_{8} p_{4} p_{1} e_{4} & p_{8} p_{4} p_{2} p_{1} & p_{8} p_{6} p_{2} p_{1} & e_{1} p_{6} p_{1} e_{4} & e_{1} p_{8} p_{1} e_{4} & e_{1} p_{8} p_{6} p_{1} .
\end{array}
$$

However $A$-Hilb consists of 15 nonsingular cones. Nine of these are crepant:

$$
\begin{array}{llllll}
e_{4} e_{3} e_{2} p_{1} & e_{4} e_{3} p_{1} p_{6} & e_{4} e_{2} p_{1} p_{4} & e_{4} p_{1} p_{4} p_{8} & e_{3} e_{2} p_{1} p_{2} & e_{3} p_{1} p_{2} p_{6} \\
e_{2} p_{1} p_{2} p_{4} & p_{1} p_{2} p_{4} p_{8} & p_{1} p_{2} p_{6} p_{8} & &
\end{array}
$$

and six have discrepancy 1 :

$$
e_{4} p_{1} p_{6} P_{13} \quad e_{4} p_{1} p_{8} P_{13} \quad e_{4} p_{6} e_{1} P_{13} \quad e_{4} p_{8} e_{1} P_{13} \quad p_{1} p_{6} p_{8} P_{13} \quad p_{6} p_{8} e_{1} P_{13} .
$$

Note that the discrepant cones contain the age two point $P_{13}=\frac{1}{13}(13,2,3,6)$. We can see, by comparing the faces of these cones, that they glue together around $P_{13}$. Cone $P_{13} p_{8} p_{1} p_{6}$ has faces:

$$
P_{13} p_{8} p_{1} \quad P_{13} p_{8} p_{6} \quad P_{13} p_{1} p_{6} \quad p_{8} p_{1} p_{6}
$$

The three faces of this cone containing $P_{13}$ belong to one of the five other discrepant cones. Glueing these six cones together gives a new, nonbasic, cone. This is the cone shown in Figure 4.1, with each of the triangles joined to $p_{1}$ (going into the page) and $e_{1}$ (coming out of the page).


Figure 4.1: Cross section of the cone $p_{1} e_{4} p_{8} p_{6} e_{1}$
Let us compare with the crepant resolution.

| Crepant resolution | $G$-Hilb |
| :---: | :--- |
| $p_{1} e_{2} e_{3} e_{4}$ | $p_{1} e_{2} e_{3} e_{4}$ |
| $p_{2} p_{1} e_{2} e_{3}$ | $p_{2} p_{1} e_{2} e_{3}$ |
| $p_{4} p_{1} e_{2} e_{4}$ | $p_{4} p_{1} e_{2} e_{4}$ |
| $p_{4} p_{2} p_{1} e_{2}$ | $p_{4} p_{2} p_{1} e_{2}$ |
| $p_{6} p_{1} e_{3} e_{4}$ | $p_{6} p_{1} e_{3} e_{4}$ |
| $p_{6} p_{2} p_{1} e_{3}$ | $p_{6} p_{2} p_{1} e_{3}$ |
| $p_{8} p_{4} p_{1} e_{4}$ | $p_{8} p_{4} p_{1} e_{4}$ |
| $p_{8} p_{4} p_{2} p_{1}$ | $p_{8} p_{4} p_{2} p_{1}$ |
| $p_{8} p_{6} p_{2} p_{1}$ | $p_{8} p_{6} p_{2} p_{1}$ |
| $e_{1} p_{6} p_{1} e_{4}$ |  |
| $e_{1} p_{8} p_{1} e_{4}$ |  |
| $e_{1} p_{8} p_{6} p_{1}$ |  |
|  | $e_{4} p_{1} p_{6} P_{13}$ |
|  | $e_{4} p_{1} p_{8} P_{13}$ |
|  | $e_{4} p_{6} e_{1} P_{13}$ |
|  | $e_{4} p_{8} e_{1} P_{13}$ |
|  | $p_{1} p_{6} p_{8} P_{13}$ |
|  | $p_{6} p_{8} e_{1} P_{13}$ |

Contracting the point $P_{13}$ gives cones $p_{1} e_{1} p_{6} p_{8}, p_{1} e_{1} p_{8} e_{4}, p_{1} e_{1} e_{4} p_{6}$, which gives the crepant resolution.

In this example, we have a crepant resolution, but $A$-Hilb is singular.
Example 4.1.3. Consider $A=\frac{1}{15}(1,3,5,6)$.
There are 5 points in the interior of the junior simplex:

$$
\begin{array}{ll}
p_{1}=\frac{1}{15}(1,3,5,6), & p_{3}=\frac{1}{15}(3,9,0,3), \quad p_{5}=\frac{1}{15}(5,0,10,0), \\
p_{6}=\frac{1}{15}(6,3,0,6), & p_{10}=\frac{1}{15}(10,0,5,0) .
\end{array}
$$

A crepant resolution of $\mathbb{C}^{4} / A$ is

| $e_{4} e_{3} e_{2} p_{1}$ | $e_{4} e_{3} p_{1} p_{5}$ | $e_{4} e_{2} p_{1} p_{3}$ | $e_{4} p_{1} p_{3} p_{6}$ | $e_{4} p_{1} p_{5} p_{10}$ |
| :--- | :--- | :--- | :--- | :--- |
| $e_{4} p_{1} p_{6} e_{1}$ | $e_{4} p_{1} p_{10} e_{1}$ | $e_{3} e_{2} p_{1} p_{3}$ | $e_{3} e_{2} p_{3} p_{5}$ | $e_{3} p_{1} p_{3} p_{5}$ |
| $e_{2} p_{3} p_{5} p_{10}$ | $e_{2} p_{3} p_{10} e_{1}$ | $p_{1} p_{3} p_{5} p_{10}$ | $p_{1} p_{3} p_{6} e_{1}$ | $p_{1} p_{3} p_{10} e_{1}$. |

However $A$-Hilb is singular. $A$-Hilb consist of 7 crepant cones:

```
e}\mp@subsup{4}{4}{}\mp@subsup{e}{3}{}\mp@subsup{e}{2}{}\mp@subsup{p}{1}{}\quad\mp@subsup{e}{4}{}\mp@subsup{e}{3}{}\mp@subsup{p}{1}{}\mp@subsup{p}{5}{}\quad\mp@subsup{e}{4}{}\mp@subsup{e}{2}{}\mp@subsup{p}{1}{}\mp@subsup{p}{3}{}\quad\mp@subsup{e}{4}{}\mp@subsup{p}{1}{}\mp@subsup{p}{3}{}\mp@subsup{p}{6}{
e}\mp@subsup{4}{4}{}\mp@subsup{p}{6}{}\mp@subsup{p}{10}{}\mp@subsup{e}{1}{}\quad\mp@subsup{e}{2}{}\mp@subsup{p}{3}{}\mp@subsup{p}{10}{}\mp@subsup{e}{1}{}\quad\mp@subsup{p}{3}{}\mp@subsup{p}{6}{}\mp@subsup{p}{10}{}\mp@subsup{e}{1}{}
```

19 discrepant cones:

| $e_{4} p_{1} p_{5} p_{11}$ | $e_{4} p_{1} p_{6} p_{11}$ | $e_{4} p_{5} p_{10} p_{11}$ | $e_{4} p_{6} p_{10} p_{11}$ |
| :--- | :--- | :--- | :--- |
| $e_{3} e_{2} p_{1} P_{3}$ | $e_{3} e_{2} P_{3} p_{5}$ | $e_{3} p_{1} P_{3} p_{5}$ | $e_{2} p_{1} p_{3} P_{6}$ |
| $e_{2} p_{1} P_{3} P_{6}$ | $e_{2} p_{3} P_{6} p_{8}$ | $e_{2} p_{3} p_{8} p_{10}$ | $e_{2} p_{5} p_{8} p_{10}$ |
| $p_{1} p_{3} p_{6} p_{11}$ | $p_{1} p_{3} P_{6} p_{8}$ | $p_{1} p_{3} p_{8} p_{11}$ | $p_{1} p_{5} p_{8} p_{11}$ |
| $p_{3} p_{6} p_{10} p_{11}$ | $p_{3} p_{8} p_{10} p_{11}$ | $p_{5} p_{8} p_{10} p_{11}$, |  |

and 2 singular cones whose affine pieces are given by the equations

$$
x^{3}=\xi t^{3}, \quad x^{2} t^{3}=\eta z, \quad y=\zeta t^{3}, \quad z^{2}=\lambda x t^{4}, \quad z t^{2}=\mu x^{2}
$$

and

$$
x^{3}=\xi y, \quad x^{2} t=\eta z, \quad y z=\zeta x^{2} t, \quad z^{2}=\lambda x y t, \quad t^{3}=\mu y .
$$

These pieces have singularities $\xi \mu=\eta \lambda$ and $\xi \zeta=\eta \lambda$ respectively; these are singularities of the form ( 3 -fold node) $\times \mathbb{A}^{1}$.

### 4.2 The family $\frac{1}{r}(1,1, a, b)$

We turn our attention to a smaller family of examples, namely $\frac{1}{r}(1,1, a, b) \subset$ $\operatorname{SL}(4, \mathbb{C})$.

First consider the subfamily given by fixing $a=7$. The family $\frac{1}{r}(1,1,7, r-9)$ satisfies JunNec whenever $r$ is equal to $0,7,9,14,16,21,23,27,28,30,34,37$, $41,48,55$ modulo 63 . We will see later that a crepant resolution exists for all these values of $r$.

Putting these numbers into a table (Table 4.1) based on their decomposition into a sum of multiples of 7 and 9 , say $r=7 c+9 d \bmod 63$, is quite striking. We see that there is only a crepant resolution (when $r$ is bold) if $c \in\{0,1,2,3,4\}$ and $d \in\{0,1,3\}$.

This is equivalent to the condition that $r=7 s+u=9 t+v$ for some integers $s, t$, and for $u \in\{0,2,6\}$ and $v \in\{0,1,3,5,7\}$.

For $\frac{1}{r}(1,1, a, b)$ to satisfy JunNec the points $\frac{1}{r}(\alpha, \alpha, 1, \beta)$ and $\frac{1}{r}(\gamma, \gamma, \delta, 1)$ must have age 1. For this to be the case it is clear that the inverses of $a$ and $b$ modulo $r$ must be less than $\frac{r}{2}$.

For $\frac{1}{r}(1,1,7, r-9)$ if $r=7 s+u=9 t+v$ the inverses $c_{7}$ and $c_{9}$ of $7 \bmod r$ and $9 \bmod r$ respectively are given in Table 4.2. It is clear from the table that if $u \in\{1,4,5\}$ or $v \in\{2,4,8\}$ then $\frac{1}{r}(1,1,7, r-9)$ cannot satisfy JunNec.

|  |  |  |  |  | d |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|  | 0 | $\mathbf{0}$ | $\mathbf{9}$ | 18 | $\mathbf{2 7}$ | 36 | 45 | 54 |
|  | $\mathbf{1}$ | $\mathbf{7}$ | $\mathbf{1 6}$ | 25 | $\mathbf{3 4}$ | 43 | 52 | 61 |
|  | 2 | $\mathbf{1 4}$ | $\mathbf{2 3}$ | 32 | $\mathbf{4 1}$ | 50 | 59 | 5 |
|  | 3 | $\mathbf{2 1}$ | $\mathbf{3 0}$ | 39 | $\mathbf{4 8}$ | 57 | 3 | 12 |
| c | 4 | $\mathbf{2 8}$ | $\mathbf{3 7}$ | 46 | $\mathbf{5 5}$ | 1 | 10 | 19 |
|  | 5 | 35 | 44 | 53 | 62 | 8 | 17 | 26 |
|  | 6 | 42 | 51 | 60 | 6 | 15 | 24 | 33 |
|  | 7 | 49 | 58 | 4 | 13 | 22 | 31 | 40 |
|  | 8 | 56 | 2 | 11 | 20 | 29 | 38 | 47 |

Table 4.1: Values of $r \bmod 63$ for which $\frac{1}{r}(1,1,7, r-9)$ satisfies JunNec

| $u$ | $c_{7}$ |  | $v$ | $c_{9}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $6 s+1$ |  | 1 | $t$ |
| 2 | $3 s+1$ |  | 2 | $5 t+1$ |
| 3 | $2 s+1$ |  | 4 | $7 t+3$ |
| 4 | $5 s+3$ |  | 5 | $2 t+1$ |
| 5 | $4 s+3$ |  | 7 | $4 t+3$ |
| 6 | $s+1$ |  | 8 | $8 t+7$ |

Table 4.2: The inverses of 7 and 9 modulo $r$
Lemma 4.2.1. Let $h$ (respectively $g$ ) be the highest common factor of $a$ and $r$ (respectively $a+2$ and $r$ ). The points $\frac{1}{r}(\alpha, \alpha, h, \beta)$ and $\frac{1}{r}(\gamma, \gamma, \delta, g)$ are junior if and only if $\beta<\frac{a}{2}-1$ and $\delta<\frac{a+2}{2}-1$.

Proof. Let $h=\operatorname{hcf}(r, a)$. Write $a=h s$ and $r=h t$. Then there exist integers $c$ and $x$ such that

$$
\begin{equation*}
a c=h+x r . \tag{4.1}
\end{equation*}
$$

That is, if $h=1$, then $c$ is the inverse of $a$ modulo $r$, and $x$ is the inverse of $r$ modulo $a$. Dividing (4.1) through by $h$ we get

$$
s c=1+x t,
$$

and dividing this by st gives

$$
\frac{c}{t}=\frac{1}{s t}+\frac{x}{s} .
$$

If the point $\frac{1}{r}(c, c, h, \overline{c(r-a-2)})$ is junior then $r=2 c+h+\overline{c(r-a-2)}$, so we
must have $c>\frac{r}{2}-1$. Thus

$$
\frac{h}{2}=\frac{h t}{2 t}>\frac{c}{t}=\frac{x}{s}+\frac{1}{s t},
$$

and we have $x<\frac{a}{2}-1$ since $t \geq s+1$. Conversely, if $x<\frac{a}{2}-1$ then

$$
\frac{c}{t}=\frac{x}{s}+\frac{1}{s t}<\frac{a}{2 s}-\frac{1}{s}=\frac{h s}{2 s}-\frac{1}{s}=\frac{r}{2 t}-\frac{1}{s},
$$

so $c<\frac{r}{2}+\frac{1-t}{s}<\frac{r}{2}-1$. Then $r>2 c+2$ so the point $\frac{1}{r}(c, c, h, \overline{c(r-a-2)})$ is junior. Setting $\beta=x$ and $\alpha=c$ gives the result.

We have proved that for certain values of $r$ the quotient singularity $\frac{1}{r}(1,1, a, b)$ does not satisfy JunNec and so does not have a crepant resolution. Shortly we will prove that in the cases where JunNec is satisfied the $A$-Hilbert scheme can be contracted to give a crepant resolution. This means that for any value of $a$ we can find a table like Table 4.1 from which we can easily read off the values of $r$ for which a crepant resolution exists.

Our Theorem 4.5.3 gives necessary and sufficient conditions for members of this family to have a crepant resolution. Dais, Haus and Henk [DHH98] prove that a different set of conditions is necessary and sufficient. Their proof is constructive, however their conditions require lengthy calculations. It seems to be a difficult question to determine an exact relation between the two sets of conditions.

## 4.3 $A$-Hilbert schemes for $\frac{1}{r}(1,1, a, b)$

We consider resolutions of quotient singularities of the form $\frac{1}{r}(1,1, a, b)$. In these cases all the junior points lie on the plane through $e_{3}, e_{4}$ and the midpoint of the axis $A=e_{1} e_{2}$. We shall denote this point $\left(\frac{r}{2}, \frac{r}{2}, 0,0\right)$ by $A^{\prime}$. Note that $A^{\prime}$ is a lattice point if and only if both $a$ and $b$ are even.

The idea is to find a triangulation of the median triangle, $e_{3} e_{4} A^{\prime}$, into basic triangles in a similar way to the Craw-Reid algorithm [CR02]. Once a triangulation of $e_{3} e_{4} A^{\prime}$ has been chosen, for every basic triangle $p_{1} p_{2} p_{3}$ which does not have $A^{\prime}$ as a vertex we form the two tetrahedra with vertices $p_{1}, p_{2}, p_{3}, e_{1}$ and $p_{1}, p_{2}, p_{3}, e_{2}$. If $A^{\prime}$ is a lattice point we do the same. Otherwise, we replace $A^{\prime}$ with both the vertices $e_{1}$ and $e_{2}$. Thus we obtain a tiling of the junior simplex, $\Delta$, into basic tetrahedra, and this gives a crepant resolution.

### 4.4 The case $a$ and $b$ even

If both $a$ and $b$ are even, then $r$ is even and the point $A^{\prime}$ is a junior point. Say $r=$ $2 r^{\prime}, a=2 a^{\prime}$ and $b=2 b^{\prime}$, then the original Craw-Reid algorithm for $\frac{1}{r^{\prime}}\left(1, a^{\prime}, b^{\prime}\right)$ gives a triangulation of the simplex $e_{3} e_{4} A^{\prime}$, and $G$ - $\operatorname{Hilb}\left(\mathbb{C}^{4}\right)$ is the crepant resolution corresponding to this.

Example 4.4.1. $\frac{1}{26}(1,1,4,20)$. We take $r^{\prime}=13, a^{\prime}=2$ and $b^{\prime}=10$. We found the crepant resolution of $\frac{1}{13}(1,2,10)$ in Example 1.4.5. Each triangle of Figure 4.2


Figure 4.2: $A$-Hilb $\mathbb{C}^{4}$ for $\frac{1}{26}(1,1,4,20)$
forms a tetrahedron with the addition of the vertex $e_{1}$, similarly for the vertex $e_{2}$. The $G$-Hilbert scheme consists of these 26 affine pieces.

We saw that the regular triangle $f_{3,1}=\frac{1}{13}(1,2,-3), f_{1,2}=\frac{1}{13}(-5,3,2), f_{2,1}=$ $\frac{1}{13}(4,-5,1)$ of side 1 has dual basis

$$
\xi=x^{2} / y, \quad \eta=y^{2} / z^{3}, \quad \zeta=z^{4} / x
$$

which gives equations $x^{2}=\xi y, y^{2}=\eta z^{3}, z^{4}=\zeta x$.
The corresponding triangle $f_{4,1}, f_{A, 2}, f_{3,1}$ for $\frac{1}{26}(1,1,4,20)$ gives a tetrahedron when the vertex $e_{2}$ is added. This tetrahedron has dual basis

$$
\xi=x^{4} / z, \quad \eta=z^{2} / t^{3}, \quad \zeta=t^{4} / x^{2}, \quad \theta=x / y
$$

These give equations $x^{4}=\xi z, z^{2}=\eta t^{3}, t^{4}=\zeta x^{2}, y=\theta x$, which lead to the equations $z^{2} t=\lambda x^{2}, \quad x^{2} t^{4}=\mu z, \quad x^{4} z=\nu t^{3}$ since $x^{2} z t$ is an invariant monomial.

The corresponding tetrahedron with vertex $e_{1}$ has dual basis

$$
\xi=y^{4} / z, \quad \eta=z^{2} / t^{3}, \quad \zeta=t^{4} / y^{2}, \quad \theta=y / x
$$

Similar equations arise with $x$ and $y$ interchanged.
For the general case, consider the group generated by $\frac{1}{2 r}(1,1,2 a, 2 b)$. All junior points lie on the plane $(x-y)$ through $e_{3}, e_{4}, A^{\prime}$. Thus we may consider the group $\frac{1}{r}(1, a, b) \in \mathrm{SL}(3, \mathbb{C})$. The Craw-Reid algorithm gives a subdivision of the triangle $e_{3} e_{4} A^{\prime}$ into regular triangles with dual bases which give generators for the $A$ clusters.

Each of the Craw-Reid regular triangles corresponds to two regular tetrahedra in $\Delta$ : one is given by including the vertex $e_{1}$, the second by including the vertex $e_{2}$. When we convert from the lattice $\mathbb{Z}^{3}+\frac{1}{r}(1, a, b) \cdot \mathbb{Z}$ to the lattice $\mathbb{Z}^{4}+\frac{1}{2 r}(1,1,2 a, 2 b)$. $\mathbb{Z}$, the $z$ and $t$ coordinates are doubled. Thus the exponents of $x$ and $y$ in the dual vectors must be doubled. The dual basis of the regular triangles consists of only three elements. We must add the element $\theta=y / x$, or its inverse, to the dual basis of each regular triangle to make the dual basis of a regular tetrahedron. There are two types of tetrahedra; those with vertex $e_{1}$, which we will refer to as being "above" the triangle $A^{\prime} e_{3} e_{4}$ and with the equation $x=\theta y$, and those with vertex $e_{2}$, which we will refer to as "below", with the equation $y=\theta x$. These equations mean that $x$ (respectively $y$ ) will not appear in any of the other equations of that tetrahedron. Thus Nakamura's Theorem becomes

Theorem 4.4.2. (I). For every finite diagonal subgroup $A=\frac{1}{2 r}(1,1,2 \alpha, 2 \beta) \subset$ $\operatorname{SL}(4, \mathbb{C})$ and every $A$-cluster $Z$ generators, of the ideal $\mathcal{I}_{Z}$, can be chosen as a system of 8 equations. In the "below" case:

$$
\begin{align*}
& x^{l+1}=\xi z^{b} t^{f}, \quad z^{b+1} t^{f+1}=\lambda x^{l-1}, \\
& z^{m+1}=\eta x^{d} t^{c}, \quad x^{d+2} t^{c+1}=\mu z^{m},  \tag{4.2}\\
& t^{n+1}=\zeta x^{a} z^{e}, \quad x^{a+2} z^{e+1}=\nu t^{n}, \\
& y=\theta x, \quad x y z t=\pi .
\end{align*}
$$

Here $a, b, c, d, e, f, l, m, n \geq 0$ are integers, and $\xi, \eta, \zeta, \lambda, \mu, \nu, \pi \in \mathbb{C}$ are constants satisfying

$$
\lambda \xi \theta=\mu \eta \theta=\nu \zeta \theta=\pi
$$

(II). Moreover, exactly one of the following cases holds:

$$
\begin{gathered}
" U p " \quad\left\{\begin{array}{l}
\lambda=\eta \zeta, \mu=\zeta \xi, \nu=\xi \eta, \pi=\xi \eta \zeta \theta \\
l=a+d, m=b+e, n=c+f ; \text { or }
\end{array}\right. \\
" \text { Down" }\left\{\begin{array}{l}
\xi=\mu \nu, \quad \eta=\nu \lambda, \quad \zeta=\lambda \mu, \quad \pi=\lambda \mu \nu \theta, \\
l=a+d+1, \quad m=b+e+1, \quad n=c+f+1 .
\end{array}\right.
\end{gathered}
$$

The "above" case is given by interchanging $x$ and $y$ in every equation.

### 4.5 Calculating continued fractions

From now on we will assume that at least one of $a$ or $b$ is odd. We follow a Craw-Reid type algorithm [CR02] computing the continued fractions $\frac{r}{a}$ and $\frac{r}{b}$ to give lines out of the vertices $e_{4}$ and $e_{3}$ respectively. At $A^{\prime}$ we do the following similar calculation.

Let $h=\operatorname{hcf}(r, a)$. If $h=1$ there is a unique $1 \leq c<r$ such that

$$
h=a c+r x .
$$

However, for $h>1$, there are several possible values for $c$. The plane $x_{3}=h$ is parallel to the face $A e_{4}$. We choose the $c$ for which $\overline{r-2 c-h}$ is smallest, thus the point $p_{c}=\frac{1}{r}(c, c, h, \overline{r-2 c-h})$ is the closest point on this plane to the point $A^{\prime}$. We take the Hirzebruch-Jung continued fraction

$$
\begin{equation*}
\frac{r}{h(r-2 c-h)}=\left[b_{1}, b_{2}, \ldots, b_{k}\right] \tag{4.3}
\end{equation*}
$$

and run the continued fraction algorithm to compute the planes out of $A$ as lines out of $A^{\prime}$.

If $p_{c}$ has age 2 then JunNec fails immediately. If $h=1$, it is clear that the point $\frac{1}{\mathrm{r}}(c, c, 1,2 r-2 c-1)$ cannot be expressed as the sum of two junior points. For $h>1$, suppose there are two junior points $p_{i}, p_{j}$ such that $p_{c}=p_{i}+p_{j}$. Then

$$
\frac{1}{\mathrm{r}}(c, c, h, 2 r-2 c-h)=\frac{1}{\mathrm{r}}(i, i, h, r-2 i-h)+\frac{1}{\mathrm{r}}(j, j, 0, r-2 j) .
$$

However we chose $c$ so that $2 r-2 c-h=\overline{r-2 c-h}$ has smallest value, so $r-2 i-h>2 r-2 c-h$, consequently $p_{c}$ cannot be expressed as the sum of two junior points.

Condition 4.5.1. The point $p_{c}$ is junior and all entries $b_{i}$ of the continued fraction (4.3) are even.

Lemma 4.5.2. The continued fraction algorithm returns only junior lattice points if and only if Condition 4.5 .1 is satisfied.

Proof. The continued fraction algorithm produces points in the plane $\Pi_{1}$ through $A^{\prime}, e_{4}$ and $p_{c}$, so it can only produce junior points if $\Pi_{1}$ coincides with the plane $\Pi_{2}$ through $A^{\prime}, e_{3}$ and $e_{4}$. It is clear that $\Pi_{1}$ and $\Pi_{2}$ only coincide if $p_{c}$ lies in $\Pi_{2}$, that is, if $p_{c}$ is junior.

Suppose $p_{c}$ is the closest point to the face $e_{4} A$ and $\left[b_{1}, \ldots, b_{k}\right]$ is the HirzebruchJung continued fraction expansion of

$$
\frac{r}{h(r-2 c-h)}=\left[b_{1}, b_{2}, \ldots, b_{k}\right]
$$

Then the continued fraction says that the next lattice point is given by the vector out of $A^{\prime}$

$$
\begin{aligned}
& b_{1}\left(c-\frac{r}{2}, c-\frac{r}{2}, h, r-2 c-h\right)-\left(-\frac{r}{2},-\frac{r}{2}, 0, r\right) \\
& \quad=\left(b_{1} c-\frac{\left(b_{1}-1\right) r}{2}, b_{1} c-\frac{\left(b_{1}-1\right) r}{2}, b_{1} h,\left(b_{1}-1\right) r-b_{1}(2 c+h)\right) .
\end{aligned}
$$

This gives the point

$$
p=\left(b_{1} c-\frac{\left(b_{1}-2\right) r}{2}, b_{1} c-\frac{\left(b_{1}-2\right) r}{2}, b_{1} h,\left(b_{1}-1\right) r-b_{1}(2 c+h)\right) .
$$

It is clear that if $b_{1}$ is even then $p$ is a lattice point. For the converse, if $b_{i}$ were odd then the point $p$ being a lattice point would imply that $A^{\prime}=\left(\frac{r}{2}, \frac{r}{2}, 0,0\right)$ were also a lattice point, since

$$
\begin{aligned}
p= & \left(b_{1} c-\frac{\left(b_{1}-2\right) r}{2}, b_{1} c-\frac{\left(b_{1}-2\right) r}{2}, b_{1} h,\left(b_{1}-1\right) r-b_{1}(2 c+h)\right) \\
= & \left(b_{1} c, b_{1} c, b_{1} h,\left(b_{1}-1\right) r-b_{1}(2 c+h)\right)-\left(\frac{\left(b_{1}-1\right)}{2} r, \frac{\left(b_{1}-1\right)}{2} r, 0,0\right) \\
& -\left(\frac{r}{2}, \frac{r}{2}, 0,0\right) .
\end{aligned}
$$

However, $A^{\prime}$ is only a lattice point if $a, b$ are both even, thus $b_{1}$ must be even.
Theorem 4.5.3 (Main Theorem). There exists a crepant resolution if and only if Condition 4.5.1 is satisfied.

Proof that Condition 4.5 .1 is necessary. We have already showed that for a crepant resolution to exist $p_{c}$ must be junior. If at least one of the $b_{i}$ is not even then in Lemma 4.5.2 we proved that the continued fraction algorithm returns a point which is not junior. The first step in the continued fraction algorithm takes the lattice points

$$
e_{4}=(0,0,0, r) \text { and } p_{c}=(c, c, h, r-2 c-h),
$$

and chooses the lattice point with the smallest third coordinate greater than $h$ and whose fourth coordinate is less than $r-2 c-h$. The algorithm gives us a chain of points

$$
\ldots, p_{1}=\left(x_{1}, x_{1}, y_{1}, z_{1}\right), p_{2}=\left(x_{2}, x_{2}, y_{2}, z_{2}\right), p_{3}=\left(x_{3}, x_{3}, y_{3}, z_{3}\right), \ldots
$$

where the $y_{i}$ are strictly increasing and the $z_{i}$ are strictly decreasing. If $p_{2}$ is not junior then it cannot be the sum of junior points since any lattice point whose third coordinate is between $y_{1}$ and $y_{2}$ will have fourth coordinate greater than $z_{2}$, and similarly for any lattice point whose fourth coordinate is between $z_{2}$ and $z_{3}$.

The sufficiency of Condition 4.5 . 1 will be proved at the end of section 4.10. The idea is as follows.

If Condition 4.5.1 is satisfied then an argument based on [CR02] gives an algorithm to compute the $A$-Hilbert scheme. Contraction of the divisors in the $A$-Hilbert scheme gives a crepant resolution. If either of the conditions fail then the same algorithm provides a lattice point of age 2 that is not the sum of two juniors, showing that no crepant resolution can exist.

From now on we will denote the entries of the continued fraction at $e_{i}$ as $\left[b_{i, 1}, \ldots, b_{i, k_{i}}\right]$ for $i=3,4$. We denote by $\left[b_{A, 1}, \ldots, b_{A, k_{A}}\right]$ the continued fraction at $A^{\prime}$. Similarly $f_{i, j}$ denotes a vector out of the vertex $e_{i}$ if $i=3,4$ or $A^{\prime}$ if $i=A$. We consider the vertices $A^{\prime}, e_{3}, e_{4}$ to be in a cycle so that $f_{i-1, j}$ is a vector out of the previous vertex in the cycle. The number $b_{i, j}$ is called the strength of $f_{i, j}$.

A primitive vector $v$ is a vector such that if $v$ is the vector between two lattice points then there are no other lattice points on $v$. We will call $w$ a half-primitive vector if $2 w$ is a primitive vector.

The vectors $v_{1}, v_{2}, v_{3} \in \mathbb{Z}^{2}$ form a regular triple if any two of them form a basis of $\mathbb{Z}^{2}$ and such that $\pm v_{1} \pm v_{2} \pm v_{3}=0$. We will call a set of vectors $v_{1}, v_{2}, v_{3}$ a half-regular triple if one of the following holds:

1. $2 v_{1}, v_{2}, v_{3}$ are primitive vectors, any two of which form a basis of $\mathbb{Z}^{2}$ and such that $\pm 2 v_{1} \pm v_{2} \pm v_{3}=0$
2. $2 v_{1}, 2 v_{2}, v_{3}$ are primitive vectors, any two of which form a basis of $\mathbb{Z}^{2}$ and such that $2 v_{1} \pm 2 v_{2} \pm v_{3}=0$
3. $2 v_{1}, 2 v_{2}, v_{3}$ are primitive vectors, any two of which form a basis of $\mathbb{Z}^{2}$ and such that $2 v_{1} \pm 2 v_{2} \pm 2 v_{3}=0$.

From now on we will use the term half-regular triple to include the possibility that the triple is regular, unless otherwise stated.

A triangle $T \subset R_{\Delta}^{2}$ is a lattice triangle if the vertices of $T$ lie in $\mathbb{Z}^{2}$. We say that $T$ is a half-lattice triangle if the vertices of $T$ lie in $\mathbb{Z}^{2}+\left(\frac{1}{2}, \frac{1}{2}\right) \cdot \mathbb{Z}$. The triangle $T$ is regular if each of its sides is a line $L_{i j}$ extending some $\left[e_{i}, f_{i, j}\right]$ and the three primitive vectors $v_{1}, v_{2}, v_{3}$ pointing along its sides form a regular triple. We say $T$ is half-regular if $v_{1}, v_{2}, v_{3}$ form a half-regular triple.

Example 4.5.4. We first calculate the continued fractions at each vertex $A^{\prime}, e_{3}, e_{4}$ for the example $\frac{1}{50}(1,1,5,43)$. At $e_{3}$ we have $\frac{50}{43}=[2,2,2,2,2,2,8]$, and

$$
2 f_{3,1}=2 \cdot \frac{1}{50}(1,1,-45,43)=\frac{1}{50}(0,0,-50,50)+\frac{1}{50}(2,2,-40,33)=f_{3,0}+f_{3,2}
$$

This gives us vectors from $e_{3}$ to the points $p_{1}, p_{2}, \ldots, p_{7}$. We also see that

$$
8 \cdot \frac{1}{50}(7,7,-15,1)-\frac{1}{50}(6,6,-20,8)=\frac{1}{50}(50,50,-100,0)
$$

which is the vector from $e_{3}$ through $A^{\prime}$ to the first lattice point on this line.
At $e_{4}$ we have $\frac{50}{5}=10$, so the only line out of $e_{4}$ passes through $p_{1}$ :

$$
10 \cdot \frac{1}{50}(1,1,5,-7)-\frac{1}{50}(0,0,50,-50)=\frac{1}{50}(10,10,0,-20),
$$

where $\frac{1}{50}(10,10,0,30)$ is the closest point to $e_{4}$ on the line $e_{4} A^{\prime}$.
The calculation at $A^{\prime}$ is essentially the same, although we must first compute the correct continued fraction. Let $h=\operatorname{hcf}(50,5)=5$. The possible values of $c$ such that $5=5 c \bmod 50$ are $1,11,21,31$, and 41 . The point $p_{21}=\frac{1}{r}(21,21,5,3)$ has smallest fourth coefficient, and as such is the closest point to the face $A e_{4}$, so we take $c=21$. We calculate the continued fraction

$$
\frac{r}{h(r-2 c-h)}=\frac{50}{15}=[4,2,2] .
$$



Figure 4.3: Lines out of the vertices for $\frac{1}{50}(1,1,5,43)$
Running the continued fraction algorithm with $f_{A, 1}=A^{\prime}-p_{c}$ we obtain

$$
\begin{aligned}
4 f_{A, 1}-f_{1,0}=4 \cdot \frac{1}{50}(-4,-4,5,3)-\frac{1}{50}(-5,-5,0,10) & =\frac{1}{50}(-11,-11,20,2)=f_{1,2}, \\
2 \cdot \frac{1}{50}(-11,-11,20,2)-\frac{1}{50}(-4,-4,5,3) & =\frac{1}{50}(-18,-18,35,1)=f_{1,3}, \\
2 \cdot \frac{1}{50}(-18,-18,35,1)-\frac{1}{50}(-11,-11,20,2) & =\frac{1}{50}(-25,-25,50,0)=f_{1,4},
\end{aligned}
$$

which are the vectors from $A^{\prime}$ to the points $p_{7}, p_{14}$ and $p_{21}$, as illustrated in Figure 4.3.

Example 4.5.5. The singularity $\frac{1}{31}(1,1,3,26)$ does not have a crepant resolution. At $A^{\prime}$ we have $h=\operatorname{hcf}(31,3)=1$ and $c=21$. The point $p_{c}=\frac{1}{31}(21,21,1,19)$ has age 2 and the continued fraction $\frac{31}{19}=[2,3,4,2]$ has an entry which is not even. Thus the continued fraction algorithm yields a point which does not belong to the lattice:

$$
\begin{aligned}
& 2 \cdot\left(\frac{-29}{2}, \frac{-29}{2}, 3,26\right)-\left(\frac{-31}{2}, \frac{-31}{2}, 0,31\right)=\left(\frac{-27}{2}, \frac{-27}{2}, 6,21\right) \\
& 3 \cdot\left(\frac{-27}{2}, \frac{-27}{2}, 6,21\right)-\left(\frac{-29}{2}, \frac{-29}{2}, 3,26\right)=\left(\frac{-52}{2}, \frac{-52}{2}, 15,37\right)
\end{aligned}
$$

but $\left(\frac{-21}{2}, \frac{-21}{2}, 15,37\right)$ is not a lattice point. Figure 4.4 illustrates this situation; a


Figure 4.4: Lines out of the vertices for $\frac{1}{31}(1,1,3,26)$
square denotes the point where the ray through $p_{21}$ hits this plane. Since $p_{21}$ has age 2, but is not the sum of two junior points it is clear that no crepant resolution can exist.

### 4.6 Concatenation of continued fractions

Given a continued fraction $\left[b_{1}, \ldots, b_{n}\right]$ there exist vectors $f_{i}$ for $0 \leq i \leq n+1$ satisfying relations

$$
b_{i} f_{i}=f_{i-1}+f_{i+1}
$$

Figure 4.3 shows the result of running the continued fraction algorithm at each of the vertices $A^{\prime}, e_{3}, e_{4}$ for the example $\frac{1}{50}(1,1,5,43)$. The edges of the triangle also satisfy similar relations:

$$
c_{j} f_{j, 0}=f_{j, 1}+f_{j-1, k} .
$$

This is because, as in [CR02], placing the Newton polygons at $A^{\prime}, e_{3}, e_{4}$ and their inverses at a common vertex gives a basic subdivision of the plane.

In our case $f_{3,0}=(r, r,-2 r, 0)$ and $f_{A, k_{A}+1}=\left(-\frac{r}{2},-\frac{r}{2}, r, 0\right)$ so $f_{3,0}=-2 f_{1, k_{A}+1}$.

We choose $c_{j}$ to be the integers such that

$$
\begin{aligned}
c_{A} f_{A, 0} & =f_{A, 1}-f_{4, k_{4}} \\
c_{3} f_{A, k_{A}+1} & =f_{A, k_{A}}-f_{3,1} \\
c_{4} f_{4,0} & =f_{4,1}-f_{3, k_{3}} .
\end{aligned}
$$

If $c_{j}>1$ then we call this side a long side.
As in Craw-Reid we concatenate the continued fractions at the vertices. We must first check whether we have a long side.

Example 4.6.1. There is a long side for $\frac{1}{42}(1,1,5,35)$ since

$$
f_{A, 2}=\frac{1}{42}(-4,-4,1,7), \quad f_{A, 3}=\frac{1}{42}(-3,-3,6,0), \quad f_{3,1}=\frac{1}{42}(5,5,-17,1)
$$

satisfy $3 f_{A, 3}=f_{A, 2}-f_{3,1}$.
Note that long sides can only happen in examples in which $a$ and $a+2$ are not coprime to $r$.

Lemma 4.6.2. There is at most one long side.
Our vectors $f_{A, i}$ are half-lattice vectors. If we take the corresponding lattice vectors $2 f_{A, i}$ in the basic subdivision of the upper half-space then the argument of [CR02] holds.

Lemma 4.6.3. If $a$ and $r-a-2$ are not both even then $c_{4}=1$.
Proof. If $a$ and $r-a-2$ are not both even then there is no $c<r$ such that the vector $(0,0, c,-c)$ is primitive. We must have $f_{4,0}=f_{4,1}-f_{3, k_{3}}$.

Concatenating the continued fractions gives

$$
\begin{equation*}
\left[c_{A}, b_{A, 1}, \ldots, b_{A, k_{A}}, c_{2}, b_{3,1}, \ldots, b_{3, k_{3}}, 1, b_{4,1}, \ldots, b_{4, k_{4}}\right] . \tag{4.4}
\end{equation*}
$$

The entries of (4.4) correspond to expressions

$$
\begin{equation*}
b v_{2}=v_{1}+v_{3} . \tag{4.5}
\end{equation*}
$$

Thus a 1 corresponds to a half-regular triple $v_{2}=v_{1}+v_{3}$, which allows us to eliminate $v_{2}$ from the expressions of the form (4.5), with $v_{1}, v_{3}$ the vectors corresponding to the entries on either side of the 1 . In the 3 -dimensional case a 1
could be eliminated by subtracting 1 from each of its neighbours. Here we must be more careful. We have

$$
c_{3} f_{A, k_{A}+1}=f_{A, k_{1}}+f_{3,1}
$$

but $f_{A, k_{A}+1}=\left(-\frac{r}{2},-\frac{r}{2}, r, 0\right)$ is not a primitive vector out of $e_{3}$ since $A^{\prime}$ is not a lattice point. So $f_{3,0}=-2 f_{A, k_{A}+1}$. Hence if $c_{3}=1$ we may contract this 1 , but we must subtract 2 from $b_{3,1}$ and 1 from $b_{A, k_{A}}$ :

$$
\begin{aligned}
b_{A, k_{A}} f_{A, k_{A}} & =f_{A, k_{A}+1}+f_{A, k_{A}-1} \\
& =f_{A, k}+f_{3,1}+f_{A, k_{A}-1}
\end{aligned}
$$

so

$$
\left(b_{A, k_{A}}-1\right) f_{A, k_{A}}=f_{3,1}+f_{A, k_{A}-1}
$$

and

$$
\begin{aligned}
b_{3,1} f_{3,1} & =2 f_{A, k_{A}+1}+f_{3,2} \\
& =2 f_{A, k_{A}}+2 f_{3,1}+f_{3,2}
\end{aligned}
$$

so

$$
\left(b_{3,1}-2\right) f_{3,1}=2 f_{A, k_{A}}+f_{3,2} .
$$

This factor of 2 must be followed through the calculation.
Lemma 4.6.4. Let $c_{A}=1$ be the strength of the line $f_{A, 0}$ out of $A^{\prime}$. The contraction of a 1 leads to a chain of contractions. Every contraction in the chain of contractions resulting from the contraction of $c_{A}$ leads to either:

$$
\begin{aligned}
& \quad a, 1, b \rightarrow a-1, b-2 \\
& \text { or } \quad \\
& \quad a, 1, b \rightarrow a-2, b-1 .
\end{aligned}
$$

Proof. Suppose we have

$$
\begin{align*}
f_{A, 0} & =f_{A, 1}+f_{4, k} \\
b_{A, 1} f_{A, 1} & =f_{A, 0}+f_{A, 2}  \tag{4.6}\\
b_{4, k} f_{4, k} & =2 f_{A, 0}+f_{4, k-1} . \tag{4.7}
\end{align*}
$$

Then contracting the 1 corresponding to $f_{A, 0}$ is equivalent to eliminating $f_{A, 0}$ in (4.6) and (4.7). This gives

$$
\begin{aligned}
\left(b_{A, 1}-1\right) f_{A, 1} & =f_{4, k}+f_{A, 2} \\
\left(b_{4, k}-2\right) f_{4, k} & =2 f_{A, 1}+f_{4, k-1} .
\end{aligned}
$$

Another contraction can be made if $b_{A, 1}-1=1$ and $b_{A, 2}>1$, or $b_{4, k}-2=1$ and $b_{4, k-1}>1$. In the first case we get

$$
\left(b_{4, k}-4\right) f_{4, k}=2 f_{A, 2}+f_{4, k-1} \quad\left(b_{A, 2}-1\right) f_{A, 2}=f_{4, k}+f_{A, 3}
$$

and in the second

$$
\left(b_{4, k-1}-1\right) f_{4, k}=2 f_{A, 1}+f_{4, k-2} \quad\left(b_{A, 1}-3\right) f_{A, 1}=f_{4, k-1}+f_{A, 2}
$$

Thus either

$$
\begin{aligned}
& \quad a, 1, b \rightarrow a-1, b-2 \\
& \text { or } \quad \\
& \quad a, 1, b \rightarrow a-2, b-1 .
\end{aligned}
$$

Example 4.6.5 (Simple Example). $\frac{1}{23}(1,1,3,18)$. The three continued fractions are

$$
\begin{aligned}
\frac{23}{23-18} & =[3,3,2,2,2] & & \text { at } e_{3} \\
\frac{23}{3} & =[8,3] & & \text { at } e_{4} \\
\frac{23}{6} & =[4,6] & & \text { at } A^{\prime} .
\end{aligned}
$$

There is no long side because 3 and 18 are coprime to 23 so the concatenation of these continued fractions is

$$
[1,4,6,1,3,3,2,2,2,1,8,3]^{\prime}
$$

The contraction of the third 1 , works exactly as in the Craw-Reid case: $a, 1, b \rightarrow$ $a-1, b-1$. Contraction of a 1 eliminates the vector marked with the 1 , and so
corresponds to deleting a regular triangle.

$$
\begin{array}{lll}
\text { Step a: } & f_{3,6}=f_{3,5}-f_{4,1}: & \rightarrow[1,4,6,1,3,3,2,2,1,7,3] \\
\text { Step b: } & f_{3,5}=f_{3,4}-f_{4,1}: & \rightarrow[1,4,6,1,3,3,2,1,6,3] \\
\text { Step c: } & f_{3,4}=f_{3,3}-f_{4,1}: & \rightarrow[1,4,6,1,3,3,1,5,3] \\
\text { Step d: } & f_{3,3}=f_{3,2}-f_{4,1}: \rightarrow[1,4,6,1,3,2,4,3]
\end{array}
$$

Contractions of the other two 1s are more complicated because $f_{3,0}=-2 f_{A, 3}$ and $f_{4,3}=-2 f_{A, 0}$. Since $3 f_{3,1}=f_{3,0}-f_{3,2}=2 f_{A, 3}-f_{3,2}$ and $6 f_{A, 2}=f_{A, 3}-f_{A, 1}$, contracting the first 1 corresponds to subtracting 2 from the strength of $f_{3,1}$ and subtracting 1 from the strength of $f_{A, 2}$ :

$$
\text { Step e: } \quad f_{A, 3}=f_{A, 2}-f_{3,1}: \quad \rightarrow[1,4,5,1,3,2,2,2,1,8,3]
$$

We now have $f_{3,2}=2 f_{A, 3}-f_{3,1}$ and this factor of 2 on $f_{A, 3}$ will appear in calculations involving $f_{3,2}$ and the results of such calculations.

$$
\text { Step f: } \quad f_{3,1}=2 f_{A, 2}-f_{3,2}: \quad \rightarrow[1,4,3,2,2,2,2,1,8,3]
$$

The calculations involving $f_{A, 0}$ are similar:

$$
\begin{array}{lll}
\text { Step g: } & f_{A, 0}=f_{A, 1}-f_{4,2}: & \rightarrow[3,6,1,3,3,2,2,2,1,8,1] \\
\text { Step h: } & f_{4,2}=2 f_{A, 1}-f_{4,1}: & \rightarrow[1,6,1,3,3,2,2,2,1,7] \\
\text { Step i: } & f_{A, 1}=-f_{4,1}+f_{A, 2}: & \rightarrow[5,1,3,3,2,2,2,1,5]
\end{array}
$$

Carrying out these steps in this order gives $[2,1,1]$ which corresponds to the halfregular triple $f_{4,1}=f_{A, 2}-f_{A, 1}$. This is not unique, but permuting the order of the steps always leads to $[2,1,1]$. If the 2 is attached to a vector out of $A^{\prime}$ we get a triple of the form $2 v_{2}=v_{1}+v_{3}$, but if the 2 is attached to a vector out of $e_{3}$ or $e_{4}$ we get a triple $2 v_{2}=2 v_{1}+2 v_{3}$, with both $v_{1}$ and $v_{3}$ vectors out of $A^{\prime}$. We also can end at $2 f_{4,2}=2 f_{A, 1}-2 f_{A, 0}, 2 f_{A, 1}=f_{4,1}-f_{4,2}, 2 f_{3,1}=2 f_{A, 3}+2 f_{A, 2}$ and $2 f_{A, 2}=f_{3,2}-f_{3,1}$. It is not possible to get to any of the regular triples $f_{3, j}=f_{3, j-1}-f_{4,1}$ for $1 \leq j \leq 4$.

Example 4.6.6 (Example with all half-regular triangles). Consider the quotient singularity $\frac{1}{57}(1,1,5,50)$. The highest common factor of 57 and 5 is 1 , so $c=23$
and $r-2 c-h=10$. The continued fractions are

$$
\begin{aligned}
& \frac{57}{10}=[6,4,2,2] \quad \text { at } A^{\prime} \\
& \frac{57}{7}=[8,2,2,2,2,2,2,2] \quad \text { at } e_{3} \\
& \frac{57}{5}=[12,2,3] \quad \text { at } e_{4} .
\end{aligned}
$$

There are no long sides as the example is coprime, so the concatenation of continued fractions is

$$
[6,4,2,2,1,8,2,2,2,2,2,2,2,1,12,2,3,1] .
$$

Contraction of the 1 on $f_{3,9}$ is exactly as in the Craw-Reid algorithm: $a, 1, b \rightarrow$ $a-1, b-1$. The contraction eliminates the vector marked with the 1 , which corresponds to deleting a regular triangle.

| Step a: | $f_{3,9}=f_{3,8}-f_{4,1}:$ | $\rightarrow[6,4,2,2,1,8,2,2,2,2,2,2,1,11,2,3,1]$ |
| :--- | :--- | :--- |
| Step b: | $f_{3,8}=f_{3,7}-f_{4,1}:$ | $\rightarrow[6,4,2,2,1,8,2,2,2,2,2,1,10,2,3,1]$ |
| Step c: | $f_{3,7}=f_{3,6}-f_{4,1}:$ | $\rightarrow[6,4,2,2,1,8,2,2,2,2,1,9,2,3,1]$ |
| Step d: | $f_{3,6}=f_{3,5}-f_{4,1}: \rightarrow[6,4,2,2,1,8,2,2,2,1,8,2,3,1]$ |  |
| Step e: | $f_{3,5}=f_{3,4}-f_{4,1}:$ | $\rightarrow[6,4,2,2,1,8,2,2,1,7,2,3,1]$ |
| Step f: | $f_{3,4}=f_{3,3}-f_{4,1}:$ | $\rightarrow[6,4,2,2,1,8,2,1,6,2,3,1]$ |
| Step g: | $f_{3,3}=f_{3,2}-f_{4,1}:$ | $\rightarrow[6,4,2,2,1,8,1,5,2,3,1]$ |
| Step h: | $f_{3,2}=f_{3,1}-f_{4,1}:$ | $\rightarrow[6,4,2,2,1,7,4,2,3,1]$. |

Contractions of the other two 1 s are more complicated because $f_{3,0}=2 f_{A, 5}$ and $f_{4,4}=2 f_{A, 0}$. Since $3 f_{4,3}=f_{4,2}+f_{4,4}=f_{4,2}-2 f_{A, 0}$ and $6 f_{A, 1}=f_{A, 2}+f_{A, 0}$, contracting the third 1 corresponds to subtracting 2 from the strength of $f_{4,3}$ and subtracting 1 from the strength of $f_{A, 1}$ :

$$
\begin{array}{lll}
\text { Step i: } & f_{A, 0}=f_{A, 1}-f_{4,3}: & \rightarrow[5,4,2,2,1,8,2,2,2,2,2,2,2,1,12,2,1] \\
\text { Step j: } & f_{4,3}=f_{4,2}-2 f_{A, 1}: & \rightarrow[3,4,2,2,1,8,2,2,2,2,2,2,2,1,12,1] \\
\text { Step k: } & f_{4,2}=f_{4,1}-2 f_{A, 1}: & \rightarrow[1,4,2,2,1,8,2,2,2,2,2,2,2,1,11] \\
\text { Step l: } & f_{A, 1}=f_{A, 2}-f_{4,1}: & \rightarrow[3,2,2,1,8,2,2,2,2,2,2,2,1,9] .
\end{array}
$$

Similarly, contracting the first 1 corresponds to subtracting 2 from the strength


Figure 4.5: Deleting half-regular triangles of $\frac{1}{57}(1,1,5,50)$
of $f_{3,1}$ and subtracting 1 from the strength of $f_{14}$ :

$$
\begin{array}{lll}
\text { Step m: } & f_{A, 5}=f_{A, 4}-f_{3,1}: \rightarrow[6,4,2,1,6,2,2,2,2,2,2,2,1,12,2,3,1] \\
\text { Step n: } & f_{A, 4}=f_{A, 3}-f_{3,1}: \rightarrow[6,4,1,4,2,2,2,2,2,2,2,1,12,2,3,1] \\
\text { Step o: } & f_{A, 3}=f_{A, 2}-f_{3,1}: \rightarrow[6,3,2,2,2,2,2,2,2,2,1,12,2,3,1] .
\end{array}
$$

Contracting in this order leaves us with $[2,1,1]$ corresponding to the half-regular triple $2 f_{A, 2}=-f_{3,1}-f_{4,1}$. This is not unique, however we are always left with $[2,1,1]$. Permuting the order of contractions leads to different half-regular triples, for example performing the contractions in this order apart from doing Step 1 after Step o leads to the triple $f_{4,1}=2 f_{A, 2}-2 f_{A, 1}$. It is not possible to permute the order to end with a regular triple $f_{3, s}=f_{3, s-1}-f_{4,1}$, for $1 \leq s \leq 8$.

Figure 4.5 shows how Steps a - o delete half-regular triangles.

### 4.7 Regular triples

In our situation regular triples arise in a slightly different way because vectors out of $A^{\prime}$ are not lattice vectors i.e. they aren't a vector between any two points of the lattice - we must take twice them.

We get the following half-regular triples:

1. $\pm v_{1} \pm v_{2} \pm v_{3}=0$. This happens if either
(a) $v_{1}$ is a vector out of $e_{i}, v_{2}, v_{3}$ are vectors out of $A^{\prime}$;
(b) $v_{1}, v_{2}, v_{3}$ are vectors out of $e_{3}$ or $e_{4}$
2. $\pm 2 v_{1} \pm v_{2} \pm v_{3}=0$, with $v_{1}$ a vector out of $A^{\prime}$ and $v_{2}, v_{3}$ vectors out of $e_{3}$ or $e_{4}$.
3. $\pm 2 v_{1} \pm 2 v_{2} \pm 2 v_{3}=0$, with $v_{1}$ a vector out of $A^{\prime}, v_{2}$ a vector along $A e_{i}$ and $v_{3}$ a vector out of $e_{j}$.

Recall that a triangles is half-regular if each of its sides is a line $L_{i j}$ extending some $\left[e_{i}, f_{i, j}\right]$ or some $\left[A^{\prime}, f_{1, j}\right]$ and the half-primitive vectors along its sides form a half-regular triple

Lemma 4.7.1. The junior simplex is partitioned into half-regular triangles.
Lemma 4.7.2. Call a chain of contractions taking a cyclic continued fraction down to $[2,1,1]$ an MMP.
i. Every contraction of $a 1$ in an MMP corresponds to a half-regular triple.
ii. For every half-regular triple of the form 1a, 2, 3 there is an MMP ending at it.
iii. Every half-regular triple appears in every MMP.

Proof. The proofs of (i) and (iii) are essentially the same as for [CR02][Lemma 2.7].
(ii) As in [CR02], if $w_{2}=2 w_{1}+w_{3}$ is a half-regular triple, then $w_{1}, 2 w_{2}, w_{3}$ and their minuses subdivide $\mathbb{R}^{2}$ into 6 basic cones. The chain of vectors $f_{i, j}$ (or $2 f_{i, j}$ ) within any cone is a non-minimal basic subdivision so contracts down.

In case (1b), $v_{1}, v_{2}, v_{3}$ are not a basis of $\mathbb{Z}^{2}$ because we cannot make the vector $f_{1,0}$ as a $\mathbb{Z}$-linear combination of them. In all other cases we have a vector out of $A^{\prime}$, so we can use this to build the other vectors out of $A^{\prime}$.
(iii) The point is that if $v_{1}, v_{2}, v_{3}$ is a half-regular triple, say $v_{3}$ can be expressed as the sum of $v_{1}$ and $2 v_{2}$ then any contraction of $v_{3}$ must involve $v_{1}$ and $2 v_{2}$. This is because the vectors $v_{1}$ and $2 v_{2}$ span a basic cone, and so $v_{3}$ must be expressible as a sum of a lattice vector from each of the cones $\left\langle v_{1}, v_{3}\right\rangle$ and $\left\langle 2 v_{2}, v_{3}\right\rangle$. Suppose in a given MMP the first of the $v_{i}$ to be affected is $v_{3}$. We know that $v_{3}=u_{1}+u_{2}$ for $u_{1} \in\left\langle v_{1}, v_{3}\right\rangle$ and $u_{2} \in\left\langle 2 v_{2}, v_{3}\right\rangle$ half-lattice vectors, but the only possible such expression is $v_{3}=v_{1}+v_{2}$.

This proves existence and uniqueness of the partition of Lemma 4.7.1.

### 4.8 The four dimensional Craw-Reid knock-out contest

The fan $\Sigma$ of $A$ - $\operatorname{Hilb}\left(\mathbb{C}^{4}\right)$ can be calculated by following a simple procedure:

1. Draw lines $L_{i j}$ emanating from the corners of $\Delta$. Record the strength $a_{i j}$ of each $L_{i j}$ determined by the Hirzebruch-Jung continued fraction rule.
2. Extend the lines $L_{i j}$ until they are 'defeated' by lines $L_{k l}$ from $e_{k}(i \neq k)$ according to the following rules

- if a line from $e_{3}$ and a line from $e_{4}$ meet at a point, the line with greater strength extends but its strength decreases by 1 .
- if a line $L_{A i}$ from $A^{\prime}$ meets a line $L_{j k}$ from $e_{j}$ then the strength of $L_{A i}$ decreases by 2 if it defeated the previous line it met from $e_{j}$, otherwise it decreases by 1 . If the strength of $L_{A i}$ decreases by 2 the strength of $L_{j k}$ decreases by 1 , otherwise it decreases by 2 . See Lemma 4.6.4. The line which now has the greater strength extends.
- if three lines meet at a point the lines $L_{3, i}$ and $L_{4, j}$ decrease in strength by 1 each due to meeting each other. Then $L_{3, i}$ decreases in strength from the meeting with $L_{A, k}$ by 1 or 2 depending on whether $L_{A, k}$ defeated the previous line it met out of $e_{3}$ or not. Similarly for $e_{4}$. The line which now has the greatest strength extends.

If at a meeting all strengths are equal then all lines die. As in three dimensions, lines of strength 2 always die.
3. Step 2 partitions $\Delta$ into half-regular triangles. There are two cases:

- if a half-regular triangle is equilateral with each side being $s$ copies of a primitive vector, for some integer $s$, (i.e. it is actually regular) then take the regular tessellation of that triangle.
- if a half-regular triangle has a vertex at $A^{\prime}$, then its sides are not all an integer multiple of a primitive vector. If the sides out of $A^{\prime}$ are only one copy of half-primitive vectors then no further tessellation of this triangle is necessary. If the sides are $r$ copies of half-primitive vectors then $r$ must be odd, say $r=2 s+1$. Cut off the triangle closest to $A^{\prime}$, by taking a step equal to the half-primitive vector along each edge
at $A^{\prime}$; these two points are joined by a copy of the primitive vector along the third side. Now subdivide the remaining trapezium into two equilateral triangles and a parallelogram. The parallelogram is formed by joining the mid-segment of the third line to the the base of the top triangle. The triangles on either side are equilateral so take their regular tessellation. The parallelogram is subdivided by drawing in all lines parallel to the third side, and subdividing each of the resulting parallelograms by joining opposite corners.

The result of this procedure is $\Sigma$. This may not be a crepant resolution. Dividing each parallelogram into two triangles rather than four gives a crepant resolution. The fan $\Sigma$ is just a blow-up of this crepant resolution.

Example 4.8.1. The singularity $\frac{1}{57}(1,1,5,50)$ was considered in Example 4.6.6. The Hirzebruch-Jung continued fraction expansions,

$$
\begin{array}{r}
\frac{57}{10}=[6,4,2,2] \quad \text { at } A^{\prime} \\
\frac{57}{50}=[2,2,2,2,2,2,2,8] \quad \text { at } e_{3} \\
\frac{57}{5}=[12,2,3] \quad \text { at } e_{4},
\end{array}
$$

and Step 1 give rise to Figure 4.6. The result of extending these lines as in Step 2 is shown in Figure 4.7. The two large triangles are then triangulated as described in Step 3. Since the vectors from $A^{\prime}$ to $p_{23}=\frac{1}{57}(23,23,1,10)$ and $p_{24}=\frac{1}{57}(24,24,6,3)$ are not primitive vectors, the triangle $A^{\prime} p_{23} p_{24}$ is cut off. The line segment $p_{23} p_{24}$ is joined to the line segment $p_{3} p_{4}$, to form a parallelogram. The parallel line segment $p_{13} p_{14}$ is inserted, and lines $p_{23} p_{14}, p_{24} p_{13}, p_{13} p_{4}, p_{14} p_{3}$ are added. Regular tessellation of the remaining triangles yields Figure 4.8. We can now form the half-regular tetrahedra by adding the vertices $e_{1}$ and $e_{2}$ to each half-regular triangle.

### 4.9 Invariant monomials

We move to $M$ the lattice of invariant monomials which is dual to $L=\mathbb{Z}^{4}+$ $\frac{1}{\mathrm{r}}(1,1, a, b) \cdot \mathbb{Z}$, and consider the dual basis of each tetrahedron in $\Sigma$.

Since our group is a subgroup of $\operatorname{SL}(4, \mathbb{C})$ the monomial xyzt is invariant, and as $x / y$ is invariant, so is $x^{2} z t$.


Figure 4.6: The result of step 1 for $\frac{1}{57}(1,1,5,50)$


Figure 4.7: The result of step 2 for $\frac{1}{57}(1,1,5,50)$


Figure 4.8: Half-regular tessellation of $A^{\prime} e_{3} e_{4}$ for $\frac{1}{57}(1,1,5,50)$

To start with, although we ultimately want the dual bases of the tetrahedra, we consider the dual bases of the triangles in the triangle $A^{\prime} e_{3} e_{4}$. We adopt the convention that we are on the $e_{2}$ side of this triangle (that is "below" $A^{\prime} e_{3} e_{4}$ ). Thus $\theta=y / x$ is an element of the dual basis and every other element will be expressed in terms of $x, z$ and $t$. Switching to the $e_{1}$ side (or "above") can be done by interchanging $x$ and $y$ in the dual basis.

Triangles containing the non-lattice point $A^{\prime}$ represent tetrahedra with both $e_{1}$ and $e_{2}$ as vertices. These triangles will be referred to as "outer" triangles, and sometimes require separate treatment.

There are five configurations of half-regular triangle are illustrated in Figure 4.9. They are

Case (a): Two lines out of $A^{\prime}$, one line out $e_{i}$, with all sides of length 1
Case (b): Two lines out of $e_{i}$, one line out of $A^{\prime}$
Case (c): Meeting of champions; one line out of each vertex
Case (d): Two lines out of $A^{\prime}$, one line out of $e_{4}$, with sides of length greater than 1

Case (e): Two lines out of $e_{3}$, one line out of $e_{4}$
Proposition 4.9.1. Every half-regular triangle of side $r$ gives rise to the invariant ratios of Figure 4.9. Moreover,

$$
\begin{array}{ll}
\text { In case (a) } & d-a=e-2 c-b=f=r \\
\text { In case (b) } & a-d=2(b-e-c)=2 f=2 r \\
\text { In case (c) } & a-d=2(b-e)=2(c-f)=2 r \\
\text { In case (d) } & a-d=b-2 c-e=f=r=2 s+1 \\
\text { In case (e) } & 2(a-d)=b-e-c=2 f=2 r \tag{4.12}
\end{array}
$$

Proposition 4.9.2. Let $l$ be any lattice lines of $\mathbb{Z}_{\Delta}^{2}$, and $\mathbf{m} \in M$ an invariant monomial that bases its orthogonal $l^{\perp} \cap M$. Then the lattice lines of $\mathbb{Z}_{\Delta}^{2}$ are orthogonal to $\mathbf{m}\left(x^{2} y z\right)^{i}$ for $i \in \mathbb{Z}$. The half-regular triangles of types 4.9(a) and 4.9(e) have side length 1.

The regular tessellations of the half-regular triangles of Figure 4.9 are cut out


Figure 4.9: Half-regular triples versus monomials
by the ratios

$$
\begin{array}{llll}
\text { In case }(a): & x: t^{c}, & z^{d}: t^{b}, & t^{e}: z^{a} \\
\text { In case }(b): & x^{a-2 i}: z^{e+i} t^{i}, & z^{b-j}: x^{d+2 j} t^{j}, & t^{f-k}: x^{2 k} z^{c+k} \\
\text { In case }(c): & x^{a-2 i}: z^{f+i} t^{i}, & z^{c-j}: x^{2 j} t^{e+j}, & t^{b-k}: x^{d+2 k} z^{k} \\
\text { In case }(e): & x^{b-2 i}: t^{d+i} z^{i}, & z^{f-j}: x^{c+2 j} t^{j}, & t^{a-k}: x^{e+2 k} z^{k}
\end{array}
$$

Corollary 4.9.3. The regular tessellations of regular triangles of Figure 4.9(d) are cut out by the ratios:

Left triangle $\quad x^{f-2 i}: z^{c+i} t^{i}, \quad z^{e+c+s-j}: x^{f-2 s+2 j} t^{a+s+j}, \quad t^{a-k}: x^{2 k} z^{e+k}$ Right triangle $x^{f-2 i}: z^{c+i} t^{i}, \quad z^{b-j}: x^{2 j} t^{d+j}, \quad t^{d+s-k}: x^{f-2 s+2 k} z^{b-c-s+k}$

The tessellations of the alleys of parallelograms are cut out by the ratios:

$$
x^{2 i} z^{e+i}: t^{a-i}, \quad z^{b-j}: x^{2 j} t^{d+j}
$$

and one of

$$
x^{f-2 s} t^{a-s}: z^{e+c+s}, z^{c+k} t^{k}: x^{f-2 k}, x^{f-2 s} z^{b-c-s}: t^{d+s}
$$

Proof of 4.9.1 and 4.9.3. Case (d)

$$
\begin{align*}
v_{1} \sim & \left(\frac{-a-e}{2}, \frac{-a-e}{2}, a, e\right) \\
v_{2} \sim & \left(\frac{-d-b}{2}, \frac{-d-b}{2}, d, b\right)  \tag{4.13}\\
& v_{3} \sim(c, c, f,-2 c-f) .
\end{align*}
$$

Claim, that

$$
\frac{1}{a b-d e}=\frac{1}{2 a c+a f+e f}=\frac{1}{2 d c+d f+b f}
$$

where the denominators are the $2 \times 2$ minors of the array given by (4.13).
Let

$$
\xi=\frac{z^{c}}{x^{f}}, \quad \eta=\frac{t^{d}}{z^{b}}, \quad \zeta=\frac{z^{e}}{t^{a}} .
$$

Then

$$
\begin{aligned}
& v_{1}(\xi)=v_{2}(\xi)=v_{3}(\zeta)=1 \\
& v_{1}(\eta)=v_{2}(\zeta)=v_{3}(\eta)=-1 .
\end{aligned}
$$

In case (d), we have $v_{2}=v_{1}+v_{3}$. Comparing coefficients we get $d=a-f$ and $b=e-2 c-f$, which are the first two equalities in (4.8).

Now,

$$
\begin{aligned}
A^{\prime} & +f v_{1} \\
& =\frac{1}{2 a c+a f+e f}\left(\frac{2 a c+a f+e f}{2}-\frac{a f+e f}{2}, \frac{2 a c+a f+e f}{2}-\frac{a f+e f}{2}, a f, e f\right) \\
& =\frac{1}{2 a c+a f+e f}(a c, a c, a f, e f) .
\end{aligned}
$$

The first three entries $a c, a c, a f$ are proportional to $c, c, f$ so lie on the third side of $R$. Therefore $r=f$.

For Corollary 4.9.3, we obtain all the ratios by taking $\xi\left(x^{2} z t\right)^{i}, \eta\left(x^{2} z t\right)^{i}, \zeta\left(x^{2} z t\right)^{i}$ and $\xi \zeta\left(x^{2} z t\right)^{j}, \eta \zeta\left(x^{2} z t\right)^{j}$. The proofs of the other cases are similar.

Let $R$ be a regular triangle of side $r$. Every basic triangle is one of two types. We use the "up" and "down" triangle terminology from [CR02]:
"up": For $i, j, k \geq 0$ with $i+j+k=r-1$, push the three sides of $R$ inwards by $i, j$ and $k$ lattice steps respectively to give a basic triangle $T$. The sides of $T$ are parallel to the sides of $R$, so that $T$ is a scaled down version of $R$.
"down": For $i, j, k \geq 0$ with $i+j+k=r+1$, push the three sides of $R$ inwards by $i, j$ and $k$ lattice steps. The resulting triangle, $T$, is a scaled down version of $R$ which has been inverted.

Corollary 4.9.4. The dual bases of basic up triangles are given by:

$$
\begin{array}{llll}
\text { In case }(a): & \xi=x / t^{c}, \quad \eta=z^{d} / t^{b}, \quad \zeta=t^{e} / z^{a} & \\
\text { In case }(b): & \xi=x^{a-2 i} / z^{e+i} t^{i}, & \eta=z^{b-j} / x^{d+2 j} t^{j}, & \zeta=t^{f-k} / x^{2 k} z^{c+k} \\
\text { In case (c): } & \xi=x^{a-2 i} / z^{f+i} t^{i}, & \eta=z^{c-j} / t^{e+j} x^{2 j}, & \zeta=t^{b-k} / x^{d+2 k} z^{k} \\
\text { In case (e): } & \xi=x^{b-2 i} / t^{d+i} z^{i}, & \eta=z^{f-j} / x^{c+2 j} t^{j}, & \zeta=t^{a-k} / x^{e+2 k} z^{k} \tag{4.14}
\end{array}
$$

with $0 \leq i, j, k<r$ and $i+j+k=r-1$.
The dual bases of down triangles are given by:

In case (b): $\quad \lambda=z^{e+i} t^{i} / x^{a-2 i}, \quad \mu=x^{d+2 j} t^{j} / z^{b-j}, \quad \nu=x^{2 k} z^{c+k} / t^{f-k}$
In case (c): $\quad \lambda=z^{f+i} t^{i} / x^{a-2 i}, \quad \mu=t^{e+j} x^{2 j} / z^{c-j}, \quad \nu=x^{d+2 k} z^{k} / t^{b-k}$
In case (e): $\quad \lambda=t^{d+i} z^{i} / x^{b-2 i}, \quad \mu=x^{c+2 j} t^{j} / z^{f-j}, \quad \nu=x^{e+2 k} z^{k} / t^{a-k}$
with $0 \leq i, j, k<r$ and $i+j+k=r+1$.
Corollary 4.9.3 gives the ratios which subdivide the half-regular triangle into two regular triangles separated by an alley of parallelograms. We will refer to the triangle to the left of this alley as a "left" triangle and the triangle to the right as a "right" triangle. Each parallelogram is divided into four pieces. These are described as "left", "right", "up" and "down". The "top" triangle is the triangle above the alley with a vertex at $A^{\prime}$.

Corollary 4.9.5. The dual bases for basic triangles of type (d) are given by: Left Up

$$
\begin{equation*}
\xi=x^{f-2 i} / z^{c+i} t^{i}, \quad \eta=z^{e+c+s-j} / x^{f-2 s+2 j} t^{a-s+j}, \quad \zeta=t^{a-k} / x^{2 k} z^{e+k} \tag{4.15}
\end{equation*}
$$

with $0 \leq i, j, k<s$ and $i+j+k=s-1$
Left Down

$$
\lambda=z^{c+i} t^{i} / x^{f-2 i}, \quad \mu=x^{f-2 s+2 j} t^{a-s+j} / z^{e+c+s-j}, \quad \nu=x^{2 k} z^{e+k} / t^{a-k}
$$

with $0 \leq i, j, k<s$ and $i+j+k=s+1$
Right Up

$$
\xi=x^{f-2 i} / z^{c+i} t^{i}, \quad \eta=z^{b-j} / x^{2 j} t^{d+j}, \quad \zeta=t^{d+s-k} / x^{f-2 s+2 k} z^{b-c-s+k}
$$

with $0 \leq i, j, k<s$ and $i+j+k=s-1$
Right Down

$$
\lambda=z^{c+i} t^{i} / x^{f-2 i}, \quad \mu=x^{2 j} t^{d+j} / z^{b-j}, \quad \nu=x^{f-2 s+2 k} z^{b-c-s+k} / t^{d+s-k}
$$

with $0 \leq i, j, k<s$ and $i+j+k=s+1$
Parallelograms
Left

$$
\begin{equation*}
\mu=x^{f-2 s} t^{a-s} / z^{e+c+s}, \quad \nu=x^{2 i} z^{e+i} / t^{a-i}, \quad \eta=z^{b-j} / x^{2 j} t^{d+j} \tag{4.16}
\end{equation*}
$$

with $i=j, 1 \leq i, j \leq s$.
Up

$$
\xi=x^{f-2 i} / z^{c+i} t^{i}, \quad \eta=z^{b-j} / x^{2 j} t^{d+j}, \quad \zeta=t^{a-k} / x^{2 k} z^{e+k}
$$

with $2 i+j+k=r-1,0 \leq i \leq s-1$ and $1 \leq j=k \leq s$.

Down

$$
\lambda=z^{c+i} t^{i} / x^{f-2 i}, \quad \nu=x^{2 k} z^{e+k} / t^{a-k}, \quad \mu=x^{2 j} t^{d+j} / z^{b-j}
$$

with $2 i+j+k=r+1,1 \leq i, j, k \leq s$ and $j=k$.
Right

$$
\nu=x^{f-2 s} z^{b-c-s} / t^{d+s}, \quad \zeta=t^{a-i} / x^{2 i} z^{e+i}, \quad \mu=x^{2 j} t^{d+j} / z^{b-j}
$$

with $i=j, 1 \leq i, j \leq s$.
Top triangle

$$
\begin{equation*}
\xi=x^{f-2 s} / z^{c+s} t^{s}, \quad \eta=z^{b} / t^{d}, \quad \zeta=t^{a} / z^{e} . \tag{4.17}
\end{equation*}
$$

Example 4.9.6. In Example 4.6 .5 we found the partition of $A^{\prime} e_{3} e_{4}$ into halfregular triangles. It is not hard to see that the only half-regular triangle which does not have side 1 is given by the triple $f_{4,1}=f_{A, 2}-f_{A, 1}$. The tetrahedron with this triangle as base and additional vertex $e_{2}$ is cut out by the ratios $z: t^{4}, z^{6}: t, y: x$ and $x^{3}: z$. The ratios cutting out the interior lines are given by

$$
x^{2 i} z^{1+i}: t^{4-i}, \quad x^{2 j} t^{1+j}: z^{6-j}, \quad x^{3-2 k}: z^{1+k} t^{2 k}, \quad z^{3}: x t^{3}, \quad x: z^{2} t, \quad x z^{4}: t^{2}
$$

for integers $0 \leq i, j, k \leq 1$. The ratios for the whole triangle $A^{\prime} e_{3} e_{4}$ (on the $e_{2}$ side) are given in Figure 4.10.

### 4.10 $\quad A$ - $\operatorname{Hilb}\left(\mathbb{C}^{4}\right)$ and $A$-clusters

Theorem 4.10.1. Let $A=\frac{1}{r}(1,1, a, b)$ be a finite subgroup of $\operatorname{SL}(4, \mathbb{C})$ with $a, b$ not both odd and which satisfies Condition 4.5.1. For every $A$-cluster $Z$, generators of the ideal $\mathcal{I}_{Z}$ can be chosen as a system of equations. Throughout $a, b, c, d, e, f, m, n \geq 0$ are integers and $\xi, \eta, \zeta, \lambda, \mu, \nu, \pi \in \mathbb{C}$ are constants. There are six cases:


Figure 4.10: The dual basis for $\frac{1}{23}(1,1,3,18)$

1. (I) "Outer triangles":

$$
\begin{gathered}
x=\xi z^{b} t^{f}, \quad y=\lambda z^{b} t^{f}, \\
z^{m+1}=\eta t^{c}, \\
t^{n+1}=\zeta z^{e}, \\
x y z t=\pi,
\end{gathered}
$$

with $\xi, \eta, \zeta, \lambda, \pi$ satisfying

$$
\xi \eta \zeta \lambda=\pi
$$

(II) Moreover the following hold:

$$
n=c+2 f, \quad m=2 b+e .
$$

2. (I) Left parallelogram triangles:

$$
\begin{align*}
x^{l+1} & =\xi z^{b} t^{f}, & z^{b+1} t^{f+1} & =\lambda x^{l-1}, \\
z^{m+1} & =\eta x^{d} t^{c}, & x t^{f+c+1} & =\mu z^{b+e+1}, \\
t^{n+1} & =\zeta x^{a} z^{e}, & x^{a+2} z^{e+1} & =\nu t^{n},  \tag{4.18}\\
x y z t & =\pi, & y & =\theta x,
\end{align*}
$$

with $\xi, \zeta, \lambda, \nu, \pi$ satisfying

$$
\xi \lambda \theta=\zeta \nu \theta=\pi,
$$

(II) Moreover the following hold:

$$
\begin{array}{ll}
\mu^{2} \nu \eta \theta=\pi, \quad \xi=\mu \nu, \quad \zeta=\mu^{2} \eta, \quad \lambda=\eta \mu  \tag{4.19}\\
l=d=a+2, \quad m=2 b+e+1, & n=2 f+c+1
\end{array}
$$

3. (I) Down parallelogram triangles:

$$
\begin{aligned}
x^{l+1} & =\xi z^{b} t^{f}, & z^{b+1} t^{f+1} & =\lambda x^{l-1} \\
z^{m+1} & =\eta x^{d} t^{c}, & x^{d+2} t^{c+1} & =\mu z^{m} \\
t^{n+1} & =\zeta x^{a} z^{e}, & x^{a+2} z^{e+1} & =\nu t^{n} \\
x y z t & =\pi, & y & =\theta x
\end{aligned}
$$

with $\eta, \zeta, \mu, \nu, \pi$ satisfying

$$
\eta \mu \theta=\zeta \nu \theta=\pi,
$$

(II) Moreover the following hold:

$$
\begin{aligned}
& \lambda^{2} \mu \nu \theta=\pi, \quad \xi=\lambda \mu \nu, \quad \zeta=\lambda^{2} \mu, \quad \eta=\lambda^{2} \nu \\
& 2 l=a+d+3, \quad m=2 b+e+2, \quad n=2 f+c+1
\end{aligned}
$$

4. (I) Up parallelogram triangles:

$$
\begin{aligned}
x^{l+1} & =\xi z^{b} t^{f}, & z^{b+1} t^{f+1} & =\lambda x^{l-1} \\
z^{m+1} & =\eta x^{d}, & x t^{f+c+1} & =\mu z^{b+e} \\
t^{n+1} & =\zeta x^{a}, & x z^{b+e+1} & =\nu t^{f+c} \\
x y z t & =\pi, & y & =\theta x
\end{aligned}
$$

with $\xi, \zeta, \lambda, \nu, \pi$ satisfying

$$
\xi \lambda \theta=\zeta \nu \theta=\pi
$$

(II) Moreover the following hold:

$$
\begin{array}{ll}
\xi^{2} \eta \zeta \theta=\pi, & \lambda=\xi \eta \zeta, \quad \mu=\xi \zeta, \quad \nu=\xi \eta \\
2 l=a+d, & m=2 b+e, \quad n=2 f+c
\end{array}
$$

5. (I) Right parallelogram triangles:

$$
\begin{array}{rr}
x^{l+1}=\xi z^{b} t^{f}, & z^{b+1} t^{f+1}=\lambda x^{l-1}, \\
z^{m+1}=\eta x^{d} t^{c}, & x^{d+2} t^{c+1}=\mu z^{m}, \\
t^{n+1}=\zeta x^{a} z^{e}, & x z^{b+e+1}=\nu t^{c+f+1}, \\
x y z t=\pi, & y=\theta x,
\end{array}
$$

with $\xi, \eta, \lambda, \mu, \pi$ satisfying

$$
\xi \lambda \theta=\eta \mu \theta=\pi
$$

(II) Moreover the following hold:

$$
\begin{aligned}
& \lambda \mu \nu \theta=\pi, \quad \xi=\mu \nu, \eta=\lambda \nu, \lambda=\nu \zeta \\
& l=a=d+2, \quad m=2 b+e+1, \quad n=2 f+c+1
\end{aligned}
$$

6. (I) All other interior triangles:

$$
\begin{align*}
& x^{l+1}=\xi z^{b} t^{f}, \quad z^{b+1} t^{f+1}=\lambda x^{l-1}, \\
& z^{m+1}=\eta x^{d} t^{c}, \quad x^{d+2} t^{c+1}=\mu z^{m},  \tag{4.20}\\
& t^{n+1}=\zeta x^{a} z^{e}, \quad x^{a+2} z^{e+1}=\nu t^{n}, \\
& x y z t=\pi, \quad y=\theta x,
\end{align*}
$$

with $\xi, \eta, \zeta, \lambda, \mu, \nu, \pi$ satisfying

$$
\begin{equation*}
\xi \lambda \theta=\eta \mu \theta=\zeta \nu \theta=\pi \tag{4.21}
\end{equation*}
$$

(II) Moreover, exactly one of the following hold:

$$
\begin{gathered}
\text { "up" }\left\{\begin{array}{l}
\xi \eta \zeta \theta=\pi, \quad \lambda=\eta \zeta, \quad \mu=\xi \zeta, \quad \nu=\xi \eta, \\
l=a+d+1, \quad m=e+b, \quad n=f+c
\end{array}\right. \\
\text { "down" }\left\{\begin{array}{l}
\lambda \mu \nu \theta=\pi, \quad \xi=\nu \mu, \quad \zeta=\lambda \mu, \quad \eta=\lambda \nu \\
l=a+d+3, \quad m=e+b, \quad n=f+c
\end{array}\right.
\end{gathered}
$$

A basic monomial $\mathbf{m}$ is the nonzero image in $\mathcal{O}_{Z}=k[x, y, z, t] / I_{Z}$ of a monomial which is not an invariant monomial. Basic monomials cannot be a multiple of $x y z t, x^{2} z t$ or $y^{z} t$, so must be a multiple of at most three of $x, y, z, t$. Since $x$ and $y$ are in the same eigenspace they cannot be a multiple of $x y$ either.

The following lemma is required for the proof of Theorem 4.10.1.
Lemma 4.10.2. [CR02] Let $x^{r}$ be the first power of $x$ that is $A$-invariant. Then there is (at least) one $l \in[0, r-1]$ such that $1, x, x^{2}, \ldots, x^{l} \in \mathcal{O}_{Z}$ are basic monomials and $x^{l+1}$ is a multiple of some basic monomial $z^{b} t^{f}$ in the same eigenspace, say $x^{l+1}=\xi z^{b} t^{f}$ for some $\xi \in \mathbb{C}$.

The proof of Lemma 4.10.2 is as in [CR02], but with the additional observation that for $l>0$ the monomial $x^{l+1}$ cannot be expressed as a multiple of $y$ since $y=\theta x$, so $y=0 \in \mathcal{O}_{Z}$. If $l=0$ then either $x=\theta y$ or $x=\xi z^{b} t^{f}$.

Proof of 4.10.1. We have $x y z t=\pi$ since $A \in \operatorname{SL}(4, \mathbb{C})$ for $\pi \in \mathbb{C}$. Also since $A=\frac{1}{r}(1,1, a, b)$ we must have $x$ and $y$ in the same eigenspace, so if $x, y \neq 0 \in \mathcal{O}_{Z}$ then there is a relation $y=\theta x$ for some $\theta \in \mathbb{C}$. If $x, y=0 \in \mathcal{O}_{Z}$ then $x=\xi z^{b} t^{f}$ and $y=\lambda z^{b} t^{f}$.

By Lemma 4.10.2, $x^{l+1}$ and $y^{b} t^{f}$ belong to a common eigenspace and, since $x^{2} z t$ is invariant, $x^{l-1}$ and $z^{b+1} t^{f+1}$ also belong to a common eigenspace. Now $x^{l-1}$ is basic so this eigenspace is based by $x^{l-1}$ which gives the relation $z^{b+1} t^{f+1}=\lambda x^{l-1}$.

To see the equation $\xi \lambda \theta=\pi$ first note the syzygy $(x y z t-\pi)-(x z t)(y-$ $\theta x)=\theta x^{2} z t-\pi=h_{1}$. Now using this and the relations $h_{2}=x^{l+1}-\xi z^{b} t^{f}$ and $h_{3}=z^{b+1} t^{f+1}-\lambda x^{l-1}$ in the syzygy $\lambda \theta h_{2}+\theta x^{2} h_{3}-z^{b} t^{f} h_{1}$ gives $\xi \lambda \theta z^{b} t^{f}=\pi z^{b} t^{f}$ as required.

The relations are in pairs $x^{l+1} \mapsto z^{b} t^{f}, z^{b+1} t^{f+1} \mapsto x^{l-1}$. The first relation reduces the pure powers of $x$ higher than $l$. Suppose there is another relation of the form $x^{\alpha} z^{\epsilon} \mapsto \mathbf{m}$. If $\mathbf{m}$ involves $x, y$ or $z$ this relation would be a multiple of a simpler relation. However, if $\mathbf{m}=t^{\gamma}$ is a pure power of $t$, the above argument
shows that this relation is paired with $t^{\gamma} \mapsto x^{\alpha-1} z^{\epsilon-1}$ which contradicts our choice of $n$ (in the exponent of $t^{n+1}$ ).

For the left parallelogram triangles the relations involving $\eta, \mu, \nu, \theta$ generate the others. In this situation we prove that there are a pair of relations of the form

$$
x^{l+1}=\xi z^{b} t^{f}, \quad z^{b+1} t^{f+1}=\lambda x^{l-1}
$$

such that $\xi=\mu \eta$ and $\lambda=\eta \mu$.
Consider the left parallelogram triangles. We have

$$
x^{a+3} t^{f+c+1} \mapsto \mu x^{a+2} z^{b+e+1} \mapsto \mu \nu z^{b} t^{n} .
$$

Then $x^{a+3} t^{f+c+1}$ and $z^{b} t^{n}$ are in the same eigenspace, so if $n \geq f+c+1$ there is a relation

$$
x^{a+3}=\mu \nu z^{b} t^{n-f-c-1}
$$

and since this is basic, the argument above means that there is a unique equation of this form. Thus $\xi=\mu \nu, l=a+2$ and $n=2 f+c+1$. Also

$$
z^{m+1} t^{f+1} \mapsto \eta x^{d} t^{f+c+1} \mapsto \eta \mu x^{d-1} z^{b+e+1}
$$

so if $b+e \leq m$ then we have the relation

$$
z^{m-b-e} t^{f+1}=\eta \mu x^{d-1}
$$

This is again basic, so must equal $z^{b+1} t^{n-f-c}=\lambda x^{a+1}$. Thus $\lambda=\eta \mu$ and $l=d=$ $a+2$ and $m=2 b+e+1$.

If $n<f+c+1$ we have

$$
x^{a+3} t^{f+c+1-n}=\mu \nu z^{b}
$$

which contradicts the choice of $m$. In the same way $m+1<b+e+1$ is not allowed.

A similar argument proves the relations of (II) for the other interior triangles.

Theorem 4.10.3. Let $\Sigma$ denote the toric fan determined by the tessellation described in Section 4.8 of all half-regular triangles in the junior simplex $\Sigma$. The associated toric variety is the $A$-Hilbert scheme $A$ - $\operatorname{Hilb}\left(\mathbb{C}^{3}\right)$.

Proof. We do this in a few cases. The proofs for the other cases are similar. Case (c) "up": Substituting $d, e, f$ using (4.10), and replacing $a, b, c$ with $A, B, C$ respectively in (4.14) gives

$$
x^{A-2 i}=\xi z^{C-r+i} t^{i}, \quad z^{C-j}=\eta t^{B-r+j} x^{2 j}, \quad t^{B-k}=\zeta x^{A-2 r-2 k} z^{k} .
$$

Let $y=\theta x$. Then we see that

$$
\begin{aligned}
x^{A-2 i} & =\xi z^{C-r+i} t^{i}, & z^{C-j-k} t^{r-j-k} & =\eta \zeta x^{A+2 j+2 k-2 r}, \\
z^{C-j} & =\eta t^{B-r+j} x^{2 j}, & x^{2 r-2 i-2 k} t^{B-i-k} & =\xi \zeta z^{C-r+i+k}, \\
t^{B-k} & =\zeta x^{A-2 r+2 k} z^{k}, & x^{A-2 i-2 j} z^{r-i-j} & =\xi \eta t^{B-r+i+j}, \\
x y z t & =\xi \eta \zeta \theta, & y & =\theta x .
\end{aligned}
$$

which are exactly the "up" version of equations (4.20), since $i+j+k=r-1$, with $l=A-2 i-1, b=C-r+i, f=i$ etc.
Left "up" triangles: Replacing $a, c, e, f$ with $A, C, E, F$ respectively in (4.15), and letting $y=\theta x$ gives

$$
\begin{aligned}
x^{F-2 i} & =\xi z^{C+i} t^{i}, & z^{C+i+1} t^{i+1} & =\eta \zeta x^{F+2 i-2}, \\
z^{E+C+s-j} & =\eta x^{F-2 s+2 j} t^{A-s+j}, & x^{F-2 i-2 k} t^{A-k-i} & =\xi \zeta z^{C+E+k+i}, \\
t^{A-k} & =\zeta x^{2 k} z^{E+k}, & x^{2+2 k} z^{E+k+1} & =\xi \eta t^{A-k-1}, \\
x y z t & =\xi \eta \zeta \theta, & y & =\theta x .
\end{aligned}
$$

which are exactly the "up" version of equations (4.20) with $l=F-2 i, b=$ $C+i, f=i$ etc.
Left parallelogram triangles: Equation (4.16) with $d, e, f$ substituted using (4.11), and replacing $a, b, c$ with $A, B, C$ respectively gives

$$
\begin{aligned}
x^{1+2 i} & =\mu \nu t^{s-i} z^{C+s-i}, & z^{C+s+1-j} t^{s+1-j} & =\mu \eta x^{2 j-1}, \\
z^{B-j} & =\eta x^{2 j} t^{A-2 s-1+j}, & x t^{A-s} & =\mu z^{B-C-s}, \\
t^{A+1-j} & =\mu^{2} \eta x^{2+2 j} z^{B-2 C-s-2+j}, & t x^{2 i} z^{B-2 C-2 s-1+i} & =\nu t^{A-i}, \\
x y z t & =\mu^{2} \eta \nu \theta, & y & =\theta x .
\end{aligned}
$$

which are exactly the equations (4.18) with $l=1+2 i, b=C+s-i, f=s-i$ etc.

We now prove the converse.

All other interior triangles: In the "up" case these are generated by the equations

$$
x^{a+d+2}=\xi z^{b} t^{f}, \quad z^{e+b+1}=\eta x^{d} t^{c}, \quad t^{f+c+1}=\zeta x^{a} z^{e}, \quad y=\theta x
$$

Let $b=C+i, f=i, d=F-2 s+2 j, c=A-s+j, a=2 k, e=E+k$. Then we have

$$
\begin{aligned}
x^{F-2 s+2 j+2 k+2} & =\xi z^{C+i} t^{i}, & z^{C+E+i+k+1} & =\eta x^{F-2 s-2 j} t^{A-s+j}, \\
t^{A-s+i+j+1} & =\zeta x^{2 k} z^{E+k}, & y & =\theta x,
\end{aligned}
$$

which are the equations of (4.15) if $i+j+k=s-1$.
Left parallelogram triangles: These are generated by the equations

$$
z^{2 b+e+2}=\eta x^{d} t^{c}, \quad x t^{2 f+c+1}=\mu z^{b+e+1}, \quad x^{a+2} z^{e+1}=\nu t^{2 f+c+1}, \quad y=\theta x
$$

Let $a=2 i-2, b=C+s-i, c=D+j, e=E+i-1, f=A-D-s-j-1$. Then we have

$$
\begin{aligned}
z^{2 C+E+2 s-i+1} & =\eta x^{2 i} t^{D+j}, & x t^{A-s} & =\mu z^{C+E+s}, \\
x^{2 i} z^{E+i} & =\nu t^{2 A-D-2 s-j-1}, & y & =\theta x,
\end{aligned}
$$

which are the equations of (4.16) if $i=j, B-2 C-E=2 s+1, A-D=2 s+1$ and $F=2 s+1$.
"Outer triangles": These are generated by the equations

$$
\begin{equation*}
x=\xi z^{b} t^{f}, \quad y=\lambda z^{b} t^{f}, \quad z^{2 b+e+1}=\eta t^{c}, \quad t^{c+2 f+1}=\zeta z^{e} . \tag{4.22}
\end{equation*}
$$

Let $b=C+s, f=s, c=D, e=E$. Then we have

$$
\begin{aligned}
x & =\xi z^{C+s} t^{s}, & y & =\lambda z^{C+s} t^{s}, \\
z^{2 C+E+2 s+1} & =\eta t^{D}, & t^{D+2 s+1} & =\zeta z^{E} .
\end{aligned}
$$

which are the equations of (4.9.5) if $A-D=2 s+1$ and $B-2 C-E=2 s+1$.
We can now prove

Theorem 4.5.3. There exists a crepant resolution if and only Condition 4.5.1 is satisfied.

Proof. We have already proved that the condition is necessary in section 4.5. To prove the converse we calculate the toric fan, $\Sigma$, as described above. Contracting $\Sigma$ at the age two points (i.e. the crossing points of the diagonals of the parallelograms) gives a crepant resolution of $\mathbb{C}^{4} / A$.

## Bibliography

[BGS95] Catherine Bouvier and Gérard Gonzalez-Sprinberg. Système générateur minimal, diviseurs essentiels et $G$-désingularisations de variétés toriques. Tohoku Math. J. (2), 47(1):125-149, 1995.
[BKR01] Tom Bridgeland, Alastair King, and Miles Reid. The McKay correspondence as an equivalence of derived categories. J. Amer. Math. Soc., 14(3):535-554, 2001.
[BM94] J. Bertin and D. Markushevich. Singularités quotients non abéliennes de dimension 3 et variétés de Calabi-Yau. Math. Ann., 299(1):105116, 1994.
[Che55] Claude Chevalley. Invariants of finite groups generated by reflections. Amer. J. Math., 77:778-782, 1955.
[CL09] Thomas Christof and Andreas Löbel. PORTA - Polyhedron representation transformation algorithm. Version 1.4.1, available at http://typo.zib.de/opt-long_projects/Software/Porta/, 2009.
[CR02] Alastair Craw and Miles Reid. How to calculate $A$-Hilb $\mathbb{C}^{3}$. In $G e$ ometry of toric varieties, volume 6 of Sémin. Congr., pages 129-154. Soc. Math. France, Paris, 2002.
[DHH98] Dimitrios I. Dais, Utz-Uwe Haus, and Martin Henk. On crepant resolutions of 2-parameter series of Gorenstein cyclic quotient singularities. Results Math., 33(3):208-265, 1998.
[DHVW85] L. Dixon, J. A. Harvey, C. Vafa, and E. Witten. Strings on orbifolds. Nuclear Phys. B, 261(4):678-686, 1985.
[DHVW86] L. Dixon, J. Harvey, C. Vafa, and E. Witten. Strings on orbifolds. II. Nuclear Phys. B, 274(2):285-314, 1986.
[DHZ98] Dimitrios I. Dais, Martin Henk, and Günter M. Ziegler. All abelian quotient C.I.-singularities admit projective crepant resolutions in all dimensions. Adv. Math., 139(2):194-239, 1998.
[DHZ06] Dimitrios I. Dais, Martin Henk, and Günter M. Ziegler. On the existence of crepant resolutions of Gorenstein abelian quotient singularities in dimensions $\geq 4$. In Algebraic and geometric combinatorics, volume 423 of Contemp. Math., pages 125-193. Amer. Math. Soc., Providence, RI, 2006.
[Fir97] Robert T. Firla. Algorithmen für Hilbert-Cover- und Hilbert-Partitions-Probleme. PhD thesis, TU Berlin, Faculty of Mathematics, TU Berlin, 1997.
[Ful93] William Fulton. Introduction to toric varieties, volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry.
[FZ99] Robert T. Firla and Günter M. Ziegler. Hilbert bases, unimodular triangulations, and binary covers of rational polyhedral cones. Discrete Comput. Geom., 21(2):205-216, 1999.
[GSV83] G. Gonzalez-Sprinberg and J.-L. Verdier. Construction géométrique de la correspondance de McKay. Ann. Sci. École Norm. Sup. (4), 16(3):409-449 (1984), 1983.
[IN96] Yukari Ito and Iku Nakamura. McKay correspondence and Hilbert schemes. Proc. Japan Acad. Ser. A Math. Sci., 72(7):135-138, 1996.
[IN00] Yukari Ito and Hiraku Nakajima. McKay correspondence and Hilbert schemes in dimension three. Topology, 39(6):1155-1191, 2000.
[IR96] Yukari Ito and Miles Reid. The McKay correspondence for finite subgroups of SL(3, C). In Higher-dimensional complex varieties (Trento, 1994), pages 221-240. de Gruyter, Berlin, 1996.
[Ito95a] Yukari Ito. Crepant resolution of trihedral singularities and the orbifold Euler characteristic. Internat. J. Math., 6(1):33-43, 1995.
[Ito95b] Yukari Ito. Gorenstein quotient singularities of monomial type in dimension three. J. Math. Sci. Univ. Tokyo, 2(2):419-440, 1995.
[Knö85] Horst Knörrer. Group representations and the resolution of rational double points. In Finite groups - coming of age (Montreal, Que., 1982), volume 45 of Contemp. Math., pages 175-222. Amer. Math. Soc., Providence, RI, 1985.
[Mar97] Dimitri Markushevich. Resolution of $\mathbf{C}^{3} / H_{168}$. Math. Ann., 308(2):279-289, 1997.
[McK80] John McKay. Graphs, singularities, and finite groups. In The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), volume 37 of Proc. Sympos. Pure Math., pages 183186, Providence, R.I., 1980. Amer. Math. Soc.
[MOP87] D. G. Markushevich, M. A. Olshanetsky, and A. M. Perelomov. Description of a class of superstring compactifications related to semisimple Lie algebras. Comm. Math. Phys., 111(2):247-274, 1987.
[Nak01] Iku Nakamura. Hilbert schemes of abelian group orbits. J. Algebraic Geom., 10(4):757-779, 2001.
[Rei80] Miles Reid. Canonical 3-folds. In Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, pages 273310. Sijthoff \& Noordhoff, Alphen aan den Rijn, 1980.
[Rei87] Miles Reid. Young person's guide to canonical singularities. In Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), volume 46 of Proc. Sympos. Pure Math., pages 345-414. Amer. Math. Soc., Providence, RI, 1987.
[Roa89] Shi-Shyr Roan. On the generalization of Kummer surfaces. J. Differential Geom., 30(2):523-537, 1989.
[Roa94] Shi-Shyr Roan. On $c_{1}=0$ resolution of quotient singularity. Internat. J. Math., 5(4):523-536, 1994.
[Roa96] Shi-Shyr Roan. Minimal resolutions of Gorenstein orbifolds in dimension three. Topology, 35(2):489-508, 1996.
[ST54] G. C. Shephard and J. A. Todd. Finite unitary reflection groups. Canadian J. Math., 6:274-304, 1954.
[Wat74] Keiichi Watanabe. Certain invariant subrings are Gorenstein. I. Osaka J. Math., 11:1-8, 1974.

