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Abstract

The aim of this thesis is to improve our understanding of when crepant resolutions

exist in dimension four.

In three dimensions [BKR01] proved that for any finite subgroup G ⊂ SL(3,C)

the G-Hilbert scheme G-Hilb(C3) gives a crepant resolution of the quotient sin-

gularity C3/G.

In four dimensions very little is known about when crepant resolutions exist.

In this thesis I present several approaches to this problem. I give an algorithm

which determines, for quotients by cyclic subgroups of SL(4,C) whether or not

a crepant resolution exists. This algorithm seeks to find a crepant resolution by

performing a tree search.

In Chapter 4, building on the work of [CR02] in three dimensions, I calculate

the A-Hilbert scheme for a family of abelian subgroups A ⊂ SL(4,C). I show

that this can be used to find a crepant resolution of C4/A.



Chapter 1

Introduction

In this thesis I discuss approaches to finding crepant resolutions for four dimen-

sional abelian quotient singularities C4/A for A ⊂ SL(4,C) a finite abelian group.

In this chapter I discuss the background to the problem and review some defini-

tions which I will use in later chapters. I give an overview of Craw and Reid’s

paper [CR02] on which the work of Chapter 4 is based.

1.1 Background

In 1978 McKay [McK80] observed a connection between the representation the-

ory of finite subgroups G ⊂ SL(2,C) and the resolution of surface singularities

arising from the quotient of C2 by the action of G. Namely, there is a one-to-one

correspondence between the nontrivial irreducible representations of G and the

exceptional prime divisors of the resolution f : Y → C2/G.

McKay’s observation was proved by Gonzalez-Springberg and Verdier [GSV83]

and independently by Knörrer [Knö85]; both proofs use case analysis based on

the classification of finite subgroups of SL(2,C).

Interest in a three dimensional version of the McKay correspondence started

when Dixon, Harvey, Vafa and Witten introduced the orbifold Euler number

[DHVW85], [DHVW86]. This motivated the work of Ito, Markushevich and Roan

[Ito95a, Ito95b, BM94, MOP87, Mar97, Roa89, Roa94, Roa96] whose papers to-

gether give a case-by-case proof, using the classification of finite subgroups of

SL(3,C), that there exist crepant resolutions f : X̃ → X = C3/G such that the

orbifold Euler numbers χ(X̃) = χ(X).

In 1992 Reid, see [IR96], made the following conjecture

Conjecture 1.1.1. Let G ⊂ SL(n,C) be a finite subgroup. X = Cn/G the quo-

10



1.1. Background 11

tient space and f : Y → X a crepant resolution. Then there exists a basis of

H∗(Y,Q) consisting of algebraic cycles in one-to-one correspondence with conju-

gacy classes of G.

Let R be any common multiple of the orders of all g in G, µR the group of

complex Rth roots of unity and Γ = Hom(µR, G). Ito and Reid [IR96] prove that

there is a canonical one-to-one correspondence between junior conjugacy classes

in Γ and crepant discrete valuations of X . They go on to prove the conjecture

in the case n = 3. This gives a direct proof of the formula for the orbifold Euler

number.

The introduction of the G-Hilbert scheme by Ito and Nakamura [IN96] pro-

vided a new way of finding resolutions. They prove that for finite G ⊂ SL(2, C)

it is the minimal resolution of C2/G. Nakamura [Nak01] goes on to prove that for

G a finite abelian subgroup of SL(3,C), a smooth crepant resolution of C3/G is

given by HilbG(C3). Craw and Reid [CR02] explain how to calculate A-Hilb(C3)

explicitly, where A denotes a finite abelian subgroup of SL(3,C). The same result

is proved by Bridgeland, King and Reid [BKR01] for any (not necessarily abelian)

subgroup of SL(3,C).

Ito and Nakajima [IN00] use the G-Hilbert scheme to give a general existence

proof in two dimensions.

At the same time Dais et al. use toric geometry to investigate the existence

problem:

Existence Problem: For which G ⊂ SL(n,C) with n ≥ 4 do there exist

(projective) crepant resolutions of Cn/G?

They prove the existence of a crepant resolution for several families of exam-

ples: existence is proved for complete intersections of hypersurfaces [DHZ98], a

necessary and sufficient condition is given in [DHH98] for cyclic quotient singular-

ities of the the form 1
r
(1, 1, . . . , a, r−a− (n−2)) in SL(n,C), and [DHZ06] proves

some necessary conditions on quotient singularities and gives more examples of

cyclic quotient singularities. One of these necessary conditions is

Condition 1.1.2. Every point of age n ≥ 2 must be expressible as the sum of n

age 1 points.

Work of Firla and Ziegler [FZ99] shows that this condition is not sufficient.

They give several examples of rational convex cones which do not admit a Hilbert

partition: these cones are toric fans of quotient singularities, where non-admittance

of a Hilbert partition is equivalent to non-existence of a crepant resolution.
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1.2 Quotient singularities

We begin by stating some well known definitions.

Let G ⊂ GL(n,C) be a finite subgroup. Let Cn/G = SpecC[x1, . . . , xn]
G

denote the variety given by the quotient of Cn by the action of G on it.

A quasi-reflection is an element g ∈ GL(n,C) of finite order such that g − In

has rank 1.

A finite subgroup G ⊂ GL(n,C) is small if it contains no quasi-reflections.

A theorem of Chevalley and Shepard-Todd, [ST54], [Che55], means we need only

consider small subgroups of GL(n,C).

A variety X is Gorenstein if it is Cohen–Macaulay and the canonical sheaf ωX

is invertible.

Proposition 1.2.1 ([Wat74]). Let G ⊂ GL(n,C) be a small subgroup. Then

Cn/G is Gorenstein if and only if G ⊂ SL(n,C).

A variety X has a resolution of singularities if there exists a proper birational

morphism f : Y → X such that Y is nonsingular.

Definition 1.2.2 ([Rei87]). A variety X has canonical singularities if it satisfies

the following two conditions:

1. for some integer r ≥ 1 the Weil divisor rKX is Cartier.

2. if f : Y → X is a resolution of X and {Ei} the family of all exceptional

prime divisors of f , then

rKY = f ∗(rKX) +
∑

i

aiEi, with ai ≥ 0.

If every ai > 0 then X is said to have terminal singularities.
∑

aiEi is called the discrepancy of f . If all the ai = 0 then f is called a

crepant resolution.

For G a finite subgroup of SL(n,C), the quotient space X = Cn/G has canoni-

cal divisor KX = 0. Under these conditions, if the resolution f : Y → X is crepant

then KY = f ∗(KX) = 0.

Proposition 1.2.3 ([Rei80]). Gorenstein quotient singularities are canonical.
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Theorem 1.2.4 ([Rei80]). Let G ⊂ GL(n,C) be a finite group acting linearly on

Cn. Suppose G has no quasi-reflections, so that the map Cn → Cn/G = X is étale

in codimension 1. Then X is canonical if and only if for every element g ∈ G of

order r, and ǫ any primitive root of 1, the diagonal form of the action of g is

g : xi → ǫaixi

such that 0 ≤ ai < r with
∑

ai ≥ r. We will denote such an element g by
1
r
(a1, . . . , an).

Remark 1.2.5. X is Gorenstein if and only if
∑

ai ≡ 0 mod r.

From now on we will only consider abelian subgroups of SL(n,C). This means

all our varieties are toric.

For a group G =
〈

1
r
(a1, . . . , an)

〉

we consider lattices of the form L = Zn +
1
r
(a1, . . . an) ⊃ Zn. Let M = Hom(L,Z) be the dual lattice of L. This is the

lattice of invariant monomials.

A strongly convex rational polyhedral cone in LR is a cone σ, with vertex at

the origin, which is generated over R≥0 by a finite number of vectors of L.

If σ is a cone in L, the dual cone in M is the set

σ∨ = {m ∈ MR|〈m, u〉 ≥ 0 ∀u ∈ σ}.

Proposition 1.2.6 ([Ful93]). An affine toric variety Uσ is nonsingular if and

only if the cone σ is generated by part of a basis for the lattice L, in which case

Uσ
∼= Ck × (C∗)(n−k), k = dim(σ).

A cone is called nonsingular if it is generated by part of a basis for the lattice.

Definition 1.2.7. [IR96] Let L = Zn + 1
r
(a1, . . . , an) · Z be a lattice. Define the

age of a point (b1, . . . , bn) of L to be

n
∑

i=1

bi.

Since all of our groups are in SL(n,C) the age of every lattice point will be an

integer. We call the points with age 1 junior points.

We denote by a the integer a mod r, where r is the order of the group G,

unless otherwise stated. The junior points of L are the points 1
r
(ka1, ka2, . . . , kan),
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for 1 ≤ k < r, such that 1
r

∑n

i=1 kai = 1, together with the points

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

Let G =
〈

1
r
(a1, . . . , an)

〉

. If a1 = 1, for each 1 ≤ b1 < r there us a unique junior

point in L with first coordinate b1. Thus, we refer to the junior points
1
r
(b1, . . . , bn)

as pb1 .

These points all lie on the plane x1+ · · ·+xn = 1. We refer to the intersection

of this plane with the first orthant as the junior simplex. In dimension four this

is a tetrahedron whose vertices are the points e1, e2, e3, e4.

Remark 1.2.8. In toric geometry it is well known that a crepant resolution

f : Y → X is a toric fan of Y whose 1-skeleton consists only of junior points. See

for example [Rei87]. That is, every cone is generated by part of the basis of the

lattice (we say it is a basic cone) and this basis consists of rays generated by the

junior points. Thus a crepant resolution of X = Cn/G is a triangulation of the

junior simplex into r simplices of relative volume 1, where r is the order of the

group G.

In the four dimensional case, if p1p2p3p4 is a simplex its volume is 1
4!
times the

determinant of the matrix (pi,j) which is the volume of the parallelepiped with

vertices p1, p2, p3, p4, where pi,j denotes the jth coordinate of pi.

In toric geometry the addition of a ray through a point p in the interior of a

cone corresponds to performing a blow-up at the point p.

Let G be the group generated by 1
r
(1, a) and let L = Z2 + 1

r
(1, a) · Z be a

lattice. The Hirzebruch-Jung continued fraction r
a
is defined to be

r

a
= b1 −

1

b2 −
1

b3 − · · · −
1

bk

We will use the notation [b1, b2, . . . , bk] for the Hirzebruch-Jung continued fraction

of r
a
.

For fi ∈ L we have

fi−1 + fi+1 = bifi,

where f0 = 1
r
(0, r), f1 = 1

r
(1, a), fk+1 = 1

r
(r, 0). The fi generate rays which give

the toric fan of the resolution of C2/G.
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1
5
(4, 1)

1
5
(3, 2)

1
5
(2, 3)

1
5
(1, 4)

(1, 0)

(0, 1)

Figure 1.1: The Newton polygon for 1
5
(1, 4)

Example 1.2.9. Let G be the group generated by 1
5
(1, 4) and L be the lattice

Z2 + 1
5
(1, 4) · Z. The Hirzebruch-Jung continued fraction is 5

4
= [2, 2, 2, 2] with

f0 = (0, 1), f1 =
1

5
(1, 4), f2 =

1

5
(2, 3), f3 =

1

5
(3, 2)

f4 =
1

5
(4, 1), f5 = (1, 0).

This gives the Newton polygon of Figure 1.1. Passing to the lattice M of invariant

monomials we see that the dual cone of 〈(1, 4), (2, 3)〉 has basis α = x4/y, β =

y2/x3, on which (1,4) and (2,3) are positive. The ideal I = (x4 = αy, y2 = βx3)

defines an affine piece of the resolution. The other four affine pieces can be

calculated in the same way.

1.3 The G-Hilbert scheme

Let G be a finite subgroup of SL(n,C). A G-cluster is a G-invariant zero-

dimensional subscheme Z ⊂ Cn with global sections H0(Z,OZ) isomorphic as a

C[G]-module to the regular representation ofG. TheG-Hilbert scheme,G-Hilb(Cn),

is the moduli space of G-clusters.

Example 1.3.1. Let G be the group generated by

(

ǫ 0

0 ǫ4

)

,
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with ǫ5 = 1. Since G acts on C2 by

x 7→ ǫx

y 7→ ǫ4y

this action leaves the monomials x5, xy and y5 invariant.

We wish to pick a monomial in each eigenspace of the group action. That is,

for each 0 ≤ i ≤ 4, a monomial u which is sent to ǫiu. An obvious choice would

be the monomials {1, x, x2, x3, x4}.

1 x x2 x3 x4 x5

y

Figure 1.2: A cluster of 1
5
(1, 4)

The remaining monomials of C[x, y] are in the ideal 〈x5, y〉. We have relations

x5 = α, y = βx4 and xy = γ, with γ = αβ. Thus α = x5 and β = y/x4 are local

coordinates on a copy of C2. The cluster is illustrated in Figure 1.2.

The ideal I = 〈x5 = α, y = βx4〉 defines a G-cluster:

Z = Spec(C[x, y]/〈I〉)

with

H0(Z,Oz) = C[x, y]/I.

This is isomorphic to the regular representation of G.

Other choices of relations give the different clusters:

x4 = αy,

x3 = αy2,

x2 = αy3,

x = αy4,

y2 = βx3,

y3 = βx2,

y4 = βx,

y5 = β,

xy = γ

xy = γ

xy = γ

xy = γ.

Thus we have found five G-clusters, see Figure 1.3, which give us G-Hilb(C2).

These are exactly the dual cones of the cones of Example 1.2.9 shown in Figure

1.1.
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1 x x2 x3 x4 1 x x2 x3

y

1 x x2

y
y2

1 x

y
y2
y3

1

y
y2
y3
y4

Figure 1.3: All clusters of 1
5
(1, 4)

1.4 Calculating A-Hilb(C3)

In 1999 Craw and Reid [CR02] gave an explicit construction of the G-Hilbert

scheme for abelian subgroups of SL(3,C). This description of their construction

follows [CR02] closely.

Let A ⊂ SL(3,C) be a finite abelian subgroup. A is generated by elements of

the form 1
r
(a1, a2, a3) where r = |A| and 0 ≤ ai < n.

Let ∆ be the junior simplex. R2
∆ is the plane spanned by ∆, and Z2

∆ = L∩R2
∆

is the corresponding lattice.

Definition 1.4.1. Write Z2 for the group of translations of the affine lattice Z2
∆.

A regular triple is a set of three vectors v1, v2, v3 ∈ Z2, any two of which form a

basis of Z2, and such that ±v1 ± v2 ± v3 = 0.

Let T ⊂ R2
∆ be a triangle with vertices in Z2

∆ (so T is a lattice triangle). T

is called a regular triangle if each of its sides is a line Lij extending some [ei, fi,j]

and the 3 primitive vectors v1, v2, v3 ∈ Z2 pointing along its sides form a regular

triple.

A regular triangle T is affine equivalent to the triangle with vertices (0, 0), (r, 0)

and (0, r) for some r ≥ 1. We will call such a T a triangle of side r. A regular

tessellation of T is the subdivision of T into r2 basic triangles with sides parallel

to the vectors (r, 0), (0, r) and (−r, r). See Figure 1.4.

Craw-Reid use the Hirzebruch-Jung resolution at each of the vertices of ∆ and

an algorithm which contracts the concatenation of the Hirzebruch-Jung continued

fractions at each vertex to split ∆ into regular triangles which they then tessellate

to give a triangulation of ∆.

Theorem 1.4.2. The junior simplex, ∆, is partitioned by regular triangles.

We now outline their proof.
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Figure 1.4: The regular triangulation of a triangle of side 4

At each ei we construct the Newton polygon obtained as the convex hull of

the lattice points in ∆ \ ei. First we consider e1 as the origin and x2, x3 as local

coordinates. Thus the action of 1
r
(a1, a2, a3) becomes a 1

r
(a2, a3) action. For a

and r coprime we rewrite this in the form 1
r
(1, b), which allows us to compute the

Hirzebruch-Jung continued fraction

r

b
= [b1,1, b1,2, . . . , b1,k1 ].

We take the vectors (0, r), (1, b) and (r, 0) and use the continued fraction rule to

find the remaining vectors f1,j of the Newton polygon:

f1,j−1 + f1,j+1 = b1,jf1,j for j = 1, . . . , k1.

Here f1,0 is the primitive vector along the side [e1, e3] and f1,k1+1 that along [e1, e2].

For the remaining ei the corresponding vectors will be denoted fi,0, fi,1, . . . , fi,ki+1

and are calculated in the same way.

Write Li,j for the line out of ei extending or equal to the initial segment

[ei, fi,j]. The resulting fan at ei corresponds to the Hirzebruch-Jung resolution of

the surface singularity C2
xi=0/A.

Translating the Newton polygons at e1, e2 and e3 to a common vertex gives

a propellor shape. Note that fi+1,0 = −fi,ki+1, so multiplying all vectors in one

of the propellor blades by -1 inverts that blade and gives a basic subdivision of a

half-space. This enables us to express the vectors along the edges of ∆ in terms

of their neighbours:

ci+1fi+1,0 = fi+1,1 − fi,ki

for some ci+1 ∈ Z. If ci+1 > 1 the side eiei+1 is called a long side. Thus we get a

cyclic continued fraction

[c1, b1,1, b1,2, . . . , b1,k1 , c2, b2,1, . . . , b2,k2 , c3, b3,1, . . . , b3,k3 ] (1.1)
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where at least two of the ci are equal to 1 by the following lemma.

Lemma 1.4.3. The junior simplex ∆ has at most one long side.

If c1 = 1 then f1,0 = f1,1 − f3,k3, so we can eliminate f1,0:

(b1,1 − 1)f1,1 = f1,2 − f3,k, (b3,k3 − 1)f3,k3 = f3,k3−1 − f1,1.

This deletes the regular triangle with sides f1,0, f1,1, f3,k3, which is equivalent to

the contraction of the 1 in the continued fraction:

a, 1, b → a− 1, b− 1.

These contractions are continued until no more contractions are possible.

Lemma 1.4.4. For brevity, call a chain of contractions taking a cyclic continued

fraction (1.1) down to [1,1,1] an MMP.

i. Every contraction of a 1 in an MMP corresponds to a regular triple.

ii. For every regular triple, there is an MMP ending at it.

iii. Every regular triple appears in every MMP.

This leads to an algorithm for calculating the subdivision into regular triangles.

We first calculate the lines Li,j out of the vertices of ∆. Call the corresponding

continued fraction entry, bi,j , the strength of Li,j . The lines Li,j are extended

subject to the following rule. When two or more lines meet, the line with greater

strength is extended, but its strength decreases by 1. Lines meeting with equal

strength kill each other. This continues until all lines have been defeated. This

partitions ∆ into regular triangles. The final step is to take the regular tessellation

of these regular triangles. Denote this by Σ.

Example 1.4.5. Let A ⊂ SL(3,C) be a finite subgroup generated by 1
r
(a1, a2, a3) =

1
13
(1, 2, 10). We consider the cyclic quotient singularity C3/A.

We obtain the singularity at ei by setting xi = 0, thus eliminating ai. We use

this to find the Hirzebruch–Jung continued fraction at each ei:

At e1:
1
13
(2, 10) = 1

13
(1, 5) so we have 13

5
= [3, 3, 2].

At e2:
1
13
(10, 1) = 1

13
(1, 4) so we have 13

4
= [4, 2, 2, 2].

At e3:
1
13
(1, 2) so we have 13

2
= [7, 2].
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We may now compute the fans corresponding to the resolution of the singu-

larities C2
xi=0/A.

At e1 we have f1,0 + f1,2 = 3f1,1 and

f1,0 = (−13, 0, 13), f1,1 = (−6, 1, 5).

Thus

f1,2 = 3f1,1 − f1,0 = (−5, 3, 2)

f1,3 = 3f1,2 − f1,1 = (−9, 8, 1)

f1,4 = 2f1,3 − f1,2 = (−13, 13, 0).

Similarly at e2 and e3,

f2,0 = (13,−13, 0), f2,1 = (4,−5, 1), f2,2 = (3,−7, 4),

f2,3 = (2,−9, 7), f2,4 = (1,−11, 10), f2,5 = (0,−13, 13),

f3,0 = (0, 13,−13), f3,1 = (1, 2,−3), f3,2 = (7, 1,−8), f3,3 = (13, 0,−13).

Figure 1.5 shows the lines Li,j corresponding to the fi,j.

b b

b e1

e2e3

b

b

b

b

b

b

7

2

4

2
2

2

3

3

2

Figure 1.5: First step in obtaining a regular triangulation of 1
13
(1, 2, 10).

Since the example is coprime, there are no long sides, so all ci = 1. The

concatenation of continued fractions is

[1, 3, 3, 2, 1, 4, 2, 2, 2, 1, 7, 2].

The second 1 denotes the regular triple f2,0 = f2,1 − f1,3. Contracting this one

corresponds to deleting the regular triangle f2,0, f2,1, f1,3. The continued fraction
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becomes

[1, 3, 3, 1, 3, 2, 2, 2, 1, 7, 2].

Continuing this calculation (Lemma 1.4.4 says it doesn’t matter which order we

contract the 1s in) tells us how to extend the lines Li,j to give Figure 1.6. The

dashed lines are the regular tessellation of the regular triangle with sides L1,1, L1,2

and L3,1.

b b

b e1

e2e3

b

b

b

b

b

b

7

2
2

4

2
2

2

3

3

2

5
3

2

2
2

Figure 1.6: A regular triangulation of 1
13
(1, 2, 10).

Theorem 1.4.6. Let Σ denote the toric fan determined by the regular tessella-

tion of all regular triangles in the junior simplex ∆. The toric variety XΣ is

Nakamura’s A-Hilb(C3).

Corollary 1.4.7. [Nak01] A-Hilb(C3) → C3/A is a crepant resolution.

To prove Theorem 1.4.6, Craw and Reid show that passing to the dual basis

of Σ in M , the lattice of invariant monomials, gives exactly the A-clusters of

Nakamura’s theorem:

Theorem 1.4.8. (I). For every finite diagonal subgroup A ⊂ SL(3,C) and every

A-cluster Z, generators of the ideal IZ can be chosen as the system of 7

equations

xl+1 = ξzbtf ,

zm+1 = ηxdtc,

tn+1 = ζxaze,

zb+1tf+1 = λxl,

xd+1tc+1 = µzm,

xa+1ze+1 = νtn.
xyzt = π,

(1.2)

Here a, b, c, d, e, f, l,m, n ≥ 0 are integers, and ξ, η, ζ, λ, µ, ν, π ∈ C are

constants satisfying

λξ = µη = νζ = π.
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(II). Moreover, exactly one of the following cases holds:

“up”

{

λ = ηζ, µ = ζξ, ν = ξη, π = ξηζ

l = a+ d,m = b+ e, n = c+ f ;

or

“down”

{

ξ = µν, η = νλ, ζ = λµ, π = λµν,

l = a+ d+ 1, m = b+ e+ 1, n = c+ f + 1.

Example 1.4.9 (Example 1.4.5 continued). The regular triangle f3,1 =
1
13
(1, 2,−3),

f1,2 =
1
13
(−5, 3, 2), f2,1 =

1
13
(4,−5, 1) of side 1 has dual basis

ξ = x2/y, η = y2/z3, ζ = z4/x

which gives equations x2 = ξy, y2 = ηz3, z4 = ζx. It is not hard to see that the

other equations of (1.2) can be generated from these, and thus they define the

ideal IZ of the cluster Z.

The triangle f1,1, f1,2, f3,1 is a regular triangle of side 2. The sides of the dual

to the this triangle are cut out by

ξ = x2/y, η = y5/z, ζ = z3/y2.

The regular tessellation is given by pushing in the sides of the triangles by i, j and

k steps, for 0 ≤ i, j, k ≤ r − 1 integers, respectively. The case i + j + k = r − 1

gives triangles which have the same orientation as the original triangle — they

are referred to as “up” — and the cases i + j + k = r + 1 gives triangles which

have the opposite orientation to the original triangle — they are “down” triangles.

Pushing the first side in by i steps corresponds to multiplying ξ by (xyz)i. Thus

the four triangles of the regular tessellation have dual basis

ξ = x2/y, η = y5/z, ζ = z2/xy3 (1.3)

ξ = x2/y, η = y4/xz2, ζ = z3/y2

ξ = x/y2z, η = y5/z, ζ = z3/y2

ξ = x/y2z, η = y4/xz2, ζ = z2/xy3. (1.4)

The dual bases of the regular triangles are shown as ratios in Figure 1.7.
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Figure 1.7: Ratios on the exception curves in A-Hilb(C3) for 1
13
(1, 2, 10).

The dual basis of (1.3) gives relations

x2 = ξy, y5 = ηz, z2 = ζxy3.

It is easy to see that these give rise to relations

y2z = λx, xz2 = µy4, x2y4 = νz

which satisfy the “up” case of Theorem 1.4.8.

The relations for (1.4) are

y2z = λx, xz2 = µy4, xy3 = νz2.

These generate

x2 = ξy, y5 = ηz, z3 = ζy2.

which satisfy the “down” case of Theorem 1.4.8.

1.5 Hilbert partition definitions

Firla and Ziegler consider cones in a slightly different way. These definitions are

taken from [FZ99].
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A pointed, rational, polyhedral cone C ⊆ Rn is a set

C = cone{a1, . . . , am}

:= {λ1a
1 + · · ·+ λma

m ∈ Rn : λi ∈ R, λi ≥ 0 for i = 1, . . . , m}

where a1, . . . , am ∈ Rn are rational vectors.

A finite set of integer vectors h1, . . . , hk is a Hilbert basis of C if each integral

vector in C is a nonnegative integral combination of {h1, . . . , hk}.

Definition 1.5.1. Let C = {C1, . . . , Cr} be a set of subcones of a cone C. We

call a facet F of a subcone C i an interior facet if F * δC, where δC denotes the

boundary of C. We enumerate F := {F 1, . . . , F s} the set of all interior facets of

the cones in C.

A point g0 ∈ int(C) is called a generic point (with respect to C) if it is not

contained in the boundary of any of the subcones C i.

Definition 1.5.2. Let C be a rational polyhedral pointed cone and C = {C1, . . . , Cr}

be a finite family of subcones.

The family C is a cover of C if every point of C is contained in one of the

subcones C i, that is, if C = ∪r
i=1C

i.

C is a binary cover of C if

1. every generic point g0 ∈ C is contained in an odd number of subcones C i,

and

2. every interior facet F j is a facet of an even number of subcones C i.

A cover C is a partition if the intersection of any two subcones C i ∩ Cj is a

face of both cones, that is, if C forms a polyhedral complex.

C is a regular partition if additionally the complex is given by the domains of

linearity of a piecewise linear convex function on C.

A cone C ⊆ Rn is simplicial if it is generated by a linearly independent set of

vectors. A simplicial cone C is unimodular if it is generated by a subset of a basis

of the lattice Zn, that is, if C = cone{a1, . . . , ak} ⊆ Rn for some set {a1, . . . an} of

integral vectors with |det{a1, . . . , an}| = 1.

Proposition 1.5.3. (The Hilbert Cover Hierarchy) [FZ99, Proposition 3] Let C ⊆

Rn be an n-dimensional pointed rational polyhedra cone, and let U = {C1, . . . , Cs}
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be the (finite) set of all n-dimensional unimodular subcones of C that are generated

by a subset of the Hilbert basis H = H(C).

Each of the following properties of C implies the following ones:

Regular Hilbert Partition: Some subset C ⊆ U is a regular partition of C.

Hilbert Partition: Some subset C ⊆ U is a partition of C.

Binary Hilbert Cover: Some subset C ⊆ U is a binary cover of C.

Hilbert Cover: U is a cover of C.

Integral Carathéodory Property: Every integral vector x ∈ C ∩ Zn can

be written as a nonnegative integral combination of at most n elements of the

minimal Hilbert basis H(C).

It is clear that the existence of a Hilbert partition is equivalent to the exis-

tence of a crepant resolution in the sense of Remark 1.2.8. Their Hilbert basis

H corresponds to our set of junior points and their unimodular cones are exactly

what we call basic cones.

Firla and Ziegler consider cones of the form

C[a1, a2, . . . , an] := cone



















1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

a1 a2 . . . an−1 an



















That is the cone spanned by the first n − 1 unit vectors together with a =

(a1, a2, . . . , an) ∈ Zn.

In four dimensions, their aim of finding a partition of the cone C[a1, a2, a3, a4]

is equivalent to finding a triangulation of the the first orthant in a lattice of the

form L = Z4 + 1
r
(b1, b2, b3, b4). We now show how to translate between these two

notations.

Since L ∼= Z5/(b1, b2, b3, b4,−r), there is a short exact sequence

0 → Z
A
−→ Z5 B

−→ Z4 → 0 (1.5)
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where the map A is given by
















b1

b2

b3

b4

−r

















Computing the Smith normal form of A shows that the cokernel of A is Z4 and

allows us to find the integer kernel K of A. Thus we have a short exact sequence

0 → Z4 K
−→ Z5 AT

−−→ Z → 0

Dualising this shows that the map B in (1.5) is equal to the transpose of K. Now,

for e1, e2, e3, e4, e5 considered as the standard basis vectors of Z5, the vectors

Be1, Be2, Be3, Be4, B(b1, b2, b3, b4,−r) generate a cone in Z4. The last vector is

generated by the rest, so we require only the first four. These can be mapped to

the vectors generating C[a1, a2, a3, a4] by an appropriate matrix of determinant

one.

Example 1.5.4. Let L = Z4 + 1
39
(1, 5, 8, 25) · Z. Consider the cone generated by

the standard basis vectors and the vector 1
39
(1, 5, 8, 25).

The Smith normal form of

A =

















1

5

8

25

−39

















is UAV = (1, 0, 0, 0, 0), where U = (1) ∈ GL(1,Z) and V ∈ GL(5,Z) is

















1 −5 −8 −25 39

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
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Now K is the last four columns of V , and B is the transpose of K:

B =













−5 1 0 0 0

−8 0 1 0 0

−25 0 0 1 0

39 0 0 0 1













Applying B to the vectors e1, e2, e3, e4,
1
39
(1, 5, 8, 25) gives

(−5,−8,−25, 39), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1).

It is clear that (0, 0, 0, 1) is generated by the rest, so we have the cone generated

by

(−5,−8,−25, 39), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0).

We want a cone C[a1, a2, a3, a4] with ai > 0. The matrix

G =













0 0 1 1

0 1 0 1

1 0 0 1

0 0 0 1













takes these vectors to

(14, 31, 34, 39), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0),

which is the cone C[14, 31, 34, 39] in the notation of [FZ99].



Chapter 2

Resolutions

Four dimensional Gorenstein quotient singularities do not always have a crepant

resolution. Terminal singularities 1
r
(i, r − i, j, r − j) are obvious examples which

cannot be resolved in this way. However there are also many non-terminal sin-

gularities for which no crepant resolution exists. This problem leads to many

questions: For which singularities does a crepant resolution exist? Is there an

invariant which obstructs the existence of a crepant resolution? Is there a higher

dimensional analogue of crepant resolutions for higher dimensional singularities?

In this chapter several approaches to these questions are discussed.

2.1 Resolutions

A traditional way of obtaining a resolution was to perform blow-ups. In toric

examples this is equivalent to barycentric subdivision: given a point p in a tetra-

hedral simplex e1e2e3e4 we cut along the plane segment peiej for each i, j ∈

{1, 2, 3, 4} with i 6= j to obtain four smaller tetrahedral simplices:

pe2e3e4, e1pe3e4, e1e2pe4, e1e2e3p.

In some cases a chain of such subdivisions will lead to a crepant resolution.

Example 2.1.1. Consider the quotient singularity 1
17
(1, 3, 3, 10). This has five

junior points

p1 =
1

17
(1, 3, 3, 10), p2 =

1

17
(2, 6, 6, 3), p6 =

1

17
(6, 1, 1, 9),

p7 =
1

17
(7, 4, 4, 2), p12 =

1

17
(12, 2, 2, 1).

28
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Subdividing at p1 gives

p1e2e3e4, e1p1e3e4, e1e2p1e4, e1e2e3p1 (2.1)

which have volume 1, 3, 3,10 respectively. Now, p2 =
1
10
(3p1 + e1 + 3e2 + 3e3) so

is inside e1e2e3p1. Subdividing this simplex at p2 yields:

p2e2e3p1, e1p2e3p1, e1e2p2p1, e1e2e3p2 (2.2)

which have volume 1,3,3,3 respectively. Since p6 =
1
3
(p1 + e1 + e4), it is contained

in the face p1e1e4, and so the second and third simplices of (2.1) can each be

subdivided at p6 into three volume 1 simplices. Since p7 and p12 lie on the line

e1p2, the second, third and fourth simplices of (2.2) are each split into three volume

1 simplices by consecutive subdivision at p7 and p12. This procedure results in 17

simplices of volume 1:

p1e2e3e4, p6p1e3e4, p6e2p1e4, e1p6e3e4, e1e2p6e4,

e1p1e3p6, e1e2p1p6, p2e2e3p1, p7p2e3p1, p7e2p2p1,

p7e2e3p2, p12p7e3p1, p12e2p7p1, p12e2e3p7, e1p12e3p1,

e1e2p12p1, e1e2e3p12.

Considering these simplices as basic cones gives the toric fan of the crepant reso-

lution of 1
17
(1, 3, 3, 10).

Unfortunately, a chain of consecutive barycentric subdivision does not always

lead to a resolution. In fact, as the following example demonstrates, the resolution

obtained depends on the order of subdivision.

Example 2.1.2. Let L = Z4+ 1
23
(1, 3, 4, 15)Z be a lattice. There are three points

of L in the interior of the junior simplex: p1 = 1
23
(1, 3, 4, 15), p2 = 1

23
(2, 6, 8, 7)

and p8 =
1
23
(8, 1, 9, 5). The points e4, p1 and p2 are collinear.

Subdividing at p2, then at p1 and p8 gives the simplices:

∆1 = ∆(p1, e2, e3, e4), ∆2 = ∆(p1, e2, e3, p2), ∆3 = ∆(e1, p8, e3, e4),

∆4 = ∆(e1, p8, p1, e4), ∆5 = ∆(p1, p8, e3, e4), ∆6 = ∆(e1, p8, e3, p2),

∆7 = ∆((e1, p8, p1, p2), ∆8 = ∆(p1, p8, e3, p2), ∆9 = ∆(e1, e2, p1, e4),

∆10 = ∆(e1, e2, p1, p2), ∆11 = ∆(e1, e2, e3, p2).
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Subdividing first at p8 gives the simplices:

∆′
1 = ∆′(p1, e2, e3, e4), ∆′

2 = ∆′(p1, e2, e3, p2), ∆′
3 = ∆′(p8, p1, e3, e4),

∆′
4 = ∆′(p8, p1, e3, p2), ∆′

5 = ∆′(p8, p2, p1, e4), ∆′
6 = ∆′(p8, e2, p1, p2),

∆′
7 = ∆′(p8, e2, e3, p2), ∆′

8 = ∆′(e1, p8, e3, e4), ∆′
9 = ∆′(e1, e2, p8, e4),

∆′
10 = ∆′(e1, e2, e3, p8).

The volume of each simplex is calculated by taking the determinant of the matrix

with the coordinates of each vertex as its rows. For ∆9 the volume is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0

0 1 0 0

1 3 4 15

0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 4,

so ∆9 is singular. To calculate the type of singularity on ∆9 note that

p1 =
1

23
(e1 + 3e2 + 4e3 + 15e4),

so

e3 =
1

4
(23p1 − e1 − 3e2 − 15e4).

Taking the coefficients modulo 4 gives

1

4
(3p1 + 3e1 + e2 + e4).

Taking p1, e1, e2, e4 as a basis of L shows that ∆9 has the terminal singularity
1
4
(3, 3, 1, 1). Permuting the coordinates gives 1

4
(1, 3, 1, 3). Hence

L(∆9) = Z4 + Z ·
1

4
(1, 3, 1, 3).

Tables 2.1 and 2.2 show the singularities on the simplices obtained by each of

these orders of subdivision.

The simplices of volume one are nonsingular, so the third column is left blank.

Since subdivision has been performed at all junior points the singularities on the

simplices with volume greater than one are all terminal. Each resolution has three

singular cones, but different order in which subdivisions were performed has led to

different singularities. Thus the singularities on the resolution are not invariants
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Barycentric subdivision of the junior simplex in L = Z4 + 1
23
(1, 3, 4, 15) · Z

Simplex Volume Singularity

∆1 1
∆2 1
∆3 1
∆4 1
∆5 1
∆6 1
∆7 1
∆8 1
∆9 4 1

4
(1, 3, 1, 3)

∆10 4 1
4
(1, 3, 1, 3)

∆11 7 1
7
(2, 5, 1, 6)

Table 2.1: Subdivision of the junior
simplex at p2 first

Simplex Volume Singularity

∆′
1 1

∆′
2 1

∆′
3 1

∆′
4 1

∆′
5 1

∆′
6 1

∆′
7 2 1

2
(1, 1, 1, 1)

∆′
8 1

∆′
9 9 1

9
(5, 4, 1, 8)

∆′
10 5 1

5
(3, 2, 4, 1)

Table 2.2: Subdivision of the junior
simplex at p8 first

of the resolution.

2.2 Unavoidable points

In Example 2.1.2, it was shown that different resolutions may be obtained by

different orders of subdivision. If a simplex has volume greater than one then there

are lattice points in the interior of the simplex. In Example 2.1.2, these lattice

points must have age greater than one, since the junior simplex was subdivided

at every age one point.

The first subdivision of Example 2.1.2 gave a resolution which was covered

by eleven pieces, three of which were singular, having singularities 1
4
(1, 3, 1, 3),

1
4
(1, 3, 1, 3), 1

7
(2, 5, 1, 6).

The singularity 1
4
(3, 1, 3, 1) was on the piece ∆9, which has coordinates in
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terms of e1, e2, p1, e4. We have

1

4
(3p1 + 3e1 + e2 + e4) =

1

4

(

1

23
(3, 9, 12, 45)

)

+
1

4

(

1

23
(69, 0, 0, 0)

)

+
1

4

(

1

23
(0, 23, 0, 0)

)

+
1

4

(

1

23
(0, 0, 0, 23)

)

=
1

4

(

1

23
(72, 32, 12, 68)

)

=
1

23
(18, 8, 3, 17)

= p18.

Similarly,

1

4
(2p1 + 2e1 + 2e2 + 2e4) = p12,

1

4
(p1 + e1 + 3e2 + 3e4) = p6.

Thus these age 2 points must appear on this resolution of 1
23
(1, 3, 4, 15).

The results of this calculation and the analogous calculation for the second

subdivision are displayed in Table 2.3. The first column contains the points
1
23
(n1, n3, n4, n15) and any others which were shown to appear on the resolu-

tion from this calculation. A X in the third or fourth column indicates this point

belongs to a singular cone.

The age 1 points must appear on the resolution, however they do not arise

from the singularities on the affine pieces. This calculation will not say whether

any age 3 points appear on the resolution, since the singularities being considered

are terminal, and these will only show the age 2 points.

The table shows that in this example, any age 2 points which are the sum of

age 1 points does not necessarily appear as a divisor on the resolution, whereas

any points not of this form must appear on the resolution; they are unavoidable.

This leads to the following:

Lemma 2.2.1. If a resolution is crepant every age two point must be the sum of

two age one points.

Since this a necessary condition for the existence of a crepant resolution we

will call the condition

“Every every age two point must be the sum of two age one points”
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Point Age Subdivision at p2 first Subdivision at p8 first

1
23
(1, 3, 4, 15) 1 p1 p1

1
23
(2, 6, 8, 7) 1 p2 p2

1
23
(3, 9, 12, 22) 2 p3 = p1 + p2 p3 = p1 + p2

1
23
(4, 12, 16, 14) 2 p4 = 2p2 p4 = 2p2

1
23
(5, 15, 20, 6) 2 X X

1
23
(6, 18, 1, 21) 2 X X

1
23
(7, 21, 5, 13) 2 X X

1
23
(8, 1, 9, 5) 1 p8 p8

1
23
(9, 4, 13, 20) 2 p9 = p1 + p8 p9 = p1 + p8

1
23
(10, 7, 17, 12) 2 p10 = p2 + p8 p10 = p2 + p8

1
23
(11, 12, 21, 19) 2 X X

1
23
(12, 13, 2, 19) 2 X X

1
23
(13, 16, 6, 11) 2 X X

1
23
(14, 19, 10, 3) 2 X X

1
23
(15, 22, 14, 18) 3 age 3 age 3

1
23
(16, 2, 18, 10) 2 p16 = p1 + p2 p16 = p1 + p2

1
23
(17, 5, 22, 2) 2 X X

1
23
(18, 8, 3, 17) 2 X X

1
23
(19, 11, 7, 9) 2 X X

1
23
(20, 14, 11, 1) 2 X X

1
23
(21, 17, 15, 16) 3 age 3 age 3

1
23
(22, 20, 19, 8) 3 age 3 age 3

1
23
(24, 3, 4, 15) 2 p1 + e1 X

1
23
(26, 6, 8, 7) 2 p2 + e1 X

1
23
(8, 24, 9, 5) 2 X p8 + e2

Table 2.3: Points on the subdivisions of the junior simplex of 1
23
(1, 3, 4, 15)

the junior necessity condition or JunNec.

Proof of 2.2.1. This is well known. If Y is a crepant resolution of X then the

toric fan of Y consists only of basic cones. If p is an age two point it must lie in

a cone of Y , but then it must be a Z-linear combination of the generators of the

cone. Since the cone is basic these generators correspond exactly to the age one

points of the lattice.

It is clear that every point of age greater than one must be expressible as the

sum of age one points.

Example 2.2.2. A crepant resolution of the quotient singularity 1
17
(1, 3, 3, 10)
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was computed in Example 2.1.1. Its junior points were

p1 =
1

17
(1, 3, 3, 10), p2 =

1

17
(2, 6, 6, 3), p6 =

1

17
(6, 1, 1, 9),

p7 =
1

17
(7, 4, 4, 2), p12 =

1

17
(12, 2, 2, 1).

This singularity has a crepant resolution, and all of the age two points of the form
1
17
(n1, n3, n3, n10) are the sum of two of the pi:

Point As sum of juniors

1
17
(1, 3, 3, 10) p1

1
17
(2, 6, 6, 3) p2

1
17
(3, 9, 9, 13) p1 + p2

1
17
(4, 12, 12, 6) p2 + p2

1
17
(5, 15, 15, 16) p1 + p2 + p2

1
17
(6, 1, 1, 9) p6

1
17
(7, 4, 4, 2) p7

1
17
(8, 7, 7, 12) p2 + p6

1
17
(9, 10, 10, 5) p2 + p7

1
17
(10, 13, 13, 15) p1 + p2 + p7

1
17
(11, 16, 16, 8) p2 + p2 + p7

1
17
(12, 2, 2, 1) p12

1
17
(13, 5, 5, 11) p1 + p12

1
17
(14, 8, 8, 4) p2 + p12

1
17
(15, 11, 11, 14) p1 + p2 + p12

1
17
(16, 14, 14, 7) p2 + p2 + p12

If the converse to Claim 2.2.1 was true it would provide an easy criterion for

finding crepant resolutions. Unfortunately this is not the case.

2.3 Counter-examples to sufficiency of JunNec

Example 2.3.1. Let A be the group generated by 1
39
(1, 5, 25, 8) with correspond-

ing lattice L = Z4 + 1
39
(1, 5, 25, 8)Z.
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There are eight points of L in the interior of the junior simplex:

p1 =
1
39
(1, 5, 25, 8), p2 =

1
39
(2, 10, 11, 16), p5 =

1
39
(5, 25, 1, 8),

p8 =
1
39
(8, 1, 25, 5), p10 =

1
39
(10, 11, 2, 16), p11 =

1
39
(11, 16, 10, 2),

p16 =
1
39
(16, 2, 11, 10), p25 =

1
39
(25, 8, 5, 1).

Claim 2.3.2. The quotient singularity 1
39
(1, 5, 25, 8) satisfies JunNec, but does

not admit a crepant resolution.

This can be tested using the Magma code described in Chapter 3, see section

3.6 for details.

This example was also considered by Robert Firla and Günter Ziegler in [FZ99].

The cone C[14, 31, 34, 39] of [FZ99, Example10] is exactly the first orthant of

L = Z4+ 1
39
(1, 5, 25, 8)Z, as described in Example 1.5.4. They show that it admits

no Hilbert partition; existence of a Hilbert partition is equivalent to existence of

a crepant resolution.

Nine more examples of cones with r ≤ 100 (in the lattice notation) which

satisfy JunNec but admit no Hilbert partition are given in [Fir97, §4.2]. Con-

sidering these as cones in a lattice L = Z4 + 1
r
(a1, a2, a3, a4) shows that the

cones C[15, 43, 51, 54] and C[21, 39, 49, 54] correspond to the quotient singularities
1
54
(1, 3, 11, 39) and 1

54
(1, 5, 15, 33) respectively. These are the same singularity up

to change of coordinates.

It is somewhat surprising that these are the only eight examples with r ≤ 100

for which JunNec holds, but for which there is no crepant resolutions.

2.4 Products of singularities

Firla and Ziegler observe that all except the smallest of their examples - that is

all except 1
39
(1, 5, 8, 25) - do not have unimodular facets. That is, there are junior

points of the form 1
r
(a, b, c, 0), up to permuting coordinates. This is a consequence

of one of the ais not being coprime to r.

Observation: All the four dimensional simplicial cones found by Firla and Ziegler

to have a binary Hilbert cover but no Hilbert partition come from groups whose

order is not prime.
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It is possible to express each group as the product of groups of lower order:

Notation 1 Notation 2 Product group

1
39
(1, 5, 8, 25) (14, 31, 34, 39) 1

3
(1, 2, 2, 1)× 1

13
(1, 5, 8, 12)

1
54
(1, 3, 11, 39) (15, 43, 51, 54) 1

2
(1, 1, 1, 1)× 1

27
(14, 15, 19, 6)

1
78
(1, 5, 20, 52) (26, 58, 73, 78) 1

2
(1, 1, 0, 0)× 1

3
(2, 1, 1, 2)× 1

13
(11, 3, 12, 0)

1
88
(1, 11, 32, 44) (44, 56, 77, 88) 1

11
(7, 0, 4, 0)× 1

8
(3, 1, 0, 4)

1
90
(1, 9, 35, 45)) (45, 55, 81, 90) 1

2
(1, 1, 1, 1)× 1

5
(2, 3, 0, 0)× 1

9
(1, 0, 8, 0)

1
96
(1, 8, 39, 48) (48, 57, 88, 96) 1

3
(1, 2, 0, 0)× 1

32
(1, 8, 7, 16)

1
96
(1, 11, 36, 48) (48, 60, 85, 96) 1

3
(1, 2, 0, 0)× 1

32
(1, 11, 4, 16)

1
96
(1, 15, 32, 48) (48, 64, 91, 96) 1

3
(1, 0, 2, 0)× 1

32
(1, 15, 0, 16)

This observation is insufficient to explain the non-existence of a crepant resolu-

tion. The product of two terminal singularities need not be a terminal singularity,

and may have a crepant resolution. The product

1

3
(1, 2, 1, 2)×

1

5
(1, 2, 4, 3) =

1

15
(8, 1, 2, 4) (2.3)

is not terminal and does have a crepant resolution. The cones

p2e2e3e4, p4p2e2e3, p8p2e2e4, p8p4p2e2, p1p2e3e4,

p1p4p2e3, p1p8p2e4, p1p8p4p2, e1p4e2e3, e1p8e2e4,

e1p8p4e2, e1p1e3e4, e1p1p4e3, e1p1p8e4, e1p1p8p4,

which were produced by the program described in Chapter 3, form a crepant

resolution.

However permuting the coordinates of the second group in the product (2.3)

gives 1
3
(1, 2, 1, 2) × 1

5
(1, 4, 2, 3) = 1

15
(8, 7, 4, 11), which is terminal and therefore

can not have a crepant resolution.

It would be interesting to know whether or not this observation is connected

to the non-existence of a crepant resolution in each of these cases.

2.5 The search for a sufficient condition

Since the examples of Firla and Ziegler do not have a crepant resolution they can-

not be resolved via a chain of barycentric subdivisions. Thus somewhere JunNec

must fail after a barycentric subdivision.
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Condition 2.5.1. There exists a junior point p of the junior simplex, subdividing

at which preserves the junior necessity condition.

This condition requires that after subdivision at the point p, the singularities

on the new cones all satisfy the junior necessity condition.

The smallest example 1
39
(1, 5, 25, 8) does not satisfy Condition 2.5.1. Consider

the junior simplex in the lattice L = Z4+Z · 1
39
(1, 5, 8, 25). Subdivision at p1 gives

the four simplices

p1e2e3e4, e1p1e3e4, e1e2p1e4, e1e2e3p1.

The first of these has relative volume 1, and so is nonsingular, but the others have

the singularities 1
5
(4, 4, 2, 0), 1

8
(7, 7, 3, 7) and 1

25
(14, 24, 20, 17) respectively. Now

consider the lattices generated by each of these singularities. In the 1
5
(4, 4, 2, 0)

and 1
25
(12, 24, 20, 17) cases, every age 2 point is the sum of two age 1 points.

However this is not true for 1
8
(7, 7, 3, 7). The age 1 points are

1

8
(1, 1, 5, 1),

1

8
(2, 2, 2, 2),

and there is no way to make 1
8
(5, 5, 1, 5) as a Z-linear combination of these.

The order of subdivision does not matter here. Subdividing the junior simplex

at any junior point leads to a simplex whose singularity does not satisfy JunNec.

This led to the following conjecture:

Conjecture 2.5.2. There exists a crepant resolution if and only if every age two

point is the sum of two age one points and Condition 2.5.1 is satisfied.

However, this conjecture is false. This condition is satisfied by 1
54
(1, 3, 11, 39),

however this example does not have a crepant resolution, so cannot have a com-

plete chain of barycentric subdivisions. Subdivision at the points 1
54
(18, 0, 36, 0)

and 1
54
(36, 0, 18, 0) preserves JunNec, but it is not preserved by subsequent sub-

divisions.

On the other hand, the junior simplex of the lattice L = Z4 + 1
67
(1, 5, 8, 53)Z,

also does not satisfy the condition, and no order of barycentric subdivisions leads

to a crepant resolution. This can be seen by observing that following a barycentric

subdivision at any of the junior points, the singularity on at least one of the

resulting cones does not satisfy JunNec.

However, there does exist a crepant resolution; examples can be found using

the Magma program described in Chapter 3.
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The ideal situation would be to find a refinement of the conjecture to give

necessary and sufficient conditions on the existence of a crepant resolution in di-

mension four and above. It is not clear how this could be achieved. Further

understanding of the examples of Firla and Ziegler may help to find such a refine-

ment.

2.6 Projective crepant resolutions

The quotient singularity X/
〈

1
67
(1, 5, 8, 53)

〉

cannot be resolved to a crepant reso-

lution by a chain of blow-ups. We will see that this does not mean that it does

not have a projective crepant resolution.

Let Σ be the toric fan of the resolution of X/
〈

1
67
(1, 5, 8, 53)

〉

consisting of the

following cones

e4e3e2p1 e4e3p1p14 e4e3p14p27 e4e3p27e1 e4e2p1p9 e4e2p9p17

e4e2p17p42 e4e2p42e1 e4p1p9p17 e4p1p14p27 e4p1p17p42 e4p1p27e1

e4p1p42e1 e3e2p1p2 e3e2p2p3 e3e2p3p4 e3e2p4p9 e3e2p9p14

e3e2p14p19 e3e2p19p43 e3e2p43e1 e3p1p2p14 e3p2p3p14 e3p3p4p14

e3p4p9p14 e3p14p19p43 e3p14p27e1 e3p14p43e1 e2p1p2p9 e2p2p3p9

e2p3p4p9 e2p9p14p19 e2p9p17p42 e2p9p19p43 e2p9p42e1 e2p9p43e1

p1p2p9p17 p1p2p14p27 p1p2p17p27 p1p17p27p42 p1p27p42e1 p2p3p9p17

p2p3p14p27 p2p3p17p27 p3p4p9p18 p3p4p14p18 p3p9p17p18 p3p14p18p28

p3p14p27p28 p3p17p18p42 p3p17p27p42 p3p18p27e1 p3p18p28e1 p3p27p28e1

p4p9p14p18 p9p14p18p28 p9p14p19p28 p9p17p18p42 p9p18p28p43 p9p18p42e1

p9p18p43e1 p9p19p28p43 p14p19p28p43 p14p27p28e1 p14p28p43e1 p18p27p42e1

p18p28p43e1.

We will show that this resolution is projective by showing that the ample cone is

nonempty.

We have the short exact sequence

0 → M
A
−→ ZΣ(1) B

−→ Pic(XΣ) → 0
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where Σ(1) is the set of rays of the fan Σ,

A =















































































1 5 8 53

2 10 16 39

3 15 24 25

4 20 32 11

9 45 5 8

14 3 45 5

17 18 2 30

18 23 10 16

19 28 18 2

27 1 15 24

28 6 23 10

42 9 1 15

43 14 9 1

67 0 0 0

0 67 0 0

0 0 67 0

0 0 0 67















































































and

B =



























































0 0 0 0 0 0 0 0 0 5 0 −8 0 3 1 −1 0

0 0 0 0 1 0 0 0 0 −6 0 9 1 −4 −2 1 0

0 0 0 0 2 0 0 0 1 −12 0 18 0 −7 −4 2 0

0 0 0 0 3 0 0 0 0 −16 0 24 0 −9 −5 3 0

0 0 0 0 5 1 0 0 0 −30 0 45 0 −17 −9 5 0

0 0 0 0 10 0 0 0 0 −60 1 90 0 −34 −18 11 0

0 0 0 1 11 0 0 0 0 −66 0 99 0 −37 −20 12 0

0 0 0 0 16 0 0 1 0 −96 0 144 0 −54 −29 18 0

0 0 1 0 25 0 0 0 0 −150 0 225 0 −84 −45 28 0

0 0 0 0 30 0 1 0 0 −180 0 270 0 −101 −54 34 0

0 1 0 0 39 0 0 0 0 −234 0 351 0 −131 −70 44 0

1 0 0 0 53 0 0 0 0 −318 0 477 0 −178 −95 60 0

0 0 0 0 67 0 0 0 0 −402 0 603 0 −225 −120 76 1



























































is found by calculating the Smith normal form of A.
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We want to calculate the nef cone of XΣ. In toric geometry this is just the

cone of globally generated divisors. Combinatorially this corresponds to

⋂

σ∈Σ

pos([Di] : i /∈ σ).

The columns of B correspond to the divisors Di, so for each cone of the resolution

we take Bσ to be the submatrix containing the columns Bi of B such that i is not

in σ.

Consider a cone σ in N . Its rays are generated by 4 rows of A; label these

α, β, γ, δ. Now take Bσ = (bi,j) where 1 ≤ i ≤ 13, j 6= α, β, γ, δ, that is, all

columns of B except columns α, β, γ, δ.

We invert Bσ to find the equations of the hyperplanes defining the 13 dimen-

sional nef cone in Pic(XΣ).

Let σ be the cone p1p2p9p17, generated by the rays 1
67
(1, 5, 8, 53), 1

67
(2, 10, 16, 39),

1
67
(9, 45, 5, 8), 1

67
(17, 18, 2, 30). These correspond to the first, second, fifth and sev-

enth rows of A. We take Bσ to be B with the first, second, fifth and seventh

columns omitted

Bσ =



























































0 0 0 0 0 5 0 −8 0 3 1 −1 0

0 0 0 0 0 −6 0 9 1 −4 −2 1 0

0 0 0 0 1 −12 0 18 0 −7 −4 2 0

0 0 0 0 0 −16 0 24 0 −9 −5 3 0

0 0 1 0 0 −30 0 45 0 −17 −9 5 0

0 0 0 0 0 −60 1 90 0 −34 −18 11 0

0 1 0 0 0 −66 0 99 0 −37 −20 12 0

0 0 0 1 0 −96 0 144 0 −54 −29 18 0

1 0 0 0 0 −150 0 225 0 −84 −45 28 0

0 0 0 0 0 −180 0 270 0 −101 −54 34 0

0 0 0 0 0 −234 0 351 0 −131 −70 44 0

0 0 0 0 0 −318 0 477 0 −178 −95 60 0

0 0 0 0 0 −402 0 603 0 −225 −120 76 1
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We use the inverse,

B−1
σ =



























































0 0 0 0 0 0 0 0 1 0 −2 1 0

0 0 0 0 0 0 1 0 0 0 −3 2 0

0 0 0 3 1 0 0 0 0 −1 −5 4 0

0 0 0 0 0 0 0 1 0 −1 −1 1 0

0 0 1 0 0 0 0 0 0 −1 −2 2 0

−3 0 0 11 0 0 0 0 0 −2 −2 2 0

0 0 0 3 0 1 0 0 0 −2 −3 3 0

−2 0 0 8 0 0 0 0 0 −3 −1 2 0

0 1 0 3 0 0 0 0 0 −3 −2 3 0

0 0 0 6 0 0 0 0 0 −5 −2 4 0

0 0 0 −6 0 0 0 0 0 1 1 −1 0

0 0 0 3 0 0 0 0 0 0 −7 5 0

0 0 0 0 0 0 0 0 0 0 1 −2 1



























































of Bσ to find the hyperplanes defining the cone:

x9 − 2x11 + x12 ≥ 0, x7 − 3x11 + 2x12 ≥ 0,

3x4 + x5 − x10 − 5x11 + 4x12 ≥ 0, x8 − x10 − x11 + x12 ≥ 0,

x3 − x10 − 2x11 + 2x12 ≥ 0, −3x1 + 11x4 − 2x10 − 2x11 + 2x12 ≥ 0,

3x4 + x6 − 2x10 − 3x11 + 3x12 ≥ 0, −2x1 + 8x4 − 3x10 − x11 + 2x12 ≥ 0,

x2 + 3x4 − 3x10 − 2x11 + 3x12 ≥ 0, 6x4 − 5x10 − 2x11 + 4x12 ≥ 0,

−6x4 + x10 + x11 − x12 ≥ 0, 3x4 − 7x11 + 5x12 ≥ 0,

x11 − 2x12 + x13 ≥ 0.

We take the union of all the hyperplanes from each σ in Σ, which gives us the

cone of globally generated divisors. PORTA [CL09] converts the hyperplanes into

the rays of the cone.
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This cone is 13 dimensional, so we choose 13 rays which generate the cone:

(−3, 0, 1, 2, 3, 7, 9, 13, 22, 32, 41, 60, 79),

(−3, 2, 4, 6, 11, 23, 25, 37, 58, 72, 93, 128, 163),

(0,−6,−10,−12,−24,−46,−48,−70,−106,−120,−155,−204,−252),

(0,−6,−10,−12,−24,−46,−48,−70,−106,−119,−155,−204,−252),

(0,−3,−5,−6,−12,−23,−24,−35,−53,−60,−78,−103,−128),

(0,−3,−5,−6,−12,−23,−24,−35,−53,−60,−78,−103,−127),

(0,−3,−5,−6,−12,−23,−24,−35,−53,−60,−78,−102,−126),

(0,−2,−4,−5,−10,−19,−20,−30,−45,−50,−65,−85,−105),

(0,−1,−2,−2,−4,−8,−8,−12,−18,−20,−26,−34,−42),

(0,−1,−1,−1,−2,−4,−4,−6,−9,−10,−13,−17,−21),

(1,−4,−8,−10,−19,−37,−40,−59,−90,−104,−135,−180,−225),

(2,−6,−11,−14,−27,−53,−57,−83,−128,−148,−192,−256,−320),

(2,−3,−6,−8,−15,−30,−33,−48,−74,−88,−114,−154,−194),

We take their sum to find a point v in the interior of the cone:

v = (−1,−36,−62,−74,−147,−282,−296,−433,−655,−735,−955,−1254,−1550),

and pull this back to a point w in ZΣ(1):

w = (140, 6,−125,−79,−79,−73, 3,−122,−40, 0,−110, 0,−35, 0,−3, 0, 283).

Since w is in the interior of the cone

D = 140D1 + 6D2 − 125D3 − 79D4 − 79D5 − 73D6 + 3D7 − 122D8 − 40D9

+ 0D10 − 110D11 + 0D12 − 35D13 + 0D14 − 3D15 + 0D16 + 283D17

is certainly an ample divisor and so the resolution is projective.

2.7 Other subdivisions

An obvious alternative to the question “when does a crepant resolution exist?” is

the question “why do some singularities have no crepant resolution?”. Terminal

singularities, 1
r
(i, r − i, j, r − j), do not have a crepant resolution since there are

no non-trivial junior points in the lattice L = Z4 + 1
r
(i, r− i, j, r− j) · Z. Instead

we consider the octahedron containing all the age 2 points, that is the octahedron
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H1�7,3�7L

H2�7,6�7L

H3�7,2�7L

H4�7,5�7L

H5�7,1�7L

H6�7,4�7L

H1�7,3�7L

H2�7,6�7L

H3�7,2�7L

H4�7,5�7L

H5�7,1�7L

H6�7,4�7L

H1�7,3�7L

H2�7,6�7L

H3�7,2�7L

H4�7,5�7L

H5�7,1�7L

H6�7,4�7L

H1�7,3�7L

H2�7,6�7L

H3�7,2�7L

H4�7,5�7L

H5�7,1�7L

H6�7,4�7L

H1�7,3�7L

H2�7,6�7L

H3�7,2�7L

H4�7,5�7L

H5�7,1�7L

H6�7,4�7L

H1�7,3�7L

H2�7,6�7L

H3�7,2�7L

H4�7,5�7L

H5�7,1�7L

H6�7,4�7L

Figure 2.1: Triangulations of the rectangle q1, q2, q5, q6

with vertices ei + ej for i, j = 1, . . . 4, i 6= j.

However a subdivision which includes any of the vertices of the simplex can

not correspond to an economic resolution [Rei87].

Example 2.7.1. Let L = Z4+ 1
7
(1, 6, 3, 4) ·Z. There are six points inside the age

2 octahedron:

q1 =
1

7
(1, 6, 3, 4), q2 =

1

7
(2, 5, 6, 1), q3 =

1

7
(3, 4, 2, 5),

q4 =
1

7
(4, 3, 5, 2), q5 =

1

7
(5, 2, 1, 6), q6 =

1

7
(1, 6, 4, 3).

These points are clearly coplanar and q1, q2, q5, q6 are the vertices of a rectangle.

The six ways to triangulate this rectangle are shown in Figure 2.1, with the

rectangle being drawn in the x1-x3 plane.

Claim 2.7.2. There is no way to tessellate the first orthant using only basic cones.

We calculate all the basic simplices. There are only four simplices with one

interior point:

∆1 = q1e2e3e4, ∆2 = q2e1e2e3, ∆3 = q5e1e2e4, ∆4 = q6e1e3e4.

Start by assuming that we must have all of these. By comparing faces of the

∆i with faces of the other basic simplices we can uniquely find neighbours for

some of the faces. At some point we must choose a triangulation on the rectangle
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e2 + e4

e2 + e3

e1 + e4

e1 + e3

q1

q2

q3

q4

q5

q6

Figure 2.2: Triangulation of the x1x3-plane in the age 2 octahedron

q1, q2, q5, q6. We will use

q1q2q4, q1q3q4, q3q4q6, q3q5q6.

The simplex ∆1 contains the face q1e3e4. We take ∆5 = q1q2e3e4 since it is the

only other simplex to contain this face. Now ∆5 contains the face q2e3e4, so must

have ∆6 = q2q3e3e4 as its neighbour. The simplex ∆6 contains the face q2q3e4,

but because of our choice of triangulation, there is no other simplex containing

this face. So it is not possible to cover the space using this triangulation of

the rectangle q1q2q5q6. Further analogous calculations show that none of the

triangulations lead to a triangulation of the whole space. Bouvier and Gonzalez-

Sprinberg [BGS95] also show that this example does not have a crepant resolution.

It is possible to find a triangulation using 1
2
(1, 1, 1, 1) simplices. We start by

choosing a triangulation of the x1-x3 plane in the age 2 octahedron, as shown

Figure 2.2. We turn each of these triangles into two tetrahedra by adding the

vertex e1 + e2 or the vertex e3 + e4 respectively.

Comparing faces and checking the dimensions and singularity of possible tetra-

hedra shows that we need the four tetrahedra f12f23f13e2, f12f13f14e1, f34f23f13e3,

f34f24f14e4 to tile the first orthant. Here fij := ei + ej .

There is a question as to whether or not crepant resolution is the correct thing

to do in dimension four and above, but this does not seem to help answer that
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question.

In a further attempt to answer the question “why do some singularities have

no crepant resolution?”. We move to an example which is not terminal, but still

appears to have no crepant resolution due to having too few junior points. We

explored ways of finding additional points which would allow a subdivision into

basic cones.

Suppose, instead of taking barycentric subdivision at a point, we do a similar

operation around a line segment. Consider the line segment p1p2 in the tetrahedral

simplex e1e2e3e4. Let H1 be the plane containing p1, p2, e1 and H2 be the plane

containing p1, p2, e2. Consider the pencil of planes λH1 + µH2. If p1, p2 are not

collinear with any of the ei and the line segment pipj is not parallel to an edge eiej

then, as µ and λ vary the pencil of planes sweeps through each of the vertices ei in

turn. Thus we take the cones p1p2eiej where ei and ej are consecutive as λH1+µH2

sweeps through. This gives a partial subdivision of the original tetrahedron.

The question we wanted to answer was: in the case where there are only

two junior points p1, p2, does extending the line segment p1p2 to the faces of the

tetrahedron provide a resolution into basic simplices. This would allow us to

consider chains of such subdivisions. However, the answer to the question is no,

as the following examples will illustrate.

Example 2.7.3. Consider the quotient singularity 1
17
(1, 3, 5, 8), which does not

have a crepant resolution. Let L = Z4 + 1
17
(1, 3, 5, 8) · Z. This has two junior

points in the interior of the junior simplex:

p1 =
1
17
(1, 3, 5, 8), p7 =

1
17
(7, 4, 1, 5).

Take the four hyperplanes containing p1, p7 and one of the ei:

H1 : (x2 + x3 − x4 = 0) H2 : (x1 + 3x3 − 2x4 = 0)

H3 : (x1 − 3x2 + x4 = 0) H4 : (x1 − 2x2 + x3 = 0)

The pencil of planes λH1 + µH2 sweeps through each of the vertices ei in turn.

By projecting to a plane perpendicular to the line we see that the order the pencil

sweeps through the vertices is e1, e3, e2, e4. This tells us that subdividing around

the line segment p1p7 gives the cones:

Cone Singularity

e1p1p7e4 −

e1p1e3p7 −

p1e2e3p7
1
3
(1, 2, 1, 2)

p1e2p7e4
1
2
(1, 1, 1, 1)
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These do not cover the whole of the junior simplex. We add in the cones at

either end of the line segment p1e2e3e4 and e1e2p7e4, and compare faces to find

any missing cones. We now have:

Cone Singularity

p1e2e3e4 −

e1e2p7e4 −

e1e2e3p7
1
5
(1, 4, 2, 3)

e1p1e3e4
1
3
(1, 2, 1, 2)

The line segment can be extended to meet the face e2e3e4 and e1e2e4 at the points
1
17
(0, 17

6
, 34

6
, 51

6
) and 1

17
(17
2
, 17

4
, 0, 17

4
) respectively. This does not help us to subdivide

the cones further as these points are contained within basic cones.

The only way to subdivide p1e2p7e4 into two basic cones would be to subdivide

at a point on one of the edges p1e2, p1p7, p1e4, e2p7, e2e4, or p7e4. Each of these

edges, however, are common to at least one basic cone, and adding an additional

point would also require further subdivision of the basic cone. It is not clear how

to proceed from here.

It may be worth noting that the cones with 1
3
(1, 2, 1, 2) singularity can be

further subdivided by taking a point in the faces e2e3p7 and e1e3e4. These faces

are not common to any other cone.

We now look at an example where the points p1 and p2 are collinear with one

of the ei.

Example 2.7.4. Let L = Z4+ 1
8
(1, 1, 1, 5)·Z. The two junior points in the interior

of the junior simplex

p1 =
1
8
(1, 1, 1, 5), p2 =

1
8
(2, 2, 2, 2).

are collinear with the vertex e4.

Subdivision around the line segment p1p2 gives:

Cone Singularity

e1p1e3p2 −

p1e2e3p2 −

e1e2p1p2 −

p1e2e3e4 −

e1p1e3e4 −

e1e2p1e4 −

e1e2e3p2
1
2
(1, 1, 1, 1)
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The idea was that we could subdivide the cone e1e2e3p2 at the point where the

extended line segment p1, p2 meets the face e1e2e3. This is the point 1
8
(8
3
, 8
3
, 8
3
, 0),

which is contained in e1e2e3p2. However subdivision at this point cannot give two

basic cones.

Subdivision at the point 1
8
(0, 4, 4, 0) (respectively 1

8
(4, 0, 4, 0), 1

8
(4, 4, 0, 0)) would

give a resolution into eight basic cones, which is what we wanted. However, again,

any of these would require further subdivision of a basic cone.



Chapter 3

Resolution algorithm

In order to find all crepant resolutions of a particular singularity I have written a

Magma program to find triangulations of the junior simplex. The code is written

from first principles and relies on only basic Magma functions.

This chapter is organised as follows. I start by giving an idea of what the

program does, followed by a more detailed description of the program which is

illustrated by a flowchart. I use pseudocode to discuss the details of each algo-

rithm in turn. TheMagma program is available at http://www.warwick.ac.uk/

staff/S.E.Davis/Thesis/ResolutionAlgorithm.m. Examples of the program

in action are given at the end of the chapter.

Throughout this section we will use typewriter-style to distinguish variables

in Magma, for example CrepantCones, and small caps to distinguish functions,

for example HasCrepRes.

3.1 Overview of the program

3.1.1 Short description of the program

We find all the basic cones having vertices in the set of junior points of the sin-

gularity (this includes e1 = (1, 0, 0, 0) etc.). We then find cones whose faces form

part of the faces of the junior simplex, and choose a subset of these which cover

all the faces of the junior simplex. We continue by finding the neighbours of each

cone that has already been chosen. We use a decision tree to choose between these

neighbours until we obtain a crepant resolution or prove the nonexistence of one.

48
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Figure 3.1: Flowchart for the resolution algorithm
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3.1.2 Detailed description of the program

Let G be the cyclic subgroup of SL(4,C) generated by 1
r
(a1, a2, a3, a4), and let X

be the quotient singularity C4/G.

Definition 3.1.1. [IR96] Let L = Z4+ 1
r
(a1, a2, a3, a4) ·Z be a lattice. Define the

age of a point (b1, b2, b3, b4) of L to be

4
∑

i=1

bi.

Since all of our groups are in SL the age of every lattice point will be an integer.

We call the points with age 1 junior points.

Denote by ka1 the integer ka1 mod r. The junior points of L are the points
1
r
(ka1, ka2, ka3, ka4), for 1 ≤ k < r, such that 1

r

∑4
i=1 kai = 1, together with the

points

e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1).

If a1 = 1 we refer to the junior point 1
r
(a, b, c, d) as pa, where a is the first

coordinate of the point.

These points all lie on the plane x1 + x2 + x3 + x4 = 1. We refer to the

intersection of this plane with the first orthant as the junior simplex. This is a

tetrahedron whose vertices are the points e1, e2, e3, e4.

Recall from Remark 1.2.8 that the existence of a crepant resolution f : Y → X

is equivalent to the 1-skeleton of the toric fan of Y consisting only of junior points.

The following description of how the program works is illustrated by Figure

3.1, which shows the main steps in the algorithm. Further details are given in

sections 3.2–3.4.

We find all cones of the form p1p2p3p4, where pi are any junior points. Such

a cone is basic if the vectors p1, p2, p3, p4 generate the lattice L. We calculate the

determinant of the matrix













p1,1 p1,2 p1,3 p1,4

p2,1 p2,2 p2,3 p2,4

p3,1 p3,2 p3,3 p3,4

p4,1 p4,2 p4,3 p4,4













(3.1)

where p1,i denotes the ith coordinate of p1. This is the volume of the parallelepiped
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with vertices p1, p2, p3, p4, whose volume is 4! times that of the simplex p1p2p3p4.

The condition that the vectors p1, p2, p3, p4 generate the lattice L is equivalent to
1
r
times the determinant of matrix (3.1) being equal to ±1. If the cone p1p2p3p4

is basic, we say the simplex p1p2p3p4 has relative volume 1. The junior simplex

has relative volume r so a resolution requires r cones. In Magma we store the

set of all basic cones in an ordered list called CrepantCones.

Two crepant cones are neighbours if they share a common face and have op-

posite orientation. That is, they have three vertices in common, but the signs

of the determinants of their matrices as in (3.1) are opposite. A search through

the faces of every cone in CrepantCones reveals all pairs of cones with a shared

common face. A further check on the determinants of these cones shows which

of these pairs are neighbours. We will store this information in a table called the

AdjacencyGraph. We fix an order on the vertices of each cone and number the

faces by the index of the missing vertex; for example, the face p2p3p4 is considered

to be face 1 of the cone p1p2p3p4. Let i, j run through CrepantCones. In the

(i, j)th entry of the AdjacencyGraph we record the index of the common face of

cones i and j, as labelled in cone i, if they are neighbours, and we record a 0 if

the cones i and j are not neighbours (this includes the case i = j). Note that the

table is not symmetric.

Example 3.1.2. Let e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 =

(0, 0, 0, 1), p1 =
1
7
(1, 1, 1, 4) and p2 =

1
7
(2, 2, 2, 1). Consider the cones

C1 = e1e2p1p2, C2 = e1p1e3p2, C3 = p1e2e3p2, C4 = e1e2p1e4,

C5 = e1p1e3e4, C6 = p1e2e3e4, C7 = e1e2e3p2.

Cones C1, C2 share a common face e1p1p2. Since e2 is the vertex missing from

C1, this face is considered to be the second face of C1 (it is the third face of C2).

The first face of C1, that is e2p1p2, is common to C3, the third face is common to

C7 and the fourth face is common to the C4. It is not hard to check that these

pairs of cones are actually neighbours. The first cone has no face in common

with the fifth or sixth cone. This information is recorded in the first row of the

AdjacencyGraph, Table 3.1. The (1, 2)th entry tells us that C1 shares its second

face with C2. The 3 in the (2, 1)th entry shows that the common face of cones

C2 and C1 is the third face of C2. In this example the AdjacencyGraph tells us a

unique triangulation of the junior simplex as every pair of neighbours is unique.

Note that cones C4, C5, C6, C7 have only three neighbours because one of each of
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[ [ 0, 2, 1, 4, 0, 0, 3 ],

[ 3, 0, 1, 0, 4, 0, 2 ],

[ 3, 2, 0, 0, 0, 4, 1 ],

[ 4, 0, 0, 0, 2, 1, 0 ],

[ 0, 4, 0, 3, 0, 1, 0 ],

[ 0, 0, 4, 3, 2, 0, 0 ],

[ 3, 2, 1, 0, 0, 0, 0 ] ]

Table 3.1: AdjacencyGraph for Example 3.1.2

their faces is a face of the junior simplex.

The algorithm uses the AdjacencyGraph to find the number of cones at each

face of a given cone. If cone C1 has a face with exactly one neighbouring cone

C2, we know that if C1 is part of a resolution then C2 must also be part of that

resolution. Note that it is possible that C1 is not the only neighbour of C2 at

their common face, so the converse is not true. If C2 is the only neighbour to C1

at a given face we say that C2 is a forced neighbour of C1. By considering forced

neighbours and the forced neighbours of forced neighbours of a cone C, we can

find a set of cones which must belong to any resolution containing C. We store

the set of all such cones in a list called the ConeChain of C.

For every basic cone C there exists a ConeChain (of length at least one). In

Example 3.1.2, the ConeChain of the first cone contains all seven cones. Cones

2, 3, 4 and 7 are the unique neighbours at faces 2, 1, 4 and 3 of the first cone

respectively. Cone 5 is a unique neighbour at the fourth face of cone 2 and cone

6 is a unique neighbour at the fourth face of cone 3.

We are looking for a triangulation of the junior simplex. So far we know how

the cones fit together, but we must also make sure we choose cones which do not

overlap. We use the toric geometry definitions in Magma to check the dimension

of the intersection of every pair of crepant cones. If the dimension is 4 then the

cones have nontrivial intersection and cannot appear in the same resolution. We

record this information in a table called the OverlapGraph.

We use the OverlapGraph to make a table called ConeChainOverlapGraph

which tells us whether or not two cone chains have nontrivial intersection. We

check whether the ConeChain of cone C contains cones which overlap — i.e. does

the ConeChain go over itself? If the ConeChain of C overlaps itself it cannot be

part of the resolution. We make a list called AllowedCones containing all cones

whose ConeChain do not overlap with themselves.
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We find the set of junior points which lie on the four triangular faces of the

junior simplex. We find all the crepant cones which have three vertices from this

set. These cones have a face at a face of the junior simplex, and as such, have at

most three neighbours. We call the set of all such cones FaceCones.

We choose the first FaceCone, C, and create a list FaceTiling, to which we

add the cone C. We ignore any FaceCones which have a non-proper intersection

with any of the ConeChains of the cones in FaceTiling. We continue choosing

cones from FaceCones until all have been chosen or discarded.

If we don’t find a FaceTiling, a different cone is chosen first until all options

have been tried, if there is still no FaceTiling then no crepant resolution exists.

Otherwise, let ChosenCones be the list containing all the cones in FaceTiling

and in the ConeChains of these cones.

We exclude from AllowedCones any cones which have a non-proper intersec-

tion with a cone in ChosenCones.

If ChosenCones contains r cones we are done, otherwise we need to make a

choice of neighbour at each of the remaining faces of the ChosenCones.

We find the subset of AllowedCones which have a common face with at least

one of the ChosenCones. For each face of the cones in ChosenCones, we find

the cones which also contain this face. If none of these cones are already in the

ChosenCones we need to choose between them. (We also check whether the cones

are valid — i.e. do they not overlap with anything in ChosenCones — at this

stage. This will be described in more detail later.) We save each of these sets in

a list called Choices.

If any of the sets in Choices is empty or Choices itself is empty then we must

choose a different face tiling. If Choices is nonempty and if any of the sets in

Choices contains exactly one cone, C, then C is forced and we add the ConeChain

of C to ChosenCones.

We remove from Choices every set containing any element of the ConeChain

of C and remove from every set in Choices any cone that was overlapping with

a newly chosen one. Then we remove from the sets of Choices any cone which

overlaps with the ConeChain of C.

If every set of Choices contains at least two cones, we choose the first cone

from the first set, and follow the same procedure as for the forced cone C above.

We continue to choose cones until Choices is empty or we have an empty set in

Choices.

If Choices is empty and we do not have r cones, we must make some more sets
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of choices. The algorithm for doing this will be explained in section 3.4. If the new

Choices is nonempty we can continue to make choices as before. If Choices is

empty or contains an empty set we undo the last choice we made. We remove the

last cone chosen from ChosenChones and make a new list Choices. We continue

as before.

If we have undone all the choices we made, we can try to find a different

FaceTiling. If this is possible we run through the algorithm again. Otherwise,

we have been unable to find a resolution.

The algorithm will also find all crepant resolutions. In this case, once a reso-

lution has been found it undoes the last choice made, and continues as above.

Example 3.1.3. Consider the singularity 1
17
(1, 1, 6, 9). There are five junior

points in the lattice L = Z4 + 1
17
(1, 1, 6, 9) · Z:

p1 :=
1

17
(1, 1, 6, 9), p2 :=

1

17
(2, 2, 12, 1), p3 :=

1

17
(3, 3, 1, 10),

p4 :=
1

17
(4, 4, 7, 2), p6 :=

1

17
(6, 6, 2, 3).

We find 33 basic cones

p1e2e3e4 p2p1e2e3 p3p1e2e4 p3p1e2e3 p3p2e2e3 p3p2p1e2

p4p1e2e4 p4p2p1e2 p4p3e2e4 p4p3p1e2 p4p3p2e2 p6p3p1e2

p6p4p1e2 p6p4p3e2 e1p1e3e4 p2e1e2e3 e1p2p1e3 e1p3e2e4

e1p3p1e4 e1p3p1e3 e1p3p2e3 e1p3p2p1 e1p4p1e4 e1p4p2e2

e1p4p2p1 e1p4p3e4 e1p4p3p1 e1p4p3p2 e1p6p3e2 e1p6p3p1

e1p6p4e2 e1p6p4p1 e1p6p4p3.

By considering the faces of these we find the four cones which have a face on the

faces of the junior simplex:

p1e2e3e4, e1p1e3e4, e1p3e2e4, p2e1e2e3.

We want to find the neighbours of each of these cones. We look to see which

cones share a common face with the fourth cone, p2e1e2e3. We set an order on the

vertices and number the faces by the index of the vertex missing from p2e1e2e3,

and record the number of the common face in the AdjGraph :

[ 0, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 3, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0 ]
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This tells us that there is a choice of neighbour at the second and third faces, but

a unique neighbour at the fourth face. This unique neighbour turns out to be the

cone p2e1e2p4. We find that the ConeChain of p2e1e2e3 is

{p2e1e2e3, e1e2p4p2, e1e2p4p6, e1e2p3p6, e1p3e2e4}.

The union of the ConeChains of the edge pieces give us the ChosenCones:

p2e1e2e3, e1e2p4p2, e1e2p4p6, e1e2p3p6, e1p3e2e4, p1e2e3e4, e1p1e3e4.

(3.2)

We must now make choices as to which neighbour we should take at each face.

For p2e1e2e3 we have a choice between the cones e1p1e3p2 and e1p3e3p2. Choosing

e1p1e3p2, we get the ConeChain

p1e2e3e4, p2p1e2e3, e1p1e3e4, e1p2e2e3, e1p2p1e3,

e1p3e2e4, e1p4p2e2, e1p6p3e2, e1p6p4e2,

which forces us to take

e1p1e3p2, p1e2e3p2 (3.3)

as all the other cones in the ConeChain are already in the ChosenCones. We

choose p1e2p4p6 over p3e2p4p6 as a neighbour for e1e2p4p6. This has ConeChain

p1e2p4p6, p1e2p4p2, e1p1p4p2, e1p1p4p6,

e1p1p3p6, e1p1p3e4, p1e2p3e4, p1e2p3p6,
(3.4)

Thus there are seventeen cones: the seven cones of (3.2), the two cones of (3.3) and

the eight cones of (3.4), and these are a resolution of the singularity 1
17
(1, 1, 6, 9).

If we chose p3e2p4p6 instead of p1e2p4p6, we would obtain a resolution, but

only after making more choices of neighbours.

3.2 Setup

The algorithm works by first computing the cones which sit at the faces of the

junior simplex. The idea is first to tile the faces and then to work inwards using

the ConeChains. We start by finding the FaceCones. There cannot be more than

one of these for each face eiejek. This is because, as the group is cyclic, we can’t

have 1
r
(a, b, c, 1) and 1

r
(d, e, f, 1) unless a = d, b = e, and c = f , so we can’t have
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two distinct basic cones e1e2e3pa and e1e2e3pd.

We find the junior points lying on the faces of the junior simplex. We then

find cones in CrepantCones whose faces form part of the junior simplex. We call

this set FaceCones. It may contain more than four cones, and we may have to

make a choice between the cones.

Lemma 3.2.1. For cyclic groups of order r ≥ 4 there are at least four FaceCones.

Proof. We begin by proving that there are four cones of the form eiejekp if and

only if there are no junior points lying on the faces of the junior simplex.

Suppose there is no crepant cone of the form e1e2e3p. We know that if there

were a point p = 1
r
(d1, d2, d3, 1) in the unit box inside the lattice L = Z4 +

1
r
(a1, a2, a3, a4) · Z then p would have to be a junior point. Thus, since no such p

exists, r and a4 must have a common factor, say s. Let d = r
s
and let

αi = dai mod r

for 1 ≤ i ≤ 4. Now α4 = 0 and

α1 + α2 + α3 = either r or 2r.

Now (a4 − 1)dai = a4dai − dai = r − αi mod r for all i. So

r − α1 + r − α2 + r − α3 = either r or 2r.

Thus, either 1
r
(α1, α2, α3, 0) has age 1 or 1

r
(r− α1, r− α2, r− α3, 0) has age 1. So

we have at least one junior point on the face e1e2e3.

Conversely, suppose p is a junior point on the face e1e2e3, so that we can write

p = 1
r
(α1, α2, α3, 0). Then the cone e1e2e3q cannot be basic for any junior point q,

since the cones pe2e3q, e1pe3q and e1e2pq are all contained in it and are generated

by vectors in the lattice.

We prove that each cone has at most one face contained in a face of the junior

simplex. Suppose not. Let i, j, k, l ∈ {1, 2, 3, 4} be distinct. Without loss of

generality we can assume i = 1, j = 2, k = 3, l = 4. Up to symmetry, there are

the following options:

1. There is one vertex at e1. The other three vertices lie on the edges e1e2, e1e3,

e1e4.
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2. There is one vertex at each of e1 and e2. The other two vertices lies on the

edges e1e3, e1e4.

3. There is one vertex at e1. A vertex lies on each of the edges e1e2, e1e3. One

vertex lies on the face e1e2e4.

4. There is one vertex at each of e1 and e2. One vertex lies on the edge joining

e1 to e3. One vertex lies on the face e1e2e4.

5. There is one vertex at e1, one vertex on an edge e1e2 and one vertex on each

of the faces e1e2e3, e1e2e4.

6. There is one vertex at each of e1 and e2, and one vertex on each of the faces

e1e2e3, e1e2e4.

7. There are two vertices on the line e1, e2, and one vertex on each of the faces

e1e2e3, e1e2e4.

8. There is a vertex at each of e1, e2, e3, and one vertex on the edge e1e4.

9. There is a vertex at each of e1, e2, e3, and one vertex on the face e1e2e4.

In the first six cases, the vertices of the cone will give us, at worst, an upper

triangular matrix:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r 0 0 0

r − a a 0 0

b1 b2 b3 0

c1 c2 0 c4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

This is a basic cone if ab3c4 = r2.

If these points come from a cyclic group action, say by 1
r
(a1, a2, a3, a4), then

we have:
αa2 = a βa2 = b2 γa2 = c2

αa3 = λ1r βa3 = b3 γa3 = ν1r

αa4 = λ2r βa4 = µ1r γa4 = c4,

with α, β, γ, λ1, λ2, µ1, ν1 strictly positive integers. Thus

r2 = ab3c4

= αa2βa3γa4

= αa2βa4γa3

= µ1ν1αa2r
2.
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This is a contradiction, so the first six cases cannot happen.

Consider a cone of the form

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r − a a 0 0

r − b b 0 0

c1 c2 c3 0

d1 d2 0 d4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Without loss of generality, assume b > a. This is a basic cone if

(r − a)bc3d4 − a(r − b)c3d4 = r3.

If these points come from a cyclic group action, say by 1
r
(a1, a2, a3, a4), then we

have:
αa3 = c3 βa3 = µr

αa4 = λr βa4 = d4,

with α, β, λ, µ strictly positive integers. Hence

r3 = (r − a)bc3d4 − a(r − b)c3d4

= r(b− a)c3d4

= (b− a)λµr3.

This disproves the seventh case.

Consider a cone of the form

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r 0 0 0

0 r 0 0

0 0 r 0

r − d 0 0 d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We must have d = 1 if this is to be a basic cone.

If these points come from a cyclic group action, say by 1
r
(a1, a2, a3, a4), then

we have:

αa1 = κr − 1 αa2 = λr αa3 = µr αa4 = νr + 1.

Thus a2 and r share a common factor, and a1, a4 are coprime to r.

Write r = ab and a2 = ac such that hcf(b, c) = 1. Then αa2 = αac = λab, so

α divides b. Hence αa4 6= 1 mod r since α and r are not coprime.

The ninth case is similar.
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Thus for each of the four faces of the junior simplex there is at least one cone,

one of whose faces is part of that face and none of its other faces are part of

another face of the junior simple.

This lemma means that if we have four face cones of the form

p1e2e3e4, e1p2e3e4, e1e2p3e4, e1e2e3p4

we do not need to search for any more face cones.

3.3 Face pieces

The code consists of two main functions HasCrepRes and FindResn. Al-

gorithm 1 shows how HasCrepRes works and sets up the data required for

FindResn, which will be described in Algorithm 2. Both algorithms initiate tree

searches. The function HasCrepRes finds a tiling of the faces of the junior

simplex, then calls FindResn to complete the search for a crepant resolution

with these initial conditions. If FindResn fails to find a resolution the ini-

tial face tiling is changed, and the algorithm runs until a resolution is found or

all possible face tilings have been tested. The algorithms here are pseudocode;

theMagma code is available at http://www.warwick.ac.uk/staff/S.E.Davis/

Thesis/ResolutionAlgorithm.m

The input for HasCrepRes is the singularity 1
r
(a1, a2, a3, a4) expressed as r,

[a1, a2, a3, a4]. We begin by setting up all the objects we need. We make the list,

CrepantCones, of crepant cones; the list, OverlapGraph, of which cones overlap,

the list, AdjacencyGraph, of neighbours at each face; the list, ConeChains, of

cones forced by each cone; the list, Juniors, of junior points; the list, FaceCones,

of cones which sit on the faces of the junior simplex; and ConeChainOverlapGraph,

the table of which ConeChains overlap.

The full algorithm contains extra optimisation: after we have created

ConeChainOverlapGraph we restrict ourselves to working only with the subset

AllowedCones of CrepantCones consisting of cones whose ConeChains do not

overlap themselves.

We start the repeat loop (Algorithm 1, line 9) with ChosenFaces = [ ]. We

will choose cones from FaceCones one at a time. This will put restrictions on

which cones we may choose next, so we create a list PossibleFaces, which is

initially equal to FaceCones. We will need to keep track of the order in which we
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Algorithm 1 HasCrepRes

1: function HasCrepRes( r, [a1, a2, a3, a4] )
2: CrepantCones := MakeCrepantCones(r, [a1, a2, a3, a4])
3: OverlapGraph := MakeOverlapGraph(CrepantCones)
4: AdjacencyGraph := MakeAdjacencyGraph(CrepantCones)
5: ConeChains := MakeConeChains(CrepantCones, AdjacencyGraph)
6: Juniors := FindJuniors(r, [a1, a2, a3, a4])
7: FacePieces := FindFaces(Juniors,CrepantCones)
8: ConeChainOverlapGraph := MakeMatrix(ConeChains,OverlapGraph)
9: repeat

10: ChosenFaces := [ ]

11: FaceSteps := [[ ChosenFaces, FacePieces ]]

12: run MakeFaceTiling(FaceSteps, ConeChains)
13: ChosenCones := the union of the ConeChains of cones in FaceTiling

14: if length(ChosenCones) 6= r then

15: run FindResn(ChosenCones)
⊲ Look for a tiling of the interior of the junior simplex.

16: end if

17: if we haven’t found a resolution then

18: run UndoLastFace(FaceSteps)
⊲ Undo the last choice of face we made.

19: end if

20: until we have a resolution or there are no choices of FaceCones left
21: return False if no resolution exists,

True and a Resolution otherwise.
22: end function
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have chosen cones for the FaceTiling; we do this using the list FaceSteps:

FaceSteps =

[[ChosenFaces1,PossibleFaces1],[ChosenFaces2,PossibleFaces2],...].

We want to choose FaceCones which tile the faces of the junior simplex. If

FaceCones contains exactly four cones there is only one way to do this. We may,

however, have to make a choice. This is done by the following function:

1: function MakeFaceTiling(FaceSteps, ConeChains)

2: n := length(FaceSteps)

3: ChosenFaces := FaceSteps[n,1]

4: PossibleFaces := FaceSteps[n,2]

⊲ Look at last entries of FaceSteps.

5: while PossibleFaces 6= [] do

6: Append [ChosenFaces, PossibleFaces] to FaceSteps

⊲ Save the last choice we made.

7: Cone1 := PossibleFaces[1]

⊲ Choose the first cone.

8: NewFaces := ConeChains[Cone1] ∩ PossibleFaces

9: Append NewFaces to ChosenFaces

⊲ Add in all PossibleFaces forced by Cone1.

10: for Cone in ChosenFaces do

11: Exclude from PossibleFaces any cone whose ConeChain overlaps

with that of Cone

12: end for

13: end while

14: FaceSteps := FaceSteps ∪ [FaceTiling, PossibleFaces]

15: return FaceSteps

16: end function

Here, FaceSteps[n,1] means take the first entry of the nth row of FaceSteps.

At line 6 we save the last choice we made: we are saving the choices we made

in the last iteration of the while loop. On the first iteration we save our original

data for a second time, so
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FaceSteps =

[[ChosenFaces1,PossibleFaces1],[ChosenFaces2,PossibleFaces2]].

with

ChosenFaces1 = ChosenFaces2 = [ ]

and

FaceCones1=FaceCones2=FaceCones.

Since we do not save the last choice at the end of the while loop we save once we

have exited the loop (line 14)

When PossibleFaces becomes empty, FaceTiling is the last set of ChosenFaces

in FaceSteps. The cones of FaceTiling may force some interior cones, so we

take the union of the ConeChains of all cones in FaceTiling. We call this list

ChosenCones.

If ChosenCones contains r cones we have a resolution and there is no more to

do. If not, we run the function FindResn, which is described in Algorithm 2.

Again, if this returns a resolution we are done. If not, we see if it is possible to

choose a different FaceTiling. The next algorithm uses FaceSteps to undo the

last choice we made whilst setting up FaceTiling:

1: function UndoLastFaces(FaceSteps)

2: n := length(FaceSteps)

3: LastFaceTiling := FaceSteps[n,1]

4: PenultimateFaceTiling := FaceSteps[n-1,1]

5: LastPossibleFaces := FaceSteps[n,2]

6: PenultimatePossibleFaces := FaceSteps[n-1,2]

7: JustAdded := PenultimateFaceTiling ∩ LastFaceTiling

⊲ Compare the newly added cones

8: while JustAdded is empty do

⊲ There are no newly added cones

⊲ delete the last entry of FaceSteps

9: n := n-1

⊲ and reset the variables.

10: LastFaceTiling := FaceSteps[n,1]

11: PenultimateFaceTiling := FaceSteps[n-1,1]

12: LastPossibleFaces := FaceSteps[n,2]

13: PenultimatePossibleFaces := FaceSteps[n-1,2]
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14: JustAdded := PenultimateFaceTiling ∩ LastFaceTiling

15: end while

⊲ There are newly added cones

16: Delete FaceSteps[n]

⊲ delete the last entry of FaceSteps

17: Delete JustAdded[1] from PenultimatePossibleFaces

18: FaceSteps[n-1] := [PenultimateFaceTiling,

PenultimatePossibleFaces]

⊲ remove the first cone of JustAdded from PenultimatePossibleFaces.

19: return FaceSteps

20: end function

Magma does not rearrange the order of the cones in LastFaceTiling so

the first cone of JustAdded (see line 7) is the cone the choice of which forced

all other cones in JustAdded. (Recall that we update FaceSteps after every

choice, so all cones in JustAdded are forced by this choice.) If JustAdded is

empty no cones were chosen in the last step, so we go back to a step where cones

were added (if one exists). The function deletes the last entry of FaceSteps

and resets the variables. Once we have reached a step where JustAdded is not

empty the last entry of FaceSteps is deleted and the chosen cone is removed from

PenultimatePossibleFaces, so that it cannot be chosen at this step again.

Note that when we calculate JustAdded in Magma we don’t change the order

of the cones. Thus, the first entry of JustAdded is the cone we chose the last

time we made a choice. Any other cones in JustAdded were forced by the first

cone. By deleting the first entry of JustAdded from PenultimatePossibleFaces

we prevent ourselves from choosing the same cone again, unless we change our

earlier choices of cones.

3.4 Find a resolution

The function FindResn is summarised in Algorithm 2. It is also demonstrated

in the flowchart of Figure 2.

On line 10 the notation Saved := Saved ∪ [[Cones,Choices]] means ap-

pend [[Cones,Choices]] to the end of Saved without changing the order of the

previous entries of Saved.
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Algorithm 2 FindResn

1: function FindResn(ChosenCones)
2: Choices := MakeChoices(ChosenCones)
3: Cones := ChosenCones

4: Saved := [[Cones, Choices]]

5: while Choices is not empty do

6: while no Choice in Choices is empty and length(Cones) < r cones
do

7: while there is a Choice in Choices which contains exactly one
cone do

8: run MakeUniqueChoice with that Choice
9: end while

10: Saved := Saved ∪ [[Cones,Choices]]

11: Cones, Choices := MakeAChoice(Cones,Choices)
12: if Choices is empty then

13: Choices := MakeChoices(Cones)
14: Saved:= Saved ∪ [[Cones,Choices]]

15: end if

16: end while

17: if there are not r cones in Cones then

18: Saved := UndoLastStep(Saved)
19: end if

20: end while

21: return Saved

22: end function
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Figure 3.2: Flowchart for the FindResn algorithm
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FindResn is called by HasCrepRes, which has already set up a FaceTiling

of the junior simplex and taken any cones which are forced by this tiling. The

idea now is to work inwards, making the choice of which cone to add at each face

where there is no neighbouring cone. The first step is to find the available choices

at every face. This is done by the function MakeChoices.

The input for MakeChoices is ChosenCones. Suppose a cone has no neigh-

bouring cone in ChosenCones at one of its faces, but has at least one neighbouring

cone from CrepantCones at the same face. We must add one of these neighbour-

ing cones to the triangulation. The function MakeChoices finds all faces where

there is no neighbour in ChosenCones and saves the set of possible neighbours

at each of these faces as a list, which we refer to as an n-choice, where n is the

number of possible neighbours in that list. The list of all n-choices is called

Choices. Before MakeChoices returns Choices it removes any overlapping

cones from Choices.

Having found which cones may be neighbours to our ChosenCones, we define

(line 4) a list of pairs called Saved. To start with Saved is just the pair con-

sisting of the set ChosenCones and the set Choices, which was the output of

MakeChoices.

We must choose a cone from each set in Choices. If there are any 0-choices

we are not able to find a resolution so we have to make a change (at line 6 we skip

to line 16). Any 1-choices are forced cones. If there are any such choices we

enter the while loop at line 7 and the function MakeUniqueChoice is called.

This function takes the cone, C, in the first 1-choice of Choices and adds C and

its ConeChain to Cones. Every time a cone, D belonging to the ConeChain of C

appears in an n-choice of Choices that n-choice is excluded, as these choices

have just been made. Any cone (other than D) in this n-choice now cannot

appear in the triangulation. We call the set of all such cones NotAllowed.

The functionMakeUniqueChoice goes on to remove all the cones (and their

ConeChains) in NotAllowed from Choices. Note that this may lead to an empty

n-choice in Choices.

The ConeChain of C has been added to Cones. Now no cone whose ConeChain

overlaps with the ConeChain of C can be chosen. The function MakeUnique-

Choice removes any such cone from the sets of Choices. Again this may leave an

empty n-choice in Choices. The function MakeUniqueChoice is now complete

and we return to line 7.

If we have no 1-choices we proceed to line 9. We must decide between
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the elements in the n-choices. We do this using MakeAChoice. This function

takes the first n-choice in Choices and takes the first cone, C, in it. It proceeds as

inMakeUniqueChoice: it adds in the ConeChain of C, removes any n-choices

it has made by doing this and removes any overlapping cones.

If Choices is empty (line 12) we run MakeChoices again to make a new set

of choices if this is possible.

If we have made the wrong choice (we failed to find a resolution because we

ran out of choices or were unable to make a choice at a certain face) we enter the

if statement at line 17. The function UndoLastStep deletes the last entry and

edits the penultimate entry of Saved. We may edit the second entry of Saved,

but as this was originally the same as the first, it is deleted when the tree search

terminates.

We will refer to the entries of the last pair in Saved as LastCones and

LastChoices. Similarly PenultimateCones and PenultimateChoices are the

entries of the penultimate pair in Saved.

The function UndoLastStep is very similar to the UndoLastFaces func-

tion of HasCrepRes. We delete the last entry of Saved until we get to a point

where we added cones to LastCones. We delete the cone we chose from the

penultimate list of choices, and delete the last entry of Saved. This leaves us in a

position to make a new choice of cone.

The algorithm then terminates if we find a resolution or when we have explored

all possible arrangements of cones. The variable Saved is returned in both cases.

3.5 Justification of algorithm

We will now justify that the algorithm terminates and that it finds a crepant

resolution if one exists.

Let T be the set of all triangulations of {a1, . . . , an, e1, e2, e3, e4}, the set of

junior points including vertices.

Claim 3.5.1. Every triangulation ∆ of T can be expressed as the union of cone

chains.

Proof. Suppose not. Suppose ∆ cannot be expressed as a union of cone chains.

Then either:

• There exists one cone which does not belong to a cone chain. This is im-

possible since every cone has a cone chain;
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• An element of a cone chain is missing. If this were the case, one cone in the

cone chain would have been replaced with a different cone with a common

face. However, cone chains are the set of forced neighbours, so there are no

further cones with this face.

Thus every triangulation can be expressed as the union of cone chains.

A problem would occur if we chose a set of cone chains whose union was not

a triangulation. We show that this cannot happen by first showing that it is not

possible to pick two cones in such a way that we cannot obtain a triangulation.

Since the cones are basic, it is not possible for two cones to meet at a vertex

which is not a vertex of both of the cones. This means they can’t meet in part of

an edge either:

Figure 3.3: Not a triangulation: two cones meeting in a subset of an edge

It is, however, possible for two cones to meet at a subset of a face, or a subset

of volume 3.

Figure 3.4: Two cones meeting in a subset of a face

We can have the arrangement of Figure 3.4 with the missing vertex of the red

cone coming out of the page and the missing vertex of the blue cone going into the

page. If this happens we would not be able to find neighbours to the cones at the

faces drawn, as the possible neighbouring cones of the blue cone would overlap

with the red cone and vice versa. If this happened during the algorithm it would

undo some of the previous steps until either the blue cone or the red cone had

been discarded.

The algorithm would not choose this arrangement with both the missing ver-

tices coming out of the page. This would mean the red and blue cone intersect
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with nonzero volume which is not allowed (this is the same situation as both the

red and the blue cone missing the same vertex).

The algorithm does not allow us to pick cones which meet in a subset of volume

three, as we use the overlap data to check this at each step. Now we can consider

the cone chains.

Given a single cone chain C, if a pair of cones of C intersect with dimension

greater than three then C cannot appear as part of any resolution (as this contra-

dicts the definition of triangulation). We will exclude any cone chain where this

happens.

Any pair of cone chains are allowed to meet in an edge, a face or in a whole

cone. If their intersection was something other than one of these we would not

have a triangulation. As we have just seen, the algorithm does not allow cones

to meet in a subset of volume three, and cones cannot meet in part of an edge.

Thus the only possible bad intersection would be if a pair of cones, one from each

cone chain, met in a subset of a face, as in Figure 3.4. But this would again lead

to there being two faces in the resolution where it would be impossible to find

neighbours.

Thus if we have a union of cone chains which contains r distinct basic cones,

none of which have a bad intersection, then we must have a resolution. The

basic cones can be thought of as simplices of relative volume 1, where the junior

simplex has relative volume r. Thus these r basic cones must triangulate the

junior simplex.

The algorithm works by first finding a face tiling and then working inwards.

In fact, the order in which we choose the cones does not matter, as we check every

combination until a resolution is found. The use of the face tiling gives a smaller

set of cones to start from. Any resolution must certainly include a face tiling.

The algorithm must find a resolution if one exists as we search through every

possible combination of cones.

3.6 Examples

Example 3.6.1. Consider the quotient singularity 1
7
(1, 1, 1, 4). This was dis-

cussed in Example 3.1.2. The example has two junior points and there are exactly

seven basic cones.

> r:=7;A:=[1,1,1,4];

> Juniors:=FindJuniors(r,A);
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> Juniors;

[

[ 1, 1, 1, 4 ],

[ 2, 2, 2, 1 ]

]

> CrepantCones := MakeCrepantCones(r,A);

> #CrepantCones;

7

> CrepantCones;

[

[

[ 1/7, 1/7, 1/7, 4/7 ],

[ 2/7, 2/7, 2/7, 1/7 ],

[ 1, 0, 0, 0 ],

[ 0, 1, 0, 0 ]

],

[

[ 1/7, 1/7, 1/7, 4/7 ],

[ 2/7, 2/7, 2/7, 1/7 ],

[ 1, 0, 0, 0 ],

[ 0, 0, 1, 0 ]

],

[

[ 1/7, 1/7, 1/7, 4/7 ],

[ 2/7, 2/7, 2/7, 1/7 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 1, 0 ]

],

[

[ 1/7, 1/7, 1/7, 4/7 ],

[ 1, 0, 0, 0 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 0, 1 ]

],

[

[ 1/7, 1/7, 1/7, 4/7 ],
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[ 1, 0, 0, 0 ],

[ 0, 0, 1, 0 ],

[ 0, 0, 0, 1 ]

],

[

[ 1/7, 1/7, 1/7, 4/7 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 1, 0 ],

[ 0, 0, 0, 1 ]

],

[

[ 2/7, 2/7, 2/7, 1/7 ],

[ 1, 0, 0, 0 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 1, 0 ]

]

]

It is not hard to see that the face tiling is the last four cones.

> FacePieces := FindFaces(Juniors,CrepantCones);

> FacePieces;

[ 4, 5, 6, 7 ]

In fact the cone chain of cone 4 is all of CrepantCones.

>AdjacencyGraph := MakeAdjacencyGraph(CrepantCones);

> ConeChains := MakeConeChains(CrepantCones,AdjacencyGraph);

> ConeChains[4];

[ 4, 1, 2, 3, 5, 6, 7 ]

> OverlapGraph := MakeOverlapGraph(CrepantCones);

> ConeChainOverlapGraph := MakeConeChainOverlaps(ConeChains,

OverlapGraph);

> AllowedCones := [1..#CrepantCones];

> for i in [1..#ConeChainOverlapGraph] do

for> if ConeChainOverlapGraph[i,i] then

for|if> Exclude(~AllowedCones,i);

for|if> Exclude(~FacePieces,i);
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for|if> end if;

for> end for;

> #AllowedCones;

7

Since all of the basic cones are allowed, they are the unique crepant resolution of
1
7
(1, 1, 1, 4).

Example 3.6.2. A crepant resolution of the quotient singularity 1
17
(1, 3, 3, 10)

was computed via barycentric subdivision in Example 2.1.1. This Magma output

shows how the algorithm works on this example.

> r:=17;A:=[1,3,3,10];

> Juniors:=FindJuniors(r,A);

> Juniors;

[

[ 1, 3, 3, 10 ],

[ 2, 6, 6, 3 ],

[ 6, 1, 1, 9 ],

[ 7, 4, 4, 2 ],

[ 12, 2, 2, 1 ]

]

> CrepantCones := MakeCrepantCones(r,A);

> #CrepantCones;

33

> FacePieces := FindFaces(Juniors,CrepantCones);

> FacePieces;

[ 33, 30, 20, 31 ]

There are 33 basic cones, four of which are face cones, so form a face tiling of the

junior simplex.

>AdjacencyGraph := MakeAdjacencyGraph(CrepantCones);

> ConeChains := MakeConeChains(CrepantCones,AdjacencyGraph);

> ConeChains[33];

[ 33, 32, 23, 5, 20 ]

In this example the cone chains of face cones are short. In fact the face tiling

forces only 7 cones:
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> OverlapGraph := MakeOverlapGraph(CrepantCones);

> ConeChainOverlapGraph := MakeConeChainOverlaps(ConeChains,

OverlapGraph);

> AllowedCones := [1..#CrepantCones];

> for i in [1..#ConeChainOverlapGraph] do

for> if ConeChainOverlapGraph[i,i] then

for|if> Exclude(~AllowedCones,i);

for|if> Exclude(~FacePieces,i);

for|if> end if;

for> end for;

> #AllowedCones;

33

> ChosenFaces := FacePieces;

> ChosenCones := MakeForced(ConeChains,ChosenFaces);

> #ChosenCones;

7

> ChosenCones;

[ 33, 23, 5, 30, 20, 31, 32 ]

Since there are not yet 17 cones, more cones must be chosen. The faces of cones

in ChosenCones where there is no neighbour in ChosenCones are considered. A

search for possible neighbours at these faces yields a set of choices:

> Choices := MakeChoices(CrepantCones, ChosenCones,AdjacencyGraph,

ConeChainOverlapGraph, AllowedCones);

> Choices;

[

[ 19, 29 ],

[ 18, 28 ],

[ 4, 22 ],

[ 3, 21 ],

[ 2, 4 ],

[ 1, 3 ],

[ 12, 26 ],

[ 10, 28 ],

[ 13, 17 ],

[ 12, 16 ],
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[ 13, 27 ],

[ 11, 29 ],

[ 15, 25 ],

[ 14, 24 ]

]

Cones 19 and 29 are neighbours of cone 33:

> CrepantCones[33];

[

[ 12/17, 2/17, 2/17, 1/17 ],

[ 1, 0, 0, 0 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 1, 0 ]

]

> CrepantCones[19];

[

[ 1/17, 3/17, 3/17, 10/17 ],

[ 12/17, 2/17, 2/17, 1/17 ],

[ 1, 0, 0, 0 ],

[ 0, 0, 1, 0 ]

]

> CrepantCones[29];

[

[ 6/17, 1/17, 1/17, 9/17 ],

[ 12/17, 2/17, 2/17, 1/17 ],

[ 1, 0, 0, 0 ],

[ 0, 0, 1, 0 ]

]

>

Exactly one of these cones must belong to the resolution. The algorithm will

pick cone 19 first.

> cone:=Choices[1,1];

> cone;

19

> ConeChains[cone];
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[ 19, 33, 11, 13, 12, 15, 14, 3, 23, 4, 5, 18, 30, 31, 20, 32, 10 ]

> #ConeChains[cone];

17

> &and[&and[OverlapGraph[i,j] : j in [i+1..17]]: i in [1..16]];

false

The cone chain of cone 19 contains 17 cones. These cones do not overlap so

they form a tiling of the junior simplex, and thus correspond to a resolution of

the quotient singularity 1
17
(1, 3, 3, 10).

If instead cone 29 is picked, its cone chain contains only 9 cones, so more

choices must be made. However first the list of choices must be updated. It is

clear now cones 19 and 11 cannot appear in a resolution containing cone 29, since

these both appear in a set in choices that also contains 19. Since cone 28 is in the

cone chain of cone 29, cones 18 and 10 must also be removed from choices.

> cone:=Choices[1,2];

> cone;

29

> ConeChains[cone];

[ 29, 33, 28, 30, 31, 32, 23, 5, 20 ]

> #ConeChains[cone];

9

> Choices2,NotAllowed:=MakeAChoice(Choices,cone,ConeChains);

> Choices2;

[

[ 4, 22 ],

[ 3, 21 ],

[ 2, 4 ],

[ 1, 3 ],

[ 12, 26 ],

[ 13, 17 ],

[ 12, 16 ],

[ 13, 27 ],

[ 15, 25 ],

[ 14, 24 ]

]

> NotAllowed;

[ 19, 18, 10, 11 ]
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After running the algorithm further this leads to a resolution.

> C,D:=HasCrepResns(r,A);

> #D;

40

> for i in [1..#D] do

for> D[i]:=Sort(D[i]);

for> end for;

> SetToSequence(SequenceToSet(D));

[

[ 3, 4, 5, 6, 7, 12, 13, 20, 23, 24, 25, 28, 29, 30, 31, 32, 33 ],

[ 3, 4, 5, 10, 11, 12, 13, 14, 15, 18, 19, 20, 23, 30, 31, 32, 33 ],

[ 3, 4, 5, 8, 9, 12, 13, 14, 15, 20, 23, 28, 29, 30, 31, 32, 33 ],

[ 3, 4, 5, 16, 17, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 ],

[ 1, 2, 5, 12, 13, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33 ]

]

The algorithm shows that the are five different crepant resolutions of 1
17
(1, 3, 3, 10).

Choosing cone 19 gave the second of these, whereas cone 29 belongs to each of

the other four resolutions.

Example 3.6.3. Consider the quotient singularity 1
18
(1, 1, 3, 13). In this example

3 divides 18, so there is a junior point lying on a face of the junior simplex. Thus

there are more face pieces.

> r:=18;A:=[1,1,3,13];

> Juniors:=FindJuniors(r,A);

> Juniors;

[

[ 1, 1, 3, 13 ],

[ 2, 2, 6, 8 ],

[ 3, 3, 9, 3 ],

[ 6, 6, 0, 6 ],

[ 7, 7, 3, 1 ]

]

> CrepantCones := MakeCrepantCones(r,A);

> #CrepantCones;

32



3.6. Examples 77

> FacePieces := FindFaces(Juniors,CrepantCones);

> FacePieces;

[ 11, 14, 15, 29, 30, 9, 31, 32, 10 ]

These face pieces overlap so the algorithm chooses a face tiling:

> ChosenFaces;

[ 11, 15, 14, 30, 31, 10, 32 ]

> CrepantCones[ChosenFaces];

[

[

[ 1/18, 1/18, 1/6, 13/18 ],

[ 1/3, 1/3, 0, 1/3 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 0, 1 ]

],

[

[ 1/18, 1/18, 1/6, 13/18 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 1, 0 ],

[ 0, 0, 0, 1 ]

],

[

[ 1/18, 1/18, 1/6, 13/18 ],

[ 1, 0, 0, 0 ],

[ 0, 0, 1, 0 ],

[ 0, 0, 0, 1 ]

],

[

[ 1/3, 1/3, 0, 1/3 ],

[ 7/18, 7/18, 1/6, 1/18 ],

[ 1, 0, 0, 0 ],

[ 0, 0, 0, 1 ]

],

[

[ 1/3, 1/3, 0, 1/3 ],

[ 7/18, 7/18, 1/6, 1/18 ],

[ 0, 1, 0, 0 ],
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[ 0, 0, 0, 1 ]

],

[

[ 1/18, 1/18, 1/6, 13/18 ],

[ 1/3, 1/3, 0, 1/3 ],

[ 1, 0, 0, 0 ],

[ 0, 0, 0, 1 ]

],

[

[ 7/18, 7/18, 1/6, 1/18 ],

[ 1, 0, 0, 0 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 1, 0 ]

]

]

The algorithm continues as in the previous examples, by finding the forced

cones and then searching for a tiling of the interior of the junior simplex. The

algorithm will choose a different face tiling if this one does not lead to a tiling of

the junior simplex, or if it is searching for all resolutions.

[

[ 1, 2, 5, 6, 10, 11, 14, 15, 16, 17, 20, 21, 25, 26, 27, 28, 29, 32 ],

[ 1, 2, 5, 6, 10, 11, 14, 15, 18, 19, 20, 21, 22, 23, 27, 28, 29, 32 ],

[ 3, 4, 5, 6, 12, 13, 14, 15, 18, 19, 20, 21, 27, 28, 29, 30, 31, 32 ],

[ 3, 4, 5, 6, 7, 8, 10, 11, 14, 15, 18, 19, 20, 21, 27, 28, 29, 32 ]

]

Four different tilings have been found, only one of which contains the face

tiling above.

Example 3.6.4. The quotient singularity 1
13
(1, 1, 4, 7) does not have a crepant

resolution.

> HasCrepRes(13,[1,1,4,7]);

false []

It is easy to see why this happens; there are only 11 crepant cones.
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> r:=13; A:=[1,1,4,7];

> Juniors := FindJuniors(r,A);

> Juniors;

[

[ 1, 1, 4, 7 ],

[ 2, 2, 8, 1 ],

[ 4, 4, 3, 2 ]

]

> CrepantCones := MakeCrepantCones(r,A);

> #CrepantCones;

11

Now consider the the age 2 points of the lattice Z4 + 1
13
(1, 1, 4, 7).

> Pts:=Pts(r,A);

> Age2:=[P : P in Pts | &+P eq 2*r];

> Age2;

[

[ 3, 3, 12, 8 ],

[ 5, 5, 7, 9 ],

[ 6, 6, 11, 3 ],

[ 7, 7, 2, 10 ],

[ 8, 8, 6, 4 ],

[ 10, 10, 1, 5 ]

]

> JunNec(r,A);

false [ 7, 7, 2, 10 ]

The function JunNec(r,A) checks whether every age 2 point is the sum of two

age 1 points. In this case it fails for [7,7,2,10] and [10,10,1,5].

Example 3.6.5. The code shows that 1
39
(1, 5, 8, 25) has no crepant resolution.

First calculate the junior points in the lattice Z4 + 1
39
(1, 5, 8, 25) · Z:

> r:=39;

> A:=[1,5,8,25];

> Juniors := FindJuniors(r,A);

> Juniors;
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[

[ 1, 5, 8, 25 ],

[ 2, 10, 16, 11 ],

[ 5, 25, 1, 8 ],

[ 8, 1, 25, 5 ],

[ 10, 11, 2, 16 ],

[ 11, 16, 10, 2 ],

[ 16, 2, 11, 10 ],

[ 25, 8, 5, 1 ]

]

There are only eight interior lattice points, which is relatively small given the

order of the group.

The algorithm computes all basic cones, of which there are 161. It uses this

to find a face tiling, before starting to fill the interior of the junior simplex.

> CrepantCones := MakeCrepantCones(r,A);

> #CrepantCones;

161

> FacePieces:=FindFaces(Juniors,CrepantCones);

> FacePieces;

[ 132, 149, 161, 63 ]

> CrepantCones[FacePieces];

[

[

[ 5/39, 25/39, 1/39, 8/39 ],

[ 1, 0, 0, 0 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 0, 1 ]

],

[

[ 8/39, 1/39, 25/39, 5/39 ],

[ 1, 0, 0, 0 ],

[ 0, 0, 1, 0 ],

[ 0, 0, 0, 1 ]

],

[
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[ 25/39, 8/39, 5/39, 1/39 ],

[ 1, 0, 0, 0 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 1, 0 ]

],

[

[ 1/39, 5/39, 8/39, 25/39 ],

[ 0, 1, 0, 0 ],

[ 0, 0, 1, 0 ],

[ 0, 0, 0, 1 ]

]

]

Here the face tiling is unique as the ai are coprime to r = 39.

Cones whose cone chains overlap themselves are not permitted in the resolu-

tion. In this example only 97 of a possible 161 cones have cone chains which do

not overlap.

>AdjacencyGraph := MakeAdjacencyGraph(CrepantCones);

> ConeChains:=MakeConeChains(CrepantCones,AdjGraph);

> OverlapGraph := MakeOverlapGraph(CrepantCones);

> ConeChainOverlapGraph := MakeConeChainOverlaps(ConeChains,

OverlapGraph);

> AllowedCones := [1..#CrepantCones];

> for i in [1..#ConeChainOverlapGraph] do

for> if ConeChainOverlapGraph[i,i] then

for|if> Exclude(~AllowedCones,i);

for|if> Exclude(~FacePieces,i);

for|if> end if;

for> end for;

> #AllowedCones;

97

The next step in the algorithm is to add in the cone chains of each of the

cones in the face tiling. The first cone in the face tiling is cone 132. Its cone chain

contains itself and 21 other cones. The other cones of the face tiling (cones 149,

161, 63) are contained in this cone chain, so the only cones which are forced by

the face tiling belong to the cone chain of cone 132.
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> FacePieces[1];

132

> ConeChains[132];

[ 132, 121, 156, 62, 61, 146, 149, 42, 45, 63, 19, 80, 4, 34, 115,

143, 159, 161,120, 130, 142, 147 ]

> #ConeChains[132];

22

> ChosenFaces:=FacePieces;

> ChosenCones:= MakeForced(ConeChains,ChosenFaces);

> #Fo;

22

At this stage, there are no unique neighbours at any face of any cone in the set

Fo of chosen cones. Thus a search through all faces reveals the possible neighbours

at that face.

> Choices := MakeChoices(CrepantCones, ChosenCones,AdjacencyGraph,

ConeChainOverlapGraph, AllowedCones);

> #Choices;

20

> Choices;

[

[ 124, 128 ],

[ 9, 38 ],

[ 1, 2, 3 ],

[ 85, 110, 140 ],

[ 111, 141 ],

[ 89, 144 ],

[ 90, 144 ],

[ 17, 59 ],

[ 52, 57 ],

[ 18, 59 ],

[ 9, 12 ],

[ 52, 152 ],

[ 68, 108 ],

[ 111, 113 ],

[ 124, 157 ],
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[ 26, 29 ],

[ 24, 116, 118 ],

[ 26, 117 ],

[ 68, 71 ],

[ 7, 36, 41 ]

]

Cones 124 and 128 are neighbours of cone 130.

> CrepantCones[130];

[

[ 5/39, 25/39, 1/39, 8/39 ],

[ 25/39, 8/39, 5/39, 1/39 ],

[ 1, 0, 0, 0 ],

[ 0, 1, 0, 0 ]

]

> CrepantCones[124];

[

[ 5/39, 25/39, 1/39, 8/39 ],

[ 11/39, 16/39, 10/39, 2/39 ],

[ 25/39, 8/39, 5/39, 1/39 ],

[ 0, 1, 0, 0 ]

]

> CrepantCones[128];

[

[ 5/39, 25/39, 1/39, 8/39 ],

[ 16/39, 2/39, 11/39, 10/39 ],

[ 25/39, 8/39, 5/39, 1/39 ],

[ 0, 1, 0, 0 ]

]

Exactly one of these must belong to the resolution.

The algorithm runs a tree search on the set of choices, making more if nec-

essary, until it has tried every possible choice. The function returns false, which

shows that it has not found a resolution, and the variable resolution is empty.

> time boolean,resolution:=HasCrepRes(39,[1,5,8,25]);

Time: 271.750
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> boolean;

false

> resolution;

[]

Thus this singularity has no crepant resolution.



Chapter 4

A-Hilb(C4) and crepant resolutions

Unlike in dimension three where the A-Hilbert scheme is a crepant resolution of

C3/A for A any finite abelian subgroup of SL(3,C), we see that in dimension

four A-Hilb(C4) may be discrepant or even singular. We restrict to looking at

the family 1
r
(1, 1, a, b). Considering only those examples which satisfy condition

JunNec 2.2.1 we calculate the A-Hilbert scheme and show that it is at worst a

blow-up of a crepant resolution C4/G.

4.1 Examples

Nakamura [Nak01] proved that the A-Hilbert scheme A-Hilb(C3) gives a crepant

resolution of C3/A. In four dimensions this is not necessarily true, even for ex-

amples which satisfy JunNec (Condition 2.2.1). In fact, even if C4/A is crepant

A-Hilb(C4) maybe discrepant or even singular. We give some examples.

For small values of r the A-Hilbert scheme A-Hilb(C4) and the crepant reso-

lution are the same.

Example 4.1.1. Take 1
8
(1, 1, 2, 4). This has 3 internal junior points

p1 = (1, 1, 2, 4) p2 = (2, 2, 4, 0) p4 = (4, 4, 0, 0)

There are exactly 8 basic cones inside the junior simplex and these form the unique

crepant resolution.

e4e3e2p1 e4e3p1e1 e4e2p1p4 e4p1p4e1

e3e2p1p2 e3p1p2e1 e2p1p2p4 p1p2p4e1.

Calculating the affine pieces of the A-Hilbert scheme gives exactly the same cones.

85



4.1. Examples 86

In the following example A-Hilb is discrepant even though there is a crepant

resolution.

Example 4.1.2. Consider the lattice L = Z4+ 1
12
(1, 2, 3, 6). This has five internal

junior points:

p1 = (1, 2, 3, 6), p2 = (2, 4, 6, 0), p4 = (4, 8, 0, 0),

p6 = (6, 0, 6, 0), p8 = (8, 4, 0, 0).

There is a crepant resolution given by

p1e2e3e4 p2p1e2e3 p4p1e2e4 p4p2p1e2 p6p1e3e4 p6p2p1e3

p8p4p1e4 p8p4p2p1 p8p6p2p1 e1p6p1e4 e1p8p1e4 e1p8p6p1.

However A-Hilb consists of 15 nonsingular cones. Nine of these are crepant:

e4e3e2p1 e4e3p1p6 e4e2p1p4 e4p1p4p8 e3e2p1p2 e3p1p2p6

e2p1p2p4 p1p2p4p8 p1p2p6p8,

and six have discrepancy 1:

e4p1p6P13 e4p1p8P13 e4p6e1P13 e4p8e1P13 p1p6p8P13 p6p8e1P13.

Note that the discrepant cones contain the age two point P13 =
1
13
(13, 2, 3, 6). We

can see, by comparing the faces of these cones, that they glue together around

P13. Cone P13p8p1p6 has faces:

P13p8p1 P13p8p6 P13p1p6 p8p1p6.

The three faces of this cone containing P13 belong to one of the five other dis-

crepant cones. Glueing these six cones together gives a new, nonbasic, cone. This

is the cone shown in Figure 4.1, with each of the triangles joined to p1 (going into

the page) and e1 (coming out of the page).

p8

e4

p6

P13

Figure 4.1: Cross section of the cone p1e4p8p6e1

Let us compare with the crepant resolution.



4.1. Examples 87

Crepant resolution G-Hilb

p1e2e3e4 p1e2e3e4

p2p1e2e3 p2p1e2e3

p4p1e2e4 p4p1e2e4

p4p2p1e2 p4p2p1e2

p6p1e3e4 p6p1e3e4

p6p2p1e3 p6p2p1e3

p8p4p1e4 p8p4p1e4

p8p4p2p1 p8p4p2p1

p8p6p2p1 p8p6p2p1

e1p6p1e4

e1p8p1e4

e1p8p6p1

e4p1p6P13

e4p1p8P13

e4p6e1P13

e4p8e1P13

p1p6p8P13

p6p8e1P13

Contracting the point P13 gives cones p1e1p6p8, p1e1p8e4, p1e1e4p6, which gives the

crepant resolution.

In this example, we have a crepant resolution, but A-Hilb is singular.

Example 4.1.3. Consider A = 1
15
(1, 3, 5, 6).

There are 5 points in the interior of the junior simplex:

p1 =
1
15
(1, 3, 5, 6), p3 =

1
15
(3, 9, 0, 3), p5 =

1
15
(5, 0, 10, 0),

p6 =
1
15
(6, 3, 0, 6), p10 =

1
15
(10, 0, 5, 0).

A crepant resolution of C4/A is

e4e3e2p1 e4e3p1p5 e4e2p1p3 e4p1p3p6 e4p1p5p10

e4p1p6e1 e4p1p10e1 e3e2p1p3 e3e2p3p5 e3p1p3p5

e2p3p5p10 e2p3p10e1 p1p3p5p10 p1p3p6e1 p1p3p10e1.

However A-Hilb is singular. A-Hilb consist of 7 crepant cones:

e4e3e2p1 e4e3p1p5 e4e2p1p3 e4p1p3p6

e4p6p10e1 e2p3p10e1 p3p6p10e1,
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19 discrepant cones:

e4p1p5p11 e4p1p6p11 e4p5p10p11 e4p6p10p11

e3e2p1P3 e3e2P3p5 e3p1P3p5 e2p1p3P6

e2p1P3P6 e2p3P6p8 e2p3p8p10 e2p5p8p10

p1p3p6p11 p1p3P6p8 p1p3p8p11 p1p5p8p11

p3p6p10p11 p3p8p10p11 p5p8p10p11,

and 2 singular cones whose affine pieces are given by the equations

x3 = ξt3, x2t3 = ηz, y = ζt3, z2 = λxt4, zt2 = µx2

and

x3 = ξy, x2t = ηz, yz = ζx2t, z2 = λxyt, t3 = µy.

These pieces have singularities ξµ = ηλ and ξζ = ηλ respectively; these are

singularities of the form (3-fold node)× A1.

4.2 The family 1
r(1, 1, a, b)

We turn our attention to a smaller family of examples, namely 1
r
(1, 1, a, b) ⊂

SL(4,C).

First consider the subfamily given by fixing a = 7. The family 1
r
(1, 1, 7, r− 9)

satisfies JunNec whenever r is equal to 0, 7, 9, 14, 16, 21, 23, 27, 28, 30, 34, 37,

41, 48, 55 modulo 63. We will see later that a crepant resolution exists for all

these values of r.

Putting these numbers into a table (Table 4.1) based on their decomposition

into a sum of multiples of 7 and 9, say r = 7c+9d mod 63, is quite striking. We

see that there is only a crepant resolution (when r is bold) if c ∈ {0, 1, 2, 3, 4} and

d ∈ {0, 1, 3}.

This is equivalent to the condition that r = 7s+ u = 9t+ v for some integers

s, t, and for u ∈ {0, 2, 6} and v ∈ {0, 1, 3, 5, 7}.

For 1
r
(1, 1, a, b) to satisfy JunNec the points 1

r
(α, α, 1, β) and 1

r
(γ, γ, δ, 1) must

have age 1. For this to be the case it is clear that the inverses of a and b modulo

r must be less than r
2
.

For 1
r
(1, 1, 7, r − 9) if r = 7s + u = 9t + v the inverses c7 and c9 of 7 mod r

and 9 mod r respectively are given in Table 4.2. It is clear from the table that if

u ∈ {1, 4, 5} or v ∈ {2, 4, 8} then 1
r
(1, 1, 7, r− 9) cannot satisfy JunNec.
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d
0 1 2 3 4 5 6

0 0 9 18 27 36 45 54
1 7 16 25 34 43 52 61
2 14 23 32 41 50 59 5
3 21 30 39 48 57 3 12

c 4 28 37 46 55 1 10 19
5 35 44 53 62 8 17 26
6 42 51 60 6 15 24 33
7 49 58 4 13 22 31 40
8 56 2 11 20 29 38 47

Table 4.1: Values of r mod 63 for which 1
r
(1, 1, 7, r− 9) satisfies JunNec

u c7

1 6s+1
2 3s+1
3 2s+1
4 5s+3
5 4s+3
6 s+1

v c9

1 t
2 5t+1
4 7t+3
5 2t+1
7 4t+3
8 8t+7

Table 4.2: The inverses of 7 and 9 modulo r

Lemma 4.2.1. Let h (respectively g) be the highest common factor of a and r

(respectively a + 2 and r). The points 1
r
(α, α, h, β) and 1

r
(γ, γ, δ, g) are junior if

and only if β < a
2
− 1 and δ < a+2

2
− 1.

Proof. Let h = hcf(r, a). Write a = hs and r = ht. Then there exist integers c

and x such that

ac = h+ xr. (4.1)

That is, if h = 1, then c is the inverse of a modulo r, and x is the inverse of r

modulo a. Dividing (4.1) through by h we get

sc = 1 + xt,

and dividing this by st gives
c

t
=

1

st
+

x

s
.

If the point 1
r
(c, c, h, c(r − a− 2)) is junior then r = 2c + h + c(r − a− 2), so we
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must have c > r
2
− 1. Thus

h

2
=

ht

2t
>

c

t
=

x

s
+

1

st
,

and we have x < a
2
− 1 since t ≥ s+ 1. Conversely, if x < a

2
− 1 then

c

t
=

x

s
+

1

st
<

a

2s
−

1

s
=

hs

2s
−

1

s
=

r

2t
−

1

s
,

so c < r
2
+ 1−t

s
< r

2
− 1. Then r > 2c + 2 so the point 1

r
(c, c, h, c(r − a− 2)) is

junior. Setting β = x and α = c gives the result.

We have proved that for certain values of r the quotient singularity 1
r
(1, 1, a, b)

does not satisfy JunNec and so does not have a crepant resolution. Shortly we

will prove that in the cases where JunNec is satisfied the A-Hilbert scheme can

be contracted to give a crepant resolution. This means that for any value of a we

can find a table like Table 4.1 from which we can easily read off the values of r

for which a crepant resolution exists.

Our Theorem 4.5.3 gives necessary and sufficient conditions for members of

this family to have a crepant resolution. Dais, Haus and Henk [DHH98] prove that

a different set of conditions is necessary and sufficient. Their proof is constructive,

however their conditions require lengthy calculations. It seems to be a difficult

question to determine an exact relation between the two sets of conditions.

4.3 A-Hilbert schemes for 1
r(1, 1, a, b)

We consider resolutions of quotient singularities of the form 1
r
(1, 1, a, b). In these

cases all the junior points lie on the plane through e3, e4 and the midpoint of the

axis A = e1e2. We shall denote this point ( r
2
, r
2
, 0, 0) by A′. Note that A′ is a

lattice point if and only if both a and b are even.

The idea is to find a triangulation of the median triangle, e3e4A
′, into basic tri-

angles in a similar way to the Craw-Reid algorithm [CR02]. Once a triangulation

of e3e4A
′ has been chosen, for every basic triangle p1p2p3 which does not have A′

as a vertex we form the two tetrahedra with vertices p1, p2, p3, e1 and p1, p2, p3, e2.

If A′ is a lattice point we do the same. Otherwise, we replace A′ with both the

vertices e1 and e2. Thus we obtain a tiling of the junior simplex, ∆, into basic

tetrahedra, and this gives a crepant resolution.
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4.4 The case a and b even

If both a and b are even, then r is even and the point A′ is a junior point. Say r =

2r′, a = 2a′ and b = 2b′, then the original Craw-Reid algorithm for 1
r′
(1, a′, b′) gives

a triangulation of the simplex e3e4A
′, and G-Hilb(C4) is the crepant resolution

corresponding to this.

Example 4.4.1. 1
26
(1, 1, 4, 20). We take r′ = 13, a′ = 2 and b′ = 10. We found

the crepant resolution of 1
13
(1, 2, 10) in Example 1.4.5. Each triangle of Figure 4.2

b b

b

1
2
e1 +

1
2
e2

e4e3
b

b

b

b

b

b

bb

Figure 4.2: A-HilbC4 for 1
26
(1, 1, 4, 20)

forms a tetrahedron with the addition of the vertex e1, similarly for the vertex e2.

The G-Hilbert scheme consists of these 26 affine pieces.

We saw that the regular triangle f3,1 = 1
13
(1, 2,−3), f1,2 = 1

13
(−5, 3, 2), f2,1 =

1
13
(4,−5, 1) of side 1 has dual basis

ξ = x2/y, η = y2/z3, ζ = z4/x

which gives equations x2 = ξy, y2 = ηz3, z4 = ζx.

The corresponding triangle f4,1, fA,2, f3,1 for 1
26
(1, 1, 4, 20) gives a tetrahedron

when the vertex e2 is added. This tetrahedron has dual basis

ξ = x4/z, η = z2/t3, ζ = t4/x2, θ = x/y.

These give equations x4 = ξz, z2 = ηt3, t4 = ζx2, y = θx, which lead to the

equations z2t = λx2, x2t4 = µz, x4z = νt3 since x2zt is an invariant monomial.

The corresponding tetrahedron with vertex e1 has dual basis

ξ = y4/z, η = z2/t3, ζ = t4/y2, θ = y/x.
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Similar equations arise with x and y interchanged.

For the general case, consider the group generated by 1
2r
(1, 1, 2a, 2b). All junior

points lie on the plane (x−y) through e3, e4, A
′. Thus we may consider the group

1
r
(1, a, b) ∈ SL(3,C). The Craw-Reid algorithm gives a subdivision of the triangle

e3e4A
′ into regular triangles with dual bases which give generators for the A-

clusters.

Each of the Craw-Reid regular triangles corresponds to two regular tetrahedra

in ∆: one is given by including the vertex e1, the second by including the vertex e2.

When we convert from the lattice Z3+ 1
r
(1, a, b)·Z to the lattice Z4+ 1

2r
(1, 1, 2a, 2b)·

Z, the z and t coordinates are doubled. Thus the exponents of x and y in the dual

vectors must be doubled. The dual basis of the regular triangles consists of only

three elements. We must add the element θ = y/x, or its inverse, to the dual basis

of each regular triangle to make the dual basis of a regular tetrahedron. There

are two types of tetrahedra; those with vertex e1, which we will refer to as being

“above” the triangle A′e3e4 and with the equation x = θy, and those with vertex

e2, which we will refer to as “below”, with the equation y = θx. These equations

mean that x (respectively y) will not appear in any of the other equations of that

tetrahedron. Thus Nakamura’s Theorem becomes

Theorem 4.4.2. (I). For every finite diagonal subgroup A = 1
2r
(1, 1, 2α, 2β) ⊂

SL(4,C) and every A-cluster Z generators, of the ideal IZ , can be chosen

as a system of 8 equations. In the “below” case:

xl+1 = ξzbtf ,

zm+1 = ηxdtc,

tn+1 = ζxaze,

y = θx,

zb+1tf+1 = λxl−1,

xd+2tc+1 = µzm,

xa+2ze+1 = νtn,

xyzt = π.

(4.2)

Here a, b, c, d, e, f, l,m, n ≥ 0 are integers, and ξ, η, ζ, λ, µ, ν, π ∈ C are

constants satisfying

λξθ = µηθ = νζθ = π.
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(II). Moreover, exactly one of the following cases holds:

“Up”

{

λ = ηζ, µ = ζξ, ν = ξη, π = ξηζθ

l = a + d,m = b+ e, n = c + f ; or

“Down”

{

ξ = µν, η = νλ, ζ = λµ, π = λµνθ,

l = a + d+ 1, m = b+ e+ 1, n = c+ f + 1.

The “above” case is given by interchanging x and y in every equation.

4.5 Calculating continued fractions

From now on we will assume that at least one of a or b is odd. We follow a

Craw-Reid type algorithm [CR02] computing the continued fractions r
a
and r

b
to

give lines out of the vertices e4 and e3 respectively. At A′ we do the following

similar calculation.

Let h = hcf(r, a). If h = 1 there is a unique 1 ≤ c < r such that

h = ac+ rx.

However, for h > 1, there are several possible values for c. The plane x3 = h is

parallel to the face Ae4. We choose the c for which r − 2c− h is smallest, thus

the point pc =
1
r
(c, c, h, r − 2c− h) is the closest point on this plane to the point

A′. We take the Hirzebruch-Jung continued fraction

r

h(r − 2c− h)
= [b1, b2, . . . , bk], (4.3)

and run the continued fraction algorithm to compute the planes out of A as lines

out of A′.

If pc has age 2 then JunNec fails immediately. If h = 1, it is clear that the

point 1
r
(c, c, 1, 2r − 2c − 1) cannot be expressed as the sum of two junior points.

For h > 1, suppose there are two junior points pi, pj such that pc = pi + pj. Then

1

r
(c, c, h, 2r − 2c− h) =

1

r
(i, i, h, r − 2i− h) +

1

r
(j, j, 0, r − 2j).

However we chose c so that 2r − 2c − h = r − 2c− h has smallest value, so

r − 2i− h > 2r − 2c− h, consequently pc cannot be expressed as the sum of two

junior points.
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Condition 4.5.1. The point pc is junior and all entries bi of the continued fraction

(4.3) are even.

Lemma 4.5.2. The continued fraction algorithm returns only junior lattice points

if and only if Condition 4.5.1 is satisfied.

Proof. The continued fraction algorithm produces points in the plane Π1 through

A′, e4 and pc, so it can only produce junior points if Π1 coincides with the plane

Π2 through A′, e3 and e4. It is clear that Π1 and Π2 only coincide if pc lies in Π2,

that is, if pc is junior.

Suppose pc is the closest point to the face e4A and [b1, . . . , bk] is the Hirzebruch-

Jung continued fraction expansion of

r

h(r − 2c− h)
= [b1, b2, . . . , bk].

Then the continued fraction says that the next lattice point is given by the vector

out of A′

b1

(

c−
r

2
, c−

r

2
, h, r − 2c− h

)

−
(

−
r

2
,−

r

2
, 0, r

)

=

(

b1c−
(b1 − 1)r

2
, b1c−

(b1 − 1)r

2
, b1h, (b1 − 1)r − b1(2c+ h)

)

.

This gives the point

p =

(

b1c−
(b1 − 2)r

2
, b1c−

(b1 − 2)r

2
, b1h, (b1 − 1)r − b1(2c+ h)

)

.

It is clear that if b1 is even then p is a lattice point. For the converse, if bi were

odd then the point p being a lattice point would imply that A′ = ( r
2
, r
2
, 0, 0) were

also a lattice point, since

p =

(

b1c−
(b1 − 2)r

2
, b1c−

(b1 − 2)r

2
, b1h, (b1 − 1)r − b1(2c+ h)

)

= (b1c, b1c, b1h, (b1 − 1)r − b1(2c+ h))−

(

(b1 − 1)

2
r,
(b1 − 1)

2
r, 0, 0

)

−
(r

2
,
r

2
, 0, 0

)

.

However, A′ is only a lattice point if a, b are both even, thus b1 must be even.

Theorem 4.5.3 (Main Theorem). There exists a crepant resolution if and only

if Condition 4.5.1 is satisfied.
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Proof that Condition 4.5.1 is necessary. We have already showed that for a crepant

resolution to exist pc must be junior. If at least one of the bi is not even then

in Lemma 4.5.2 we proved that the continued fraction algorithm returns a point

which is not junior. The first step in the continued fraction algorithm takes the

lattice points

e4 = (0, 0, 0, r) and pc = (c, c, h, r − 2c− h),

and chooses the lattice point with the smallest third coordinate greater than h

and whose fourth coordinate is less than r − 2c − h. The algorithm gives us a

chain of points

. . . , p1 = (x1, x1, y1, z1), p2 = (x2, x2, y2, z2), p3 = (x3, x3, y3, z3), . . .

where the yi are strictly increasing and the zi are strictly decreasing. If p2 is not

junior then it cannot be the sum of junior points since any lattice point whose

third coordinate is between y1 and y2 will have fourth coordinate greater than

z2, and similarly for any lattice point whose fourth coordinate is between z2 and

z3.

The sufficiency of Condition 4.5.1 will be proved at the end of section 4.10. The

idea is as follows.

If Condition 4.5.1 is satisfied then an argument based on [CR02] gives an

algorithm to compute the A-Hilbert scheme. Contraction of the divisors in the

A-Hilbert scheme gives a crepant resolution. If either of the conditions fail then

the same algorithm provides a lattice point of age 2 that is not the sum of two

juniors, showing that no crepant resolution can exist.

From now on we will denote the entries of the continued fraction at ei as

[bi,1, . . . , bi,ki] for i = 3, 4. We denote by [bA,1, . . . , bA,kA] the continued fraction at

A′. Similarly fi,j denotes a vector out of the vertex ei if i = 3, 4 or A′ if i = A.

We consider the vertices A′, e3, e4 to be in a cycle so that fi−1,j is a vector out of

the previous vertex in the cycle. The number bi,j is called the strength of fi,j .

A primitive vector v is a vector such that if v is the vector between two lattice

points then there are no other lattice points on v. We will call w a half-primitive

vector if 2w is a primitive vector.

The vectors v1, v2, v3 ∈ Z2 form a regular triple if any two of them form a basis

of Z2 and such that ±v1 ± v2 ± v3 = 0. We will call a set of vectors v1, v2, v3 a

half-regular triple if one of the following holds:
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1. 2v1, v2, v3 are primitive vectors, any two of which form a basis of Z2 and

such that ±2v1 ± v2 ± v3 = 0

2. 2v1, 2v2, v3 are primitive vectors, any two of which form a basis of Z2 and

such that 2v1 ± 2v2 ± v3 = 0

3. 2v1, 2v2, v3 are primitive vectors, any two of which form a basis of Z2 and

such that 2v1 ± 2v2 ± 2v3 = 0.

From now on we will use the term half-regular triple to include the possibility

that the triple is regular, unless otherwise stated.

A triangle T ⊂ R2
∆ is a lattice triangle if the vertices of T lie in Z2. We say

that T is a half-lattice triangle if the vertices of T lie in Z2+(1
2
, 1
2
) ·Z. The triangle

T is regular if each of its sides is a line Lij extending some [ei, fi,j] and the three

primitive vectors v1, v2, v3 pointing along its sides form a regular triple. We say

T is half-regular if v1, v2, v3 form a half-regular triple.

Example 4.5.4. We first calculate the continued fractions at each vertex A′, e3, e4

for the example 1
50
(1, 1, 5, 43). At e3 we have 50

43
= [2, 2, 2, 2, 2, 2, 8], and

2f3,1 = 2 ·
1

50
(1, 1,−45, 43) =

1

50
(0, 0,−50, 50) +

1

50
(2, 2,−40, 33) = f3,0 + f3,2.

This gives us vectors from e3 to the points p1, p2, . . . , p7. We also see that

8 ·
1

50
(7, 7,−15, 1)−

1

50
(6, 6,−20, 8) =

1

50
(50, 50,−100, 0)

which is the vector from e3 through A′ to the first lattice point on this line.

At e4 we have 50
5
= 10, so the only line out of e4 passes through p1:

10 ·
1

50
(1, 1, 5,−7)−

1

50
(0, 0, 50,−50) =

1

50
(10, 10, 0,−20),

where 1
50
(10, 10, 0, 30) is the closest point to e4 on the line e4A

′.

The calculation at A′ is essentially the same, although we must first compute

the correct continued fraction. Let h = hcf(50, 5) = 5. The possible values of c

such that 5 = 5c mod 50 are 1, 11, 21, 31, and 41. The point p21 =
1
r
(21, 21, 5, 3)

has smallest fourth coefficient, and as such is the closest point to the face Ae4, so

we take c = 21. We calculate the continued fraction

r

h(r − 2c− h)
=

50

15
= [4, 2, 2].
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Figure 4.3: Lines out of the vertices for 1
50
(1, 1, 5, 43)

Running the continued fraction algorithm with fA,1 = A′ − pc we obtain

4fA,1 − f1,0 = 4 ·
1

50
(−4,−4, 5, 3)−

1

50
(−5,−5, 0, 10) =

1

50
(−11,−11, 20, 2) = f1,2,

2 ·
1

50
(−11,−11, 20, 2)−

1

50
(−4,−4, 5, 3) =

1

50
(−18,−18, 35, 1) = f1,3,

2 ·
1

50
(−18,−18, 35, 1)−

1

50
(−11,−11, 20, 2) =

1

50
(−25,−25, 50, 0) = f1,4,

which are the vectors from A′ to the points p7, p14 and p21, as illustrated in Figure

4.3.

Example 4.5.5. The singularity 1
31
(1, 1, 3, 26) does not have a crepant resolution.

At A′ we have h = hcf(31, 3) = 1 and c = 21. The point pc =
1
31
(21, 21, 1, 19) has

age 2 and the continued fraction 31
19

= [2, 3, 4, 2] has an entry which is not even.

Thus the continued fraction algorithm yields a point which does not belong to the

lattice:

2 ·

(

−29

2
,
−29

2
, 3, 26

)

−

(

−31

2
,
−31

2
, 0, 31

)

=

(

−27

2
,
−27

2
, 6, 21

)

3 ·

(

−27

2
,
−27

2
, 6, 21

)

−

(

−29

2
,
−29

2
, 3, 26

)

=

(

−52

2
,
−52

2
, 15, 37

)

but (−21
2
, −21

2
, 15, 37) is not a lattice point. Figure 4.4 illustrates this situation; a
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Figure 4.4: Lines out of the vertices for 1
31
(1, 1, 3, 26)

square denotes the point where the ray through p21 hits this plane. Since p21 has

age 2, but is not the sum of two junior points it is clear that no crepant resolution

can exist.

4.6 Concatenation of continued fractions

Given a continued fraction [b1, . . . , bn] there exist vectors fi for 0 ≤ i ≤ n + 1

satisfying relations

bifi = fi−1 + fi+1.

Figure 4.3 shows the result of running the continued fraction algorithm at each

of the vertices A′, e3, e4 for the example 1
50
(1, 1, 5, 43). The edges of the triangle

also satisfy similar relations:

cjfj,0 = fj,1 + fj−1,k.

This is because, as in [CR02], placing the Newton polygons at A′, e3, e4 and their

inverses at a common vertex gives a basic subdivision of the plane.

In our case f3,0 = (r, r,−2r, 0) and fA,kA+1 = (− r
2
,− r

2
, r, 0) so f3,0 = −2f1,kA+1.
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We choose cj to be the integers such that

cAfA,0 = fA,1 − f4,k4

c3fA,kA+1 = fA,kA − f3,1

c4f4,0 = f4,1 − f3,k3 .

If cj > 1 then we call this side a long side.

As in Craw-Reid we concatenate the continued fractions at the vertices. We

must first check whether we have a long side.

Example 4.6.1. There is a long side for 1
42
(1, 1, 5, 35) since

fA,2 =
1

42
(−4,−4, 1, 7), fA,3 =

1

42
(−3,−3, 6, 0), f3,1 =

1

42
(5, 5,−17, 1),

satisfy 3fA,3 = fA,2 − f3,1.

Note that long sides can only happen in examples in which a and a + 2 are

not coprime to r.

Lemma 4.6.2. There is at most one long side.

Our vectors fA,i are half-lattice vectors. If we take the corresponding lattice

vectors 2fA,i in the basic subdivision of the upper half-space then the argument

of [CR02] holds.

Lemma 4.6.3. If a and r − a− 2 are not both even then c4 = 1.

Proof. If a and r − a− 2 are not both even then there is no c < r such that the

vector (0, 0, c,−c) is primitive. We must have f4,0 = f4,1 − f3,k3.

Concatenating the continued fractions gives

[cA, bA,1, . . . , bA,kA, c2, b3,1, . . . , b3,k3, 1, b4,1, . . . , b4,k4]. (4.4)

The entries of (4.4) correspond to expressions

bv2 = v1 + v3. (4.5)

Thus a 1 corresponds to a half-regular triple v2 = v1 + v3, which allows us to

eliminate v2 from the expressions of the form (4.5), with v1, v3 the vectors cor-

responding to the entries on either side of the 1. In the 3-dimensional case a 1
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could be eliminated by subtracting 1 from each of its neighbours. Here we must

be more careful. We have

c3fA,kA+1 = fA,k1 + f3,1,

but fA,kA+1 = (− r
2
,− r

2
, r, 0) is not a primitive vector out of e3 since A′ is not a

lattice point. So f3,0 = −2fA,kA+1. Hence if c3 = 1 we may contract this 1, but

we must subtract 2 from b3,1 and 1 from bA,kA:

bA,kAfA,kA = fA,kA+1 + fA,kA−1

= fA,k + f3,1 + fA,kA−1,

so

(bA,kA − 1)fA,kA = f3,1 + fA,kA−1,

and

b3,1f3,1 = 2fA,kA+1 + f3,2

= 2fA,kA + 2f3,1 + f3,2,

so

(b3,1 − 2)f3,1 = 2fA,kA + f3,2.

This factor of 2 must be followed through the calculation.

Lemma 4.6.4. Let cA = 1 be the strength of the line fA,0 out of A′. The con-

traction of a 1 leads to a chain of contractions. Every contraction in the chain of

contractions resulting from the contraction of cA leads to either:

a, 1, b → a− 1, b− 2

or

a, 1, b → a− 2, b− 1.

Proof. Suppose we have

fA,0 = fA,1 + f4,k

bA,1fA,1 = fA,0 + fA,2 (4.6)

b4,kf4,k = 2fA,0 + f4,k−1. (4.7)
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Then contracting the 1 corresponding to fA,0 is equivalent to eliminating fA,0 in

(4.6) and (4.7). This gives

(bA,1 − 1)fA,1 = f4,k + fA,2

(b4,k − 2)f4,k = 2fA,1 + f4,k−1.

Another contraction can be made if bA,1 − 1 = 1 and bA,2 > 1, or b4,k − 2 = 1 and

b4,k−1 > 1. In the first case we get

(b4,k − 4)f4,k = 2fA,2 + f4,k−1 (bA,2 − 1)fA,2 = f4,k + fA,3,

and in the second

(b4,k−1 − 1)f4,k = 2fA,1 + f4,k−2 (bA,1 − 3)fA,1 = f4,k−1 + fA,2.

Thus either

a, 1, b → a− 1, b− 2

or

a, 1, b → a− 2, b− 1.

Example 4.6.5 (Simple Example). 1
23
(1, 1, 3, 18). The three continued fractions

are

23

23− 18
= [3, 3, 2, 2, 2] at e3

23

3
= [8, 3] at e4

23

6
= [4, 6] at A′.

There is no long side because 3 and 18 are coprime to 23 so the concatenation

of these continued fractions is

[1, 4, 6, 1, 3, 3, 2, 2, 2, 1, 8, 3]′

The contraction of the third 1, works exactly as in the Craw-Reid case: a, 1, b →

a − 1, b − 1. Contraction of a 1 eliminates the vector marked with the 1, and so
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corresponds to deleting a regular triangle.

Step a: f3,6 = f3,5 − f4,1 : → [1, 4, 6, 1, 3, 3, 2, 2, 1, 7, 3]

Step b: f3,5 = f3,4 − f4,1 : → [1, 4, 6, 1, 3, 3, 2, 1, 6, 3]

Step c: f3,4 = f3,3 − f4,1 : → [1, 4, 6, 1, 3, 3, 1, 5, 3]

Step d: f3,3 = f3,2 − f4,1 : → [1, 4, 6, 1, 3, 2, 4, 3]

Contractions of the other two 1s are more complicated because f3,0 = −2fA,3 and

f4,3 = −2fA,0. Since 3f3,1 = f3,0 − f3,2 = 2fA,3 − f3,2 and 6fA,2 = fA,3 − fA,1,

contracting the first 1 corresponds to subtracting 2 from the strength of f3,1 and

subtracting 1 from the strength of fA,2:

Step e: fA,3 = fA,2 − f3,1 : → [1, 4, 5, 1, 3, 2, 2, 2, 1, 8, 3]

We now have f3,2 = 2fA,3 − f3,1 and this factor of 2 on fA,3 will appear in calcu-

lations involving f3,2 and the results of such calculations.

Step f: f3,1 = 2fA,2 − f3,2 : → [1, 4, 3, 2, 2, 2, 2, 1, 8, 3]

The calculations involving fA,0 are similar:

Step g: fA,0 = fA,1 − f4,2 : → [3, 6, 1, 3, 3, 2, 2, 2, 1, 8, 1]

Step h: f4,2 = 2fA,1 − f4,1 : → [1, 6, 1, 3, 3, 2, 2, 2, 1, 7]

Step i: fA,1 = −f4,1 + fA,2 : → [5, 1, 3, 3, 2, 2, 2, 1, 5]

Carrying out these steps in this order gives [2, 1, 1] which corresponds to the half-

regular triple f4,1 = fA,2 − fA,1. This is not unique, but permuting the order of

the steps always leads to [2, 1, 1]. If the 2 is attached to a vector out of A′ we

get a triple of the form 2v2 = v1 + v3, but if the 2 is attached to a vector out of

e3 or e4 we get a triple 2v2 = 2v1 + 2v3, with both v1 and v3 vectors out of A′.

We also can end at 2f4,2 = 2fA,1 − 2fA,0, 2fA,1 = f4,1 − f4,2, 2f3,1 = 2fA,3 + 2fA,2

and 2fA,2 = f3,2 − f3,1. It is not possible to get to any of the regular triples

f3,j = f3,j−1 − f4,1 for 1 ≤ j ≤ 4.

Example 4.6.6 (Example with all half-regular triangles). Consider the quotient

singularity 1
57
(1, 1, 5, 50). The highest common factor of 57 and 5 is 1, so c = 23
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and r − 2c− h = 10. The continued fractions are

57

10
= [6, 4, 2, 2] at A′

57

7
= [8, 2, 2, 2, 2, 2, 2, 2] at e3

57

5
= [12, 2, 3] at e4.

There are no long sides as the example is coprime, so the concatenation of con-

tinued fractions is

[6, 4, 2, 2, 1, 8, 2, 2, 2, 2, 2, 2, 2, 1, 12, 2, 3, 1].

Contraction of the 1 on f3,9 is exactly as in the Craw-Reid algorithm: a, 1, b →

a − 1, b − 1. The contraction eliminates the vector marked with the 1, which

corresponds to deleting a regular triangle.

Step a: f3,9 = f3,8 − f4,1 : → [6, 4, 2, 2, 1, 8, 2, 2, 2, 2, 2, 2, 1, 11, 2, 3, 1]

Step b: f3,8 = f3,7 − f4,1 : → [6, 4, 2, 2, 1, 8, 2, 2, 2, 2, 2, 1, 10, 2, 3, 1]

Step c: f3,7 = f3,6 − f4,1 : → [6, 4, 2, 2, 1, 8, 2, 2, 2, 2, 1, 9, 2, 3, 1]

Step d: f3,6 = f3,5 − f4,1 : → [6, 4, 2, 2, 1, 8, 2, 2, 2, 1, 8, 2, 3, 1]

Step e: f3,5 = f3,4 − f4,1 : → [6, 4, 2, 2, 1, 8, 2, 2, 1, 7, 2, 3, 1]

Step f: f3,4 = f3,3 − f4,1 : → [6, 4, 2, 2, 1, 8, 2, 1, 6, 2, 3, 1]

Step g: f3,3 = f3,2 − f4,1 : → [6, 4, 2, 2, 1, 8, 1, 5, 2, 3, 1]

Step h: f3,2 = f3,1 − f4,1 : → [6, 4, 2, 2, 1, 7, 4, 2, 3, 1].

Contractions of the other two 1s are more complicated because f3,0 = 2fA,5 and

f4,4 = 2fA,0. Since 3f4,3 = f4,2 + f4,4 = f4,2 − 2fA,0 and 6fA,1 = fA,2 + fA,0,

contracting the third 1 corresponds to subtracting 2 from the strength of f4,3 and

subtracting 1 from the strength of fA,1:

Step i: fA,0 = fA,1 − f4,3 : → [5, 4, 2, 2, 1, 8, 2, 2, 2, 2, 2, 2, 2, 1, 12, 2, 1]

Step j: f4,3 = f4,2 − 2fA,1 : → [3, 4, 2, 2, 1, 8, 2, 2, 2, 2, 2, 2, 2, 1, 12, 1]

Step k: f4,2 = f4,1 − 2fA,1 : → [1, 4, 2, 2, 1, 8, 2, 2, 2, 2, 2, 2, 2, 1, 11]

Step l: fA,1 = fA,2 − f4,1 : → [3, 2, 2, 1, 8, 2, 2, 2, 2, 2, 2, 2, 1, 9].

Similarly, contracting the first 1 corresponds to subtracting 2 from the strength
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Figure 4.5: Deleting half-regular triangles of 1
57
(1, 1, 5, 50)

of f3,1 and subtracting 1 from the strength of f14:

Step m: fA,5 = fA,4 − f3,1 : → [6, 4, 2, 1, 6, 2, 2, 2, 2, 2, 2, 2, 1, 12, 2, 3, 1]

Step n: fA,4 = fA,3 − f3,1 : → [6, 4, 1, 4, 2, 2, 2, 2, 2, 2, 2, 1, 12, 2, 3, 1]

Step o: fA,3 = fA,2 − f3,1 : → [6, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 12, 2, 3, 1].

Contracting in this order leaves us with [2, 1, 1] corresponding to the half-regular

triple 2fA,2 = −f3,1 − f4,1. This is not unique, however we are always left with

[2, 1, 1]. Permuting the order of contractions leads to different half-regular triples,

for example performing the contractions in this order apart from doing Step l

after Step o leads to the triple f4,1 = 2fA,2 − 2fA,1. It is not possible to permute

the order to end with a regular triple f3,s = f3,s−1 − f4,1, for 1 ≤ s ≤ 8.

Figure 4.5 shows how Steps a – o delete half-regular triangles.

4.7 Regular triples

In our situation regular triples arise in a slightly different way because vectors out

of A′ are not lattice vectors i.e. they aren’t a vector between any two points of

the lattice — we must take twice them.

We get the following half-regular triples :

1. ±v1 ± v2 ± v3 = 0. This happens if either

(a) v1 is a vector out of ei, v2, v3 are vectors out of A′;

(b) v1, v2, v3 are vectors out of e3 or e4
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2. ±2v1 ± v2 ± v3 = 0, with v1 a vector out of A′ and v2, v3 vectors out of e3 or

e4.

3. ±2v1 ± 2v2 ± 2v3 = 0, with v1 a vector out of A′, v2 a vector along Aei and

v3 a vector out of ej .

Recall that a triangles is half-regular if each of its sides is a line Lij extending

some [ei, fi,j] or some [A′, f1,j] and the half-primitive vectors along its sides form

a half-regular triple

Lemma 4.7.1. The junior simplex is partitioned into half-regular triangles.

Lemma 4.7.2. Call a chain of contractions taking a cyclic continued fraction

down to [2,1,1] an MMP.

i. Every contraction of a 1 in an MMP corresponds to a half-regular triple.

ii. For every half-regular triple of the form 1a, 2, 3 there is an MMP ending at

it.

iii. Every half-regular triple appears in every MMP.

Proof. The proofs of (i) and (iii) are essentially the same as for [CR02][Lemma

2.7].

(ii) As in [CR02], if w2 = 2w1 + w3 is a half-regular triple, then w1, 2w2, w3

and their minuses subdivide R2 into 6 basic cones. The chain of vectors fi,j (or

2fi,j) within any cone is a non-minimal basic subdivision so contracts down.

In case (1b), v1, v2, v3 are not a basis of Z2 because we cannot make the vector

f1,0 as a Z-linear combination of them. In all other cases we have a vector out of

A′, so we can use this to build the other vectors out of A′.

(iii) The point is that if v1, v2, v3 is a half-regular triple, say v3 can be expressed

as the sum of v1 and 2v2 then any contraction of v3 must involve v1 and 2v2. This

is because the vectors v1 and 2v2 span a basic cone, and so v3 must be expressible

as a sum of a lattice vector from each of the cones 〈v1, v3〉 and 〈2v2, v3〉. Suppose

in a given MMP the first of the vi to be affected is v3. We know that v3 = u1+u2

for u1 ∈ 〈v1, v3〉 and u2 ∈ 〈2v2, v3〉 half-lattice vectors, but the only possible such

expression is v3 = v1 + v2.

This proves existence and uniqueness of the partition of Lemma 4.7.1.
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4.8 The four dimensional Craw-Reid knock-out

contest

The fan Σ of A-Hilb(C4) can be calculated by following a simple procedure:

1. Draw lines Lij emanating from the corners of ∆. Record the strength aij of

each Lij determined by the Hirzebruch-Jung continued fraction rule.

2. Extend the lines Lij until they are ‘defeated’ by lines Lkl from ek (i 6= k)

according to the following rules

• if a line from e3 and a line from e4 meet at a point, the line with greater

strength extends but its strength decreases by 1.

• if a line LAi from A′ meets a line Ljk from ej then the strength of LAi

decreases by 2 if it defeated the previous line it met from ej, otherwise

it decreases by 1. If the strength of LAi decreases by 2 the strength of

Ljk decreases by 1, otherwise it decreases by 2. See Lemma 4.6.4. The

line which now has the greater strength extends.

• if three lines meet at a point the lines L3,i and L4,j decrease in strength

by 1 each due to meeting each other. Then L3,i decreases in strength

from the meeting with LA,k by 1 or 2 depending on whether LA,k de-

feated the previous line it met out of e3 or not. Similarly for e4. The

line which now has the greatest strength extends.

If at a meeting all strengths are equal then all lines die. As in three dimen-

sions, lines of strength 2 always die.

3. Step 2 partitions ∆ into half-regular triangles. There are two cases:

• if a half-regular triangle is equilateral with each side being s copies of

a primitive vector, for some integer s, (i.e. it is actually regular) then

take the regular tessellation of that triangle.

• if a half-regular triangle has a vertex at A′, then its sides are not all an

integer multiple of a primitive vector. If the sides out of A′ are only

one copy of half-primitive vectors then no further tessellation of this

triangle is necessary. If the sides are r copies of half-primitive vectors

then r must be odd, say r = 2s + 1. Cut off the triangle closest to

A′, by taking a step equal to the half-primitive vector along each edge
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at A′; these two points are joined by a copy of the primitive vector

along the third side. Now subdivide the remaining trapezium into two

equilateral triangles and a parallelogram. The parallelogram is formed

by joining the mid-segment of the third line to the the base of the

top triangle. The triangles on either side are equilateral so take their

regular tessellation. The parallelogram is subdivided by drawing in all

lines parallel to the third side, and subdividing each of the resulting

parallelograms by joining opposite corners.

The result of this procedure is Σ. This may not be a crepant resolution.

Dividing each parallelogram into two triangles rather than four gives a crepant

resolution. The fan Σ is just a blow-up of this crepant resolution.

Example 4.8.1. The singularity 1
57
(1, 1, 5, 50) was considered in Example 4.6.6.

The Hirzebruch-Jung continued fraction expansions,

57

10
= [6, 4, 2, 2] at A′

57

50
= [2, 2, 2, 2, 2, 2, 2, 8] at e3

57

5
= [12, 2, 3] at e4,

and Step 1 give rise to Figure 4.6. The result of extending these lines as in

Step 2 is shown in Figure 4.7. The two large triangles are then triangulated

as described in Step 3. Since the vectors from A′ to p23 = 1
57
(23, 23, 1, 10) and

p24 =
1
57
(24, 24, 6, 3) are not primitive vectors, the triangle A′p23p24 is cut off. The

line segment p23p24 is joined to the line segment p3p4, to form a parallelogram.

The parallel line segment p13p14 is inserted, and lines p23p14, p24p13, p13p4, p14p3

are added. Regular tessellation of the remaining triangles yields Figure 4.8. We

can now form the half-regular tetrahedra by adding the vertices e1 and e2 to each

half-regular triangle.

4.9 Invariant monomials

We move to M the lattice of invariant monomials which is dual to L = Z4 +
1
r
(1, 1, a, b) · Z, and consider the dual basis of each tetrahedron in Σ.

Since our group is a subgroup of SL(4,C) the monomial xyzt is invariant, and

as x/y is invariant, so is x2zt.
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Figure 4.6: The result of step 1 for 1
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To start with, although we ultimately want the dual bases of the tetrahedra,

we consider the dual bases of the triangles in the triangle A′e3e4. We adopt the

convention that we are on the e2 side of this triangle (that is “below” A′e3e4).

Thus θ = y/x is an element of the dual basis and every other element will be

expressed in terms of x, z and t. Switching to the e1 side (or “above”) can be

done by interchanging x and y in the dual basis.

Triangles containing the non-lattice point A′ represent tetrahedra with both

e1 and e2 as vertices. These triangles will be referred to as “outer” triangles, and

sometimes require separate treatment.

There are five configurations of half-regular triangle are illustrated in Figure

4.9. They are

Case (a): Two lines out of A′, one line out ei, with all sides of length 1

Case (b): Two lines out of ei, one line out of A′

Case (c): Meeting of champions; one line out of each vertex

Case (d): Two lines out of A′, one line out of e4, with sides of length greater

than 1

Case (e): Two lines out of e3, one line out of e4

Proposition 4.9.1. Every half-regular triangle of side r gives rise to the invariant

ratios of Figure 4.9. Moreover,

In case (a) d− a = e− 2c− b = f = r (4.8)

In case (b) a− d = 2(b− e− c) = 2f = 2r (4.9)

In case (c) a− d = 2(b− e) = 2(c− f) = 2r (4.10)

In case (d) a− d = b− 2c− e = f = r = 2s+ 1 (4.11)

In case (e) 2(a− d) = b− e− c = 2f = 2r (4.12)

Proposition 4.9.2. Let l be any lattice lines of Z2
∆, and m ∈ M an invariant

monomial that bases its orthogonal l⊥ ∩ M . Then the lattice lines of Z2
∆ are

orthogonal to m(x2yz)i for i ∈ Z. The half-regular triangles of types 4.9(a) and

4.9(e) have side length 1.

The regular tessellations of the half-regular triangles of Figure 4.9 are cut out
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Figure 4.9: Half-regular triples versus monomials
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by the ratios

In case (a): x : tc, zd : tb, te : za

In case (b): xa−2i : ze+iti, zb−j : xd+2jtj , tf−k : x2kzc+k

In case (c): xa−2i : zf+iti, zc−j : x2jte+j, tb−k : xd+2kzk

In case (e): xb−2i : td+izi, zf−j : xc+2jtj, ta−k : xe+2kzk

Corollary 4.9.3. The regular tessellations of regular triangles of Figure 4.9(d)

are cut out by the ratios:

Left triangle xf−2i : zc+iti, ze+c+s−j : xf−2s+2jta+s+j , ta−k : x2kze+k

Right triangle xf−2i : zc+iti, zb−j : x2jtd+j , td+s−k : xf−2s+2kzb−c−s+k

The tessellations of the alleys of parallelograms are cut out by the ratios:

x2ize+i : ta−i, zb−j : x2jtd+j

and one of

xf−2sta−s : ze+c+s, zc+ktk : xf−2k, xf−2szb−c−s : td+s

Proof of 4.9.1 and 4.9.3. Case (d)

v1 ∼

(

−a− e

2
,
−a− e

2
, a, e

)

v2 ∼

(

−d− b

2
,
−d− b

2
, d, b

)

v3 ∼ (c, c, f,−2c− f).

(4.13)

Claim, that

1

ab− de
=

1

2ac+ af + ef
=

1

2dc+ df + bf

where the denominators are the 2× 2 minors of the array given by (4.13).

Let

ξ =
zc

xf
, η =

td

zb
, ζ =

ze

ta
.

Then

v1(ξ) = v2(ξ) = v3(ζ) = 1

v1(η) = v2(ζ) = v3(η) = −1.
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In case (d), we have v2 = v1 + v3. Comparing coefficients we get d = a − f and

b = e− 2c− f , which are the first two equalities in (4.8).

Now,

A′ + fv1

=
1

2ac+ af + ef

(

2ac+ af + ef

2
−

af + ef

2
,
2ac+ af + ef

2
−

af + ef

2
, af, ef

)

=
1

2ac+ af + ef
(ac, ac, af, ef).

The first three entries ac, ac, af are proportional to c, c, f so lie on the third side

of R. Therefore r = f .

For Corollary 4.9.3, we obtain all the ratios by taking ξ(x2zt)i, η(x2zt)i, ζ(x2zt)i

and ξζ(x2zt)j , ηζ(x2zt)j . The proofs of the other cases are similar.

Let R be a regular triangle of side r. Every basic triangle is one of two types.

We use the “up” and “down” triangle terminology from [CR02]:

“up”: For i, j, k ≥ 0 with i+ j + k = r − 1, push the three sides of R inwards

by i, j and k lattice steps respectively to give a basic triangle T . The sides of T

are parallel to the sides of R, so that T is a scaled down version of R.

“down”: For i, j, k ≥ 0 with i+j+k = r+1, push the three sides of R inwards

by i, j and k lattice steps. The resulting triangle, T , is a scaled down version of

R which has been inverted.

Corollary 4.9.4. The dual bases of basic up triangles are given by:

In case (a): ξ = x/tc, η = zd/tb, ζ = te/za

In case (b): ξ = xa−2i/ze+iti, η = zb−j/xd+2jtj, ζ = tf−k/x2kzc+k

In case (c): ξ = xa−2i/zf+iti, η = zc−j/te+jx2j , ζ = tb−k/xd+2kzk (4.14)

In case (e): ξ = xb−2i/td+izi, η = zf−j/xc+2jtj , ζ = ta−k/xe+2kzk

with 0 ≤ i, j, k < r and i+ j + k = r − 1.

The dual bases of down triangles are given by:

In case (b): λ = ze+iti/xa−2i, µ = xd+2jtj/zb−j , ν = x2kzc+k/tf−k

In case (c): λ = zf+iti/xa−2i, µ = te+jx2j/zc−j, ν = xd+2kzk/tb−k

In case (e): λ = td+izi/xb−2i, µ = xc+2jtj/zf−j , ν = xe+2kzk/ta−k
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with 0 ≤ i, j, k < r and i+ j + k = r + 1.

Corollary 4.9.3 gives the ratios which subdivide the half-regular triangle into

two regular triangles separated by an alley of parallelograms. We will refer to the

triangle to the left of this alley as a “left” triangle and the triangle to the right

as a “right” triangle. Each parallelogram is divided into four pieces. These are

described as “left”, “right”, “up” and “down”. The “top” triangle is the triangle

above the alley with a vertex at A′.

Corollary 4.9.5. The dual bases for basic triangles of type (d) are given by:

Left Up

ξ = xf−2i/zc+iti, η = ze+c+s−j/xf−2s+2jta−s+j , ζ = ta−k/x2kze+k (4.15)

with 0 ≤ i, j, k < s and i+ j + k = s− 1

Left Down

λ = zc+iti/xf−2i, µ = xf−2s+2jta−s+j/ze+c+s−j, ν = x2kze+k/ta−k

with 0 ≤ i, j, k < s and i+ j + k = s+ 1

Right Up

ξ = xf−2i/zc+iti, η = zb−j/x2jtd+j , ζ = td+s−k/xf−2s+2kzb−c−s+k

with 0 ≤ i, j, k < s and i+ j + k = s− 1

Right Down

λ = zc+iti/xf−2i, µ = x2jtd+j/zb−j , ν = xf−2s+2kzb−c−s+k/td+s−k

with 0 ≤ i, j, k < s and i+ j + k = s+ 1

Parallelograms

Left

µ = xf−2sta−s/ze+c+s, ν = x2ize+i/ta−i, η = zb−j/x2jtd+j (4.16)

with i = j, 1 ≤ i, j ≤ s.

Up

ξ = xf−2i/zc+iti, η = zb−j/x2jtd+j , ζ = ta−k/x2kze+k,

with 2i+ j + k = r − 1, 0 ≤ i ≤ s− 1 and 1 ≤ j = k ≤ s.
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Down

λ = zc+iti/xf−2i, ν = x2kze+k/ta−k, µ = x2jtd+j/zb−j

with 2i+ j + k = r + 1, 1 ≤ i, j, k ≤ s and j = k.

Right

ν = xf−2szb−c−s/td+s, ζ = ta−i/x2ize+i, µ = x2jtd+j/zb−j

with i = j, 1 ≤ i, j ≤ s.

Top triangle

ξ = xf−2s/zc+sts, η = zb/td, ζ = ta/ze. (4.17)

Example 4.9.6. In Example 4.6.5 we found the partition of A′e3e4 into half-

regular triangles. It is not hard to see that the only half-regular triangle which does

not have side 1 is given by the triple f4,1 = fA,2− fA,1. The tetrahedron with this

triangle as base and additional vertex e2 is cut out by the ratios z : t4, z6 : t, y : x

and x3 : z. The ratios cutting out the interior lines are given by

x2iz1+i : t4−i, x2jt1+j : z6−j , x3−2k : z1+kt2k, z3 : xt3, x : z2t, xz4 : t2.

for integers 0 ≤ i, j, k ≤ 1. The ratios for the whole triangle A′e3e4 (on the e2

side) are given in Figure 4.10.

4.10 A-Hilb(C4) and A-clusters

Theorem 4.10.1. Let A = 1
r
(1, 1, a, b) be a finite subgroup of SL(4,C) with

a, b not both odd and which satisfies Condition 4.5.1. For every A-cluster Z,

generators of the ideal IZ can be chosen as a system of equations. Throughout

a, b, c, d, e, f,m, n ≥ 0 are integers and ξ, η, ζ, λ, µ, ν, π ∈ C are constants. There

are six cases:
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Figure 4.10: The dual basis for 1
23
(1, 1, 3, 18)

1. (I) “Outer triangles”:

x = ξzbtf , y = λzbtf ,

zm+1 = ηtc,

tn+1 = ζze,

xyzt = π,

with ξ, η, ζ, λ, π satisfying

ξηζλ = π,

(II) Moreover the following hold:

n = c+ 2f, m = 2b+ e.

2. (I) Left parallelogram triangles:

xl+1 = ξzbtf ,

zm+1 = ηxdtc,

tn+1 = ζxaze,

xyzt = π,

zb+1tf+1 = λxl−1,

xtf+c+1 = µzb+e+1,

xa+2ze+1 = νtn,

y = θx,

(4.18)
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with ξ, ζ, λ, ν, π satisfying

ξλθ = ζνθ = π,

(II) Moreover the following hold:

µ2νηθ = π, ξ = µν, ζ = µ2η, λ = ηµ,

l = d = a+ 2, m = 2b+ e + 1, n = 2f + c+ 1.
(4.19)

3. (I) Down parallelogram triangles:

xl+1 = ξzbtf ,

zm+1 = ηxdtc,

tn+1 = ζxaze,

xyzt = π,

zb+1tf+1 = λxl−1,

xd+2tc+1 = µzm,

xa+2ze+1 = νtn,

y = θx,

with η, ζ, µ, ν, π satisfying

ηµθ = ζνθ = π,

(II) Moreover the following hold:

λ2µνθ = π, ξ = λµν, ζ = λ2µ, η = λ2ν,

2l = a+ d+ 3, m = 2b+ e+ 2, n = 2f + c+ 1.

4. (I) Up parallelogram triangles:

xl+1 = ξzbtf ,

zm+1 = ηxd,

tn+1 = ζxa,

xyzt = π,

zb+1tf+1 = λxl−1,

xtf+c+1 = µzb+e,

xzb+e+1 = νtf+c,

y = θx,

with ξ, ζ, λ, ν, π satisfying

ξλθ = ζνθ = π.
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(II) Moreover the following hold:

ξ2ηζθ = π, λ = ξηζ, µ = ξζ, ν = ξη,

2l = a + d, m = 2b+ e, n = 2f + c.

5. (I) Right parallelogram triangles:

xl+1 = ξzbtf ,

zm+1 = ηxdtc,

tn+1 = ζxaze,

xyzt = π,

zb+1tf+1 = λxl−1,

xd+2tc+1 = µzm,

xzb+e+1 = νtc+f+1,

y = θx,

with ξ, η, λ, µ, π satisfying

ξλθ = ηµθ = π,

(II) Moreover the following hold:

λµνθ = π, ξ = µν, η = λν, λ = νζ

l = a = d+ 2, m = 2b+ e+ 1, n = 2f + c + 1.

6. (I) All other interior triangles:

xl+1 = ξzbtf ,

zm+1 = ηxdtc,

tn+1 = ζxaze,

xyzt = π,

zb+1tf+1 = λxl−1,

xd+2tc+1 = µzm,

xa+2ze+1 = νtn,

y = θx,

(4.20)

with ξ, η, ζ, λ, µ, ν, π satisfying

ξλθ = ηµθ = ζνθ = π (4.21)
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(II) Moreover, exactly one of the following hold:

“up”

{

ξηζθ = π, λ = ηζ, µ = ξζ, ν = ξη,

l = a+ d+ 1, m = e+ b, n = f + c

“down”

{

λµνθ = π, ξ = νµ, ζ = λµ, η = λν

l = a + d+ 3, m = e + b, n = f + c

A basic monomial m is the nonzero image in OZ = k[x, y, z, t]/IZ of a mono-

mial which is not an invariant monomial. Basic monomials cannot be a multiple

of xyzt, x2zt or yzt, so must be a multiple of at most three of x, y, z, t. Since x

and y are in the same eigenspace they cannot be a multiple of xy either.

The following lemma is required for the proof of Theorem 4.10.1.

Lemma 4.10.2. [CR02] Let xr be the first power of x that is A-invariant. Then

there is (at least) one l ∈ [0, r− 1] such that 1, x, x2, . . . , xl ∈ OZ are basic mono-

mials and xl+1 is a multiple of some basic monomial zbtf in the same eigenspace,

say xl+1 = ξzbtf for some ξ ∈ C.

The proof of Lemma 4.10.2 is as in [CR02], but with the additional observation

that for l > 0 the monomial xl+1 cannot be expressed as a multiple of y since

y = θx, so y = 0 ∈ OZ . If l = 0 then either x = θy or x = ξzbtf .

Proof of 4.10.1. We have xyzt = π since A ∈ SL(4,C) for π ∈ C. Also since

A = 1
r
(1, 1, a, b) we must have x and y in the same eigenspace, so if x, y 6= 0 ∈ OZ

then there is a relation y = θx for some θ ∈ C. If x, y = 0 ∈ OZ then x = ξzbtf

and y = λzbtf .

By Lemma 4.10.2, xl+1 and ybtf belong to a common eigenspace and, since x2zt

is invariant, xl−1 and zb+1tf+1 also belong to a common eigenspace. Now xl−1 is

basic so this eigenspace is based by xl−1 which gives the relation zb+1tf+1 = λxl−1.

To see the equation ξλθ = π first note the syzygy (xyzt − π) − (xzt)(y −

θx) = θx2zt − π = h1. Now using this and the relations h2 = xl+1 − ξzbtf and

h3 = zb+1tf+1 − λxl−1 in the syzygy λθh2 + θx2h3 − zbtfh1 gives ξλθzbtf = πzbtf

as required.

The relations are in pairs xl+1 7→ zbtf , zb+1tf+1 7→ xl−1. The first relation

reduces the pure powers of x higher than l. Suppose there is another relation of

the form xαzǫ 7→ m. If m involves x, y or z this relation would be a multiple of

a simpler relation. However, if m = tγ is a pure power of t, the above argument
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shows that this relation is paired with tγ 7→ xα−1zǫ−1 which contradicts our choice

of n (in the exponent of tn+1).

For the left parallelogram triangles the relations involving η, µ, ν, θ generate

the others. In this situation we prove that there are a pair of relations of the form

xl+1 = ξzbtf , zb+1tf+1 = λxl−1,

such that ξ = µη and λ = ηµ.

Consider the left parallelogram triangles. We have

xa+3tf+c+1 7→ µxa+2zb+e+1 7→ µνzbtn.

Then xa+3tf+c+1 and zbtn are in the same eigenspace, so if n ≥ f + c+ 1 there is

a relation

xa+3 = µνzbtn−f−c−1

and since this is basic, the argument above means that there is a unique equation

of this form. Thus ξ = µν, l = a + 2 and n = 2f + c+ 1. Also

zm+1tf+1 7→ ηxdtf+c+1 7→ ηµxd−1zb+e+1,

so if b+ e ≤ m then we have the relation

zm−b−etf+1 = ηµxd−1.

This is again basic, so must equal zb+1tn−f−c = λxa+1. Thus λ = ηµ and l = d =

a+ 2 and m = 2b+ e + 1.

If n < f + c+ 1 we have

xa+3tf+c+1−n = µνzb

which contradicts the choice of m. In the same way m + 1 < b + e + 1 is not

allowed.

A similar argument proves the relations of (II) for the other interior triangles.

Theorem 4.10.3. Let Σ denote the toric fan determined by the tessellation de-

scribed in Section 4.8 of all half-regular triangles in the junior simplex Σ. The

associated toric variety is the A-Hilbert scheme A-Hilb(C3).
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Proof. We do this in a few cases. The proofs for the other cases are similar.

Case (c) “up”: Substituting d, e, f using (4.10), and replacing a, b, c with A,B,C

respectively in (4.14) gives

xA−2i = ξzC−r+iti, zC−j = ηtB−r+jx2j , tB−k = ζxA−2r−2kzk.

Let y = θx. Then we see that

xA−2i = ξzC−r+iti,

zC−j = ηtB−r+jx2j ,

tB−k = ζxA−2r+2kzk,

xyzt = ξηζθ,

zC−j−ktr−j−k = ηζxA+2j+2k−2r,

x2r−2i−2ktB−i−k = ξζzC−r+i+k,

xA−2i−2jzr−i−j = ξηtB−r+i+j,

y = θx.

which are exactly the “up” version of equations (4.20), since i + j + k = r − 1,

with l = A− 2i− 1, b = C − r + i, f = i etc.

Left “up” triangles: Replacing a, c, e, f with A,C,E, F respectively in (4.15), and

letting y = θx gives

xF−2i = ξzC+iti,

zE+C+s−j = ηxF−2s+2jtA−s+j,

tA−k = ζx2kzE+k,

xyzt = ξηζθ,

zC+i+1ti+1 = ηζxF+2i−2,

xF−2i−2ktA−k−i = ξζzC+E+k+i,

x2+2kzE+k+1 = ξηtA−k−1,

y = θx.

which are exactly the “up” version of equations (4.20) with l = F − 2i, b =

C + i, f = i etc.

Left parallelogram triangles: Equation (4.16) with d, e, f substituted using (4.11),

and replacing a, b, c with A,B,C respectively gives

x1+2i = µνts−izC+s−i,

zB−j = ηx2jtA−2s−1+j ,

tA+1−j = µ2ηx2+2jzB−2C−s−2+j ,

xyzt = µ2ηνθ,

zC+s+1−jts+1−j = µηx2j−1,

xtA−s = µzB−C−s−1,

tx2izB−2C−2s−1+i = νtA−i,

y = θx.

which are exactly the equations (4.18) with l = 1 + 2i, b = C + s − i, f = s − i

etc.

We now prove the converse.
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All other interior triangles: In the “up” case these are generated by the equations

xa+d+2 = ξzbtf , ze+b+1 = ηxdtc, tf+c+1 = ζxaze, y = θx,

Let b = C + i, f = i, d = F − 2s + 2j, c = A − s + j, a = 2k, e = E + k. Then

we have

xF−2s+2j+2k+2 = ξzC+iti,

tA−s+i+j+1 = ζx2kzE+k,

zC+E+i+k+1 = ηxF−2s−2jtA−s+j,

y = θx,

which are the equations of (4.15) if i+ j + k = s− 1.

Left parallelogram triangles: These are generated by the equations

z2b+e+2 = ηxdtc, xt2f+c+1 = µzb+e+1, xa+2ze+1 = νt2f+c+1, y = θx,

Let a = 2i− 2, b = C + s− i, c = D + j, e = E + i− 1, f = A−D − s− j − 1.

Then we have

z2C+E+2s−i+1 = ηx2itD+j,

x2izE+i = νt2A−D−2s−j−1,

xtA−s = µzC+E+s,

y = θx,

which are the equations of (4.16) if i = j, B − 2C −E = 2s+ 1, A−D = 2s+ 1

and F = 2s+ 1.

“Outer triangles”: These are generated by the equations

x = ξzbtf , y = λzbtf , z2b+e+1 = ηtc, tc+2f+1 = ζze. (4.22)

Let b = C + s, f = s, c = D, e = E. Then we have

x = ξzC+sts,

z2C+E+2s+1 = ηtD,

y = λzC+sts,

tD+2s+1 = ζzE .

which are the equations of (4.9.5) if A−D = 2s+1 and B−2C−E = 2s+1.

We can now prove

Theorem 4.5.3. There exists a crepant resolution if and only Condition 4.5.1 is

satisfied.
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Proof. We have already proved that the condition is necessary in section 4.5. To

prove the converse we calculate the toric fan, Σ, as described above. Contracting

Σ at the age two points (i.e. the crossing points of the diagonals of the parallelo-

grams) gives a crepant resolution of C4/A.
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générateur minimal, diviseurs essentiels et G-désingularisations de
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