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Summary 

 
Despite the introduction of penicillin, infections caused by Streptococcus 

pneumoniae are associated with significant morbidity and mortality. As a result, 

there is an urgent need for successful identification of new drug targets within the 

organism. This thesis focuses on characterisation of MurM, which initiates the 

synthesis of branched muropeptides within pneumococcal peptidoglycan. MurM and 

MurN generate either alanyl-alanine or seryl-alanine appendages on the stem peptide 

lysine of Lipid II, ultimately resulting in indirect cross-linkage of the cell wall. 

Inactivation of murMN causes a reversion to penicillin sensitivity in penicillin-

resistant strains. However, elucidation of the relationship between MurM activity 

and penicillin-resistance is complicated by some penicillin-sensitive strains, 

including R6, having an unusually high proportion of indirect cross-linkage in their 

cell wall. Therefore, MurMR6 has been kinetically characterised with Lipid II, Ala-

tRNAAla and Ser-tRNASer for comparison to MurMPn16 (penicillin-sensitive) and 

MurM159 (penicillin-resistant). These results confirmed that MurM159 is more 

catalytically active than MurMPn16. However, in the presence of Ser-tRNASer, the 

catalytic activity of MurMR6 approaches that of MurM159. Stimulation of MurM by 

cardiolipin indicates the potential role of pneumococcal membrane phospholipid 

composition in the regulation of this enzyme. 

 

Assessment of MurM substrate specificity was made using misaminoacylated Ser-

tRNAAla. Results indicate that Ser-tRNAAla is used more efficiently by MurM 

providing a link between peptidoglycan biosynthesis and the fidelity of protein 

synthesis in S. pneumoniae. A 2’-amino minihelix analogue of Ala-tRNAAla inhibits 

MurM with an IC50 of 0.5 µM demonstrating specific acceptance of the amino acid 

from the 2’ hydroxyl of the terminal adenine of the tRNA substrate. Crystallisation 

of MurM in the presence of zinc and subsequent characterisation of its metal-ion 

binding properties by kinetic analysis, isothermal titration calorimetry and 

bioinformatics-informed site-directed mutagenesis have identified that this enzyme is 

zinc-dependent. In combination, these findings have far-reaching implications for 

future drug design. 
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Chapter 1 

 
Introduction 

 
 
1.1. Antibiotic discovery and the development of resistance 
 

Multidrug-resistant bacterial infections represent a major public health burden and 

contribute significantly to morbidity, mortality, and healthcare costs in both 

developed and developing countries.  In the USA more people die from hospital 

acquired bacterial infections than HIV (Payne, 2008). It is estimated that the cost of 

such infections to the USA health care system alone is in excess of $20 billion per 

annum. Successful treatment of these infections using antibiotics is hindered by the 

development of tolerance or resistance over time. There is, therefore, an urgent need 

for new antibiotics, the identification of new antibiotic targets and new antimicrobial 

strategies to alleviate bacterial infections. 

 

Antibiotics are broadly defined as organic molecules that inhibit microbial growth as 

a direct result of interaction with specific prokaryotic cell targets. The first 

successful antimicrobials to be introduced into the clinical setting were the 

sulphonamides in 1937 with resistant microorganisms first being identified in the 

late 1930’s. This was followed by the introduction of penicillin into the clinical 

setting in the 1940’s. Penicillin was discovered by Alexander Fleming in 1928 and, 

soon after its discovery, a bacterial mechanism of resistance (β-lactamases) was 

identified (Davies and Davies, 2010). This is a direct result of the fact that many 

environmental strains of bacteria act as a reservoir for antibiotic resistance genes 
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which can often be mobilised and transferred to other strains with high frequency 

(Allen et al., 2010). A summary of the most commonly used antibiotics and their 

prokaryotic targets are shown in Table 1.1. 

 

Antibiotic Class Example Target Typical 
spectrum of 

activity 
β-Lactams Penicillin Peptidoglycan 

biosynthesis 
Gram + and - 

Aminoglycosides Gentamicin Translation (30S 
ribosomal subunit) 

Gram - 

Glycopeptides Vancomycin Peptidoglycan 
biosynthesis 

Gram + 

Tetracyclins Minocylcine Translation (30S 
ribosomal subunit) 

Gram + and - 

Macrolides Erythromycin Translation (50S 
ribosomal subunit) 

Gram + 

Lincosamides Clindamycin Translation (50S 
ribosomal subunit) 

Gram + 

Streptogramines Synercid Translation Gram + 
Oxazolidinones Linezolid Translation Gram + 

Phenicols Chloramphenicol Translation (50S 
ribosomal subunit) 

Gram + and - 

Quinolones  Ciprofloxacin DNA replication (DNA 
gyrase) 

Gram + cocci 

Pyrimidines Trimethoprim C1 metabolism Gram + and - 
Sulfonamides Sulfamethoxazole C1 metabolism Gram + and - 
Rifamycins Rifampin Transcription  

(RNA polymerase) 
Gram + and - 

Lipopeptides Daptomycin Cell membrane Gram + 
Cationic peptides Colistin Cell membrane Gram + and - 

 
Table 1.1: Classes, examples and targets of commonly used antibiotics. The 
most common mechanisms of resistance to these compounds include alteration 
of the target molecules, blockage of antibiotic entrance into the cell, efflux of 
antibiotics from the cell and chemical modification or hydrolysis. In reference 
to the typical spectrum of activity, + refers to Gram-positive bacteria and – 
refers to Gram-negative bacteria. Adapted from Davies and Davies (2010). 
 

Many bacterial pathogens causing serious life-threatening infections have developed 

high levels of resistance that span multiple classes of antibiotics. Resistance typically 

arises as a result of four different mechanisms (i) alterations to the bacterial target, 
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(ii) antibiotic efflux from the cell, (iii) development of a means of preventing 

antibiotic entry into the cell in the first place, and (iv) chemical modification or 

degradation of antibiotic compounds. It is often the case that one or more of these 

mechanisms can affect a single antibiotic and a collection of these mechanisms 

within a single bacterial species can result in the emergence of multidrug-resistant 

pathogens (Morar and Wright, 2010). Significant pathogens that have acquired 

multidrug resistance in the nosocomial setting are listed in Table 1.2 and include 

both Gram-positive and Gram-negative organisms. Such superbugs have often 

acquired multiple mutations that confer high level resistance to the antibiotic classes 

that they are commonly exposed to as a result of recommended treatment regimes. 

This can result in reduced options for successful therapeutic care and extended, 

costly hospitalisations for patients infected with these pathogens.  

 

Prominent bacterial pathogens that have acquired multidrug-resistance 
 

Gram-positive 
 

Gram-negative 

Staphylococcus aureus 
Staphylococcus epidermidis 
Streptococcus pneumoniae 

Clostridium difficile 
Enterococcus faecium 
Enterococcus faecalis 

Mycobacterium tuberculosis 

Escherichia coli 
Pseudomonas aeruginosa 

Klebsiella pneumoniae 
Salmonella spp. 

Haemophilus influenzae 
Proteus mirabilis 

Campylobacter jejuni 
 

 
Table 1.2: Examples of multidrug-resistant pathogens that are a significant 
economical and health burden in the nosocomial setting. 
 
 
Development of resistance towards penicillin and other β-lactam antibiotics has 

severely hampered the treatment of many bacterial infections including those caused 

by Streptococcus pneumoniae and Staphylococcus aureus.  
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1.2.  Streptococcus pneumoniae 
 

Streptococcus pneumoniae is a Gram-positive diplococcus that is carried 

asymptomatically in the nasopharynx of 5-10% of healthy adults and 20-40% of 

healthy children. The organism is well established as the common causative agent of 

many community acquired infections including pneumonia, otitis media, meningitis 

and septicaemia. Pneumococcus was first identified by Klebs in 1875 during the 

visualisation of pulmonary tissue from patients dying of pneumonia. Successful 

isolation of the bacterium was first achieved from saliva by both Pasteur in France 

and Sternberg in the USA in 1881 (Austrian, 1981). Despite the introduction of 

penicillin in the 1940s, there is still significant morbidity and mortality associated 

with infections caused by S. pneumoniae. This is particularly relevant in the cases of 

young children, the elderly and people with predisposing medical conditions, such as 

AIDS. Approximately 5 million fatal cases of pneumococcal pneumonia in children 

under the age of 5 are reported globally each year. In addition to this, 5 to 7% of the 

half a million cases of pneumococcal pneumonia reported in the USA every year are 

fatal (Jedrzejas, 2001). Mortality is largely due to the emergence of multidrug- 

resistant strains of S. pneumoniae which are making infections by the organism 

increasingly difficult to treat. 

 

The first recorded evidence of the emergence of a penicillin-resistant isolate of S. 

pneumoniae with a minimum inhibitory concentration (MIC) of 0.5 µg mL-1 was in 

1967 in Papua New Guinea. This was closely followed by an outbreak of 

pneumococcal infections caused by multidrug-resistant strains in South Africa in 

1977. In addition to showing resistance to penicillin, the isolates at the root of this 

outbreak were also found to be resistant to either chloramphenicol or a combination 
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of erythromycin, clindamycin, chloramphenicol and tetracycline (Charpentier and 

Tuomanen, 2000).  

 

By the 1980’s, penicillin-resistant isolates of S. pneumoniae were being identified on 

a global scale. At this time, more than 10% of isolates found in Israel, France, 

Poland, Spain, Hungary, South Africa, New Guinea and the USA showed low or 

intermediate levels of resistance to penicillin. In all cases, existence of these isolates 

promoted the emergence of strains showing high levels of resistance. By 1989, 58% 

of all pneumococcal isolates from children in Hungary showed resistance to 

penicillin. By the early 1990’s some countries, including Iceland, were reporting up 

to 20% of isolates as being multidrug resistant (Charpentier and Tuomanen, 2000).  

 

1.2.1. Mechanism of chloramphenicol and tetracycline resistance in 

Streptococcus pneumoniae 

The first isolate of S. pneumoniae showing resistance to chloramphenicol was found 

in Poland in the 1970’s. Chloramphenicol inhibits bacterial growth by targeting the 

peptidyl-transferase activity of the ribosome and blocking protein synthesis. S. 

pneumoniae can evade the activity of this antibiotic by producing an acetyl-

transferase that hydrolyses chloramphenicol to its derivatives, thus preventing 

association with the 50S subunit of the ribosome. In many cases, the gene encoding 

this acetyl-transferase (cat) is found on a conjugative transposon which can readily 

transfer between different strains and organisms thus allowing for rapid 

dissemination of the resistance determinant (Widdowson and Klugman, 1999; 

Charpentier and Tuomanen, 2000). Chloramphenicol and tetracycline resistance are 

often found on the same transposon within pneumococcus.  



6 
 

The first tetracycline-resistant pneumococcus was isolated in 1963 from a child that 

had been diagnosed with meningitis (Holt et al., 1969). Like chloramphenicol, 

tetracycline blocks bacterial growth by targeting the process of protein synthesis. 

Tetracycline specifically interacts with the 30S subunit of the ribosome binding 

either to the acceptor or the peptidyl-donor sites. This interaction prevents amino-

acylated tRNA species from accessing the acceptor site. Tetracycline-resistant 

isolates of pneumococcus have acquired the tet(M) and tet(O) genes which are 

typically located on transposons. The way in which Tet(M) and Tet(O) protect the 

ribosome from tetracycline is not well understood. However, it has been suggested 

that Tet(M) either promotes the release of tetracycline from the ribosome or modifies 

tRNA so that interaction with the ribosome is not affected in the presence of the 

antibiotic (Manavathu et al., 1990; Dantley et al., 1998). 

 

1.2.2. Mechanism of fluoroquinolone resistance in Streptococcus pneumoniae 

Fluoroquinolones, such as moxifloxacin, were initially introduced into the clinical 

setting in order to combat infections caused by penicillin-resistant strains of 

pneumococcus. These antibiotics specifically target DNA gyrase, which is involved 

in supercoiling of DNA during replication, and topoisomerase IV which is 

responsible for the segregation of chromosomes. Resistance to fluoroquinolones in 

pneumococcus has evolved by mutation of the gyrA, gyrB, parC and parE genes. In 

addition to this, some resistant strains have demonstrated the use of an efflux 

mechanism preventing accumulation of the antibiotic within the cell (Widdowson 

and Klugman, 1999).   
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The order of accumulation of mutations in gyrA and parC is particularly important in 

determining the overall level of resistance to any specific fluoroquinolone. For 

example, in order to establish high levels of resistance to ciprofloxacin, S. 

pneumoniae must first acquire mutations in the parC gene which confer low levels 

of resistance. The most common substitutions in this gene include serine-79 to 

tyrosine or threonine and aspartate-83 to either glycine or alanine. In strains with this 

genetic background the acquisition of additional mutations in the gyrA gene, 

particularly at serine-83 or glutamate-88, can then lead to high levels of 

ciprofloxacin resistance (Janoir et al., 1996; Tankovic et al., 1996). Whilst no 

mutations in gyrB have been reported to cause quinolone resistance in clinical 

isolates of S. pneumoniae, mutation of serine-127 to leucine in a laboratory strain 

was responsible for conferring novobiocin resistance (de la Campa et al., 1997; 

Charpentier and Tuomanen, 2000). 

 

1.2.3. Mechanism of macrolide resistance in Streptococcus pneumoniae 

Macrolide antibiotics, such as erythromycin, block protein synthesis by binding in a 

reversible manner to the peptidyl-donor site on the 50S subunit of the ribosome. The 

first erythromycin-resistant isolate of pneumococcus was identified in 1967 in 

Toronto. Two mechanisms of resistance against this antibiotic class exist in S. 

pneumoniae. The first is concerned with the alteration of the 23S rRNA in the 

peptidyl transferase domain by methylation of an adenine residue. This type of 

resistance is acquired by conjugative transfer of a transposon encoding the erm gene, 

the product of which is an S-adenosylmethionine-dependent methylase. The second 

mechanism involves efflux of the antibiotic out of the cell. This is achieved by the 

product of the mefE gene which is a hydrophobic transmembrane protein that forms 
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an efflux pump driven by the proton motive force (Widdowson and Klugman, 1999; 

Charpentier and Tuomanen, 2000). Many macrolide-resistant isolates of S. 

pneumoniae also show resistance to penicillin.  

 

1.2.4. Mechanism of diaminopyrimidine and sulphonamide resistance in 

Streptococcus pneumoniae 

In many developing countries, the combination of a diaminopyrimidine 

(Trimethoprim) and a sulphonamide (Sulphamethoxazole) antibiotic is the first 

course of action for the treatment of infections of the lower respiratory tract (Maskell 

et al., 1997). Both of these antibiotics affect the synthesis of folic acid with 

trimethoprim targeting dihydrofolate reductase and sulphamethoxazole targeting 

dihydropteroate synthetase (Hitchings, 1973). The main mechanism of resistance to 

trimethoprim by pneumococcus is the acquisition of a single amino acid mutation, 

isoleucine to leucine, at position 100 in dihydrofolate reductase. Resistance to 

sulphamethoxazole in pneumococcus involves amino acid duplications within 

dihydropteroate synthetase (Charpentier and Tuomanen, 2000). The first clinical 

isolate of pneumococcus showing resistance to this combination of antibiotics was 

identified in 1972 from a patient suffering with acute bronchitis. More than 90% of 

sulphamethoxazole resistant isolates of pneumococcus identified in South Africa are 

also penicillin and chloramphenicol resistant (Adrian and Klugman, 1997). 

 

1.2.5. Mechanism of β-lactam resistance in Streptococcus pneumoniae 

The mechanism of action of β-lactam antibiotics is based on interference with the 

biosynthesis of peptidoglycan by covalent binding of the antibiotic to the active site 

serine residue of penicillin-binding proteins (PBPs). Pneumococcus is known to have 
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five PBPs that are of high molecular weight (1a, 1b, 2x, 2a and 2b) in addition to one 

low molecular weight PBP (Hakenbeck et al., 1999). In S. pneumoniae, penicillin 

resistance is conferred by the accumulation of mutations in the transpeptidase 

domains of PBP 2x, 2b and 1a so that their affinity for the antibiotic is significantly 

reduced (Grebe and Hakenbeck, 1996; Charpentier and Tuomanen, 2000).  

 

In addition to this, unique alterations in PBPs 1a and 2x have resulted in the 

emergence of pneumococcal strains with high levels of resistance to a specific class 

of β-lactam antibiotics known as the cephalosporins (Charpentier and Tuomanen, 

2000).  In many cases, the genes encoding these PBPs have become mosaic due to 

the insertion of extended nucleotide sequences that are not of pneumococcal origin. 

Comparison of these mosaic sequences with the genomes of other commensal strains 

within the genus Streptococcus has indicated that the likely origin of such mutations 

is horizontal gene transfer between S. sanguis, S. mitis, S. oralis and S. pneumoniae.   

This phenomenon is enhanced by the natural competency of the organism for the 

uptake of exogenous DNA (Charpentier and Tuomanen, 2000). Insertion of mosaic 

sequences can alter the active site of PBPs and change the way in which 

peptidoglycan building blocks are recognised within these bacteria. 

 

S. pneumoniae is unusual in that high level penicillin resistance is a result of a 

combination of the acquisition of more than one low affinity PBP and the activity of 

the MurM protein (del Campo et al., 2006). MurM is an aminoacyl-ligase that is 

responsible for the synthesis of branched structure muropeptides in pneumococcal 

peptidoglycan and is currently under-exploited as a target for the development of 

novel antibiotics that could restore the effectiveness of penicillin (Filipe et al., 2000; 
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Lloyd et al., 2008). The role of MurM and its involvement in penicillin resistance 

will be discussed further in section 1.4. 

 

1.3. The peptidoglycan biosynthesis pathway 

1.3.1. The bacterial cell wall 

The year 1884 marked the discovery of a reagent by Hans Christian Joachim Gram 

that could be used to stain bacterial cells for visualisation under the microscope. 

Differences in cell wall structure and hence reactivity with the stain allowed for the 

classification of bacteria as either Gram-positive or Gram-negative (Figure 1.1). 

 

 

 

 

 

 

 

 
Figure 1.1: Differences in the cell wall structure of (a) Gram-positive and (b) 
Gram-negative bacteria. The Gram-positive cell wall consists of a thick 
homogenous layer of peptidoglycan on the outside of the cytoplasmic membrane 
with teichoic acid molecules embedded in the structure. In contrast to this, the 
peptidoglycan layer in Gram-negative cells is located in the periplasmic space 
situated between the cytoplasmic membrane and the outer membrane. The 
major components of the Gram-negative cell wall are lipopolysaccharide and 
lipoproteins with less than 10% of the structure being comprised of 
peptidoglycan. Adapted from Cabeen and Jacobs-Wagner (2005).  
 

In Gram-positive organisms, the peptidoglycan layer coats the outer surface of the 

cell, is characteristically thick and has a depth of 20 to 80 nm. Approximately 30-

70% of the total cell wall is made up entirely of peptidoglycan resulting in retention 
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of the dye-iodine complex during staining. In contrast to this, the peptidoglycan layer 

of Gram-negative organisms is much thinner, has a depth of only 2-3 nm and is 

surrounded by a porous outer membrane resulting in decolourisation after alcohol 

treatment during the Gram-staining process (Bugg, 1999; Cabeen and Jacobs-

Wagner, 2005). In Gram-negative organisms, the peptidoglycan structure is arranged 

as a monolayer making up less than 10% of the total cell wall. This contrasts sharply 

with the chemically and structurally diverse multi-layered scaffold produced by 

Gram-positive organisms (Schleifer and Kandler, 1972). It is important to note that 

peptidoglycan is unique to prokaryotic cells with only a few members of the 

Archaea, including Halobacterium halobium and a few bacteria, including 

Micrococcus morrhuae and Chlamydia species, lacking the structure. This validates 

the biosynthesis of this layer as an important target for antimicrobial agents. 

 

1.3.2. The structure and function of peptidoglycan 

Peptidoglycan, or murein, is an essential structural component of the bacterial cell 

wall and has two key constituents: the glycan strands and the pentapeptide side 

chains. In many cases, there are also interstrand peptide cross-links within the 

structure and these are important in penicillin-resistance and sortase function. The 

primary function of the peptidoglycan layer is to protect the cell from turgor pressure 

induced lysis which arises due to the osmotic pressure inside the cell being higher 

than that of the external medium (Bugg, 1999). The turgor pressure inside Gram-

negative and Gram-positive bacterial cells has been estimated at 0.5 mPa and 3 MPa 

respectively. In addition to this protective role, many Gram-positive bacteria heavily 

utilise their peptidoglycan as a platform for the anchoring of surface proteins 
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including virulence factors and adhesins (Macheboeuf et al., 2006; Dramsi et al., 

2008). 

 

At the molecular level, the carbohydrate (or glycan strand) backbone of 

peptidoglycan is common to all bacteria and consists of a β-1,4-linked chain of 

alternating N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) 

residues. This repeating structure is shown in Figure 1.2. 

 

 

 

Figure 1.2: Structure of the glycan chains of peptidoglycan. The repeating β-1, 
4-linked structure illustrated here is found in the peptidoglycan of all currently 
examined bacteria with only minor variations. The length of the glycan chain of 
peptidoglycan has been estimated for various bacterial genera and species. As 
an example, the glycan chains present in Staphylococcus aureus are typically a 
minimum of 12 and a maximum of 16 disaccharide units long. Adapted from 
Bugg (1999). 
 

The pentapeptide side chain component of peptidoglycan is attached to the lactyl-

ether appendage of MurNAc and is comprised of alternating L- and D-amino acids 

that are unique to this structure. Pentapeptide side chains have the common structure 

L-ala-γ-D-glu-X-D-ala-D-ala. Within this structure, X is used to represent an L-

amino acid that possesses an amino side chain. In Gram-negative organisms, X is 
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normally meso-diaminopimelic acid (meso-DAP) whereas in Gram-positive 

organisms it is most commonly L-lysine (Bugg, 1999). 

 

In order to keep separate peptidoglycan strands together, a network of interstrand 

peptide cross-links form between individual pentapeptide side chains. It is the degree 

of this cross-linking that determines the overall rigidity of the peptidoglycan 

structure. Typically, Gram-negative bacteria, such as Escherichia coli, have a lower 

level of cross-linking (25-50%) than Gram-positive bacteria (70-90%). The simplest 

and most common linkage to occur is a direct one between meso-DAP and a D-

alanine residue located at position four of a second pentapeptide side chain. Such a 

transpeptidation reaction results in the formation of an amide bond and the release of 

the terminal D-alanine residue from the second pentapeptide side chain.  Examples 

of organisms in which this simplest type of linkage occurs are E. coli and various 

strains within the genus Bacillus, as shown in Figure 1.3.  
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Figure 1.3: Types of peptide cross-links occurring at position 3 of a donor 
pentapeptide chain. The simplest type of link is direct amide bond formation 
between meso-DAP and D-alanine (top, left).  In Gram-positive bacteria, 
peptide bridge formation via incorporation of L-amino acids or glycine is more 
common. For example, Staphylococcus aureus strain Copenhagen typically 
utilises five glycine residues in its cross-link (bottom, left) whereas Micrococcus 
species use a combination of L-alanine, L-serine and L-threonine (bottom, 
right). Taken from Bugg (1999). 

 

However, for bacteria that contain L-lysine at the third position (point X in the 

pentapeptide structure), there is usually an intervening amino acid chain providing 

the linkage to the D-alanine residue of the second pentapeptide chain. In such 

circumstances, the structure of this cross-link is variable. Gram-positive organisms 

tend to construct the peptide bridge from one to five residues of either an L-amino 

acid or glycine (Garcia-Bustos et al., 1987; Bugg, 1999). In S. pneumoniae, the 

formation of these cross-links is the result of the activity of the MurM and MurN 

proteins. 
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1.3.3. Peptidoglycan biosynthesis 

Peptidoglycan biosynthesis follows a pathway of three defined stages that take place 

in different parts of the cell (Figure 1.4). The primary stages take place in the 

cytoplasm and initially involve the production of the N-acetylglucosamine-N-

acetylmuramyl pentapeptide (Barreteau et al., 2008). The second stage involves the 

synthesis of lipid linked intermediates on the inner face of the cytoplasmic 

membrane. It is at this stage that the addition of amino acids involved in indirect 

cross-linkages occurs in many Gram-positive organisms. After translocation of the 

phospho-MurNAc-pentapeptide across the cytoplasmic membrane by an 

undecaprenyl phosphate lipid carrier, mature peptidoglycan is assembled on the cell 

surface by transpeptidation and transglycosylation (Barreteau et al., 2008; Bouhss et 

al., 2008). Whilst the main focus of this work is on the lipid linked stages of 

peptidoglycan biosynthesis, all three stages are discussed below. 

 

 

 



16 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.4: Summary of the three stages of peptidoglycan biosynthesis in Streptococcus pneumoniae. The cytoplasmic stages are 
concerned with the production of the N-acetylglucosamine-N-acetylmuramyl pentapeptide by Mur A to F. The lipid-linked stages are 
catalysed by MraY and MurG generating Lipid II. This structure is further modified at this stage in Streptococcus pneumoniae by 
MurM and MurN. MurM adds either alanine or serine as the first amino acid of the indirect cross-link and MurN invariably adds 
alanine as the second amino acid of the cross-link. The final, extracellular, stages of peptidoglycan biosynthesis are referred to as 
transpeptidation and transglycosylation and are carried out by the penicillin-binding proteins (PBPs). Taken from Lloyd et al. (2008). 
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1.3.3.1. The cytoplasmic stages of peptidoglycan biosynthesis 

It is possible to separate the cytoplasmic stages of peptidoglycan biosynthesis into 

three well defined processes: (1) the generation of UDP-GlcNAc from fructose-6-

phosphate; (2) the generation of UDP-MurNAc from UDP-GlcNAc and; (3) the 

addition of the pentapeptide side chain to UDP-MurNAc. These three processes will 

be discussed below. 

 

1.3.3.1.1. The generation of UDP-GlcNAc from fructose-6-phosphate 

The synthesis of UDP-GlcNAc from fructose-6-phosphate is the product of four 

separate enzymatic activities conferred by the GlmS, GlmM and GlmU proteins. The 

glmS gene encodes an amidotransferase called glucosamine-6-phosphate synthase. 

GlmS from both E. coli and Thermus thermophilus have been overexpressed and 

purified allowing for their characterisation (Badet et al., 1987; Badet-Denisot et al., 

1997).  

 

GlmS is a dimeric enzyme which uses glutamine as a source of ammonia in order to 

convert D-fructose-6-phosphate into D-glucosamine-6-phosphate. This is then 

converted to glucosamine-1-phosphate by the isomerase, GlmM, as shown in Figure 

1.5. 
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Figure 1.5: Production of UDP-GlcNAc from fructose-6-phosphate in bacteria 
by the GlmS, GlmM and GlmU enzymes.  Adapted from Barreteau et al. (2008). 
 

The generation of UDP-GlcNAc from glucosamine-1-phosphate requires the 

activities of a bifunctional enzyme called GlmU. The C-terminal domain of GlmU is 

responsible for the first reaction which involves acetylation of glucosamine-1-

phosphate using acetyl-CoA. The N-terminal domain of the protein then carries out 

uridyl-transfer from UDP to N-acetylglucosamine-1-phosphate (Barreteau et al., 

2008). 

 

1.3.3.1.2. The generation of UDP-MurNAc from UDP-GlcNAc 

The first committed step in the synthesis of peptidoglycan is the conversion of UDP-

GlcNAc to UDP-MurNAc by the MurA and MurB enzymes. All of the Mur enzymes 

involved in peptidoglycan biosynthesis are unique to bacteria and, in addition to this, 

are highly conserved across various bacterial species. This makes them ideal targets 
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for the design of novel antibiotics (El Zoeiby et al., 2003). The structures of MurA, 

MurB, MurD, MurE and MurF are shown in Figure 1.6. 

 

 

Figure 1.6: The structures of MurA (A), MurB (B), MurD (C), MurE (D) and 
MurF (E) taken from El Zoeiby et al. (2003). 
(A) The structure of MurA solved to 1.8 Å (PDB code 1UAE): domain I is 
shown in orange, domain II is shown in violet, UDP-N-acetylglucosamine is 
shown in white and fosfomycin is shown in blue (Skarzynski et al., 1996). 
(B) The structure of MurB solved to 1.8 Å (PDB code 2MBR): domain I is 
shown in pink, domain II is shown in blue, domain III is shown in brown, UDP-
N-acetylglucosamine enolpyruvate is shown in white and flavin adenine 
dinucleotide (FAD) is shown in yellow (Benson et al., 1997). 
(C) The structure of MurD solved to 1.7 Å (PDB code 2UAG): domain I is 
shown in yellow, domain II is shown in red, domain III is shown in green, UDP-
N-acetylmuramyl-I-alanine is shown in white and the amino acid substrate, D-
glutamic acid is shown in rose (Bertrand et al., 1999). 
(D) The structure of MurE solved to 2.0 Å (PDB code 1E8C): domain I is shown 
in yellow, domain II is shown in red, domain III is shown in green, UDP-N-
acetylmuramyl dipeptide is shown in white and the amino acid substrate, meso-
diaminopimelic acid is shown in rose (Gordon et al., 2001). 
(E) The structure of MurF solved to 2.3 Å (PDB code 1GG4): domain I is shown 
in yellow, domain II is shown in red, domain III is shown in green (Yan et al., 
2000). 
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MurA catalyses the transfer of the enolpyruvate moiety from phosphoenolpyruvate 

(PEP) to the 3’ hydroxyl of UDP-GlcNAc. This generates a phospholactoyl-UDP-

GlcNAc tetrahedral intermediate (Figure 1.7, step 1). This type of biochemical 

reaction using PEP is rare and has only been seen with one other enzyme, AroA, in 

the shikimic acid pathway (Bugg, 1999; Barreteau et al., 2008). Gram-negative 

bacteria typically have one copy of murA whereas gene duplication has resulted in 

Gram-positive bacteria, such as S. pneumoniae, having two copies of the gene.  

 

MurA is approximately 45 kDa in size comprising 419 amino acids. Structural 

studies have shown that the protein consists of two globular domains that are kept in 

contact with each other by a double stranded linker (Figure 1.6). In E. coli MurA, 

domain I comprises residues 22-229 and domain II comprises residues 1-21 and 230-

419 (El Zoeiby et al., 2003). Residues of particular importance within the enzyme 

include lysine-22, which is strictly conserved due to its role in PEP binding, and 

cysteine-115 which is an active site residue that is essential for product release 

(Eschenburg et al., 2005). 

 

MurA is the only enzyme within the cytoplasmic stages of peptidoglycan 

biosynthesis that is actively targeted by an antibiotic approved for use within the 

clinical setting. Fosfomycin is typically used for the treatment of gastrointestinal and 

urinary tract infections and competitively inhibits MurA by forming a covalent bond 

with a cysteine residue adjacent to the active site. Development of resistance to 

fosfomycin is common. Some bacteria, including Mycobacterium tuberculosis and 

Chlamydia trachomatis, are naturally resistant to the antibiotic because they have an 

aspartate residue instead of a cysteine in the equivalent position. In addition to this, 
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chromosomal resistance to the antibiotic can arise in three ways: (1) alteration in the 

L-α-glycerophosphate and glucose-6-phosphate active transport systems thus 

impairing fosfomycin uptake by the cell; (2) reduction in the affinity of the 

transferase enzyme for the antibiotic and; (3) increased transcription of murA 

resulting in overproduction of the enzyme. Plasmid-encoded resistance can also 

result in the ability to modify the antibiotic so that it is no longer effective (El 

Zoeiby et al., 2003). As a result of this, the development of new antibiotics that can 

target either MurA or other enzymes within the peptidoglycan biosynthesis pathway 

is essential. 

 

After the action of MurA, the NADPH-dependent reductase MurB is responsible for 

catalysing the reduction of the enolpyruvate residue on UDP-GlcNAc to D-lactate 

giving rise to UDP-MurNAc (Figure 1.7, step 2). MurB is approximately 38 kDa in 

size, 342 amino acids in length and is comprised of three domains (Figure 1.6). 

Domains one and two are known to be involved in the binding of flavin adenine 

dinucleotide (FAD) which is used as a redox intermediate during the two half 

reactions that are catalysed by the enzyme. Domain three is concerned with substrate 

binding (El Zoeiby et al., 2003; Barreteau et al., 2008).  

 

Initially, MurB catalyses the reduction of FAD to FADH2 by the transfer of two 

electrons from NADPH. This results in the release of NADP+ which subsequently 

allows UDP-GlcNAc-enolpyruvate to bind to the enzyme. The transfer of two 

electrons from the reduced FAD to the third carbon of the enolpyruvyl group 

produces an intermediate that can be protonated at the second carbon generating 
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UDP-MurNAc. Serine-229 is essential for the activity of MurB since it becomes the 

proton donor in the second half of the reaction (El Zoeiby et al., 2003). 

 

1.3.3.1.3. The addition of the pentapeptide side chain to UDP-MurNAc 

The pentapeptide side chain component of the peptidoglycan backbone is assembled 

in a sequential manner by four essential enzymes that are broadly classified as the 

Mur ligases (Smith, 2006). The order of addition of amino acids onto the D-lactoyl 

group of UDP-MurNAc is illustrated in Figure 1.7 and consists of: L-alanine 

(catalysed by MurC); D-glutamic acid (catalysed by MurD); a diamino acid such as 

meso-diaminopimelic acid in Gram-negatives and L-lysine in Gram-positives 

(catalysed by MurE) and finally the dipeptide D-alanine-D-alanine (catalysed by 

MurF).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.7: Summary of (a) the structure of UDP-MurNAc pentapeptide and (b) 
the 6 cytoplasmic stages of peptidoglycan biosynthesis carried out by MurA to 
MurF. Adapted from Smith (2006). 
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All Mur ligases share the same reaction mechanism catalysing amide or peptide bond 

formation by activation of the UDP-precursor at the carboxyl group. This is 

concurrent with the release of ADP and inorganic phosphate from ATP. In addition 

to this, all the Mur ligases possess a sequence of six conserved amino acids and a 

consensus sequence that is required for ATP binding. It was this finding that lead to 

the redefinition of Mur ligases as a new family of enzymes (Bouhss et al., 1997). In 

addition to MurC, MurD, MurE and MurF which are all involved in peptidoglycan 

biosynthesis, this family of enzymes also includes folylpoly-γ-L-glutamate 

synthetase, the C-terminus of cyanophycin synthetase and poly-γ-glutamate 

synthetase from bacteria within the genus Bacillus (Barreteau et al., 2008). 

 

X-ray crystallography experiments have demonstrated that members of the Mur 

ligase family share the same general three-dimensional structure which can be 

divided more specifically into three key domains (Figure 1.8). The N-terminal 

domain is known to be involved in the binding of the UDP-precursor, the middle 

domain with the binding of ATP and the C-terminal domain is responsible for 

interactions with the amino acid (Smith, 2006).  
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Figure 1.8: The characteristic three domain structures of Escherichia coli MurC 
(a), MurD (b), MurE (c) and MurF (d). Adapted from Smith (2006). Note that 
the structure of E. coli MurC was first solved by Deva et al. (2006). 
 
 
In terms of peptidoglycan biosynthesis, MurC, which is approximately 54 kDa in 

size and 491 amino acids long, adds the first amino acid of the pentapeptide side 

chain and this is usually alanine (Schleifer and Kandler, 1972). E. coli MurC has 

been extensively characterised and shown to have a strict preference for L-alanine as 

opposed to D-alanine which is not recognised as a substrate by the enzyme. The 

reaction mechanism of MurC is strictly ordered with ATP binding to the enzyme 

first followed by UDP-MurNAc second and finally L-alanine. 

 

After L-alanine addition, MurD, which is approximately 47 kDa in size and 438 

amino acids long, adds the second amino acid of the side chain which is usually D-
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glutamic acid. In contrast to the other Mur ligases, MurD is less specific for the 

UMP moiety of the UDP-precursor and recognises 1-phospho-MurNAc-L-Ala as its 

substrate. After MurD activity, MurE adds the third amino acid, which is typically 

meso-DAP in Gram-negative bacteria and L-lysine in Gram-positive bacteria. MurE 

is approximately 53 kDa in size and 495 amino acids long. In almost every case, 

MurE is highly specific and incorporation of an incorrect amino acid by this enzyme 

in E. coli leads to cell lysis.  

 

The amino acid residues found at positions four and five of the pentapeptide side 

chain are added together as a dipeptide by MurF. MurF is approximately 47 kDa in 

size and 452 amino acids long. The most common dipeptide to be added is D-

alanine-D-alanine, however vancomycin-resistant strains of bacteria often have D-

alanine-D-serine or D-alanine-D-lactate at this position (Healy et al., 2000). MurF is 

comparable to MurC in that it follows the same ordered reaction mechanism. 

However, the activity of the enzyme is reliant on the generation of the dipeptide 

substrate which requires an ATP-dependent ligase called Ddl. The reaction carried 

out by MurF completes the cytoplasmic stages of peptidoglycan synthesis (Barreteau 

et al., 2008). 

 
1.3.3.2. The lipid-linked stages of peptidoglycan biosynthesis 

The lipid-linked stages of peptidoglycan biosynthesis are carried by MraY and MurG 

which generate Lipid I and Lipid II respectively (Figure 1.9).  
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Figure 1.9: Summary of the lipid-linked stages of peptidoglycan biosynthesis. 
UppS is undecaprenyl-pyrophosphate synthase, UppP is undecaprenyl-
pyrophosphate phosphatase, G is GlcNAc, M is MurNac pentapeptide, UDP is 
uridine diphosphate, UMP is uridine monophosphate, P is phosphate and PBPs 
are penicillin binding proteins. Taken from Bouhss et al. (2008). 
 

MraY is a translocase which catalyses the transfer of UDP-MurNAc pentapeptide to 

undecaprenyl phosphate (C55-P) producing Lipid I. Orthologues of MraY are found 

across Gram-positive and Gram-negative bacteria and alignment of these sequences 

led to the identification of five conserved hydrophilic regions within the protein 

(Bouhss et al., 1999). The protein is proposed to consist of ten transmembrane 

helices that join four periplasmic loops and five cytoplasmic sequences. Two 

proposed catalytic mechanisms for the protein exist. These are shown in Figure 1.10. 
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Figure 1.10: Summary of the two proposed catalytic mechanisms of MraY. 
Taken from Bouhss et al. (2008).  
 

The two step catalytic mechanism of MraY was originally proposed by Heydanek et 

al. (1969). However these experiments were heavily criticised due to the fact that 

they were based on utilisation of a non-purified form of MraY. An alternative single 

step mechanism has been proposed that generates lipid I by direct attack of the 

phosphate on C55-P which then attaches to the β-phosphate of UDP-MurNAc 

pentapeptide. Further investigation is required to establish which of the two 

mechanisms is correct. Known inhibitors of MraY include various nucleosides, 

amphomycin and protein E, however, none of these agents are currently clinically 

approved antibiotics (van Heijenoort, 2007; Bouhss et al., 2008).  

 

 
Following the activity of MraY, MurG catalyses the transfer of GlcNAc from a 

UDP-GlcNAc donor molecule to the hydroxyl group on carbon 4 of the MurNAc 

moiety of lipid I. The end product of this reaction is Lipid II.  X-ray crystallography 

has shown that the N-terminal domain of MurG binds lipid I whereas the C-terminal 

domain binds UDP-GlcNAc (van Heijenoort, 2007). In addition to this, studies on E. 

coli MurG have demonstrated that the enzyme associates with the cytoplasmic face 
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of the membrane. This finding is indicative of the fact that the peptidoglycan 

monomer (Lipid II) is fully assembled prior to its transportation across the 

cytoplasmic membrane (Bupp and van Heijenoort, 1993). 

 

It is at the Lipid-II intermediate stage that amino acid bridges are added to L-lysine 

at the third position of the pentapeptide side chain in some Gram-positive organisms. 

One exception to this rule is seen in the case of Weissella viridescens which adds the 

bridging amino acid to UDP-MurNAc pentapeptide as opposed to Lipid II (Hegde 

and Blanchard, 2003). These bridges ultimately result in indirect cross-linkage 

between L-lysine at the third position of one peptidoglycan chain and D-alanine at 

the fourth position of another. Examples of such amino acid cross-bridges are shown 

in Table 1.3. 

 

Bacterial species Cross-bridge composition Enzyme(s) involved 
in cross-bridge 

formation 
Streptococcus pneumoniae L-Ala-L-Ala or L-Ser-L-Ala MurMN 

Staphylococcus aureus Gly-Gly-Gly-Gly-Gly FemXAB 
Staphylococcus simulans 
Staphylococcus capitis 

Gly-Gly-Ser-Gly-Ser FemXAB 
Lif/Epr 

Weissella viridescens L-Ala-L-Ser or 
L-Ala-L-Ser-L-Ala 

FemX and unknown 

Enterococcus faecalis L-Ala-L-Ala BppA1 and BppA2 
Streptomyces coelicolor Gly FemX and VanK 
Enterococcus faecium D-Asx Aslfm 

 
Table 1.3: Summary of amino acid cross bridge formation in Gram-positive 
organisms leading to indirect cross-linking within the structure of 
peptidoglycan (Vollmer et al., 2008) 
 
 
Purification and subsequent characterisation of the branching enzymes listed in 

Table 1.3 has indicated that they fall into two groups. This grouping is based on 

whether the enzyme adds Glycine/L-amino acids or D-amino acids to the 
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pentapeptide side chain. Those enzymes falling in the first group obtain their amino 

acid substrate from aminoacylated tRNA species and are broadly termed Fem 

ligases. In contrast to this, enzymes that add D-amino acids are often members of the 

ATP-grasp family (Vollmer et al., 2008). Whilst the focus of this work is on the 

MurM protein from S. pneumoniae, a detailed discussion of these enzymes can be 

found in sections 1.4 to 1.10. 

 

Once the synthesis of the phosphor-MurNAc-pentapeptide unit is complete, it must 

be translocated across the cytoplasmic membrane by a lipid carrier. The exact 

process by which this is achieved has just been determined with the conclusion that 

it is performed by the integral membrane protein FtsW (Mohammadi et al., 2011).   

 

 
1.3.3.3. Assembly of mature peptidoglycan on the cell surface by 

transpeptidation and transglycosylation 

 
The final stages of peptidoglycan synthesis involve Lipid II polymerisation and 

cross-linking of this material to form mature peptidoglycan on the outer face of the 

cytoplasmic membrane. This is achieved by two enzymatic activities: 

transglycosylation and transpeptidation. Both of these reactions are catalysed by 

membrane-bound penicillin-binding proteins (PBPs), which are thought to be present 

in all known bacteria. 

 

PBPs are commonly categorised into two classes: high molecular weight and low 

molecular weight. The high molecular weight PBPs are further subdivided into Class 

A and Class B depending on the catalytic activity and structure of the N-terminal 
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domain. Class A PBPs are bifunctional showing transglycosylase activity at the N-

terminus and transpeptidase activity at the C-terminus. Class B PBPs do not have the 

same activity at their N-terminus and this region of the protein is thought to be 

involved in the control of cell morphogenesis instead (Sauvage et al., 2008). Most of 

the low molecular mass PBPs are D-D-carboxypeptidases instead of transpeptidases 

and catalyse hydrolysis of the terminal D-Ala-D-Ala prior to cross-linkage. The 

purpose of this activity is not well understood but could be a regulation point for 

cross-linking via the inactivation of some stem peptides (Buynak, 2007; Lovering et 

al., 2007). 

 

Transglycosylation is currently underexploited as a target for the design of new 

antimicrobials. All of the glycosyltransferase domains within characterised PBPs 

contain five motifs that are conserved. Three of these motifs are located within the 

catalytic site and encompass two glutamate residues which are essential for enzyme 

activity. The other two motifs are essential for maintenance of the structure of the 

glycosyltransferase fold (Gautam et al., 2010). 

 

Transpeptidation occurs in three stages. Firstly, a non-covalent complex is formed 

between the PBP and the pentapeptide side chain moiety of Lipid II. This achieved 

by recognition of the terminal D-alanine-D-alanine, in positions four and five of the 

pentapeptide side chain, by the PBP. Formation of this complex results in the active 

site serine residue of the PBP attacking a carbon atom on the D-alanine-D-alanine 

peptide bond resulting in generation of an acyl-enzyme intermediate. This process 

results in the release of the terminal D-alanine residue from the pentapeptide side 

chain followed either by hydrolysis or cross-linkage with the peptide side chain 
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component of another peptidoglycan monomer. There are many antibiotics which 

target the activity of PBPs and these are summarised in Table 1.4. 

 

Antibiotic class Compound Target Mode of 
action 

β-lactams Penicillin 
Carbapenems 

Cephalosporins 
Methicillin 

Transpeptidase These 
antibiotics are 
analogues of 
D-Ala-D-Ala 

and 
competitively 

bind to the 
enzyme 

Glycopeptide Vancomycin 
Teicoplanin 

Transpeptidase, 
transglycosylase 

and MurG 

Lipid II 
binding 

Semi-synthetic 
glycopeptides 

Oritavancin 
Dalbavancin 

 
 
 

Telavancin 

Transglycosylase 
 
 
 
 

Transglycosylase 

Binds to the 
enzyme 
causing 

dimerization 
 

Lipid II 
binding and 
membrane 

depolarisation 
Glycolipodepsipeptide Ramoplanin Transglycosylase 

and MurG 
Lipid I and II 

binding 
causing fibril 

formation 
Phosphoglycolipid Moenomycin Transglycosylase 

and MurG 
Analogue of 

Lipid II 
which 

competitively 
binds to the 

enzyme 
Cyclic glycopeptide Mannopeptimycines Transglycosylase Binds to 

Lipid II at a 
different site 

to 
vancomycin 

 
Table 1.4: Summary of antibiotics developed to target the last stage of 
peptidoglycan synthesis. This stage is the most over-exploited since there is no 
requirement for the compounds to cross the cytoplasmic membrane. Adapted 
from Gautam et al. (2010). 
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In contrast to many other pathogens, β-lactam resistance in S. pneumoniae does not 

occur as a result of the acquisition of plasmid encoded β-lactamases which are able 

to cleave penicillin directly. Resistance is acquired instead by accumulation of 

mutations in PBPs so that they no longer have a high affinity for penicillin (see 

section 1.2.5). In addition to this, knock out of the cross-linking enzyme MurM, 

causes a reversion to penicillin sensitivity in strains that were previously resistant. 

One possible explanation for this is given by the knowledge that mutated low-

affinity forms of PBP 2x found in penicillin-resistant strains of S. pneumoniae have a 

more open active site which may preferentially bind the branched form of the Lipid 

II substrate generated by the action of MurM and MurN (Dessen et al., 2001). As a 

result of this, development of inhibitors towards MurM in S. pneumoniae and Fem 

ligases in other organisms may enable restoration of the potency of one or more of 

the antibiotics shown in Table 1.4. The role of MurM and other Fem ligases and their 

potential as targets for the design of novel antibiotics is discussed in more detail in 

the sections that follow. 

 
 
1.4. The role of MurM and MurN in Streptococcus  pneumoniae 

The peptidoglycan layer of S. pneumoniae is unusual in that it is typically comprised 

of a combination of both linear and branched muropeptides. The branched 

muropeptides carry a dipeptide that is comprised of either alanyl-alanine or seryl-

alanine which participates in indirect cross-linkage of the cell wall (Fiser et al., 

2003). The proteins involved in this process were identified as MurM and MurN 

which are encoded by the fibA and fibB (factors important in β-lactam resistance) 

genes in S. pneumoniae respectively (Filipe and Tomasz, 2000; Weber et al., 2000). 
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Both proteins are of a similar size (approximately 47 kDa) with MurM being 406 

amino acids long and MurN being 410 amino acids long. 

 

MurM and MurN are both tRNA-dependent aminoacyl ligases that are part of the 

Fem ligase family. MurM is 25% identical at the amino acid level to its functional 

homologue, FemX, found in S. aureus. MurN shares 29% amino acid identity to the 

FemA protein of S. aureus. Hybridisation studies have indicated that MurM and 

MurN are transcribed together as an operon (Filipe and Tomasz, 2000).  

 

Selective inactivation of murN results in the synthesis of an unusual peptidoglycan 

structure in which the branched muropeptide bridge is comprised of only one amino 

acid. This is indicative of the fact that MurM adds either alanine or serine as the first 

amino acid of the muropeptide bridge and that this addition is required for the 

activity of MurN, which invariably adds alanine as the second amino acid of the 

bridge (Filipe et al., 2000). The roles of MurM and MurN in the synthesis of 

pneumococcal peptidoglycan are summarised in Figure 1.11. 
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Figure 1.11: (A) The role of MurM and MurN in cell wall branching using 
Lipid II as substrate. Lipid II is comprised of N-acetylated disaccharide units of 
glucosamine (yellow hexagon labelled G) and muramic acid (pink hexagon 
labelled M). The pentapeptide side chain attaches to the muramic acid residues. 
Lipid II itself is anchored via bactoprenyl pyrophosphate (pink zig-zag line) to 
the plasma membrane. MurM is an aminoacyl ligase responsible for the 
addition of either serine or alanine to the cell-wall precursor lysine residue. 
Taken from Fiser et al. (2003). (B) The chemical structure of Lipid II, the 
substrate for MurM, and Lipid II-Ala/Ser, the product of the MurM catalysed 
reaction. Note that R is CH3 in the case of alanine and CH2OH in the case of 
serine. Taken from Lloyd et al. (2008). 
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A series of chimeric mutants of MurM from three different strains of S. pneumoniae 

have been used to determine the sequence within the protein that determines the 

specificity for alanine or serine addition to the epsilon-amino group of the stem 

peptide lysine. In strain DE1, 77% of muropeptides are branched with MurM 

showing a preference for alanine. In contrast to this, strains KY17 and R36A both 

have a preference for serine with 84% and 41% of muropeptides being branched 

respectively. The region of MurM responsible for amino acid selectivity was 

determined using a fusion mutant whereby the MurM gene was of strain KY17 

origin except for the region between residues 244 and 274, which was of strain DE1 

origin. Transformation of this mutant into strain R36A resulted in an alteration in 

peptidoglycan structure to match that of strain DE1. The overall proportion of 

branched muropeptides increased to 81% and overall preference was converted from 

serine to alanine addition. Complete inactivation of MurM was achieved by deletion 

of the last 10 amino acids at the C-terminus of the protein showing that these 

residues are essential for catalytic activity (Filipe et al., 2001a). 

 

The substrate for MurM has been determined to be Lipid II as opposed to UDP-

MurNAc pentapeptide which is the substrate for the FemX protein in W. viridescens 

(see section 1.6). This was discovered by the addition of vancomycin to a wild-type 

and a murM deletion mutant culture of S. pneumoniae strain Pen6 during the 

exponential growth phase.  The accumulated cytoplasmic and lipid-linked precursors 

were analysed by reverse phase high performance liquid chromatography (RP-

HPLC). Only the lipid extract showed a peak consistent with the presence of a 

pentapeptide carrying the dipeptide cross-bridge added by the activity of the MurM 

and MurN proteins (Filipe et al., 2001a).  
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Whilst the murN gene appears to be well conserved across different strains of S. 

pneumoniae, the murM gene is much more mosaic in sequence particularly in 

penicillin-resistant strains (see section 1.4.2). For example, the MurM protein in 

penicillin-resistant strain Pen6 is only 86.5% identical in its amino acid sequence to 

that of penicillin-sensitive strain R36A. In contrast to this, the MurN proteins from 

these two strains are 99.3% identical at the amino acid level (Filipe and Tomasz, 

2000). The role of both of these proteins in penicillin resistance is discussed below. 

 

1.4.1. The link between MurMN activity and penicillin resistance 
 

In 1990, prior to identification of the murMN operon in S. pneumoniae, it was 

observed that a highly penicillin-resistant isolate in South Africa had a highly 

branched peptidoglycan that could be co-transferred with penicillin resistance to 

susceptible pneumococci (Zighelboim and Tomasz, 1980; Garcia-Bustos et al., 

1988). This finding was suggestive of a link between the abundance of branched 

muropeptides in the pneumococcal cell wall and penicillin resistance.  

 

Further investigation demonstrated that other pneumococcal strains with high levels 

of penicillin resistance also had a high proportion of branched muropeptides in their 

cell wall in comparison to penicillin-sensitive strains. After the identification of the 

murMN operon, these genes were inactivated by insertion duplication mutagenesis in 

order to investigate the involvement of MurM and MurN in penicillin resistance. It 

was found that inactivation of this operon had no significant effect on the growth 

rate, morphology or autolysis rate of pneumococcus suggesting that these genes are 

not essential for viability. However, major changes in the overall composition of the 

peptidoglycan layer were seen in both penicillin-sensitive and penicillin-resistant 
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strains of pneumococcus in a murMN inactivation background. In penicillin-resistant 

strain Pen6, 32.9% of muropeptides within the cell wall are branched. After 

inactivation of murMN in this strain, all branched muropeptides disappeared from the 

cell wall structure concurrent with a 26.4% increase in the abundance of linear 

muropeptides. In addition to this, inactivation of murMN in this strain also caused a 

dramatic reduction in the MIC for penicillin from 6 µg mL-1 to 0.032 µg mL-1. This 

effect was also seen in other penicillin-resistant strains of pneumococcus regardless 

of their genetic background, labelling MurM and MurN as the first major non-PBP 

determinants of β-lactam resistance within this organism (Filipe and Tomasz, 2000).  

 

Further investigation indicated that inactivation of murN alone only caused a 2-fold 

decrease in the MIC for penicillin (Filipe et al., 2000). In addition to this, deduction 

of the relationship between MurMN and levels of penicillin resistance has been 

further complicated by the finding that transformation of a penicillin-sensitive strain 

(R36A) with the mosaic MurM allele of a penicillin-resistant strain did not prevent 

the organism from being penicillin-sensitive despite enrichment of the cell wall with 

branched muropeptides. This suggests that, whilst MurM is necessary for high level 

resistance to penicillin, it is not sufficient in the absence of low affinity forms of 

PBPs (Filipe et al., 2002).  

 

In addition to a return to penicillin-sensitivity in strains that were previously 

resistant, inactivation of murMN also results in the generation of pneumococcal 

strains with increased susceptibility to cell lysis. This effect is pronounced during 

exposure of the cells to low concentrations of other antibiotics that target 

peptidoglycan biosynthesis including fosfomycin, vancomycin, D-cycloserine and 
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nisin. Although not formally proven, this suggests that MurM and MurN might have 

a key role in a stress response pathway that is concerned with maintaining the 

biosynthesis of peptidoglycan (Filipe et al., 2002). 

 

In summary, high level β-lactam resistance in S. pneumoniae is a complex process 

whereby the involvement of the murMN operon is determined by the presence of 

mutations either in PBP 1a or in PBPs 2x and 2b. Whilst the murM gene is relatively 

well conserved across penicillin-sensitive pneumococci, a mosaic structure 

composed of integrated regions of heterologous origin is often seen in penicillin-

resistant strains. Often, particular PBP and MurM combinations are preserved which 

suggests that they may evolve together in specific clones to achieve high level 

penicillin resistance (Soriano et al., 2008). It is possible that alterations in murM are 

indirectly required for high level penicillin resistance because they help to maintain 

the necessary changes that have arisen in low affinity PBPs by reducing the overall 

fitness cost to the cell (Chesnel et al., 2005; del Campo et al., 2006). 

 

1.4.2. Homology models for the structure of MurM and MurN 

In 2003, Fiser and others constructed a 3D comparative structural model for MurM 

based upon the X-ray crystal structure of S. aureus FemA (Benson et al., 2002; Fiser 

et al., 2003).  During construction of the 3D model, it was found that MurM had 

regions of similarity to seryl-tRNA synthetase, N-myristoyl transferases (NMT) and 

a winged helical DNA protein found in Methanococcus jannaschii (Figure 1.12). 
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Figure 1.12: Predicted structural similarity between MurM, for which there is currently no crystal structure, N-myristoyl transferase 
(NMT), Seryl-tRNA synthetase (SerRS) and a winged helical DNA binding protein. (A) Distance matrix alignment prediction of MurM 
structure based on NMT and Seryl-tRNA synthetase. Regions highlighted in green show similarity between MurM and NMT. Regions 
highlighted in yellow show similarity between MurM and SerRS. The blue stick models represent bound tRNA and myristoyl CoA in 
SerRS and NMT respectively. (B) Structural similarity between MurM and a winged helical DNA binding protein from Methanococcus 
jannaschii. Regions in red represent structural features shared between the two enzymes. The lysine and arginine residues predicted to 
be in the putative DNA recognition helices are represented by blue sticks. Taken from Fiser et al. (2003). 
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According to the proposed 3D homology model, MurM has a structure that is 

composed of two domains. Domain I is made up of two twisted β-sheet cores that are 

surrounded by helices. In contrast to this, domain II is a coiled helical arm. Basic 

sequence comparison between MurM, MurN, FemX and FemA has demonstrated 

that the C-terminal region of MurM, which contains many conserved lysine and 

arginine residues, resembles the C-terminal region of FemX more than FemA. This 

is to be expected since both MurM and FemX have similar biological roles adding 

the first amino acid of the muropeptide cross bridge in S. pneumoniae and S. aureus 

respectively (Fiser et al., 2003). A discussion of the predicted structure of MurM 

with reference to the three homology models is given below. 

 

1.4.2.1. tRNA synthetases as homology models for MurM 

For penicillin-sensitive strains of S. pneumoniae, the murM gene is highly 

conserved. However, the murM gene of penicillin-resistant isolates tends to be 

mosaic in the sense that the conserved sequences found in susceptible isolates are 

combined with divergent sequences of various origins (Fiser et al., 2003). Using the 

3D model, comparison of the MurM protein from Kentucky strain and Denver strain, 

which prefer to add serine and alanine to Lipid II respectively, indicated that most of 

the differences between the two MurM variants lie within the alpha helical coiled 

arm structure which is proposed to be involved in the recognition and binding of 

aminoacyl-tRNA. This correlates well with the finding that the FemX homologue in 

W. viridescens incorporates serine, alanine or glycine onto UDP-MurNAc 

pentapeptide depending on the availability of the corresponding amino-acyl tRNA 

species. The apparent lack of amino-acid selectivity with this enzyme appears to 

parallel the absence of a coiled helical arm domain (Hegde and Shrader, 2001). This 
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domain is present in the X-ray crystal structure of S. aureus FemA and shows 

structural resemblance to tRNA recognition domains found in tRNA synthetase 

enzymes (Benson et al., 2002).  In MurM, the helical arm is thought to be 

responsible for amino acid selectivity (Fiser et al., 2003). Many tRNA synthetases 

have a requirement for divalent metal ions for maintenance of structure and/or 

recognition of the amino acid substrate (Liu et al., 1993; Sood et al., 1999; 

Sankaranarayanan et al., 2000). This will be discussed further in chapter 4. The 

metal ion dependency of MurM and other Fem ligases has yet to be investigated. 

 

1.4.2.2. N-myristoyl transferase (NMT) as a homology model for MurM 

Domain I of the predicted MurM model shows significant similarity to the fold 

found in NMT (Figure 1.12). When taken in conjunction with the fact that both 

enzymes have a lipid substrate, this is suggestive of the fact that there may also be 

some functional similarities between the two enzymes (Fiser et al., 2003).  

 

In the case of MurM, the C-terminus of the protein is well conserved between 

different allelic variants of the enzyme and is essential for catalytic activity.  Filipe et 

al. (2001) constructed a series of deletion mutants of the MurM protein from strain 

KY17 by insertion of premature stop codons during cloning. Upon transformation of 

these mutants into S. pneumoniae strain R36A, it was shown that MurM activity 

could not be detected when 10 amino acids were removed from the C-terminus of the 

protein (Filipe et al., 2001a). In NMT, the C-terminus is also indispensible since it is 

required to reach into the binding site of the enzyme where it donates a carboxyl 

group so that the reaction can proceed.  
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Further investigation into the similarity between the MurM model and NMT was 

carried out by Fiser et al. (2003) using GRASP (Graphical Representation and 

Analysis of Structural Properties) to look for the distribution of electrostatic charges 

across the protein. The results of this analysis are shown in Figure 1.13 and make a 

comparison to an equivalent analysis of FemA using the X-ray crystal structure of 

the protein (PDB code 1LRZ). 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.13: GRASP analysis of the MurM model showing distribution of 
electrostatic charge across the surface of the enzyme. Negatively charged 
surface patches are shown in red and positively charged surface patches are 
shown in blue. The putative peptide binding site is located in the vicinity of a 
negatively charged surface patch. Taken from Fiser et al. (2003). 
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GRASP analysis has shown that there is a negatively charged patch within the MurM 

model that is similar to that found at the active site of NMT. Within the MurM 

model, there are seven residues that participate in the formation of this negatively 

charged patch: E12, E19, E21, E48, D78, D81 and E126. It has been proposed that, 

should the model of MurM hold true, this area of the protein may participate in the 

binding of the positively charged lysine residue that is found at the third position of 

the pentapeptide side chain of Lipid II (Fiser et al., 2003).  

 

The model showing structural similarity between MurM and NMT is also supported 

by the knowledge that the most conserved segment between MurM and FemA is 

found between residues 66 and 84. This region is found in the negatively charged 

surface patch that is proposed to make up the peptide binding site of MurM and it is 

possible that this applies to FemA as well. 

 

Originally the structure of FemA (Figure 1.14) was described as two repeated  

histone acetyl transferase domains with the implication that subdomain IA, which is 

the location of the proposed peptide binding site in the MurM model, is buried and 

inaccessible (Benson et al., 2002). 
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Figure 1.14: The X-ray crystal structure of FemA showing the proposed 
binding site for Lipid II (PDB code 1LRZ). Domain 1A is highlighted in yellow 
and comprises residues 1-110, 129-144 and 396-401. Domain 1B is highlighted in 
magenta and comprises residues 145-166, 189-245 and 308-395. Regions 
highlighted in green and blue show additional secondary structure elements in 
domains I and II respectively. Regions highlighted in white are proposed by 
Benson et al. (2002) to be part of the peptide binding site of the enzyme. 
Adapted from Benson et al. (2002). 
 

As shown in Figure 1.14, Benson et al. (2002) propose that the only pocket in FemA 

that would be suitable for binding Lipid II is found across the surface of subdomain 

1B. However, whilst the crystal structure was solved to 2.1 Å, there are 14 C-

terminal residues as well as a 12 residue loop that could not be located on the 

electron density map. This could mean that a substantial part of the peptide binding 

cleft may not be visible and that the actual location of the site could well be within 

the negatively charged surface patch identified by Fiser et al. (2003) in both FemA 

and the model of MurM. 

 

1.4.2.3. DNA binding proteins as homology models for MurM 

The structural homology between the MurM model and a DNA binding protein from 

M. jannaschi has been used by Fiser et al. (2003) to hypothesise a possible 

relationship between MurM and penicillin resistance. The DNA-binding protein in 

M. jannaschi is similar to E. coli MarR and Bacillus subtilis BmrR, both of which 
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are transcription factors concerned with the expression of drug transporters (Ray et 

al., 2003). In addition to this, one of the closet homologues to the protein is RU223 

which is found in S. aureus where it is essential for high level β-lactam resistance 

(De Lencastre et al., 1999). Thus it is possible that, by sharing some resemblance to 

transcription factors, MurM has a regulatory role in response to exposure of S. 

pneumoniae to antibiotics (Fiser et al., 2003). 

 

1.4.3. Kinetic characterisation of MurM  
 
The kinetic activities of two variants of MurM from penicillin-sensitive strain Pn16 

and penicillin-resistant strain 159 were characterised in vitro for the first time at the 

University of Warwick by Lloyd et al. (2008). At the amino acid level, MurMPn16 

and MurM159 show 18% divergence and kinetic characterisation was possible due to 

the ability to produce both the Lipid II and the tRNA substrate in sufficient 

quantities. UDP-MurNAc pentapeptide synthesis was achieved using purified forms 

of MurA to F. This was then converted to Lipid I and II using Micrococcus flavus 

membranes as described in Chapter 2. Key positions in the 3D predicted model of 

MurM where strain variation does and does not occur are shown in Figure 1.15.  
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Figure 1.15: Schematic model of MurM based on the X-ray crystal structure of 
Staphylococcus aureus FemA (minus Lipid II and tRNA). Residues highlighted 
in red are found at positions 134 and 135 and can vary between strains. 
Residues highlighted in green show the putative catalytic site of the enzyme. 
Residues highlighted in purple show the putative peptide binding site. Residues 
highlighted in pink show positions 244-274 which are variable between strains 
and have been shown to be involved with amino acid selectivity of the enzyme. 
Position 260 is shown in yellow and is thought to be a key residue in amino acid 
selectivity with lysine giving rise to alanine addition and threonine giving rise to 
serine addition. 
 

In the studies undertaken by Lloyd et al. (2008), both MurMPn16 and MurM159 were 

cloned into the expression vector pET21b such that they were synthesised with a C-

terminal hexa-histidine tag upon expression. Analysis of the peptidoglycan structure 

from both strains of S. pneumoniae demonstrated in vivo and, for the first time, in 

vitro that MurM supports the synthesis of the dipeptide bridge found on the Ɛ-amino 

group of the third lysine on the pentapeptide side chain of branched muropeptides. In 

addition to this, the proportion of branched muropeptides within the cell wall 

structure was shown to be consistent with the overall activity of the MurM enzyme 

in the strain of interest. 
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MurM159 was found to preferentially add alanine to Lipid II whereas MurMPn16 

showed a preference for serine addition. This finding is consistent with these 

enzymes having lysine and threonine at position 260 respectively. The activity of 

MurM was found to require aminoacylated tRNA species as shown in Table 1.5.  

 

[3H]- Acyl tRNA MurM tRNA source Specific activity 
(nmol.min-1.mg-1) 

Alanyl-tRNAAla Pn16 
 
 

159 

Pn16 
159 

 
Pn16 
159 

0.172 ± 0.025 
0.175 ± 0.022 

 
2.095 ± 0.285 
1.942 ± 0.466 

 
Seryl-tRNASer Pn16 

 
 

159 

Pn16 
159 

 
Pn16 
159 

0.370 ± 0.038 
0.247 ± 0.025 

 
0.312 ± 0.055 
0.281 ± 0.096 

 
 
Table 1.5: Determination of the activity of MurMPn16 and MurM159 with Alanyl-
tRNAAla and Seryl-tRNASer. Assays were carried out in the presence of 10 µM 
Lipid II and 0.45 µM pneumococcal [H3] Ala-tRNAAla or Ser-tRNASer. Specific 
activities were calculated from initial rates of time courses usually within the 
first 3 min of the reaction. Taken from Lloyd et al. (2008). 
 
 

The overall activity of MurMPn16 was shown to be lower in the case of both Ala-

tRNAAla and Ser-tRNASer than that of MurM159 with Ala-tRNAAla. Interestingly, 

MurM159 appeared to have a similar specific activity to MurMPn16 when assayed 

using Ser-tRNASer as the co-substrate. From this study, it was also concluded that the 

differences in the proportion of branched structured muropeptides in the cell wall 

peptidoglycan of strains Pn16 and 159 was a result of MurM159 having a higher 

catalytic efficiency than MurMPn16 with only a small contribution coming from the 

effect of tRNA pools within the strains themselves.  
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In-depth kinetic analysis allowed several key conclusions to be made regarding the 

two MurM variants:  

(i) MurM acts at the lipid linked stages of peptidoglycan biosynthesis;  

(ii) the D-alanyl-D-alanine dipeptide found at the fourth and fifth positions of the 

pentapeptide side chain of Lipid II are not required for the catalytic activity of 

MurM;  

(iii) the GlcNAc moiety of Lipid II is not required for the catalytic activity of 

MurM;  

(iv) carboxylation of the Ɛ-amino group of lysine at the third position in the 

pentapeptide side chain did not support MurM activity;  

(v) Lipid II-alanine can be used as a substrate by MurM which suggests that there 

is a link between these enzymes and the Fem ligases of S. aureus in terms of 

evolution and; 

(vi) MurM is able to interact with its tRNA substrate via recognition of either the 

acceptor stem or the TψC loop or both of these entities (Lloyd et al., 2008). 

 

In order to complement these studies, a series of phosphonamide transition-state 

analogues were synthesised as potential inhibitors of MurM by Cressina et al. (2007) 

at the University of Warwick. Design of these inhibitors was based on the hypothesis 

that the reaction catalysed by MurM is likely to proceed via the formation of a 

tetrahedral transition state that could be readily mimicked by a phosphonate or 

phosphonamide group as shown in Figure 1.16 (Cressina et al., 2007; Cressina et al., 

2009).  
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Figure 1.16: Summary showing the mechanism of the MurM-catalysed reaction 
which is likely to proceed via formation of a tetrahedral transition state (A). 
This transition state could be readily mimicked by a phosphonate or a 
phosphonamide group. The structure of the most active inhibitor of MurM 
synthesised so far is a 2’-deoxyadenosine analogue with an IC50 of 100 µM (C). 
Adapted from Cressina et al. (2007) and Cressina et al. (2009). 
 

It was found that phosphonamide analogues of the transition state designed to mimic 

the attack of the lysine at position three of the pentapeptide side chain were not able 

to cause inhibition of MurM. However, some of the adenosine 3’-phosphonate 

analogues synthesised in these studies showed some inhibitory activity towards 

MurM with a 2’-deoxyadenosine analogue (Figure 1.16 C) being the most potent at 

an IC50 of 100 µM (Cressina et al., 2007; Cressina et al., 2009). Success of some of 

these compounds could lead to promising results in the future in terms of inhibition 

of enzymes in the Fem ligase family.  
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1.4.4. Kinetic characterisation of MurN  
 
The MurN proteins from a penicillin-sensitive (Pn16) and a penicillin-resistant (159) 

strain of S. pneumoniae have also been characterised at the University of Warwick 

by De Pascale et al. (2008). In these studies MurNPn16 and MurN159 expression could 

only be achieved by cloning the genes into pBADM-41 allowing for production of 

MurN fused to maltose binding protein.  

 

Assessment of the kinetic activity of MurN was possible due to the development of a 

chemical means of synthesising the substrate for the enzyme: Lipid II-Ala or Lipid 

II-Ser. This methodology was developed by De Pascale et al. (2008) and involved 

synthesis of UDP-MurNAc pentapeptide followed by a chemical coupling reaction 

using alanine or serine protected at the N-terminus. The product of this reaction was 

then incubated with M. flavus membranes to generate Lipid II as described in chapter 

2. Activity assays using this substrate showed that MurN requires Alanyl-tRNAAla 

for activity. In addition, both MurNPn16 and MurN159 had a catalytic efficiency that 

was 20-fold higher when presented with Lipid II-Ala compared to Lipid II-Ser. 

These studies indicated that MurN cannot use Lipid II which confirms that the 

activity of MurM is required prior to the addition of alanine as the second amino acid 

of the cross bridge. The kinetic parameters obtained for the two variants of MurN 

showed no real divergence from each other despite the difference in penicillin 

sensitivity of the two strains from which they were derived (De Pascale et al., 2008). 
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1.5. The role of the FemX, A and B proteins in Staphylococcus 

aureus 

S. aureus is a well-known human pathogen that is responsible for causing various 

pathologies including abscesses in several organ tissues and septicaemia 

(Mazmanian et al., 2001). Cross-linking in the peptidoglycan of this organism 

requires the formation of a pentaglycine interpeptide bridge via modification of the 

Lipid II intermediate (Schleifer and Kandler, 1972). Interpeptide bridge formation is 

now known to be catalysed by the action of the FemX (FhmB), FemA and FemB 

proteins (whereby Fem stands for factors essential for methicillin resistance) and 

utilises three tRNA species that have been charged with glycine as shown in Figure 

1.17. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.17: The role of the FemX (FmhB), FemA and FemB proteins in the 
cross-linking of Staphylococcus aureus peptidoglycan. All three enzymes require 
tRNA species that have been aminoacylated with glycine. M = N-acetylmuramic 
acid and G = N-acetylglucosamine. The black circles represent the pentapeptide 
side chain. Adapted from Rohrer et al. (1999). 
 
 
Prior to the identification of FemX, FemA and FemB, investigation into the 

formation of cross-links within the cell wall of S. aureus indicated that Glycyl-

tRNAGly was a requirement for the process. As a result, it was initially thought that 
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the formation of the pentaglycine bridge would require the involvement of the 

ribosomes. However, this was disproved when it was found that inhibitors of protein 

synthesis did not affect the process and that the addition of the five glycine residues 

was sequential with elongation occurring from the amino terminus (Kamiryo and 

Matsuhashi, 1972; Rohrer and Berger-Bachi, 2003b). 

 

Whilst the identity of the FemX protein remained elusive for some time, knock-out 

of the femAB genes by allelic replacement with tetK resulted in the generation of an 

unusual peptidoglycan structure containing monoglycine bridges. The overall level 

of cross-linking was severely reduced in the knock-out mutants and 

complementation with either femA or femAB resulted in an increase in length of the 

cross bridge to tri-glycine or tetra-glycine respectively (Stranden et al., 1997). These 

studies provided the first experimental evidence for the existence of a third protein, 

now known to be FemX, whose activity was required for the addition of the first 

glycine residue of the cross bridge.  

 

In addition to this, reduction of transcription from the femAB operon via insertion of 

Tn551 resulted in several significant phenotypes including (i) a reduction in the cell 

wall glycine content concurrent with a reduction in overall levels of peptidoglycan 

cross-linking; (ii) a reduction in cell wall turnover; (iii) disruption to cell septum 

formation; (iv) retarded separation of cells and; (v) loss of methicillin resistance and 

an increase in sensitivity to β-lactam antibiotics. Further studies investigating 

selective knock-out of either femA or femB showed that cells containing such 

deletions were viable but only because they had acquired a series of complementary 

mutations necessary for their survival under these circumstances. This suggests that 
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femAB inactivation is lethal without the acquisition of complementary mutations and 

that the activity of FemX is essential for cell viability (Ling and Berger-Bachi, 

1998). 

 

The true identity of FemX was discovered upon sequencing of the S. aureus genome 

allowing for the identification of three genes; fmhA, fmhB and fmhC, which show 

homology to femA and femB. Of these genes only fmhA and fmhC could be 

inactivated without any noticeable changes in phenotype. In contrast, inactivation of 

fhmB was not tolerated making it the likely candidate for FemX (Tschierske et al., 

1999).  

 

Confirmation of the role of the protein product of fhmB in the synthesis of the 

pentaglycine bridge was achieved by Rohrer et al. (1999). In this study, the promoter 

for the fhmB gene was replaced by the xylose regulon from Staphylococcus xylosus 

enabling glucose-mediated control of transcription from the fhmB gene. Upon 

depletion of FhmB from cells, there was a notable accumulation of peptidoglycan 

monomers that were not substituted with any glycine residues. This proved the 

involvement of FhmB, which is now more commonly called FemX, in the addition 

of the first glycine residue to the pentapeptide side chain of Lipid II. It was also 

noted that deletion of femX resulted in a loss of resistance to methicillin despite the 

presence of the required low affinity form of PBP2a (Rohrer et al., 1999). This 

suggests that this PBP requires the presence of the pentaglycine side chain in order to 

function correctly. It has also been shown that the presence of the pentaglycine 

bridge is essential for optimum activity of the sortase protein which anchors various 
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surface proteins including virulence factors to the staphylococcal cell wall (Ton-That 

et al., 1998).  

 

Additional studies have shown that pentaglycine bridge formation can be 

reconstructed in vitro using purified forms of FemX, FemA, FemB, Glycyl-tRNA 

synthetase, UDP-MurNAc pentapeptide, Lipid I, Lipid II and a pool of S. aureus 

tRNA (Schneider et al., 2004). Use of the in vitro system indicated that the 

substrates for FemX, FemA and FemB were exclusively Lipid II, Lipid II-Gly and 

Lipid II-Gly-Gly respectively. It was also shown that all three enzymes were capable 

of carrying out catalysis independently of each other. It has recently been confirmed 

that the S. aureus genome encodes five tRNAGly genes, three of which are likely to 

be directed away from protein synthesis and used as donors for peptidoglycan 

synthesis. Thus, one proposition is that each of the three Fem enzymes is specific for 

one of three specific tRNA species (Giannouli et al., 2009). 

 

After the X-ray crystal structure of FemA was solved by Benson et al. (2002), it was 

hypothesised that the protein has a single binding site for the tRNA substrate. This 

would result in the requirement for an additional tRNA-binding reaction to add the 

second glycine residue. However, protein-protein interactions have been found to 

occur between two monomers of FemA, two monomers of FemB and a combination 

of FemA and FemB. No such interactions were seen in the case of FemX which 

suggests that it acts as a monomer whilst FemA and FemB act as homodimers. 

Dimerisation of FemA and FemB would allow two glycine residues to be added to 

the Lipid II substrate without the need for additional tRNA binding reactions (Rohrer 

and Berger-Bachi, 2003a). However, more detailed structural studies on the enzyme 
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with the bound tRNA substrate will provide further insight into the catalytic 

mechanism of the enzyme. 

 
1.6. The role of Lif and Epr in Staphylococcus simulans and 

Staphylococcus capitis 

S. simulans and S. capitis both produce glycyl-glycine endopeptidases which are able 

to cleave the pentaglycine bridges that are found in the cell wall of Staphylococci. In 

order to protect themselves from such enzymes, S. simulans produces lysostaphin 

immunity factor (Lif) and S. capitis produces endopeptidase resistance factor (Epr). 

Lif and Epr are broadly termed FemAB-like factors because they show 41% identity 

to these enzymes and catalyse the insertion of serine instead of glycine at position 

three and position five of the pentaglycine bridge respectively. The resulting 

peptidoglycan structure, which has an interpeptide bridge comprised of alternating 

serine and glycine, is protected from hydrolysis by the Glycyl-glycine 

endopeptidases as they are unable to break the peptide bonds between these two 

residues. 

 

Interestingly, in the background of a femAB knock-out, Lif and Epr are not able to 

extend the monoglycine cross bridge produced by FemX. This suggests that these 

proteins require FemA and FemB for activity (Ehlert et al., 2000).  

 
 
1.7. The role of  FemX in Weissella viridescens 

The FemX protein of W. viridescens is a well characterised member of the Fem 

ligase family of non-ribosomal peptidyl-transferases. Like MurM, FemX uses 

aminoacylated tRNA species to add the first amino acid of an L-alanine-L-serine 
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cross bridge within the peptidoglycan structure. The second amino acid is added by 

an unknown enzyme as shown in Figure 1.18. The substrate for W. viridescens 

FemX is the cytoplasmic precursor, UDP-MurNAc pentapeptide. This contrasts with 

the substrate specificity of many of the other Fem ligases, including MurMN and 

FemXAB, which either preferentially or exclusively utilise the membrane bound 

precursor Lipid II (Maillard et al., 2005).  

 

Figure 1.18: Summary of the pathway of peptidoglycan biosynthesis in 
Weissella viridescens. FemX is responsible for the addition of the first residue of 
the L-ala-L-ser-L-ala cross bridge onto the nucleotide precursor UDP-
MurNAc-pentapeptide. This reaction requires Ala-tRNAAla as a substrate for 
FemX. Ala-tRNAAla is generated by the activity of alanyl-tRNA synthetase 
(AlaRS). Additional unknown Fem transferases add the second (L-ser) and 
third (L-ala) residues of the side chain. Taken from Fonvielle et al. (2009). 
 

A series of kinetic analyses have been carried out in vitro on purified FemX from W. 

viridescens. This has demonstrated that the catalytic mechanism of the enzyme is a 

highly ordered process which proceeds sequentially through four stages. Binding of 
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UDP-MurNAc to the enzyme is followed by the binding of Alanyl-tRNAAla. This 

then results in the transfer of alanine from the tRNA carrier to the epsilon amino 

group of L-lysine found at the third position of the pentapeptide side chain. Finally 

the carrier tRNA and the UDP-MurNAc hexapeptide product are released from the 

enzyme. The aspartate residue found at position 108 within FemX is thought to be a 

catalytic site residue since mutation to asparagine caused a 230-fold reduction in 

catalytic efficiency (Hegde and Blanchard, 2003). 

 

The X-ray crystal structure of FemX in the presence and absence of UDP-MurNAc 

pentapeptide was solved by Biarrotte-sorin et al. (2004). FemX consists of two 

globular domains which are equivalent to each other in terms of structure. These two 

domains are separated from each other by a cleft which forms the binding site for 

UDP-MurNAc pentapeptide as shown in Figure 1.19. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.19: X-ray crystal structure of Weissella viridescens FemX with bound 
UDP-MurNAc pentapeptide (PDB code 3GKR). The region highlighted in blue 
shows domain I of the protein (residues 1-145 and 317-335). The region 
highlighted in magenta represents domain II (residues 146-316). UDP-MurNAc 
pentapeptide is shown in orange and is mostly in contact with domain one of the 
protein. Adapted from Biarrotte-Sorin et al. (2004). 
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As shown in Figure 1.19, UDP-MurNAc pentapeptide is bound mostly to the first 

domain making many polar contacts with the enzyme. The uracil ring found on the 

UDP-MurNAc moiety of the substrate makes a hydrogen bond with tyrosine-103 and 

is also stabilised by stacking interactions with phenylalanine at position 70 in FemX. 

The MurNAc ring appears to be completely exposed to the solvent and only D-

glutamate and the terminal D-alanyl-D-alanine dipeptide appear to interact with 

FemX. Interaction of these pentapeptide side chain residues is through threonine-209 

in the case of D-glutamate and through a combination of arginine-211, tyrosine-256 

and tyrosine-215 in the case of the terminal D-alanyl-D-alanine (Biarrotte-Sorin et 

al., 2004).  

 

Site directed mutagenesis of lysine-36 and arginine-211 to methionine has been 

shown to have a significant detrimental effect on the catalytic activity but not on the 

structure of FemX. In addition to this, analogues of UDP-MurNAc pentapeptide that 

either do not have any of the phosphate groups or are missing the terminal D-alanyl-

D-alanine dipeptide cannot be utilised as substrate by FemX. Taken together, these 

two findings have suggested that lysine-36 and arginine-211 are essential in the 

formation of hydrogen bonds that stabilise the enzyme-substrate complex and enable 

the reaction to proceed (Maillard et al., 2005). 

 

The major difference between the structure of S. aureus FemA and that of W. 

viridescens FemX is the absence of the coiled helical arm structure in the latter. The 

overall structure of FemX suggests that domain I and II may have distinct roles with 

the former being concerned with the binding UDP-MurNAc pentapeptide and the 

latter in tRNA binding. This proposition is supported by the fact that there is a long 
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positively charged channel running across domain II of FemX which would be able 

to complement the negatively charged backbone of Alanyl-tRNAAla. 

 

The interaction between FemX and its tRNA substrate has been partially 

characterised by modification of both the tRNA and the amino acid moiety of the 

substrate. These studies have demonstrated that FemX preferentially adds alanine to 

the third lysine of UDP-MurNAc pentapeptide because it interacts much more 

unfavourably with L-serine and the acceptor arm of tRNAGly. In vitro activity assays 

have demonstrated that FemX utilises Ser-tRNASer and Gly-tRNAGly 17 and 38-fold 

less efficiently than it uses Ala-tRNAAla as a substrate respectively. Site-directed 

mutagenesis has shown that the penultimate base pair of tRNAAla, G2-C71, is an 

essential identity element for FemX. This is replaced by C2-G71 in tRNAGly species 

(Villet et al., 2007).  

 

Further investigations into the specificity of the interaction between FemX and its 

tRNA substrate have recently been carried out by Fonvielle et al. (2009 and 2010). 

Aminoacyl-tRNA synthetases are responsible for transferring amino acid residues 

from an adenylate species to either the 2’ or the 3’ position of the terminal nucleotide 

(A76) of a molecule of tRNA. Upon completion of this process, spontaneous trans-

esterification occurs resulting in flipping of the amino acid residue between these 

two positions.  

 

Prior to these studies, the effect of spontaneous trans-esterification on the recognition 

of tRNA by members of the Fem ligase family had not been investigated. However, 

as shown in Figure 1.20, the A site of the ribosome was known to be specific for 
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tRNA species carrying the amino acid on the 3’ hydroxyl group with the 2’ hydroxyl 

group aiding the catalysis of peptide bond formation (Weinger et al., 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.20: Summary of the participation of Ala-tRNAAla regioisomers 
aminoacylated on either the 2’ or the 3’ hydroxyl group in protein and 
peptidoglycan synthesis. The enzymes catalysing the reactions shown in this 
diagram are given in blue. FemX is responsible for the transfer of alanine from 
Ala-tRNAAla to the side chain of L-lys in UDP-MurNAc pentapeptide. R is used 
to represent the backbone of peptidoglycan which is comprised of alternating 
N-acetylglucosamine and N-acetylmuramic acid residues. UDP = uridine 
diphosphate. Taken from Fonvielle et al. (2010). 
 

In order to determine the specificity of FemX for the 2’ and 3’ regioisomers of Ala-

tRNAAla, a series of non-isomerisable analogues, shown in Figure 1.21, were 

chemically synthesised by Fonvielle et al. (2010).  In compounds A and B, alanine is 
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locked at the 2’ and 3’ hydroxyl group of the terminal adenine residue respectively. 

Compound C represents the natural substrate for the enzyme whereby alanine can 

transfer freely between the 2’ and 3’ hydroxyl of the terminal adenine residue. 

 

Figure 1.21: Non-isomerisable analogues of Ala-tRNAAla used by Fonvielle et al. 
(2010) to determine the regio-specificity of Weissella viridescens FemX for its 
tRNA substrate. All analogues consist of the 24-nucleotide acceptor arm helix of 
tRNAAla shown in (A) and either a terminal 3′ deoxyadenosine (compound A), a 
terminal 2′ deoxyadenosine (compound B), or a terminal adenosine residue 
(compound C) shown in (B). Compounds A, B and C were assayed as substrates 
(see turnover number) and as inhibitors in the presence of full-length Ala-
tRNAAla. Adapted from Fonvielle et al. (2010). 
 

Activity assays demonstrating turnover of compound A, but not of compound B, by 

W. viridescens FemX indicated that the enzyme recognises tRNAAla that has been 

aminoacylated on the 2’ position of the terminal adenine as its true substrate.  Given 

that alanyl-tRNA synthetase is known to aminoacylate tRNAAla at the 3’ position, 

these results suggest that FemX first catalyses trans-acetylation of the amino acid to 

the 2’ position of the tRNA molecule prior to its transfer to the third lysine of UDP-

MurNAc pentapeptide. Compounds A and B were also tested as inhibitors of FemX 

using full-length Ala-tRNAAla as the substrate. Compound B, which was not utilised 

as a substrate by the enzyme, was shown to cause inhibition with an IC50 of 0.8 µM. 
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This suggests that tRNAAla species that carry alanine at the 3’ position can still bind 

to FemX even though transfer of the amino acid to UDP-MurNAc pentapeptide is 

not catalysed from this position. This would enable FemX to sequester the 

aminoacylated Ala-tRNAAla species produced by alanyl-tRNA synthetase in 

competition with the ribosome. Compound A was found to inhibit the enzyme three 

times more efficiently than compound B clearly indicating that FemX catalyses 

transfer of the amino acid from the 2’ hydroxyl group which then enables release of 

tRNAAla from the enzyme (Fonvielle et al., 2009; Fonvielle et al., 2010). The regio-

specificity of other Fem ligases for their tRNA substrates has not yet been 

investigated.  

 
1.8. The role of  BppA1 and BppA2  in Enterococcus  faecalis 

The peptidoglycan of E. faecalis contains indirect cross-linkages that are comprised 

of two alanine residues attached to the Ɛ-amino group of L-lysine found at the third 

position of the pentapeptide side chain of UDP-MurNAc. This process requires 

alanyl-tRNA synthetase, Alanyl-tRNAAla and two Fem ligases called BppA1 and 

BppA2.  

 

BppA1 transfers the first alanine residue of the cross-link to its cytoplasmic 

substrate, UDP-MurNAc pentapeptide. BppA1 is an orthologue of S. pneumoniae 

MurM and shares 39% sequence identity with this protein. The second amino acid is 

added by BppA2, which has 38% sequence identity to S. pneumoniae MurN. BppA1 

and BppA2 are able to function independently of each other such that deletion of 

bppA2 causes the generation of a peptidoglycan structure where the indirect cross-

bridge is comprised of mono-alanine. Peptidoglycan monomers branched by these 

incomplete side chains were still accepted as substrates by the PBPs, however, 
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expression of β-lactam resistance was reduced. This suggests that the low affinity 

penicillin-binding proteins require the complete L-ala-L-ala bridge for full β-lactam 

resistance (Bouhss et al., 2002). 

 

1.9. The role of  FemX and VanK in Streptomyces coelicolor 

Streptomyces coelicolor has a series of seven genes within its genome, termed 

VanSRJKHAX, that are required for high-level vancomycin resistance. Within this 

gene cluster, vanK is known to encode a transferase that is a member of the Fem 

ligase family. In addition to this, S. coelicolor also has a second Fem ligase, FemX, 

which is encoded on a different part of the chromosome and utilises soluble UDP-

MurNAc pentapeptide as opposed to Lipid II as a substrate. Both of these proteins 

are involved with the formation of the mono-glycine branch found within the 

peptidoglycan of this organism. However, they are functional under different 

conditions and are thus not active at the same time. 

 

In the absence of vancomycin, FemX, which recognises UDP-MurNAc pentapeptide 

that terminates in D-alanyl-D-alanine, is active and responsible for the addition of 

mono-glycine to the third position of the side chain. However, in the presence of 

vancomycin, a two component regulatory system, VanRS, switches on expression of 

the vancomycin gene cluster. This results in the VanHAX enzymes terminating the 

pentapeptide side chain of UDP-MurNAc in D-alanyl-D-lactate instead of D-alanyl-

D-alanine thus conferring resistance to the antibiotic. FemX cannot recognise UDP-

MurNAc pentapeptide when it terminates in D-alanyl-D-lactate and hence cannot 

branch the precursor in the presence of vancomycin. Therefore, the activity of FemX 

is replaced by that of VanK under these conditions as shown in Figure 1.22. 
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Figure 1.22: The role of FemX and VanK in Streptomyces coelicolor in the 
absence (left) and the presence (right) of vancomycin. Taken from Hong et al. 
(2005). 
 
 
In wild-type S. coelicolor cells that are exposed to vancomycin, the presence of D-

lactate containing precursors carrying the mono-glycine branch can be detected. This 

is not the case in vanK knockout mutants. Mutations in femX only result in loss of 

cell viability in the absence of vancomycin further confirming the interchangeable 

nature of these two enzymes (Hong et al., 2005). 

 

1.10. The role of  Aslfm in Enterococcus faecium 

The peptidoglycan of Enterococcus faecium contains D-iso-asparagine on the Ɛ- 

amino group of the third lysine on the pentapeptide component of UDP-MurNAc 

pentapeptide. In 1972, it was shown that this reaction was ATP-dependent and 

involved the activation of D-aspartate as β-aspartyl-phosphate (Staudenbauer and 

Strominger, 1972; Staudenbauer et al., 1972). However, the enzymes involved in 

this process were not identified for another 34 years after this study (Bellais et al., 

2006). 

 

Reverse genetics identified a gene cluster in E. faecium encoding aspartate racemase 

(Racfm) and ligase (Aslfm) which, together, are required for the incorporation of D-

aspartate onto the side chain of peptidoglycan precursors. The D-aspartate residue 
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then undergoes amidation on its α-carboxyl group to form the D-iso-asparagine 

residue that makes the indirect branch within E. faecium peptidoglycan as shown in 

Figure 1.23. 

 
 
 
 
 
 
 
 
 
 
 
Figure 1.23: Incorporation of D-aspartate by Racfm and Aslfm onto the epsilon 
amino group of lysine in Enterococcus faecium peptidoglycan. Taken from 
Bellais et al. (2006). 
 
 
Characterisation has shown that Aslfm is a member of the ATP-grasp family of 

proteins which encompasses a wide range of enzymes that carry out ATP-dependent 

carboxylate amine ligations. This enzyme is highly specific and, when expressed in 

E. faecalis, indirect cross bridges in the cell wall structure change in composition 

from two alanine residues to a single D-aspartate. Genes that are homologous to the 

Aslfm protein of E. faecium have been found in all ten of the genomes of bacteria that 

are known to produce precursor molecules that contain D-aspartate residues. No such 

homologues were found in any of the species which generate indirect cross-links in 

their cell wall peptidoglycan using members of the Fem ligase family. This suggests 

that D-amino acids are incorporated into peptidoglycan by one closely related family 

of enzymes that are very specialised in terms of their function (Bellais et al., 2006). 
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1.11. Other enzymes involved in non-ribosomal peptide synthesis 

1.11.1. Protein argininyl and phenylalanyl/leucyl transferases 

One mechanism by which protein turnover is regulated in prokaryotic and eukaryotic 

cells is by application of the N-end rule. This pathway is based on the addition of a 

single amino acid residue to the N-terminus of a protein which modifies its half-life 

and ultimately results in targeting for degradation. One mechanism of amino acid 

extension at the N-terminus of proteins involves transfer from aminoacylated tRNA 

species. This tRNA-dependent method of regulation of protein turnover can occur in 

both prokaryotes and eukaryotes via L/F and R transferases respectively. L/F 

transferases catalyse the transfer of either leucine or phenylalanine to the N-terminal 

arginine or lysine of the protein that must be targeted for degradation. Whilst the N-

termini of these transferases can be considered unique to this family of enzymes, the 

C-termini shares distinct homology with the Fem ligase family (Francklyn and 

Minajigi, 2010). 

 

1.11.2. MprF proteins 

MprF proteins are virulence factors that control the permeability of the cell wall to 

cationic antimicrobials by catalysing the aminoacylation of inner membrane lipids. 

Aminoacylation of membrane lipids adjusts the net negative charge of the membrane 

bilayer in a manner that is dependent on the aminoacylated tRNA substrate. The 

most well characterised MprF proteins are the aminoacyl-phosphatidylglycerol 

synthases (aa-PGSs). These enzymes are broadly distributed across bacteria and 

transfer amino acids from aminoacylated tRNA molecules to the polar head group of 

phosphatidylglycerol. The most common amino acid to be transferred is lysine 

causing an increase in the net positive charge of the cytoplasmic membrane which, in 
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turn, lowers permeability to cationic molecules including defensins, 

aminoglycosides, β-lactams and glycopeptides. Recently, aa-PGSs that are able to 

transfer amino acids other than lysine to phosphatidylglycerol have been discovered. 

Clostridium perfringens and Pseudomonas aeruginosa have Ala-PGSs which are 

able to aminoacylate phosphatidylglycerol with alanine and thus neutralise the 

overall charge of the membrane. This modification has been shown to enhance the 

resistance of P. aeruginosa to a multitude of negatively-charged β-lactam antibiotics, 

such as oxacillin and methicillin (Ernst and Peschel, 2011). 

 

1.11.3. VlmA in Streptomyces viridifaciens 

Streptomyces viridifaciens naturally synthesises valanimycin which is an antibiotic 

derived from L-valine and L-serine. There are two intermediates in the formation of 

valanimycin and these are isobutylamine and isobutylhydroxylamine. In order to 

synthesise this compound, S. viridifaciens has a biosynthetic cluster made up of 14 

genes. One of the genes in this cluster, vlmL, encodes a seryl-tRNA synthetase 

enzyme which catalyses the transfer of serine from seryl-tRNASer to the hydroxyl 

group of isobutylhydroxylamine. The reaction catalysed by VlmL is essential for the 

production of valanimycin and this enzyme shares the GNAT fold found in Fem 

ligases and the L/F and R transferases described in section 1.11.1 (Garg et al., 2008; 

Aravind et al., 2010). 

 

1.11.4. Cyclodipeptide synthases 

Cyclodipeptide synthases are a new class of enzymes that have only recently been 

defined. These enzymes also utilise aminoacylated tRNA species as a substrate, this 

time for the production of numerous cyclodipeptides which form the precursors of a 
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wide range of natural products.  However, structurally they show much more 

homology with tRNA synthetase enzymes than they do with members of the Fem 

ligase family. One class of cyclodipeptide synthase is AlbC which is commonly 

involved in secondary metabolite production. Members of the AlbC family are 

responsible for the synthesis of the antibiotic albonoursin in Streptomyces noursei 

and of the siderophore pulcherriminic acid in B. subtilis (Aravind et al., 2010; 

Sauguet et al., 2011). 
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1.12. Aims 

The increase in the global prevalence of multidrug-resistant strains of Streptococcus 

pneumoniae is becoming a major concern. Most strains are now resistant to the β-

lactam class of antibiotic which targets the final stages of peptidoglycan synthesis. 

For this reason, there is an urgent need for new drug targets and compounds to 

alleviate this problem. Given that peptidoglycan is unique to prokaryotic cells, it is 

still an ideal target for antibiotic design and there is an increasing amount of interest 

in targeting the enzymes involved in the cytoplasmic and lipid linked stages of 

peptidoglycan biosynthesis. Currently the MurMN proteins of S. pneumoniae and the 

Fem ligases of other pathogens are under-explored as targets for novel antibiotic 

design even though their inhibition has the potential to restore the activity of many 

clinically approved antibiotics including penicillin. 

 

The main objective of this project was to investigate the relationship between levels 

and types of amino acids used in indirect cross-linking within pneumococcal 

peptidoglycan across a range of penicillin-resistant and penicillin-sensitive strains. In 

addition, the secondary aim of this work was to determine how differences between 

amino acid preference and the proportion of indirect cross-linkages in the cell wall 

relate to the structure and function of allelic variants of the MurM protein from these 

strains. The two main aims can be broken down into the following objectives: 

 

1. Cloning, over-expression and purification of the murM gene from 

penicillin-resistant and penicillin-sensitive strains of S. pneumoniae. 

Strain R6 is particularly unusual since it is penicillin-sensitive despite 

having a relatively high-level of indirect cross-linkage within its 
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peptidoglycan. Therefore characterisation of the MurM protein from this 

strain may give a better understanding of the link between MurM activity, 

the proportion of branched muropeptides in the cell wall and levels of 

penicillin resistance. 

 

2. Obtaining MurM protein of suitable purity and homogeneity for use in 

structural studies, including crystallography.  

 

 
3. Comparing the kinetic activities of different allelic variants of MurM 

proteins with Lipid II, Ala-tRNAAla and Ser-tRNASer.  

 

4. Identification of amino acids important in conferring relative levels of 

MurM ligase activity and amino acid selectivity.   

 
 

It is hoped that extensive characterisation of MurM will allow for a greater 

understanding of its overall role within S. pneumoniae and that this will shed some 

light onto its relationship to penicillin resistance. Ultimately, a greater understanding 

of MurM and other Fem ligases will aid successful drug design against these 

enzymes in the future which could vastly improve the success rate of treatment 

regimens for a variety of bacterial infections. 
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Chapter 2 

Materials and Methods 

 

2.1. Chemicals, Reagents, Buffers and Growth Media 

2.1.1. Chemicals and Reagents 

Unless otherwise stated, all chemicals used in this project were supplied by Melford 

Laboratories Ltd (UK), Fisher Scientific (UK), Fluka (Germany), Acros organics 

(Belgium), Sigma-Aldrich (USA), MERCK (USA) and Geneflow (UK). 

 

2.1.2. Buffers 

All buffers were prepared using MilliQ water and pH was adjusted using a Jenway 

pH meter calibrated with pH 4.01, 7.01 and 10.01 buffers provided by Hanna 

Instruments (UK). Solutions used for crystallography were passed through a 

Ministart 0.2 µM hydrophilic syringe filter provided by Sartorius Stedim Biotech 

(France) prior to use. Buffers used for tRNA preparation and handling were 

autoclaved at 15 psi for 20 min at 120oC prior to use. 

 

2.1.3. Bacterial growth and maintenance 

All strains of Escherichia coli were grown and maintained in Luria-Bertani (LB) 

medium comprised of 12.5 g Bacto-tryptone, 6.25 g yeast extract and 12.5 g NaCl  

L-1 at pH 7.5. Super optimal broth supplemented with catabolite repression (SOC) 

medium for cell recovery after heat shock was comprised of 20 g Bacto-tryptone, 5 g 

Bacto-yeast extract, 0.5 g NaCl, 2.5 mL 1 M KCl and 20 mL 1 M glucose L-1  at pH 

7.0. 
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All strains of Streptococcus pneumoniae and Micrococcus flavus were obtained from 

the University of Warwick culture collection. Both were grown and maintained in 

Tryptic Soy Broth (TSB) which consisted of 30 g of dehydrated TSB medium made 

up to 1 L with MilliQ water. 

 

Auto-induction medium for protein expression was comprised of 20 mL 50 x 5052, 

50 mL 20 x NPS and 1 mL of 1 M MgSO4 made up to 1 L with LB (Studier, 2005). 

50 x 5052 and 20 x NPS were made up as described in Studier (2005). All of these 

growth media components were autoclaved at 15 psi for 20 min at 120oC prior to 

use. 

 

2.2. Cloning and manipulation of DNA 

2.2.1. Genomic DNA extraction 

For the purposes of DNA extraction, Streptococcus pneumoniae strains Pn16, 159 

and R6 were plated out on TSB agar to obtain single colonies. Plates were incubated 

for 2 days at 37oC in an atmosphere comprised of 50% carbon dioxide.  For each 

strain, a single colony was selected and re-cultured until a lawn of cells across 6 TSB 

plates was obtained. These cells were then resuspended in 1 mL of TSB and 

processed using the Promega Wizard Genomic DNA Purification Kit following the 

protocol for isolation of DNA from Gram-positive bacteria. The purified DNA was 

quantified using a nanodrop spectrophotometer prior to use in PCR. Genomic DNA 

was extracted from Staphylococcus aureus strain Mu50 in the same way. 
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2.2.2. Amplification of genes using the Polymerase Chain Reaction (PCR) 

Standard PCR amplifications were carried out in 50 µL volumes using an Eppendorf 

mastercycler and either Pfx or Accuprime Taq DNA polymerase from Invitrogen. A 

typical PCR amplification consisted of the components shown in Table 2.1. 

 

 
PCR using Accuprime Taq DNA polymerase 

 
Component Volume (µL) 

10 x Accuprime PCR buffer 2 10.0 
Forward primer (10 µM) 2.0 
Reverse primer (10 µM) 2.0 
Template DNA (10 ng µL-1) 2.0 
Accuprime Taq 0.5 
MilliQ water 83.5 

 
PCR using Pfx Taq DNA polymerase 

 
Component Volume (µL) 

10 x Pfx amplification buffer  5.0 
10 x enhancer solution 5.0 
Forward primer (10 µM) 1.0 
Reverse primer (10 µM) 1.0 
10 mM dNTP mix 1.5 
50 mM MgSO4 1.0 
Template DNA (10 ng µL-1) 2.0 
Pfx Taq 0.5 
MilliQ water 33.0 

 

Table 2.1: Composition of a typical PCR reaction using either Accuprime or Pfx 
Taq DNA polymerases from Invitrogen. Accuprime Taq was used in the first 
instance. Pfx Taq was used for difficult PCR reactions since specificity and 
efficiency of amplification could be improved by the addition of 10 x enhancer.  
 

In each case, a typical PCR amplification was subjected to denaturation at 94oC for 2 

min. This was followed by 35 cycles of denaturation at 94oC for 30 sec, annealing at 

55-68oC for 30 sec and extension at 68oC for 1 min per kb of DNA. After cycling, a 

final extension step was carried out at 68oC for 10 min and the reactions were then 
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held at 4oC. Annealing temperature was varied according to the melting temperature 

of the primers to maximise the overall yield of PCR product obtained. 

 

All of the primers used in this study were synthesised either by Invitrogen or 

Integrated DNA Technologies (IDT) and purified by standard de-salting unless 

otherwise stated. Primer sequences used for cloning and sequencing are shown in 

Table 2.2. 

 

Primer 
number 

Primer name Primer sequence (5’ to 3’) Incorporated 
sites 

1 R6 and Pn16 
MurM forward 
primer 

TTTGCGGGATCCCATATG
TACCGTTATCAAATTGGC
ATTCC 
 

BamHI and 
NdeI 

2 159 MurM forward 
primer 

TTTGCGGGATCCCATATG
TATCGTTATCAGCTTGGG
AT 
 

BamHI and 
NdeI 

3 R6 MurM reverse 
primer (C-terminal 
6 histidine tag) 

TTTGCGCTCGAGCTTTCTA
TGTTTTTTTCTTAATGTTT
TACGG 
 

XhoI 

4 MurM reverse 
primer (C-terminal 
12 histidine tag) 
 

TTTGCGCTCGAGGTGGTG
GTGGTGGTGGTGCTTTCT
ATGTTTTTTTCTTAATGTT
TTACGG 
   

XhoI,  
hexa-histidine 
tag not 
encoded by the 
vector 
(HPLC 
purified) 
 

5 FemA forward 
primer 

TTTGCGGGATCCCATATG
AAGTTTACAAATTTAACA
GCTAAAG 
 

BamHI and 
NdeI 

6 FemA reverse plus 
TEV site 
 

TTTGCGCTCGAGGCCCTG
AAAATACAGGTTTTCAAA
AA 
TTCTGTCTTTAACTTTTTT
AAG 
        

XhoI,  
TEV protease 
recognition 
site (PAGE 
purified) 
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Primer 
number 

Primer name Primer sequence (5’ to 3’) Incorporated 
sites 

7 FemA reverse 
(C-terminal 12 
histidine tag) 
 

TTTGCGCTCGAGGTGGTG
GTGGTGGTGGTGAAAAAT
TCTGTC 
 

XhoI, 
hexa-histidine 
tag not 
encoded by the 
vector 
(HPLC 
purified) 
 

8 MurM reverse plus 
TEV site 

TTTGCGCTCGAGGCCCTG
AAAATACAGGTTTTCCTTT
CTATGTTTTTTTCTTAATG
TTTTACGG 
        

XhoI,  
TEV protease 
recognition 
site (PAGE 
purified) 
 

9 T7 RNA 
polymerase 
forward primer 

TTTGCGGGTGGTCTCCCAT
GAACACGATTAACATCGC
TAA 
 

BsaI producing 
NcoI 
compatible 
ends 
 

10 T7 RNA 
polymerase reverse 
primer for cloning 
into pProExHTa 
 

TTTGCGCTCGAGTTACGC
GAACGCGAAGTCCGACTC
TAAG 
 

XhoI and a 
stop codon 
 

11 T7 RNA 
polymerase reverse 
primer for cloning 
into pET28a 
 

TTTGCGCTCGAGCGCGAA
CGCGAAGTCCGACTCTAA
G 
 

XhoI 

12 FemX forward 
primer 

TTTGCGGGTGGTCTCCCAT
GGAAAAGATGCATATCAC
TAATCAGG 
 

BsaI producing 
NcoI 
compatible 
ends 
 

13 FemX reverse plus 
TEV site 

TTTGCGCTCGAGGCCCTG
AAAATACAGGTTTTCTTTT
CGTTTTAATTTACGAGAT
ATTTTAATTTTAGC 

XhoI 
TEV protease 
recognition 
site (PAGE 
purified) 
 

14 FemB forward 
primer 

TTTGCGGGTGGTCTCCCAT
GAAATTTACAGAGTTAAC
TGTTACC 

BsaI producing 
NcoI 
compatible 
ends 
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Primer 
number 

Primer name Primer sequence (5’ to 3’) Incorporated 
sites 

15 FemB reverse plus 
TEV site 

TTTGCGCTCGAGGCCCTG
AAAATACAGGTTTTCTTTC
TTTAATTTTTTACGTAATT
TATCC 

XhoI 
TEV protease 
recognition 
site (PAGE 
purified) 
 

16 Glycyl-tRNA 
synthetase forward 
primer 

TTTGCGGGTGGTCTCCCAT
GGCAAAAGATATGGATAC
AATTG 

BsaI producing 
NcoI 
compatible 
ends 
 

17 Glycyl-tRNA 
synthetase reverse 
primer 

TTTGCGCTCGAGGAATTTT
GTTTTTTCAGTTAAGAAA
GC 
 

XhoI 

 

18 T7 promoter 
sequencing primer 

TAATACGACTCACTATAG
GG 
 

 

19 T7 terminator 
sequencing primer 

GCTAGTTATTGCTCAGCG
G 
 

 

20 pProExHTa vector 
inserts, forward 
primer 
(sequencing) 

AGCGGATAACAATTTCAC
ACAGG 
 

 

21 pProExHTa vector 
inserts, reverse 
primer 
(sequencing) 

CTGCGTTCTGATTTAATCT
GTATCAGGC 
 

 

22 T7 RNA 
polymerase middle 
sequencing primer 
1 

GTCAAGACTCTGAGACTA
TCGAACTCGCACC 

 

23 T7 RNA 
polymerase middle 
sequencing primer 
2 
 

GCTTACGCTGGCGAAAGG
T 

 

 

 
Table 2.2: Primer sequences used for cloning and sequencing of the murM genes 
from Streptococcus pneumoniae (strains R6, Pn16 and 159), the femXAB and 
glycyl-tRNA synthetase genes from Staphylococcus aureus (strain Mu50) and the 
T7 RNA polymerase gene from Escherichia coli BL21 Star (DE3).placIRare2 
cells. The sequences of all of the primers are given in the 5’ to 3’ direction. 
Details of flanking restriction and protease recognition sites added to the genes 
by the primers have been given. All primers were purified by standard           
de-salting unless otherwise stated in the incorporated sites column.
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2.2.3. Visualisation of DNA 

DNA fragments were visualised by 0.8 - 1% (w/v) high melting point agarose 

(GibcoBRL) gel electrophoresis using 1 x Tris-acetate buffer (TAE). Gels were 

stained for DNA by adding 5 μL of either 10 mg mL-1 ethidium bromide or 1000 x 

SYBR safe DNA stain (Invitrogen) per 50 mL prior to casting. This enabled DNA to 

be visualised on a UV transilluminator (Syngene G:Box using Gene-snap software). 

1 kb ladder from Fermentas was used as a marker on all gels to enable estimation of 

the size of all DNA fragments. 

 

2.2.4. Purification of PCR products 

The products of PCR amplifications were purified using either the Promega Wizard 

Prep Kit or the Qiagen PCR clean-up Kit depending on the size of the DNA 

fragment according to manufacturer’s instructions. Restriction digests of PCR 

products were routinely purified using the same kits. 

 

2.2.5. Restriction digestion of PCR products and vectors 

All restriction digests were carried out using enzymes obtained from New England 

Biolabs (NEB) according to manufacturer’s instructions. Restricted PCR products 

were purified away from the enzymes as described in 2.2.4. Restricted vectors were 

purified using the Qiagen gel extraction kit. 

 

2.2.6. Quantification of DNA 

DNA concentration was obtained by measuring the absorbance ratio at 260/280 nm 

using a ND-1000 Nano-drop spectrophotometer. 
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2.2.7. DNA Ligations 

T4 DNA ligase (Invitrogen) was used to ligate restricted PCR products into similarly 

restricted vectors according to manufacturer’s instructions. A typical ligation 

consisted of PCR product and vector at a 10:1 molar ratio. Ligations were left at 

room temperature for at least 4 h prior to transformation of 2 µL of the DNA into    

E. coli Top10 cells. 

 

2.2.8. Preparation and transformation of chemically-competent Escherichia coli 

cells 

Chemically-competent E. coli cells were prepared using an adapted version of the 

rubidium chloride protocol developed by Hanahan et al. (1985). A 2.5 mL starter 

culture was grown at 37oC for 16 h and then used to inoculate 250 mL of LB 

supplemented with 20 mM MgSO4. Once the cells had reached an OD600nm of 0.4, 

they were centrifuged at 4oC in a Beckman JA-14 rotor at 4,500 x g for 5 min. The 

cell pellet was resuspended in 100 mL of TFB 1 (30 mM potassium acetate, 10 mM 

calcium chloride, 50 mM manganese chloride, 100 mM rubidium chloride, 15% 

glycerol pH 5.8). After incubation on ice for 5 min, the cells were centrifuged as 

before and the pellet was resuspended in 10 mL of TFB2 (10 mM MOPS, 75 mM 

calcium chloride, 10 mM rubidium chloride, 15% glycerol pH 6.5). Cells were 

incubated on ice for 1 h and then aliquots of 50 μL per tube were made and snap 

frozen in liquid nitrogen prior to storage at -80oC. 

 

Prior to transformation, an aliquot of cells was thawed on ice. Then 1 - 4 µL of 

plasmid DNA or ligation reaction was added to the cell aliquot which was 

subsequently incubated on ice for 30 min. Cells were heat shocked by incubation at 
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42oC for 30 sec and then immediately placed back on ice for 2 min prior to the 

addition of 300 µL of SOC medium. Recovery from heat shock was initiated by 

incubation at 37oC in a shaking incubator (200 rpm) for 1 h. Transformants were 

plated out in 50 - 100 µL aliquots on LB agar plates supplemented with the 

appropriate selective antibiotics and incubated for 20 h at 37oC. 

 

2.2.9. Site-directed mutagenesis by PCR 

Mutagenesis of single amino acid residues to alanine was carried out using 

Stratagene’s Quikchange methodology and Pfu Ultra DNA polymerase.  Primers 

were designed to be approximately 30 bases in length with the desired mutation in 

the middle (Table 2.3). Where possible the GC content of each primer set was kept 

above 40% with the forward and the reverse primer designed to anneal to the same 

sequence on opposite strands of the template plasmid. Dimethyl-sulphoxide (DMSO) 

was added to a final concentration of 2.5% when the overall GC content of the DNA 

template made the design of primers with the recommended melting temperature 

(Tm) impossible. 
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Primer mutation site Primer sequence (5’ to 3’) 

 

FemA 

Histidine 41 to alanine 

 
Forward primer: 
GCTTGCTGAAGGTTATGAAACAGCTTTAGTGGGA
ATAAAAAA CAATAATAACG 
 
Reverse primer: 
CGTTATTATTGTTTTTTATTCCCACTAAAGCTGTTT
CATAACCTTCAGCAAGC 
 

 

FemA 

Histidine 100 to alanine 

 

 
Forward primer: 
GAATTATCAAAATATGTTAAAAAAGCTCGTTGTC 
TATACCTACATATCG 
 
Reverse primer: 
CGATATGTAGGTATAGACAACGAGCTTTTTTAAC
ATATTTTGATAATTC 
 

 
 

FemA 

Histidine 106 to alanine 

 

 
Forward primer: 
CATCGTTGTCTATACCTAGCTATCGATCCATAT 
TTACCATATC 
 
Reverse primer: 
GATATGGTAAATATGGATCGATAGCTAGGTATAG
ACAACGATG 

 
 

FemA 

Aspartate 396 to 

alanine 

 

 
Forward primer:  
GCTGAAATTATTGAATATGTTGGTGCCTTTATT 
AAACCAATTAATAAACC 
 
Reverse primer: 
GGTTTATTAATTGGTTTAATAAAGGCACCAACAT
ATTCAATAATTTCAGC 
 

 

159 MurM rational 

surface mutagenesis 

cluster 1 oligos 

 

 

Forward primer: 
CGGAGTTGATGAAAAAAACTGAGGCGCGCGCA 
GCGATTCATTTAAGAAACGAAGC 
 
Reverse primer: 
GCTTCGTTTCTTAAATGAATCGCTGCGCGCGCC 
TCAGTTTTTTTCATCAACTCCG 
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Primer mutation site Primer sequence (5’ to 3’) 

 

159 MurM rational 

surface mutagenesis 

cluster 2 oligos 

 

 

Forward: 
CCATTCAGCCTCGTATTCAGGCGAAAATATAT 
GCAGCAAATTTTGAAGAAGATAAACTTTCTAAA 
TCAACG 
 
Reverse: 
CGTTGATTTAGAAAGTTTATCTTCTTCAAAATT 
TGCTGCATATATTTTCGCCTGAATACGAGGCTG 
AATGG 
 

 

Pn16 MurM rational 

surface mutagenesis 

cluster 1 oligos 

 

 
Forward: 
GGCAACATGAGAAGTTTGGTGTTTACAGGGCA 
GCAGCATTACTGGCGACAGCTAGTATTTTGATT 
AG 
 
Reverse: 
CTAATCAAAATACTAGCTGTCGCCAGTAATGCT 
GCTGCCCTGTAAACACCAAACTTCTCATGTTGCC 
 

 

Pn16 MurM rational 

surface mutagenesis 

cluster 2 oligos 

 

 

Forward: 
GCCTATCTCAAAGTTTAATCAATGCGGCAGCG 
ACAGAATTTCCTGAAAATCTGGC 
 
Reverse: 
GCCAGATTTTCAGGAAATTCTGTCGCTGCCGCA 
TTGATTAAACTTTGAGATAGGC 
 

 

159 MurM  

Glutamate 229 to 

alanine 

 

 

Forward: 
GATAACTTCAAAGCAGACTCCTATATCACG 
 
Reverse: 
CGTGATATAGGAGTCTGCTTTGAAGTTATC 

 

 

159 MurM  

Glutamate 307 to 

alanine 

 

 
Forward: 
GCGGCTACTTTGAGTTTGGCATTTGGTAATACCTC
TGTC 
 
Reverse: 
GACAGAGGTATTACCAAATGCCAAACTCAAAGTA
GCCGC 
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Primer mutation site Primer sequence (5’ to 3’) 

 

Pn16 MurM  

Aspartate 229 to 

alanine 

 

 
Forward: 
GTTAGATAATTTTAAGGCCAAGGCCTATATCACC  
 
Reverse: 
GGTGATATAGGCCTTGGCCTTAAAATTATCTAAC 
 

 

Pn16 MurM  

Glutamate 307 to 

alanine 

 

 
Forward: 
GCGGCTACTTTGAGTTTGGCATTTGGTACTACCTC
TGTC 
 
Reverse: 
GACAGAGGTAGTACCAAATGCCAAACTCAAAGT 
AGCCGC 
 

 

Table 2.3: Primer sequences used for site-directed mutagenesis of MurM and 
FemA. All mutations made converted the amino acid of interest to alanine. In 
each case, both of the primers were designed to incorporate the desired 
mutation and to anneal to the same sequence of DNA on opposite strands of the 
plasmid. The Tm and GC content were kept above 78oC and 40% respectively 
where possible. The region of the sequence highlighted in bold underlined 
shows the position of the amino acid mutation with respect to the length of the 
primer. 
 

 

2.2.10. Isolation of plasmid DNA from Escherichia coli 

Plasmid DNA was isolated from either 5 mL or 100 mL overnight cultures of E. coli 

using the Qiagen mini-prep kit or the Sigma maxi-prep kit respectively following 

manufacturer’s instructions.  

 

2.2.11. DNA sequencing 

All DNA sequencing reactions were performed and analysed by the Molecular 

Biology Service at the University of Warwick using an ABI-prism DNA sequencer 

(Applied Biosystems, USA). DNA sequences were annotated using Chromas and 

sequence alignments were performed using ClustalX and GeneDoc. 
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2.3. Protein Expression and solubilisation 

2.3.1. Bacterial strains and vectors 

Chemically-competent E. coli Top10 cells were transformed and used as a means of 

facilitating genetic manipulation of expression vectors pProExHTa (Invitrogen), 

pET22b and pET28a (Novagen) with PCR products encoding the gene of interest. 

Maps of the multiple cloning sites for these vectors are shown in Figures 2.1, 2.2 and 

2.3 respectively. Chemically competent E. coli strains used in this study for 

optimisation of protein expression include B834 (DE3), BL21 Star (DE3), BL21 Star 

(DE3).placIRare2 and C41 (DE3).pRIL. Features of all of these strains are shown in 

Table 2.4.  
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Figure 2.1: Map showing the multiple cloning site of the protein expression vector pProExHTa from Invitrogen. 

 
Figure 2.2: Map showing the multiple cloning site of the protein expression vector pET22b (+) (Novagen). 
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Figure 2.3: Map showing the multiple cloning site of the protein expression vector pET28a-c (+) (Novagen).
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E. coli strain Parental 

E. coli 
strain 

Genotype Description Antibiotic resistance 

 
B834 (DE3) 

 
E. coli B 

 
F- ompT hsdSB (rB

- mB
-) gal dcm met (DE3) 
 

 
met auxotroph, general expression host. 
(Leahy et al., 1992) 
 

 
None 

 
BL21 StarTM 

(DE3)   
(Invitrogen) 

 

 
B834 

 
F- ompT hsdSB (rB

- mB
-) gal dcm rne131 (DE3) 

 
High performance expression host. The rne131 
deletion ensures messenger RNAs are not degraded 
as quickly as they would be in the parent strain. 
(Lopez et al., 1999) 
 

 
None 

 
BL21 StarTM 

(DE3).placIRare2 
 

 
B834 

 
F- ompT hsdSB (rB

- mB
-) gal dcm rne131  (DE3) 

pRARE27 (CamR) 
 

 
High performance expression host providing seven 
rare codon tRNAs. 

 
Chloramphenicol  

(34 μg ml-1) 

 
C41 (DE3).pRIL 

 
 

 
BL21 
(DE3) 

 
F- ompT hsdSB (rB

- mB
-) gal dcm (DE3) 

 
General expression host supportive of the over-
expression of membrane associated proteins whose 
production may be toxic to the parental strain. 
(Miroux and Walker, 1996) 
 

 
Chloramphenicol 

(34 μg ml-1) 

 
Top10 

 
MC1061 F-, mrcA, endA1, rec1, ф80lacZΔM15, ΔlacZX74, 

deoR, araD139, galK, rpsL (StrR), nupG, Δ(mrr-
hsdRMS-mcrBC) 

 
High efficiency host for cloning and propagation of 
plasmids. 
(Grant et al., 1990) 

 
Streptomycin 

 

Table 2.4: Properties of Escherichia coli strains used for cloning and protein expression. Strains were acquired from Invitrogen.
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2.3.2. Protein expression using auto-induction  

For determination of optimal conditions for protein expression, the vector containing 

the required gene was transformed into a range of E. coli expression strains (Table 

2.4). A single colony from each transformation was used to inoculate 10 mL of auto-

induction medium consisting of 5052 (200 μL), 20 x NPS (500 μL), 1 M MgSO4 (10 

μL), LB (up to a final volume of 10 mL) and the appropriate antibiotics. Control 

expressions were carried out using 10 mL of LB substituted with 50 μL of 40% 

glucose. These cultures were placed in a shaking incubator at 37oC for 18 h (Studier, 

2005). This expression system was scaled up into a 1 L volume where necessary.  

 

2.3.3. Protein expression using Isopropyl-β-D-thio-galactoside (IPTG)  

As described for auto-induction, a single colony from each transformation was used 

to inoculate 5 mL of LB substituted with the appropriate antibiotic. These cultures 

were placed in a shaking incubator at 37oC until an OD600nm of 0.4 - 0.6 was reached. 

Protein expression was induced at this stage by the addition of a final concentration 

of 1 mM IPTG and incubation for 4 h at 28oC unless otherwise stated. This 

expression system was scaled up into a 1 L volume in the case of all proteins used in 

this study. 

 

2.3.4. Chaperone co-expression of recombinant proteins 

A series of plasmids encoding various chaperones (developed by Takara Bio Inc, 

Japan) were transformed into chemically-competent E. coli B834 (DE3) cells for use 

in chaperone co-expression experiments. These cells were then made competent (see 

section 2.2.8) for the uptake of an additional expression vector encoding the protein 

of interest. The chaperones encoded by these plasmids are shown in Table 2.5. 
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Number Plasmid Chaperone Promoter Inducer 
1 pG-KJE8 dnaK-dnaJ-

grpE 
groES-groEL 

araB 
pzt1 

L-arabinose 
tetracycline 

2 pGro7 groES-groEL araB L-arabinose 
3 pKJE7 dnaK-dnaJ-

grpE 
araB L-arabinose 

4 pG-Tf2 groES-groEL-
tig 

pzt1 tetracycline 

5 pTf16 Tig araB L-arabinose 
 
Table 2.5: Properties of the Takara chaperone plasmid set. Note that expression 
of the chaperones from these plasmids is induced by L-arabinose, tetracycline 
or a combination of both. All five chaperone plasmids contain a 
chloramphenicol resistance marker. 
 

Unless otherwise stated in the text, chaperone expression was induced following 

manufacturer’s instructions at the start of cell growth to allow for their accumulation 

prior to over-expression of the protein of interest. 

 

2.3.5. Preparation of crude extracts from Escherichia coli 

After either auto-induction or IPTG-induction, E. coli expression cultures (1 L) were 

harvested by centrifugation at 6,000 x g for 15 min. The pellet obtained was 

resuspended in 20 mL of 50 mM HEPES pH 7.0, 1 mM MgCl2 unless otherwise 

stated. The cell resuspension was disrupted on ice using a Bandelin Sonopuls 

sonicator with three 30 sec bursts at 70% power. A crude extract containing soluble 

proteins was obtained from the supernatant after centrifugation at 25,000 x g for 30 

min. Insoluble protein, including MurM, was left in the cell pellet at this stage and 

was solubilised using salt extraction (see section 2.3.7).  

 

For small-scale 10 mL expression trials, cells were harvested at 15,000 x g for 5 min. 

The cell pellet was resuspended in 300 µL of 50 mM HEPES pH 7.0, 1 mM MgCl2 
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and sonicated on ice at 15% power for 10 sec. A crude extract was then obtained by 

additional centrifugation at 15,000 x g for 5 min.  

 

2.3.6. Solubilisation of MurM using N-Lauroylsarcosine (Sarcosyl) 

After IPTG-induction, E. coli expression cultures (1 L) were harvested as described 

in section 2.3.5. The cell pellet was resuspended in 20 mL of buffer containing 50 

mM HEPES pH 7.0, 1 mM MgCl2 and 0.5% (w/v) N-lauroylsarcosine. A crude 

extract containing soluble proteins was obtained from the supernatant after 

sonication (see section 2.3.5) and centrifugation at 30,000 x g for 30 min. 

 

2.3.7. Solubilisation of MurM using 1 Molar sodium chloride 

MurM was solubilised using an adapted form of the methodology described by 

Lloyd et al. (2008). Cell pellets obtained after the preparation of a crude extract were 

resuspended in 30 mL of 50 mM sodium phosphate pH 7.0, 1 M NaCl and stored at  

-80oC for 16 h. The cell resuspension was then thawed out at room temperature and 

allowed to mix at 4oC for 30 min. Soluble protein was found in the supernatant after 

centrifugation at 50,000 x g for 20 min (salt extract 1). Additional insoluble protein 

remaining in the cell pellet was solubilised by resuspension in 20 mL of 50 mM 

sodium phosphate pH 7.0, 1 M NaCl and centrifugation at 50,000 x g for 20 min 

(salt extract 2). This methodology was also used for solubilisation of FemX, FemA 

and FemB. 
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2.4. Protein purification  

2.4.1. Immobilised metal ion affinity chromatography (IMAC) 
 
For affinity purification of proteins on cobalt, 5 mL of Talon-resin (BD Biosciences) 

was allowed to settle in a 10 mL syringe barrel. Unless otherwise stated, the resin 

was equilibrated in 50 mL of buffer comprised of 50 mM sodium phosphate pH 7.0, 

500 mM NaCl, 10 mM imidazole and 20% glycerol. After gravity flow of a crude 

extract through the column, three wash steps were carried out in the following order: 

50 mL of equilibration buffer, 30 mL of equilibration buffer supplemented with 50 

mM imidazole and 30 mL of equilibration buffer supplemented with 200 mM 

imidazole. For IMAC purification on nickel resin (GE Healthcare), all buffer 

components were kept the same. However, the imidazole concentration in the final 

wash buffer was increased to 500 mM. 

 

2.4.2. Ammonium sulphate precipitation of MurM 

For purification of MurM, a 25% cut was carried out by adding 13.6 g of ammonium 

sulphate slowly to every 100 mL of a solubilised protein extract. The extract was left 

to stir continuously at 4oC for 20 min and then centrifuged at 30,000 x g for 20 min. 

The supernatant was subject to a 50% cut by the addition of 14.8 g of ammonium 

sulphate to every 100 mL (Lloyd et al. 2008). The extract was left to stir at 4oC and 

centrifuged as previously described prior to resuspension of the pellet in 5 mL of 50 

mM sodium phosphate pH 7.0, 500 mM NaCl. This technique was used prior to gel 

filtration and hydrophobic interaction chromatography. 
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2.4.3. Size exclusion chromatography (gel filtration) 

Gel filtration was carried out on a Superdex-75 column (GE healthcare) using the 

ÄKTA prime system (GE Healthcare). The column was equilibrated in buffer 

containing 50 mM sodium phosphate pH 7.0, 500 mM NaCl and protein was loaded 

onto the column in a total volume of buffer not exceeding 5 mL.  

 

2.4.4. Hydrophobic interaction chromatography (HIC) 

HIC was carried out using the ÄKTA prime system and a HiTrap Octyl- or phenyl- 

sepharose fast flow 1 mL column from GE Healthcare. Prior to purification by HIC, 

protein was exchanged into buffer A which consisted of 50 mM HEPES pH 7.5, 

20% glycerol and 25% ammonium sulphate. Buffer B, comprised of 50 mM HEPES 

pH 7.5 and 20% glycerol, was used to establish a high to low ammonium sulphate 

gradient for purification. 

 

2.4.5. Buffer exchange by dialysis 

Prior to use, dialysis tubing was boiled for 10 min in buffer comprised of 2% (w/v) 

sodium bicarbonate and 1 mM EDTA pH 8.0. Tubing was stored at 4oC and rinsed 

with sterile distilled water immediately before use.  

 

For storage purposes, 20 mL of protein was dialysed for 16 h at 4oC against 2 L of 

buffer comprised of 50 mM HEPES pH 7.0, 500 mM NaCl, 50% glycerol, 0.2 mM 

phenylmethylsulphonyl fluoride (PMSF), 1 µM leupeptin and 1 µM pepstatin. A 

final concentration of 10 mM EDTA was added to this storage buffer for removal of 

metal ions from proteins. For crystallography, dialysis buffer was comprised either 
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of 50 mM HEPES pH 7.0, 100 mM NaCl and 20% glycerol or 50 mM ethanolamine 

pH 10.0, 100 mM NaCl and 20% glycerol 

 

2.4.6. Buffer exchange using a PD10 column 

Protein was concentrated to a final volume of 2.5 mL prior to loading onto a PD10 

bench-top de-salting column (GE Healthcare) pre-equilibrated in 20 mM HEPES pH 

7.0 or 50 mM Tris-HCl pH 8.0, 200 mM NaCl and 20% glycerol. Protein was eluted 

from the column as per manufacturer’s instructions.  

 

2.4.7. Histidine tag removal using TEV protease 

In order to remove the histidine tag from the C-terminus of MurM, FemX, FemA 

and FemB each protein was buffer exchanged using a PD10 column (see section 

2.4.6) into 50 mM Tris-HCl pH 8.0, 200 mM NaCl and 20% glycerol (TEV digest 

buffer). Removal of the histidine tag was achieved by incubation of 1 µg of TEV 

with every 3 µg of protein for 16 h at 4oC. Protein released from its histidine tag was 

then re-purified away from hexa-histidine tagged TEV protease using IMAC on 

cobalt resin pre-equilibrated in the TEV digest buffer.  

 

2.4.8. Protein concentration 

Protein solutions were concentrated into a reduced volume of buffer using Sartorius-

Stedim Biotech vivaspin columns with a molecular weight cut-off of 10,000 Da. 

Samples were centrifuged at 4,000 x g in an Eppendorf 5810R bench-top centrifuge 

chilled to 4oC until the desired concentration was obtained. 
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2.4.9. Protein quantification 

The total protein content in samples was determined using Bio-Rad reagent as per 

manufacturer’s instructions. Bovine serum albumin (BSA) at concentrations of 0 to 

100 µg was used as a standard for protein quantification. All samples were measured 

in duplicate. Accurate determination of protein concentration was confirmed by 

measuring absorbance at 280 nm.  

 

2.4.10. Assessment of protein expression and purity by sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS PAGE) 

Proteins were separated based on their molecular weight by SDS PAGE using the 

Hoefer mini-gel system. In all cases, a 12.5% (w/v) resolving gel and a 4% (w/v) 

stacking gel were used and consisted of the components shown in Table 2.6. 
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12.5% Resolving gel 
1.5 M Tris-HCl pH 8.8 
30% acrylamide 
Sterile distilled water 
10% SDS 
10% ammonium persulphate (APS) 
Tetramethylethylenediamine (TEMED) 

1.41 mL 
2.28 mL 
1.89 mL 
60 µL 
60 µL 
5 µL 

4% Stacking gel 
0.5 M Tris-HCl pH 6.8 
30% acrylamide 
Sterile distilled water 
10% SDS 
10% APS 
TEMED 

835 µL 
334 µL 
2.17 mL 
33 µL 
50 µL 
10 µL 

SDS loading dye 
0.5 M Tris-HCl pH 6.8 
Sterile distilled water 
10% SDS 
Glycerol 
β-mercaptoethanol 
Bromophenol blue 

100 µL 
400 µL 
160 µL 
160 µL 
40 µL 

A few grains 
10 x SDS running buffer 

Glycine 
Tris base 
SDS 
Distilled water 

144 g 

30 g  
10 g 

Added to 1 L 
 
Table 2.6: Components required for SDS PAGE analysis of proteins. Resolving 
gel components shown are enough for one mini-gel whilst stacking gel 
components are enough for two mini-gels. 
  

Protein samples were mixed with 5 µL of loading dye and heated at 95oC for 10 min 

prior to separation on a 12.5% SDS PAGE gel.  All protein gels were run at 180 V 

for 1 h using 1 x SDS running buffer. Gels were most commonly stained with 

Colloidal Coomassie as described in section 2.4.11. Molecular weight was 

determined by comparison to the Amersham low molecular weight calibration 

markers for SDS PAGE. 
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2.4.11. Staining of SDS PAGE gels using Colloidal Coomassie or Pro-Q 

sapphire histidine tag stain 

For visualisation of all proteins, SDS PAGE gels were rinsed in water for 20 min and 

then left in Colloidal Coomassie for 16 h on an orbital shaker. Colloidal Coomassie 

stain was comprised of 1.6% phosphoric acid, 8% ammonium sulphate, 0.08% 

Coomassie Brilliant Blue G-250 and 20% ethanol. Gels were de-stained for 1 h in 

sterile distilled water (Neuhoff et al., 1988). Staining for visualisation of histidine-

tagged proteins required leaving the gel in 25 mL of Pro-Q sapphire 532 

oligohistidine gel stain from Molecular Probes for 16 h after following the 

recommended manufacturer’s instructions. 

 

2.5. Preparation of substrates and enzyme assays 

2.5.1. Isolation of Micrococcus flavus membranes 

In order to prepare M. flavus membranes, 6 L of cells were grown to an OD600nm of 

4.0 and then harvested by centrifugation at 6,000 x g for 15 min. The resulting cell 

pellet was resuspended in 100 mL of buffer containing 20 mM Tris-HCl pH 7.5,       

1 mM MgCl2, 2 mM β-mercaptoethanol and 2.5 mg mL-1 lysozyme and disrupted 

using a French Press at 30,000 psi. After centrifugation at 10,000 x g for 30 min, the 

supernatant was centrifuged at 50,000 x g for 30 min and the membrane-containing 

pellet resuspended in the above buffer for use in Lipid II synthesis. 

 

2.5.2. Synthesis and purification of Lipid II 

Lipid II was synthesised by the incubation of 1.62 mM undecaprenyl-phosphate 

(11P), 2 mM UDP-MurNAc lysine pentapeptide and 35 mM GlcNAc with M. flavus 

membranes (final concentration 3.5 mg mL-1) in a final volume of 3.5 mL. All these 
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components were assembled in buffer consisting of 0.1 M Tris pH 8.0, 1% Triton X-

100 and 5 mM magnesium chloride. The reaction was incubated at 37oC for 3.5 h 

when it was stopped by the addition of an equal volume of 6 M pyridinium acetate 

(consisting of 4.85 mL 6 M pyridine, 3.44 mL acetic acid and 1.71 mL water). After 

addition of an equal volume of N-butanol, the reaction was centrifuged at 3,000 x g 

for 10 min at 4oC. An equal volume of sterile distilled water was added to the top 

phase which was re-centrifuged as above. The top phase, containing Lipid II, was 

dried down using a rota-vap prior to purification on a 3 mL DEAE sephacel column. 

 

Prior to use, the DEAE sephacel column was washed with 40 mL of 1 M ammonium 

acetate and 60 mL of water. Equilibration of the resin was achieved using 40 mL of 

buffer containing chloroform, methanol and water in a 2:3:1 ratio (Solvent A). Lipid 

II was resuspended in 6 mL of solvent A and loaded onto the gravity flow DEAE 

sephacel column collecting the flow-through. The column was washed with 12 mL 

of solvent A. Additional wash steps carried out to elute and purify Lipid II consisted 

of a series of buffers containing chloroform, methanol and ammonium bicarbonate in 

a 2:3:1 ratio. The concentration of ammonium bicarbonate was increased across 

eight 12 mL wash steps (50 mM, 100 mM, 150 mM, 200 mM, 250 mM, 300 mM, 

500 mM and 1 M) with 0.5 mL of each fraction being dried down for analysis by 

thin layer chromatography (TLC). Results of a typical TLC stained using iodine 

vapour and showing elution of Lipid II in the last three fractions is shown in Figure 

2.4.  
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Figure 2.4: TLC showing purification of Lipid II away from undecaprenyl-
phosphate and the other components used in the synthesis reaction. The Silica 
gel TLC plate was developed in chloroform/methanol/water/0.88 ammonia (88 
mL: 48 mL: 10 mL: 1 mL) and stained using iodine vapour. 
 
 

Fractions containing Lipid II were pooled and freeze-dried to remove ammonium 

bicarbonate. The overall yield was assessed by boiling a sample in hydrochloric acid 

for 30 min in order to release two phosphates per molecule of Lipid II. 1 M sodium 

hydroxide was added to the sample to adjust the pH to 7.6. Phosphate release was 

assessed by measuring the change in A360nm between a boiled and an un-boiled 

sample of Lipid II in a methylthioguanisine (MESG) based assay. The identity of 

Lipid II was confirmed by electrospray mass spectrometry. 
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2.5.3. Production of a single species of Streptococcus pneumoniae tRNAAla and 

tRNASer by in vitro transcription 

The tRNAAla gene from S. pneumoniae strain R6  with the sequence 5’ 

GGGGCCTTAGCTCAGCTGGGAGAGCGCCTGCTTTGCACGCAGGAGGTCA

GCGGTTCGATCCCGCTAGGCTCCACCA 3’ (anticodon UGC) was synthesised 

commercially and cloned into pIDTSMART-Kan by Integrated DNA Technologies 

(IDT) such that a T7 promoter sequence proceeded the gene and a BstNI site allowed 

incorporation of the CCA terminus for run-off transcription. In addition to this, the 

tRNASer gene from S. pneumoniae strain R6 which had the sequence 

5’GGAGGATTACCCAAGTCCGGCTGAAGGGAACGGTCTTGAAAACCGTCA

GGCGTGTAAAAGCGTGCGTGGGTTCGAATCCCACATCCTCCTCCA 3’ 

(anticodon UGA) was also cloned into pIDTSMART-Kan in the same way. The 

sequences submitted to IDT are shown in Figure 2.5.  

 

 
 
Figure 2.5: Sequences for production of a single species of S. pneumoniae 
tRNAAla and tRNASer by in vitro transcription submitted to IDT for cloning into 
their standard vector pIDTSMART-Kan. At the 5’ end of the sequence there is 
a BamHI site (shown in blue) and at the 3’ end of the sequence there is an 
EcoRI site (shown in red) used for cloning of the entire sequence into the vector. 
The T7 promoter region, shown in green, immediately precedes the tRNA gene, 
shown in purple. The crucial CCA end of the tRNA is added using the BstN1 
restriction site shown in bold black font. 
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Each tRNA gene was amplified from the appropriate vector with Accuprime Taq 

DNA polymerase (see Table 2.1) and primers whose sequences are shown in Table 

2.7.  

Primer name Primer sequence (5’ to 3’) 
 
tRNAAla/Ser Forward 
 

 
GGATCCCTGCAGTAATACGACTCACTATAGG 

 
tRNAAla Reverse 
 

 
TGGTGGAGCCTAGCGGGATCG 

 
tRNASer Reverse 
 

 
TGGAGGAGGATGTGGGATTCG 

 
Table 2.7: Primer sequences used for the generation of a template suitable for 
high yield in vitro transcription of S. pneumoniae tRNAAla and tRNASer. Note 
that the reverse primer is designed to ensure the template has the desired CCA 
3’ end to allow generation of large quantities of tRNA by run-off transcription. 
 

After PCR, products of the correct mass for tRNAAla and tRNASer were purified with 

the Qiagen PCR clean-up kit and used in in vitro transcription reactions using the 

Fermentas Transcript-Aid High Yield T7 kit according to manufacturer’s 

instructions. Success of the transcription reactions was assessed according to 

manufacturer’s instructions using a 2% agarose gel after treatment with DNase to 

remove the template material. Reactions containing RNA of the correct size were 

subjected to further purification by phenol/chloroform extraction and ethanol 

precipitation. To avoid dimer formation, the precipitated tRNA was resuspended in  

4 mM magnesium chloride, heated to 80oC and allowed to cool to room temperature 

slowly. Final purity of the tRNA was checked on a 5% or a 10% denaturing 8 M 

urea acrylamide gel, components for which are shown in Table 2.8. 
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5% denaturing 
acrylamide gel 

Component 10% denaturing 
acrylamide gel 

7.2 g Urea 7.2 g 
3 mL 5 x TBE 3 mL 

2.5 mL 30% acrylamide 5 mL 
To 15 mL Sterile distilled water To 15 mL 

 
Table 2.8: Composition of 5% and 10% denaturing 8 M urea acrylamide gels 
for assessment of the purity of RNA produced by in vitro transcription. TBE 
stands for Tris-borate-EDTA buffer. 
 

Prior to the addition of 75 µL 10% ammonium persulphate (APS) and 15 µL 

TEMED, the gel components were stirred at room temperature until the urea had 

completely dissolved. In each case, 1 x TBE was used as running buffer and gels 

were run at 200 V for 40 min prior to staining with ethidium bromide.  

 

2.5.4. Aminoacylation of tRNAAla and tRNASer by S. pneumoniae alanyl- and 

seryl-tRNA synthetase enzymes 

For aminoacylation of tRNA species with alanine, 75 µg of S. pneumoniae tRNAAla 

was incubated at 37oC in a final volume of 0.2 mL consisting of 30 mM HEPES, 15 

mM MgCl2, 10 mM dithiothreitol (DTT), 2 mM ATP, pH 7.6, 2 μmol min-1 ml-1 

inorganic pyrophosphatase, 5 μM alanyl-tRNA synthetase from S. pneumoniae strain 

159 and 37.5 μM (18.53 μCi ml-1) [3H]-L-alanine (adapted from Lloyd et al. 2008). 

For aminoacylation of tRNA species with serine, 75 µg of S. pneumoniae tRNASer or 

tRNAAla (in the case of mis-aminoacylation experiments) was incubated at 37oC as 

before replacing full-length alanyl-tRNA synthetase with 13 μM S. pneumoniae 

strain Pn16 seryl-tRNA synthetase or 5 µM alanyl-tRNA synthetase catalytic domain 

(residues 1-460) respectively. In this scenario, L-alanine was replaced by 37.5 μM 

(24.2 μCi ml-1) [3H]-L-serine. Regardless of the amino acid being used, [3H]-acylated 
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tRNA species were purified as described by Lloyd et al. (1993) after incubation at    

37oC for 30 min (Lloyd et al., 1993). 

 

The amount of aminoacylated, radiolabelled [3H]-tRNA was determined by 

precipitation of a 1 µL sample of the purified product onto Whatman 3 mm filter 

paper which was subsequently dropped into ice cold 10% (w/v) trichloroacetic acid 

(TCA) for 45 min. The TCA solution was replaced twice within this time period to 

remove any contaminating free radiolabel. The filter paper was left to air dry and 

placed into 5 mL of Optiphase scintillation cocktail (Perkin-Elmer) prior to 

quantification of the radioactivity by liquid scintillation counting. 

 

2.5.5. Purification of aminoacylated tRNA species using Thermus thermophilus 

EF-Tu (used only in the case of the 2’-amino mini-helix analogue of tRNAAla) 

T. thermophilus EF-Tu was cloned into the expression vector pET28a and expressed 

routinely at 37oC in E. coli BL21 Star (DE3).placIRare2 cells. Cultures of cells (1 L) 

harbouring this expression construct were grown to an OD600nm of 0.6 when 

expression was induced by the addition of IPTG (to a final concentration of 1 mM). 

Cells were harvested after 5 h and resuspended in 30 ml of 50 mM HEPES pH 7.0, 1 

mM MgCl2. Crude extracts were prepared as described in section 2.3.5.  Prior to 

purification, the crude extract was incubated at 60oC for 30 min exploiting the 

thermal stability of the protein in comparison to contaminating E. coli proteins. After 

centrifugation at 50,000 x g for 20 min, 50 µM guanosine diphosphate (GDP) was 

added to the remaining soluble protein, which was passed by gravity flow through a 

5 mL cobalt column pre-equilibrated 50 mM sodium phosphate pH 7.0, 500 mM 

NaCl, 50 µM GDP, 5 mM imidazole and 20% glycerol. Elution of protein from the 
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column was achieved using step washes with the above buffer supplemented with 10 

mM, 50 mM and 200 mM imidazole. The protein was dialysed against buffer 

comprised of 50 mM HEPES pH 7.0, 200 mM NaCl, 50 µM GDP and 50% glycerol 

as described in section 2.4.5 for storage purposes. Nickel-immobilised EF-Tu was 

used to purify aminoacylated tRNA away from uncharged tRNA species using the 

method devised by Ribeiro and others with the omission of β-mercaptoethanol from 

all buffers (Ribeiro et al., 1995). 

 

2.5.6. MurM kinetic activity assays using radiolabelled [3H]-alanyl-tRNAAla, 

[3H]-seryl-tRNASer and [3H]-seryl-tRNAAla 

In order to follow incorporation of radiolabelled alanine or serine onto Lipid II, 

assays were carried out in a 30 µL volume consisting of 50 mM MOPS pH 6.8, 30 

mM KCl, 10 mM MgCl2, 1 mM DTT, 1 mM alanine or serine, 1.5% (w/v) CHAPS, 

MurM (exact concentration specified in the text) and, unless otherwise stated, 10 µM 

Lipid II. Reactions were always started by the addition of radiolabelled tRNA (0.5 

µM and typically 100 cpm pmol-1 unless otherwise stated).  All reactions were 

incubated at 37oC in a static water bath for times specified in the text with the initial 

rate of reaction observed within the first two min. Reactions were stopped by the 

addition of 30 µL 6 M pyridinium acetate pH 4.5 (section 2.5.2) and 60 µL of ice 

cold N-butanol. Reactions were mixed using a vortex and centrifuged at 13,000 x g 

for 5 min at 4oC. The butanol phase was washed with 60 µL of water, vortexed and 

re-centrifuged as before. The top phase was pipetted into 5 mL of Optiphase 

scintillation fluid and counted for tritium using a Tri-Carb 2900TR liquid 

scintillation analyser (Perkin-Elmer) (Lloyd et al., 2008). All kinetic data were 

graphically represented using the Hanes-Woolf plot and analysed using GraphPad 
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Prism 5. Derivation of the Michaelis-Menten equation and its application in the 

Hanes-Woolf analysis are shown in Table 2.9. 

Assumption Equation 
 

Enzymes (E) and their substrates (S) 
associate reversibly to form a complex 
(ES) generating product (P). 

 
E + S → ES (constant k1) 
E + S ← ES (constant k-1) 

    E + S →ES → E + P (Constant k2) 

 
The overall concentration of ES 
remains constant in a given enzymatic 
reaction (steady-state assumption). 
 

 
Change (d) in concentration of ES over 

time (t) is equal to zero: 
d[ES]/dt = 0 

 
All velocity measurements are taken 
immediately after addition of substrate 
to the reaction. 

 
 

 
The total amount of enzyme in a reaction 

(ET) is equal to [E] + [ES] 
 

Velocity of the forward reaction (Vf) 
equals: 

k1 ([ET]-[ES]) [S] 
 

Velocity of the dissociation reaction (Vd) 
equals: 

(k-1 + k2) [ES] 
 

At a steady state Vf and Vd are equal. 
This can be described by the following 
equation which is the definition of the 

Michaelis-Menten constant, Km: 
([ET] – [ES]) [S] / [ES] which can be 

rewritten as (k-1 + k2) / k1 

 
The rate of production formation (v) can 

be expressed as: 
v = k2 [ES] 

or 
v = k2 [ET] [S] / Km + [S] 

where Vmax = k2 [ET] 
 

The Michaelis-Menten equation can thus be written: V = Vmax [S] / Km + [S] 

Rearrangement for linear transformation using the Hanes-Woolf plot: 
1. Take the reciprocal of both sides of the Michaelis-Menten equation: 

1/V = (Km/Vmax) (1/[S]) + 1/Vmax 
2. Multiply both sides of the equation by [S] 

[S]/V = (1/Vmax) [S] + Km/Vmax 
 
Table 2.9: Derivation of the Michaelis-Menten equation. Adapted from Garrett 
and Grisham (2005). 
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In the Hanes-Woolf plot [S]/V is plotted against [S]. Key kinetic parameters can then 

be calculated from the gradient of the line and the intercepts of the x and y axis as 

shown in Figure 2.6. 

 

 
 
 

 

 

 

 
 
Figure 2.6: Key features of the Hanes-Woolf plot. Km is the Michaelis-Menten 
constant, Vmax is the maximum velocity of the reaction, [S] is the initial 
substrate concentration and V is the velocity.  
 

From a Hanes-Woolf plot, the x-intercept is –Km, the y-intercept is Km/Vmax and the 

gradient is equivalent to 1/Vmax. Analysis of the Hanes-Woolf plot in GraphPad 

prism allows calculation of error in the slope from which all other parameters are 

determined. 

 

2.6. Biophysical techniques for protein analysis  

2.6.1. Isothermal titration calorimetry (ITC) for characterisation of metal ion 

binding to proteins 

Isothermal titration calorimetry is a biophysical technique used to measure the 

change in enthalpy that occurs in a liquid sample upon injection of a precise quantity 

of ligand. In this study, all isothermal titration calorimetry experiments were carried 

out using a VP-ITC microcalorimeter system (MicroCal, GE Healthcare, USA) at 
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30oC whereby a known concentration of protein was added to the sample cell and 

buffer containing a known concentration of a specific metal ion was placed in the 

syringe (Figure 2.7). Change in enthalpy was then determined by virtue of a 

feedback system measuring and compensating for differential heat production or 

absorption by the sample cell with respect a reference cell contained within the same 

jacket. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Diagram showing the format of the Isothermal Titration 
Calorimetry sample cell, reference cell and syringe. Constant rotation of the 
syringe ensures mixing of the ligand with the protein sample during the 
experiment. Taken from the VP-ITC microcalorimeter instruction manual (GE 
Healthcare, http://www.microcal.com/technology/itc.asp). 
 

Prior to use, each protein was buffer exchanged into 20 mM HEPES pH 7.0 using a 

bench-top PD10 column (section 2.4.6). Metal ion solutions were made up in 20 mM 

HEPES to a final concentration of 1 mM using analytical grade reagents.  A total of 

27 injections of 10 μL of this buffer containing a given metal ion were made into 2 
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mL of 20 μM MurM, FemX or FemA unless otherwise stated. Each experiment 

generated an isotherm with individual peaks representing the heat change upon 

injection of 10 μL of metal ion into protein. The peaks decreased in size as the 

protein sample became saturated with the metal ion allowing analysis of the data and 

determination of a dissociation constant by an iterative process of non-linear 

regression using Origin data analysis software (MicroCal, GE Healthcare, USA). 

 

2.6.2. Secondary structure determination using circular dichroism (CD) 

Circular dichroism (CD) is a biophysical technique that is used to investigate the 

structure of proteins in solution. The technique itself is based upon plane polarised 

light which is comprised of two equal components: left and right circularly polarised 

light. Differential absorption of these two components by a sample gives rise to 

elliptical polarisation and, hence, a detectable CD signal (Kelly et al., 2005). 

 

Secondary structure information, including the percentage α-helix, β-sheet and turns, 

can be determined due to the chiral nature of the peptide bond which gives rise to 

absorption at and below 240 nm (Far UV spectrum). Tertiary structure information 

can be obtained from the absorption of the side chains of aromatic amino acids in the 

region between 260 nm and 320 nm (Near UV spectrum). Disulphide bonds can also 

be detected by a broad absorption peak at approximately 260 nm (Kelly et al., 2005). 

 

Prior to assessment of the Far UV spectrum of MurM and FemA, both proteins were 

buffer exchanged into 10 mM sodium phosphate pH 7.0 and diluted to a 

concentration of 0.12 mg mL-1. Each experiment was repeated 20 times and then 

averaged (Kelly et al., 2005). Controls were carried out using 10 mM sodium 
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phosphate pH 7.0 in the absence of MurM and FemA. The overall goodness of fit of 

the generated data was assessed using Dichroweb (Whitmore and Wallace, 2004).  

 

2.6.3. X-ray crystallography 

For the purpose of crystallography, all proteins were concentrated to at least 10 mg 

mL-1 as described in sections 2.4.8 and 2.4.9. Unless otherwise stated, all proteins 

subjected to crystallography in this study were dialysed into 50 mM ethanolamine 

pH 10.0, 100 mM NaCl and 20% glycerol following their purification and before 

concentration (section 2.4.5). 

 

2.6.3.1. Preliminary screening in a 96-well format 

96-well screens were set up using a HoneyBee robot from Genomic Solutions 

designed to dispense 70 µL of mother liquor in each well. The protein solution and 

mother liquor were mixed in a 1:1 ratio with the robot set to dispense 0.2 µL of each 

into a sitting drop using either an MRC 2-drop or a Greiner 3-drop plate (Molecular 

Dimensions). Screens used in this set up include JCSG+, PACT, Morpheus, MDL 

structure and Clear strategy all from Molecular Dimensions. In addition to this, the 

Emerald Wizard screen from Emerald Biosystems was also used in some 

circumstances.  After set up, all plates were sealed with a ClearVue sheet from 

Molecular Dimensions and incubated at either 4oC or 18oC with periodic 

examination for crystal formation.  

 

2.6.3.2. Expansion of successful hits in a 24-well format 

To improve crystal morphology and diffraction, conditions identified as supporting 

either nucleation or crystal formation in the 96-well screens were further expanded in 
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a 24-well format. This allowed for changes in crystal formation upon slight 

adjustments in the pH and concentration of the precipitant to be explored. In this 

case, 1 mL of mother liquor was dispensed into the well. Typically protein to mother 

liquor ratios of 1 µL:1 µL and 2 µL:1 µL were set up on the same plastic coverslip 

which was then placed over the well and sealed with vacuum grease to produce a 

hanging drop set up. As before, plates were left at either 4oC or 18oC and 

periodically checked for better crystal formation. 

 

2.6.3.3. Seeding 

For seeding experiments, to try and improve crystal growth and/or morphology, a 

single crystal was extracted from a drop using a cryo-loop and then placed into an 

Eppendorf containing 50 µL of mother liquor. The solution was vortexed to break up 

the crystal and diluted 1 in 100 to form a liquid seed stock. Seeding was only 

attempted in the 24-well system. For liquid seeding, 0.25 µL of the seed stock was 

added to the protein-mother liquor drops. Alternatively, a horse hair was dipped into 

the stock and then streaked across each drop resulting in serial dilution of the crystal 

seed across the plate from left to right. 

 

2.6.3.4. Additive screens 

To further refine successful crystallisation conditions, the Hampton Additive and 

Silver Bullets screens from Hampton Research were exploited. The Additive screen 

was used for manipulating the interactions between the sample and itself and the 

sample and the mother-liquor to improve crystal formation primarily by adjusting the 

solubility of the sample. In contrast, the Silver Bullets screen was used to promote 

improvements in the formation of a stable crystal lattice structure by influencing 
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hydrogen bonding, hydrophobic interactions and electrostatic interactions within the 

protein sample. 

 

In order to set up these screens, 60 µL of mother liquor determined by a successful 

96-well screen condition was added to each well of a 2-drop MRC plate. In the case 

of the Silver Bullets screen, sitting drops, made up of 1 µL of protein sample, 0.5 µL 

of mother liquor and 0.5 µL of silver bullet, were set up using a Rainin EDP3-plus 1-

10 µL multi-channel pipette. In the case of the Hampton Additive screen, for 

conditions A1 to G8, 7 µL of additive was added to the mother liquor solution in the 

well and sitting drops comprised of 1 µL of protein sample and 1 µL of the well 

solution were set up. For conditions, G9 to H12, the set up was as described for the 

Silver Bullets screen. 

 

2.6.3.5. Visualisation of crystals 

For visualisation of initial crystal screens set up in the 96-well format, plates were 

stored at the appropriate temperature in a crystal pro-HT imager (Molecular 

Dimensions) which was set up to photograph each drop once a day for two weeks 

using PC-scope and CrystalLIMS data analysis software. Alternatively, crystals were 

visualised using a SZ-PT Olympus microscope with an attached JVC colour video 

camera for imaging. 

 

2.6.3.6. Cryo-protection and freezing of crystals 

For conservation of the crystal lattice during freezing, a series of different cryo-

protectants were tested in each case including paratone (Molecular Dimensions), 

silicone oil, Low Viscosity cryo-oil (MiTeGen) and mother liquor enriched with 
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10%, 20% or 30% glycerol. A single crystal was picked up in a cryo-loop and 

soaked in 1 µL of cryo-protectant prior to freezing in liquid nitrogen.  

 

2.6.3.7. Data collection 

For data collection purposes, frozen crystals were tested for diffraction on either the 

I03 or I24 (microfocus) X-ray beamlines at the Diamond Light Source Synchrotron, 

Harwell Science and Innovation Campus, Oxfordshire, UK. A full data set was 

collected for any crystals diffracting to or further than 3Å. Resulting data were 

analysed and solved for structural information by Professor Vilmos Fulop 

(University of Warwick). All protein structure images presented in this thesis have 

been constructed using PyMol. 
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Chapter 3 

Cloning, overexpression and the development of a purification 
method for the MurM protein from penicillin-sensitive 
Streptococcus pneumoniae strain R6 
 
 
3.1. Introduction 
 

In S. pneumoniae, it is the murMN operon that encodes the enzymes responsible for 

the synthesis of branched structured muropeptides in the cell wall peptidoglycan 

(Filipe et al., 2001b). Normally, the pneumococcal peptidoglycan structure is 

comprised of a combination of linear and branched muropeptides (Filipe et al., 

2000). However, mutation in the murM gene has been shown to result in the 

generation of a peptidoglycan structure that is composed only of linear 

muropeptides. Deletion of the murM gene causes a reversion to penicillin sensitivity 

in strains that were previously resistant (Filipe et al., 2001b; Fiser et al., 2003).  As a 

result of this, the murM gene is a potential target for the development of novel 

antibiotics which, if used in synergy with penicillin, could combat drug-resistant 

strains of S. pneumoniae (Cressina et al., 2007). Despite this, the role of the MurM 

protein in penicillin resistance is still not very well understood and is complicated by 

the fact that it is possible for highly resistant strains to carry the same murM allele as 

susceptible strains (Cafini et al., 2006).  

 

S. pneumoniae strain R6 is particularly interesting since it has an unusually high 

proportion of branched muropeptides in its cell wall compared to other penicillin-

sensitive strains (Garcia-Bustos and Tomasz, 1990). The non-encapsulated, non-

pathogenic parental strain from which R6 was derived is called R36A. Strain R36A 

was derived by Avery et al. (1944) after 36 serial passages of the encapsulated, 
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pathogenic strain D39 in type II anti-pneumococcus rabbit serum (Avery et al., 1944; 

Hoskins et al., 2001).  A comparison between levels of linear and branched 

muropeptides in penicillin-sensitive and penicillin-resistant strains of S. pneumoniae 

is given in Table 3.1. 

 

Strain of  
S. pneumoniae 

Susceptibility to 
penicillin 

% peptides 
 

Linear Branched 
D39S Sensitive 73 27 
SP96 Sensitive 84 16 
SP108 Sensitive 83 17 
SA23 Sensitive 82 18 
8249 Resistant 20 80 
CO7 Resistant 16 84 
140 Resistant 27 73 

10760 Resistant 14 86 
R6 Sensitive 60 40 

 
Table 3.1: Proportion of linear and branched muropeptides within the cell wall 
peptidoglycan of penicillin-sensitive (MIC < 0.25 µg mL-1) and penicillin-
resistant (MIC > 4.00 µg mL-1) strains of Streptococcus pneumoniae as 
determined by HPLC and absorbance at 215 nm. Adapted from Garcia-Bustos 
and Tomasz (1990). 
 

The work of Garcia-Bustos and Tomasz (1990) showed that penicillin-sensitive 

strains of S. pneumoniae, with an MIC of less than 0.25 µg mL-1, typically have less 

than 30% of their total peptides branched. In contrast to this, in penicillin-resistant 

strains of S. pneumoniae that have an MIC of greater than 4.00 µg mL-1, more than 

70% of the total cell wall peptides are branched. Strain R6 shows a proportion of 

peptide branching that is at least 10% greater than is normally seen in penicillin-

sensitive strains of S. pneumoniae. Therefore, studying the MurM protein from this 

particular strain was considered to be important in terms of resolving the link 

between penicillin-resistance, levels of cell wall cross-linking and the activity of the 

MurM protein within this organism. 



113 

Studies by Lloyd et al. (2008) on the MurM proteins from S. pneumoniae strains 

Pn16 and 159 had indicated that the protein was mostly insoluble upon over-

expression. Both of the variants used in this study could be solubilised using 1 M salt 

and purified in a three step process involving a 25% to 50% ammonium sulphate cut, 

gel filtration and immobilised metal ion chromatography on cobalt resin. An 

inability to successfully apply these purification methods to the MurM protein from 

strain R6 lead to a requirement for the development of a new strategy which is 

described in this chapter. 

 

3.2. Aims 
The main aim of this project was to investigate the relationship between levels and 

types of amino acids used in indirect cross-linking within pneumococcal 

peptidoglycan across a range of resistant and susceptible strains. To address this aim, 

work carried out in this chapter was designed to meet the following objectives: 

 

• Cloning the murM gene from penicillin-sensitive S. pneumoniae strain R6 

into the expression vector pET22b (C-terminal hexa-histidine tag) 

• Achieving over-expression of soluble MurMR6 protein  

• Obtaining MurMR6 protein of suitable purity and homogeneity for use in 

biochemical assays to allow comparison with the work already carried out on 

the MurM proteins from S. pneumoniae strains Pn16 (penicillin-sensitive) 

and 159 (penicillin-resistant) by Lloyd et al. (2008) 
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However, problems encountered during purification of MurMR6 using the published 

methods for the other two variants of MurM led to a requirement for the following 

additional objectives to be met: 

 

• Re-cloning of MurMR6, MurMPn16 and MurM159 into pET22b to encode a C-

terminal dodeca-histidine tag 

• Development of a single step purification method that could be applied to all 

three variants of MurM with equal success 

 

3.3. Cloning, expression and purification of MurM 

3.3.1. Cloning of murMR6 into pET22b 

The murM gene from S. pneumoniae strain R6 was cloned into the expression vector 

pET22b such that it would encode a C-terminal hexa-histidine fusion tag for 

purification purposes. Amplification of the murMR6 gene was achieved by PCR using 

Accuprime Taq DNA polymerase in combination with chromosomal DNA from S. 

pneumoniae strain R6 as a template (provided by Professor Chris Dowson, 

University of Warwick) and primers 1 and 3 shown in Chapter 2, Table 2.2. 

MurMPn16 and MurM159 hexa-histidine tag expression constructs were obtained from 

Dr Adrian Lloyd (University of Warwick). Figure 3.1 illustrates successful cloning 

of murMR6 into pET22b. 
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Figure 3.1: Summary agarose gel showing cloning of the Streptococcus 
pneumoniae strain R6 murM gene into pET22b. The size of the pET22b vector 
is 5,493 bp. 
 
Lanes 1 and 6 - 1 kb ladder,  
Lane 2 - murMR6 PCR product,  
Lane 3 - BamHI/XhoI restriction digestion of the initial pET22b::MurMR6 
construct prior to removal of the BamHI site,  
Lane 4 - NdeI/XhoI restriction digestion of the pET22b::MurMR6 construct 
where the BamHI site had been removed by NdeI digestion,  
Lane 5 - BamHI/XhoI restriction digestion of the pET22b::MurMR6 construct 
after removal of the BamHI site by NdeI digestion.  
 

Cloning of murMR6 into pET22b involved restriction digestion of both the PCR 

product and the pET vector with BamHI and XhoI. Clones whereby murM had 

successfully inserted into pET22b were identified by agarose gel electrophoresis of 

BamHI/XhoI digests and sequencing using the T7 forward and reverse primers 

(numbers 17 and 18, Chapter 2, Table 2.2). Digestion with NdeI was utilised as a 

means of positioning the 5’ end of murM close to the ribosome binding site of the 

vector for expression purposes. 

 

3.3.2. Small-scale MurM expression trials 

In order to determine the optimal conditions for expression of MurMR6, small-scale 

trials were carried out using three different Escherichia coli expression strains:  
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B834 (DE3), BL21 Star (DE3) and BL21 Star (DE3).placIRare2. Initially, single 

colonies from each of these transformations were cultured for 16 h at 37oC in 10 mL 

of auto-induction medium as described in Chapter 2, section 2.3.2. Crude extracts 

were obtained from these cultures by sonication at 10% power for 15 sec and 

centrifugation to obtain both soluble and insoluble fractions. Bradford reagent was 

used to determine the protein concentration of the crude extracts so that 25 μg of 

protein could be loaded onto each lane of a 12.5% SDS PAGE gel (Chapter 2, 

section 2.4.9). The results of this experiment are presented in Figure 3.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
M - molecular weight standards,  
SC - soluble proteins expressed by non-induced cells,  
SI - soluble proteins expressed by induced cells,  
IC - insoluble proteins expressed by non-induced cells,  
II - insoluble proteins expressed by induced cells.  
 
Figure 3.2: 12.5% SDS PAGE gels of crude extracts from three expression 
strains of Escherichia coli transformed with pET22b::MurMR6 and induced to 
express protein by auto-induction (AI) at 37oC for 16 h. The molecular weight 
of MurMR6 is 47,310 Da. Controls refer to cells that have been transformed with 
the MurM construct but prevented from expressing the protein by the 
replacement of auto-induction medium with glucose. 
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As shown in Figure 3.2, each strain of E. coli appeared to express MurMR6 with 

equal efficiency. To maximise the overall yield of protein obtained, further 

expression of MurMR6 was only carried out using E. coli BL21 Star 

(DE3).placIRare2 cells which provide rare tRNA codons as described in chapter 2.  

There was no obvious expression product of MurMR6 in the soluble fraction of the 

crude extracts derived from any of the expression strains when cultured at 37oC. 

However, high levels of over-expression were identified in an insoluble form 

possibly due to protein precipitation or inclusion body formation as described by 

Carrio and Villaverde (2001) for other proteins. Expression of MurM in the soluble 

fraction could not be achieved by induction of protein expression using IPTG or 

reduction of the growth and expression temperature to 25oC. For this reason, 

alternative solubilisation strategies utilising detergent, chaperones or high salt 

concentrations (1 M NaCl) were investigated as described below. 

 

3.3.3. MurM solubilisation trials 

3.3.3.1. Solubilisation of MurM using detergent 

Initial solubilisation screens were detergent based. For this trial, 1 L of E. coli BL21 

Star (DE3).placIRare2 cells harbouring the pET22b::MurMR6 construct were cultured 

at 37oC to an OD600nm of 0.4 when MurMR6 expression was induced by the addition 

of IPTG to a final concentration of 1 mM. Addition of IPTG was concurrent with the 

growth temperature being reduced to 28oC for 4 h (Chapter 2, section 2.3.3).  

 

Harvested cells were resuspended in buffer containing 2.5 mg mL-1 lysozyme, 

subjected to shaking at 4oC for 30 min and then frozen at -80oC.  Previous studies 

(Anne Blewett, PhD thesis University of Warwick) have shown that the MurM 

protein from various strains of S. pneumoniae can be solubilised by supplementing 
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the sonication buffer with 0.5% (w/v) sarcosyl. Therefore, cells were thawed out, 

centrifuged and resuspended in HEPES buffer containing sarcosyl prior to sonication 

(Chapter 2, section 2.3.6). After sonication, the cells were centrifuged to obtain the 

soluble fraction which was then loaded onto a high-performance his-trap nickel 

column (GE Healthcare) pre-equilibrated in buffer containing 50 mM sodium 

phosphate pH 7.5, 200 mM NaCl and 10 mM imidazole. Elution of MurMR6 was 

achieved by running a continuous gradient of imidazole from 10 mM to 500 mM 

through the column using the ÄKTA prime system (GE Healthcare). Peak fractions 

obtained from this technique were subjected to SDS PAGE analysis (Figure 3.3) to 

assess the solubility and purity of MurMR6.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3: His-trap column purification of MurMR6 using a continuous 
gradient of imidazole from 10 mM to 500 mM. Lanes 1 to 6 - samples of protein 
eluted in the peak fractions as determined by monitoring absorbance at 280 nm. 
Elution of MurMR6 was achieved at approximately 60 mM imidazole. The 
position of MurM is marked with an arrow. M - molecular weight standards.  
 

Fractions obtained from the His-trap column containing MurMR6 were pooled, 

concentrated to a final volume of 5 mL (Chapter 2, section 2.4.8) and subjected to 

size exclusion chromatography using a Superdex 75 column (GE Healthcare) pre-

equilibrated in buffer containing 50 mM Tris-HCl pH 8.0 and 200 mM NaCl. Peak 
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fractions obtained using this method were analysed by SDS PAGE, the results of 

which are shown in Figure 3.4. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4: Size exclusion chromatography of MurMR6. Lanes 1-9 - samples of 
protein in peak fractions eluting after passage of 100 mL of buffer through the 
column. M - molecular weight standards. The position of MurM is marked with 
an arrow. 
 

Given that one of the substrates for MurM is a lipid, it was considered undesirable 

for any detergent to be present after purification unless it was absolutely necessary 

for the solubility of the protein. The overall yield and purity of protein obtained by 

IMAC and size exclusion chromatography after solubilisation with detergent was 

unsuitable for crystallography. For these reasons, two further methods were 

investigated in an attempt to improve the overall yield of soluble protein which 

might then be purified more readily without the need for detergent. The aim of 

trialling solubilisation of MurM by chaperone co-expression or 1 M NaCl was to 

address the concern that detergents may have a detrimental effect on both 

biochemical assays and crystallography. 
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3.3.3.2. Solubilisation of MurM using chaperone co-expression 

Since over-expression of MurMR6 rendered the protein insoluble regardless of 

expression strain and growth temperature, chaperone co-expression was investigated 

as a means of solubilisation. The aim of this experiment was to determine whether or 

not the inherent insolubility of MurMR6 was attributable to incorrect folding of the 

protein during over-expression.  

 

Five Takara plasmids encoding various chaperones were transformed into E. coli 

B834 (DE3) cells which were then made chemically-competent for the uptake of the 

pET22b::MurMR6 expression construct. Expression experiments were carried out at 

37oC using auto-induction medium and L-arabinose/tetracycline as appropriate to 

induce chaperone expression (see Chapter 2, section 2.3.4 for details of the 

chaperones encoded by these plasmids and induction of their expression).  The 

results of this experiment are shown in Figure 3.5. 
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M - standard molecular weight markers,  
SC - protein expressed in the soluble fraction of cells induced for chaperone 
expression but not for MurMR6 expression,  
SI - protein expressed in the soluble fraction of cells induced both for chaperone 
and MurMR6 expression.  
 

Figure 3.5: 12.5% SDS PAGE gels showing protein in the soluble fraction of 
Escherichia coli B834 (DE3) cells transformed with the Takara plasmid 
chaperone set and pET22b::MurMR6 and induced to express protein by auto-
induction (AI) at 37oC. The arrow shows the migratory position of MurM upon 
expression. 
 

For the chaperone plasmids 1, 3, 4 and 5, there was no obvious expression product 

for MurMR6 in the soluble fraction. For chaperone plasmid 2, a large over-expressed 

band was seen between 66 and 45 kDa in both the control and the auto-induced 

sample. Since the band was also present in the control, it was expected to represent 

an over-expression of the chaperone GroEL rather than MurM. However, these two 

soluble samples plus all of the insoluble fractions obtained from the chaperone co-

expression experiments were subjected to the Pro-Q Sapphire 532 Oligohistidine Gel 

stain (Molecular probes) to check for expression of histidine-tagged protein. This 

technique exploits the addition of a poly-histidine tag to the C-terminal end of the 
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murM gene during cloning into the pET22b expression vector. The chaperones used 

in this study are not histidine-tagged. Results of this experiment are presented in 

Figure 3.6. 

HM - Benchmark Histidine-tagged protein marker (Invitrogen),  
II - insoluble proteins produced by induced cells,  
SI - soluble proteins produced by induced cells. 
 
Figure 3.6: (A) Histidine-tag stained and (B) Colloidal Coomassie stained 12.5% 
SDS PAGE gels of the crude extracts obtained during chaperone co-expression 
of MurMR6 in Escherichia coli B834 (DE3) cells. In the case of the chaperone co-
expression experiment, induced cells have been set up to express both the 
chaperone and MurMR6.  
 
Histidine-tag staining of crude extracts confirmed that MurMR6 was being expressed 

in an insoluble form in E. coli BL21 Star (DE3), BL21 Star (DE3).placIRare2, and 

B834 Takara chaperone co-expression cells. In addition to this, comparison of 

histidine tag and Colloidal Coomassie staining of the crude extracts from the 

chaperone co-expression experiment confirmed that the over-expressed protein in the 

soluble fraction of E. coli B834 (DE3) cells harbouring Takara chaperone plasmid 2 

was GroEL and not MurMR6. Therefore, chaperone co-expression was discarded as a 

suitable means of generating a high yield of soluble MurMR6. 
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Prior to attempts at solubilising MurMR6 using 1 M sodium chloride (see Chapter 2, 

section 2.3.7), the murM genes from S. pneumoniae strains R6, Pn16 and 159 were 

re-cloned into pET22b such that protein expression would result in incorporation of a 

dodeca-histidine tag at the C-terminus. This was based on the theory that the addition 

of six extra histidine residues to MurMR6 would raise the isoelectric point of the 

protein such that its solubility would also be increased. A secondary reason for 

adding the extra histidine residues to the C-terminus of MurM was to allow for the 

development of a more successful IMAC purification procedure with tighter 

interaction between the extended histidine tag on MurM and the IMAC resin in case 

a detergent based environment was ultimately required for solubility of MurMR6. 

 

3.3.3.3. Re-cloning of the murM genes from Streptococcus pneumoniae strains 

Pn16, R6 and 159 into pET22b to encode a C-terminal dodeca-histidine tag 

In order to re-clone the murM genes from S. pneumoniae strains R6, Pn16 and 159 

into pET22b such that they encoded a C-terminal dodeca-histidine tag, the reverse 

PCR primer was redesigned to include six histidine residues immediately adjacent to 

the XhoI restriction site (Chapter 2, Table 2.2, primer 4). PCR amplification of the 

genes was carried out as before using Accuprime Taq DNA polymerase (Invitrogen) 

and the hexa-histidine MurM expression constructs as templates for the reaction 

(Chapter 2, section 2.2.2). A cloning summary for MurM159 is shown in Figure 3.7. 
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Figure 3.7: Summary agarose gel showing cloning of the Streptococcus 
pneumoniae strain 159 murM gene into pET22b to encode a C-terminal dodeca-
histidine tag. The size of the pET22b vector is 5,493 bp. 
 
Lanes 1 and 6 - 1 kb ladder,  
Lane 2 - murM159 PCR product,  
Lane 3 - BamHI/XhoI restriction digestion of the initial pET22b::MurM159 
construct prior to removal of the BamHI site,  
Lane 4 - NdeI/XhoI restriction digestion of the pET22b::MurM159 construct 
where the BamHI site had been removed by NdeI digestion,  
Lane 5 - BamHI/XhoI restriction digestion of the pET22b::MurM159 construct 
after removal of the BamHI site by NdeI digestion. 
 

During re-cloning of the three murM genes, extensive sequence analysis was carried 

out due to a discrepancy between the sequence of MurMPn16 identified in this study 

compared to that published by Lloyd et al. (2008). In the work carried out by Lloyd 

et al. (2008), MurMPn16 and MurMR6 were assumed to diverge in sequence at three 

amino acid residues: 101 (alanine and valine respectively), 134 (methionine and 

leucine respectively) and 135 (arginine and glutamine respectively). However, 

chromosomal DNA extraction, PCR amplification and sequencing of the murMPn16 

gene from all samples of S. pneumoniae strain Pn16 in the University of Warwick 

culture collection indicated that this was not correct. MurMPn16 and MurMR6 only 

diverge in sequence at position 101 with leucine and glutamine conserved at 

positions 134 and 145 in both proteins respectively. A sequence alignment of 

MurM159 with MurMPn16 and MurMR6 generated by this study is shown in Figure 3.8. 
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Figure 3.8: Alignment of the amino acid sequences for MurMR6, MurMPn16 and MurM159
 as generated by Clustal X and GeneDoc. Note 

that MurMR6 and MurMPn16 only have one amino acid difference between them and this can be found at position 101. Areas of 
conservation between the three MurM proteins are highlighted in black.  
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All three dodeca-histidine tag MurM expression constructs were transformed into E. 

coli BL21 Star (DE3).placIRare2 cells for the purpose of trial auto-induction 

expressions at 37oC. Crude extracts were made as described in Chapter 2 (sections 

2.3.3 and 2.3.5) and analysed by 12.5% SDS PAGE as shown in Figure 3.9.  

M - molecular weight standards, 
SC - soluble proteins expressed by non-induced cells, 
SI - soluble proteins expressed by induced cells, 
IC - insoluble proteins expressed by non-induced cells, 
II - insoluble proteins expressed by induced cells. 
 
Figure 3.9: 12.5% SDS PAGE gel showing crude extracts obtained from 
Escherichia coli BL21 Star (DE3).placIRare2 cells transformed with each 
pET22b::MurM dodeca-histidine tagged construct and induced to express 
protein by auto-induction (AI) at 37oC for 16 h. The arrow indicates the 
migratory position of MurM expression corresponding to the 45 kDa standard 
in each marker lane. 
 

As shown in Figure 3.9, the presence of an extra six histidine residues on the C-

terminus of each variant of MurM did not result in any visual improvement in the 

solubility of the protein during SDS PAGE analysis.  However, both the hexa- and 

dodeca-histidine tagged versions of each variant of MurM were over-expressed on a 
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large scale (1 L) in E. coli BL21 Star (DE3).placIRare2 cells  to enable investigation 

into solubilising the protein using 1 M sodium chloride (Chapter 2, sections 2.3.3 

and 2.3.7).  

 

3.3.3.4. Solubilisation of MurM using 1 M sodium chloride 

For each MurM variant, 1 L of E. coli BL21 Star (DE3).placIRare2 cells that had 

been transformed with pET22b::MurM were cultured at 37oC to an OD600nm of 0.4 

when MurM expression was induced by the addition of IPTG to a final concentration 

of 1 mM. Addition of IPTG was concurrent with the growth temperature being 

reduced to 28oC for 4 h. Solubilisation of MurM by 1 M salt extraction was then 

trialled on these cells, initially with MurMR6, using an adapted form of the 

methodology developed by Lloyd et al. (2008) (Chapter 2, section 2.3.7). Using 

these methods, four fractions were obtained: a crude supernatant containing protein 

that was soluble prior to salt extraction, two salt extracted supernatants and a pellet 

containing proteins that were not solubilised by the salt extraction procedure. All 

four fractions were analysed by SDS PAGE as shown in Figure 3.10. 



128 
 

 
M - standard molecular weight markers,  
S - soluble protein prior to salt extraction,  
SE1 - soluble protein after the first salt extraction,  
SE2 - soluble protein after the second salt extraction,  
I - protein that remained insoluble after completion of salt extraction. 
 
Figure 3.10: 12.5% SDS PAGE analysis showing salt-solubilisation of MurMR6 
from 1 L of Escherichia coli BL21 Star (DE3).placIRare2 cells. The position of 
MurM is marked with an arrow. 
 

Initial solubilisation trials of MurMR6 indicated that, whilst a significant proportion 

of the over-expressed protein remained insoluble after salt extraction, enough protein 

had been successfully solubilised by this technique. This contrasts with chaperone 

co-expression and the use of detergent, which resulted in either no or a slight 

improvement in the solubility of MurMR6 respectively. For this reason, the success 

of salt-solubilisation on strains Pn16 and 159 MurM were investigated and the 

results of this procedure are given in Figure 3.11. 
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M - standard molecular weight markers,  
S - soluble protein prior to salt extraction,  
SE1 - soluble protein after the first salt extraction,  
SE2 – soluble protein after the second salt extraction,  
I - protein that remained insoluble after completion of salt extraction. 
 
Figure 3.11:  12.5% SDS PAGE analysis showing salt-solubilisation of (A) 
MurMPn16

 and, (B) MurM159 from 1 L of Escherichia coli BL21 Star 
(DE3).placIRare2 cells.  The position of MurM is marked with an arrow. 
 

As shown in Figure 3.11, MurMPn16 and MurM159 could also be successfully 

solubilised using salt extraction methodology. Therefore, further purification 
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methods were developed based on solubilisation of MurM using 1 M sodium 

chloride. 

 

3.3.4. Purification of salt-solubilised MurM 

Initial purification attempts for salt-solubilised MurMR6 reproduced those developed 

by Lloyd et al. (2008) for hexa-histidine tagged MurMPn16 and MurM159. However, 

in the absence of detergent, protein loaded onto high performance nickel and gel 

filtration columns could not be eluted using the GE ÄKTA Purifier system. One 

hypothesis for this was that MurMR6 undergoes tight hydrophobic interactions with 

the frits at the ends of the GE Healthcare columns. This was supported by the fact 

that elution of MurMR6 from these columns could only be achieved under strong 

denaturing conditions (8 M guanidine hydrochloride).   

 

For this reason, high performance nickel resin (GE Healthcare) was used to construct 

a bench-top purification column plugged with glass wool. Prior to loading of the 

protein, the column was equilibrated in buffer containing 50 mM sodium phosphate, 

500 mM sodium chloride and 20% glycerol at pH 7.0. Elution of protein was 

achieved by sequential step washing of the column with buffer containing 10 mM, 

50 mM, 200 mM and 500 mM imidazole. Results of the purification of dodeca-

histidine tagged MurMR6 from 1 L of E. coli BL21 Star (DE3).placIRare2 cells using 

this methodology is shown in Figure 3.12.  
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M -molecular weight standards,  
L - protein sample prior to loading onto the column,  
W - protein collected during wash of the column with equilibration buffer.  
 
Figure 3.12: 12.5% SDS PAGE gel showing purification of salt-solubilised 
dodeca-histidine tagged MurMR6 from 1 L of Escherichia coli BL21 Star 
(DE3).placIRare2 cells on high performance nickel resin (GE Healthcare). 
Lanes 1 - 18 represent protein eluted from the column during step washes using 
equilibration buffer supplemented with different concentrations of imidazole 
(10 mM, 50 mM, 200 mM and 500 mM). The position of large amounts of 
MurMR6 eluted during the 500 mM imidazole wash is marked with an arrow.  
 
 
As shown in Figure 3.12, purification of dodeca-histidine tagged MurMR6 on nickel 

resin was successful in terms of protein eluting from the column. However, levels of 

purity were much lower than expected and could not be improved further by 

hydrophobic interaction chromatography on either phenyl- or octyl-sepharose. For 

this reason, new purification methodology was developed using BD TALON cobalt 

metal affinity resin.  

 

Initial purification on cobalt resin was trialled with detergent-solubilised dodeca-

histidine tagged MurMR6 to determine the most suitable buffer conditions for 

optimum purity of the enzyme upon elution from the column. Primarily this involved 

equilibrating BD TALON cobalt resin with pH 7.0 buffer containing 50 mM sodium 

phosphate and 300 mM sodium chloride as described in the manufacturer’s 
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instructions. Dodeca-histidine tagged MurMR6 that had been solubilised with 0.5% 

(w/v) sarcosyl was then loaded onto the column and eluted with sequential wash 

steps in equilibration buffer supplemented with no imidazole, 10 mM imidazole and 

200 mM imidazole. Overall purity of eluted MurMR6 was assessed by SDS PAGE 

and is shown in Figure 3.13. 

M - molecular weight standards,   
L - protein sample prior to loading onto the column,  
FT - flow through as protein was loaded onto the column,  
W - protein collected during wash of the column with equilibration buffer. 
 
Figure 3.13: 12.5% SDS PAGE gels showing purification of sarcosyl-solubilised 
dodeca-histidine tagged MurMR6 from 1 L of Escherichia coli BL21 Star 
(DE3).placIRare2 cells on BD TALON resin. Lanes 1 - 20 represent protein 
eluted from the column during step washes using equilibration buffer 
supplemented with different concentrations of imidazole (10mM and 200 mM). 
The position of MurMR6 eluted during the 200 mM imidazole wash is marked 
with an arrow. 
 

Improvements to the overall purity of the protein shown in Figure 3.13 were 

achieved by adding additional wash steps to the protocol. A second round of 

purification involved sequential washing with equilibration buffer supplemented 

with 20 mM imidazole, 50 mM imidazole, 100 mM imidazole, 150 mM imidazole 

and 200 mM imidazole. Protein purity was re-assessed by SDS PAGE as shown in 

Figure 3.14. 
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M - molecular weight standards,   
L - protein sample prior to loading onto the column,  
FT - flow through as protein was loaded onto the column. 
 
Figure 3.14: 12.5% SDS PAGE gel showing purification of sarcosyl-solubilised 
dodeca-histidine tagged MurMR6 from 1 L of Escherichia coli BL21 Star 
(DE3).placIRare2 cells on BD TALON resin. Lanes 1 - 24 represent protein 
eluted from the column during step washes using equilibration buffer 
supplemented with different concentrations of imidazole (20 mM, 50 mM, 100 
mM, 150 mM and 200 mM). The position of MurMR6 is indicated with an 
arrow. 
 

Problems identified during the first two trials of MurMR6 purification on BD 

TALON resin included the observation that a large proportion of the protein was 

unable to stick to the column and came off in the flow-through during loading. This 

was addressed by including 20% glycerol in the elution buffer during the final stages 

of the development of a purification protocol for MurM on BD TALON resin. The 

purpose of adding glycerol was to stabilise MurM by preventing protein aggregation 

at high concentrations. 

 

After these initial trials, purification of salt-solubilised dodeca-histidine tagged 

MurMR6 was tested on cobalt resin pre-equilibrated in buffer containing 50 mM 

sodium phosphate, 500 mM sodium chloride, 1 μM leupeptin, 1 μM pepstatin and  

20% glycerol at pH 7.0. A final concentration of 10 mM imidazole was also added to 
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the equilibration buffer as initial tests had indicated that the presence of imidazole 

gave histidine-tagged MurMR6 an advantage over contaminants in terms of ability to 

bind the resin during loading. After loading of the protein onto the column sequential 

wash steps with equilibration buffer containing 10 mM, 50 mM and 200 mM 

imidazole were carried out to elute MurMR6. Overall purity of MurMR6 was assessed 

by SDS PAGE and is shown in Figure 3.15. 

 

 
M - molecular weight standards,  
L - protein sample prior to loading onto the column,  
FT - flow through was protein is loaded onto the column. 
 
Figure 3.15: 12.5% SDS PAGE gel showing purification of salt-solubilised 
dodeca-histidine tagged MurMR6 from 1 L of Escherichia coli BL21 Star 
(DE3).placIRare2 cells on BD TALON cobalt resin. Lanes 1 - 23 represent 
protein eluted from the column during step washes using equilibration buffer 
supplemented with different concentrations of imidazole (10 mM, 50 mM and 
200 mM). The position of large amounts of MurMR6 eluted during the 200 mM 
imidazole wash is marked with an arrow.  
 

During loading of MurM onto BD TALON cobalt resin, a higher proportion of 

contaminating proteins were unable to stick to the column and eluted in the flow 

through when compared to similar trials using nickel resin. Dodeca-histidine tagged 

MurMR6 of high purity was eluted in the 200 mM imidazole wash step. Given the 

success of this procedure, trials with hexa-histidine tagged MurMR6 and cobalt resin 
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were carried out in the same way and protein purity was assessed by SDS PAGE as 

shown in Figure 3.16. 

 
M - molecular weight standards,  
L - protein sample prior to loading onto the column,  
FT - flow through as protein was loaded onto the column. 
 
Figure 3.16: 12.5% SDS PAGE gel showing purification of salt-solubilised hexa-
histidine tagged MurMR6 from 1 L of Escherichia coli BL21 Star 

(DE3).placIRare2 cells on BD TALON cobalt resin. Lanes 1 - 24 represent 
protein eluted from the column during step washes using equilibration buffer 
supplemented with different concentrations of imidazole (10 mM, 50 mM and 
200 mM).  The position of large amounts of MurMR6 eluted during the 200 mM 
imidazole wash is marked with an arrow. 
 

Purification of hexa-histidine tagged MurMR6 on BD TALON cobalt resin was also 

successful with the majority of protein eluting in the 200 mM imidazole wash step. 

In contrast to purification of dodeca-histidine tagged MurMR6, protein elution began 

at 50 mM imidazole rather than 200 mM imidazole. However, this did not affect the 

overall purity of the eluted protein. Purification of MurMPn16 and MurM159 were also 

attempted using BD TALON resin and SDS PAGE analyses of the overall purity of 

these enzymes are shown in Figure 3.17 part A and B respectively.  
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M -molecular weight standards,  
L - protein sample prior to loading onto the column,  
FT - flow through as protein was loaded onto the column. 
 
Figure 3.17: 12.5% SDS PAGE gels showing purification of salt-solubilised (A) 
hexa-histidine tagged MurM159 and, (B) hexa-histidine tagged MurMPn16 from   
1 L of Escherichia coli BL21 Star (DE3).placIRare2 cells on BD TALON cobalt 
resin. Lanes 1 - 21 represent protein eluted from the column during step washes 
using equilibration buffer supplemented with different concentrations of 
imidazole (10 mM, 50 mM and 200 mM). The position of large amounts of 
MurM eluted during the 200 mM imidazole wash is marked with an arrow. 
 
 
Both the hexa- and dodeca-histidine tagged versions of MurMPn16 and MurM159 

purified as effectively as MurMR6 on BD TALON cobalt resin. This novel single 

step process consisted of equilibration of a 5 mL cobalt column with 50 mL of buffer 

containing 50 mM sodium phosphate pH 7.0, 500 mM NaCl, 10 mM imidazole and 
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20% glycerol. After loading of an extract containing soluble MurM, purification in 

excess of 95%, as determined by SDS PAGE analysis, was achieved by step washing 

of the column with 50 mL of equilibration buffer followed by 30 mL of equilibration 

buffer supplemented with 50 mM imidazole and 30 mL of equilibration buffer 

supplemented with 200 mM imidazole. This procedure has been used throughout this 

study to produce pure MurM suitable for biochemical studies and X-ray 

crystallography.  

 

3.4. Discussion 

Due to the unusually high levels of indirect cross-linking in the cell wall of 

penicillin-sensitive S. pneumoniae strain R6, it was considered that studying the 

properties of the MurM protein from this strain may help decipher the relationship 

between penicillin-resistance, levels of cell-wall cross-linking and the activity of the 

MurM protein within S. pneumoniae. For this reason, the murMR6 gene was cloned 

into pET22b (Novagen) to encode a C-terminal hexa-histidine tag. The ultimate aim 

of the work carried out in this chapter was to produce suitable quantities of pure, 

soluble MurMR6 enabling comparisons to be made with the MurM proteins from S. 

pneumoniae strains Pn16 (penicillin-sensitive) and 159 (penicillin-resistant) which 

were characterised biochemically at Warwick in earlier studies (Lloyd et al., 2008). 

 

Small-scale expressions of MurMR6 were carried out in three E. coli expression 

strains: B834 (DE3), BL21 Star (DE3) and BL21 Star (DE3).placIRare2. In each 

case, MurMR6 was expressed at a high level but in the insoluble fraction of the cells. 

Expression in the soluble fraction could not be achieved by auto-induction or ITPG- 

induction regardless of the temperature cells were cultured at. In addition to this, no 
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improvements in solubility were obtained by co-expression of MurMR6 with a series 

of chaperones suggesting that insolubility was not solely attributable to incorrect 

folding of the protein. This was also found to be the case for MurMPn16 and MurM159 

in studies undertaken by Lloyd et al. (2008). Since one of the substrates for MurM is 

Lipid II, which is membrane bound, insolubility of MurM was hypothesised to be 

due to an association of the protein with the cell membrane.  

 

As was the case for MurMPn16 and MurM159, it was possible to solubilise MurMR6 

using 1 M salt thus avoiding the need for detergents which would complicate 

biochemical assays and crystallography. However, it was not possible to purify salt-

solubilised MurMR6 using the published methodology of ammonium sulphate 

precipitation followed by size exclusion and immobilised metal ion affinity 

chromatography. In the absence of detergent, MurMR6 could only be eluted from pre-

packed high performance his-trap and gel filtration columns (GE Healthcare) under 

strong denaturing conditions. This was hypothesised to be due to strong hydrophobic 

interactions between the protein and the frits found at both ends of the columns made 

by GE Healthcare. One explanation for this could be the presence of valine at 

position 101 in MurMR6 which is replaced by alanine in MurMPn16 and MurM159. 

 

In order to overcome this problem, a novel single step IMAC purification method for 

MurM was developed using MurMR6 as the model protein. In the case of all three 

variants of MurM, and regardless of the length of the C-terminal histidine tag, at 

least 10 mg of salt-solubilised purified protein could be obtained per litre culture of 

E. coli BL21 Star (DE3).placIRare2 cells using this methodology. Combined with an 

overall purity in excess of 95%, as determined by SDS PAGE analysis, this yield 



139 
 

was considered suitable for biochemical analysis and crystallographic studies on the 

protein. Hence, all of the aims detailed in section 3.2 were successfully met.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



140 
 

Chapter 4 
 

Characterisation of Divalent Metal Ion Binding to 
the MurM protein from Streptococcus pneumoniae 
using Isothermal Titration Calorimetry (ITC) 
 
 
4.1. Introduction 
Many enzymes that catalyse reactions involving nucleic acids have an essential 

requirement for divalent metal ion cofactors (Mordasini et al., 2003).  In many cases, 

the functional role of such metal ions remains undetermined.  However, it is possible 

to thermodynamically characterise metal ion binding to proteins using isothermal 

titration calorimetry (ITC). 

 

Metal ions are crucial for the function of many proteins and have been shown to play 

a role in the maintenance of catalytic activity and structure. The most common metal 

ion to associate with proteins is zinc (Parisi and Vallee, 1969).  In 1942, carbonic 

anhydrase II was found to be a zinc metalloenzyme. Since this initial discovery, over 

300 other enzymes have been classified as zinc dependent. Amino acid residues 

commonly involved in zinc binding include cysteine via sulphur, histidine via 

nitrogen, aspartate via oxygen and glutamate via oxygen (Parisi and Vallee, 1969). 

 

The structure of MurM is as yet unknown but has been modelled on the X-ray crystal 

structure of the S. aureus FemA protein (Benson et al., 2002). With this in mind, 

MurM is considered to have a structure that is composed of two domains. The first 

domain is made up of helices that encase two cores of twisted β-sheets. In contrast to 

this, domain II is a coiled helical arm which is considered to be important for tRNA 
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recognition (Fiser et al., 2003). Similar structures can be found in tRNA synthetase 

enzymes, many of which utilise metal ions for substrate recognition. 

 

In E. coli, alanyl-tRNA synthetase has been shown to bind zinc with a stoichiometry 

of one. Loss of zinc from the native enzyme causes a change in conformation and 

flexibility which can be directly correlated with a loss of activity and structure (Sood 

et al., 1999).  E. coli threonyl-tRNA synthetase harbours a zinc atom within its 

active site that is bound and coordinated by three amino acid residues. Targeted 

mutation of any one of these three residues has been demonstrated to result in the 

production of inactive enzyme (Caillet et al., 2007). Many Glutamyl- and Seryl-

tRNA synthetases also have structural and catalytic requirements for zinc (Liu et al., 

1993; Sankaranarayanan et al., 2000). Despite proposed structural similarities 

between tRNA synthetases and proteins like MurM and FemXAB, the metal binding 

requirements of the Fem ligase family is currently under-explored.  

 

4.2. Aims 

Other data presented in Chapter 6 regarding structural studies on MurMPn16 

identified zinc as a requirement for nucleation and crystal lattice formation. Dialysis 

of MurM against storage buffer containing 10 mM EDTA resulted in apparent 

inactivation of the protein when presented with its substrates. Protein activity could 

be completely restored by the addition of either a molar equivalent or a molar excess 

of zinc to the assay buffer in the presence of magnesium. Due to the fact that there is 

no X-ray crystal structure available for MurM, the metal binding properties of one of 

its homologues, S. aureus FemA, was also investigated. A 2.1 Å X-ray crystal 

structure of FemA has already been published enabling a more intuitive investigation 
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into the possible residues involved in metal ion binding within these proteins 

(Benson et al., 2002). Therefore, characterisation of the binding of zinc and other 

divalent metal ions to MurM encompassed the following aims: 

 

• Cloning of the femA gene from S. aureus strain Mu50 (encoding the 

functional homologue of the S. pneumoniae MurN protein) into the 

expression vector pET22b to encode a C-terminal dodeca-histidine tag 

• Over-expression and purification of soluble FemA 

• Assessment of the metal binding potential of the dodeca-histidine tagged 

versions of MurM and FemA using ITC 

• Re-cloning of the three murM genes and the femA gene into the expression 

vector pET22b to incorporate a TEV-cleavable C-terminal hexa-histidine tag 

• Cloning of the femX gene from S. aureus strain Mu50 (encoding the 

functional homologue of the S. pneumoniae MurM protein) into the 

expression vector pET28a to encode a C-terminal, TEV cleavable hexa-

histidine tag 

• Achieving over-expression, solubilisation and purification of MurM, FemX 

and FemA with a TEV cleavable hexa-histidine tag 

• Obtaining untagged protein for ITC analysis  

• To carry out bioinformatics-informed site directed mutagenesis of FemA and 

MurM to identify key amino acid residues involved in metal ion binding 
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4.3. Cloning, expression and purification of FemA  

4.3.1. Cloning of femA into pET22b to encode a C-terminal dodeca-histidine tag  

The femA gene from S. aureus strain Mu50 was cloned into the expression vector 

pET22b to encode a C-terminal dodeca-histidine fusion tag for purification purposes. 

PCR amplification of femA from chromosomal DNA was achieved using Accuprime 

Taq DNA polymerase and primers 5 and 7 shown in Chapter 2, Table 2.2.  Figure 

4.1 summarises successful cloning of the femA gene into pET22b. 

 

 

 

 

 

 

 

 
Figure 4.1: Summary agarose gel showing successful cloning of the 
Staphylococcus aureus strain Mu50 femA gene into pET22b. Note that femA is 
1,263 base pairs in length. 
 
Lane 1 - standard 1 kb DNA ladder,  
Lane 2 - femA PCR product,  
Lane 3 - release of the femA gene upon digestion of pET22b with BamHI/XhoI,  
Lane 4 - removal of the BamHI site after digestion of the final construct with 
NdeI to position the start of the gene directly adjacent to the ribosome binding 
site of the plasmid.  
 

As was the case with murM, successful cloning of femA into pET22b involved 

restriction digestion of both the PCR product and the pET vector with BamHI and 

XhoI. Successful clones, whereby femA had successfully inserted into pET22b, were 

identified by agarose gel electrophoresis of BamHI/XhoI digests and sequencing. 
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Digestion with NdeI was utilised as a means of positioning the 5’ end of femA close 

to the ribosome binding site of the vector for expression purposes. 

 

4.3.2. Small-scale expression trials of the FemA protein 

In order to determine optimal conditions for FemA expression, the final construct 

was transformed into both E. coli B834 (DE3) and BL21 Star (DE3).placIRare2 

expression strains. Levels of protein expression were investigated after auto-

induction at 37oC for 16 h and IPTG-induction at 25oC for 4 h as described in 

Chapter 2, sections 2.3.2 and 2.3.3, respectively. Crude extracts were obtained from 

these cultures by sonication at 10% power for 15 sec and centrifugation to obtain 

both soluble and insoluble fractions. Bradford reagent was used to determine the 

protein concentration of the crude extracts so that 25 μg of protein were loaded onto 

each lane of a 12.5% SDS PAGE gel (Chapter 2, section 2.4.9). The overall yield of 

protein expression was similar in both strains and the results obtained for E. coli 

BL21 Star (DE3).placIRare2 cells are shown in Figure 4.2. 
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M - molecular weight standards,  
SC - soluble proteins expressed by non-induced cells,  
SI - soluble proteins expressed by induced cells,  
IC - insoluble proteins expressed by non-induced cells,  
II - insoluble proteins expressed by induced cells. 
 
Figure 4.2: 12.5% SDS PAGE gel showing the crude extracts obtained from 
Escherichia coli BL21 Star (DE3).placIRare2 cells transformed with 
pET22b::FemA(12 his) and induced to express protein either by auto-induction 
(AI) at 37oC for 16 h or IPTG-induction at 25oC for 4 h. The arrow indicates the 
migratory position of FemA. The molecular weight of FemA is 49,139 Daltons. 
 

As was the case for MurM, the vast majority of FemA was expressed in an insoluble 

form regardless of the host E. coli strain. It was also noted that the protein could not 

be solubilised by reducing the temperature of growth or expression to 25oC. As a 

result of successful solubilisation of MurM with 1 M sodium chloride (Chapter 3), 

the same method was trialled with FemA. 

 

4.3.3. Solubilisation of FemA with 1 M sodium chloride 

E. coli BL21 Star (DE3).placIRare2 cells harbouring pET22b::FemA were cultured 

at 37oC to an OD600nm of 0.4, when FemA expression was induced by the addition of 

IPTG to a final concentration of 1 mM. Addition of IPTG was concurrent with 

reduction in the growth temperature to 25oC for 4 h. Solubilisation with 1 M sodium 
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chloride was then attempted as described for MurM (Chapter 3) yielding four 

fractions which were examined by SDS PAGE as shown in Figure 4.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
M - standard molecular weight markers,  
S - soluble protein prior to salt extraction,  
SE1 - soluble protein after the first salt extraction,  
SE2 - soluble protein after the second salt extraction,  
I - protein that remained insoluble after salt extraction. 
 
Figure 4.3: 12.5% SDS PAGE analysis showing salt solubilisation of FemA from 
1 L of Escherichia coli BL21 Star (DE3).placIRare2 cells. The position of FemA 
is marked with an arrow. 
 

As with MurM, FemA was readily soluble upon extraction into buffer containing     

1 M sodium chloride without any requirement for maintenance of solubility with 

detergent. Therefore, solubilisation by salt extraction was carried out prior to 

purification of FemA. 

 

4.3.4. Purification of FemA 

Purification of dodeca-histidine tagged FemA from E. coli BL21 Star 

(DE3).placIRare2 cells was carried out on BD TALON cobalt resin using the 

methodology developed for MurM (Chapter 3). The overall purity of FemA was 

assessed by SDS PAGE and is shown in Figure 4.4. 
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M - molecular weight standards,  
L - protein sample prior to loading onto the column,  
FT - flow through as protein was loaded onto the column. 
 
Figure 4.4: 12.5% SDS PAGE gels showing purification of salt-solubilised 
dodeca-histidine tagged FemA from 1 L of Escherichia coli BL21 Star 
(DE3).placIRare2 cells on BD TALON cobalt resin. Lanes 1 - 24 represent 
protein eluted from the column during step washes using equilibration buffer 
supplemented with different concentrations of imidazole (10 mM, 50 mM and 
200 mM).  Elution of FemA during the 200 mM imidazole wash is marked with 
an arrow.  
 

Solubilisation of FemA with 1 M salt followed by purification on cobalt resin using 

the methodology developed for MurM was successful. Protein obtained from the 200 

mM imidazole wash was dialysed into storage buffer (50 mM HEPES, 500 mM 

NaCl, 1 μM leupeptin, 1 μM pepstatin and 50% glycerol pH 7.0) and stored at -80oC 

until required. 

 

4.4. Initial Characterisation of the metal binding requirements of 

MurM and FemA using histidine-tagged versions of each protein 

4.4.1. Removal of metal ions from MurM and FemA using EDTA 

In order to successfully remove metal ions bound to FemA and MurM, extensive 

dialysis was carried out against protein storage buffer supplemented with 10 mM 

EDTA as described in Chapter 2, section 2.4.5. Removal of EDTA from the protein 



148 
 

was achieved by further dialysis against storage buffer followed by buffer exchange 

on a PD10 column (GE Healthcare). Unless otherwise stated, the data presented in 

this chapter are based upon the response of the MurM159 protein given that this strain 

of S. pneumoniae is the most clinically relevant. However, all three variants of 

MurM were found to respond to metal ions in the same way. 

 

As shown in Figure 4.5, attempts to assay the activity of EDTA-treated MurM were 

unsuccessful indicating that the protein was no longer functional. In addition to this, 

it was found that enzymatic activity could be partially restored by pre-incubating 

EDTA-treated MurM with a molar excess of either zinc or cobalt. Full recovery of 

activity was obtained by pre-incubation of MurM with both zinc and magnesium. 

However, incubation with magnesium alone was not sufficient to restore full 

activity. 

 
Figure 4.5: Assessment of the activity of EDTA-treated MurM in the presence 
and absence of selected metal ions.  Each activity measurement was based on 
the percentage of radiolabelled alanine found in the butanol phase after an 
incubation period of 30 min.  100% activity is defined as normal activity of the 
enzyme prior to treatment with EDTA. As a control, the percentage of 
radiolabelled alanine found in the butanol phase was recorded when Lipid II 
was omitted from the reaction.  This accounted for the solubility of the free 
radiolabel that allows it to be extracted into the butanol phase and is a product 
of tRNA deacylation.  Error bars represent variation in the duplicated raw 
data. 
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Additional studies with MurM159 that were undertaken prior to EDTA-treatment, also 

suggested that magnesium might be important for the function of the protein. This 

hypothesis was based on the observation that incorporated counts over a 30 min 

assay were three-fold lower when magnesium was omitted from the assay buffer. 

With these findings in mind and, in the absence of a suitable assay system for FemA, 

the interactions of FemA and MurM with zinc, cobalt and magnesium were 

investigated using isothermal titration calorimetry (ITC). 

 

4.4.2. Characterisation of metal binding to FemA and MurM using ITC 

For the purpose of ITC, EDTA-treated FemA and MurM were buffer exchanged into 

20 mM HEPES pH 7.0. Initially, each protein was loaded into the sample cell at a 

final concentration of 50 µM. Divalent metal ions of interest were dissolved in 20 

mM HEPES pH 7.0 to a final concentration of 1 mM. All samples were de-gassed 

before use and each ITC experiment was run as described in Chapter 2, section 2.6.1. 

Control experiments involving injection of the metal ion solution into 20 mM 

HEPES and injection of 20 mM HEPES into protein were carried out in each case. 

An example of the calorimetric titration plot obtained for histidine-tagged MurM 

challenged with zinc chloride is shown in Figure 4.6.  
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Figure 4.6: ITC profile for injections of 10 µL aliquots of 1 mM zinc chloride 
into a sample cell containing 50 µM MurM159. Both baseline equilibration and 
metal ion injection were carried out at a temperature of 30oC. Generated data 
could not be fitted to any analysis models as it was not possible to achieve 
saturation of the protein with the metal ion. 
 

Despite subtraction of the controls, data generated using histidine-tagged protein 

could not be analysed and generated poor values for the stoichiometry (n) of metal 

ion binding. This effect was much more pronounced in the case of divalent metal 

ions, such as nickel and zinc, in comparison to magnesium due to the high affinity of 

these particular metal ions for poly-histidine tags. For this reason, it was considered 

essential for each variant of the MurM protein to be re-cloned into the expression 

vector pET22b such that the C-terminal histidine tag could be removed by Tobacco 

Etch Virus (TEV) protease after it had served its purpose in purification. The FemX 

and FemA proteins from S. aureus were subsequently re-cloned in the same way. 
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4.5. Cloning, expression and purification of MurM, FemX and 

FemA to encode a C-terminal hexa-histidine tag preceded by a 

Tobacco Etch Virus (TEV) protease recognition site 

4.5.1. Cloning of murM and femA into pET22b to encode a C-terminal hexa-

histidine tag preceded by a TEV protease recognition site 

In order to incorporate the TEV protease recognition site (amino acid sequence 

ENLYFQG) at the C-terminus of each gene, the reverse PCR primer was redesigned 

in each case. Due to the increase in length of the reverse primer, PAGE purification 

of each oligonucleotide was requested from Integrated DNA Technologies (IDT) to 

increase cloning efficiency. PCR and restriction digestions were carried out as 

described in section 4.3.1. Successful incorporation of the TEV site was determined 

by sequencing the final construct with the T7 forward and T7 reverse primer. All 

oligo sequences can be found in Chapter 2, Table 2.2. 

 

4.5.2. Cloning of femX into pET28a to encode a C-terminal hexa-histidine tag 

preceded by a TEV protease recognition site 

Due to the presence of an internal NdeI site, it was not possible to clone femX into 

pET22b in the same way. For this reason, pET28a was selected as a more suitable 

vector allowing cloning of the gene between NcoI and XhoI restriction sites (see 

Chapter 2, Figures 2.2 and 2.3 for maps of the multiple cloning regions of these 

vectors). In order to clone femX into pET28a so that restriction digestion would 

allow for ATG to be the first expression codon, the forward primer was designed to 

add a BsaI site to the 5’ end of femX. This was necessary given that femX also 

contains an internal NcoI site. The reverse primer was designed to incorporate the 
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TEV protease recognition site and an XhoI restriction site at the 3’ end of the femX 

gene. 

 

PCR amplification of femX was achieved using S. aureus Mu50 chromosomal DNA, 

Accuprime Taq DNA polymerase and the above primers (Chapter 2, Table 2.2 

primer number 12 and 13) with an annealing temperature of 58oC. Success of the 

PCR procedure is illustrated in Figure 4.7. 

 

 

 

 

 

 

 

 

Figure 4.7: Summary 0.8% agarose gel showing successful PCR amplification 
of the Staphylococcus aureus strain Mu50 femX gene. Note that femX is 1,266 
base pairs in length and successful amplifications generating a product of the 
correct size are indicated by an arrow. 
 
Lane 1 - standard 1 kb DNA ladder,  
Lanes 2 to 5 - the PCR product obtained for femX using Invitrogen Accuprime 
Taq DNA polymerase and an annealing temperature of 58oC.  
 

The PCR products shown in Figure 4.7 were pooled, purified and quantified as 

described in Chapter 2, sections 2.2.4 and 2.2.6, prior to restriction digestion with 

XhoI and BsaI as described in section 2.2.5. In order to sub-clone femX into pET28a, 

the vector was digested with NcoI and XhoI. Given that BsaI is known to produce 

NcoI compatible sticky ends, it was possible to ligate the purified, restricted PCR 
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fragments into the purified, restricted pET28a vector using T4 DNA ligase as 

described in Chapter, section 2.2.7. The ligated product was transformed into E. coli 

Top10 cells and the uptake of pET28a was selected for using kanamycin. Plasmid 

was extracted from a selection of the obtained colonies using the Fermentas mini-

prep kit. Successful clones containing the femX gene insert were identified by 

XbaI/XhoI digestion as shown in Figure 4.8.  

 

 

 

 

 

 

 

Figure 4.8: 0.8% agarose gel showing XbaI/XhoI double digests of potential 
pET28a::FemX clones.  
 
Lane 1 - standard 1 kb DNA ladder,  
Lanes 2 to 6 - double digest for the plasmid extracted from five E. coli Top10 
clones potentially harbouring the expression construct. Only the plasmid DNA 
in lane 6 (clone 5) appears to contain the femX gene which has been released 
from pET28a by the XbaI/XhoI double digest. 
 

Clone 5 shown in Figure 4.8, which demonstrated the correct restriction pattern was 

sequenced with the T7 forward and T7 reverse primer to ensure the inserted femX 

gene was of the correct sequence prior to use in protein expression experiments. 

 

4.5.3. Small-scale expression trials of the MurM, FemA and FemX proteins 

Given previous success with MurM and FemA (Chapter 3 and Chapter 4 

respectively), the final pET28a::FemX construct was transformed into E. coli BL21 
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Star (DE3).placIRare2 cells for protein expression by IPTG-induction at 25oC for 4 

h. Crude extracts were obtained as described previously and overall levels of 

expression were assessed by SDS PAGE as shown in Figure 4.9. 

 

 

 

 

 

 
 
 
 
 
 
 
 
M - molecular weight standards,  
SC - soluble proteins expressed by non-induced cells,  
SI - soluble proteins expressed by induced cells,  
IC - insoluble proteins expressed by non-induced cells,  
II - insoluble proteins expressed by induced cells. 
 
Figure 4.9: 12.5% SDS PAGE gel showing crude extracts obtained from 
Escherichia coli BL21 Star (DE3).placIRare2 cells transformed with 
pET28a::FemX and induced to express protein by IPTG-induction at 25oC for 4 
h. The position of FemX is indicated by an arrow. 
 

Small-scale expression trials indicated that FemX was produced in both a soluble 

and an insoluble form under the conditions described. Small-scale expressions were 

also carried out for MurM and FemA after addition of the TEV protease recognition 

site adjacent to the vector-encoded histidine tag with identical findings to those 

presented in Chapter 3 and Chapter 4, respectively. 
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4.5.4. Solubilisation of the MurM, FemA and FemX proteins with 1 M salt 

Salt-solubilisation of MurM and FemA with the TEV-cleavable hexa-histidine tag 

was tested as described in Chapter 3 and Chapter 4 respectively, with the same level 

of success as shown for proteins with non-cleavable histidine tags. In the case of 

FemX, 1 L of E. coli BL21 Star (DE3).placIRare2 cells harbouring pET28a::FemX 

were cultured at 37oC to an OD600nm of 0.4 when protein expression was induced by 

the addition of IPTG to a final concentration of 1 mM. Addition of IPTG was 

concurrent with the growth temperature being reduced to 25oC for 4 h. To obtain the 

maximum possible yield of protein for the purpose of purification, solubilisation of 

FemX with 1 M sodium chloride was attempted as described for MurM (Chapter 3) 

yielding four fractions, which were examined by SDS PAGE. The solubility of 

FemX after treatment with 1 M salt is shown in Figure 4.10. 

 

 

 

 

 

 

 
 
 
M - standard molecular weight markers,  
S - soluble protein prior to salt extraction,  
SE1 - soluble protein after the first salt extraction,  
SE2 - soluble protein after the second salt extraction, 
I - protein that remained insoluble after salt extraction. 
 
Figure 4.10: 12.5% SDS PAGE analysis showing salt solubilisation of FemX 
from 1 L of Escherichia coli BL21 Star (DE3).placIRare2 cells. The position of 
FemX is marked with an arrow. 
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The results presented in Figure 4.10 indicated that additional FemX protein 

expressed in the insoluble fraction could be readily solubilised by salt extraction. 

Given that a successful purification procedure applicable to both salt-solubilised 

MurM and FemA had already been developed (Chapter 3), salt-solubilisation of 

FemX was considered to be a valuable means of obtaining high yields of protein that 

would potentially purify very readily in a single step IMAC procedure. The validity 

of this assumption was tested by application of the MurM purification protocol to 

FemX (section 4.5.5). 

 

4.5.5. Purification of MurM, FemA and FemX before removal of the histidine 

tag by TEV protease 

Purifications of hexa-histidine tagged MurM, FemA and FemX from 1 L of E. coli 

BL21 Star (DE3).placIRare2 cells were carried out on BD TALON cobalt resin 

using the methodology developed for MurM (Chapter 3). As before, the column was 

equilibrated in buffer containing 50 mM sodium phosphate, 500 mM sodium 

chloride, 10 mM imidazole and 20% glycerol at pH 7.0 Elution of protein was 

achieved by sequential step washing of the column with buffer containing 10 mM, 

50 mM and 200 mM imidazole. The overall purity of FemA and MurM was assessed 

by SDS PAGE and gave results equivalent to those obtained with proteins that had 

non-cleavable histidine tags. The purity of FemX is shown in Figure 4.11. 
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M - molecular weight standards,  
L - protein sample prior to loading onto the column,  
FT - flow through as protein was loaded onto the column,  
W - protein eluted from the column during wash with equilibration buffer.  
 
Figure 4.11: 12.5% SDS PAGE gel showing purification of salt-solubilised TEV-
cleavable hexa-histidine tagged FemX from 1 L of Escherichia coli BL21 Star 
(DE3).placIRare2 cells on BD TALON cobalt resin. Lanes 1 - 12 represent 
protein eluted from the column during step washes using equilibration buffer 
supplemented with different concentrations of imidazole (50 mM and 200 mM). 
The position of FemX eluted during the 50 mM imidazole wash is marked with 
an arrow.  
 

The results in Figure 4.11 show that solubilisation of FemX with 1 M salt and 

purification on cobalt resin using the methodology developed for MurM was 

successful. Elution of FemX was achieved when the column was washed with buffer 

supplemented with 50 mM imidazole, as was the case for MurM tagged on its C-

terminus with six histidine residues (see Chapter 3). 

 

4.5.6. Removal of the histidine tag from purified MurM, FemA and FemX using 

TEV protease 

In all of the new expression constructs, the TEV protease recognition site was placed 

directly adjacent to the vector-encoded hexa-histidine tag without the use of spacer 

amino acids which are sometimes required for efficient cleavage. For this reason, a 

small-scale TEV cleavage reaction was carried out with MurMPn16 to determine an 
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appropriate incubation time, incubation temperature, reaction buffer and protein to 

TEV ratio. In these trials it was decided that appropriate incubation temperatures 

were 4oC, to allow for maximum stability of MurM, and 25oC to allow maximum 

efficiency of the TEV protease.  

 

In each case, 25 μg of MurMPn16 was incubated in a total reaction volume of 150 μL 

with 4 μL of TEV (3.5 mg mL-1). Samples were taken from each reaction after 1 h, 2 

h, 4 h, 6 h and 24 h incubation. At each time point, 30 μL was removed from the 

reaction, mixed with an equal volume of SDS loading dye and stored at -20oC. A 

final volume of 40 μL was then loaded onto an SDS PAGE gel for analysis. The 

results of this experiment are shown in Figure 4.12. 
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M - standard molecular weight markers, 
TEV - a sample of the protease prior to incubation with MurM. 
 
Figure 4.12: 12.5% SDS PAGE gel showing cleavage of the hexa-histidine tag 
from MurMPn16 by TEV protease at (A) 4oC and (B) 25oC. The remaining lanes 
are marked with the time, in hours, at which a sample was taken from the 
incubation reaction between TEV protease and MurM. The position of MurM 
is marked with a black arrow and the position of TEV, which has a weight of 
27,000 Da, is marked with a red arrow. 
 

In the case of the TEV cleavage reaction that was carried out at 25oC with undiluted 

protease, the double band of MurM, showing tagged and untagged protein, 

disappeared after approximately 4 h incubation. The equivalent reaction carried out 



160 
 

at 4oC was complete after 24 h incubation. Given the overall instability of MurM and 

the fact that TEV efficiency was not completely compromised at 4oC, this 

temperature was chosen as the best option for large-scale removal of the histidine tag 

from these proteins. 

 

For large-scale removal of the hexa-histidine tag from FemX and FemA, purified 

protein that eluted from the cobalt column in the 50 mM and 200 mM imidazole 

wash fractions were pooled and concentrated to a final volume of 2.5 mL. The 

protein was loaded onto a bench top PD10 de-salting column that had been pre-

equilibrated in 25 mL of TEV cleavage buffer (50 mM Tris-HCl pH 8.0, 200 mM 

NaCl and 20% glycerol). Elution of protein was achieved by collecting the flow 

through from the column upon the addition of 3.5 mL of TEV cleavage buffer. After 

collection, 100 µL of TEV protease at 3.5 mg mL-1 (obtained from the work carried 

out by Gianfranco de Pascale, University of Warwick PhD thesis) was added to 

FemX and FemA which were incubated for 24 h at 4oC. 

 

In the case of MurM, stability issues were counteracted by dialysis of the protein 

overnight into TEV cleavage buffer. In the absence of imidazole, MurM was 

concentrated using a vivaspin concentrator to a final volume of approximately 2.5 

mL (Chapter 2, section 2.4.8). At this stage, it was possible to add TEV protease as 

described for FemX and FemA. Incubation of TEV protease and MurM was carried 

out for 24 h at 4oC. After completion of incubation, the protein sample was loaded 

onto a 2 mL cobalt column which had been pre-equilibrated in TEV cleavage buffer. 

The aim of this procedure was to purify untagged protein away from TEV protease 
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(which has a C-terminal histidine tag) and protein that had not been successfully 

separated from its histidine tag after incubation with TEV. 

 

Flow-through fractions collected during loading of the protein onto the cobalt 

column were expected to contain the vast majority of the untagged enzyme of 

interest. However, the column was also washed with 10 mL of equilibration buffer to 

account for the void volume prior to the addition of buffer supplemented with 250 

mM imidazole to elute TEV protease from the resin. The results of removal of the 

histidine tag and purification of each protein away from TEV protease are shown in 

Figure 4.13. 
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M - standard molecular weight markers,  
L - a sample of the TEV digest prior to loading onto the column,  
FT - flow-through from the column as the protein was loaded onto it,  
+ HT - 10 µg of histidine-tagged protein before incubation with TEV,  
- HT - 10 µg of protein that has lost its histidine tag after incubation with TEV. 
 
Figure 4.13: 12.5% SDS PAGE showing purification of (A) MurMPn16, (B) 
FemA and (C) FemX on BD TALON cobalt resin after incubation with TEV 
protease to remove the C-terminal hexa-histidine tag. The success of removal of 
the histidine tag by TEV protease was assessed using Pro-Q Sapphire 532 
Oligohistidine Gel staining (Molecular probes) of samples taken before and 
after the digest. In each case, Elution of MurM, FemA and FemX in the flow-
through and the wash with 10 mL equilibration buffer are indicated with a 
black arrow. Elution of hexa-histidine tagged TEV protease during the wash 
with buffer containing 250 mM imidazole is indicated with a red arrow.  
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In every case, fractions containing protein eluted in the flow through and in the wash 

with equilibration buffer were pooled. Half of the pooled volume was stored at -80oC 

after dialysis against buffer containing 50 mM HEPES pH 7.0, 500 mM NaCl and 

50% glycerol. The remaining volume was dialysed against buffer supplemented with 

10 mM EDTA prior to dialysis against storage buffer for the purpose of ITC 

analysis. Protein that eluted in the 250 mM imidazole wash along with the TEV 

protease was discarded.  

 

Prior to storage of the protein samples in this manner, the success of removal of the 

histidine tag by incubation with TEV protease was assessed by running equivalent 

concentrations of protein before and after the digestion on an SDS PAGE gel stained 

first with Pro-Q Sapphire 532 Oligohistidine Gel stain (Molecular probes) and then 

with Colloidal Coomassie. As shown in Figure 4.13 (D), prior to TEV digestion 

MurM was detectable on an SDS PAGE gel under UV light after incubation with gel 

stain specific for oligohistidine-tagged proteins. In contract to this, after purification 

of the TEV digest, pooled protein eluted in both the flow through and wash with 

buffer containing no imidazole was not visible using this stain indicating successful 

removal of the histidine tag. Staining of the same gel with Colloidal Coomassie also 

indicated success of the technique given the change in molecular weight of the 

protein before and after removal of the histidine tag causing a clear difference in 

migratory distance on an SDS PAGE gel. Whilst the data presented here are for 

MurM only, the histidine tag was removed from FemX and FemA with equal 

success. 
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4.6. Characterisation of the metal binding requirements of untagged 

FemA, MurM and FemX  

4.6.1. Binding of divalent metal ions to the FemA protein 

Given the availability of an X-ray crystal structure for the FemA protein from S. 

aureus (Benson et al. 2002; PDB code 1LRZ), which is a functional homologue of 

the S. pneumoniae MurN protein; it was considered important to investigate the 

metal ion binding properties of this protein by ITC. Initial ITC experiments involved 

challenging FemA with magnesium and zinc. The results of this experiment are 

shown in Figure 4.14.  

 

 

 

 

 

 

 

 

 

 

Metal ion Stoichiometry  
(n) 

Kd ΔH  
(cal mole-1) 

ΔS  
(cal mole-1 degree-1) 

Magnesium 1.15 ± 0.00 0.78 ± 0.07 µM 4670.00 ± 21.97 43.40 
 
Figure 4.14: Isotherms generated by 10 µL injections of (A) 1 mM magnesium 
chloride or (B) 1 mM zinc chloride into a sample cell containing 50 µM FemA at 
pH 7.0. Both baseline equilibration and metal ion injection were carried out at a 
temperature of 30oC.  Data have been corrected for the heat of metal ion 
dilution and fitted to the one site model. Data for zinc binding could not be 
fitted to the same model even when the experiment was repeated at 25oC to 
investigate the effects of protein aggregation on the ITC profile. 



165 
 

The data comprising the isotherm generated for binding of zinc to FemA were 

complicated and could not be fitted to the one site model during analysis. One 

hypothesis for this was that FemA has two metal ion binding sites: one with a high 

affinity for zinc and the other with a high affinity for magnesium, but a low affinity 

for zinc at the same time. In order to test this hypothesis, FemA was saturated with 

magnesium prior to challenge with other divalent metal ions. Results of this 

experiment are shown in Figure 4.15. 
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Metal ion Stoichiometry 
(n)  

Kd ΔH  
(cal mole-1) 

ΔS  
(cal mole-1 degree-1) 

Zinc 1.27 ± 0.01 0.08 ± 0.06 µM -8652.00 ± 163.30 3.79 
Cobalt 1.19 ± 0.01 0.28 ± 0.05 µM -6489.00 ± 85.91 8.58 
Nickel 1.03 ± 0.01 0.44 ± 0.09 µM -11400.00 ± 92.52 -8.71 

 
Figure 4.15: Isotherms generated by injections of 10 µL aliquots of (A) 1 mM zinc chloride, (B) 1 mM cobalt chloride or (C) 1 mM nickel 
sulphate into a sample cell containing 50 µM of magnesium-saturated FemA at pH 7.0. Both baseline equilibration and metal ion 
injection were carried out at a temperature of 30oC.  Data have been corrected for the heat of metal ion dilution and fitted to the one site 
model where possible. When the two site model was applied, zinc binding to magnesium-saturated FemA gave a stoichiometry (n) of 
1.11 ± 0.05, Kd = 0.05 ± 0.01 nM, ΔH = -8804.00 ± 224.00 cal mole-1, ΔS = 18.00 cal mole-1 degree-1. The stoichiometry for the binding of 
zinc to the site already occupied with magnesium was 0.22 ± 0.03 indicating poor affinity.   
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The ITC data presented for FemA in Figure 4.15 were indicative of the enzyme 

having two metal binding sites, as had been predicted for MurM based upon assay of 

the protein before and after treatment with EDTA. The generated ITC profiles for 

FemA seemed to indicate that one of the metal ion binding sites had a high affinity 

for magnesium and that both sites had affinity for zinc. Further investigation with 

FemA led to titration of both copper and manganese into magnesium-saturated 

enzyme (Figure 4.16). 

 
Metal ion Stoichiometry 

(n)  
Kd ΔH  

(cal mole-1) 
ΔS  

(cal mole-1 degree-1) 
Copper n1: 0.80 ± 0.69 

n2: 1.19 ± 0.68 
Kd1: 0.75 ± 0.54 µM 
Kd2: 0.26 ± 0.12 µM 

ΔH1: -9810.00 ±       
4650.00 

ΔH2: -7633.00 ± 
2290.00 

ΔS1: -4.34 
ΔS2: 1.23 

Manganese 0.96 ± 0.00 0.22 ± 0.03 µM -8965.00 ± 66.37 1.23 
 
Figure 4.16: Isotherms generated by injection of 10 µL aliquots of (A) 1 mM 
copper sulphate or, (B) 1 mM manganese chloride into a sample cell containing 
50 µM of magnesium-saturated FemA at pH 7.0. Both baseline equilibration 
and metal ion injection were carried out at a temperature of 30oC.  Data have 
been corrected for the heat of metal ion dilution and fitted to the one site model 
where possible. Copper ion binding to FemA fitted the two site model.  
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ITC data presented in Figure 4.16 indicated that copper ions could occupy both of 

the proposed divalent metal ion binding sites within FemA by displacing 

magnesium. Copper ions are often able to replace other divalent metal ions in 

numerous metalloproteins. However, this is prevented in vivo by chaperones that 

chelate free copper and thus enable such proteins to be saturated with their true metal 

ions (Mellor and Maley, 1948; Waldron and Robinson, 2009; Waldron et al., 2009). 

 

In the case of FemA, the dissociation constant (Kd) for copper (0.75 ± 0.54 µM) was 

similar to that of magnesium (0.78 ± 0.07 µM) but approximately 10 times higher 

than that for zinc (0.08 ± 0.06 µM) taking into account the error in the dataset. This 

was indicative of FemA having a lower overall binding affinity for this metal ion. 

Manganese was also able to occupy the proposed zinc binding site but with a higher 

dissociation constant of 0.22 ± 0.03 µM. In order to further investigate the metal 

binding properties of FemA, it was possible to load the X-ray crystal structure of the 

protein (PDB code 1LRZ) onto the CHED server for prediction of transition metal 

ion binding sites. The results of this bioinformatics analysis are presented in section 

4.6.2.  

 

4.6.2. Bioinformatics analysis of metal binding sites in FemA based on the X-ray 

crystal structure of the protein solved by Benson et al. (2002) 

In order to search for potential transition metal ion binding sites, the PDB structure 

of S. aureus FemA (PDB code 1LRZ) was loaded onto the CHED server (Babor et 

al., 2008). The name CHED is derived from the fact that most transition metal ions 

bind to proteins using either three or four amino acid residues that are present in 

catalytic, co-catalytic or structural sites. The amino acid residues responsible for 
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such metal ion binding are almost invariably cysteine (C), histidine (H), glutamate 

(E) and aspartate (D).  When the PDB file for FemA was loaded onto this server, two 

potential metal ion binding sites were detected and are shown in relation to the 

structure of the protein in Figure 4.17.  

Figure 4.17: CHED server predicted metal ion binding sites within the structure 
of apo-FemA. One predicted metal ion binding site is comprised of E39, H41 
and H100 (pink). The other site is comprised of H106, D108 and D396 (blue). 
PDB file 1LRZ. 
 

Information gained from the CHED server indicated that FemA has two potential 

metal ion binding amino acid clusters within its structure, each consisting of three 

residues. One of these sites comprises two aspartate residues and a histidine residue. 

It has already been established in the literature that aspartate residues often play a 

key role in magnesium ion binding to proteins (Huang and Cowan, 1994). The other 

site comprises two histidine residues and a glutamate residue giving it the potential 

to serve as a high affinity zinc site.  

 

The validity of this bioinformatics-based prediction was tested by making a series of 

site-directed mutants of FemA whereby the amino acid of interest was changed to 
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alanine. Alanine was chosen as the replacement amino acid since it does not possess 

a side chain within its structure that could participate in metal ion binding. Residue 

D108 was excluded from the mutagenesis studies given that this has been shown to 

be a key catalytic site residue in W. viridescens FemX (Hegde and Shrader, 2001; 

Hegde and Blanchard, 2003).  It is, therefore, assumed to have a similar role within 

the other members of the Fem ligase family although this has yet to be formerly 

proven. Residue E39 was also excluded from these studies due to difficulties in 

primer design which ultimately resulted in poor mutagenesis efficiency and an 

inability to produce a clone harbouring the correct mutation. Generation and 

characterisation of these mutants is described in section 4.6.3. 

 

4.6.3. Site-directed mutagenesis of predicted metal ion binding residues in 

FemA 

In order to determine the involvement of the predicted CHED server identified 

amino acid residues in divalent metal ion binding, four mutants of FemA (H41A, 

H100A, H106A and D396A) were made using guidelines given in the Stratagene 

QuikChange site directed mutagenesis kit instruction manual. Wild-type 

pET22b::FemA was used as a template in each PCR with Pfu Ultra Taq DNA 

polymerase and primers designed to incorporate the desired mutation (see Chapter 2, 

Table 2.3 for oligo sequences).  

 

Success of the mutagenesis procedure was confirmed by sequencing of the plasmid 

DNA from potential clones using the T7 forward and T7 reverse oligos (Chapter 2, 

Table 2.2). Mutant FemA proteins were expressed and purified as described in 

Chapter 3 for MurM. The histidine tag was removed from the purified FemA 
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mutants, as described in section 4.5.6, using TEV protease. Mutant proteins were 

dialysed against storage buffer containing 10 mM EDTA and prepared for ITC by 

buffer exchange into 20 mM HEPES pH 7.0, as described in section 4.4.3. Initially, 

each of the mutant FemA proteins were challenged with magnesium alongside the 

wild-type enzyme and the results of these experiments are shown in Figure 4.18.  
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FemA 

Mutant 
Stoichiometry  

(n) 
Kd ΔH  

(cal mole-1) 
ΔS  

(cal mole-1 degree-1) 
H41A 1.28 ± 0.01 0.63 ± 0.08 µM 4550.00 ± 36.74 43.40 

H100A 0.85 ± 0.01 0.55 ± 0.09 µM 4670.00 ± 52.65 44.00 
H106A 0.93 ± 0.00 0.70 ± 0.06 µM 4709.00 ± 29.65 43.70 
D396A 1.08 ± 0.01 0.49 ± 0.13 µM 4583.00 ± 73.06 44.00 

 
Figure 4.18: Isotherms generated for injections of 10 µL aliquots of 1 mM 
magnesium chloride into a sample cell containing 50 µM of (A) FemA H41A, 
(B) FemA H100A, (C) FemA H106A and, (D) FemA D396A at pH 7.0. Both 
baseline equilibration and metal ion injection were carried out at a temperature 
of 30oC.  Data have been corrected for the heat of metal ion dilution and fitted 
to the one site model where possible.   
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In the case of each of the four mutant FemA proteins, saturation with magnesium 

was still achieved suggesting that mutation at the level of a single amino acid was 

not sufficient to cause a significant reduction in the ability of the protein to bind this 

metal ion.  Changes in stoichiometry and Kd for each mutant protein in comparison 

to wild-type FemA are summarised in Table 4.1.  

 

 FemA 
wild-type 

FemA 
H41A 

FemA 
H100A 

FemA 
H106A 

FemA 
D396A 

N 1.15  
± 0.00 

1.28 
± 0.01 

0.85 
± 0.01 

0.93 
± 0.00 

1.08 
± 0.01 

Kd (µM) 0.78 
± 0.07 

0.63 
± 0.08 

0.55 
± 0.09 

0.70 
± 0.06 

0.49 
± 0.13 

 
Table 4.1: Comparison of the stoichiometry (n) and dissociation constant (Kd) 
for magnesium ion binding to wild-type and mutant FemA. Data have been 
fitted to the one site model. 
 

In all four mutants and wild-type FemA, the stoichiometry (n) of magnesium ion 

binding stayed consistent at one. There was also no significant change in the 

dissociation constant for magnesium ion binding when comparisons were made 

between the wild-type and mutant forms of the enzyme. Given that metal ion binding 

sites within proteins are usually made up of three to five amino acid residues in total, 

it is possible that other amino acids within the structure of FemA can compensate for 

mutation of these residues. One other explanation is that the CHED server prediction 

of metal ion binding sites is incorrect in the case of FemA. To investigate these two 

hypotheses further, two double mutants of FemA were constructed (H106A:D396A 

and H41A:H100A). Prior to assessment of the metal binding properties of these 

double mutants by ITC, all four single mutants were tested in terms of their ability to 

bind zinc ions after saturation with magnesium. The results of this experiment are 

shown in Figure 4.19. 
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FemA 
Mutant 

Stoichiometry  
(n) 

Kd ΔH  
(cal mole-1) 

ΔS  
(cal mole-1 degree-1) 

H41A 1.16 ± 0.01 0.14 ± 0.01 µM -8355.00 ± 195.20 3.81 
H100A 0.94 ± 0.02 0.17 ± 0.01 µM -8220.00 ± 303.20 3.84 
H106A 1.06 ± 0.02 0.13 ± 0.01 µM -8177.00 ± 303.40 4.55 
D396A 1.83 ± 0.03 1.11 ± 0.26 µM -13300.00 ± 266.50 -16.60 

 
Figure 4.19: Isotherms generated by injections of 10 µL aliquots of 1 mM zinc 
chloride into a sample cell containing 50 µM of magnesium-saturated FemA (A) 
H41A, (B) H100A, (C) H106A and, (D) D396A at pH 7.0. Both baseline 
equilibration and metal ion injection were carried out at a temperature of 30oC.  
Data have been corrected for the heat of metal ion dilution and fitted to the one 
site model where possible.  
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The data presented in Figure 4.19 show that it was still possible to saturate all of the 

single mutant FemA proteins with zinc after saturation with magnesium. Table 4.2 

presents the key values of stoichiometry and Kd for each mutant protein in 

comparison to wild-type FemA. 

 

 FemA 
wild-type 

 

FemA 
H41A 

FemA 
H100A 

FemA 
H106A 

FemA 
D396A 

n 1.27 
± 0.01 

1.16 
± 0.01 

 

0.94 
± 0.02 

1.06 
± 0.02 

1.83 
± 0.03 

Kd 
 
 

0.08 
± 0.06 µM 

0.14 
± 0.01 µM 

0.17 
± 0.01 µM 

0.13 
± 0.01 µM 

1.11 
± 0.26 µM 

 

Table 4.2: Comparison of the stoichiometry (n) and dissociation constant (Kd) 
for zinc ion binding to magnesium-saturated wild-type and single mutant FemA 
proteins. Data have been fitted to both the one site model. 
 

In the case of zinc ion binding to magnesium-saturated FemA, all of the single amino 

acid mutations were found to result in an increase in the dissociation constant for 

zinc ion binding indicating a weakening in binding affinity between the protein and 

the metal ion. The most significant mutation was D396.  D396 has been 

hypothesised to be involved in magnesium ion binding. The data presented in Figure 

4.19 and Table 4.2 suggested that magnesium could be displaced by zinc in the case 

of FemA that is mutated at this position, consequently increasing the stoichiometry 

of zinc ion binding. This could indicate that D396 is a key determinant for metal ion 

binding within FemA controlling the preference for magnesium at a site which also 

appears to have a low affinity for zinc. In a magnesium-saturated state, wild-type 

FemA was found to have a dissociation constant for zinc that was at least 14 times 

lower than that of FemA D396A. This could indicate that magnesium ion binding at 
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the first site is required to coordinate zinc ion binding in the second site, possibly by 

inducing structural changes within the protein. 

 

The effects on metal ion binding seen in single site mutants of FemA were further 

investigated by constructing two double mutants: H41A:H100A and H106A: 

D396A. The data obtained for these mutants upon titration of magnesium are shown 

in Figure 4.20. 

 
FemA Mutant Stoichiometry  

(n) 
Kd ΔH  

(cal mole-1) 
ΔS  

(cal mole-1 degree-1) 
H41A:H100A 1.21 ± 0.01 0.73 ± 0.05 µM 4690.00 ± 26.23 43.60 

 
Figure 4.20: Isotherms generated by injection of 10 µL aliquots of 1 mM 
magnesium chloride into a sample cell containing 50 µM FemA H41A:H100A 
(A) and FemA H106A:D396A (B) at pH 7.0. Both baseline equilibration and 
metal ion injection were carried out at a temperature of 30oC.  Data have been 
corrected for the heat of metal ion dilution and fitted to the one site model 
where possible. Magnesium ion binding to FemA H106A:D396A could not be 
fitted to data analysis models indicating disruption of the site. 



177 
 

Magnesium ion binding to FemA H41A:H100A was found to occur with a Kd (0.73 

± 0.05 µM) equivalent to that of the wild-type enzyme (0.78 ± 0.07 µM). This 

supports the hypothesis that these residues are more likely to be implicated in zinc 

ion binding within FemA.  

 

However, the ITC profile generated by magnesium ion binding to FemA H106A: 

D396A showed significant differences when compared to the profile obtained from 

the wild-type enzyme. It was not possible to fit the data generated by this mutant to 

any of the analysis models indicating disruption of the site. In order to determine 

whether magnesium ion binding is crucial for coordination of zinc ion binding by the 

other site, zinc ions were titrated into these double mutants of FemA after saturation 

with magnesium. Data obtained in these experiments are shown in Figure 4.21. 
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FemA Mutant Stoichiometry  

(n) 
Kd ΔH  

(cal mole-1) 
ΔS  

(cal mole-1 degree-1) 
H41A:H100A 0.92 ± 0.02 0.23 ± 0.04 µM -8169.00 ± 271.50 -3.43 

 
Figure 4.21: ITC profile for injections of 10 µL aliquots of 1 mM zinc chloride 
into a sample cell containing 50 µM of magnesium-saturated FemA mutants (A) 
H41A:H100A and, (B) H106A:D396A at pH 7.0. Both baseline equilibration and 
metal ion injection were carried out at a temperature of 30oC.  Data have been 
corrected for the heat of metal ion dilution and fitted to the one site model 
where possible. Zinc ion binding to FemA H106A:D396A could not be fitted to 
data analysis models indicating disruption of the site. 
 

In the case of both FemA H41A:H100A and FemA H106A:D396A, there was a 

significant increase in the dissociation constant measured for zinc ion binding in 

comparison to the wild-type enzyme. The Kd of zinc ion binding for FemA 

H41A:H100A had increased from the wild-type value of 0.08 ± 0.06 µM to 0.23 ± 

0.04 µM, implicating both of these amino acid residues in the coordination of this 

metal ion. Compared to single mutation of H41 and H100 to alanine, the Kd obtained 

for the double mutant was 1.6 and 1.4 times higher respectively, suggesting a 
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weakening in the binding interaction between the protein and zinc. However, zinc 

ion binding had not been completely abolished in the case of the double mutant. This 

could be explained if surrounding amino acid residues within FemA also play a role 

in zinc ion binding or if E39, which could not be mutated in this study, is crucial to 

this process.  

 

In the case of FemA H106A:D396A, zinc ion binding could not be fitted to any of 

the data analysis models. This may indicate that disruption of the magnesium ion 

binding site by mutation of these two residues caused a critical loss of coordination 

in the zinc ion binding site. In combination with each other, the ITC results 

determined for the single and double mutants of FemA seem to suggest that the 

CHED server predictions of amino acid residues involved in the metal ion binding 

requirements of this protein are likely to be correct. However, other amino acid 

residues not picked up by this analysis software may also be critical to the process, 

which would explain why complete abolishment of the ITC signal was not observed. 

Bearing this in mind, similar studies were carried out on MurM and the results are 

described below in section 4.6.4. 
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4.6.4. Binding of divalent metal ions to the MurM protein 

All three variants of the MurM protein were subjected to metal ion binding analysis 

by ITC with no significant differences between them. Data presented in this section 

were obtained using the MurM protein from S. pneumoniae strain 159 and are 

intended to be representative of all three protein variants. All experiments were set 

up and duplicated as described in Chapter 2, section 2.6.1. Initial metal ion binding 

studies were carried out using magnesium and zinc. The results of these experiments 

are presented in Figure 4.22. 

 
Metal ion Stoichiometry 

(n)  
Kd ΔH  

(cal mole-1) 
ΔS  

(cal mole-1 degree-1) 
Magnesium 0.91 ± 0.00 0.89 ± 0.06 µM 4605.00 ± 28.00 42.90 

 
Figure 4.22: Isotherms generated by 10 µL injections of (A) 1 mM magnesium 
chloride or (B) 1 mM zinc chloride into a sample cell containing 50 µM 
MurM159 at pH 7.0. Both baseline equilibration and metal ion injection were 
carried out at a temperature of 30oC.  Data have been corrected for the heat of 
metal ion dilution and fitted to the one site model. Data for zinc binding could 
not be fitted to the same model even when the experiment was repeated at 25oC 
to investigate the effects of protein aggregation on the ITC profile. 
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The data presented in Figure 4.22 suggested that MurM has a single binding site for 

magnesium with a dissociation constant (Kd) of 0.89 ± 0.06 µM. As was the case 

with FemA, the binding of magnesium to MurM at pH 7.0 resulted in an 

endothermic reaction represented by positive peaks. In contrast to this, the 

interaction between MurM and zinc ions was exothermic and much more complex. It 

was not possible to fit the data obtained for zinc binding to the one site analysis 

model. One hypothesis for this was that, like FemA, MurM has two divalent metal 

ion binding sites, one with a high affinity for magnesium and a low affinity for zinc 

and the other with a high affinity for zinc. In order to test this hypothesis, MurM was 

saturated with magnesium and then presented with zinc (Figure 4.23). 

 

 

 

 

 

 

 

 

Metal ion Stoichiometry 
(n)  

Kd ΔH  
(cal mole-1) 

ΔS  
(cal mole-1 degree-1) 

Zinc 0.90 ± 0.12 0.50 ± 0.04 µM -8723.00 ± 1160.00 12.40 
 
Figure 4.23: Isotherm generated by injections of 10 µL aliquots of 1 mM zinc 
chloride into a sample cell containing 50 µM magnesium-saturated MurM159 at 
pH 7.0. Both baseline equilibration and metal ion injection were carried out at a 
temperature of 30oC.  Data have been corrected for the heat of metal ion 
dilution. When the two site model was applied, the stoichiometry for the 
binding of zinc to the site already occupied with magnesium was 0.31 ± 0.10 
which was indicative of a poor binding affinity between zinc and this site as was 
the case with FemA. Zinc ion binding to the high affinity site was found to take 
place with a Kd of 1 nM when the data were analysed with the two site model.
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The data presented in Figure 4.23 show that zinc ion binding to MurM could be 

fitted to both the one site and the two site analysis models after saturation with 

magnesium. Combined with the results of the ITC data obtained for FemA, this led 

to the hypothesis that zinc is able to bind to two different affinity sites within MurM, 

one of which has a preference for magnesium. In order to investigate the promiscuity 

of MurM in terms of its metal binding potential, various other metal ions were 

titrated into protein that had already been saturated with magnesium. The results of 

these experiments are shown in Figure 4.24. 
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Metal 
ion 

Stoichiometry 
(n)  

Kd ΔH  
(cal mole-1) 

ΔS  
(cal mole-1 degree-1) 

Cobalt 0.89 ± 0.02 0.88 ± 0.23 µM -6053.00 ± 175.30 7.75 
Nickel 0.34 ± 0.01 1.87 ± 0.22 µM -8826.00 ± 210.00 -2.90 

 
Figure 4.24: Isotherms generated by injections of 10 µL aliquots of (A) 1 mM 
cobalt chloride, (B) 1 mM nickel sulphate, (C) 1 mM lithium chloride or, (D) 1 
mM potassium chloride into a sample cell containing 50 µM of magnesium-
saturated MurM159 at pH 7.0. Both baseline equilibration and metal ion 
injection were carried out at a temperature of 30oC.  Data have been corrected 
for the heat of metal ion dilution and fitted to the one site model where possible. 
Lithium and potassium did not show significant binding to MurM as indicated 
by very small heat changes upon injection. 
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The data presented in Figure 4.24 support the finding that zinc can be replaced by 

cobalt in activity assays. It is likely that cobalt is unable to restore full activity of 

EDTA-treated MurM because the dissociation constant for this metal ion is 2 times 

higher than that for zinc, indicating a lower overall binding affinity towards the 

protein. Challenging magnesium-saturated protein with nickel gave a very low value 

for the stoichiometry of binding (0.34 ± 0.01) suggesting that nickel is not the 

preferred metal ion. This result is concurrent with assay data whereby the activity of 

EDTA-treated MurM could only be fully restored by the addition of saturating 

concentrations of zinc in the presence of magnesium (Section 4.4.2).  One other 

reason that would explain why nickel cannot restore the activity of EDTA-treated 

MurM is that only a sub-population of the enzyme present in the sample cell was 

capable of binding this metal ion when compared to zinc and cobalt. The lack of 

interaction between MurM and either lithium or potassium suggests that only 

divalent metal ions are bound by the enzyme in a specific manner. 

 

4.6.5. CHED server prediction of metal ion binding sites within MurM 

A three-dimensional model of MurM was constructed by Dr Adrian Lloyd at the 

University of Warwick using the X-ray crystal structure of S. aureus FemA and the 

amino acid sequence of MurM159. Making the assumption that MurM adopts the 

same fold as FemA, it was possible to load the model onto the CHED server for 

bioinformatics-based prediction of transition metal ion binding sites within proteins 

(Babor et al., 2008).  When the MurM model was loaded onto this server, only one 

metal ion binding site was predicted and this is highlighted in Figure 4.25. 
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Figure 4.25: Model of MurM159 based on the X-ray crystal structure of S. 
aureus FemA (PDB code 1LRZ). CHED server predicted metal binding site 
residues are highlighted in red (E229 is functionally conserved as an aspartate 
or a glutamate and E307 is conserved as glutamate across all currently 
sequenced variants of MurM) and green (D230) which is not conserved between 
MurM variants.  
 

The CHED server predicted only one metal ion binding site within MurM159 

comprised of residues E229, D230 and E307. The apparent absence of a second site 

is likely to be due to the poor sequence homology between FemA and MurM which 

are only 26% identical at the amino acid level. It was not possible to readily identify 

the position of the second binding site by a simple alignment of the amino acid 

sequences of FemA and any of the MurM variants. This is illustrated using 

MurMPn16 in Figure 4.26. 
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Figure 4.26: Sequence alignment of Streptococcus pneumoniae strain Pn16 MurM and Staphylococcus aureus FemA.  Residues 
highlighted in purple are the putative metal binding residues identified in FemA. Note that the proteins are only 26% identical at the 
amino acid level. 
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In addition to this, it was noted that D230 was not conserved across all variants of 

MurM. However, as shown in Figure 4.27, there are other conserved aspartate and 

glutamate residues surrounding this position within MurM which may be involved in 

metal ion binding. 

 

Figure 4.27:  Sequence alignment of the MurM protein from various strains of 
Streptococcus pneumoniae focussed on position 230 (highlighted in purple) 
which is not conserved. However there is a conserved aspartate residue found at 
position 225 which may substitute as a metal binding residue due to a slight 
difference in protein fold between FemA and MurM. 
 

In order to determine the involvement of E229 and E307 in metal ion binding, these 

residues were mutated to alanine in MurM159 both individually and in combination 

with each other (see Chapter 2 for experimental details). These mutants were then 

subjected to ITC as described previously. The isotherms generated upon presentation 

of magnesium to these mutant versions of MurM159 are shown in Figure 4.28. 
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MurM 
Mutant 

Stoichiometry  
(n) 

Kd ΔH  
(cal mole-1) 

ΔS  
(cal mole-1 degree-1) 

E229A 1.00 ± 0.01 7.87 ± 0.63 µM 349800.00 ± 60830.00 1180.00 
E307A 1.00 ± 0.02 22.83 ± 0.33 µM 7129.00 ± 1114.00 256.00 

 
Figure 4.28: Isotherms generated by 10 µL injections of 1 mM magnesium chloride into a sample cell containing 50 µM of EDTA-
treated MurM159 predicted metal binding site mutants at 30oC in 20 mM HEPES pH 7.0. Responses of the mutants are as follows (A) 
E229A mutant (B) E307A mutant (C) E229A:E307A double mutant. Metal binding was fitted to the one site model in each case. The 
signal given by MurM E229A:E307A was equivalent to the background signal obtained upon injection of 1 mM MgCl2 into 20 mM 
HEPES pH 7.0 and is indicative of a loss of metal ion binding by the protein.  
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As shown in Figure 4.28, individual mutation of E229 and E307 to alanine caused a 

10 or a 25-fold increase in the dissociation constant of MurM for magnesium 

respectively in comparison to the wild-type enzyme. The ability of the protein to 

bind zinc was also affected as shown in Table 4.3. 

 

 
(A) Magnesium 

 
 wild-type E229A E307A 

N 0.91 
± 0.00 

1.00 
± 0.01 

1.00 
± 0.02 

Kd (µM) 0.89 
± 0.06 

7.87 
± 0.63 

22.83 
± 0.33 

 
(B) Zinc  

 
 wild-type E229A E307A 

n  
 

0.90 
± 0.12 

 

1.00 
± 0.05 

 

1.00 
± 0.07 

 
Kd 0.50 

± 0.04 µM 
 

10.00 
± 0.12 µM 

 

10.26 
± 0.09 µM 

 

 
Table 4.3: Comparison of the stoichiometry (n) and dissociation constant (Kd) 
for magnesium ion binding and zinc ion binding to magnesium-saturated wild-
type and mutant MurM159.  
 

Mutation of E307 to alanine had the most significant effect on the dissociation 

constant of both magnesium and zinc ion binding to MurM. Data acquired for zinc 

ion binding to MurM159 E307A fitted the two site model and this was hypothesised 

to be due to the 25-fold increase in the dissociation constant for magnesium ion 

binding in comparison to the wild-type enzyme. Such a significant increase in Kd 

was indicative of a reduced binding affinity for magnesium which could have 

subsequently enabled out-competition of this metal ion by zinc in this site. This 
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suggests that E307 is important for metal ion selectivity and maintenance of the 

overall preference for magnesium within this site.  

 

In addition to this, when both mutations were present in combination with each 

other, magnesium ion binding was significantly reduced with only a background 

signal equivalent to that obtained for injection of magnesium into HEPES recorded. 

Despite an inability to bind magnesium tightly, MurM159 E229A:E307A was still 

catalytically active with its substrates (see Chapter 5) confirming an earlier 

observation that the activity of EDTA-treated MurM was recoverable by the addition 

of zinc alone (Figure 4.5). A more detailed investigation into the kinetic properties of 

this enzyme in comparison to the wild-type is given in Chapter 5.  

 

4.6.6. Binding of divalent metal ions to the FemX protein 

For the purpose of comparison to the data obtained for MurM and to investigate 

further the metal ion requirements of cell wall branching enzymes, S. aureus FemX 

was subjected to analysis by ITC in the same way. All experiments were conducted 

as described in section 4.4.3. 

 

Initially the protein was challenged separately with magnesium and zinc. In this 

scenario, it was found that zinc binding was complicated and could not be fitted to 

the one site model as was the case with MurM and FemA. For this reason, the 

protein was saturated with magnesium prior to challenge with other divalent metal 

ions (Figure 4.29). 
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Metal ion Stoichiometry 
(n)  

Kd ΔH  
(cal mole-1) 

ΔS  
(cal mole-1 degree-1) 

Magnesium 1.50 ± 0.01 0.81 ± 0.07 µM 4704.00 ± 29.30 43.40 
Zinc 1.45 ± 0.01 0.08 ± 0.04 µM -8683.00 ± 159.60 3.94 
Cobalt 1.54 ± 0.01 0.24 ± 0.05 µM -6680.00 ± 62.55 8.29 
Nickel 0.87 ± 0.00 0.69 ± 0.15 µM -11000.00 ± 79.44 -5.02 

 
Figure 4.29: Isotherms generated by injections of 10 µL aliquots of (A) 1 mM 
magnesium chloride, (B) 1 mM zinc chloride, (C) 1 mM cobalt chloride or, (D) 1 
mM nickel sulphate, into a sample cell containing 50 µM of FemX at pH 7.0. In 
the case of B, C and D titrations were made into magnesium-saturated FemX. 
Both baseline equilibration and metal ion injection were carried out at a 
temperature of 30oC.  Data have been corrected for the heat of metal ion 
dilution and fitted to the one site model where possible.  
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The ITC data presented in Figure 4.29 suggested that FemX has either two or three 

divalent metal ion binding sites. The dissociation constant for magnesium ion 

binding to one site was equivalent to that calculated for MurM. The dissociation 

constant for zinc ion binding to FemX was in the micromolar range as was the case 

for MurM and FemA when the one site data analysis model was applied. In the 

absence of any structural data for MurM and FemX, the isotherms generated by ITC 

suggest that both of these enzymes have a requirement for divalent metal ions. In 

order to investigate whether divalent metal ions are required for maintenance of the 

structure of MurM and FemA, these proteins were subjected to circular dichroism 

before and after treatment with EDTA. The results of this experiment are described 

in section 4.6.7. 

 

4.6.7. Assessment of the structural effects of metal ion removal by EDTA on 

wild-type MurM and FemA using circular dichroism (CD) 

Circular dichroism (CD) can be used as a direct technique for the assessment of the 

secondary structure of proteins. Peptide bonds located in the polypeptide backbone 

of proteins have electronic transitions that change with conformation and produce 

different absorption spectra upon exposure to circularly polarised light. 

 

In order to investigate whether treatment with EDTA had any obvious structural 

effect on MurM and FemA, both proteins were buffer exchanged into 10 mM 

sodium phosphate to a final concentration of 0.12 mg mL-1 for study by circular 

dichroism. Other studies have indicated that sodium phosphate is a suitable buffer 

for this technique as it gives very little background signal in the ultraviolet region 
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(Kelly et al., 2005). This was confirmed by correcting spectra obtained for MurM 

and FemA with a blank run containing only 10 mM sodium phosphate.  

 

The far ultraviolet spectra obtained for MurMPn16 and FemA before and after 

treatment with EDTA were analysed using Dichroweb in order to determine 

differences in secondary structure between the samples (Whitmore and Wallace, 

2004; Lees et al., 2006b). Results of this analysis using the CDSSTR method and the 

SP175 database are presented in Figure 4.30, Figure 4.31 and Table 4.4. 

 

 



194 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.30: Far Ultraviolet spectra showing changes in secondary structure of wild-type MurMPn16 after treatment with EDTA to 
remove bound metal ions. Protein was concentrated to 0.12 mg mL-1 in 10 mM sodium phosphate pH 7.0 prior to analysis by circular 
dichroism. The traces shown have been generated from 16 repeats on the same sample. 
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Figure 4.31: Far Ultraviolet spectra showing changes in secondary structure of wild-type FemA after treatment with EDTA to remove 
bound metal ions. Protein was concentrated to 0.12 mg mL-1 in 10 mM sodium phosphate pH 7.0 prior to analysis by circular dichroism. 
The traces shown have been generated from 16 repeats on the same sample. 
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Analysis of the data with Dichroweb indicated that MurM showed a significant 

reduction in secondary structure after treatment with EDTA and that this effect was 

much less pronounced in the case of FemA. Results of this analysis using the 

CDSSTR method and the SP175 database are presented in Table 4.4 (Lees et al., 

2006a; Lees et al., 2006b). 

 

 MurM EDTA-treated 
MurM 

FemA EDTA-treated 
FemA 

NRMSD 0.02 0.03 0.05 0.05 
Total α helix 20% 10% 9% 8% 
Total strand 31% 38% 39% 34% 
Total turns 12% 12% 13% 17% 
Total unordered 37% 40% 39% 41% 

 

Table 4.4: Analysis of CD data obtained for MurM and FemA before and after 
treatment with EDTA using Dichroweb. NRMSD stands for normalised root 
mean square derivation where values of above 0.10 imply that the 
correspondence between the calculated secondary structure and the actual 
secondary structure are likely to be incorrect. 
 

In the case of MurM, removal of metal ions by treatment with EDTA resulted in a 

50% loss in alpha helical structure. In addition to this, total strand content was 

increased by 7% indicating denaturation of the protein. With both FemA and MurM, 

the total amount of unordered structure increased by 3% upon removal of metal ions 

by EDTA. When taken together, the data presented in Table 4.4 and the activity data 

obtained for MurM suggest that metal ions are likely to be involved in maintaining 

both the structure and the catalytic activity of these proteins. 
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4.7. Discussion 

Comparative modelling of MurM on the X-ray crystal structure of S. aureus FemA 

(PDB code 1LRZ) has indicated that these proteins are likely to have a similar 

overall fold (Fiser et al., 2003). This means that FemA is an acceptable homology 

model for the prediction of the structure of MurM.   Within the predicted structure of 

MurM, domain I consists of a twisted β-sheet core surrounded by α-helices and 

domain II consists of a coiled helical arm. Fiser et al. (2003) have used distance 

matrix alignment and combinatorial extension to compare the predicted structure of 

MurM domain II to the structure of other proteins within the protein data bank. This 

process identified structural similarities between MurM and several tRNA synthetase 

enzymes. In addition to this, structural similarities between the coiled helical arm of 

FemA and seryl-tRNA synthetase were identified when the X-ray crystal structure of 

the former was solved by Benson et al. (2002). These similarities are not surprising 

given that members of the Fem ligase family and all tRNA synthetase enzymes have 

the requirement for a tRNA substrate in common with each other.  

 

Many tRNA synthetase enzymes have been shown to require divalent metal ions 

either for catalysis, maintenance of structure or both. For example, E. coli alanyl-

tRNA synthetase (AlaRS) requires zinc with a stoichiometry of one for the 

recognition of its cognate tRNA species. In addition to this, removal of zinc from the 

enzyme caused a loss in the secondary structure measured by circular dichroism 

(Sood et al., 1999). In threonyl-tRNA synthetase (ThrRS), zinc has been shown to be 

important for the recognition of threonine. Whilst the requirement for bound zinc in 

ThrRS cannot be described as either strictly catalytic or structural, the function of 

this metal ion is to ensure that activation only takes places with amino acids that 
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have a hydroxyl-group attached at the β-position (Sankaranarayanan et al., 2000). 

An essential catalytic zinc ion has also been found in the active site of the seryl-

tRNA synthetase enzyme of methanogenic archaea (Bilokapic et al., 2006). Despite 

this, the metal ion requirements of members of the Fem ligase family have remained 

unexplored in the literature until now. In addition to this, the current X-ray crystal 

structure of S. aureus FemA (PDB code 1LRZ) has no information regarding bound 

metal ions which is likely to be a direct result of purification the protein using an 

inhibitor cocktail containing EDTA (Benson et al., 2002). 

 

In order to investigate the metal ion binding requirements of some members of the 

Fem ligase family in this study, it was considered necessary to re-clone FemA and 

MurM such that the vector-encoded C-terminal hexa-histidine tag could be removed 

from the proteins after purification. Histidine tags engineered onto either terminus of 

a protein during cloning are known to bind to divalent metal ions and this property is 

exploited in immobilised metal ion affinity chromatography (IMAC). This accounted 

for the fact that ITC data gathered for histidine-tagged versions of these proteins 

could not be readily interpreted. Incubation of histidine-tagged protein with TEV 

protease followed by further purification on cobalt resin and SDS PAGE analysis 

indicated that it was possible to obtain sufficient quantities of untagged protein 

within the region of 8 to 10 mg L-1 for determination of the metal ion binding 

properties of MurM, FemX and FemA by ITC. 

 

Determination of which metal ions to present to these enzymes by ITC was based on 

key observations made with MurM. Structural data presented in Chapter 6 indicated 

that MurM could only nucleate under crystallisation conditions where the mother 
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liquor solution contained zinc. In order to remove bound metal ions, each protein 

was dialysed against buffer containing the strong chelating reagent, EDTA (Nyborg 

and Peersen, 2004). Activity assays carried out on MurM before and after this 

process indicated that EDTA-treated protein was no longer catalytically active.  

Total activity could only be restored by pre-incubation of EDTA-treated MurM with 

a molar excess of zinc in the presence of magnesium. Approximately 80% activity 

could be restored by zinc alone and 45% activity could be restored by cobalt.  

 

Titration of zinc into MurM, FemA and FemX resulted in the acquisition of 

complicated isotherms which could not be fitted to any of the ITC data analysis 

models available in VP-Viewer and Origin software. Given an earlier observation 

that full recovery of the activity of EDTA-treated MurM required pre-incubation 

with a molar excess of both zinc and magnesium, this was hypothesised to be due to 

the presence of two metal ion binding sites within these proteins: one with a high 

affinity for zinc and the other with a preference for magnesium but a low zinc 

affinity at the same time. This hypothesis was tested by saturating each protein with 

magnesium prior to the presentation of zinc. Saturation of both FemA and MurM 

with magnesium suggested that both of these proteins have one binding site for this 

metal ion with a Kd of 0.78 ± 0.07 µM and 0.89 ± 0.06 µM, respectively. In addition 

to this, when zinc was presented to magnesium-saturated FemX, FemA and MurM, 

the generated data points could be fitted to the one site data analysis model within 

Origin, thus supporting the two metal binding site hypothesis. 

 

Within all three magnesium-saturated proteins, it was possible to replace the zinc 

with cobalt and still obtain a stoichiometry of one. However the Kd for cobalt was 
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higher than that of zinc indicating tighter binding in the latter case. Investigations 

with magnesium-saturated FemA also showed that zinc could be replaced by nickel 

and that copper could replace both magnesium and zinc. Substitutions of zinc by 

metals including cobalt, cadmium, copper, nickel and iron is common and has been 

reported for zinc finger proteins (Sarkar, 1995).  

 

In addition to this, the Irving-Williams series, which describes the natural order of 

stability of divalent metal ions, states that copper and zinc form the tightest 

complexes followed by ferrous iron and manganese. The series ends with calcium 

and magnesium which form the weakest complexes (Mellor and Maley, 1948). As a 

result of this, exclusion of the wrong metal ions from proteins in vivo is thought to be 

a complex problem given that some proteins have a requirement for those which 

form the weakest complexes (Waldron et al., 2009). Acquisition of the correct metal 

ion in vivo is considered to involve a series of metal-sensing proteins, metallo-

chaperones and also the metal ion availability in the cellular location of protein 

folding (Waldron and Robinson, 2009; Waldron et al., 2009). Taken together with 

the fact that the concentration of free Mg2+ in a bacterial cell is within the millimolar 

range, and the total concentration of free Zn2+ is tightly regulated within the sub-

micromolar range, it is reasonable to assume that in vivo the two metal binding sites 

detected in this study are occupied by their high affinity metal ligands as described 

(Blencowe and Morby, 2003; Finney and O'Halloran, 2003; Feng et al., 2008). 

 

Using the X-ray crystal structure of FemA determined by Benson et al. (2002), it 

was possible to use a bioinformatics-based approach for prediction of possible 

transition metal ion binding sites within this protein. Analysis of the FemA crystal 
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structure (PDB code 1LRZ) using the CHED server resulted in the prediction of two 

metal ion binding sites (Babor et al., 2008). One of the predicted sites was comprised 

of E39, H41 and H100. The other was comprised of H106, D108 and D396. After 

single mutation of H41, H100, H106 and D396 to alanine, no significant increases in 

the Kd for magnesium ion binding were observed. However, all four mutations 

resulted in an increase in the Kd of zinc ion binding from 0.08 ± 0.06 µM in the wild-

type enzyme to within the range of 0.14 to 1.11 µM in the single site alanine 

mutants. 

 

Double mutation of H41 and H100 to alanine resulted in no significant change in the 

Kd for magnesium ion binding but an increase in the Kd of zinc ion binding to 0.23 ± 

0.04 µM. This suggested that both of these residues are important in zinc ion 

binding. The fact that zinc ion binding was not completely abolished in this double 

mutant indicated either that E39 is a key residue in this process or that other 

surrounding residues not picked up by the CHED server are also involved in the 

binding of zinc at this site. To determine which of these scenarios is correct, further 

mutagenesis studies or an X-ray crystal structure of FemA containing the bound zinc 

atom are required. Double mutation of H106 and D396 to alanine resulted in a 

significant disturbance to the binding of magnesium which resulted in an inability to 

fit the data to analysis models within Origin.   

 

When the FemA-based homology model of MurM159 was loaded onto the CHED 

server, only one metal ion binding site was predicted. The position of this predicted 

site is located near to the region of the protein that is thought to interface with the 

membrane. FemA and MurM are only 26% identical at the amino acid level so slight 
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differences in the fold of the two proteins may explain why only one site was 

identified despite biochemical and biophysical evidence supporting the hypothesis 

that the enzyme has two metal binding sites. Individual mutation of the two 

functionally conserved residues, E229 and E307, to alanine caused a 9 and a 25-fold 

increase in the Kd of magnesium ion binding respectively in comparison to the wild-

type enzyme. Complete abolition of the ITC signal for magnesium ion binding was 

achieved by mutation of both of these residues to alanine at the same time indicating 

the importance of these residues in this process.  

 

It was also noted that EDTA-treatment of MurM resulted in a significant change to 

the secondary structure of the protein as determined by CD. Combined with the ITC 

data, this suggests that magnesium and zinc are important for both the structure and 

the catalytic activity of MurM. Given the proposed structural similarities between 

members of the Fem ligase family and tRNA synthetase enzymes, one hypothesis is 

that zinc is required for recognition of tRNA by MurM.  

 

In addition it is interesting to speculate upon the role of the magnesium site. 

Following protein over-expression, MurM remains in the insoluble fraction until 1 M 

sodium chloride is used in a solubilisation buffer (see Chapter 3). This suggests that 

MurM has significant hydrophobic character, consistent with it being a membrane- 

associated protein. Association of MurM with the membrane has not been formerly 

proven, however it is likely to be the case given that it utilises Lipid II as opposed to 

soluble UDP-MurNAc-pentapeptide as a substrate (Lloyd et al., 2008).  Given the 

location of the proposed magnesium site is on the outer edge of the predicted 

structure of MurM, it is possible that this metal ion is responsible for localising the 
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protein to the cytoplasmic side of the cell membrane. Once in this position, co-

ordination of MurM with phospholipid head groups in the membrane could be 

achieved using magnesium as a bridge.  This would locate the enzyme in the correct 

orientation over the substrate at the correct cellular location for subsequent 

utilisation of the reaction product by MurN.  A similar role for Mg2+ has been 

described for methanol dehydrogenase where it facilitates the association of the 

enzyme with the membrane-bound, terminal respiratory chain (Carver et al., 1984). 

Investigations into the effects of these mutations on the overall activity of MurM and 

its interaction with cardiolipin, an abundant phospholipid in the membrane of S. 

pneumoniae, are detailed in Chapter 5.  

 

In conclusion, the Zn2+ dependent activity of MurM and other Fem ligases has not 

been documented previously and has significance for both enzyme mechanism and 

the design of potential inhibitory compounds. All of the aims laid out in section 4.2 

were achieved. However, further work should include identification of other amino 

acid residues within MurM that are involved in zinc ion binding. All currently 

sequenced variants of MurM contain a single cysteine residue that is an obvious 

target for zinc ion binding. Unfortunately, mutation of this residue to alanine in this 

study resulted in production of protein that could not be solubilised for biophysical 

and biochemical characterisation. As a result of this, obtaining a high resolution X-

ray crystal structure of this protein is of great importance. In addition, development 

of a means for producing a high yield of Lipid II-Gly will enable kinetic analysis to 

be carried out on all of the FemA mutants constructed in this study which may shed 

more light on the role of the CHED server predicted amino acid residues in metal ion 

binding.  
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Chapter 5 

Kinetic Characterisation of MurM from penicillin-
resistant (159) and penicillin-sensitive (R6 and Pn16) 

strains of Streptococcus pneumoniae 
 

5.1. Introduction 

Within pneumococcal peptidoglycan, the MurM protein is responsible for the 

addition of either L-alanine or L-serine as the first amino acid of an indirect 

dipeptide branch that is appended to the stem peptide lysine of the pentapeptide side 

chain. Deletion of the murM gene has been shown to cause a reversion to penicillin 

sensitivity in strains that were previously resistant. However, the protein itself does 

not appear to be essential for cell viability (Filipe and Tomasz, 2000). This is 

unusual since, whilst the murM gene has become mosaic in nature across penicillin-

resistant variants of S. pneumoniae, its functionality is conserved across all strains 

suggesting it may have a specialised role within the organism that has not yet been 

determined.  

 

In order to further understand the link between MurM activity, levels of cell wall 

cross-linking and penicillin resistance in pneumococci, Lloyd et al. (2008) cloned 

the murM gene from a penicillin-sensitive (Pn16) and a penicillin-resistant (159) 

strain of the organism into an expression vector thus enabling over-expression of 

histidine tagged MurM for in vitro studies. These studies demonstrated for the first 

time that MurM is an aminoacyl-tRNA-dependent ligase and that the proportion of 

branched structured muropeptides in the pneumococcal cell wall is directly related to 

the activity of this enzyme. MurM159 was found to be more catalytically active than 
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MurMPn16 and had a preference for the addition of alanine to Lipid II as opposed to 

serine. This preference was consistent with the enzyme having a lysine residue at 

position 260, which is thought to be the key residue within the region of the protein 

identified by Filipe et al. (2001a) as having a role in the determination of substrate 

specificity. In the work carried out by Lloyd et al. (2008), MurMPn16 was found to 

have a preference for the addition of serine to Lipid II which was consistent with the 

enzyme having threonine at position 260. 

 

In this study, determination of kinetic parameters for the MurM protein from S. 

pneumoniae strain R6, which has threonine at position 260, was considered to be a 

valuable addition to the work carried out by Lloyd et al. (2008). Strain R6 is 

penicillin-sensitive but has an unusually high proportion of branched muropeptides 

within its peptidoglycan structure (Garcia-Bustos and Tomasz, 1990). For the first 

time, MurMR6 has been kinetically characterised with both its tRNA and its lipid 

substrate allowing comparisons to be made with MurMPn16 and MurM159. In 

addition, given the findings made in Chapter 4, untagged MurMR6, MurMPn16 and 

MurM159 were kinetically characterised in the presence of saturating concentrations 

of zinc and magnesium. The development of methodology for the production of a 

single species of pure S. pneumoniae tRNAAla and tRNASer by in vitro transcription 

has also enabled the first investigations into the substrate specificity of MurM to be 

undertaken.  

 

5.2. Aims 

The main aim of the work carried out in this chapter was to characterise the kinetic 

activity of MurMR6 and compare it to previous studies that had characterised 
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MurMPn16 and MurM159 in the same way (Lloyd et al., 2008). Detailed kinetic 

characterisation of the three MurM variants encompassed the following objectives: 

• Purification of the appropriate S. pneumoniae tRNA synthetase enzymes 

(AlaRS and SerRS) for the production of aminoacylated Ser-tRNASer and 

Ala-tRNAAla 

• Generation of an in vitro transcription-based method for the production of 

large amounts of a single species of S. pneumoniae tRNAAla and tRNASer that 

could be used as substrates for MurM 

• Assessment of key kinetic parameters for all three variants of MurM, for the 

first time in the absence of a histidine tag and the presence of 0.5 µM zinc, 

when the concentration of Lipid II was varied using Ala-tRNAAla and 

subsequently, Ser-tRNASer as a co-substrate 

• Assessment, for the first time, of key kinetic parameters for all three variants 

of MurM when the concentration of Ala-tRNAAla and subsequently, Ser-

tRNASer, was varied in the presence of the co-substrate Lipid II 

• Assessment of the effects of a significant reduction in the affinity of 

magnesium binding on key kinetic parameters obtained for MurM159 

E229A:E307A in comparison to the wild-type enzyme 

• The major phospholipids present in the cell membrane of pneumococcus are 

cardiolipin and phosphatidylglycerol (Trombe et al., 1979).  Given that 

MurM has a Lipid substrate it is likely to interface with the membrane. 

Hence, the effects of the presence of cardiolipin on the kinetic parameters 

obtained for all three variants of MurM and MurM159 E229A:E307A were 

investigated. This was intended to expand unpublished work already carried 

out by Dr Adrian Lloyd (University of Warwick)  
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In order to investigate the substrate specificity of MurM, these objectives were 

expanded further as follows: 

• In order to determine the degree to which MurM recognises the aminoacyl 

and tRNA sections of its acyl-tRNA substrate, it was necessary to over-

express and purify S. pneumoniae AlaRS catalytic domain. This was to 

enable generation of high yields of mis-aminoacylated Ser-tRNAAla to use as 

a substrate for MurM 

• Further analysis of aminoacyl and tRNA recognition by MurM was carried 

out using a 2’-amino mini-helix tRNAAla analogue with the aim of 

determining whether MurM is specific for removal of the amino acid from 

the 2’ or the 3’ hydroxyl of the terminal adenine of its substrate tRNA 

 

5.3. Expression and purification of Streptococcus pneumoniae 

Alanyl-tRNA synthetase (AlaRS) and Seryl-tRNA synthetase 

(SerRS) 

5.3.1. Small-scale expression trials of AlaRS and SerRS 

Expression constructs containing the S. pneumoniae strain 159 AlaRS gene and the S. 

pneumoniae strain Pn16 SerRS gene were obtained from Dr Adrian Lloyd 

(University of Warwick). Trial expressions were carried out for each synthetase 

using E. coli BL21 Star (DE3).placIRare2 cells and either IPTG-induction at 25oC 

for 3 h or auto-induction for 16 h at 37oC (Figure 5.1). 
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M - molecular weight standards,  
SC - soluble proteins expressed by non-induced cells,  
SI - soluble protein expressed by induced cells,  
IC - insoluble protein expressed by non-induced cells,  
II - insoluble proteins expressed by induced cells. 
 
Figure 5.1: 12.5% SDS PAGE gels showing crude extracts obtained from 
Escherichia coli BL21 Star (DE3).placIRare2 cells transformed with expression 
constructs harbouring either (A) AlaRS or, (B) SerRS and induced to express 
protein by IPTG-induction at 25oC for 3 h or auto-induction at 37oC for 16 h. 
The molecular weight of S. pneumoniae SerRS is approximately 50,000 Da. The 
molecular weight of S. pneumoniae AlaRS is 96,525 Da. 
 

After auto-induction at 37oC, AlaRS was visible in a soluble form but SerRS was 

mostly insoluble. However, both AlaRS and SerRS were produced in a soluble form 

during IPTG-induction at 25oC. Hence, this expression condition was used for large-

scale production of both enzymes. 

 

5.3.2. Large-scale expression and purification of AlaRS and SerRS 

For large-scale protein production, E. coli BL21 Star (DE3).placIRare2 cells that had 

been transformed with a vector containing either AlaRS or SerRS were cultured at 

37oC to an OD600nm of 0.5 when protein expression was induced by the addition of 

IPTG. Addition of IPTG to a final concentration of 1 mM was concurrent with the 
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growth temperature being reduced to 25oC for 3 h. Cells were harvested and a crude 

extract containing soluble protein was obtained as described in Chapter 2, section 

2.3.5  The crude extract was loaded onto a 5 mL cobalt column pre-equilibrated in 

50 mM sodium phosphate pH 7.0, 500 mM NaCl and 10 mM imidazole for 

purification of soluble protein using a modified version of the procedure developed 

by Lloyd et al. (2008). Protein was eluted from the column using wash steps 

containing 10 mM, 20 mM, 50 mM, 100 mM and 200 mM imidazole. Overall purity 

of the protein was assessed using SDS PAGE (Figure 5.2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
M - molecular weight standards,  
L - protein sample prior to loading onto the column,  
FT - flow through from the column during protein loading,  
W - protein collected during wash of the column with equilibration buffer. 
 
Figure 5.2: 12.5% SDS PAGE gels showing purification of hexa-histidine tagged 
S. pneumoniae AlaRS (A) and SerRS (B) from 1 L of Escherichia coli BL21 Star 
(DE3).placIRare2 cells on BD TALON cobalt resin. Lanes 1 - 23 represent 
protein eluted from the column using equilibration buffer substituted with 
different concentrations of imidazole. The molecular weight of S. pneumoniae 
SerRS is approximately 50,000 Da. The molecular weight of S. pneumoniae 
AlaRS is 96,525 Da. 
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In the case of both AlaRS and SerRS, most protein eluted from the column during 

wash with buffers containing 50 mM, 100 mM and 200 mM imidazole. Protein 

present in these fractions was dialysed against storage buffer containing 50 mM 

HEPES pH 7.0, 100 mM NaCl, 1 mM MgCl2, 1 mM DTT and 50% glycerol prior to 

freezing at -80oC. In order to check whether or not the enzymes were active, a small-

scale aminoacylation experiment was carried out using a pool of Micrococcus flavus 

tRNA isolated in vivo in combination with radiolabelled alanine and serine (Lloyd et 

al., 2008; von Ehrenstein, 1967; Zubay, 1962) 

 

5.4. Production of a single species of Streptococcus pneumoniae 

tRNAAla and tRNASer by in vitro transcription 

5.4.1. Identification of tRNAAla and tRNASer gene sequences from the genome of 

Streptococcus pneumoniae strain R6 

A search of the TIGR database identified four gene sequences within S. pneumoniae 

strain R6 encoding tRNAAla (all UGC anticodon) and a further four gene sequences 

encoding tRNASer (anticodons GGA, GCU and two with anticodon UGA). All four 

tRNAAla genes were of identical sequence. Only one sequence was selected for 

production of tRNASer (UGA anticodon). 

 

The sequence of the pneumococcal tRNAAla gene (anticodon UGC) 5’ 

GGGGCCTTAGCTCAGCTGGGAGAGCGCCTGCTTTGCACGCAGGAGGTCA

GCGGTTCGATCCCGCTAGGCTCCACCA 3’ was synthesised commercially and 

cloned into pIDTSMART-Kan by Integrated DNA Technologies (IDT) such that a 

T7 promoter sequence proceeded the gene and a 3’ BstNI site allowed incorporation 
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of the essential CCA terminus whilst ensuring suitability of the template for run-off 

transcription. 

 

The pneumococcal tRNASer gene (anticodon UGA) with the sequence 

5’GGAGGATTACCCAAGTCCGGCTGAAGGGAACGGTCTTGAAAACCGTCA

GGCGTGTAAAAGCGTGCGTGGGTTCGAATCCCACATCCTCCTCCA 3’ was 

cloned into pIDTSMART-Kan in the same way. 

 

5.4.2. Production of tRNAAla and tRNASer by run-off in vitro transcription using 

BstNI digested vector as template 

In order to obtain sufficient quantities of pIDTSMART-Kan-tRNAAla and 

pIDTSMART-Kan-tRNASer for run-off transcription, each vector was transformed 

into E. coli Top10 cells. A single colony from each transformation was used to 

inoculate 250 mL of LB. After growth for 12 h at 37oC, sufficient quantities of each 

vector were extracted from these cells using the Sigma maxi-prep kit. Each vector 

was digested with BamHI to determine overall DNA quality and BstNI in a separate 

reaction to check suitability for use as a template in run-off in vitro transcription 

(Figure 5.3). 
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Figure 5.3: 0.8% agarose gel showing suitability of (A) pIDTSMART-Kan-
tRNAAla and (B) pIDTSMART-Kan-tRNASer as templates for in vitro 
transcription before and after restriction digestion.  
 
Lane 1 - standard 1 kb ladder,  
Lane 2 - uncut vector,  
Lane 3 - BstNI restricted vector,  
Lane 4 - BamHI restricted vector. 
 

Given that, in each case, BstNI digestion successfully released the fragment 

encoding the tRNA gene, each digest reaction was scaled-up to obtain enough DNA 

to use as template for in vitro transcription. For large-scale template preparation, 1.5 

μg of each vector was digested with BstNI for 1 h at 65oC. The restriction digest was 

stopped and processed by the addition of 0.5 M EDTA pH 8.0 (1/20th of the total 

volume), 3 M sodium acetate pH 4.5 (1/10th of the total volume) and ethanol (2 

volumes).  Each reaction was vortexed and left at -20oC overnight to precipitate the 

DNA fragments. The DNA was pelleted and dried prior to resuspension in water.  

 

At this stage, the DNA was trialled as a template for in vitro transcription using the 

Ambion MEGAscript kit alongside the provided pTri-Xef control template as per 

manufacturer’s instructions. After DNase treatment to remove the template and 

phenol/chloroform extraction to remove free nucleotides, the yield of RNA produced 
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was assessed using both 25% and 15% denaturing acrylamide 8 M urea gels set up as 

described in Chapter 2, section 2.5.3 (Figure 5.4). 

 

 

 

 

 

 

 

 
 
Figure 5.4: Assessment of the yield of tRNAAla and tRNASer produced by in vitro 
transcription from BstNI digested template vector. Gels were stained with 
ethidium bromide. 
 
Lane 1 – sample of a control pool of Micrococcus flavus tRNA made in vivo, 
Lane 2 – RNA obtained from the 1.89 kb control template, 
Lane 3 – RNA obtained from BstNI digested pIDTSMART-Kan-tRNAAla, 
Lane 4 – RNA obtained from BstNI digested pIDTSMART-Kan-tRNASer. 
 

As shown above, in vitro transcription from the BstNI digested templates was 

unsuccessful in the case of both tRNAAla and tRNASer. One hypothesis for this was 

that there was not enough T7 RNA polymerase in the reaction to generate a high 

yield of product from such a small template fragment. In order to rectify this, the T7 

RNA polymerase gene was cloned from E. coli BL21 Star (DE3).placIRare2 

chromosomal DNA into two expression vectors: pProExHTa (providing an N-

terminal hexa-histidine tag) and pET28a (providing a C-terminal hexa-histidine tag). 

PCR amplification of the T7 RNA polymerase gene was carried out using pfx 

polymerase from Invitrogen as shown in Figure 5.5 (Chapter 2, section 2.2.2). 
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Figure 5.5: 0.8% agarose gel showing PCR amplification of the T7 RNA 
polymerase gene from the chromosomal DNA of Escherichia coli BL21 Star 
(DE3).placIRare2. Primers were designed to allow ligation into each vector by 
restriction of the PCR product with either BsaI or BamHI in combination with 
XhoI (see materials and methods for primer sequences). 
 
M - standard 1 kb ladder,  
Lanes 1 - 4 - T7 RNA polymerase PCR product.  
 

After successful amplification, the PCR product was restricted with BsaI and XhoI 

for ligation into NcoI/XhoI restricted pET28a. For ligation into pProExHTa, both the 

PCR product and the vector were digested with BamHI and XhoI. Successful clones 

were identified by sequencing. 

 

One clone with the correct sequence for each vector was used for protein expression 

experiments. In addition to this, a construct containing a mutant form of the 

polymerase (P266L) was obtained from Professor Dreyfus (Centre National de la 

Recherché Scientifique, France).  The mutation P266L within T7 RNA polymerase 

is known to cause stabilisation of the transcription complex between nucleotides five 

and eight which results in significant reduction in abortive cycling during the 

transcription process in comparison to the wild-type enzyme (Guillerez et al. 2005). 

Both wild-type and P266L T7 RNA polymerase were subjected to small-scale 

protein expression trials to determine optimal conditions (Figure 5.6). 
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M - molecular weight standards,  
SC - soluble proteins expressed by non-induced cells,  
SI - soluble protein expressed by induced cells,  
IC - insoluble protein expressed by non-induced cells,  
II - insoluble proteins expressed by induced cells. 
 
Figure 5.6: 12.5% SDS PAGE gels of crude extracts from three expression 
strains of Escherichia coli transformed with either wild-type (A and B) or 
P266L (C) T7 RNA polymerase and induced to express protein by IPTG-
induction at 25oC for 4 h. The molecular weight of T7 RNAP is 98,855 Da. 
 

In the case of wild-type T7 RNA polymerase, expression in the soluble fraction was 

only visible for protein tagged on the C-terminus. E. coli B834 (DE3) cells were 

found to give the best overall yield of protein for both wild-type and P266L RNA 
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polymerase and were thus deemed the most appropriate host for large-scale 

expression.  

 

For large-scale expression,  E. coli B834 (DE3) cells that had been transformed with 

a vector containing either the wild-type or P266L RNAP gene were cultured at 37oC 

to an OD600nm of 0.6 when protein expression was induced by the addition of 1 mM 

IPTG. Addition of IPTG was concurrent with the growth temperature being reduced 

to 25oC for 4 h. Cells were harvested and a crude extract of soluble protein was 

obtained as described in Chapter 2, section 2.3.5. The crude extract was loaded onto 

a 5 mL cobalt column pre-equilibrated in 50 mM sodium phosphate pH 7.0, 500 mM 

NaCl, 10 mM imidazole and 5% glycerol for purification of soluble protein. Protein 

was eluted from the column using wash steps containing 10 mM, 20 mM, 50 mM 

and 200 mM imidazole. Overall purity of the protein was assessed using SDS PAGE 

(Figure 5.7). 
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M - molecular weight standards,  
L - protein sample prior to loading onto the column,  
FT - flow through from the column during protein loading,  
W1 - protein collected during wash of the column with equilibration buffer,  
W2 - protein collected during wash with buffer containing 20 mM imidazole,  
P - insoluble protein remaining in the cell pellet. 
 
Figure 5.7: 12.5% SDS PAGE gels showing purification of hexa-histidine tagged 
wild-type (A) and P266L (B) T7 RNA polymerase from 1 L of Escherichia coli 
B834 (DE3) cells on BD TALON cobalt resin. Lanes 1 - 15 represent protein 
eluted from the column using equilibration buffer substituted with different 
concentrations of imidazole. The molecular weight of T7 RNAP is 98,855 Da. 
 

In the case of both wild-type and P266L T7 RNAP, most of the polymerase eluted in 

the fractions collected when the column was washed with buffers containing 50 mM 

and 200 mM imidazole. These fractions were pooled and concentrated using 

vivaspin columns before dialysis against storage buffer containing 50 mM HEPES 

pH 7.0, 200 mM NaCl, 1 mM DTT and 50% glycerol (Chapter 2, sections 2.4.8 and 
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2.4.5). Each protein was at a final concentration of approximately 30 mg mL-1 prior 

to storage at -80oC. 

 

Both wild-type and P266L T7 RNAP were used to replace the RNA polymerase 

provided in the Ambion MEGAscript kit with the aim of producing large quantities 

of tRNAAla and tRNASer. After repeat of the run-off transcription reaction described 

above, the overall yield of RNA produced using these enzymes was assessed by 

denaturing 8M urea acrylamide gel electrophoresis (Figure 5.8). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
W - wild-type polymerase,  
P - P266L polymerase,  
K - polymerase provided with the Ambion MEGAscript kit, 
MF - control pool of Micrococcus flavus tRNA made in vivo. 
 
Figure 5.8: Assessment of the yield of tRNAAla and tRNASer produced by in vitro 
transcription from BstNI digested template vector using wild-type and P266L 
RNAP. Control reactions were carried out using the 1.89 kb template provided 
in the Ambion MEGAscript kit. Ala and Ser refer to reactions whereby BstNI 
restricted pIDTSMART-Kan-tRNAAla and pIDTSMART-Kan-tRNASer were 
used as templates respectively with the indicated polymerase. Half of the total in 
vitro transcription reaction was loaded in each case. Gels were stained with 
ethidium bromide. 
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When run on denaturing urea acrylamide gels, the in vitro transcription products 

formed using wild-type and P266L polymerase resulted in a combination of 

smearing and distinct bands. In addition to this, the generated RNA products were 

not recognised as substrates by the appropriate tRNA synthetase enzymes and could 

not be aminoacylated. This could have been due to abortive cycling of the enzymes 

resulting in transcripts that did not contain the correct CCA end or, alternatively, 

RNase degradation. BstNI digestion of the template DNA could have resulted in 

insufficient quantities of the fragment of interest being precipitated after the digest. 

This would have resulted in insufficient amounts of template being added to the 

transcription reactions and would thus explain the low yield of tRNA produced. In 

order to address this, primers were designed to amplify the tRNA gene from the 

vectors with the aim of producing a high yield template for in vitro transcription.  

 

5.4.3. Production of tRNAAla and tRNASer by run-off in vitro transcription using 

PCR products of the tRNA genes as template 

In order to amplify both tRNA genes by PCR, primers were designed to ensure that 

the amplified products would have a 5’ T7 promoter region and a 3’ CCA end which 

is important for the function of tRNA (see Chapter 2, Table 2.7 for primer 

sequences).  Amplification of the tRNA genes was only obtained using Accuprime 

Taq polymerase and an annealing temperature of 55oC (Figure 5.9). 
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Figure 5.9: 2% agarose gel showing amplification of (A) tRNAAla from 
pIDTSMART-Kan-tRNAAla and (B) tRNASer from pIDTSMART-Kan-tRNASer 
using Accuprime Taq DNA polymerase.  The tRNAAla and tRNASer PCR 
products were 94 and 111 base pairs in length, respectively, including the T7 
promoter region. 
 
Lane 1 - Standard 1 kb ladder,  
Lanes 2 – 6 - tRNAAla PCR product, 
Lanes 7 – 11 - tRNASer PCR product. 
 

After amplification, the PCR products for each gene were pooled and purified using 

the Qiagen PCR clean-up kit. Purified DNA was quantified using the nanodrop with 

typical yields from five pooled PCR reactions estimated at between 150 and 200 ng. 

Typically, 2 μL of this template DNA was used per 20 μL in vitro transcription 

reaction with either the Ambion MEGAscript or the Fermentas T7 high yield kit.  

 

Initial yields of tRNA obtained using PCR product as template were assessed on a 

2% agarose gel (Figure 5.10). Prior to loading, the tRNA was diluted 1 in 20. 

Subsequently, 1 μL of this diluted RNA was added to an equal volume of loading 

dye (provided with the Fermentas kit) and heat denatured at 80oC for 10 min. After 

purification of the RNA by phenol/chloroform extraction and ethanol precipitation, 

the pellet was resuspended in 4 mM MgCl2. To ensure correct folding of the tRNA, 

the final product was heated to 80oC for 10 min and then left to cool slowly to room 
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temperature. The purity of the final product was assessed by denaturing urea 

acrylamide electrophoresis (Figure 5.10). 

 

 

 

 

 

 

 

 

Figure 5.10: Assessment of the yield of tRNAAla and tRNASer produced by in 
vitro transcription using PCR product as a template.  (A) Samples were diluted 
1 in 20 and run on a 2% agarose gel before purification. (B) After purification 
and re-folding, overall purity of the tRNA was assessed by running 2 μL of the 
final 50 μL volume on a 5% denaturing 8M urea acrylamide gel. The tRNAAla 
transcript was 72 bases in length and the tRNASer transcript was 87 bases in 
length. Gels were stained with ethidium bromide. 
 
Lane 1 - Fermentas High Range Riboruler RNA ladder, 
Lane 2 - tRNAAla,  
Lane 3 - tRNASer.  
 

For both tRNAAla and tRNASer, the product produced by in vitro transcription ran as 

a single band on both agarose and denaturing acrylamide gels. This suggested that 

only full-length tRNA was being produced as opposed to numerous different species 

of different lengths. To test the suitability of this RNA as a substrate for MurM, the 

ability of the appropriate tRNA synthetase enzyme to aminoacylate each species 

with the cognate amino acid was tested according to Lloyd et al. (2008).  

 

Each small-scale charging experiment contained 20 µg of tRNA and 40 µg of the 

appropriate tRNA synthetase enzyme. The aminoacylation reaction was followed 
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over time by spotting 10 μL onto filter paper and then carrying out TCA 

precipitation of the RNA to remove un-incorporated radiolabel. The attachment of 

radiolabelled amino acid to tRNA was monitored by scintillation counting as 

described in Chapter 2, section 2.5.3 (Figure 5.11). 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 5.11: Charging of tRNAAla and tRNASer with alanine and serine by 
pneumococcal AlaRS and SerRS respectively at 37oC. Control data values 
carried out in the absence of any tRNA have been subtracted from each dataset. 
The specific activity of the alanine label was calculated to be 220 counts per 
minute (cpm) per picomole. The specific activity of the serine label was 
calculated to be 379 cpm per picomole. Error bars represent variation in the 
duplicated raw data and, where not visible, are less than the size of the symbol 
that marks individual data points. 
 

The data presented in Figure 5.11 indicated that the tRNA produced by in vitro 

transcription was readily utilised as a substrate by the appropriate tRNA synthetase 

enzyme. This clearly demonstrated that any secondary modifications made to the 

tRNA within an in vivo situation have no appreciable impact on the ability of the 

tRNA to act as substrate for either the synthetase enzymes or MurM. 

 

For both tRNAAla and tRNASer, the aminoacylation reaction was complete after 40 

min incubation at 37oC. Therefore, this length of incubation was used for large-scale 

aminoacylation to generate substrate for MurM. Incubation of this aminoacylated 
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tRNA with MurM and Lipid II resulted in the production of radiolabelled Lipid II 

indicating that the tRNA made by in vitro transcription was both recognised and 

utilised by MurM as substrate. 

 

5.5. Kinetic characterisation of MurM using pure in vitro 

transcribed Streptococcus pneumoniae Ala-tRNAAla and Ser-tRNASer 

as substrate 

In order to determine the kinetic properties of each MurM enzyme, the concentration 

of Lipid II and aminoacylated tRNA were varied in separate experiments. Time 

courses were carried out at the highest and lowest concentration of the substrate 

whose concentration was being varied in the assay. This allowed for selection of a 

single time point in the linear region of MurM activity and also provided a means of 

determining appropriate concentrations of MurM to add to each assay. Typically, the 

linear region for MurM activity occurred within the first 2 min of the reaction as was 

also found to be the case by Lloyd et al. (2008).  

 

Measurement of MurM activity within the first 10 min of the reaction was 

considered to be essential for avoidance of interference to the measurement of 

kinetic parameters caused by depletion of the aminoacylated tRNA substrate. This 

follows the finding made by Lloyd et al. (2008) indicating that the half-life of      

Ala-tRNAAla is 46 min upon incubation in the pH 6.8 MurM assay buffer used in this 

study. With this in mind, the overall activity of MurM was assessed by following the 

incorporation of radiolabelled [H3]-alanine or [H3]-serine onto Lipid II within the 

first 2 min of the reaction. Lipid II was separated away from other assay components 

using butanol extraction as described in Chapter 2, section 2.5.5. 
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When the concentration of tRNAAla or tRNASer was varied between 0.1 and 1.8 μM, 

a typical 30 μL assay consisted of 50 mM MOPS pH 6.8, 30 mM KCl, 10 mM 

MgCl2, 1.5% (w/v) CHAPS, 1 mM DTT, 1 mM L-alanine or L-serine, 10 µM Lipid 

II and MurM. When the concentration of Lipid II was varied between 5 and 200 μM, 

a typical 30 μL assay consisted of 50 mM MOPS pH 6.8, 30 mM KCl, 10 mM 

MgCl2, 1.5% (w/v) CHAPS, 1 mM DTT, 1 mM L-alanine or L-serine, 5 µM [H3]-

Alanyl-tRNAAla or [H3]-Seryl-tRNASer (with a specific activity of between 50-100 

cpm per picomole) and MurM. In each case, the reaction was always initiated by the 

addition of the radiolabelled tRNA substrate. Assays were stopped and processed as 

described by Lloyd et al. (2008). 

 

5.5.1. Kinetic characterisation of Streptococcus pneumoniae strain R6 MurM 

In the case of MurMR6, 126 nM of enzyme was found to be sufficient to determine 

the linear region of activity when [H3]-Ala-tRNAAla was used as substrate. During 

time course experiments, the 1 min time sample was found to be within the linear 

region of activity when both [H3]-Ala-tRNAAla and Lipid II concentration were 

varied. For this reason, 1 min was chosen as the ideal time for incubation for 

collection of kinetic data in both cases (Figure 5.12, A and C). 

 

When the same concentration of enzyme was used with [H3]-Ser-tRNASer, reactions 

proceeded very quickly and were over within the first 30 sec. Repetition of time 

courses at different concentrations of MurMR6 indicated that 11 nM of protein was 

most suitable for visualisation of the linear region of activity. In this case, the 1 min 

time sample was within the linear region when both Lipid II and [H3]-Ser-tRNASer 

concentrations were varied (Figure 5.12, B and D). Hence, this time point was used 
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for the collection of kinetic data. All data collected were in counts per minute (cpm) 

and, for the purpose of the Hanes-Woolf plot, this was converted to μM of 

radiolabelled Lipid II formed per min using the specific activity of the label. An 

example of the calculations used for determination of the key kinetic parameters of 

MurM from the Hanes-Woolf plot is shown in Table 5.1, page 228. Time course data 

for MurMR6 are presented in Figure 5.12. 

(A) 5 µM and 200 µM Lipid II (Co-substrate: Ala-tRNA Ala)
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(B) 5 µM and 200 µM Lipid II (Co-substrate: Ser-tRNA Ser)
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(C) 0.1 µM and 1.8 µM Ala-tRNAAla (Co-substrate: Lipid II)
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(D) 0.1 µM and 1.8 µM Ser-tRNASer (Co-substrate: Lipid II)
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Figure 5.12: Time course data obtained for MurMR6 with (A) 126 nM of enzyme 
in the presence of 5 µM and 200 µM Lipid II (LII) with [H3]-Ala-tRNAAla as a 
co-substrate; (B) 11 nM of enzyme in the presence of 5 µM and 200 µM LII with 
[H3]-Ser-tRNASer as a co-substrate; (C) 126 nM of enzyme in the presence of 0.1 
µM and 1.8 µM [H3]-Ala-tRNAAla with LII as a co-substrate; (D) 11 nM of 
enzyme in the presence of 0.1 µM and 1.8 µM [H3]-Ser-tRNASer with LII as a 
co-substrate. Control data, obtained by omission of LII from the reaction, have 
been subtracted from the raw counts to give cpm in the butanol phase presented 
on the y-axis. Note that cpm is a direct measure of the formation of 
radiolabelled LII. Error bars represent variation in the duplicated raw data 
and, where not visible, are less than the size of the symbol that marks individual 
data points. 
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Given the nature of the assays, the Hanes-Woolf plot was considered to be the best 

way to represent the data. The Hanes-Woolf plot represents the data graphically with 

the ratio of initial substrate concentration, [S], to reaction velocity, (V), being plotted 

against initial substrate concentration, [S]. This relationship produces a straight line 

plot where the gradient is equal to 1/Vmax, the y intercept equals Km/Vmax and the x 

intercept is equivalent to –Km.  

 

In the Lineweaver-Burk plot (1/V against 1/[S]); data points are not distributed 

homogeneously across the linear transformation resulting in a gross 

misrepresentation of the error in the values. In addition to this, the presence of the 

error containing variable (V) on both axes of the Eadie-Hofstee plot (V against 

V/[S]) causes angular distortion of the error in the data set. Therefore, in contrast to 

other kinetic plots, the Hanes-Woolf plot does not over-emphasise data that are 

acquired at a low substrate concentration (Sangeetha et al., 2008). The kinetic data 

collected for MurMR6 are presented graphically using the Hanes-Woolf plot in 

Figure 5.13.  
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(A) Kinetics of MurM R6 with 5 µM S. pneumoniae  Ala-tRNAAla

when [Lipid II] is varied
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(B) Kinetics of MurM R6 with 5 µM S. pneumoniae  Ser-tRNASer

when [Lipid II] is varied
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(C) Kinetics of MurM R6 with 10 µM Lipid II
when [Ala-tRNAAla] is varied
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(D) Kinetics of MurM R6 with 10 µM Lipid II
when [Ser-tRNASer] is varied

[Ser-tRNASer] (µM)[S
er

-tR
N

AS
er

] /
µ

m
ol

 L
ip

id
 II

-S
er

 p
er

 m
in

(µ
M

 /
µ

m
ol

 m
in

-1
) x

 1
06

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

 
 
Figure 5.13: Hanes-Woolf plots of kinetic data obtained for MurMR6 when (A) 
the concentration of LII was varied in the presence of 5 μM [H3]-Ala-tRNAAla, 
(B) the concentration of LII was varied in the presence of 5 μM [H3]-Ser-
tRNASer, (C) the concentration of [H3]-Ala-tRNAAla was varied in the presence 
of 10 μM LII, (D) the concentration of [H3]-Ser-tRNASer was varied in the 
presence of 10 μM LII. The r2 values for these data are 0.98, 0.96, 0.98 and 0.97 
respectively. Error bars represent variation in the duplicated raw data and, 
where not visible, are less than the size of the symbol that marks individual data 
points. 
 
 
From the Hanes-Woolf plots shown in Figure 5.13, it was possible to use GraphPad 

Prism 5 to determine the x-intercept and 1/slope for each of the four conditions 

described. This enabled calculation of the key kinetic parameters for MurMR6 which 

are presented in Table 5.1 alongside an example calculation. 
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Substrate Apparent 
Km 

(μM) 

Apparent Vmax 
 

(moles sec-1 mg-1) 

Apparent 
kcat 

(min-1) 

kcat/Km 

 
(min-1. µM-1) 

r2 
value 

 
Lipid II 

(Ala-tRNAAla) 
 

 
35.49 
± 1.70 

 
6.26 x 10-10 

± 0.30 

 
1.78 

± 0.09 

 
0.05 

 
0.98 

 
Lipid II 

(Ser-tRNASer) 
 

 
6.77 

± 0.51 

 
3.69 x 10-9 

± 0.28 

 
10.50 
± 0.79 

 
1.55 

 
0.96 

 
Ala-tRNAAla 

 

 
0.33 

± 0.02 
 

 
1.36 x 10-10 

± 0.08 

 
0.39 

± 0.02 

 
1.18 

 
0.98 

 
Ser-tRNASer 

 

 
0.19 

± 0.01 
 

 
1.30 x 10-9 

± 0.08 

 
3.71 

± 0.22 

 
19.53 

 
0.97 

 
Example calculation of kinetic parameters when [Lipid II] was varied in the 
presence of Ala-tRNAAla for MurMR6: 
 
The stock of MurMR6 was at 0.45 mg ml-1. This was diluted 2 in 3 and then 1 in 5 
prior to use in assays.  
The molecular weight of MurMR6 is 47441.20 Da. 
3 μl was used in each reaction = 0.00018 mg of protein 
 
The X intercept (-Km) = -35.49, therefore Km = 35.49 μM 
Gradient = 1 / Vmax, so Vmax = 1/slope = 0.000006764 
Vmax = 0.000006764 μM min-1 0.00018 mg MurM-1 

Vmax = 0.037578 μM min-1  mg-1 

Vmax = 0.037578 x 10-6 M  min-1 mg-1 

Vmax = 6.26296 x 10-10 M sec-1 mg-1 

Vmax = 3.77 x 1014 molecules sec-1 mg-1 

How many molecules does 1 mg of MurMR6 contain? 
(1 x 10-3 g/47441.2) x (6.02 x 1023) = 1.27 x 1016 molecules 
Therefore turnover number = (3.77 x 1014)/ (1.27 x 1016) 
= 0.03 sec-1 = 1.78 min-1 
 

 
 
Table 5.1: Summary of key kinetics parameters for MurMR6 as calculated from 
the Hanes-Woolf plots shown in Figure 5.13. The column entitled substrate 
refers to the substrate whose concentration was being varied in the assay. The 
enzyme used in each assay had no histidine tag and the tRNA was a single 
species in each case. 
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In the case of MurMR6, the apparent Km for Lipid II was 5-fold lower in the presence 

of Ser-tRNASer in comparison to Ala-tRNAAla. This was also partly reflected in the 

lower apparent Km for Ser-tRNASer when compared to Ala-tRNAAla at a constant 

concentration of Lipid II. As was the shown to be the case for MurMPn16 in the work 

undertaken by Lloyd et al. (2008), MurMR6 appeared to have an overall preference 

for the addition of serine over alanine to Lipid II. 

 

In order to determine the differences between the catalytic efficiencies of MurMR6 

when provided with Ser-tRNASer compared to Ala-tRNAAla, an additional constant 

referred to as apparent kcat/Km was calculated. This constant is able to provide a 

measure of the catalytic efficiency of an enzyme as it functions at substrate 

concentrations that are below saturating. This is because apparent Km is inversely 

proportional to the affinity of an enzyme for its substrate and apparent kcat is directly 

proportional to the turnover efficiency of the enzyme. Using this constant and the 

data shown in Table 5.1, the catalytic efficiency of MurMR6 with Lipid II was found 

to be 31-fold greater when Ser-tRNASer as opposed to Ala-tRNAAla was provided as 

the co-substrate. In the presence of a constant concentration of Lipid II, the catalytic 

efficiency of MurMR6 was found to be 17-fold greater when Ser-tRNASer was 

provided as the substrate.  

 

5.5.2. Kinetic characterisation of Streptococcus pneumoniae strain Pn16 MurM 

In the case of MurMPn16, 91 nM of enzyme was found to be sufficient to determine 

the linear region of activity when [H3]-Ala-tRNAAla was used as substrate. During 

time course experiments, the 1 min time sample was found to be within the linear 

region of activity when both [H3]-Ala-tRNAAla and Lipid II concentration were 
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varied. Therefore, this time point was used for collection of kinetic data in both cases 

(Figure 5.14, A and C). 

 

However, when [H3]-Ser-tRNASer was used as substrate the reaction proceeded too 

quickly and the linear region could not be detected when 91 nM of enzyme was used 

in the assay. As a result of this, the enzyme was diluted further and time courses 

were repeated. The most appropriate amount of enzyme to use in the presence of 

[H3]-Ser-tRNASer was found to be 18 nM (Figure 5.14, B and D). Determination of 

the linear region in this case resulted in the 1 min time sample being suitable. Time 

course data acquired for MurMPn16 at the chosen enzyme concentrations are shown in 

Figure 5.14. 
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(A) 5 µM and 200 µM Lipid II (Co-substrate: Ala-tRNA Ala)
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(B) 5 µM and 200 µM Lipid II (Co-substrate: Ser-tRNA Ser)
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(C) 0.1 µM and 1.8 µM Ala-tRNAAla (Co-substrate: Lipid II)
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(D) 0.1 µM and 1.8 µM Ser-tRNASer (Co-substrate: Lipid II)
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Figure 5.14: Time course data obtained for MurMPn16 with (A) 91 nM of 
enzyme in the presence of 5 µM and 200 µM Lipid II (LII) with [H3]-Ala-
tRNAAla as a co-substrate; (B) 18 nM of enzyme in the presence of 5 µM and 
200 µM LII with [H3]-Ser-tRNASer as a co-substrate; (C) 91 nM of enzyme in 
the presence of 0.1 µM and 1.8 µM [H3]-Ala-tRNAAla with LII as a co-substrate; 
(D) 18 nM of enzyme in the presence of 0.1 µM and 1.8 µM [H3]-Ser-tRNASer 
with LII as a co-substrate. Control data, obtained by omission of LII from the 
reaction, have been subtracted from the raw counts to give cpm in the butanol 
phase presented on the y-axis. Note that cpm is a direct measure of the 
formation of radiolabelled LII. Error bars represent variation in the duplicated 
raw data and, where not visible, are less than the size of the symbol that marks 
individual data points. 
 

Using the 1 min time point in each case, a series of kinetic data comparable to that 

obtained for MurMR6 were collected for MurMPn16. Hanes-Woolf plots obtained for 

MurMPn16 are shown in Figure 5.15.  
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(A) Kinetics of MurM Pn16 with 5 µM S. pneumoniae  Ala-tRNAAla

when [Lipid II] is varied
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(B) Kinetics of MurM Pn16 with 5 µM S. pneumoniae Ser-tRNASer

when [Lipid II] is varied
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(C) Kinetics of MurM Pn16 with 10 µM Lipid II
when [Ala-tRNAAla] is varied
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(D) Kinetics of MurM Pn16 with 10 µM Lipid II
when [Ser-tRNASer] is varied
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Figure 5.15: Hanes-Woolf plots of kinetic data obtained for MurMPn16 when (A) 
the concentration of LII was varied in the presence of 5 μM [H3]-Ala-tRNAAla, 
(B) the concentration of LII was varied in the presence of 5 μM [H3]-Ser-
tRNASer, (C) the concentration of [H3]-Ala-tRNAAla was varied in the presence 
of 10 μM LII, (D) the concentration of [H3]-Ser-tRNASer was varied in the 
presence of 10 μM LII. The r2 values for these data are 0.99, 0.97, 0.97 and 0.96 
respectively. Error bars represent variation in the duplicated raw data and, 
where not visible, are less than the size of the symbol that marks individual data 
points. 
 
 
From the Hanes-Woolf plots shown in Figure 5.15, it was possible to use GraphPad 

Prism 5 to determine the x-intercept and 1/slope for each of the four conditions 

described. This enabled calculation of the key kinetic parameters for MurMPn16 

which are presented in Table 5.2. 
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Substrate Apparent 
Km 

(μM) 

Apparent Vmax 
 

(moles sec-1 mg-1) 

Apparent 
kcat 

(min-1) 

kcat/Km 

 
(min-1. µM-1) 

r2 
value 

 
Lipid II 

(Ala-tRNAAla) 
 

 
17.98 
± 0.79 

 
7.39 x 10-10 

± 0.33 

 
2.10 

± 0.09 

 
0.12 

 
0.99 

 
Lipid II 

(Ser-tRNASer) 
 

 
12.82 
± 0.92 

 
1.43 x 10-9 

± 0.10 

 
4.06 

± 0.29 

 
0.32 

 
0.97 

 
Ala-tRNAAla 

 
 

 
1.29 

± 0.09 
 

 
7.30 x 10-10 

± 0.49 

 
2.08 

± 0.14 

 
1.61 

 

 
0.97 

 

 
Ser-tRNASer 

 

 
0.25 

± 0.02 
 

 
8.47 x 10-10 

± 0.57 

 
2.41 

± 0.16 

 
9.64 

 
0.96 

 

Table 5.2: Summary of key kinetics parameters for MurMPn16 as calculated 
from the Hanes-Woolf plots shown in Figure 5.15. The column entitled 
substrate refers to the substrate whose concentration was being varied in the 
assay. The enzyme used in each assay had no histidine tag and the tRNA was a 
single species in each case. 
 

In the case of MurMPn16, the apparent Km of the enzyme for Lipid II was 1.4-fold 

lower in the presence of Ser-tRNASer as opposed to Ala-tRNAAla indicating a 

possible preference for this co-substrate. In addition to this, a 5-fold lower value in 

apparent Km for Ser-tRNASer was determined in comparison to Ala-tRNAAla when 

the concentration of Lipid II was kept constant.  

 

The catalytic efficiency of MurMPn16 with Lipid II was found to be 3-fold greater 

when Ser-tRNASer was the co-substrate. This was exacerbated further at constant 

Lipid II concentration, when the catalytic efficiency of the enzyme was found to be 

6-fold greater when Ser-tRNASer was provided as the tRNA substrate. Therefore, 

MurMPn16 was found to have a preference for Ser-tRNASer over Ala-tRNAAla in this 
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study. This preference has also been confirmed in the work carried out by Lloyd et 

al. (2008). However, the serine specificity of MurMPn16 was found to be much less 

pronounced when compared to that of MurMR6.  

 

5.5.3. Kinetic characterisation of Streptococcus pneumoniae strain 159 MurM 

In the case of  MurM159, 13 nM of enzyme was found to be sufficient to determine 

the linear region of activity when [H3]-Ala-tRNAAla was used as substrate. During 

time course experiments, the 1 min time sample was within the linear region of 

activity when both [H3]-Ala-tRNAAla and Lipid II concentration were varied and 

hence was used for collection of kinetic data in both cases (Figure 5.16, A and C). 

 

When [H3]-Ser-tRNASer was used as a substrate, 6 nM of  MurM159 was found to be 

suitable for determining the linear region of activity at both the highest and lowest 

concentrations of tRNA and Lipid II. Time course data with MurM159 at this 

concentration showed that the 1 min sample was within the linear region in each case 

and this was therefore a suitable time point for the collection of kinetic data (Figure 

5.16, B and D).  
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(A) 5 µM and 200 µM Lipid II (Co-substrate: Ala-tRNA Ala)
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(B) 5 µM and 200 µM Lipid II (Co-substrate: Ser-tRNA Ser)
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(C) 0.1 µM and 1.8 µM Ala-tRNAAla (Co-substrate: Lipid II)
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(D) 0.1 µM and 1.8 µM Ser-tRNASer (Co-substrate: Lipid II)
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Figure 5.16: Time course data obtained for MurM159 with (A) 13 nM of enzyme 
in the presence of 5 µM and 200 µM Lipid II (LII) with [H3]-Ala-tRNAAla as a 
co-substrate; (B) 6 nM of enzyme in the presence of 5 µM and 200 µM LII with 
[H3]-Ser-tRNASer as a co-substrate; (C) 13 nM of enzyme in the presence of 0.1 
µM and 1.8 µM [H3]-Ala-tRNAAla with LII as a co-substrate; (D) 6 nM of 
enzyme in the presence of 0.1 µM and 1.8 µM [H3]-Ser-tRNASer with LII as a 
co-substrate. Control data, obtained by omission of LII from the reaction, have 
been subtracted from the raw counts to give cpm in the butanol phase presented 
on the y-axis. Note that cpm is a direct measure of the formation of 
radiolabelled LII. Error bars represent variation in the duplicated raw data 
and, where not visible, are less than the size of the symbol that marks individual 
data points. 
 

A series of kinetic data equivalent to that obtained for both MurMR6 and MurMPn16 

were collected for MurM159 using the 1 min time sample as a representative of the 

linear region of activity. The kinetic data collected for MurM159 are presented 

graphically in Figure 5.17.  



Page 236 

(A) Kinetics of MurM 159 with 5 µM S. pneumoniae  Ala-tRNAAla

when [Lipid II] is varied
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(B) Kinetics of MurM 159 with 5 µM S. pneumoniae  Ser-tRNASer

when [Lipid II] is varied
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(C) Kinetics of MurM 159 with 10 µM Lipid II
when [Ala-tRNAAla] is varied
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(D) Kinetics of MurM 159 with 10 µM Lipid II
when [Ser-tRNASer] is varied
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Figure 5.17: Hanes-Woolf plots of kinetic data obtained for MurM159 when (A) 
the concentration of LII was varied in the presence of 5 μM [H3]-Ala-tRNAAla, 
(B) the concentration of LII was varied in the presence of 5 μM [H3]-Ser-
tRNASer, (C) the concentration of [H3]-Ala-tRNAAla was varied in the presence 
of 10 μM LII, (D) the concentration of [H3]-Ser-tRNASer was varied in the 
presence of 10 μM LII. The r2 values for these data are 0.99, 0.99, 0.98 and 0.99 
respectively. Error bars represent variation in the duplicated raw data and, 
where not visible, are less than the size of the symbol that marks individual data 
points. 
 
 
 
From the Hanes-Woolf plots shown in Figure 5.17, it was possible to use GraphPad 

Prism 5 to determine the x-intercept and 1/slope for each of the four conditions 

described. This enabled calculation of the key kinetic parameters for MurM159 which 

are presented in Table 5.3. 
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Substrate Apparent 
Km 

(μM) 

Apparent Vmax 
 

(moles sec-1 mg-1) 

Apparent 
kcat 

(min-1) 

kcat/Km 

 
(min-1. µM-1) 

r2 
value 

 
Lipid II 

(Ala-tRNAAla) 
 

 
5.96 

± 0.23 

 
4.54 x 10-9 

± 0.17 

 
13.00 
± 0.49 

 
2.18 

 
0.99 

 
Lipid II 

(Ser-tRNASer) 
 

 
1.11 

± 0.03 

 
2.43 x 10-9 

± 0.07 

 
6.92 

± 0.21 

 
6.23 

 
0.99 

 
Ala-tRNAAla 

 

 
0.51 

± 0.02 
 

 
3.84 x 10-9 

± 0.18 

 
11.00 
± 0.53 

 
21.57 

 
0.98 

 
Ser-tRNASer 

 

 
0.22 

± 0.01 
 

 
2.36 x 10-9 

± 0.11 

 
6.73 

± 0.30 

 
30.59 

 
0.99 

 
Table 5.3: Summary of key kinetics parameters for MurM159 as calculated from 
the Hanes-Woolf plots shown in Figure 5.17. The column entitled substrate 
refers to the substrate whose concentration was being varied in the assay. The 
enzyme used in each assay had no histidine tag and the tRNA was a single 
species in each case. 
 

In the case of MurM159, the apparent Km of the enzyme for Lipid II was 5-fold lower, 

thus potentially indicating tighter binding, when Ser-tRNASer was provided as the 

co-substrate. Despite this, the apparent turnover of Lipid II was 2-fold higher when 

Ala-tRNAAla was provided as the co-substrate. This was also found to be the case 

when the concentration of Lipid II was kept constant in the presence of Ser-tRNASer 

and Ala-tRNAAla. Overall, the catalytic efficiency of MurM159 with Lipid II was 

found to be 3-fold greater when Ser-tRNASer was the co-substrate and this effect was 

attributable to a reduction in apparent Km. In addition to this, the catalytic efficiency 

of the enzyme was 2-fold higher when Ser-tRNASer was the substrate at a constant 

concentration of Lipid II.   
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Whilst the turnover number of MurM159 was greater in the presence of Ala-tRNAAla, 

matching previous observations made by Lloyd et al. (2008), for the first time data 

in this study have indicated that, regardless of the allelic variant, MurM is more 

catalytically efficient when provided with Ser-tRNASer as the co-substrate. In the 

case of the three variants of MurM used in this study, this effect has been shown to 

be independent of the penicillin sensitivity of the strain of S. pneumoniae from 

which the enzyme was derived.  

 

5.5.4. Partial kinetic characterisation of Streptococcus pneumoniae strain 159 

MurM E229A:E307A in comparison to the wild-type enzyme 

As part of the metal binding work carried out in Chapter 4, a double mutant of 

MurM159 was made converting two functionally conserved glutamate residues, at 

positions 229 and 307, to alanine. Characterisation of this mutant protein by ITC 

indicated that its ability to bind magnesium was significantly reduced compared to 

the wild-type enzyme. Therefore, it was considered essential to determine the effect 

of the absence of bound magnesium on the catalytic mechanism of this mutant form 

of MurM159 in comparison to the wild-type enzyme. This was achieved by 

determination of the key kinetic parameters for the enzyme when the concentration 

of Lipid II was varied in the presence of the co-substrate [H3]-Ala-tRNAAla.  

 

Under these conditions, 11 nM of the mutant form of MurM159 was found to be 

sufficient to determine the linear region of activity for the enzyme. During time 

course experiments, the 30 sec time sample was found to be within the linear region 

of activity as shown in Figure 5.18 (A). Therefore, this time point was used for the 
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collection of a complete set of kinetic data for this enzyme which have been 

presented as a Hanes-Woolf plot in Figure 5.18 (B). 

(A) 5 µM and 200 µM Lipid II (Co-substrate: Ala-tRNA Ala)
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(B) Kinetics of MurM 159 E229A:E307A with 5µM
S. pneumoniae Ala-tRNAAla when [Lipid II] is varied
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Figure 5.18: (A) Time course data collected for 11 nM of MurM159 E229A: 
E307A in the presence of 5 µM and 200 µM LII with [H3]-Ala-tRNAAla as the 
co-substrate. Control data, obtained by omission of Lipid II from the reaction, 
have been subtracted from the raw counts to give cpm in the butanol phase 
presented on the y-axis. Note that cpm is a direct measure of the formation of 
radiolabelled LII. Error bars represent variation in the duplicated raw data 
and, where not visible, are less than the size of the symbol that marks individual 
data points. (B) Hanes-Woolf plot showing kinetic data obtained for 11 nM 
MurM159 E229A:E307A when the concentration of LII was varied in the 
presence of 5 μM [H3]-Ala-tRNAAla. The r2 value obtained for these data was 
0.99.  
 

For the purpose of comparison to the data obtained for wild-type MurM159, the key 

kinetic parameters obtained for this enzyme and MurM159 E229A:E307A are 

summarised below in Table 5.4. The kinetic parameters for MurM159 E229A: E307A 

were only assessed by varying the concentration of Lipid II in the presence of [H3]-

Ala-tRNAAla. 
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Form of 
MurM159 

 

Apparent 
Km 

(μM) 
 

Apparent Vmax 
 

(moles sec-1 mg-1) 
 

Apparent 
kcat 

(min-1) 
 

kcat/Km 

 
(min-1. µM-1) 

 

r2 
value 

 

 
Wild-type 

 
 

 
5.96 

± 0.23 
 

 
4.54 x 10-9 

± 0.17 

 
13.00 
± 0.49 

 
2.18 

 

 
0.99 

 

 
E229A: 
E307A 

 

 
2.93 

± 0.08 
 

 
2.00 x 10-9 

± 0.06 
 

 
5.70 

± 0.17 

 
1.95 

 
0.99 

 
Table 5.4: Comparison of the key kinetics parameters obtained for wild-type 
MurM159 and MurM159 E229A:E307A as calculated from the Hanes-Woolf plots 
shown in Figures 5.17 (A) and 5.18 (B), respectively. The enzyme used in each 
assay had no histidine tag and the concentration of Lipid II was varied between 
5 µM and 200 µM in the presence of [H3]-Ala-tRNAAla. 
 

Kinetic analysis of MurM159 E229A:E307A indicated that, whilst the enzyme 

appeared to have a 2-fold lower apparent Km for Lipid II than the wild-type enzyme 

when utilising Ala-tRNAAla as a co-substrate, the overall catalytic efficiencies of 

both mutant and wild-type MurM159 were very similar. This was caused by a 2-fold 

decrease in the apparent turnover number of the mutant enzyme which compensated 

for the overall reduction in apparent Km. This supports the data generated in Chapter 

4, which suggests that magnesium is not required for the catalytic activity of MurM.  

 

Thus, the hypothesis stated in Chapter 4 that magnesium may be responsible for co-

ordination of MurM with phospholipid head groups in the membrane was tested. 

This required assessment of the effects of cardiolipin, one of the major phospholipids 

within the pneumococcal cell membrane, on the apparent kinetic parameters 

obtained for all three variants of MurM in addition to MurM159 E229A:E307A 
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(Trombe et al., 1979). The results of these experiments are described in section 5.5.5 

below. 

 

5.5.5. Assessment of the effect of cardiolipin on the kinetic activities of MurMR6, 

MurMPn16, MurM159 and MurM159 E229A:E307A 

According to Trombe et al. (1979), the membrane of S. pneumoniae is comprised of 

two glycolipids (monoglucosyldiacylglycerol and galactosylglucosyldiacylglycerol), 

two acidic phospholipids (phosphatidylglycerol and cardiolipin) and one neutral lipid 

(diacylglycerol). Given that MurM has a lipid substrate, it is hypothesised to interact 

with the membrane during catalysis. Therefore, prior to this study, Dr Adrian Lloyd 

(University of Warwick) assessed the impact of both cardiolipin and 

phosphatidylglycerol on histidine-tagged versions of MurMPn16 and MurM159. In the 

presence of cardiolipin, the catalytic efficiencies of MurM159 and MurMPn16 with 

respect to Lipid II were found to be increased by 2-fold and 10-fold, respectively. In 

contrast to this, response to phosphatidylglycerol was found to be strain dependent 

causing an inhibitory and a mild stimulatory effect on MurM159 and MurMPn16, 

respectively (unpublished data).  

 

Given that the stimulatory effect of cardiolipin was conserved across both variants of 

MurM, the ability of MurM159 E229A:E307A to respond to this phospholipid was 

tested alongside untagged forms of MurM159, MurMPn16 and MurMR6. Kinetic 

parameters were determined for each enzyme when the concentration of Lipid II was 

varied between 5 µM and 200 µM in the presence of [H3]-Ala-tRNAAla and a final 

concentration of 2 mg mL-1 cardiolipin (dispensed in methanol and dried down under 

nitrogen prior to resuspension in the other assay components listed in Chapter 2, 
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section 2.5.5).  This experiment was ultimately designed to test the hypothesis that 

magnesium is required by MurM for coordination with phospholipid head groups in 

the membrane.  

 

As described in sections 5.5.1 to 5.5.4, time course experiments were carried out in 

each case to allow determination of an appropriate enzyme concentration and for 

assessment of a suitable time point within the linear region of activity to use for 

further kinetic analysis. In each case the 30 sec time point was found to fall within 

the linear region when enzyme concentrations of 16 nM (MurMR6), 12 nM 

(MurMPn16), 6 nM (MurM159) and 11 nM (MurM159 E229A:E307A) were used 

(Figure 5.19). 
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(A) MurMR6, 5µM and 200 µM Lipid II
(plus cardiolipin)
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(B) MurMPn16, 5µM and 200 µM Lipid II
(plus cardiolipin)
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(C) MurM159, 5µM and 200 µM Lipid II
(plus cardiolipin)
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(D) MurM159 E229A:E307A, 5µM and 200 µM Lipid II
(plus cardiolipin)
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Figure 5.19: Time course data obtained with 5 µM and 200 µM LII in the 
presence of 5 µM [H3]-Ala-tRNAAla and a final concentration of 2 mg mL-1 
cardiolipin for (A) 16 nM MurMR6, (B) 12 nM MurMPn16, (C) 6 nM MurM159 
and, (D) 11 nM MurM159 E229A:E307A. Control data, obtained by omission of 
LII from the reaction, has been subtracted from the raw counts to give cpm in 
the butanol phase presented on the y-axis. Note that cpm is a direct measure of 
the formation of radiolabelled LII. Error bars represent variation in the 
duplicated raw data and, where not visible, are less than the size of the symbol 
that marks individual data points. 
 
 
A series of kinetic data, whereby the concentration of Lipid II was varied in the 

presence of constant concentrations of both [H3]-Ala-tRNAAla and cardiolipin, were 

collected for each form of MurM using the 30 sec time sample as a representative of 

the linear region of activity. These data sets are presented in the form of Hanes-

Woolf plots in Figure 5.20.  
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(A) Kinetics of MurM R6 with 5 µM S. pneumoniae  Ala-tRNAAla

when [Lipid II] is varied
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(B) Kinetics of MurM Pn16 with 5 µM S. pneumoniae  Ala-tRNAAla

when [Lipid II] is varied
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(C) Kinetics of MurM 159 with 5 µM S. pneumoniae  Ala-tRNAAla

when [Lipid II] is varied
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(D) Kinetics of MurM 159 E229A; E307A with
5 µM S. pneumoniae  Ala-tRNAAla when [Lipid II] is varied
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Figure 5.20: Hanes-Woolf plots showing kinetic data obtained when the 
concentration of LII was varied between 5 µM and 200 µM with 5 µM [H3]-Ala-
tRNAAla as a co-substrate in the presence and absence of cardiolipin for (A) 
MurMR6, (B) MurMPn16, (C) MurM159 and (D) MurM159 E229A:E307A. The r2 
values obtained for the plus cardiolipin datasets were 0.99, 0.99, 0.98 and 0.99, 
respectively. Error bars represent variation in the duplicated raw data and, 
where not visible, are less than the size of the symbol that marks individual data 
points. 
 

Differences between key kinetic parameters determined for each enzyme in the 

presence and absences of cardiolipin are shown in Table 5.5. The effect of 

cardiolipin on each form of MurM was only investigated by varying the 

concentration of Lipid II in the presence of [H3]-Ala-tRNAAla. 
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MurM variant Apparent 
Km 

(μM) 

Apparent Vmax 
 

(moles sec-1 mg-1) 

Apparent 
kcat 

(min-1) 

kcat/Km 

 
(min-1. µM-1) 

r2 
value 

 
 

R6 
(- cardiolipin) 

 

 
35.49 
± 1.70 

 

6.26 x 10-10 

± 0.30 

 
1.78 

± 0.09 

 
0.05 

 
0.98 

 
R6 

(+ cardiolipin) 
 

 
2.05 

± 0.09 

 
8.06 x 10-10 

± 0.36 

 
2.30 

± 0.10 

 
1.12 

 
0.99 

 
Pn16 

(- cardiolipin) 
 

 
17.98 
± 0.79 

 
7.39 x 10-10 

± 0.33 

 
2.10 

± 0.09 

 
0.12 

 
0.99 

 
Pn16 

(+ cardiolipin) 
 

 
0.60 

± 0.02 

 

9.32 x 10-10 

± 0.31 

 
2.65 

± 0.09 

 
4.42 

 
0.99 

 
159 

(- cardiolipin) 
 

 
5.96 

± 0.23 

 

4.54 x 10-9 

± 0.17 

 
13.00 
± 0.49 

 
2.18 

 
0.99 

 
159 

(+ cardiolipin) 
 

 
1.38 

± 0.12 

 

3.00 x 10-9 

± 0.23 

 
7.80 

± 0.61 

 
5.70 

 
0.98 

 
159 

E229A:E307A 
(- cardiolipin) 

 

 
2.93 

± 0.08 

 

2.00 x 10-9 

± 0.06 

 
5.70 

± 0.17 

 
1.95 

 
0.99 

 
159 

E229A:E307A 
(+ cardiolipin) 

 

 
14.39 
± 0.66 

 

6.00 x 10-9 

± 0.28 

 
17.50 
± 0.81 

 
1.20 

 
0.99 

 
Table 5.5: Summary of the kinetic parameters obtained for MurMR6, 
MurMPn16, MurM159 and MurM159 E229A:E307A in the presence and absence 
of cardiolipin. The enzymes used in each assay had no histidine tag and the 
concentration of Lipid II was varied between 5 µM and 200 µM in the presence 
of [H3]-Ala-tRNAAla. 
 

As shown in Table 5.5, wild-type MurMR6, MurMPn16 and MurM159 were all 

stimulated by cardiolipin. The catalytic efficiency of MurMR6 with respect to Lipid II 

when Ala-tRNAAla was the co-substrate was increased by 20-fold in the presence of 

cardiolipin. This effect was largely attributable to a 17-fold reduction in the apparent 
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Km of Lipid II binding in the presence of this phospholipid. MurMPn16 was found to 

be stimulated to a greater degree than MurMR6. The presence of cardiolipin increased 

the catalytic efficiency of MurMPn16 with Lipid II by 35-fold when Ala-tRNAAla was 

provided as the co-substrate. Again, this effect was attributable to a significant 

reduction (30-fold) in the apparent Km of Lipid II binding.  

 

In the case of MurM159, the stimulatory effect was much milder than that 

demonstrated for the MurM proteins from penicillin-sensitive strains R6 and Pn16. 

The overall catalytic efficiency of MurM159 was increased 2-fold in the presence of 

cardiolipin supporting unpublished findings made by Dr Adrian Lloyd (University of 

Warwick). Interesting, the apparent Km of Lipid II binding and the turnover number 

of MurM159 E229A:E307A were both increased, by 5-fold and 3-fold respectively, in 

the presence of cardiolipin. However, this caused no appreciable increase in the 

catalytic efficiency of the enzyme. These results support the hypothesis that the 

magnesium-deficient mutant of MurM159, E229A:E307A cannot respond to 

stimulation by cardiolipin in the same way as the wild-type enzyme. For the first 

time, these results implicate magnesium in the interaction of MurM with the 

phospholipid bilayer and confirm a regulatory role for cardiolipin in the activity of 

this enzyme.  

 

Unfortunately, MurMPn16 mutated at positions 229 and 307 was inactive with its 

substrates. Therefore, it can only be assumed that mutation of these residues in this 

variant of MurM would also prevent stimulation by cardiolipin. In addition, this has 

prevented investigation into the role of these residues in the strain-dependent 

regulation of MurM by phosphatidylglycerol. Further work is required to determine 
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whether the MurM proteins found in penicillin-sensitive strains of S. pneumoniae are 

more sensitive to stimulation by cardiolipin and, hence, to mutation at these residues 

than mosaic MurM variants found in penicillin-resistant strains. In addition, 

assessment of changes in the pneumococcal membrane phospholipid composition 

during antibiotic stress may provide more insight into the relationship between the 

activity of the MurM protein, levels of cell wall cross-linking and penicillin-

resistance. 

 

5.6. Investigation into the substrate specificity of MurM: The use of 

mis-aminoacylated Ser-tRNAAla as a substrate 

In all living organisms, the first stage in the maintenance of the fidelity of protein 

synthesis is achieved by tRNA synthetase enzymes. These enzymes are essential to 

the cell and responsible for the transfer of matching amino acids to the 3’ end of their 

cognate tRNA species. Initially, this process involves activation of the carboxyl-

group of an amino acid by ATP to form aminoacyl-adenylate. The amino acid can 

then be transferred from adenylate to the tRNA molecule. This process is highly 

selective and controlled by differences in binding energies between amino acids and 

the synthetase and also by editing functions of the enzyme (Fersht, 1977). Therefore, 

mis-activation of both glycine and serine by alanyl-tRNA synthetase (AlaRS) is of 

particular interest.  

 

Within AlaRS, two mechanisms exist for correction of mis-acylation of tRNAAla 

with either glycine or serine. One mechanism involves the editing domain of AlaRS 

and the other is concerned with free-standing homologues of the AlaRS editing 
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domain, called AlaXps proteins, which are encoded in the genomes of many 

organisms across all three kingdoms of life (Chong et al., 2008; Guo et al., 2009).  

 

The fact that AlaRS is the only tRNA synthetase known to have such a widely 

distributed homologue of its editing domain encoded separately within the genome 

suggests that mis-aminoacylation of tRNAAla with either glycine or serine has been a 

difficult problem for evolution to contend with. In addition, the toxic effects of this 

mis-aminoacylation are more pronounced with serine than glycine in both the mouse 

and the bacterial model system. This finding alone explains why, whilst the editing 

domain of AlaRS can hydrolyse Gly-tRNAAla and Ser-tRNAAla, many of the free- 

standing AlaXps proteins can only hydrolyse the latter (Sokabe et al., 2005). This 

implies that mis-aminoacylation with serine is particularly problematic for AlaRS 

and that AlaXps proteins may have evolved to contend specifically with this 

problem.  

 

Mis-aminoacylation of tRNAAla with serine by AlaRS has been exploited in this 

study to enable characterisation of the substrate specificity of MurM, which utilises 

both Ala-tRNAAla and Ser-tRNASer.  Characterisation of the kinetics of MurM with 

Ser-tRNAAla was thus expected to allow for determination of whether recognition of 

the tRNA or the amino acid moiety of the substrate is more important for catalysis. 

Given that MurM is conserved across all strains of S. pneumoniae but has so far not 

been found to be essential, characterisation of the enzyme with Ser-tRNAAla was also 

thought to be important when combined with the knowledge that no homologues of 

AlaXps proteins have been identified within the genome of this organism.  This 

suggested that either the editing domain of S. pneumoniae AlaRS is very efficient at 
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hydrolysing Ser-tRNAAla or that this organism has a different mechanism for 

ensuring that the fidelity of protein synthesis is not disrupted by the production of 

Ser-tRNAAla. These two possibilities were investigated in this study by examination 

of the ability of full-length S. pneumoniae AlaRS to produce Ser-tRNAAla and 

presentation of this mis-aminoacylated tRNA species to MurM. 

 

5.6.1. Investigation into the ability of full-length Streptococcus pneumoniae 

Alanyl-tRNA synthetase (AlaRS) to mis-aminoacylate tRNAAla with serine 

In order to investigate the ability of full-length S. pneumoniae AlaRS to mis-

aminoacylate tRNAAla with serine, small-scale aminoacylation experiments were 

carried out as described in section 5.4.3. The synthetase enzyme was incubated with 

tRNAAla in combination with radiolabelled serine and the mis-aminoacylation 

reaction was followed by TCA precipitation and scintillation counting. A 

comparison of the results obtained for acylation of tRNAAla with alanine and serine 

by AlaRS is shown in Figure 5.21. 

 

 

 

 

 

 

 

 
 
Figure 5.21: Time course data showing acylation of tRNAAla with alanine and 
serine by full-length Streptococcus pneumoniae AlaRS. Error bars represent 
variation in the duplicated raw data and, where not visible, are less than the 
size of the symbol that marks individual data points. 
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From the data presented in Figure 5.21, it was determined that 0.003 pmol of AlaRS 

were able to generate 2.500 pmol of aminoacylated Ala-tRNAAla using the 

conditions described in Chapter 2, section 2.5.3. The overall efficiency of this 

reaction according to the specific activity of the [H3]-labelled alanine was 

determined to be 80%. In addition to this, 0.003 pmol of AlaRS were able to 

generate 0.300 pmol of mis-aminoacylated Ser-tRNAAla. The overall efficiency of 

the mis-aminoacylation reaction was 10%. However, given that the concentration of 

Ser-tRNAAla produced was 100-fold in excess of the concentration of AlaRS in the 

reaction, it can be assumed that mis-aminoacylated Ser-tRNAAla is produced by and 

released from pneumococcal AlaRS as a viable threat to protein synthesis. 

 

The inability of AlaRS to prevent the production of Seryl-tRNAAla potentially 

compromises the fidelity of protein synthesis. Therefore, the ability of MurM to 

correct this inaccuracy by utilisation of the mis-aminoacylated Ser-tRNAAla product 

was investigated. The structure of AlaRS can be subdivided into four independent 

domains based on their function: aminoacylation, tRNA recognition, editing and 

oligomerisation (Jasin et al., 1983; Naganuma et al., 2009). Given that low amounts 

of Ser-tRNAAla were generated by full-length S. pneumoniae AlaRS, the ability of 

the catalytic domain (residues 1 - 460) to carry out this mis-aminoacylation was 

investigated as a means of generating large amounts of tRNA substrate that could be 

used in kinetics experiments with MurM. 
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5.6.2. Expression and purification of the catalytic domain of Streptococcus 

pneumoniae AlaRS 

An expression construct containing a histidine-tagged version of the catalytic domain 

of S. pneumoniae AlaRS was obtained from Dr Adrian Lloyd (University of 

Warwick). Small-scale IPTG-induction expression trials were carried out using E. 

coli B834 (DE3) and BL21 Star (DE3).placIRare2 cells (Figure 5.22). 

 

 

 

 

 

 

 

 

 

 

M - molecular weight standards,  
SC - soluble proteins expressed by non-induced cells  
SI - soluble proteins expressed by induced cells,     
IC - insoluble proteins expressed by non-induced cells,  
II - insoluble proteins expressed by induced cells. 
 
Figure 5.22: 12.5% SDS PAGE gel showing the crude extracts from two 
expression strains of Escherichia coli transformed with the catalytic domain of 
S. pneumoniae AlaRS and induced to express protein by 1mM IPTG-induction 
at 28oC for 4 h.  
 

Small-scale expression trials indicated that both E. coli B834 (DE3) and BL21 Star 

(DE3).placIRare2 cells were able to express the catalytic domain of S. pneumoniae 

AlaRS in a soluble form under the described condition. For large-scale expression,      



252 
 

E. coli BL21 Star (DE3).placIRare2 cells harbouring the catalytic domain expression 

construct were cultured at 37oC to an OD600nm of 0.5 when expression was induced 

by the addition of IPTG to a final concentration of 1 mM. Upon the addition of 

IPTG, the growth temperature was reduced to 28oC for 3 h. After induction, cells 

were harvested and sonicated to obtain a crude extract as described for full-length 

AlaRS. The crude extract was loaded onto a 5 mL cobalt column pre-equilibrated in 

buffer containing 50 mM sodium phosphate pH 7.0, 500 mM NaCl and 20% 

glycerol. Protein was eluted from the column by step washing with buffer containing 

0 mM, 10 mM, 50 mM and 200 mM imidazole (Figure 5.23).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
M - molecular weight standards,  
L - a sample of the soluble protein loaded onto the column,   
FT - a sample of the flow through from the column during protein loading,                 
W1 - protein eluted during wash with column equilibration buffer,              
W2 - protein eluted during wash with buffer containing 10 mM imidazole. 
 
Figure 5.23: 12.5% SDS PAGE gels showing purification of the catalytic 
domain of Streptococcus pneumoniae AlaRS on BD Talon cobalt resin. Lanes 1 – 
12 show samples of protein eluted from the column during two wash steps with 
buffer supplemented with 50 mM and 200 mM imidazole, respectively. 
 

Most protein eluted from the column during wash with buffer containing 50 mM 

imidazole. These fractions were pooled and dialysed against storage buffer as 

described previously in section 5.3.2 before freezing at -80oC.  
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5.6.3. Mis-aminoacylation of tRNAAla with serine by the catalytic domain of       

Streptococcus pneumoniae AlaRS 

Activity of the catalytic domain of S. pneumoniae AlaRS was tested in small-scale 

aminoacylation experiments with tRNAAla using both alanine and serine as substrate. 

Results of these time courses are shown in Figure 5.24. 

(A)

0 10 20 30 40 50 60 70 80 90 100
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Time (mins)

pi
co

m
ol

es
 o

f A
la

-t
R

N
A

A
la

 f
or

m
ed

(B)

0 10 20 30 40 50 60 70 80 90 100
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Time (mins)

pi
co

m
ol

es
 o

f S
er

-t
R

N
A

A
la

fo
rm

ed

Figure 5.24: Time course data showing (A) aminoacylation of tRNAAla with 
alanine and (B) mis-aminoacylation of tRNAAla with serine by the catalytic 
domain of Streptococcus pneumoniae AlaRS. Error bars represent variation in 
the duplicated raw data and, where not visible, are less than the size of the 
symbol that marks individual data points. 
 

The data presented in Figure 5.24 indicated that the catalytic domain of                    

S. pneumoniae AlaRS was able to generate mis-aminoacylated Ser-tRNAAla with the 

same efficiency as was demonstrated for the production of Ala-tRNAAla. 

Consequently, this enzyme was used for large-scale preparation of mis-

aminoacylated Ser-tRNAAla for use in MurM kinetic activity assays. 

 

5.6.4. Kinetic characterisation of MurMR6, MurMPn16 and MurM159 with mis-

aminoacylated Ser-tRNAAla as a substrate 

The kinetic properties of MurMR6, MurMPn16 and MurM159 with mis-aminoacylated 

[H3]-Ser-tRNAAla as a substrate were investigated by keeping the concentration of 

Lipid II constant (10 μM) and varying the concentration of tRNA between 0.1 and 
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1.8 μM as described previously in section 5.5. In each case, time courses were used 

to ensure that the linear region of activity could be identified and a suitable time 

point for collection of kinetic data selected.  

 

Initial time courses were carried out using the concentrations of each enzyme that 

were found to be most suitable during previous assays with Ala-tRNAAla and Ser-

tRNASer. In every case, the reaction proceeded very quickly and was over in the first 

30 sec when these enzyme concentrations were applied. A further 10-fold dilution of 

each MurM was required in order to visualise the linear region of activity with the 30 

sec time sample falling within this region. The final concentrations of MurM used in 

the assay were as follows: 0.63 nM (MurM159), 1.00 nM (MurMR6) and 2.00 nM 

(MurMPn16). Time course data collected at these enzyme concentrations are 

presented in Figure 5.25. 



255 
 

(A) MurMR6, 0.1 µM and 1.8 µM Ser-tRNAAla
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(B) MurMPn16, 0.1 µM and 1.8 µM Ser-tRNAAla
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(C) MurM159, 0.1 µM and 1.8 µM Ser-tRNAAla

Time (mins)

cp
m

 in
 th

e 
bu

ta
no

l p
ha

se

0 1 2 3 4
0

10

20

30

40

50

0.1 µM Ser-tRNAAla

1.8 µM Ser-tRNAAla

 

Figure 5.25: Time course data obtained using 0.1 µM and 1.8 µM [H3]-Ser-
tRNAAla in the presence of 10 µM LII for (A) 1.00 nM MurMR6, (B) 2.00 nM 
MurMPn16 and, (C) 0.63 nM MurM159. Control data, obtained by omission of 
LII from the reaction, have been subtracted from the raw counts to give cpm in 
the butanol phase presented on the y-axis. Note that cpm is a direct measure of 
the formation of radiolabelled LII. Error bars represent variation in the 
duplicated raw data and, where not visible, are less than the size of the symbol 
that marks individual data points. 
 

A series of kinetic data, whereby the concentration of [H3]-Ser-tRNAAla was varied 

in the presence of a constant concentration of Lipid II, were collected for each form 

of MurM using the 30 sec time sample as a representative of the linear region of 

activity. These data sets have been presented as Hanes-Woolf plots in Figure 5.26.  
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(A) Kinetics of MurM R6 with 10 µM Lipid II
when [Ser-tRNAAla] is varied
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(B) Kinetics of MurM Pn16 with 10 µM Lipid II
when [Ser-tRNAAla] is varied
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(C) Kinetics of MurM 159 with 10 µM Lipid II
when [Ser-tRNAAla] is varied
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Figure 5.26: Hanes-Woolf plots of kinetic data obtained for (A) MurMR6, (B) 
MurMPn16 and (C) MurM159 when mis-aminoacylated Ser-tRNAAla was used as 
substrate.  Kinetic data were collected by varying the concentration of Ser-
tRNAAla between 0.1 and 1.8 μM in the presence of 10 μM Lipid II. The r2 
values for these data sets are 0.92, 0.89 and 0.98 respectively. Error bars 
represent variation in the duplicated raw data and, where not visible, are less 
than the size of the symbol that marks individual data points. 
 

For the purpose of comparison to the data sets obtained when Ala-tRNAAla and Ser-

tRNASer were provided as substrates in the presence of a constant concentration of 

Lipid II, the key kinetic parameters obtained from the Hanes-Woolf plots shown in 

Figure 5.26 have been summarised in Table 5.6. 
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tRNA 
substrate 

Apparent 
Km 

(μM) 

Apparent Vmax 
 

(moles sec-1 mg-1) 

Apparent 
kcat 

(min-1) 

kcat/Km 

 
(min-1. µM-1) 

r2 

value 
 

 
MurMR6 

 
Ala-tRNAAla 

 
0.33 

± 0.02 
1.36 x 10-10 

± 0.08 
0.39 

± 0.02 
1.18 0.98 

Ser-tRNASer 

 
0.19 

± 0.01 
1.30 x 10-9 

± 0.08 
3.71 

± 0.22 
19.53 0.97 

Ser-tRNAAla 

 
0.96 

± 0.09 
2.60 x 10-8 

± 0.26 
73.40 
± 7.34 

76.46 0.92 

 
MurMPn16 

 
Ala-tRNAAla 

 
1.29 

± 0.09 
7.30 x 10-10 

± 0.49 
2.08 

± 0.14 
1.61 0.97 

Ser-tRNASer 

 
0.25 

± 0.02 
8.47 x 10-10 

± 0.57 
2.41 

± 0.16 
9.46 0.96 

Ser-tRNAAla 

 
0.39 

± 0.05 
1.30 x 10-8 

± 0.18 
36.90 
± 5.17 

94.62 0.89 

 
MurM159 

 
Ala-tRNAAla 

 
0.51 

± 0.02 
3.84 x 10-9 

± 0.18 
11.00 
± 0.53 

21.57 0.98 

Ser-tRNASer 

 
0.22 

± 0.01 
2.36 x 10-9 

± 0.11 
6.73 

± 0.30 
30.59 0.99 

Ser-tRNAAla 

 
0.06 

± 0.01 
1.5 x 10-8 

± 0.08 
41.90 
± 2.10 

698.33 0.98 

 
Table 5.6: Summary of key kinetic parameters for MurMR6, MurMPn16 and 
MurM159 when mis-aminoacylated Ser-tRNAAla was provided as substrate. 
Values were calculated from the Hanes-Woolf plots shown in Figure 5.26. The 
enzyme used in each assay had no histidine tag and the tRNA was a single 
species in each case. 
 

When mis-aminoacylated Ser-tRNAAla was provided as a substrate in the presence of 

a constant concentration of Lipid II, the catalytic efficiency of MurM was increased 

dramatically regardless of the strain from which the protein was derived. The 

catalytic efficiency of MurMR6 was increased by 65-fold in comparison to Ala-

tRNAAla and 4-fold in comparison to Ser-tRNASer. This effect was attributable to a 

190-fold and a 20-fold improvement in apparent kcat, respectively. This is indicative 
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of MurM recognising both the tRNA and the aminoacyl-moieties of its tRNA 

substrate. 

 

The catalytic efficiency of MurMPn16 was increased 58-fold in comparison to Ala-

tRNAAla and 10-fold in comparison to Ser-tRNASer. As was the case with MurMR6, 

this effect was mostly due to an 18-fold and a 15-fold improvement in apparent kcat, 

respectively. The improvement in the catalytic efficiency of MurM159 was also 

significant with a 30-fold increase in comparison to Ala-tRNAAla and a 20-fold 

increase in comparison to Ser-tRNASer. This effect was attributable to an 8-fold and a 

3-fold reduction in apparent Km, respectively, as well as an increase in apparent kcat.   

 

The overall improvement in the catalytic efficiency of MurM when mis-

aminoacylated Ser-tRNAAla was provided as a substrate suggests that MurM may 

substitute for AlaXps proteins in S. pneumoniae, protecting the fidelity of protein 

synthesis by correcting mistakes made by AlaRS. This is a novel finding linking 

peptidoglycan biosynthesis and the fidelity of protein synthesis together. Further 

investigations into the interaction of MurM with its tRNA substrate and the 

specificity of this reaction were made using a 2’-amino mini-helix analogue of 

tRNAAla (section 5.7). 
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5.7. Investigation into the substrate specificity of MurM: 

Characterisation of the acceptance of the amino acid moiety from 

the tRNA substrate using a 2’-amino mini-helix analogue of Ala-

tRNAAla  

During aminoacylation of a tRNA species, the appropriate tRNA synthetase enzyme 

is responsible for transferring amino acid residues from an adenylate species to either 

the 2’ or the 3’ hydroxyl of the terminal adenine nucleotide (A76) of a molecule of 

tRNA. Upon completion of this process, spontaneous trans-esterification occurs 

resulting in flipping of the amino acid residue between these two positions. AlaRS 

belongs to the class II tRNA synthetase family and, therefore, always aminoacylates 

A76 at the 3’ hydroxyl (Arnez and Moras, 1997). This process is illustrated in Figure 

5.27. 
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Figure 5.27: Illustration of alanylation at the 3’ hydroxyl of the terminal 
adenine (A76) of S. pneumoniae tRNAAla by AlaRS. Usually, the availability of 
two hydroxyl groups on A76 means that, after alanylation by AlaRS, alanine 
remains associated with the tRNA in equilibrium between the 2’ and the 3’ state 
(D). 
 
 
Prior to the work undertaken in this study, Dr Adrian Lloyd (University of Warwick) 

used both a substrate and a 2’-deoxy substrate mini-helix tRNAAla derivative to 

determine if the non-esterified hydroxyl present on the 3’ terminal adenosine of Ala-

tRNAAla is involved in MurM catalysis (unpublished data). 
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The structure of the 2’- deoxy mini-helix tRNAAla is shown in Figure 5.28. The 

terminal adenine of the substrate mini-helix tRNAAla was as shown in Figure 5.27 

(B). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.28: Structure of the 2’-deoxy mini-helix substrate of tRNAAla used in 
studies undertaken by Dr Adrian Lloyd (University of Warwick). Note the 
replacement of the 2’- OH on A76 with H. The structure of the mini-helix shown 
in (A) was adapted from Beuning and Musier-Forsyth (2000). 
 

Both the substrate mini-helix tRNAAla and the 2’-deoxy mini-helix tRNAAla could be 

aminoacylated on the 3’ hydroxyl of A76 by full-length S. pneumoniae AlaRS. 

However, whilst the alanine moiety was able to undergo spontaneous trans-

esterification between the 2’ and the 3’ hydroxyl in the substrate mini-helix, it 

remained associated with the 3’ hydroxyl of A76 in the 2’-deoxy mini-helix. Upon 

presentation to MurM, the substrate mini-helix Ala-tRNAAla, with a 3’ and a 2’ 

hydroxyl on A76, was utilised by the enzyme with the production of Lipid II-Ala in 

the same way as full-length Ala-tRNAAla. However, the 2’-deoxy mini-helix Ala-

tRNAAla was neither a substrate nor an inhibitor of MurM (Dr Adrian Lloyd, 



262 
 

unpublished data). This implied that MurM will only accept alanine from the 2’ 

hydroxyl of Ala-tRNAAla. 

 

Further confirmation of the acceptance of the amino acid by MurM from the 2’ 

hydroxyl of A76 was achieved in this study using an additional 2’- amino mini-helix 

analogue of tRNAAla. In this mini-helix analogue of tRNAAla, the adenine of the 

CCA end (A76) is comprised of a 2’ amine group in place of the hydroxyl group as 

shown in Figure 5.29.  

 

Figure 5.29: Structure of the 2’-amino mini-helix substrate of tRNAAla used in 
this study and synthesised by Thermo Scientific, USA. Note the replacement of 
the 2’- OH on A76 with NH2. The structure of the mini-helix shown in (A) was 
adapted from Beuning and Musier-Forsyth (2000). 
 

The design of the 2’-amino mini-helix analogue of tRNAAla was based on the work 

of Fraser and Rich (1973), who demonstrated that aminoacylation of 2’-amino 

tRNAAla on the 3’ hydroxyl of A76 resulted in irreversible trans-esterification of 
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alanine to the 2’ amino group and subsequent tethering of the amino acid at this 

position by the formation of a stable peptide bond. Given the inherent stability of this 

peptide bond, it was hypothesised that the 2’-amino mini-helix Ala-tRNAAla would 

only inhibit the MurM catalysed reaction if the protein accepts the amino acid from 

the 2’ position of A76 subsequently supporting the unpublished findings made by Dr 

Adrian Lloyd with the 2’-deoxy mini-helix of Ala-tRNAAla. 

 

5.7.1. Recognition of the 2’-amino mini-helix analogue of tRNAAla by AlaRS 

In this study, the 2’-amino mini-helix tRNAAla analogue was exploited for the 

purpose of characterisation of the recognition of the aminoacyl moiety of tRNA by 

MurM. In order to achieve this, it was necessary to ensure that AlaRS recognised the 

species as a substrate for the generation [H3]-Ala-tRNAAla. A small-scale 

aminoacylation experiment was carried out as described previously (section 5.4.3) to 

determine acceptance of the 2’-amino mini-helix tRNAAla as a substrate (Figure 

5.30). 

 

 

 

 

 

 

 

Figure 5.30: Time course data showing acylation of the 2’-amino mini-helix 
analogue of tRNAAla with [H3]-alanine by full-length Streptococcus pneumoniae 
AlaRS. Using the specific activity of the label, the overall efficiency of the 
acylation reaction with alanine was found to be the 53%. Error bars represent 
variation in the duplicated raw data and, where not visible, are less than the 
size of the symbol that marks individual data points. 
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Given that the 2’-amino mini-helix analogue of tRNAAla was recognised and 

aminoacylated by full-length AlaRS, it was possible scale-up the reaction presented 

in Figure 5.30 to generate enough analogue to present to MurM. Modification of the 

mini-helix to replace the 2’ hydroxyl group with an amino group should have 

resulted in the formation of a stable peptide bond between the RNA and the amino 

acid as opposed to the normal ester bond upon aminoacylation by AlaRS.  

 

In order to ensure this had occurred, the stability of the 2’ amino bond was tested by 

following the deacylation rate of the 2’-amino mini-helix analogue of [H3]-Ala-

tRNAAla in the assay buffer used for determining the kinetics of MurM (see Chapter 

2, section 2.5.5). As a control, the deacylation rate of full-length [H3]-Ala-tRNAAla 

was also monitored (Figure 5.31). At each time point, a 10 μL sample was taken 

from the reaction and spotted onto filter paper. This was dropped into 10% TCA 

(w/v) to separate the charged tRNA from free radiolabel. Deacylation was monitored 

by a reduction in signal over time as detected by scintillation counting. 

 

Figure 5.31: Time courses showing deacylation of the 2’-amino mini-helix [H3]-
Ala-tRNAAla analogue and full-length [H3]-Ala-tRNAAla over time in MurM 
assay buffer. Counts per minute have been plotted as a percentage of the zero 
time point reading. Error bars represent variation in the duplicated raw data 
and, where not visible, are less than the size of the symbol that marks individual 
data points. 
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As predicted, the bond between the amino acid and the tRNA in the aminoacylated 

2’-amino mini-helix [H3]-Ala-tRNAAla analogue was stable with no drop in signal 

over the 20 min incubation period. In contrast to this, full-length [H3]-Ala-tRNAAla 

showed complete deacylation after just 20 min incubation in MurM assay buffer. 

The half-life for full-length [H3]-Ala-tRNAAla was calculated to be 8.7 min from the 

data shown in Figure 5.31. 

 

5.7.2. Presentation of the 2’-amino mini-helix analogue of [H3]-Ala-tRNAAla to          

Streptococcus pneumoniae strains R6 and 159 MurM 

In order to investigate whether MurM could utilise the aminoacylated 2’-amino 

mini-helix analogue as substrate, time courses were carried out in the presence of a 

constant concentration of Lipid II (10 μM) and [H3]-Ala-tRNAAla 2’-amino mini-

helix analogue (0.5 µM) as described in sections 5.5.1 and 5.5.3. These time courses 

were carried out with 126 nM and 13 nM MurM proteins from a highly penicillin-

resistant strain of S. pneumoniae (159) and a penicillin-sensitive strain of S. 

pneumoniae (R6), respectively (Figure 5.32). 
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Figure 5.32: Time courses comparing the activity of (A) MurMR6 and (B) 
MurM159 with the aminoacylated 2’-amino mini-helix [H3]-Ala-tRNAAla 
analogue and full-length [H3]-Ala-tRNAAla. Control data was obtained in the 
same way when Lipid II was omitted from the reaction. Control data have been 
subtracted from the data shown in these plots. Error bars represent variation in 
the duplicated raw data and, where not visible, are less than the size of the 
symbol that marks individual data points. 
 

The results shown in Figure 5.32 suggested that the 2’-amino mini-helix [H3]-Ala-

tRNAAla analogue was not a substrate for MurM as assessed by the attachment of 

radiolabelled alanine to Lipid II. In order to determine whether the 2’-amino mini-

helix Ala-tRNAAla analogue was an inhibitor of MurM, it was necessary to 

aminoacylate this tRNA species with non-radiolabelled alanine. Following 

aminoacylation by AlaRS, it was essential to purify any remaining non-

aminoacylated analogue away from aminoacylated analogue. This was achieved 

using nickel-immobilised Thermus thermophilus EF-Tu as described in Chapter 2, 

section 2.5.4 (Ribeiro et al., 1995). 

 

To assess the inhibitory potential of the 2’-amino mini-helix Ala-tRNAAla analogue, 

a series of 30 min single time-point assays were carried out using MurMPn16. 

MurMPn16 was chosen as the most appropriate enzyme to use in inhibition studies 
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because it was found to have the highest apparent Km for Ala-tRNAAla in the kinetics 

studies presented in sections 5.5.1 to 5.5.3.   

 

In each of these experiments, total cpm in the butanol phase was assessed after 

incubation of 91 nM MurMPn16 with 10 µM Lipid II and 0.6 µM full-length [H3]-

Ala-tRNAAla under the conditions described in Chapter 2, section 2.5.5. Two 

additional reactions were set-up as above after supplementation with either 2 µM 

aminoacylated 2’-amino mini-helix analogue or 2 µM non-aminoacylated 2’-amino 

mini-helix analogue. The results of these experiments are shown in Table 5.7. 

 
MurM assay condition 

 
cpm in the 

butanol phase 
after 30 min 

Minus Lipid II control reaction 25 ± 2 
Minus 2’-amino mini-helix analogue 101 ± 8 
Plus 2 µM aminoacylated 2’-amino mini-helix analogue 52 ± 5 
Plus 2 µM non-aminoacylated 2’-amino mini-helix analogue 111 ± 8 

 
Table 5.7: Results of four 30 min single time-point assays carried out with 
MurMPn16 to assess whether the 2’-amino mini-helix analogue of tRNAAla was 
an inhibitor of MurM in either the non-aminoacylated or the aminoacylated 
form. 
 

The results shown in Table 5.7, suggested that the non-aminoacylated form of the 2’-

amino mini-helix analogue of tRNAAla was not an inhibitor of MurM as the cpm in 

the butanol phase was equivalent to that obtained in the absence of this tRNA 

species. In contrast to this, a reduction in cpm was seen when 2 µM aminoacylated 

2’-amino mini-helix analogue was included in the reaction. This result established 

that an IC50 determination for the aminoacylated 2’-amino mini-helix analogue was 

required.  
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IC50 determination was carried out using 91 nM MurMPn16 in the presence of 10 µM 

Lipid II and full-length [H3]-Ala-tRNAAla at half apparent Km (0.6 µM). Given that 2 

µM aminoacylated 2’-amino mini-helix analogue appeared to cause a 50% inhibition 

of MurM activity under these conditions, the concentration of this tRNA species was 

varied between 0.25 µM and 6 µM for the purpose of generating an IC50 curve. All 

assays were incubated at 37oC for 1 min prior to being stopped and processed as 

described in Chapter 2, section 2.5.5. The IC50 plot generated from these data, using 

0% inhibition as the cpm in the butanol phase in the absence of any aminoacylated 

2’-amino mini-helix analogue, is shown in Figure 5.33. 

 

 

 

 

 

 

 

 

Figure 5.33: IC50 curve showing % inhibition of MurMPn16 by 2’-amino mini-
helix Ala-tRNAAla in the presence of 10 µM Lipid II and 0.6 µM full-length 
[H3]-Ala-tRNAAla. Control data obtained by omission of Lipid II from the 
reaction have been subtracted in each case. Error bars represent variation in 
the duplicated raw data and, where not visible, are less than the size of the 
symbol that marks individual data points. 
 

The data presented in Figure 5.33 indicated that the 2’-amino mini-helix Ala-

tRNAAla analogue was a potent inhibitor of MurMPn16 with an IC50 of 0.5 µM. 

Unpublished data generated by Dr Adrian Lloyd (University of Warwick) using an 

aminoacylated 2’-deoxy mini-helix analogue of tRNAAla showed that, when alanine 
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was attached to the 3’ hydroxyl of the terminal adenine of tRNAAla, it was not 

recognised as a substrate by MurM. Together, these results provide the first 

confirmatory evidence for MurM catalysis proceeding by selective transfer of the 

aminoacyl moiety from the 2’ hydroxyl of the terminal adenine of the tRNA 

substrate to Lipid II. 

 

5.8. Discussion 

High-level penicillin resistance in S. pneumoniae requires the acquisition of low- 

affinity penicillin-binding proteins in combination with the activity of the MurM 

protein (Filipe et al., 2002). As a result of this, determination of the factors that 

influence the activity of MurM is essential for the development of successful 

inhibitors towards the enzyme. In this study, kinetic characterisation was carried out 

for the MurM protein from S. pneumoniae strain R6. This strain is unusual in that it 

has a high proportion of branched muropeptides within its cell wall despite being 

classed as penicillin-sensitive (Garcia-Bustos and Tomasz, 1990).  Characterisation 

of this particular MurM enzyme was thus considered to be important for 

investigation into the links between levels of cell wall cross-linking, activity of the 

MurM protein and penicillin resistance. 

 

The sequence of MurMR6 differs from MurMPn16 only at position 101 where valine 

substitutes for alanine, respectively (Chapter 3). When compared to available 

sequence data for other variants of MurM (acquired from the National Center for 

Biotechnology Information, http://www.ncbi.nlm.nih.gov/protein), the substitution 

of valine for alanine at this position can only be found in one other strain of S. 

pneumoniae: D39 (Lanie et al., 2007).  
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According to Garcia-Bustos and Tomasz (1990), the proportions of linear and 

branched muropeptides in strain D39 are 73% and 27%, respectively. In contrast to 

this, the proportions of linear and branched muropeptides in strain R6 are 60% and 

40%, respectively. Whilst no approximations of error are given for these values, the 

MurM proteins from these two strains are 100% identical in amino acid sequence. 

This suggests that the difference in the proportion of branched muropeptides 

between the two strains cannot be solely attributable to differences in the kinetic 

activities of MurM and that other factors, such as overall level of MurM expression 

and the availability of Lipid II and tRNA in vivo must also be involved. 

 

With this in mind, it is difficult to justify that the differences in the kinetic 

parameters measured for MurMR6 and MurMPn16 can be explained by the single 

amino acid change between the two proteins. However, it may, in part, explain why 

MurMR6 is much more serine-specific than MurMPn16 and MurM159, especially if the 

in vivo tRNA pool of strain R6 is richer in tRNASer than tRNAAla. Out of the three 

MurM variants characterised in this study, MurMR6 was found to have the lowest 

catalytic efficiency with respect to Lipid II when Ala-tRNAAla was the co-substrate 

and with Ala-tRNAAla itself. Yet, the catalytic efficiency of the enzyme with Ser-

tRNASer exceeded that of MurMPn16 by 2-fold and was only 2-fold lower than that of 

MurM159. The work of Lloyd et al. (2008) has demonstrated that differences in the 

composition of the tRNA pool only made a small contribution to the overall 

proportion of branched muropeptides in the cells walls of S. pneumoniae strains 

Pn16 and 159 in comparison to the catalytic activity of MurM. However, this has yet 

to be investigated in the case of strain R6. In combination with an analysis of the in 

vivo levels of MurM expression within these three strains of S. pneumoniae, data 
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provided by such an investigation might offer some explanation for the apparent 

differences in measured kinetic parameters between MurMR6, MurMPn16 and 

MurM159. 

 

The success of production of a single species of pure S. pneumoniae tRNAAla and 

tRNASer in this study has enabled the first detailed kinetic analysis of MurM with 

respect to its tRNA substrate to be carried out. As has been shown to be the case for 

yeast tRNAPhe, in vivo modifications were non-essential for recognition of tRNAAla 

and tRNASer by the appropriate synthetase enzyme and MurM (Sampson and 

Uhlenbeck, 1988).  In the presence of a constant concentration of Lipid II, the 

catalytic efficiencies of all three MurM proteins were shown to be greater when Ser-

tRNASer was provided as substrate in comparison to Ala-tRNAAla.  

 

In the case of MurM159, this contradicts preliminary findings made by Lloyd et al. 

(2008) which demonstrated that the ability of this variant of MurM to use Ser-

tRNASer was poor in comparison to Ala-tRNAAla. This could suggest that the 

presence of zinc in the assay buffer was required to observe maximal activity of 

MurM. Another explanation could be that the other non-aminoacylated tRNA 

species in the crude extract used by Lloyd et al. (2008) masked the kinetic properties 

of the enzyme with Ser-tRNASer, thus highlighting the value of re-determining the 

kinetic parameters of MurM159 in the presence of a single species of pure S. 

pneumoniae Ser-tRNASer.  

 

The catalytic efficiencies of all three MurM enzymes were found to be significantly 

greater with mis-aminoacylated Ser-tRNAAla when compared to Ala-tRNAAla and 
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Ser-tRNASer. MurMR6 and MurMPn16 were at least 60-fold more efficient with this 

mis-aminoacylated substrate in comparison to Ala-tRNAAla and MurM159 was found 

to be 32-fold more efficient under the same conditions. This suggests that MurM 

recognises both the amino acid and the tRNA moiety of its substrate. When 

combined with the finding that S. pneumoniae AlaRS routinely generates and 

releases Ser-tRNAAla in the apparent absence of any free standing AlaXps proteins, 

these data are suggestive of MurM having a role in the maintenance of the fidelity of 

protein synthesis. This would explain why MurM is found in all strains of S. 

pneumoniae.  

 

S. pneumoniae is known to produce hydrogen peroxide during aerobic carbohydrate 

metabolism by virtue of pyruvate oxidase (Pesakhov et al., 2007). In E. coli, 

exposure to hydrogen peroxide has been shown to result in a reduction in the fidelity 

of translation. This effect can be directly attributed to the oxidation of cysteine-182 

within threonyl-tRNA synthetase which subsequently impairs the editing ability of 

the enzyme and results in the production of mis-aminoacylated Ser-tRNAThr (Ling 

and Söll, 2010). Thus it is possible that, in S. pneumoniae, hydrogen peroxide 

generation encourages the production of Ser-tRNAAla by AlaRS and Ser-tRNAThr by 

ThrRS which, in the absence of MurM, would severely damage the fidelity of 

protein synthesis. To test this hypothesis, future work should include investigation 

into the effects of hydrogen peroxide on the rate of mis-aminoacylation by S. 

pneumoniae AlaRS and ThrRS. In addition, the validity of this hypothesis could be 

confirmed if Ser-tRNAThr but not Thr-tRNAThr was a substrate for MurM. It is also 

likely that in vivo, S. pneumoniae MurM knockouts grown in the presence of an 

excess of serine would show reduced viability. However, this remains to be tested. 
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Additional evidence in support of the role of MurM in the maintenance of the fidelity 

of protein synthesis comes from an analysis of the phospholipid composition of the 

S. pneumoniae cell membrane in the presence and absence of hydrogen peroxide. In 

this study, cardiolipin was shown to increase the catalytic efficiency of MurM159, 

MurMR6 and MurMPn16 with Lipid II by 3-fold, 22-fold and 37-fold, respectively. 

Cardiolipin is one of the major phospholipids in the pneumococcal cell membrane 

and Pesakhov et al. (2007) have shown that its expression is regulated by hydrogen 

peroxide. Following a switch between aerobic and anaerobic growth conditions, the 

amount of cardiolipin in the pneumococcal membrane was found to decrease from 

15.3 ± 0.9% to 8.2 ± 1.6% (Pesakhov et al., 2007).  

 

These findings have led to the hypothesis that, when S. pneumoniae is growing 

aerobically, the increase in hydrogen peroxide concentration would result in an up-

regulation in the expression of cardiolipin in the pneumococcal membrane. This 

would subsequently stimulate the activity of MurM at a time when the pool of mis-

aminoacylated Ser-tRNAAla and Ser-tRNAThr in the cell would presumably be at its 

highest.  In order to fully test this hypothesis, future work should involve 

investigation into the effect of cardiolipin on the catalytic efficiency of MurM with 

Ser-tRNAAla and also Ser-tRNAThr if this is shown to be a substrate for the enzyme. 

MurM159 E229A:E307A, which shows a markedly reduced affinity for magnesium, 

would presumably show a more pronounced difference in catalytic efficiency 

compared to the wild-type enzyme in this scenario.   

 

In addition to this, the difference in response of MurM159 and MurMPn16 to 

phosphatidylglycerol discovered by Dr Adrian Lloyd (University of Warwick) 
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suggests that the activity of MurM in vivo could be controlled by the ratio of 

cardiolipin to phosphatidylglycerol in the cell membrane. Thus, the ratio of these 

phospholipids in the cell membrane may influence the level of penicillin resistance 

expressed by a specific strain of S. pneumoniae. Future work to investigate this 

would involve an extensive analysis of the levels of phospholipids expressed in 

various penicillin-sensitive and penicillin-resistant strains of the organism. Several 

studies have already indicated that a 15-fold increase in lipid secretion occurs upon 

exposure of Streptococci to penicillin and that half of the material secreted is 

phosphatidylglycerol and cardiolipin (Horne et al., 1977; Cabacungan and Pieringer, 

1980; Brissette et al., 1982; Brissette and Pieringer, 1985). Therefore, up and down 

regulation of phospholipids upon exposure of pneumococcus to various antibiotics 

should be fully investigated. 

 

Investigation into the regio-specificity of MurM using a 2’-deoxy mini-helix 

analogue of tRNAAla (Dr Adrian Lloyd, unpublished data) and a 2’-amino mini-helix 

analogue of tRNAAla has indicated that MurM specifically accepts the amino acid 

from the 2’ hydroxyl group of A76 on its aminoacylated tRNA substrate. This 

specificity is shared by the W. viridescens FemX enzyme which is also a member of 

the Fem ligase family (Fonvielle et al., 2010). However, it contrasts with the 

specificity of the ribosome which utilises tRNA species that are aminoacylated on 

the 3’ hydroxyl group of A76 (Weinger et al., 2004). According to the work of Reese 

and Trentham (1965), spontaneous trans-esterification of the amino acid between the 

3’ and the 2’ hydroxyl group ensures that these species exist in a 2:1 ratio at 

equilibrium. In addition, it has been estimated that spontaneous trans-esterification 

between the two hydroxyls occurs at a rate of 5 sec-1 (Taiji et al., 1983). Given that 
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the values of apparent kcat calculated for all three forms of MurM with Ala-tRNAAla 

and Ser-tRNASer have been shown to be significantly less than 5 sec-1, it is likely that 

spontaneous trans-esterification is able to support the activity of this enzyme. Thus 

the requirement for MurM to catalyse transfer of amino acids from the 3’ to the 2’ 

hydroxyl of A76 before it can catalyse transfer from the 2’ hydroxyl to Lipid II is 

avoided. 

 

In conclusion, the fact that MurM specifically accepts tRNA substrate that has been 

aminoacylated on the 2’ hydroxyl of A76 and the ribosome accepts tRNA substrate 

that has been aminoacylated on the 3’ hydroxyl of A76 may be exploited in the 

design of potent, specific inhibitors which have no detrimental effects on protein 

synthesis. Future work should include full characterisation of the inhibitory 

mechanism exerted by the 2’-amino mini-helix Ala-tRNAAla analogue on MurM. 

Investigation into the substrate specificity of MurM using mis-aminoacylated Ser-

tRNAAla has also identified a possible role for MurM in the maintenance of the 

fidelity of protein synthesis. This has not been documented previously and would 

provide an explanation for the conservation of MurM functionality across all strains 

of S. pneumoniae. 
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Chapter 6 
 

Towards an X-ray crystal structure of the MurM 

protein from Streptococcus pneumoniae 
 

6.1. Introduction 

Crystallography can be broadly defined as the process of determining the way in 

which atoms are arranged and bonded together within a crystalline solid. X-ray 

crystallography is the most widely used mechanism for determining the 

macromolecular structure of proteins with approximately 90% of all models placed 

in the protein data bank (PDB) determined using this technique. The remaining 10% 

of structures within the PDB have been solved by nuclear magnetic resonance 

(NMR) spectroscopy in solution (Rupp, 2010).  

 

X-ray crystallography allows the fine details of molecular interactions to be 

determined at the atomic level and is important for structure-based drug design and 

clarification of enzymatic reaction mechanisms by relation of structure to function. 

The first visualisation of protein crystallisation was made with haemoglobin in 1840 

after Hünefeld pressed earthworm blood between two glass microscopy slides and 

allowed it to dry.  

 

Regardless of the method used, the process of crystallisation can be split into two 

separate phases: nucleation and growth. In the nucleation phase, a mass of 

aggregated material of a critical size forms a pre-requisite for crystal growth. The 

initiation of both of these processes requires phase-transition of the aqueous protein 
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solution into the supersaturation zone as illustrated in Figure 6.1 (Chayen et al., 

2010).  

 

 

 
 
 
 
 
 
 
 
 
Figure 6.1: Protein crystallisation phase diagram based on variation of the 
concentration of the protein and the precipitant. The four major crystallisation 
methods illustrated on this diagram are (A) Batch crystallisation, (B) Vapour 
diffusion, (C) Dialysis and, (D) free-interface diffusion. Regardless of the 
method, crystal growth requires transition into the nucleation zone. This is 
followed by transition into the metastable zone and, finally, arrival at the 
solubility curve. Note that the grey circles represent the starting points of the 
protein solution. Taken from Chayen (1998) and Li and Ismagilov (2010).  
 

As shown in Figure 6.1, the supersaturation zone can be further subdivided into the 

nucleation, precipitation and metastable zones. In the nucleation zone, the 

concentration of the protein is sufficient to enable spontaneous formation of 

nucleation points from which crystals can grow. However, if the protein 

concentration is too high, transition into the precipitation zone will occur resulting in 

rapid nucleation and crystal growth. This can lead to the formation of crystals with 

disordered structures as well as the formation of precipitates and aggregated 

material. In the metastable zone, the protein concentration is too low to support the 

generation of new nucleation points. However, continuous growth of pre-existing 

crystals is still supported. Transition between these different zones is influenced by 

many factors including temperature, pH, precipitant concentration, protein 

concentration and the addition of additives. Therefore, understanding the phase 
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transition process can provide a basis for the design of successful crystallisation 

experiments (Chayen et al., 2010; Li and Ismagilov, 2010).   

 

So far the structures of only two members of the Fem ligase family have been 

successfully solved by X-ray crystallography. They are the FemX protein from W. 

viridescens (Biarrotte-Sorin et al. 2004) and the FemA protein from S. aureus 

(Benson et al. 2002). The structures of these enzymes have been presented and 

discussed in Chapter 1 sections 1.7 and 1.4.2, respectively.  

 

In summary, the 2.1 Å X-ray crystal structure of FemA demonstrated that the protein 

is comprised of two domains. Domain I adopts a globular structure, whilst domain II 

adopts a helical structure. Further analysis of domain I by Benson et al. (2002) 

indicated that it could be further divided into sub-domains 1A and 1B, the latter of 

which was found to correspond to a deep channel suitable for the binding of Lipid II-

Gly. In addition, acquisition of the structure of FemA has indicated that the tRNA 

substrate is likely to be bound by the enzyme in the region located at the junction 

between domains I and II. It has been proposed that the coiled helical arm within 

domain II is responsible for tethering the aminoacylated-tRNA molecule in the 

correct position for catalytic transfer of the amino acid to Lipid II. However, more 

structural information is required to formally prove this. 

 

In contrast to FemA, the FemX protein from W. viridescens accepts the soluble 

UDP-MurNAc pentapeptide as its substrate. When the structure of this protein was 

solved by Biarrotte-Sorin et al. (2004) it became clear that FemX is comprised of 

two equivalent domains which are joined together by the UDP-MurNAc binding 
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cleft.  Interestingly, unlike FemA, these studies have shown that FemX does not 

have a coiled helical arm. This subsequently led to the decision to further sub-divide 

the Fem ligase family into two groups based upon the presence or absence of this 

structural feature. Currently it is known that S. aureus FemA, which does have a 

coiled helical arm in its structure, belongs to subgroup I. Subgroup I is predicted to 

comprise a large proportion of the 50 described FemXAB-related sequences 

including those found within the genera Streptococcus and Enterococcus (Rohrer 

and Berger-Bächi, 2003b). In contrast to this, FemX belongs to subgroup II, which is 

also predicted to contain the Fem-like proteins identified in Streptomyces coelicolor. 

However, further structural information is required to validate this classification 

system and to elucidate the general catalytic mechanism of Fem ligases.  

 

As a result of this, obtaining high resolution crystal structures of other important 

members of the Fem ligase family, including the FemX protein from S. aureus and 

the MurM protein from S. pneumoniae, is of great importance. The acquisition of 

such information would enable a greater understanding of the links between the 

structure and function of these enzymes to be derived which, in turn, would be 

beneficial to the design of novel inhibitory compounds.  

 

6.2. Aims 

Given that there is no X-ray crystal structure available for MurM, or indeed S. 

aureus FemX and FemB, one of the goals of this project was to attempt to achieve 

this. This work encompassed the following aims: 

• Development of a protocol to enable successful concentration of MurM to 10 

mg mL-1 so that crystallisation screens could be carried out. Previous work 
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carried out on the protein at University of Warwick had suggested that it 

became unstable and precipitated at concentrations of above 3 mg mL-1 

• Cloning, expression and purification of S. aureus FemB 

• Identification of suitable conditions for MurM, FemX and FemB crystal 

nucleation and growth using 96-well screens 

• Expansion of initial hits identified from 96-well screens to produce single, 

diffraction quality crystals of MurM, FemX and FemB  

 

In order to meet these aims a scheme was developed for crystallisation of these 

proteins. In each case, the procedures outlined in Figure 6.2 were followed in the 

order given. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Schematic flow diagram showing the procedure followed for crystal 
formation, optimisation and refinement in this study. This process was applied 
to the Streptococcus pneumoniae MurM protein and the Staphylococcus aureus 
FemX and FemB proteins for which there are no existing crystallisation 
conditions or structures in the literature. 
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In addition to the above aims, work carried out in Chapter 4 lead to the requirement 

to repeat crystallisation of S. aureus FemA despite the availability of a 2.1 Å 

structure in the literature (Benson et al. 2002). This was to enable identification of 

the metal ion binding sites within the protein. All crystals were subjected to cryo-

protection, as described in Chapter 2, section 2.6.3.6, prior to X-ray diffraction 

experiments. Unless otherwise stated, this process involved soaking each crystal for 

1 min in mother liquor substituted with 30% (v/v) glycerol prior to immersion in 

liquid nitrogen.  

 

6.3. Crystallisation of the MurM protein from Streptococcus 

pneumoniae strains R6, Pn16 and 159 

6.3.1. 96-well crystallisation screening with MurM 

During attempts to concentrate MurM to 10 mg mL-1 for the purpose of 96-well 

crystallisation screening, it was noted that the protein repeatedly precipitated out of 

solution when a concentration of 3.5 mg mL-1 was reached. This problem was 

alleviated by supplementation of the concentration buffer with 20% (w/v) glycerol. 

Glycerol has also been found to be a necessary component for maintenance of 

stability at high protein concentrations when S. aureus FemA was crystallised 

(Benson et al., 2002). 

 

Initially, all three forms of MurM were concentrated to 10 mg mL-1 in buffer 

containing 50 mM HEPES pH 7.0, 100 mM NaCl and 20% (w/v) glycerol prior to 

use in 96-well crystallisation trials set up as described in Chapter 2, section 2.6.3.1. 

Regardless of whether or not the proteins were histidine-tagged, crystal formation 

was only observed for MurMPn16 and completion of crystal growth required 
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incubation of the trays at 18oC for two weeks. Therefore, all crystallisation images 

presented in this chapter were generated using dodeca-histidine tagged MurMPn16 at 

a starting concentration of 10 mg mL-1 and are intended to be representative of the 

results obtained with hexa-histidine tagged and untagged protein as well. The two 

successful mother liquors resulting in nucleation and crystal growth of MurMPn16 

were identified as Emerald Wizard condition H4 (0.1 M imidazole pH 8.0, 0.2 M 

Zn(OAc)2 and 20% w/v PEG  3 K) and MDL structure condition G3 (0.1 M MES pH 

6.5, 0.01 M zinc sulphate heptahydrate and 25% v/v PEG monomethylether 550) as 

shown in Figure 6.3. 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 6.3: Results of 96-well crystallisation screens carried out on MurMPn16 
concentrated to 10 mg mL-1 in 50 mM HEPES pH 7.0, 100 mM NaCl and 20% 
(w/v) glycerol. Despite the use of 6 different screens (PACT, JCSG+, Morpheus, 
Clear Strategy, Emerald Wizard and MDL Structure) and 3 different forms of 
the protein (un-tagged, hexa-histidine tagged and dodeca-histidine tagged) only 
two conditions were found to be successful. Pictures shown are for dodeca-
histidine tagged MurMPn16. Complete removal of the tag or reduction of the 
length of the tag to 6 histidine residues had no effect on crystal morphology. 
Each crystal shown in this figure was approximately 20 µm in length.  
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As shown in Figure 6.3, initial 96-well screens carried out on MurMPn16 resulted in 

the growth of small crystal clusters in only two conditions, both of which contained 

zinc. Improvements in crystal size and morphology could not be achieved by 

replacement of dodeca-histidine tagged protein with either un-tagged or hexa-

histidine tagged protein making 24-well refinement of the conditions essential. 

 

6.3.2. 24-well refinement of suitable crystallisation conditions for MurMPn16 

Refinement of MDL structure condition G3 was carried using the 24-well plate set-

up described in Chapter 2, section 2.6.3.2. Minor adjustments were made to both the 

pH of the MES buffer and the final concentration of PEG MME 550. The final 

concentration of PEG MME 550 was varied across the plate from 20% to 30% in a 

total of six 2% increments. The pH of 0.1 M MES was increased going down the 

plate in 4 steps to give pH 5.5, pH 6.0, pH 6.5 and pH 6.8. The results of this 

process, after incubation of the tray at 18oC for two weeks, are shown in Figure 6.4. 

 

 

 

 

 

 

Figure 6.4: Results of refinement of MDL structure condition G3 using the 24-
well plate set-up described in Chapter 2. The final concentration of zinc 
sulphate heptahydrate was kept constant at 0.01 M.  The final concentration of 
MES was kept at 0.1 M but the pH was varied between 5.5 and 6.8. The final 
concentration of PEG MME 550 was varied between 20% and 30% across the 
plate in 2% increments. The length of the crystals shown in this figure varied 
from 5 µM for each small cluster on the left to 500 µm for those on the right. 
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As indicated in Figure 6.4, refinement of MDL structure condition G3 indicated that, 

when the concentration of PEG MME 550 was increased from the original 25% (v/v) 

to 30% (v/v), crystal growth to a size suitable for diffraction experiments was 

encouraged regardless of pH. In contrast to this, reduction in the final concentration 

of PEG MME 550 to 20% (v/v) caused an increase in nucleation either from a single 

point (pH 5.5) or from multiple points (pH 6.8) generating crystals that were 

unsuitable for diffraction. Unfortunately, the crystals grown in mother liquor 

consisting of either 0.1 M MES pH 5.5 or pH 6.8, 0.01 M zinc sulphate heptahydrate 

and 30% (v/v) PEG MME 550 (Figure 6.4) did not produce any diffraction upon 

exposure to X-rays. As a result of this, the small crystal clusters grown under the 

initial G3 condition were using in seeding experiments to improve crystal 

morphology. 

 

6.3.3. Refinement of MurMPn16 crystal morphology and diffraction by seeding 

To generate a MurMPn16 crystal seed stock, a single crystal from Figure 6.3 (B) was 

extracted from the cluster and placed into an Eppendorf tube containing 50 µL of 

mother liquor as described in Chapter 2, section 2.6.3.3. Liquid and horse hair crystal 

seeding were carried out in the 24-well format used for refinement of MDL structure 

condition G3. Variations in the concentration of PEG MME 550 were made across 

the plate and variations in the pH of 0.1 M MES were made down the plate as 

described before in section 6.3.2. The effects of seeding on the morphology of 

MurMPn16 crystals are shown in Figure 6.5. 
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Figure 6.5: Changes in the crystal morphology of MurMPn16 induced by horse 
hair and liquid seeding. The crystals shown in this figure were obtained at pH 
5.5. The length of crystal obtained after horse hair seeding was approximately 
20 µm after removal of one crystal from the cluster. The length of crystal 
obtained after liquid seeding was between 50 µm and 100 µm. All crystals 
obtained by seeding were of a suitable size for diffraction using the I24 
microfocus beamline at Diamond Light Source (Oxfordshire, UK). 
 

As shown in Figure 6.5, seeding experiments resulted in an overall improvement in 

the size of MurMPn16 crystals which appeared to be independent of the pH of 0.1 M 

MES used. Liquid crystal seeding also resulted in the formation of single crystals as 

opposed to clusters. However, despite the vast improvements in morphology, none 

of the crystals shown in Figure 6.5 gave a diffraction pattern upon exposure to X-

rays. Further attempts to improve diffraction were carried using two additive screens 

(Silver Bullets and Hampton Additive) and mother liquor equivalent to that of MDL 

structure screen condition G3. 

 

6.3.4. Refinement of MurMPn16 crystal morphology and diffraction using 

additive screens 

Both the Silver Bullets and the Hampton Additive screen (Hampton Research) were 

set up with MurMPn16 using mother liquor comprising 0.1 M MES pH 6.5, 0.01 M 

zinc sulphate heptahydrate and 25% (v/v) PEG MME 550 and the methodology 

described in Chapter 2, section 2.6.3.4.  The Silver Bullets screen consists of a 

library of molecules that promote the formation of a well-structured crystal lattice by 



286 
 

stabilising the protein and encouraging the formation of lattice contact points. In 

comparison, the Hampton Additive screen is designed to improve crystal formation 

by modifying the solubility of the protein sample. Changes in MurMPn16 crystal 

morphology were only observed with the Silver Bullets screen (Figure 6.6).  

 

 
 
 
 
 
 
 
Figure 6.6: Silver Bullets screen refinement of the morphology of MurMPn16 
crystals. Silver Bullets condition G2 consisted of 0.20% (w/v) 2-2’-
Thiodiglycolic acid, 0.20% (w/v) Adipic acid, 0.20% (w/v) Benzoic acid, 0.20% 
(w/v) Anhydrous oxalic acid, 0.20% (w/v) Terephthalic acid and 0.02 M HEPES 
sodium pH 6.8. Silver Bullets condition G6 consisted of 0.16% (w/v) Glutaric 
acid, 0.16% (w/v) Mellitic acid, 0.16% (w/v), Anhydrous oxalic acid, 0.16% 
(w/v) Pimelic acid, 0.16% (w/v) Sebacic acid, 0.16% (w/v) Trans-cinnamic acid 
and 0.02 M HEPES sodium pH 6.8. The maximum length of crystals obtained 
using this technique was 10 µm. 
 

The crystals obtained using the Silver Bullets screen were of a suitable size for 

diffraction analysis on the I24 microfocus X-ray beamline at Diamond Light Source 

(Oxfordshire, UK).  However, no diffraction was detected from these crystals. 

Exhaustion of refinement methods lead to re-attempts at crystallisation of MurMPn16 

after concentration of the protein to 10 mg mL-1 into the buffer system that enabled 

Benson et al. (2002) to obtain diffraction-quality crystals of S. aureus FemA. 
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6.3.5. Crystallisation screening and refinement for MurMPn16 after 

concentration of the protein to 10 mg mL-1 into buffer containing 50 mM 

ethanolamine pH 10.0, 100 mM NaCl and 20% (w/v) glycerol 

In order to obtain other possible crystallisation conditions for MurMPn16, zinc 

chloride was added at the protein purification stage to a final concentration of 50 µM 

in the 50 mM and 200 mM imidazole wash buffers used during elution of the protein 

from cobalt resin (modification to the method described in Chapter 2, section 2.4.1 

only used for the purpose of ensuring MurM was saturated with zinc prior to 

crystallisation attempts).  

 

To maintain stability, purified protein was then dialysed against 50 mM 

ethanolamine pH 10.0, 100 mM NaCl and 20% glycerol prior to concentration to 10 

mg mL-1 as described in Chapter 2, sections 2.4.5 and 2.4.8.  96-well screening using 

this protein resulted in the identification of two additional crystallisation conditions: 

0.2 M magnesium formate, 20% (v/v) PEG 3350 (JCSG+ screen, condition A5) and 

0.1 M Tris pH 8.5, 0.2 M calcium acetate, 25% (v/v) PEG 2 K MME (Clear Strategy 

pH 7.5-8.5 screen, condition G5). Images of crystals grown under these conditions 

are shown in Figure 6.7. 
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Figure 6.7: Results of 96-well crystallisation screens carried out on zinc-
saturated MurMPn16 concentrated to 10 mg mL-1 in 50 mM ethanolamine pH 
10.0, 100 mM NaCl and 20% (w/v) glycerol. Successful conditions were JCSG+ 
condition A5 consisting of 0.2 M magnesium formate and 20% (w/v) PEG 3350 
and Clear Strategy condition G5 consisting of 0.1 M Tris pH 8.5, 0.2 M calcium 
acetate and 25% (w/v) PEG 2 K MME. Refinement of crystal morphology was 
achieved with the latter condition using the Hampton Additive screen. Pictures 
shown are for dodeca-histidine tagged MurMPn16. Complete removal of the tag 
or reduction of the length of the tag to 6 histidine residues had no effect on 
crystal morphology. The maximum length of crystals obtained using this 
technique was 20 µm. 
 

As shown in Figure 6.7, concentration of MurMPn16 into the buffer system used for 

successful crystallisation of FemA resulted in identification of an additional two 

potential conditions supporting nucleation and crystal growth (Benson et al., 2002). 

Condition A5 in the JCSG+ screen resulted in the formation of crystal plates which 

could be encouraged to form single crystals by the use of the Hampton Additive 

screen. Unfortunately, none of the crystals shown in Figure 6.7 gave a diffraction 
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pattern when tested on the I24 microfocus X-ray beamline at Diamond Light Source 

(Oxfordshire, UK). This led to the decision to undertake rational surface mutagenesis 

of MurM as a last resort for generating diffraction quality crystals of the enzyme in 

its un-liganded form (Derewenda, 2004; Derewenda and Vekilov, 2005).  

 

6.3.6. Rational surface mutagenesis of the MurM protein from Streptococcus 

pneumoniae strains Pn16 and 159 

It has been estimated that, on average, fewer than 30% of all the soluble proteins 

expressed by E. coli can be crystallised and, subsequently, only a small portion of 

these will diffract to a resolution of 2 Å or better (Dale et al., 2003; Derewenda, 

2004). In the case of proteins that will either not crystallise at all or produce crystals 

of poor quality, modification of the sample, usually by site-directed mutagenesis, is 

the only option.  

 

Rational surface mutagenesis is specifically designed to reduce the overall entropy 

on the surface of a protein by replacing polar amino acids, such as lysine and 

glutamate, with other amino acids that have a smaller side chain, such as alanine. 

This can promote the development of contact-forming surface patches during protein 

folding that are homogeneous in terms of their conformation and which can 

subsequently aid crystal lattice formation (McElroy et al., 1992; Derewenda, 2004). 

When applied to human RhoGDI protein, crystals formed using a double surface 

entropy mutant (K199-200R) exceeded the diffraction of crystals formed from the 

wild-type enzyme by approximately 1 Å. This resulted in the generation of a high 

resolution X-ray crystal structure for this protein (Czepas et al., 2004).  
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Goldschmidt et al. (2007) have developed a server (SERp) that is designed to predict 

suitable residues within proteins whose mutation could facilitate crystallisation by 

causing reduction in surface entropy. The suggested residues for mutation are 

predicted by the server using an algorithm that takes into account conformational 

entropy, secondary structure predictions and sequence conservation. When the 

protein sequences of MurM159 and MurMPn16 (see Chapter 3) were loaded onto the 

SERp server, five possible mutational clusters were identified in each case and these 

are shown in Figure 6.8 using the model of MurM as a guideline for their locations. 
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Figure 6.8: SERp predicted residue clusters within (A) MurM159 and (B) MurMPn16. Mutation to alanine of every residue comprising a 
cluster is predicted to result in a reduction in surface entropy and therefore improvements to crystal lattice formation. The SERp score, 
indicating predicted success of the mutations, decreases moving from cluster 1 to cluster 5 and was as follows for MurM159 and 
MurMPn16, respectively: Cluster 1: 6.15 and 7.12, Cluster 2: 5.49 and 6.13, Cluster 3: 5.44 and 6.03, Cluster 4: 4.85 and 5.43 and, Cluster 
5: 4.83 and 5.34. The SERp server can be found at http://www.doe-mbi.ucla.edu/Services/SER (Goldschmidt et al., 2007).

http://www.doe-mbi.ucla.edu/Services/SER


292 
 

 
In the case of both MurMPn16 and MurM159, the dodeca-histidine tagged 

pET22b::MurM expression constructs were used as templates for making two site- 

directed mutants of each protein: one mutated at each of the residues in cluster 1 and 

the other mutated at each of the residues in cluster 2. The methodology and primer 

sequences used in this process are shown in Chapter 2, section 2.2.9 and Table 2.3, 

respectively. Acquisition of expression constructs harbouring the correct mutations 

was determined by DNA sequencing as described in Chapter 2, section 2.2.11. 

Expression and purification of each mutant MurM protein were carried out as 

described in Chapter 3 for the wild-type enzymes with no significant differences in 

overall yield or purity. 

 

After concentration of each MurM mutant to 10 mg mL-1 into buffer containing 

either 50 mM HEPES pH7.0, 100 mM NaCl and 20% (w/v) glycerol or 50 mM 

ethanolamine pH 10.0, 100 mM NaCl and 20% (w/v) glycerol, 96-well 

crystallisation screens were set up as described in Chapter 2, section 2.6.3.1. In the 

case of MurM159, mutation of cluster 1 residues or cluster 2 residues to alanine still 

did not enable the protein to crystallise under any of the tested conditions. In the case 

of MurMPn16, the equivalent mutations of cluster 1 or cluster 2 residues to alanine 

resulted in no improvement to the morphology or size of crystals obtained. This 

suggested that acquisition of a high resolution crystal structure of MurM might 

require mutation of residues within multiple clusters at the same time or that inherent 

properties of the protein prevent successful crystallisation in an un-liganded form.  
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6.4. Crystallisation of the FemX protein from Staphylococcus aureus 

strain Mu50 

Given the difficulties encountered in obtaining a high resolution X-ray crystal 

structure of MurM, attempts were made to crystallise the S. aureus equivalent of this 

protein, FemX. Prior to crystallisation, salt-solubilised FemX was purified and 

separated from its histidine tag as described in Chapter 4. Purified protein was 

dialysed against buffer containing 50 mM ethanolamine pH 10.0, 100 mM NaCl and 

20% (w/v) glycerol, concentrated to 12 mg mL-1 and used in 96-well crystallisation 

screens as described for MurM. After incubation of the trays for 1 week at 18oC, 

small rod clusters were identified in the Morpheus screen under condition A1 (0.1 M 

imidazole-MES buffer mix pH 6.5, 0.06 M MgCl2; CaCl2 divalent metal ion mix and 

30% PEG MME 550_PEG 20 K mix) as shown in Figure 6.9.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.9: Image of Staphylococcus aureus FemX crystals formed at 18oC 
under condition A1 in the Morpheus screen (0.1 M imidazole-MES buffer mix 
pH 6.5, 0.06 M MgCl2; CaCl2 divalent metal ion mix and 30% PEG MME 
550_PEG 20 K mix) after concentration of untagged protein to 12 mg mL-1 in 
50 mM ethanolamine pH 10.0, 100 mM NaCl and 20% (w/v) glycerol. The 
maximum length of a single crystal within each rod cluster was approximately 5 
µm. 
 
 
In addition to this, quasi-crystals had formed under three conditions in the Emerald 

Wizard screen: E1 (0.1 M acetate pH 4.5, 0.2 M zinc acetate and 10% (w/v) PEG 3 
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K), H4 (0.1 M imidazole pH 8.0, 0.2 M zinc acetate and 20% (w/v) PEG 3 K) and F8 

(0.1 M MES pH 6.0, 0.2 M zinc acetate and 15% (v/v) ethanol). All three of these 

conditions contained zinc. Development of micro-crystals from the quasi-crystals 

could only be achieved by mixing FemX with a molar equivalent of cardiolipin 

(Invitrogen) prior to 96-well screening as shown in Figure 6.10.  

 

 
Figure 6.10: Image of Staphylococcus aureus FemX crystals formed at 18oC 
under condition F8 in the Emerald Wizard I and II screen after concentration 
of untagged protein to 12 mg mL-1 in 50 mM ethanolamine pH 10.0, 100 mM 
NaCl and 20% (w/v) glycerol. The maximum length of the micro-crystals 
obtained after addition of a molar equivalent of cardiolipin to FemX prior to re-
screening, was approximately 2 µm. 
 

Due to the fragile natural and small size of the FemX crystals, it was not possible to 

carry out any diffraction experiments. However, the preliminary results presented in 

Figures 6.9 and 6.10 are promising and further screening using the 24-well plate 

setup described in Chapter 2, section 2.6.3.2 may be all that is necessary to improve 

crystal size and quality.  
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6.5. Crystallisation of the FemB protein from Staphylococcus aureus 

strain Mu50 

Given the difficulties encountered during attempts to obtain a crystal structure of 

MurM and the formation of either quasi-crystals or small rod clusters in the case of 

FemX, it was decided that crystallisation of FemB should be trialled as a means of 

gaining more structure information about members of the Fem ligase family as a 

whole.  

 

The X-ray crystal structure of the S. aureus FemA protein has already been solved 

by Benson et al. (2002) and, whilst FemX is only 36% homologous and 23% 

identical to this protein, FemB is 52% homologous and 39% identical to FemA. 

Therefore, FemB is proposed to have greater structural similarity to FemA than 

FemX. It was thus proposed that the levels of homology between the latter two 

proteins would increase the chances of successfully solving the structure of FemB by 

molecular replacement with the published structure of FemA (Benson et al., 2002). 

This would avoid the need for multi-wavelength anomalous diffraction (MAD) 

phasing if good quality crystals of FemB could be produced, providing a major 

motivation for this work to be undertaken. 

 
6.5.1. Cloning of FemB into pET28a 

The femB gene from S. aureus strain Mu50 was cloned into the expression vector 

pET28a to encode a TEV-cleavable C-terminal hexa-histidine fusion tag for 

purification. PCR amplification of femB from chromosomal DNA was achieved 

using Accuprime Taq DNA polymerase (Invitrogen) and primer numbers 14 and 15 

shown in Chapter 2, Table 2.2. After purification, the PCR product was digested 
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with BsaI and XhoI prior to ligation into gel-extracted NcoI/XhoI restricted pET28a 

as described in Chapter 2, sections 2.2.4 to 2.2.7. After transformation into E. coli 

Top10 cells, plasmid DNA was extracted from a series of potential clones and those 

containing the femB insert were identified by XbaI/XhoI digestion, as shown in 

Figure 6.11. 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 6.11: Summary agarose gels showing (A) PCR amplification of femB 
from Staphylococcus aureus Mu50 chromosomal DNA and (B) XbaI/XhoI 
digests of plasmid DNA extracted from 4 potential pET28a::FemB clones. The 
size of the pET28a vector is 5,369 bp. The size of the femB gene is 1,260 bp. 
 
Lanes 1-3 - femB PCR product,  
Lane 4 – 1 kb ladder,  
Lanes 5-8 – XbaI/XhoI digests of plasmid DNA extracted from clones 1 to 4. 
 

As shown in Figure 6.11, the femB gene had successfully inserted into pET28a in 

three out of the four potential clones tested by XbaI/XhoI digestion. Further 

confirmation of insertion of femB into pET28a was obtained by DNA sequencing 

using the T7 forward and T7 reverse primers, as described in Chapter 2, section 

2.2.11.  

 
6.5.2. Expression, salt-solubilisation and purification of FemB 

For determination of optimal FemB expression conditions, the final construct was 

transformed into both E. coli B834 (DE3) and BL21 Star (DE3).placIRare2 
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expression strains. Levels of protein expression were investigated after IPTG-

induction at 25oC for 4 h, as described in Chapter 2, section 2.3.3. Crude extracts 

were obtained from these cultures by sonication at 10% power for 15 sec and 

centrifugation to obtain both soluble and insoluble fractions. Bradford reagent was 

used to determine the protein concentration of the crude extracts so that 25 μg of 

protein were loaded into each lane of a 12.5% SDS PAGE gel (Chapter 2, section 

2.4.9). Results of this experiment are shown in Figure 6.12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
M - molecular weight standards,  
SC - soluble proteins expressed by non-induced cells,  
SI - soluble proteins expressed by induced cells,  
IC - insoluble proteins expressed by non-induced cells,  
II - insoluble proteins expressed by induced cells. 
 
Figure 6.12: 12.5% SDS PAGE gel showing the crude extracts obtained from E. 
coli B834 (DE3) and Escherichia coli BL21 Star (DE3).placIRare2 cells 
transformed with pET28a::FemB and induced to express protein by IPTG-
induction at 25oC for 4 h. The molecular weight of FemB is 49,676 Daltons. 
 

As shown in Figure 6.12, FemB was expressed in an insoluble form regardless of the 

E. coli expression strain used. However, out of the two E. coli expression strains 

tested, the overall yield of FemB was higher in BL21 Star (DE3).placIRare2 cells. 
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Therefore this strain was selected as the most suitable host for large-scale expression 

of the protein. Large-scale expression, salt-solubilisation, purification and removal of 

the histidine tag from FemB using TEV protease were carried out as described for 

FemA in Chapter 4, sections 4.5.4 to 4.5.6, with equal success. The overall purity of 

FemB protein used for crystallisation is shown in Figure 6.13. 

 

M - molecular weight standards,  
L - a sample of the protein before loading onto the column,  
FT - flow-through from the column as the protein is loaded onto it and,  
W – protein eluted from the column during wash with equilibration buffer. 
 
Figure 6.13: 12.5% SDS PAGE gels showing purification of (A) salt-solubilised 
FemB from 1 L of Escherichia coli BL21 Star (DE3).placIRare2 cells 
transformed with pET28a::FemB and induced to express protein by IPTG-
induction at 25oC for 4 h on cobalt resin and, (B) FemB on cobalt resin after 
incubation with TEV protease to remove the C-terminal hexa-histidine tag. The 
position of eluted FemB is indicated with a black arrow. The position of hexa-
histidine tagged TEV protease during wash with buffer containing 250 mM 
imidazole is indicated with a red arrow in (B). 
 

As was the case with the S. aureus FemX and FemA proteins, hexa-histidine tagged 

FemB eluted from cobalt resin pre-equilibrated as described in Chapter 2, section 

2.4.1, during wash with buffer supplemented with 50 mM imidazole. After 

purification of the FemB::TEV protease digest on cobalt resin, untagged FemB was 
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dialysed against 50 mM ethanolamine pH 10.0, 100 mM NaCl and 20% (w/v) 

glycerol and concentrated to 13 mg mL-1 as described in Chapter 2, section 2.4.8 for 

use in 96-well crystallisation screens. 

 

6.5.3. 96-well crystallisation screening and 24-well refinement of suitable 

conditions for FemB: towards a high resolution X-ray crystal structure 

96-well crystallisation screens were set up for FemB as described for MurM and 

FemX. After incubation of the trays at 18oC for two weeks, crystals were found 

under three conditions: JCSG+ screen condition A5 (0.2 M magnesium formate and 

20% (w/v) PEG 3350), Clear Strategy pH 7.5 - 8.5 screen condition G6 (0.1 M Tris 

pH 8.5, 0.2 M calcium acetate and 15% (w/v) PEG 4 K) and, PACT screen condition 

D10 (0.1 M Tris pH 8.0, 0.2 M magnesium chloride and 20% (w/v) PEG 6 K). 

Images of the FemB crystals formed as a result of these experiments are shown in 

Figure 6.14.  

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 6.14: Images of FemB crystals obtained after 96-well screens were set up 
at 18oC using untagged protein dialysed against 50 mM ethanolamine pH 10.0, 
100 mM NaCl and 20% (w/v) glycerol and concentrated to 13 mg mL-1. The 
maximum crystal length obtained under Clear Strategy condition G6 was 5 µm. 
In contrast to this, the maximum crystal length obtained under JCSG+ 
condition A5 and PACT condition D10 was 50 µm. 
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For the purpose of cryo-protection, each crystal shown in Figure 6.14 was subjected 

to a 1 min soak in mother liquor supplemented with 30% (v/v) glycerol prior to 

being frozen in liquid nitrogen. The diffraction qualities of all of the crystals were 

assessed using the I24 microfocus beamline at Diamond Light Source (Oxfordshire, 

UK). This indicated that the crystals formed under Clear Strategy condition G6 were 

likely to be salt. However, the single crystal grown under JCSG+ condition A5 

diffracted to 3.5 Å and the two crystals grown under PACT condition D10 both 

diffracted to 3 Å allowing a complete dataset to be collected.  

 

Unfortunately, the diffraction of the PACT D10 crystals weakened markedly with 

prolonged exposure to the X-ray beam even though 20% transmission was used for 

data collection. This resulted in the collection of a dataset that was only 60% 

complete. However, analysis of this dataset has established that the FemB structure 

could be solved by molecular replacement using the major globular domain of FemA 

(Benson et al., 2002) as a search model in the first instance (Professor Vilmos Fulop, 

personal communication). Given the medium resolution and incomplete nature of 

this initial dataset it was decided to await further data collection experiments before 

proceeding.  A 24-well screen to refine this condition has also resulted in the growth 

of larger FemB crystals which have not yet been tested on an X-ray beamline. An 

image of these refined crystals is shown in Figure 6.15.  
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Figure 6.15: Image showing refinement of the FemB crystals grown under 
PACT screen condition D10. Improvements in crystal growth were obtained by 
increasing the protein to mother liquor ratio from 1:1 to 2:1. The maximum 
length of the crystals shown in this image was approximately 600 µm. 
 
 

In order to optimise diffraction of the crystals shown in Figure 6.15, several different 

cryo-protectants should be trialled alongside the usual supplementation of mother 

liquor with 30% glycerol. Future work should also involve 24-well refinement of 

JCSG+ screen condition A5 with the ultimate aim of producing the best crystals for 

generation of the highest possible resolution structure of FemB.  

 
 
6.6. Repetition of the crystal structure of Staphylococcus aureus 

FemA originally solved by Benson et al. (2002): structural 

identification of metal ion binding and the residues involved in this 

process 

The structure of the FemA protein from S. aureus was originally solved to 2.1 Å by 

Benson et al. (2002) and no bound metal ions were visible in the electron density 

map generated by this study. However, biochemical evidence presented in Chapter 4 

has proven that this enzyme binds both zinc and magnesium. Circular dichroism has 

suggested that the binding of these metal ions by FemA is essential for maintenance 

of the native structure of the enzyme.  In addition to this, work carried out on MurM 
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in Chapter 4 has also led to the hypothesis that zinc may be important for the 

catalytic activity of FemA. Therefore, gaining an X-ray crystal structure of FemA 

with zinc and magnesium easily distinguishable in the electron density map is 

considered to be important both for confirmation of the residues involved in this 

process and for future drug-design against this enzyme and other members of the 

Fem ligase family.  

 

In order to repeat crystallisation of FemA, the dodeca-histidine tagged version of the 

protein was purified as described in Chapter 4 and dialysed against 50 mM 

ethanolamine pH 10.0, 100 mM NaCl and 20% glycerol as described by Benson et 

al. (2002). The protein was concentrated to 12 mg mL-1 and used in a 24-well vapour 

diffusion based hanging drop crystallisation setup with the mother liquor 

composition kept the same as that reported to generate diffraction quality crystals by 

Benson et al. (2002).  Unfortunately, despite the use of mother liquor of identical 

composition to that used previously (0.1 M Imidazole pH 8.0, 0.2 M calcium acetate 

and 10% (v/v) PEG 8 K) no crystals of FemA were seen after incubation of the tray 

at 18oC for two weeks. Therefore, the stock protein solution was used to set up the 

six 96-well screens listed for MurM in an attempt to find similar conditions 

supporting crystal nucleation and growth. After incubation for 1 week at 18oC, 

suitable crystals were found in the PACT screen under condition D11 (0.1 M Tris pH 

8.0, 0.2 M calcium chloride and 20% PEG 6 K). An image of these crystals is shown 

in Figure 6.16. 
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Figure 6.16: Image of FemA crystals formed under PACT condition D10 after 
dialysis of the protein against 50 mM ethanolamine, 100 mM NaCl and 20% 
glycerol and concentration to 12 mg mL-1.  Maximum length of crystals 
obtained under this condition was 1000 µm. 
 

In the case of the crystals shown in Figure 6.16, cryo-protection using low viscosity 

oil (MiTeGen) allowed for collection of a dataset that could be resolved to 1.5 Å. In 

addition, each crystal was subjected to a fluorescence scan so that three sets of data 

could be collected at the zinc edge.  Upon fluorescence scanning of each crystal, a 

peak specific for zinc was found. This allowed for collection of the high resolution 

dataset at a wavelength of 1.28 nm using the energies specific for the peak and 

inflection given by this metal ion (9674.00 eV, 9664.00 eV and 9824.00 eV). 

However, despite the high resolution of the structure obtained, it was not possible to 

locate zinc in the electron density map. Given that a peak was observed for this metal 

ion upon fluorescence scanning, there is clear evidence for the presence of zinc in 

the crystals. However, incomplete occupancy of the binding site may account for the 

lack of a defined zinc atom in the electron density map. Repetition of this experiment 
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is required and may be better achieved by dialysis of the protein against EDTA 

followed by incubation with a molar excess of zinc prior to crystallisation.  

 

6.7. Discussion 

The emergence of multidrug-resistant strains of bacteria has resulted in a 

requirement for the identification of novel antibiotic targets. Given that 

peptidoglycan is unique to prokaryotic cells, it is still an ideal target for antibiotic 

design and there is an increasing amount of interest in targeting the enzymes 

involved in the cytoplasmic and lipid linked stages of peptidoglycan biosynthesis.  

 

Members of the Fem ligase family are responsible for the addition of amino acid 

cross bridges to cell wall precursors that subsequently results in indirect cross-

linkage of peptidoglycan. At the present time, these enzymes are under-explored as 

targets for novel antibiotic design even though their inhibition has the potential to 

restore the activity of many clinically approved antibiotics including penicillin. 

There are only two structures of members of the Fem ligase family deposited in the 

protein data bank; S. aureus FemA and W. viridescens FemX, hindering rational 

structure-based drug design against these proteins (Benson et al., 2002; Biarrotte-

Sorin et al., 2004).  

 

One of the main hurdles in obtaining a high resolution crystal structure of the S. 

pneumoniae MurM protein has been maintaining the stability of the protein at 

concentrations greater than 3 mg mL-1. The work of Benson et al. (2002) indicated 

that the stability of FemA at 10 mg mL-1 could be maintained by supplementation of 

the buffer the protein was presented to crystallisation screens in with 100 mM NaCl 
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and 20% glycerol. This methodology was applied with success for the first time to 

MurM in this study, allowing the protein to be concentrated to 10 mg mL-1 without 

any visible signs of precipitation or aggregation. In addition, concentration of MurM 

to 20 mg mL-1 was found to be possible if the buffer system contained at least 50 

mM ethanolamine and the pH was kept at 10.0.  

 

Despite exhaustive efforts, it was not possible to grow diffracting crystals of apo-

MurM within the time frame of this study. In order to see whether this is attributable 

to a disorder in lattice formation or damage caused during crystal freezing, future 

work will require an extensive test of various different cryo-protectants with MurM 

crystals. In addition to this, examination of the ability of MurM crystals to diffract at 

room temperature would enable determination of whether poor diffraction is due to 

disorder within the lattice as opposed to problems encountered during the freezing 

process.  

 

Rational surface mutagenesis of MurM across residues comprising more than one 

predicted cluster at the same time may also cause a significant reduction in surface 

entropy that allows for better formation of the crystal lattice. However, in the 

absence of this being successful, obtaining a structure of MurM might only be 

achieved by co-crystallisation of the enzyme with either one or both of its substrates. 

Co-crystallisation of S. aureus FemX with cardiolipin in this study was shown to 

cause progression from quasi-crystals to micro-crystals. Therefore, co-crystallisation 

of MurMPn16 with cardiolipin may result in the formation of diffraction quality 

crystals, especially given that the catalytic efficiency of the enzyme is increased by 

36-fold in the presence of this phospholipid (see Chapter 5).  
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If enough material can be gathered, future work should also involve co-

crystallisation of MurM with the stable aminoacylated 2’-amino mini-helix tRNAAla 

species. This tRNA species was shown to be a potent inhibitor of MurM in the work 

carried out in Chapter 5. It is likely that the demonstrated inhibitory effect was a 

result of the stable amino-linkage between the tRNA and the amino acid which 

prevented transfer of alanine from the tRNA to Lipid II by MurM. Co-crystallisation 

with this tRNA species may cause MurM to adopt a more compact structure that 

ultimately results in better crystal lattice formation. Preliminary work has indicated 

that co-crystallisation of MurM with this inhibitory tRNA species results in the 

formation of single diamond-shaped crystals as opposed to the small clusters 

obtained with the apo-enzyme. However, further screening and refinement is 

required to optimise the quality of the crystals produced. 

 

In the case of FemB, data collection on the refined crystals produced during this 

study may enable a high resolution crystal structure of this enzyme to be solved by 

molecular replacement with the published structure available for FemA (Benson et 

al., 2002). Acquisition of this structure will be beneficial for future drug design. In 

addition to this, given that diffraction quality crystals of FemB can be readily 

produced, it will be possible to soak potential inhibitory compounds into the lattice 

structure in the future to gain additional information about the catalytic mechanism 

of this enzyme. 

 

Identification of the metal ion binding sites within MurM and FemA would be aided 

by the acquisition of high resolution crystal structures where zinc and magnesium are 
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easily distinguishable in the electron density map. Future work to achieve this should 

involve dialysis of FemA against EDTA to remove bound metal ions and incubation 

with a molar excess of both zinc and magnesium prior to crystallisation. This should 

ensure that the metal ion binding sites within each molecule of FemA contain the 

correct metal ion rather than other metal ions that could potentially be picked up 

during the purification process.  
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Chapter 7 

Final discussion and conclusions 

 

 
 
 
 
 
 
 
 
 

 

 

 

With the global increase in the prevalence of multidrug-resistant strains of bacteria, 

the need for the development of novel antibiotics and the identification of new 

antimicrobial targets is becoming much more urgent. Peptidoglycan is a key 

structural component of the bacterial cell wall providing protection against turgor 

pressure and osmotic stress. Since this structure is unique to bacteria, it is still a 

valuable target for the development of novel antibiotics. Currently the cytoplasmic 

and lipid-linked stages of peptidoglycan biosynthesis remain under-exploited 

(Gautam et al., 2010).  

 

In S. pneumoniae, the peptidoglycan structure comprises a combination of branched 

and linear muropeptides (Filipe et al., 2000). The synthesis of branched 

muropeptides is catalysed by two aminoacyl-ligases called MurM and MurN. 

Selective inactivation of the genes encoding these ligases has indicated that the 

Objectives of the project 

The main objective of this project was to investigate the relationship between 

levels and types of amino acids used in indirect cross-linking within 

pneumococcal peptidoglycan across penicillin-resistant and penicillin-sensitive 

strains. In addition, the secondary aim of this work was to determine how 

differences between amino acid preference and the proportion of indirect cross-

linkages in the cell wall relate to the structure and function of allelic variants of 

the MurM protein from these strains.  
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protein products act within a specific sequence (Filipe et al., 2000). MurM adds 

either L-alanine or L-serine to the stem peptide lysine of the pentapeptide side chain. 

MurN than invariably adds alanine as the second amino acid of the cross bridge. 

Even though selective inactivation of murM causes a reversion to penicillin 

sensitivity in strains that were previously resistant, the relationship between activity 

of MurM and penicillin resistance is complicated. It is also known that, in the 

absence of low affinity forms of penicillin-binding proteins, MurM activity is not 

sufficient to confer high level penicillin resistance (Filipe et al., 2002).  

 

Prior to this finding, Garcia-Bustos and Tomasz (1990) had investigated the link 

between the proportion of branched muropeptides in the pneumococcal cell wall and 

penicillin sensitivity. In these studies, the proportion of branched muropeptides 

across four penicillin-sensitive strains of S. pneumoniae was found to range from 

16% to 27%. This contrasted with the proportion of branched muropeptides found 

across four penicillin-resistant strains of S. pneumoniae which ranged from 73% to 

86%. In the same study, the proportion of branched muropeptides in strain R6 was 

found to be 60% despite being classed as penicillin-sensitive. Therefore, in order to 

further understand the relationship between penicillin resistance and MurM activity, 

the MurM protein from S. pneumoniae strain R6 was cloned, over-expressed and 

purified for biochemical characterisation in this study.  

 

Kinetic characterisation of hexa-histidine tagged versions of MurMPn16 and MurM159 

had already been undertaken by Lloyd et al. (2008) prior to development of a means 

of producing a high yield of a single species of S. pneumoniae tRNAAla and tRNASer 

in this study. However, structural work undertaken during this PhD project on 
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MurMPn16 had indicated that these proteins are zinc-dependent metallo-enzymes and, 

in order to test this dependence, it was necessary to re-clone all three variants of 

MurM such that the histidine tag could be removed from the protein after it had 

served its purpose in purification.  

 

It was considered important to investigate the metal ion requirements of MurM due 

to findings made by Fiser et al. (2003) upon bioinformatics-based predictive 

modelling of the structure of MurM on the X-ray crystal structure of FemA. Distance 

matrix alignment, combinatorial extension and comparison of the predicted model of 

MurM to other proteins in the protein data bank suggests that the coiled-helical arm 

comprising domain II is similar to tRNA recognition domains in tRNA synthetase 

enzymes. This finding was reinforced by the identification of structural similarities 

between the coiled-helical arm of FemA and seryl-tRNA synthetase when the 

structure of the former was solved to 2.1 Å by X-ray crystallography (Benson et al., 

2002).  

 

It is well documented in the literature that many tRNA synthetase enzymes require 

divalent metal ions for catalysis, maintenance of structure or a combination of the 

two. E. coli AlaRS requires zinc in order to recognise its cognate tRNA species and 

removal of this metal ion from the enzyme causes a loss in the secondary structure as 

has been seen in this study with MurM (Sood et al., 1999). However, despite the 

similarity in structure between Fem Ligases and some tRNA synthetases, the 

dependence of the former on divalent metal ions has not been investigated before 

now. 
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Preliminary assessment of the requirement of MurM for divalent metal ions was 

made by dialysis of the protein against EDTA. EDTA is a strong metal ion chelating 

agent which binds zinc and magnesium with dissociation constants of approximately 

10-16 M and 10-9 M, respectively (Nyborg and Peersen, 2004). Removal of metal ions 

from MurM caused inactivation of the protein and was also demonstrated to result in 

a 50% reduction in alpha helical content as determined by circular dichroism. 

Restoration of total activity required incubation of the protein with a molar 

equivalent of both zinc and magnesium. Whilst zinc alone could restore 

approximately 80% of total activity, magnesium alone could not.  

 

The metal ion binding potential of MurM was characterised further by isothermal 

titration calorimetry (ITC). ITC data indicated that MurM had one binding site for 

magnesium with a Kd of 0.89 ± 0.06 µM. Zinc ion binding was found to be much 

more complex due to interaction of this metal ion with the magnesium ion binding 

site. Presentation of zinc to MurM after saturation of the protein with magnesium 

generated data indicative of the protein having one high affinity binding site for zinc 

with a Kd of 0.50 ± 0.04 µM (or 1 nM when the two site model was applied). 

Magnesium and zinc ion binding were shown to be a feature of two other members 

of the Fem ligase family, S. aureus FemX and FemA, in addition to MurM. This has 

demonstrated for the first time that divalent metal ions are involved in the catalytic 

mechanism of this family of enzymes which has far reaching implications for future 

drug design. In S. pneumoniae, peptidoglycan deacetylase has also been reported to 

require zinc for catalytic activity (Blair et al., 2005). 
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In order to identify potential amino acid residues involved in metal ion binding 

within MurM, the predicted model of the enzyme was loaded on to the CHED server 

for prediction of transition metal ion binding sites within proteins (Babor et al., 

2008). This bioinformatics-based analysis identified one potential metal ion binding 

site in MurM comprising E229, E307 and D230. Both glutamate residues were found 

to be functionally conserved as either aspartate or glutamate across all sequenced 

variants of MurM and were, therefore, subjected to site directed mutagenesis in 

MurM159.  

 

When the X-ray crystal structure of FemA was loaded onto the CHED server, two 

amino acid clusters were identified supporting ITC results that were indicative of the 

presence of two metal ion binding sites. Double mutation of E229 and E307 in 

MurM159 to alanine was shown to result in the abolition of an ITC signal for 

magnesium ion binding. This is a direct result of a significant decrease in the binding 

affinity of this mutant form of MurM159 for magnesium. Complete abolition of 

magnesium ion binding to MurM159 E229A:E307A cannot be confirmed due to the 

detection limits of ITC, however it is a possibility.  

 

Whilst MurM159 E229A:E307A was found to have an equal catalytic efficiency 

(kcat/Km) to the wild-type enzyme with respect to Lipid II, it could not be stimulated 

by cardiolipin. Given that the overall cardiolipin-induced improvement to apparent 

kcat/Km with wild-type MurM159 was only 2-fold, it was considered necessary to 

investigate the effect of mutation at these two residues in MurMPn16, where the 

cardiolipin-induced increase in kcat/Km with the wild-type enzyme was much more 

significant (37-fold). Unfortunately, the double mutant of MurMPn16 was found to be 
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inactive preventing further analysis of the involvement of magnesium in interaction 

of the enzyme with phospholipids. Thus, the conclusion drawn from this work is that 

magnesium ion binding to MurM is not essential for catalytic activity but is involved 

in the regulation of the activity of the enzyme by phospholipids. It is also possible 

that the MurM enzymes from penicillin-resistant strains of S. pneumoniae have 

evolved to become less responsive to phospholipids in order to achieve high levels of 

overall activity and indirect cell-wall cross-linkage. However, in order to confirm 

this hypothesis, the MurM enzymes from other penicillin-resistance strains of S. 

pneumoniae must be characterised in the same way as MurM159. Magnesium-aided 

protein interaction with a lipid bilayer has already been reported for methanol 

dehydrogenase (Carver et al., 1984). 

 

The most pronounced finding from this study was a direct result of investigation into 

the substrate specificity of MurM by exploitation of the ability of AlaRS to mis-

aminoacylate tRNAAla with serine (Guo et al., 2009). Generation of lethal amounts 

of mis-aminoacylated Ser-tRNAAla, which would disrupt the fidelity of protein 

synthesis, are usually prevented by a combination of the activity of the editing 

domain of AlaRS and free-standing genome-encoded homologues of the AlaRS 

editing domain called AlaXps proteins (Sokabe et al., 2005). However, no 

homologues of AlaXps proteins have been identified in the genome of S. 

pneumoniae.  

 

It is possible that genes encoding AlaXps proteins may have been lost from the S. 

pneumoniae genome during gene shuffling which occurs rapidly within the organism 

as a result of exposure to antibiotics (Croucher et al., 2011). This loss would be 
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feasible in the presence of another conserved protein within the organism that is able 

to perform the same function.  The ability of full-length S. pneumoniae AlaRS to 

generate and release mis-aminoacylated Ser-tRNAAla has been demonstrated in this 

study. In addition, the catalytic efficiencies of all three MurM enzymes were found 

to be much greater (at least 32-fold for MurM159 and 60-fold for MurMPn16/R6) when 

mis-aminoacylated Ser-tRNAAla was presented as a substrate instead of Ala-tRNAAla 

and Ser-tRNASer. This is the first evidence for the involvement of a member of the 

Fem ligase family in the maintenance of the fidelity of protein synthesis and 

provides an explanation for conservation of the functionality of MurM across all 

strains of S. pneumoniae. 

 

The work undertaken in this study has also led to the hypothesis that the generation 

of Ser-tRNAAla and Ser-tRNAThr by AlaRS and ThrRS, respectively is promoted by 

hydrogen peroxide production during aerobic growth of S. pneumoniae. This is 

based on the work by Ling and Söll (2010) who demonstrated that the editing ability 

of E. coli ThrRS was severely hampered in the presence of hydrogen peroxide. In 

addition, it has been shown by Pesakhov et al. (2007) that expression of cardiolipin 

in the pneumococcal cell membrane is up-regulated during aerobic growth as a result 

of an increase in hydrogen peroxide concentration.  

 

Unpublished data from Dr Adrian Lloyd (University of Warwick) and data acquired 

during this study have demonstrated that MurM activity is stimulated by cardiolipin. 

This effect was found to be more pronounced in the MurM proteins from penicillin-

sensitive strains Pn16 and R6 compared to MurM from the penicillin-resistant strain 

159. Hence it is likely that the up-regulation of cardiolipin expression during 
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exposure to hydrogen peroxide further stimulates MurM to utilise mis-aminoacylated 

Ser-tRNAAla and, potentially Ser-tRNAThr, to prevent the fidelity of protein synthesis 

from becoming compromised. However, further work is required to fully prove this 

hypothesis. If true, when combined with the confirmation obtained in this study that 

MurM accepts the amino acid from the 2’ hydroxyl of the terminal adenine of its 

tRNA substrate, this knowledge could lead to the design of potent inhibitors of 

MurM enabling the success rate of current treatment regimens to be improved. 
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