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Abstract

A set of fundamental algorithms for computing with polycyclic-by-finite groups is
presented here. Polycyclic-by-finite groups arise naturally in a number of contexts; for
example, as automorphism groups of large finite soluble groups, as quotients of finitely
presented groups, and as extensions of modules by groups.

No existing mode of representation is suitable for these groups, since they will typically
not have a convenient faithful permutation representation.

A mixed mode is used to represent elements of such a group; utilising a polycyclic
presentation or a power-conjugate presentation for the elements of the normal subgroup,
and a permutation representation for the elements of the quotient.

Xiv



Notation

Z+

Zn, 7./

]Fp'fl

GL(d, R)

SL(d, R)

PGL(d, q)

PSL(d, q)

GU(d, ¢*)

SU(d, ¢*)

PGU(d, ¢*)

PSU(d, ¢*)

the set of integers, {...,—1,0,1,...}

the set of positive integers, {1,2,...}

the set of negative integers, {...,—2,—1}

the set of integers modulo n

the set of natural numbers, {0,1,...}

the finite field of order p™ where p is prime and n € Z*

the group of invertible d x d matrices over a ring, R

the group of d x d matrices with determinant 1 over a ring,
R

the projective general linear group of degree d over the field,
F,, ¢ a prime power

the projective special linear group of degree d over the field,
F,, ¢ a prime power

the general unitary group of degree d over the field, Fp2, ¢ a
prime power

the special unitary group of degree d over the field, F,2, ¢ a
prime power

the projective general unitary group of degree d over the
field, F,2, ¢ a prime power

the projective special unitary group of degree d over the field,

Fg2, g a prime power
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Chapter 1

Introduction

This chapter aims to acquaint the reader with the topic and scope of the research
undertaken towards the completion of this thesis. Firstly, the class of polycyclic-by-
finite groups is discussed briefly, after which the objectives and results of the project

are outlined.

1.1 The Class of Polycyclic-by-Finite Groups

Let P and Q be properties of groups. A group is said to be poly-P if it admits a
finite subnormal series such that every factor group has property P. A group, G, is
a P-by-Q group if it has a normal subgroup, NN, such that N has property P, and
G/N has property, Q.

Thus, a group is polycyclic-by-finite if it has a normal polycyclic subgroup of finite
index. That is, if it has normal subgroup of finite index that admits a subnormal
series with cyclic factors.

Segal (1983) proves that the property “polycyclic-by-finite” is equivalent to the

properties:
(i) poly-(cyclic or finite),

(i) (poly-Cy)-by-finite,
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where Cy, is the property of being infinite cyclic.

By a well-known theorem of P. Hall, every polycyclic-by-finite group is finitely
presented — and in fact, polycyclic-by-finite groups form the largest known section-
closed class of finitely presented groups. It is this fact that makes polycyclic-by-finite
groups natural objects of study from the algorithmic standpoint. For an excellent
theoretical account of the algorithmic decision theory of polycyclic-by-finite groups,
the reader is referred to (Baumslag et al., [1991)).

In contrast to the paper of [Baumslag et al.| (1991), this thesis explores the com-
putational properties of polycyclic-by-finite groups from a practical perspective, at-
tempting to produce algorithms which are conducive to computer implementation.

In this context, the algorithms developed are targeted not only at infinite polycyclic-
by-finite groups, but, in fact, primarily at finite insoluble groups with a large soluble
normal subgroup, as such groups do not often have a convenient permutation rep-
resentation. These groups, although trivially polycyclic-by-finite, may be viewed as
polycyclic-by-finite with non-trivial polycyclic normal subgroup, leading to a com-
putationally effective representation. Groups of this type arise naturally in many
applications such as automorphism groups of large finite soluble groups, as quotients

of finitely presented groups, and as extensions of modules by groups.

1.2 Overview of Project

The objectives and outcome of the research governing this thesis are outlined in this

section.

1.2.1 Objectives

The central goal of this thesis is to define a data structure, and develop fundamental,
machine implementable algorithms, for the class of polycyclic-by-finite groups. By

a data structure, one means a mode by which such groups may be represented on
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the computer. Fundamental algorithms for a class of groups include algorithms to
perform the tasks of multiplication, element inversion and subgroup generation.

The material developed also aims to use the fundamental algorithms developed
to perform more advanced structural computations in polycyclic-by-finite groups
such as finding Sylow subgroups (in the finite case), computing centralisers and
testing element conjugacy.

Focus was initially restricted to finite insoluble groups, as many of the interesting
examples of polycyclic-by-finite groups that arise in practice are in fact finite (see
Section [1.1)). However, taking into account the recent developments and ongoing
research in the area of computing with infinite polycyclic groups (see [Eick, 2001)), it
was deemed prudent to allow for the possibility of infinite groups, and the parameters

of the problem were broadened accordingly.

1.2.2 Results

This subsection contains a synopsis of the results emerging from this thesis.

Theoretical

The main body of the thesis begins by defining a normal form for the elements of a
polycyclic-by-finite group, after which, a data structure which facilitates multiplica-
tion of elements is introduced. This material forms the content of Chapter [3, which
culminates with a detailed description of the multiplication algorithm.

The question of subgroup generation is addressed in Chapter[d In the discussion
of this topic, the underlying problem of generating a subgroup is extracted and
treated separately, after which, there follows a description of how the data structure
is computed for a subgroup. This dissection results in the chapter exhibiting a more
pedagogical style. Several applications of subgroup generation are presented in the

final section of this chapter.
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A selection of advanced structural computations in polycyclic-by-finite groups is
discussed in Chapter [5] Specifically, algorithms to compute the centre of the group
and the centraliser of an element are presented, along with a constructive method to
test element conjugacy. Substantial use of linear algebra and representation theory

is made here.

Practical

In keeping with the “machine implementable” ethos of this course of research, every
function described in thesis has been fully implemented using the Magma Computa-
tional Algebra Systemﬂ This suite of functions forms a major portion of a complete
package for computing with polycyclic-by-finite groups in Magma. The implemen-
tation was done in parallel with the development of the algorithms, and forms a
significant part of the project.

An up-to-date version of the source code (written in the Magma language) fulfill-
ing the implementation may be found on the compact disc accompanying this thesis.
The reader should consult the documentation provided Appendix [A] for directions
on how to load and use the package. Some example computations are given in Sec-
tion[6.1] of Chapter[6] Although extensive testing has been done, the implementation
is still in developmental stage and, in rare circumstances, bugs may arise, especially
when attempting to compute with infinite polycyclic-by-finite groups. Source code

listings are given in Appendix [B]

!Magma is a large, well-supported software package designed for computations
in algebra, number theory, algebraic geometry and algebraic combinatorics. See
http://magma.maths.usyd.edu.au/magma/ for details.


http://magma.maths.usyd.edu.au/magma/
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1.2.3 Notes and Assumptions
Existing Computational Representations

At points in the thesis, the reader may encounter the phrase “without performing
any element arithmetic in £”, where F is a polycyclic-by-finite group. This simply
means that, while there exists some (possibly inefficient) representation for £ on the
computer, this representation is not used to perform element arithmetic. Indeed,
the first and most important goal of the theory is to set up machinery so that
elements of E/ can be manipulated by performing operations only within the normal
polycyclic subgroup and the associated finite quotient, without appealing to any
existing representation of F.

On a related point, while, for a given polycyclic-by-finite group, F, there may be
many different decompositions of E as an extension of a polycyclic group by a finite
group, the algorithms presented in this thesis are targeted at those decompositions
in which the finite quotient is relatively small and therefore admits a permutation
representation of manageable degree. Thus, it shall hereinafter be assumed that the

polycyclic-by-finite groups in this thesis can be so decomposed.

Complexity

Time and space complexity analyses are provided for the main algorithms around
which the theory is built. The time complexity of an algorithm shall be stated
in terms of the number of multiplications performed using the given computational
representation of the group in question; in the case of later algorithms, the time cost
is assessed by counting the number of multiplications performed using the newly

devised representation for the polycyclic-by-finite group.



Chapter 2

Background Material

This chapter contains a summary of the required background material, and intro-

duces notation that is used throughout the rest of the thesis.

2.1 Permutation Groups

Permutation group algorithms are among the best developed parts of computational
group theory. The base and strong generating set data structure and the Schreier—
Sims algorithm introduced by Sims (1970, 1971)) form the backbone of this area,
and the resulting methods enable detailed structural computations to be carried out
routinely in permutation groups of degree up to about 107.

As discussed in Chapter [I the chosen representation for polycyclic-by-finite
groups involves viewing the finite quotients primarily as permutation groups. Thus,
the algorithms developed here for polycyclic-by-finite groups rely on the existing
and well established methods for manipulating finite groups of permutations; the
fundamental concepts of which are presented in this section. For a detailed account
of the material discussed here, the reader is referred to (Holt et al., 2005, Chap. 4)

and (Seress,, 2003).
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2.1.1 Definitions and Notation

In the context of permutation groups, the notation used is similar to that of [Seress
(2003)) and [Holt et al. (2005)). The required definitions are reproduced concisely
here.

The cycle notation shall be used for permutations, with the identity permutation
denoted by (). The group of all permutations of an n-element set, €2, is denoted
by Sym(Q2), or S, if only the size of 2 is relevant. The image of a € € under
the permutation g € Sym(2) is written as 9. The alternating group on € is
denoted by Alt(€2) (or A, in the case of a generic n-element set). The support of
g € Sym(2), denoted by supp(g), consists of those elements of Q that are actually
displaced by g, and the degree of g, deg(g), is defined to be the size of this set, i.e.
supp(g) = {w € Q | w9 # w}, deg(g) = |supp(g)|. The set of fixed points of ¢ is
defined as fix(g) = Q\ supp(g).

A group, G, is said to act on a set, A, if there exists a homomorphism (called an
action), p: G — Sym(A), and the degree of ¢ is defined to be |A| (if G < Sym(A),
then one speaks of the degree of ). The action, ¢, is faithful if its kernel, ker ¢, is
the singleton containing the identity. The image, ©(G), is denoted by G*. In the
special case where G < Sym(Q2), A € Q is fixed by G, and ¢ is the restriction of
permutations to A, G is also denoted by G|a.

Let G < Sym(Q). The orbit of w € Q under G is the set of images, w% = {w? |
g€ G}. For Ac Qand ge G, A9 = {49 | § € A}. The group, G, is said to be
transitive on ) if it has only one orbit, and G is k-transitive (k < n) if the action of
G induced on the set of ordered k-tuples of distinct elements of €2 is transitive. The
largest such k is called the degree of transitivity of G.

If G is transitive and A € €, then A is called a block of imprimitivity for G if
for all g € G either A9 = A or A9 " A = . The group, G, is called primitive if

all blocks have 0, 1 or || elements. If A is a block then the set of images of A is
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a partition of €2, which is called a block system, and an action of G is induced on
the block system. A block is called minimal if it has more than one element and
its proper subsets of size at least 2 are not blocks. A block is called maximal if the
only block properly containing it is €2. A block system is mazximal if it consists of
minimal blocks, whereas a block system is minimal if it consists of maximal blocks.
The action of G’ on a minimal block system is primitive.

The pointwise and setwise stabilisers of A < ) are denoted by G(ay and Ga
respectively. i.e. Gay=1{9e€ G| (Voe A)(6? =0)}, Ga={ge G| A=A} IfA
has only one or two elements, then the set braces and parentheses are often dropped
from the notation of the pointwise stabiliser; in particular G5 denotes the stabiliser
of § € Q. If A= (61,...,0) is a sequence of elements of Q, then G denotes the
pointwise stabiliser of that sequence.

The group, G, is said to be semiregular if Gs = 1 for all § € 2, and G is regular if
it is transitive and semiregular. The group, G, is a Frobenius group if it is transitive,
not regular, but for which G, 3 = 1 for distinct a, 8 € €.

If g € Sym(2) then a bijection ¢: Q — A naturally defines a permutation ¢(g) €
Sym(A) by the rule ¢(w)?@) = ¢(w?) for all w € Q. The groups, G < Sym(£) and
H < Sym(A), are permutation isomorphic, written H ~ G, if there is a bijection,

¢: Q2 — A, such that ¢(G) = {¢(g9) | g€ G} = H.

2.1.2 Computation of Orbits and Stabilisers

In algorithms involving permutation groups, calculations of point orbits and transver-

sals of the associated stabilisers are performed frequently.

The Basic Orbit Algorithm

Let G = (X) be a finite group acting on a finite set, 2, and let « € . In a

computational context, the orbit, a“, may be viewed as the vertex set of a breadth-



2. Background Material 9

first-search tree rooted at « in the directed graph, D(€2, ]_Z’)), with vertex set €2 and
edge set E = {(B,7) | 7 e QA Tz e X UX1)B =)} Assuming that the
images, %, can be computed, and that points of 2 can be compared, a standard
breadth-first-search method may be employed to find this vertex set along with a
transversal of G, in G.

The algorithm starts with Ly = {«} and computes the sets, L;, according to the

recursive definition

Li={ye Q| @Be Li)((B7) e BN Ly,
j<i
terminating when L,, = ¢J for some m. The finiteness of ¢} guarantees that the
algorithm does in fact terminate. The L; are called the levels of the breadth-first-
search tree.

The set, A = U L;, is the required orbit; the containment A € a“ clearly
holds, and the revejrzz inclusion follows from the fact that, by construction, A* = A
for all x € X, hence A9 = A for all ¢ € G. A transversal of G, in G is found
by keeping a record, at each level, the permutations of X U X~! that are used to
compute the points that lie in the subsequent level.

Assuming that the tasks of finding an image, 5%, and testing element membership

in subsets of €2 can both be performed in constant time, the orbit computation

method presented here has time complexity O(|A]|X]).

Schreier Vectors

Computing and storing a stabiliser transversal explicitly may require ©(n?) memory.
This approach becomes impractical when dealing with permutation groups of large
degree. The Schreier vector data structure offers an improvement on this space

complexity.

Definition 2.1. Let G = (X)) be a finite permutation group acting on a finite set,
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Q, and let a € Q. A Schreier vector (or Schreier tree) for « relative to X is a directed
labelled tree, T', with all edges directed to the root, o, and edge labels taken from
the set, X U X~'. The vertices of T are the points of the orbit, a“, and the edge

labels are such that if (v,0) is an edge with label x then 4* = §.

Let G be as described in Definition [2.1] let || = n and let X = {x1,...,z,}. Let
T be a Schreier vector for a relative to X. If v is a vertex of T" then the sequence of
edge labels along the unique path from v to « is a word in the elements of X v X1
which, when viewed as a product of permutations, moves 7 to . Thus, Schreier
vectors define inverses of a set of coset representatives for G, in G.

The Schreier vector data structure is usually implemented using two arrays of
length equal to the size of the orbit in question. For the group, G, and the point,
a, the first array, A, holds the elements of a“, with A[1] = a. The second, v, is an

integer array whose entries satisfy:

(i) v[1] = 0.

(ii) For j =2,...,|a%|, let e; be the edge of T with first component A[j], then

. 7 if e; has label z;,
v[j] =
1

—i if e; has label o; .

The maximum length of an orbit is n, hence, storing a Schreier vector in the
manner described above requires only O(n) memory. There is a time-space trade-off
associated with Schreier vectors, for, reconstructing a coset representative from a
Schreier vector (by retracing a sequence of edge labels as described above) requires
O(n) multiplications in the permutation group, in contrast to the constant time

required when the transversals are stored explicitly.
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2.1.3 Bases and Strong Generating Sets

The notion of a base and strong generating set of a permutation group is fundamental
in the theory. The resulting data structure allows for efficient manipulation of

permutation groups.

Basic Definitions

Let Q = {1,...,n} and G < Sym(Q2). A sequence, B = (fi,..., /), of elements
belonging to 2 is called a base for G if the only element of G to fix B pointwise is

the identity. The sequence B defines a stabiliser subgroup chain,
G=GMzcP>...zclzcl =1 (2.1)

where Gl = Gs,,..8,_1) (i > 1) is the pointwise stabiliser of {f,...,5;—1}. The
base, B, is called non-redundant if GU+1 < GU for all i = 1,...,1. The orbits,
@Gm, are called the basic orbits or fundamental orbits of G (relative to B).

By repeated applications of Lagrange’s Theorem and the Orbit—Stabiliser The-

orem, one obtains
!

l
Gl =T [[6W: ct=1) =T T18". (2.2)
=1 i=1

Now, for each 4, clearly |3¢"| < n. Moreover, if B is non-redundant then || > 2.

These inequalities, combined with Equation (2.2)) immediately yield
2\3\ < |G‘ < n|B|7

or

log2|G| <

Bl <1 G|.
IOan ’ | Og2| ’

That is, the length of a base is logarithmic in the size of the permutation group. This

inequality is used frequently in the complexity calculations of this, and subsequent



2. Background Material 12

chapters.
A strong generating set for G relative to B is a generating set, .S, for G with the
property that
(S n Gy = Gl (2.3)

fori=1,...,1+ 1.

The base image of an element g € G is the sequence BY = (§7,..., /).

Observation 2.2. The base image of g uniquely determines the element, g. To see
this, suppose that BY = B" for some h € G. Then B9 ' = B whence gh™! =1 by

the definition of a base.

The Sifting Procedure

Given a base for a permutation group, one may define a normal form for group

elements relative to this base.

Proposition 2.3. Let U; be a right transversal of GV+Y in GU fori = 1,...,1.

Then, every element g € G may be expressed uniquely as

g =wWlj—1---U

where u; € U;.

Proof. Induction on the length of a base may be used to prove the existence of the
asserted decomposition. The case [ = 1 is trivial, for the required decomposition is
simply the element itself.

Assume that the decomposition exists for bases of length [ — 1, and let g € G.
The Orbit—Stabiliser Theorem provides an element, u; € Uy, such that 5] = 3.

The element, gu;*, belongs to the group G2l which has base, (fs, ..., 3;) of length

| — 1, and right transversals, U;, for i = 2,...,l. By the inductive hypothesis, gu;*
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has decomposition u;u;_1 - - - us, where u; € U;. This gives
g = w1+ -U

as required.

To prove uniqueness, assume that wu;_;---u; and wju; | ---uj are different
decompositions of an element, g € G. Let j be the smallest index such that
uj # ;. Then, by the Orbit-Stabiliser Theorem, ﬁ;tj # 5;9, whence wu;_1 - -uy
and wju;_, - --uj give rise to different base images, contradicting Observation [2.2] It

follows that w; = u} for each i. O

By Proposition [2.3] the transversals, U;, provide a convenient normal form for
elements of g.

The decomposition in the statement of the proposition can be done algorith-
mically as follows. Given g € G, find the coset representative, u; € Uy, such that
B) = Bi* and compute go = gu;' € G, Then find uy € U, such that 55 = 35>
and compute g3 = gou, '. Iterate [ times to obtain the required factorisation. This
procedure is called sifting or stripping. Sifting involves constructing exactly one
transversal element for each base point, and thus requires O(nlog,|G|) multiplica-
tions in the permutation group.

Sifting can also be used to test membership in G. Given h € Sym(f2), one
attempts to factor h as a product of coset representatives, u;. If the factorisation is
successful then h € G. Two things may go awry; it is possible that for some ¢ < [,
the ratio h; = huy'uy'---u; !, computed by the sifting procedure carries 3; out of
the orbit ﬁiGm, or hyy1 = hujtuy! - -u[l # 1. In either case, h ¢ G. The last ratio

h; computed by the sifting procedure is called the siftee of h.
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The Schreier—Sims Algorithm

The Schreier—Sims algorithm is used to construct a base and strong generating set
for a given permutation group. The method is based on the following lemmas, taken

from (Seress, |2003, Chap. 4).

Lemma 2.4 (Schreier). Let H < G ={S) and let R be a right transversal of H in

G with 1 € R. For g € G, denote the unique element of Hgn R by qg. Then the set,

T ={rs(F5)™' |re R,se S},

generates H.

Proof. By definition, the elements of T" are in H, so it suffices to show that 7w T~}
generates H. Note that T-! = {rs(7s)"' | re R,se S7'}.

Let h € H be arbitrary. Since H < GG, h can be written in the form h = s; - - 54,
for some non-negative integer, k, where s; € S U S~! for each i. Define a sequence

hg, h1, ..., hi of group elements such that

hj = tl T thj+1Sj+1 Sk (24)

with t; € T U T7! for each @ < j, ;01 € R, and h; = h. Let hg = 1s;---sy.
Recursively, if h; is already defined, then let ¢;,1 = 7;118;41(T5718;1) " and )9 =
7it15;41- Clearly, hj.1 = h; = h, and hj;4; has the form of Equation as
required.

Thus, h = hy, =t1 -+ - tgrge1. Since h € H and ¢y -- -t € (T') < H, it follows that
rke1 € Hn R = {1}, whence h € {T). Thus H < {(T). O

The elements of the set, T, in Lemma [2.4] are called Schreier generators for the

subgroup H.
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Lemma 2.5 (Sims, 1970). Let G < Sym(Q2) and {fi,...,5} < Q. For each j

in {1,...,1+ 1}, let S; € Gg,,..p, 1) such that {(S;) = (Sj41) holds for j < 1. If

77777

G = <Sl>, Sl+1 = @, and
(8ivg, = (Sj+1) (2.5)

holds for each j, then B = (By,..., ) is a base for G and S = Ué.zl S; is a strong

generating set for G relative to B.

Proof. Induction on [ is used here. The case [ = 1 is trivial, for Ugl'=1 S; clearly
fulfils the requirements of a strong generating set (relative to the base containing
the single point ;) for the group, {S}).
Assume that the result holds for bases of length [ — 1. Then, in particular, S* =
Ué‘:2 S; is a strong generating set for (Sy) relative to the base B* = (S, ..., ).
Let GI'l = G4,

8,1 for i =2,..., 1+ 1. To prove the lemma, it is required to

,,,,,

verify that Equation holds for each i. Setting j = 1 in Equation yields
Gg =S = (52,
which implies the containment,
Gg, < {5 nGpg).
The reverse inclusion is obvious, thus
(S nGEY = g,

and Equation (2.3) is satisfied for i = 2.

For ¢ > 2, the inductive hypothesis implies that S* n G, 3,_,) generates

(821, pir)s and 50 GV = (SN Gys,, . 5,_1)) 2 (S* N Gay,.pi)) = (S2)(B1,Bir) =
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(Gs,) 1) = GU. Therefore,
(S n Gl = gl

for each 7, as required. O

Given a permutation group, G = (T'), acting on a set, 2, a base and strong
generating set can be constructed in the following way. A data structure containing
a list, B = (f1,...,0k), of already known elements of a non-redundant base is
maintained, along with an approximation, S;, for a generator set of the stabiliser,
Gs,,..5,1), foreach i € {1,... k}. Throughout execution, the S; satisfy the property
that, for all ¢, (S;) = (S;41). The data structure is said to be up-to-date below level
j if Equation holds for each 7 in the range j <1 < k.

In the case where the data structure is up-to-date below level j, a transversal,
R;, of <Sj>ﬂj in (S;) is computed. Then a check is made to determine whether
Equation is satisfied for ¢ = j. By Lemma , this can be done by sifting the

Schreier generators obtained from R; and S; in the group, {(S;;+1). (In this group,

k
i=j+1

membership testing is possible, since Lemma implies that | S; is a strong
generating set for (S;i1).) If all Schreier generators are in (S;;;) then the data
structure is up-to-date below level j — 1; otherwise a non-trivial siftee, h, at level ¢
for some t in the range, j +1 <t < k + 1, is added to S;, and the data structure is
now up-to-date below level t. If £ = k + 1, a new base point, (1, is chosen from
supp(h).

The algorithm initialises B to contain a single point, 5; € €2, that is moved by
at least one generator in 7" and sets S to 7. At that moment, the data structure is
up-to-date below level 1; the algorithm terminates when the data structure becomes
up-to-date below level 0. Lemma [2.5[ immediately implies correctness.

Bounds on the time-space requirements of the algorithm are given in Theo-

rem For a proof and a detailed discussion, the reader is referred to (Seress,
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2003, Chap. 4).

Theorem 2.6. Given a finite permutation group G = (X ) acting on a set of car-
dinality n, a base and strong generating set for G can be computed by deterministic
algorithms in O((nlogy|G|)®+|X|n®log,|G|) time using O(n(log,|G|)?+|X|n) mem-

ory.

2.2 Polycyclic Groups

A group, G, is said to be polycyclic if it has a descending chain of subgroups
G:GllZ"'BGTBGTJrl: 1,

in which G;/G; 1 is cyclic for ¢ = 1,2,...,r. Such a chain of subgroups is called a
polycyclic series.

If G;/Gi1 = {x;G;;1) for each i, then G = {(xy,...,z,). Thus, every poly-
cyclic group is finitely generated. The sequence, (z1,...,x,), is called a polycyclic
generating sequence for G.

Subgroups and quotients of polycyclic groups are themselves polycyclic, for if

H <G and N < G, then
H=HnG z=---=2HnG,=HnG, .1 =1

and

G/N =GN/N=..--=G,N/N =G, . 1N/N =1,

are polycyclic series for H and G/N respectively,
Lemma gives a characterisation of polycyclic groups as a subclass of the
soluble groups. First, a necessary and sufficient condition for an abelian group to

be polycyclic:
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Lemma 2.7. An abelian group is polycyclic if and only if it is finitely generated.

Proof. One direction is clear, for every polycyclic group is finitely generated, and
so, in particular, every abelian polycyclic group is finitely generated.

Conversely, suppose that A = (a4, ..., a,) is abelian. Then
A= <CL1,...,CL7~> B<a1,...,ar,1>--- B<a1,a2> B<CL1> =1

is a series with cyclic factors, showing A to be polycyclic. m

Lemma 2.8. The polycyclic groups are exactly the soluble groups for which every

subgroup is finitely generated.

Proof. Suppose that G is polycyclic. Then, it follows immediately from the definition
of a polycyclic group that GG has a subnormal series with abelian factors, and is hence
soluble. If H < G, then H is polycyclic and hence finitely generated.
Conversely, suppose that G is a soluble group for which every subgroup is finitely
generated. Let
G=G &z =G =G4 =1,

be a soluble series for G. By hypothesis, the abelian factors, G;/G;.1, are finitely
generated, and hence polycyclic by Lemma [2.7] Thus, the soluble series above may
be refined to obtain a polycyclic series for GG, by inserting isomorphic copies of a

polycyclic series for each factor, G;/G;. . [

In contrast to Lemma (2.7} not every finitely generated soluble group is polycyclic.

A counterexample is constructed here. Take
o
A= 1]

i=—00

to be the restricted direct product of infinitely many infinite cyclic groups, and let
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x be the automorphism of A defined by

ai =a;1; (—00 <i< o).

Then z has infinite order and generates a group, (x) = 7Z, of automorphisms of A.

Now form the semidirect product (see Definition [2.10)),

G = A x{x).

Then G is soluble, and G is generated by two elements, namely ay and x. But G is
not polycyclic as the subgroup, A, of G is not finitely generated. The group, G, is

the so-called wreath product,

G = {apy L {x) = Z L.

Every polycyclic group admits a specific type of finite presentation that allows for
efficient structural computation within the group. Finite presentations for polycyclic
groups are discussed in the subsections below. Segal (1983) provides an excellent

treatise on the beautiful theory of polycyclic groups.

2.2.1 Finite Soluble Groups

It is an easy corollary of Lemma [2.8| that, in the finite case, the properties “poly-
cyclic” and “soluble” are equivalent. To prove this directly, argue as follows. Observe
that a soluble series for a finite group has finite abelian factors. Therefore, the Ba-
sis Theorem for finite abelian groups may then be applied to decompose the finite
abelian factors into direct sums of cyclic groups, thereby yielding a refinement of the
given soluble series with cyclic factors as required. Conversely, polycyclicity implies

solubility.
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Thus, every finite soluble group has a subnormal series with cyclic factors. Such
a series gives rise to various finite presentations reflecting the polycyclic structure
of the group. These presentations are useful because the Word Problem in such
presentations can be solved in an algorithmic fashion.

Let G be a finite soluble group. A presentation for G of the form,

P _ -
{ar,...,a, | ay =w;; for1<j<r,

a; o
aj =w;; for1<i<j<r),

where

(i) p; is the least prime such that @}’ € {aj.1,...,a,) for j < r, and a? is the

identity, and
(ii) w;; is a word in the generators a;i1, ..., Gy,

shall be called a power-conjugate presentation for G. The generators of G corre-
sponding to aq,...,a, in this presentation are known as a power-conjugate generat-
ing sequence for G. The relations of the first type are called power relations, while
those of the second type are called conjugate relations.

Let G; = {a,, .. .,a,) for each i < r, and define G, to be the trivial group. The
presentation above is said to be consistent if |G;/G;+1| = p; for each i. In this case,
every element of G can be written uniquely in the normal form af* ---a%", where
O0<a;<pjfori=1,...,r.

It is straightforward to show that every finite soluble group possesses a con-
sistent power-conjugate presentation, and conversely, that every power-conjugate
presentation defines a finite soluble group. Given a consistent power-conjugate pre-
sentation for a group, there exists an algorithm (the collection algorithm), which,

when given an arbitrary word over the power-conjugate generating sequence, de-

termines the corresponding normal word. In particular, collection can be used to
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compute the normal word which is equal to the product of two given normal words,
thus implementing the group multiplication.

Power-conjugate presentations are an effective way of representing finite soluble
groups, and, over the past two decades, a considerable body of efficient algorithms
has been developed for computing with soluble groups defined in terms of power-
conjugate presentations. For a survey of the algorithms currently in use for power-
conjugate presentations, the reader is referred to (Holt et al., 2005, Chap. 8), and,
for a discussion of computation in soluble permutation groups, see (Seress, 2003,

Chap. 7).

2.2.2 Infinite Polycyclic Groups

A generalisation of the power-conjugate presentation is used to represent infinite
polycyclic groups.

Let G be a polycyclic group. A presentation for G of the form,

lay,...,a, | a]" =w;; foriel,

a .
aj' =w;; forl<i<j<r,

—1

af =w_y; forl<i<j<ri¢l),

(i1) m; > 1 for i € I, and

(iii) w;; is of the form w;; = a‘ei(ﬂ’rjl"i'H) e afn(i’j’r), with 0 < €(i,j,k) <my if ke I.

shall be called a polycyclic presentation for GG. The generators of G corresponding
to ai,...,a, in this presentation are known as a polycyclic generating sequence for

G, and the values, m; (i € I), are called the corresponding polycyclic exponents. The
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relations of the first type are called power relations, while those of the second and
third types are called conjugate relations.

Let G; = {a,, .. .,a,) for each i < r, and define G, to be the trivial group. The
presentation above is said to be consistent if the quotient, G;/G;.1, has order m;
whenever ¢ € I, and is infinite whenever ¢ ¢ I. In this case, every element of G can
be written uniquely in the normal form aj*---al", where 0 < a; < m; for i € I.

It is straightforward to show that every polycyclic group possesses a consistent
polycyclic presentation, and conversely, that every polycyclic presentation defines
a polycyclic group. Given a consistent polycyclic presentation for a group, there
exists a version of the collection algorithm, which, when given an arbitrary word
over the polycyclic generating sequence, determines the corresponding normal word.
In particular, as in the case of power-conjugate presentations, collection can be used
to compute the normal word which is equal to the product of two given normal
words, thus implementing the group multiplication.

Computing with infinite polycyclic groups are a comparatively new topic in com-
putational group theory and the number of available algorithms is much smaller than
in the case of finite polycyclic groups. For an accessible introduction to the algorith-
mic theory of polycyclic groups, the reader is referred to (Sims, |1994, Chap. 9). A

practical account of computing with polycyclic groups can be found in (Eick, [2001)).

2.3 Representation Theory and Extensions

This section concerns group representation theory, together with the basic theory of
extensions of abelian groups. A survey similar to that of |[Holt et al. (2005) is pro-
vided, focusing on the definitions and results needed for later chapters. |James and
Liebeck| (2001)) provide an accessible introductory account of Representation The-
ory, while the reader may consult (Rotman, 2002)) for proofs of the more advanced

results, in particular those involving representations over finite fields. For a detailed
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description of the theory of extensions and cohomology, the reader is referred to
Chapter 7 of (Rotman, [1995)).

Computation with group representations is a significant subtopic within compu-
tational group theory. Some of the methods in this area, particularly those related
to group representation theory for its own sake, involve advanced theory. Even for
computations that are concerned only with the group-theoretical structure of finite
groups, some of the more sophisticated algorithms require some familiarity with
representation theory.

The basic reason for this is that if a finite group, G, has normal subgroups,
N < M, for which M/N is an elementary abelian p-group for some prime, p, then
the conjugation action of G on M gives rise to a representation of G/M over the
field of order p, and properties of that representation translate into group-theoretical
properties of G. For example, the representation is irreducible if and only if M /N

is a chief factor of G.

2.3.1 The Terminology of Representation Theory

Let K be a commutative ring with unity, and let G be a finite group. The group

ring, KG, of G over K is defined to be the ring of finite formal sums,

{ngg|rgeK},

geG

with the obvious addition and multiplication inherited from that of G. In fact KG
is an associative algebra with unity, and thus it is a ring with unity and a module
over K. The group ring, K G, is also known as the group algebra of G over K.

Let M be a right (unital) KG-module. The module product of m € M and
x € KG shall be denoted by m - x, but when x € K, and M is viewed primarily
as a K-module, then the product may be written as xm. The commutativity of

K ensures that this causes no problems. From the module axioms, and the fact
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that (m-g)-g ' = m for m € M, g € G, one observes that multiplication by a
group element g € G defines an automorphism of M as a K-module. Therefore
there is an associated action ¢: G — Autg (M), and group action notation, m?9,
shall sometimes be used as alternative to m - g. Conversely, if M is a K-module,
then any action ¢: G — Autx (M) can be used to make M into a KG-module.

It shall always be assumed that M is finitely generated and free as a K-module,
and so, after fixing on a free basis of M, one may identify M with K¢ for some d.
Then, using the same free basis of M, Autyx (M) may be identified with the group
GL(d, K). So the action homomorphism, ¢, is ¢: G — GL(d, K), which is the
standard definition of a representation of GG of degree d over K.

According to basic results from representation theory, two KG-modules are
isomorphic if and only if the associated representations, i, @9, are equivalent,

which means that they have the same degree and there exists o € GL(d, K) with

a-pa(g) = ¢i(g) - o for all g € G.

2.3.2 Semidirect Products, Complements, Derivations and

First Cohomology Groups

Recall the following definitions.

Definition 2.9. An extension, GG, of a group, N, is called a split extension if there
is a subgroup, C, of G with NC' = G and N nC = 1. Here C'is called a complement
of N in G.

Definition 2.10. Let G and M be groups, and suppose that there is a given ho-
momorphism, ¢: G — Aut(M). For g € G, m € M, abbreviate m#9 to m?.
The semidirect product of M by G using ¢, denoted by G x M or G' x, M, is the
set, G x M, endowed with the multiplication, (g1, m1)(g2, m2) = (9192, m{*ms), for

91,92 € G, my,mg € M.
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Proposition 2.11. Any split extension, E, of a group, M, by a group, G, is iso-
morphic to the semidirect product G <, M, where the action, ¢, of G on M is defined

by the conjugation action of a complement of M in E on M.

Proof. Observe that the semidirect product, G x M, is an extension of M by G, using
the maps, M — G x M and G x M — @G, defined by m — (1g,m) and (g,m) — g
respectively. It is a split extension, with complement, {(g, 1)) | g € G} = G.

Now, if a group, F, has a normal subgroup, M, with a complement, G then any

e € E can be written uniquely as e = gm where g € G, m € M, and

_ g2
gi1my - goMmsg = g192M7 M2

for g1,92 € G, my,mg € M.
Denote the conjugation action of G on M by ¢: G — Aut(M). Then E is

isomorphic to G x, M via the map gm — (g, m). ]

In general, different complements could give rise to different actions, . However,
if M is abelian, then the actions coming from different complements are the same.
It shall be assumed for the remainder of this subsection that M is abelian, and
additive notation shall be employed where appropriate. It shall also be assumed
that M is a K-module for some commutative ring K with unity. There is no loss
of generality here, because any abelian group can be regarded as a Z-module in the
obvious manner. In the case where M is an elementary abelian p-group for some
prime, p, K is taken to be the field [F,,.

As discussed in Subsection [2.3.1] an action, ¢: G — Auty (M), of G on the K-
module, M, corresponds to endowing M with the structure of a KG-module, and so
one may speak about the semidirect product G' x M = G x, M of the KG-module,

M, with GG. The multiplication rule in G x M, using additive notation in M, is

(g1, m1)(g2, ma) = (9192, m§* + my).
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A left transversal in G x M of the subgroup M = {(1¢, m) | m € M} isomorphic
to M has the form Ts = {(g,d(g)) | g € G}, for a map 0: G — M. The transversal,
Ty, is a complement of M in G x M if and only if (g,8(g))(h,8(h)) = (gh, 8(gh)) for

all g, h € G or, equivalently,

§(gh) = d(g)" +6(h) Vg,hed. (2.6)

If M is a KG-module, then a map 6: G — M is called a derivation or a crossed
homomorphism or a 1-cocycle if Equation holds. Observe that setting h = 14
in Equation (2.6) yields d(1¢) = 0y for any derivation, 6.

The set, {§: G — M}, of derivations is denoted by Z'(G, M). By using the
obvious pointwise addition and scalar multiplication, Z!(G, M) can be made into a
K-module. The set, T}, is a complement of M in G x M if and only if § € ZYG, M).

Notice that for a fixed m € M, {(g,05)"1¢™ = (g,m —m9) | g € G} is a
complement of Min Gx M , and so g — m—m/Y is a derivation. Such a map is called a
principal derivation or 1-coboundary. The set of all principal derivations is denoted
by B'(G,M) and forms a K-submodule of Z'(G, M). The quotient K-module,
HY G, M) = ZYG, M)/B(G, M), is called the first cohomology group of G, M and
the associated action. By construction, H'(G, M) is in one-one correspondence with

the set of conjugacy classes of complements of M in G x M.

2.3.3 Extensions of Modules and The Second Cohomology

Group

Let E be any extension of an abelian subgroup, M, (regarded as a subgroup of E)
by a group, GG. So there exists an epimorphism p: E — G with kernel M. For g € G,
choose g € E with p(g) = g and, for m € M, define m? = m?. Since M is abelian,
this definition is independent of the choice of g, and it defines an action of G on

M. In general, this action makes M into a ZG-module, but if M happens to be a
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module over a commutative ring K with unity, and the conjugation actions of g € G
define K-automorphisms of M, then M becomes a KG-module. In particular, this
is true with K = F,, in the case when M is an elementary abelian p-group for some

prime, p.

Definition 2.12. Let G be a group and M a KG-module for some commutative
ring, K. A KG-module extension of M by G is defined to be a group extension,
E, of M by G in which the given KG-module, M, is the same as the KG-module

defined by conjugation within E.

Given E as above, the set, {¢ | ¢ € G}, forms a transversal of M in G. For
g.h € G, one has gh = gl\w(g,h), for some function, 7: G x G — M, where the

associative law in F implies that, for all g, h, k € G,
7(g, hk) + 7(h, k) = 7(g,h)" + 7(gh, k).

A function 7: G x G — M satisfying this identity is called a 2-cocycle, and the
additive group of such functions forms a K-module and is denoted by Z*(G, M).
Conversely, it is straightforward to check that, for any € Z%(G, M), the group

E ={(g,m) | g€ G,me M} with multiplication defined by

(91, m1) (g2, m2) = (9192, 7(91, g2) + m‘i]Q + my)

is a K G-module extension of M by G that defines the 2-cocycle 7 on choosing
9= 1(9,0).

A general transversal of M in E has the form § = (g,d(g)) for a function,
0: G — M, and it can be checked that this transversal defines the 2-cocycle, 7 + c;,
where c; is defined by cs(g, h) = 6(gh) — 6(g)" — §(h). A 2-cocycle of the form, cs,
for a function, §: G — M, is called a 2-coboundary, and the additive group of such

functions is a K-module and it denoted by B*(G, M).
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Two K G-module extensions, F; and 5 of a KG-module, M, by G are said to be
equivalent if there is an isomorphism from F; to Es that maps the copy of M in E
to the copy of M in F5, and induces the identity map on both M and on G. From
the above discussion, it is not difficult to show that the extensions, F; and Ey with
respective 2-cocycles, 7, and 7 are equivalent if and only if 7 — 75 € B*(G, M) and,
in particular, an extension splits if and only if its corresponding 2-cocycle belongs
to B*(G, M).

The quotient K-module, H*(G, M) = Z*(G, M)/B*(G, M), is called the second
cohomology group of G, M and the associated action. It follows from the discussion

above that H?(G, M) is in one-one correspondence with the equivalence classes of

K G-module extensions of M by G.



Chapter 3

Multiplication

Multiplication is the most fundamental operation that one can perform within a
group. In order to design a multiplication algorithm which produces consistent
results, a normal form for group elements must be defined.

This chapter contains a detailed description of the multiplication algorithm de-
veloped for the class of polycyclic-by-finite groups.

Firstly, the proposed normal form for elements of polycyclic-by-finite groups is
introduced. After a brief analysis of the technicalities involved in designing a feasi-
ble multiplication method, the data structure used to represent polycyclic-by-finite
groups is presented, followed by the multiplication algorithm itself. The chapter con-
cludes with a survey of useful functions that follow as straightforward applications
of the multiplication method.

The definition of the normal form, and the subsequent theory developed, relies on
the presupposition that it is computationally feasible to represent the finite quotient
of the polycyclic-by-finite group in question faithfully by a group of permutations
or matrices. Specifically, a base and strong generating set data structure for the
quotient is required. Thus, it shall hereinafter be assumed that, in all cases, such a
representation exists and, for the sake of clarity, the finite quotient shall be viewed

as a permutation group.

29
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3.1 Representation of Elements

The preliminary aspects of computing with polycyclic-by-finite groups are discussed

in this section.

3.1.1 The Normal Form

The first stage in representing polycyclic-by-finite groups on the computer involves
defining a suitable normal form for elements of such groups. The design of such
a normal form can be based on the structure of the group as an extension of a
polycyclic group by a finite group, and should facilitate effective manipulation of
elements. In particular, it must be possible to multiply elements written in normal
form efficiently.

Let E be a polycyclic-by-finite group, let N <« E be polycyclic of finite index
in £ and denote the quotient E/N by G. An element e € E can be uniquely
represented as an ordered pair (g,n) where g € G and n € N, and conversely each
such ordered pair determines an element of E. A base and strong generating set
data structure for the permutation group G, combined with a power-conjugate or
polycyclic presentation for N, automatically induce a normal form for elements of
E written in this manner.

The ordered pair normal form is observed to be an efficacious way of storing
elements of a polycyclic-by-finite group, for its components are elements of a finite
permutation group and a polycyclic group respectively — groups for which there are
well-developed, optimised algorithms available, thereby fully exploiting the structure
of the group in question.

In the context of computing with algebraic structures, representing the polycyclic-
by-finite group E as a pair (G, N) (with an associated action) not only provides one
with a tractable form for elements, but also elucidates structural information about

the group. For instance, a check for solubility amounts simply to testing G for the
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property. The transparent nature of the representation aids in the design of poten-

tially complex algorithms whose operation centres around structural computation.

3.1.2 The Multiplication Problem

Let E, N and G be as in Subsection 3.1.1], let p: E — G be the natural map, and
fix a left transversal, L, of N in E with 15 € L. For each g € G, denote the unique
element of p~'(g) n L by g.

Let e € E and suppose that p(e) = g. Then e = gn, where n € N is uniquely de-
termined by the left transversal, L, and, as in Subsection [3.1.1] e can be represented
by the ordered pair (g,n).

Consider multiplying two such elements, e; = g;n; and es = gyno:

e1- ez = (Gym) - (Gona) = G175 - n{*na.

The first component in the ordered pair representation of the product e; - es is

g = pley - e2) = g192. The second component (relative to the transversal, L) is thus

(9192)716162 = (9192)715152 : ”?2712 = Ney,e) © N,

and the product e, - ey is represented by the ordered pair (g, n(e, e,))-

The computation above illustrates the difficulty in formulating a feasible mul-
tiplication algorithm for elements of E written as ordered pairs. For any pair ey,
es of elements of F| such an algorithm must be able to compute the corresponding
N(er,en) € N without performing any element arithmetic in E. This is achieved by
precomputing and storing these values for a set of key elements, as described in the

following section.
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3.2 The Multiplication Algorithm

This section contains a detailed description of the multiplication method.

3.2.1 Strategy

The approach used to solve the multiplication problem is described here.

Keeping the notation of Subsection , let S = {x1,..., 7y} be anon-redundant
strong generating set relative to a base, B = (f,..., ), for the finite group, G.
For each i, denote the i-th basic stabiliser relative to B by G and denote the i-th
basic orbit relative to B by A; = {d;1,...,0;4,}, where §;; = ;. Additionally, let
Si=SnGW ={a;,... ,x;, } and denote by S; ! the set, {z; ', ... ,x;l .

For each i, let U; be a right transversal of G in G, Then, as described in
Subsection [2.1.3] each element of G' can be represented uniquely as a product of
transversal elements w;u;_1 - - - u; where u; € U;.

Fix ¢ and let v € U; be the permutation taking f; to d,; € A;. Take z € 5,
and let h, h' be the permutations in U; which map ; to B{'* = o7, 5}“’71 = 53”’;1

respectively. Then

U-Tr =YY Yr-h, (3.1a)
wox =229z - B (3.1b)
where y1, ..., Yk, 21, ..., 2 are elements of S; 1 U Sijrll. The words, y11s - - -y and

2129 -+ - 21, are called the tails of u relative to x and x ! respectively.
Now regard G as a quotient of the larger group, E. Let L be a left transversal of
N in E with 1g € L and, as in Subsection [3.1.2] for each g € GG, denote the unique
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element of g n L by g. Then Equations (3.1)) become

Te- R, (3.2a)

S
S
I
=
sl

T B, (3.2b)

&)
5
I
&
&

respectively, for some n,n’ € N. The elements n and n' are called the heads of
u relative to x and x ! respectively and the Equations are called the shift
equations.

The shift equations suggest a scheme by which elements of £ may be multiplied.
Suppose that the elements, w; (where u; € U; for each i), and the tails, y19s - - - yx,
2129 -+ - 2, can be computed consistently. Furthermore, suppose that the conju-
gate of each element of the normal subgroup, N, by elements, T and z—! (where
x € S), can be calculated without performing any element arithmetic in E. Then
the shift equations can be utilised to design an iterative function which performs

multiplications of the form:

(Ww= - urni) - (Tno)

where ny,no € N, conjugating within N whenever necessary. This method can be
extended to handle element multiplications in full generality.

The tasks of conjugation in N and calculation of the elements, w; € L, are
performed via a precomputed data set, the specification of which forms the content

of the next subsection.

3.2.2 Data

The multiplication algorithm relies directly on a precomputed set of data to calculate
the elements of the normal polycyclic subgroup that arise when elements of the

chosen transversal are shifted past strong generator preimages in the polycyclic-by-
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finite group. A technical description of the contents of this data set is given in this

subsection.

The Finite Quotient

The first segment of required data is computed wholly within the finite quotient G
of the given polycyclic-by-finite group. For each i € {1,...,|B|} and each §; ; € A,
the tails of u, the permutation in U; mapping 3; to d; ;, relative to each x € .S; and
=t e ;! are calculated and stored.

In the implementation, a fixed Schreier vector data structure is used to encode
the transversal elements, u; € U;, as words over S U S~!. Since this data structure
remains unchanged, a given permutation in G can be written as a word over Su S™1
consistently by using the set of stored Schreier vectors to expressing said permutation
in normal form wju;_; - --uy (where u; € U;), storing each w; as an integer sequence
representing a word over S U ST

Tails are computed for each ¢ € {1,...,|B]|} and each element in A;, for each

applicable strong generator. It follows from the inequalities,

’B| < 10g2|G‘7

and

|15l < 151,

that the number of tails is O(|S|n log,|G|). The calculation of each tail requires one

application of the sifting procedure, which has time complexity O(nlog,|G|) (see

Subsection[2.1.3). Hence, the time complexity of computing all tails is O(|S|(n log,| G|)?).
A tail is formed by concatenating |B| integer sequences, each of length less

than n, and so, each tail requires O(nlog,|G|) storage, hence the space complexity
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associated with storing all tail elements is identical to its time complexity, namely
O(]S|(nlogy|GI)?).

All algorithms presented in this chapter, and indeed in the rest of the thesis,
assume the existence of a method which operates as outlined to write permutations
of G as words over S U S7!, and the tails of each u, relative to each =, 7! are

computed in a consistent manner using this method. This uniformity is critical

when passing from the quotient, GG, to the polycyclic-by-finite group, FE.

The Polycyclic-by-Finite Group

Three distinct sectors of data are computed by performing element arithmetic within
the polycyclic-by-finite group in question, using its existing representation.

Firstly, the heads of the shift equations are computed and recorded. In order
to do so consistently, an explicit definition of the transversal, L, is required. The
construction is as follows. For each x € S, the element T € L is fixed by choosing

exactly one member of each corresponding preimage set p~'(z). The set

S={7|zeS)

is held in memory and is used to define the inverse image set

ST={z1|zreS)

by the equation:
T if 22 =1,

71 otherwise.

Identifiying strong generators of order 2 as a special case is necessary to eliminate
the possibility of a strong generator being assigned two distinct images in L which

would violate uniqueness of coset representatives in a transversal.
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The remaining elements of L are calculated when required using the sets S and
S—1, as prescribed by the Schreier vector data structure held in memory. Given a
permutation g € GG, the transversal element g € L is computed by first expressing ¢
as a word over SuUS™! (via the Schreier vector data structure), and then multiplying
through this word, substituting recorded values from the sets S and S—1.

As discussed above, the Schreier vector data structure furnishes one with a
method by which a permutation in GG can be consistently represented as word over
S U S~ This ensures that the method proposed here for computing transversal
elements, in turn, produces consistent results.

For each u, x pair as above, n and n’ of Equations are then calculated in the

obvious manner:

n=nh Y5 Ui Y1 -U-T, (3.3a)

n=n Zglzpggl--mbueal (3.3b)

The products above are evaluated using the existing representation for E.

Each tail is of length O(nlog,|G|). Thus, the calculation of the heads, n and n’,
above require O(nlog,|G|) multiplications using the existing representation of E;
for all of the O(|S|nlog,|G]) tails, the total time cost is therefore O(|S|(nlog,|G|)?).

This step of data collection stores one element of the polycyclic group, N, for
each of the O(]|S|nlog,|G|) tails. Assuming that an element of N requires O(r)
storage, the memory cost here is O(|S|rnlog,|G|).

The second portion of data computed within the polycyclic-by-finite group relates
to conjugation of elements of the normal subgroup N by elements of E. During its
operation, the multiplication algorithm frequently calls for conjugations of the form

w

n®, where n € N and w is a word over S U S—!. Thus, it is necessary that such

elements be computable without appealing to the original representation of the
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group E. To enable such functionality, the conjugates

are computed and stored for each polycyclic generator, a, of the stored polycyclic
presentation for N, and each x € S. This information is sufficient to devise a
straightforward iterative procedure which calculates conjugates, n*, without per-
forming element arithmetic in £. During this step, O(r|S|) multiplications are
performed using the existing representation of E, where r is the size of the stored
polycyclic generating sequence for N. Assuming O(r) storage for each of the O(r|S])
elements of N, the total memory requirement is O(r?|S|).

Finally, sets, S and S ~1 representing the elements of S and S—! respectively in

normal form are stored. In this case, these are:

{(y,1n) 1y € S}, (3.4a)

S
ST ={(y,1y) :ye S} (3.4D)

Computing an element of Sor §1 requires one application of the sifting procedure,
which has time complexity O(nlog,|G]), so the time complexity associated with this
step of data collection is O(]S|nlog,|G|).

The first component of the normal form for an element of E consists of | B| integer
sequences, each of length less than n, and thus requires O(nlog,|G|) storage. The
second component of the normal form is an element of N, for which it is assumed

that O(r) storage is necessary. Thus, S and S~ ! require O(|S|(r+nlogy|G|)) storage.

3.2.3 The Algorithm

Equipped with the data set of Subsection [3.2.2 it is possible to design an algorithm

which, when given two elements of E written in the normal form defined in Sub-
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section |3.1.1, computes the normal form of their product without performing any
extemporaneous element arithmetic in E.
Let e; and ep be two elements of E with normal form representations, (g1,n1)

and (gq, n2), respectively. Keeping the notation of Subsection [3.2.1], write e; as

(W= ) -m

where u; € U; for each i, and n; € N. Let ey = g,ns where no € N, g, € L.
The multiplication algorithm initially expresses g, as a word over S U S—1, say
w = ¢ G, where ¢; € Su S™! for each j. The desired product may then be

written as

er-ea= (W ur) - n- (@@ qy) No

The algorithm proceeds to rearrange the terms of the product by conjugating the
element n; by the word w. As discussed in Subsection [3.2.2] this conjugation is
performed using a precomputed data set, with no element arithmetic carried out in

E. The product then becomes

er ey = (U1 W) @z Qg - NI Tny (3.5)
I
=WU 1 U UL Q1 G2 Qo - MY Mo (3.6)
| I |

Note 3.1. Initially, the leftmost sequence of transversal elements, u;, in the expres-

sion for the product (under-bracketed in Equation (3.5))) has [ terms.

The under-bracketed segment of Equation (3.6) can be recognised as the left-

hand side of a shift equation, say

U qr =YYz Y ha-mg (3.7)
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for some n € N, hy € U; and where y; € Sy u S, ! for each j. Via direct substitution,
the Equation (3.7)) can be used to “shift” the transversal element, g7, past u; without
performing any element arithmetic in the group F. The algorithm executes this

shifting procedure as illustrated below.

_ . —  w
61 . 62 = U’l ul—l ... u2 ul . ql q2 DR qo_ . nl /”L2
—

replace by 71 72+ Jn-h1 13

I
gl
£
L

——1
"U2'y1y2"'yn'h1'Q2 Q3"'qa'n§1 w”?”Q

I
g
£
L

The under-bracketed segment of the product in Equation (3.8)) can again be recog-
nised as the left-hand side of a shift equation. The algorithm repeats the procedure

above to shift g past h;.

Observation 3.2. Each time a shift is made, the word over S U S—1 immediately
to the left of the sequence of normal subgroup elements in the expression for the

product is reduced by exactly one symbol.

In light of Observation the algorithm is able to continue iterating through

the word, w, shifting at every step, arriving at the following equation:

J— — —1
— a7 AT o Yl Y TN T / q q1 w,_w
€1 €y =WU—1 - U Y1Y2- - Y¢ Up NoyaNyyq N3 RL;
— (3.9)
=W U U2 Y1 Y2 YU T,
I —
for some ) € Uy, n3,...,ny42 € N; where y; € Sy U Sy! for each j and

— ——1
I _ q q - w, _w
N = NgyoNg 1 N3 Ny Na.
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At this stage, the algorithm has decreased the under-bracketed sequence of
transversal elements, w;, in Equation by one term, as indicated in Equa-
tion , thus reducing the problem to a smaller case. The algorithm restarts
its inner loop to process the word, ¥ ¥z - - - Yc, by, as before, recognising uy - 1 as

the left-hand side of a shift equation.

Observation 3.3. Each time a word over S U S—1 is processed fully as described
above, the leftmost sequence of transversal elements, u;, in the expression for the

product is decreased by exactly one term.

The word-processing procedure is repeated for each u; yielding an expression of

the form

ol ol ol "
ulul_l...ul.n

where u, € U; for each i, for the product.

Remark 3.4. Whenever a shift is made at level i (with respect to the base and
strong generating set hierarchy), the elements of S U S—1 that are placed to the left
of the new element, h; (where h; € U;), belong to Sig1 U ﬁ In particular, since
Si41 = &, no non-trivial elements of S U S—1 are placed to the left of any possible

h, where h; € Uj.

The multiplication method is presented in Algorithm 3.1 The function takes
as input two elements, (g1,n1), (g2, n2), written in normal form, of a polycyclic-by-
finite group, F, and operates as described above to compute the normal form for
the product (g1,n1) - (g2, na).

The notation employed thus far shall be used in the description of the algorithm,
viz. the normal polycyclic subgroup of F and associated quotient, via which the
normal form is defined, shall be denoted by N and G respectively. It is assumed
during execution that the data set of Subsection is held in memory, with

the tails of the shift equations stored as arrays of strong generators. The base
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and strong generating set relative to which the data is computed are denoted by
S ={x1,...,xy} and B = (f1,..., ) respectively, and the left transversal of N in
E by L.

The algorithm also assumes the existence of a function LENGTH which, when
supplied with an array (or sequence), returns the number of non-null entries of that
array (or sequence).

The central step in measuring the run-time of MULTIPLY is counting the number
of times that Lines are executed. To calculate this, one must establish a bound
for LENGTH(rightword), for each of the [ iterations of the outer loop. Such a bound
is derived in the proof of Theorem [3.5] The most expensive computations within
Lines occur in Line [I8 and in Line 20} Line [I§] consists of an application of
a straightforward iterative procedure to compute the conjugate of an element of N
by an element of S U S—1 using the precomputed data set (see Subsection .
Line 20| is a standard Schreier vector computation in G, whose time complexity is
discussed in Subsection [2.1.2] The operations of Line [I§ and Line 20| dominate the
memory retrievals and variable reassignment in Lines[16}21], and so, in Theorem [3.5],
the time complexity of MULTIPLY is stated in terms of the number of multiplications
that must be performed within the finite quotient, and conjugations of elements of

the normal polycyclic subgroup by preimages of strong generators (and inverses).

Theorem 3.5. The multiplication algorithm terminates with the correct value for the
desired product, and requires O(n(nlog,|G|)°e2I) multiplications using the permu-
tation representation of the finite quotient, G, and O((nlog,|G|)'°&2I%l) conjugations
of elements of the normal polycyclic subgroup by strong generator preimages, where

n s the degree of the permutation representation of G.

Proof. Termination is guaranteed by Observations [3.2] and [3.3] combined with Re-
mark , while Equations (3.5)—(3.9) imply correctness.

The rate of growth of rightword is investigated as follows. Subsection [3.2.2shows
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Algorithm 3.1 Element Multiplication

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

function MULTIPLY ((g1,11), (g2,n2))

if go = 14 then

return (g, nins)
end if
Write ¢; in normal form wu;_q - - - uy where u; € U; for each ¢
Write ¢o as a word, w = ¢ ¢2 - - - ¢, where ¢; € S U S™! for each i
rightword < [q1, qa, - - ., @]
leftword « ||
n} «—ny
for 1 < 2 to [ do

ni«— 1y
end for
for s — 1tol do

for j < 1 to LENGTH(rightword) do

Retrieve from memory the tail array, tailword, and tail element, n,,

of the shift equation corresponding to the pair: w}, rightword|j]

leftword < leftword cat tailword
Find the conjugate, n,, of n} by the image of rightword[j] in L
Ny < Ny - Ny
Find h € U; which maps 3; " to the image of 3; " under rightword|j]
uy < h
end for
rightword « leftword
leftword « ||
end for
Ge < lg, Ny «— 1N, 0«1
while ¢ > 0 do
Ty < n:; N
Gx < Gu U
1—1—1
end while
Ny < Ny - No
return (g.,n.)

> The conjugation n:; is performed using the data set

34: end function
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that, in the first iteration of the outer loop of MULTIPLY, rightword has length at
most nlog,|G|. As illustrated in Subsection [3.2.3] each shift made in the inner loop
of the algorithm appends a tail of length at most nlog,|G| to the variable, leftword.
This operation is performed in Line Since a shift is made for each element of
rightword, it follows that, at the end of the first iteration of the outer loop, leftword

has length at most
LENGTH(rightword) - nlog,|G| < (nlog,|G|)*.

Hence, in the second iteration of the outer loop, rightword has length at most
(nlog,|G|)®. Applying an similar argument, one may deduce that, in the third
iteration of the outer loop rightword has length at most (nlog,|G|)?, and, in general,
rightword has length at most (nlog,|G|)" in the i-th iteration of the outer loop.

Thus, in a run of MULTIPLY, Lines are executed no more than

l

D (nlog,|Gl)’

i=1

times, where [ is the length of the base of the finite quotient, G.

By virtue of the inequality | < log,|G|, the sum, le(n log,|G])* is
Ol(nlogy G 5.

It follows immediately that MULTIPLY performs O((nlog,|G|)*#2/¢) conjuga-
tions of polycyclic group elements by strong generator preimages.

As discussed in Subsection [2.1.2] the Schreier vector computation of Line
requires O(n) multiplications in the finite quotient, G. Thus a run of MULTIPLY

requires a total of O(n(nlog,|G|)'°e2I%) multiplications in G. O

In light of the exponential growth (illustrated in the proof Theorem of the
words through which MULTIPLY must iterate, small base representations for the

quotient group are highly desirable for effective performance of the multiplication
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algorithm. As discussed in Subsection of Chapter [I} in constructing the repre-
sentation for the given polycyclic-by-finite group, one attempts to “factor out” the
largest possible N, minimising |G| and consequently restricting the size of any base
B for G via the inequality |B| < log,|G| (see Subsection 2.1.3)). Finding a quotient
which admits a base of moderate size is a critical safeguard against the potential
run-time cost associated with the accumulation of long words.

In practice, sparing cases where an injudicious choice is made for N (and hence
(), the arrays that appear are of manageable span, yielding positive empirical re-
sults.

Multiplication of elements written in normal form shall hereinafter be indicated

[

with the use of standard infix notation, omitting the operator when context

permits.

3.3 Applications

With element arithmetic in place, one may design straightforward functions to per-
form standard operations on an element of F written in normal form, such as find-
ing its image in the transversal, L, computing its inverse and calculating its order.
Methods to perform these tasks are discussed in Subsections [3.3.1H3.3.3|

In many applications involving subgroups of polycyclic-by-finite groups, one often
encounters subgroups that are polycyclic. In such situations, a polycyclic presenta-
tion for the subgroup in question is desirable, for this would allow one to utilise the
host of well-developed algorithms available for polycyclic groups. Subsection (3.3.4]
describes a method which finds a consistent polycyclic (or power-conjugate) presen-

tation for a polycyclic-by-finite group that is in fact polycyclic.
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3.3.1 Transversal Images

Given an element, g € G, the normal form of the element, g € L, is computed
according to the construction of L given in Subsection using the sets S and
S~ defined in Equations (3.4).

To find g, one first expresses ¢ as a word, ¥ - - - Y, over SU S~ !, by the procedure
described in Subsection m Then the element, 3; € SusS ~1. corresponding to y;

is retrieved from memory. The normal form for g is then given by the product:

Writing the elements of L in their normal form is useful from a technical per-
spective, as it provides one with a method of inverting the natural map, p.

As in Subsection and the proof of Theorem the integer, k, is bounded
above by nlog,|G|, so, finding a transversal image requires O(nlog,|G|) memory

retrievals and O(nlog,|G|) applications of MULTIPLY.

3.3.2 Element Inversion

Let (g,n1) be an element of F, written in normal form. To compute (g,n;)~!, first
use the procedure outlined in Subsection m to write g1 in normal form, say

(g1, my). Then

(ganl) ’ (9717712) = (1G7n3)7
and hence
(g,m1) " = (g " n2) - (1g,m3) "
= (g7 " n2) - (lg,n3")

= (g~ " many ).

The inversion procedure performs exactly one more multiplication after writing
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¢~ in normal form. Thus, the time complexity associated with inverting an element
is identical to that of the method described in Subsection [3.3.1] namely O(nlog,|G|)

multiplications.

3.3.3 Orders of Elements

Let (g,n) be an element of E, written in normal form. To calculate o(g,n), first

compute the power

(9,0)"9 = (g, n).

Then

o(g,n) = o(g)o(n').

Using the method of repeated squaring to compute powers, one easily observes

that finding the order of an element requires O(log,|G|) applications of MULTIPLY.

3.3.4 Transfer to the Category of Polycyclic Groups

Suppose that the polycyclic-by-finite group, FE, is in fact polycyclic. Then G is
polycyclic and one may use the already available methods for permutation groups
to compute a power-conjugate presentation for G. A consistent polycyclic or power-
conjugate presentation for £/ may be found by “glueing together” the presentations
for G and N as described below.

For the sake of clarity, it shall be assumed in the following discussion that N (and
hence F) is finite, and a power-conjugate presentation for E shall be constructed; a
similar procedure may be employed in the infinite case.

Let N and G have consistent power-conjugate presentations,

<a17~-7ar|aj =w,,; forl<j<r,

al’ =w;; forl<i<j<r)
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and

(b,...,bs | bf =w;; for1<j<s,

b; . .
by =v; forl<i<j<s)
respectively, where

(i) pj, g; are the least primes such that afj € {ajt1,...,a.) for j < r and
b;]»j € (bjs1,...,bs) for j < s, and aPr, b% are the identity elements in NV,

G respectively, and

(i) w;j, v;; are words in the generator sets {aii1,...,a,}, {bit1,...,bs} respec-

tively.

A power-conjugate presentation for F can be constructed on the set of generators
{b1,...,bs,a1,...,a,} as follows. Notation is abused here in regarding the b; both
as elements of £ and G, however, the meaning shall be clear from the context as
explained below.

For each b; in the power-conjugate presentation for GG, the method of Subsec-
tion is used to find the normal form of b;, say (b;, n), after which, the multipli-
cation algorithm is used to compute the power, (b;,n)% = (b¥,n') = (v;;,n'). The

Qp
r o

power-conjugate presentation for N may be used to express n’ as a word, aj* ---a
and thus one may (with abuse of notation) write the power relation:

Qr

bl = vl - alr.

Power relations with left-hand-side a}* remain unchanged in the new presentation.

Conjugate relations are derived in a similar manner; the normal form of each
element in {E, . be,ar, .. , @} is found (the normal form of @; is simply (14, a;)),
and the multiplication algorithm is used to perform the required conjugations ac-

cording to the hierarchy induced by G and N. The resulting elements are expressed
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as words over {b,...,bs,ay,...,a.} as above.

Proposition 3.6. The presentation so obtained is a consistent power-conjugate pre-

sentation for E.

Proof. The presentation constructed clearly satisfies the conditions outlined in the
definition of a power-conjugate presentation given in Subsection That it is
consistent follows immediately from the fact that the presentations for N and G
above are consistent. It remains now to show that the presentation constructed
indeed defines a group isomorphic to E.

Let E* be the group defined by the presentation constructed over the generating
set {b1,...,bs,a1,...,a.}.

Define the map, ©: {by,...,bs,a1,...,a.} — {by,...,bs,1,...,G}, by:

b(bi) = by, (3.10)
U(a;) = aj, (3.11)
fori=1,...,s, 7 = 1,...,r. By construction, every relation in the presentation

for E* over {by,...,bs,a1,...,a,} also holds in E, with the symbol, b;, replaced by
¥(b;) and the symbol, a;, replaced by ¥(a;). Since {bi,...,bs,ar,...,d,} generates
E. ¢ may be extended in the obvious manner to a homomorphism from E* onto E.
That is, £ is a homomorphic image of E*. It shall now be shown that ¢ is in fact
an isomorphism.
Suppose that
PO B ) = 1,

for some By, ..., Bs, a1, ..., 0, with 0 < 8; < ¢; for each 7, and 0 < «; < p; for each

J. Then,

51_

E b_sﬁ L@t @ = 1. (3.12)

Equation (3.12)) implies that Eﬁl . -b_sﬁsN is the identity in the quotient, G = E/N.
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By construction, the element b;N corresponds to the element b; in the consistent

power-conjugate presentation for G. By uniqueness of words written in normal form,

fr=pFr=-=ps=0.

This reduces Equation ({3.12)) to

a_lal---a_ro"" = 1.

Again, by construction, @; corresponds to element a; in the consistent power-conjugate

presentation for N. So by uniqueness,

Thus, v is injective, and F = E* as required. O

Data facilitating computation of the isomorphism for transfer of elements be-
tween the two representations consists of a list containing the ordered pair normal
form of each element of the set, {by,..., b, a1, ...,a}, together with a list of words

over {by,...,bs,a1,...,a,} defining the images of the elements, 7, where y € SuS™!.



Chapter 4

Subgroups

Virtually every structural computation performed within a group involves the ma-
nipulation of subgroups. Thus, in order to obtain useful results pertaining to a given
polycyclic-by-finite group, one requires an efficient method by which subgroups may
be computed.

This chapter contains a detailed description of the subgroup generation method
developed for the class of polycyclic-by-finite groups.

Firstly, the complications involved in computing and representing subgroups of
polycyclic-by-finite groups are discussed. The strategy used to overcome these diffi-
culties is presented, after which, the procedure by which subgroups are constructed
is described in detail. The chapter then proceeds to address the important ques-
tion of membership testing in subgroups. Finally, a selection of straightforward
applications of the subgroup generation method is given.

The theory developed in this chapter, and indeed the rest of the thesis, requires
that the polycyclic-by-finite group from which subgroups are created is represented
as an extension of a normal polycyclic subgroup by a finite group as described
in Chapter [3] and that the multiplication algorithm is applicable. Thus, in what
follows, it shall be assumed that all parent polycyclic-by-finite groups are so repre-

sented.

20
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4.1 The Subgroup Generation Problem

The first step in defining the parameters of the subgroup generation problem involves
choosing a mode of representation for subgroups. There is a logical option in the case
of polycyclic-by-finite groups, for this class of groups is closed under formation of
subgroups, and hence it is possible, at least in theory, to represent generic subgroups
using the scheme developed in Chapter [3]

With this choice for the representation, generating a subgroup entails computing
a data set which contains sufficient information to apply the multiplication technique
of Chapter |3| wholly within the context of that subgroup. The problem may be
formulated more concretely as follows:

Let E be a polycyclic-by-finite group, let N <« E be polycyclic of finite index
in F and denote the quotient, E/N, by G. Given a set of generators, written in
normal form relative to G and N, of a subgroup, H < FE, it is required to compute

the following information relating to H:

(i) The normal polycyclic subgroup, Ny = H n N, of H.

(ii) A base, By, and strong generating set, T', relative to By, for the quotient,

Gy = H/Ny =~ HN/N.
(iii) Elements of E representing images of 7" in a left transversal, Ly, of Ny in H.
(iv) Conjugates of each polycyclic generator of Ny by the images of T"in Lg.

(v) Data corresponding to Equations (3.1) and (3.2)) in the context of H.

Items and are calculated in a manner similar to that of the parent group;
the details of the respective calculations are given in Subsection

The difficulty lies in computing |(i)| and . The approach taken is to extend
the well-known Schreier—Sims method described in Subsection of Chapter [2], to
efficiently compute the segments of data described in and simultaneously.
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The newly developed version of the Schreier—-Sims method, which forms the core of
the subgroup generation procedure, is discussed in the next subsection.

In light of the application of the Second Isomorphism Theorem in the quo-
tient, Gy may be regarded as a subgroup of the quotient, GG, for which there is
a known faithful permutation representation, thus facilitating computation of the
required base and strong generating set. For the rest of this chapter, Gy will be

identified with an isomorphic copy in HN/N.

4.2 Construction

The technical details of subgroup construction are discussed in this section.

4.2.1 The Extended Schreier—Sims Algorithm

The extended version of the Schreier—Sims algorithm is described in detail here.
Let E, N and G be as in Section [{.I] Given a set of elements of E that generate
a subgroup, H < FE, the extended Schreier-Sims algorithm aims to compute the
intersection H n N, together with a base for the quotient, HN/N, and a set of
elements of F (or more precisely HN) whose images in HN/N define a strong

generating set relative to the computed base.

The Permutation Action of the Polycyclic-by-Finite Group

Manipulating the elements of E relative to the (not faithful) permutation action of
E induced by that of the quotient, G, is central to the operation of the extended
Schreier—Sims algorithm.

Denote by € the set of points on which G acts. Given an element, (g,n) € E,
and a point, w € £, one may unambiguously speak of the action of (¢g,n) on w, with

obvious meaning, viz.

W™ = ()9
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The fundamental algorithms for orbit computation can be applied without mod-
ification in the case of this permutation action. Specifically, it is possible, using the
methods described in Subsection of Chapter [2, to compute the orbit of a point,
w € €, under a set, X < F, of elements along with a Schreier vector encoding a
transversal of the stabiliser, (X)_, in (X). It is important to note here that the
normal subgroup component of each element encoded by such a Schreier vector is
not truncated, i.e. the transversal elements are expressed as products over X, not
over the image of X in G.

The definitions given in Subsection of Chapter [2| for a base and a strong
generating set may be reformulated to fit the context of this class of groups.

A sequence, By = (71, - .., 7k), of elements belonging to €2 is called a base for the
subgroup, H, of E if every element of H that fixes By pointwise belongs to H n V.

The sequence, By, defines a stabiliser subgroup chain

H=HY>pg®>...> gkl > gttll = 1 A N (4.1)

where HI1 = Hey, ey (@ > 1) is the pointwise stabiliser of {vq,...,7i—1}. The
base, By, is called non-redundant if HU+ < HU for all ¢ = 1,..., k. The orbits,
v are called the basic orbits or fundamental orbits of H (relative to By).

A strong generating set for H relative to By is a generating set, Sy, for H with

the property that
(Sy n HITY = U (4.2)

fori=1,...,k+ 1.

In the language of the definitions made above, the objective of the extended
Schreier—Sims method may be stated more simply: given a set of generators of a
subgroup, H < E, the method attempts to compute a base and a strong generating
set for H.

Before turning to the central problem of how a base and a strong generating set
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for a subgroup of a polycyclic-by-finite group are constructed, it shall be assumed
for the moment that these are given, and a version of the sifting procedure for
polycyclic-by-finite groups shall be introduced.

Let Sy be a strong generating set for the subgroup H, with associated base,
By = (v1,---,7). It is assumed that the basic orbits, ©; = %HU]7 have been
calculated and that Schreier vectors encoding transversals, R;, of HU+1 in HU exist
for each 7, with transversal elements at level i represented as products over Sy~ HL.

The sifting algorithm for polycyclic-by-finite groups operates as follows. Given

(9,n) € E, the algorithm attempts to find the coset representative (y;,n}) € Ry

(gun) _ (ylanll)
1 =

1™ and computes (go, n2) = (g,n)(y1,n}) "' € HE2if a coset

such that ~
representative is found. If no such coset representative exists, then (g,n) takes v
out of the orbit, ©1, and so the algorithm breaks and returns the siftee, (g,n),
along with an integer indicating the level at which the break occurred, in this case
1. Otherwise, the algorithm continues and attempts find (yo,n}) € Ry such that
822 = 52 and then computes (gs,m3) = (g2, n2)(y2, ) if possible. The
algorithm attempts to perform k iterations of this type, immediately breaking if, at
any level, the base point is taken out of orbit, in which case the siftee and an integer

indicating the level is returned. If the algorithm is able to perform k iterations

successfully, then it returns the siftee and the integer, k + 1.

Remark 4.1. Note that, if (g,n) € H, then the sifting algorithm will perform k
iterations, and the siftee returned will have trivial first component, but possibly non-
trivial second component. The element, (g,n) € E, belongs to H if and only if the
siftee returned after k iterations has a trivial first component and second component
belonging to H n N. Thus, the sifting algorithm has reduced membership testing in
H to membership testing in H n N, which can be accomplished using the already

available methods for polycyclic groups.

The sifting procedure is presented in Algorithm [4.1} The function takes as input
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an element, (g,n), of a polycyclic-by-finite group, E, a base, By, for a subgroup,
H < E, the sequence, © = (01,...,0;), of basic orbits and a sequence, R =
(Ry,...,Ry), where R; is a transversal of H'*! in HI1. The method operates as
described above to sift (g,n) in the hierarchy defined by By.

As in Subsection sifting involves constructing exactly one transversal ele-
ment for each base point, and thus requires O(dlog,|G|) multiplications in E, where

d is the degree of the permutation representation for G.

Algorithm 4.1 Sifting
function SiFT((¢9,n), By, O, R)

(gs;ns) < (g,m)
for i — 1 to k do > (gs, ns) fixes base points vy, ..., v 1

W «— %(gs,ns)

1:
2
3
4:
5: if w¢ O, then
6:
7
8
9

return (g, n), 1
end if )
Find the coset representative, (y;,n;) € R;, such that ’yi(yi’ni) =w
(gsans) N (gs7n8) ’ (yiang)_l
10: end for
11: return (g, n,), k+ 1

12: end function

Constructing the Base and Strong Generating Set

Three modified versions of the Schreier—Sims algorithm are presented, each of which,
when given a list of generators of a subgroup of a polycyclic-by-finite group, com-
putes a base and strong generating set for that subgroup. The first operates in a
manner similar to that described in Subsection of Chapter [2l The second is a
refinement of the first, with changes made in the method by which the normal sub-
group is calculated. The third version focuses on the situation where it is required
to use the base of the parent group in the representation of the subgroup.

The operation of the extended Schreier—Sims algorithm is based on the following

reformulation of Lemma [2.5]
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Lemma 4.2. Let E be a polycyclic-by-finite group, H < E and let N < E be poly-
cyclic of finite index in E. Assume that there is a known permutation representation
for the quotient G = E/N, and that the elements of E are expressed in normal form
relative to G and N. Denote the set on which G acts by Q and let {y1,..., v} < Q.
For eachi in {1,... k+1}, let Sy j S Hy, .. ;_y) such that (S ;) = {Su, 1) holds
forj<k.IfH={_Su1), Surt1 < Hn N, and

Suj)y, = Smj) (4.3)

holds for each j, then By = (m1,...,7) is a base for H and Sy = Ufill Sh,; 1S a

strong generating set for H relative to By.

Proof. Induction on k is used here. The case k = 1 is trivial, for U;:l Sp,; clearly
fulfils the requirements of a strong generating set (relative to the base containing
the single point ;) for the group, (Su1).
Assume that the result holds for bases of length k—1. Then, in particular, S}, =
U?:2 Sp,; is a strong generating set for (Sp o) relative to the base By, = (72, ..., 7%)-
Let Hl = H.,, .y fori=2,...,k+1. To prove the lemma, it is required to
verify that Equation holds for each i. Setting j = 1 in Equation yields

Hy, = (Su1)m = {Suz),
which implies the containment,
H, <{SynH,).
The reverse inclusion is obvious, thus

(Sy nHPY = P
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and Equation (4.2) is satisfied for i = 2.

For ¢+ > 2, the inductive hypothesis implies that Sy n H(,, . ., ,) generates
<SH,2>(’71,~~-,%—1)7 and so H U = <SHmH(’Y1,-~,%—1)> = <Slﬂ;mH(’Y1,m,%—1)> = <SH,2>(W1,~~7’Y¢—1) =
(Hy) (.. 1) = HU. Therefore,

(Sy n HITY = HlI

for each 7, as required. O

Given a set, X, of generators for a subgroup, H < FE, the extended Schreier—Sims
algorithm constructs a base and strong generating set in the following way. A data
structure containing a list, By = (71, ...,7), of already known elements of a non-
redundant base is maintained, along with an approximation, Sg;, for a generator
set of the stabiliser, H,, . ,_,), for each i € {1,... k4 1}. Throughout execution,
the Sy, satisfy the property that, for all i, (Sy,;> = (Spi+1), and Sgri1 € H N N.
The data structure is said to be up-to-date below level j if Equation holds for
each 7 in the range j <1 < k.

In the case where the data structure is up-to-date below level j, a transversal,
R;, of (S H,j>7j in (Sy ;) is computed. Then a check is made to determine whether
Equation is satisfied for ¢+ = j. By Lemma , this can be done by sifting
the Schreier generators obtained from R; and Sy ; in the group, (Sy;+1). By Re-
mark , membership testing is possible in the group, (Sg ji1), since Lemma

k1
i=j+1

implies that  J S is a strong generating set for (Sy 1) relative to the base,
(Vjt+1,---»7%). If all Schreier generators are in (Sy ;1) then the data structure is
up-to-date below level j — 1. Otherwise there exists a non-trivial siftee, (gs, ns), at
level ¢ say. If t = K+ 1 and g5 # 1g, then a new base point, 71, is appended to
By from supp((gs,ns)) and the set Sp g2 is initialised with the contents of Sp 1.
The siftee, (gs,ns), is added to the sets Sy i1, ..., Sm, and the data structure is

now up-to-date below level min(t, | By|).
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The algorithm initialises By to contain a sequence of points vi,...,7 in 2
such that each point is moved by at least one generator in X with non-trivial first

component, and sets Sg; to X N <X>(%“ fori=1,...,k+1. At that moment,

SYi-1)
the data structure is up-to-date below level k; the algorithm terminates when the
data structure becomes up-to-date below level 0.

The first version of the extended Schreier—Sims method is presented in Algo-
rithm [£.2] The function takes as input a set, X, of elements of a polycyclic-by-finite
group, F/, and operates as described above to compute a base and strong generating
set for H = (X). The notation of this subsection is used in the description of this
algorithm (and subsequent versions); in particular, is it assumed that the elements
of E are written in normal form relative to a normal polycyclic subgroup, N, with
associated quotient, (G, acting on a set, (2. The algorithm also assumes the existence
of a procedure APPEND which, when supplied with an array (or sequence) and an
element, appends the element to the end of the array (or sequence).

The normal subgroup, H n N, of H can be computed easily from the strong
generating set Sy returned by SCHREIERSIMS as it is generated by the elements in
Sy with trivial first component.

The most expensive computations in SCHREIERSIMS are the multiplications in £
using its representation as an extension of N — from a time complexity perspective,
these computations dominate those performed in G and in N (see Theorem for a
complexity analysis of the multiplication operation in £). An estimate of the number

of multiplications in E performed by SCHREIERSIMS is given in Theorem [4.3]

Theorem 4.3. The extended Schreier—Sims algorithm is correct and requires
O(d*(log,|G|)? + | X|(dlogy|G|)?) multiplications in the polycyclic-by-finite group,
where X is the generating set provided, G is the finite quotient used in the repre-
sentation of the polycyclic-by-finite group, and d is the degree of the permutation

representation of G.
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Algorithm 4.2 Standard version of the extended Schreier-Sims algorithm

1:
2
3
4
5:
6
7
8
9

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:

22:

23:
24:
25:
26:
27:
28:

function SCHREIERSIMS(X)

for (g,n) € X do
if g # 1 and (g,n) € H,,
Find ;41 € Q with fy,(i’rf) # Ver1
APPEND(By, Yk+1)
k—Fk+1
end if
end for
for i — 1 to k do ‘
S — X N Hiy,iyy HP = (S, ©; — 517,
Compute a stabiliser transversal, R;, in HI! corresponding to the orbit,

+) then > (g,n) fixes all points in By

77777

end for
O« (0,...,04), R~ (Ry,...,Ry)
Suw1— {(g,n) € X | g =1}
Ny —{Suks1) > This subgroup is generated in the polycyclic group N
1<— k
while 7 > 1 do
for 0 € 6, do
Find the coset representative, (g,n) € R;, such that %(g ™ — g
for (z,n,) € Sy, do
Find the coset representative, (¢’,n’) € R;, such that 7-(91’"/) =

2

(@ na)

(9,n) < (g,n) - (x,n2) - (¢, )"

if (g,n) = (1¢, 1x) then
continue (z,n,)

end if

uptodate < true

(g,n), j <« S1FT((9,n), BH, O, R)
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29: if g # 15 then

30: uptodate < false

31: if j > k then

32: Find 7441 € Q with %ﬁ?) # Vi1

33: APPEND(By, Yki1) > Extend base

34: k—k+1

35: Stk+1 < SHk > Maintain inclusion

36: end if

37: else if n ¢ Ny then

38: uptodate « false

39: SH,k <« SH,k ) {(g,n)}

40: Ny «— <NH, n>

41: j<—k

42: end if

43: if not uptodate then

44: fort < i+ 1to jdo

45: Sti < Sy ui(g,n)}, HY « (Sy,>, 6, ,

46: Compute a stabiliser transversal, R;, in HY! corresponding
to the orbit, 6,

4T: end for

48: @H(@l,...,@k),R<—(R1,...,Rk)

49: 1+—7+1

50: break 6

51: end if

52: end for

53: end for

54: 1—1—1

55: end while
56: return By, Uf:ll S
57: end function

Proof. Lemma [4.2] implies correctness.

The number of multiplications in £ may be estimated by counting the number

of times that SIFT is executed (Line [28). Since each Schreier generator is sifted

exactly once, the number of times SIFT is executed is equal to the total number of

Schreier generators.

Keeping the notation of SCHREIERSIMS, after initialisation in Lines each

R; has size at most d, each Sy ; has size at most | X|, and, k is bounded by log,|G/|.

Thus, the number of Schreier generators before any sift operations are performed is

O(|X|dlog,|GI).
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Observe that although the sets R; and Sp; change during the operation of the
algorithm, they are always only augmented and therefore any elements of R; and
Su,; must be combined to a Schreier generator only once. The number of base points
is at most log,|G|. For a fixed base point +;, the set, Sy ;, changes at most log,|G|
times during the algorithm, since the group, (Sg;), must increase each time an
element is added to Sp,;. Combining this with the bound |R;| < d, it follows that
the number of Schreier generators constructed (Line throughout the operation
of the algorithm is O(d(log,|G|)?). The total number of Schreier generators is thus
O(d(logy|G1)? + | X|d logy|G1).

Each Schreier generator is sifted once and each sift requires O(dlog,|G|) multi-
plications in the polycyclic-by-finite group. Therefore, the total number of multipli-
cations that must be performed in the polycyclic-by-finite group is O(d?(log,|G|)? +
| X |(dlogy|G|)?). O

Consider Lines of SCHREIERSIMS. If the generator, (x,n,), has trivial
first component, i.e. = 1g, then §®") = § whence (¢',n') = (g,n) and the

multiplication of elements in Line [23|is reduced to the conjugation,

(g’n) : (1G,TL$) ' (g7n)_17

of a generator in NV by an element of H. The algorithm proceeds to sift this conjugate
down to level k + 1, adding it to the generator set of H n N.

In light of this, one may modify SCHREIERSIMS so that strong generators with
trivial first component are not added at every level. Instead, generators of this
type are kept in a separate set and a normal closure computation is performed
after the structure becomes up-to-date below level 0. Eliminating strong generators
with trivial first component from the data structure has the obvious advantage of
speeding up both the orbit computations and the membership checks at each level.

A version of the extended Schreier—Sims algorithm incorporating these changes
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is presented in Algorithm [£.3] The algorithm assumes the existence of a function
GENERATORS, which, when supplied with a polycyclic group, returns a set of gen-
erators for that group.

The discussion above justifies the following remark, which implies the correctness

of NORMALCLOSURESCHREIERSIMS.

Remark 4.4. The subgroup, H n N, is the normal closure in (X of the siftees

appearing NORMALCLOSURESCHREIERSIMS with trivial first component.

The normal closure computation in Line |48 of NORMALCLOSURESCHREIERSIMS
is performed using the standard method of repetitive adding of conjugates to a
generating set. The available methods for polycyclic groups are used for membership
testing of conjugates, and conjugation is of course performed using the multiplication
method of Chapter [3

From a theoretical perspective, the time complexity of this version of the ex-
tended Schreier—Sims method is no different from its predecessor. However, in prac-
tice, methods used to compute normal closures often terminate rapidly, and so this
version may offer a slight advantage in efficiency.

Both SCHREIERSIMS and NORMALCLOSURESCHREIERSIMS attempt to com-
pute a new base for the subgroup H. Situations may arise where one wishes to use
the base of the parent group in the representation of the subgroup. A version of
the extended Schreier—Sims algorithm with this minor simplification is presented in
Algorithm [£.4l The function takes as input a set, X, of elements of a polycyclic-by-
finite group, E, along with the base, B = (y1,...,7), of E.

As indicated in the discussion immediately following Theorem [3.5 smaller bases
are preferable in relation to the performance of MuLTIPLY. Taking this into consid-
eration, it may be prudent in most instances to opt for a possible reduction in base
size, as in Algorithms [4.2] and [4.3] unless the application specifically requires that

the original base be retained.
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Algorithm 4.3 Normal closure version of the extended Schreier—-Sims algorithm

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:

21:

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

37:

function NORMALCLOSURESCHREIERSIMS(X)

Xi—{(gn)eX|g#1lc)h, Xo—{(gn)eX |g=1c} ©=X=X,0UXy
for (g,n) € X, do
if (g’ n) € H(’Yl
Find 7441 € Q with %% # 7
APPEND(By, Vi+1)
k—k+1
end if
end for
for i < 1 to k do |
Shi— X1 0 Hepy ooy HE — (S, ©; — 4™
Compute a stabiliser transversal, R;, in HI corresponding to the orbit,

) then > (g,n) fixes all points in By

,,,,,

O;
end for
O «— (@17”-7@19)7 R « (Rl,...,Rk)
1<— k
while 7 > 1 do
for 0 € 6, do
Find the coset representative, (g,n) € R;, such that 71-(9 ™ — g
for (z,n,) € Sy; do
Find the coset representative, (¢’,n’) € R;, such that %-(gl’n/) =
H(@nz)

(9,m) < (g:n) - (z,n0) - (¢, 1)~
if (g,n) = (1@, 1N) then
continue (z,n,)
end if
(g,n), j <« S1FT((9,n), BH, O, R)
if g # 15 then
if j > k then
Find 4.1 € Q with fy,g’?) # Vi+1
APPEND(By, Yk+1) > Extend base
k—k+1
SH,k — J
end if
fort—i+1to jdo
SH,t - SH,t o {(gan)}’ HY <SH,t>7 O; «— /ytH[t]v
Compute a stabiliser transversal, R;, in HIY corresponding

to the orbit, 6,

end for
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38: ©«— (01,...,04), R— (Ry,..., Ry)
39: 1—j5+1

40: break 6

41: else if n # 1y then

42: Xy — Xy 0 {(g9,n)})

43: end if

44: end for

45: end for

46: 1—i—1

47: end while

48:  Np « (X)W

49: X5 < GENERATORS(N)

50: return By, (Uf:1 Sui) v Xo
51: end function

4.2.2 Data

The data set described in Subsection of Chapter |3| can be computed readily
from the output of the extended Schreier—-Sims method. Keeping the notation of
Subsection [4.2.1] let By be a base for H and let Sy be a strong generating set for H
relative to By. The subgroup, Ng = H n N, of H is generated by the elements of
Sy with trivial first component, and this computation may be performed using the
standard methods available for polycyclic groups, possibly involving the definition
of a new polycyclic presentation for Ng.

Let T = {(x1,n1),...,(Zm,nm)} be the set containing all elements of Sy with
non-trivial first component. It is assumed here that x; # x; for ¢ # j. The set, T' =
{x1,...,Tn}, is a strong generating set for Gy = H /Ny, relative to the base, By.
Thus, using the permutation representation of G, one may compute Gy = (T <
G along with a set of basic orbits and stabilisers (and Schreier vectors encoding
basic stabiliser transversals) relative to By. The tails of Equations in Gy are
defined relative to this set of stabiliser transversals, and are calculated within Gy
as described in Subsection [3.2.2]

The crucial point to note at this stage of the subgroup construction is that

the transversal, Ly, of Ny in H (analogous to the transversal, L, of N in F) is
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Algorithm 4.4 Base-preserving version of the extended Schreier—Sims algorithm
1: function KEEPBASESCHREIERSIMS(X, B)
2 Xy —{(gyn)eX|g#lgl, Xo—{(gyn)eX |g=1¢} =>X=X1UX
3 BH «— B

4: for 7+ — 1 to k do

)

6

SH’i - Xl a H(“ﬂ ,,,,, Yiz1)s H[i] < <SH,i>, @l «— fyH[i]’

1
Compute a stabiliser transversal, R;, in H! corresponding to the orbit,

O,

7: end for

8: @<-(@1,...,@k),R<—(R1,...,Rk)

9: 1<— k

10: while 7 > 1 do

11: for 0 € ©, do

12: Find the coset representative, (g,n) € R;, such that 71.(9’”) =0

13: for (z,n,) € Sg,; do

14: Find the coset representative, (¢’,n’) € R;, such that fyl.(g/’”/) =
g(z:mz)

15: (g,’fl) - (gan) ’ (I7nm) ) (g,7nl)71

16: if (g,n) = (1g, 1n) then

17: continue (z,n,)

18: end if

19: (gvn)7 J N SIFT((Q?”)? BH7 @7 R)

20: if j <k then

21: fort i+ 1to jdo

22: SH,t - SH,t Y {(gan)}’ HI <SH7t>7 O « /ytH[t]a

23: Compute a stabiliser transversal, R;, in HIY corresponding
to the orbit, O,

24: end for

25: @ﬁ(@l,...,@k),R<—(R1,...,Rk)

26: 1—jJ+1

27: break 0

28: else if n # 1y then

2 Xy X5 0 {(g.m)})

30: end if

31: end for

32: end for

33: 1e—1i—1

34: end while

35 Ny — X5

36: Xy < GENERATORS(N)

37: return BH, (Ule SH,z) v X2
38: end function
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predefined by the strong generating set returned by the extended Schreier—Sims
method. That is, the image, Z;, of x; € T in Ly is (x;,n;). As in Subsection [3.2.2]

T-1={2-1|zeT} is defined by the equation:

T if 22 =1,
7~ otherwise.

The sets, T and T, correspond to the sets, S and g_l, respectively, defined in
Subsection of Chapter [3

Equipped with this definition for Ly, the tail elements of the shift equations are
calculated as described in Subsection [3.2.2] — all multiplications performed in F
using the multiplication algorithm of Chapter [3]

Finally, the conjugates,

—1 —1
a® ,a® € Ny,

are computed and stored for each polycyclic generator, a, of Ny, and each x € T,
again with all multiplications performed in E using the multiplication algorithm of
Chapter [3

This concludes the construction, and the multiplication algorithm may now be

applied to elements of H written in normal form relative to Gy and Ny.

4.2.3 Membership Testing

Remark forms the basis of the membership testing algorithm. Keeping the
notation of Subsection , to test membership of (g,n) € E in the subgroup,
H, (g,n) is sifted relative to the base and strong generating set computed by the
extended Schreier—Sims algorithm. If an element with non-trivial first component is
returned, then (g,n) ¢ H. Otherwise, a siftee of the form (14,n’) is returned, and

(9,m) € H if and only if n’ € HNN = Np. The membership test in Ny is performed
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using the available methods for polycyclic groups, see (Holt et al., [2005, Sec. 8.3).
The dominant computation in a test for membership in a subgroup is the appli-
cation of the sifting method, which requires O(dlog,|G|) multiplications in £, where

d is the degree of the permutation representation for G' (see Subsection [4.2.1]).

4.3 Applications

Following immediately from the subgroup generation algorithm is a function which
computes the normal closure of a subgroup generated by a finite set of elements.
This function may then be used to design algorithms which find derived subgroups
and commutator subgroups by computing the normal closure of a suitable set of
commutators. Using these algorithms, one may write simple iterative procedures
which construct derived and lower central series. For a review of how these standard
functions are implemented, see (Holt et al., 2005, Sec. 3.3).

In the subsections below, two straightforward yet useful applications of subgroup
generation are given. The methods presented heavily exploit the polycyclic-by-finite
structure of the group in question. Standard notation is kept in this section, viz. £
is a polycyclic-by-finite group represented as an extension of a polycyclic group, N,

by the finite quotient, G. The natural map, £ — G, is denoted by p.

4.3.1 The Soluble Radical

For a group, E, the soluble radical, denoted by Oy (FE), is defined as the largest
soluble normal subgroup of E. This subsection contains the outline of a method
which computes the soluble radical of the polycyclic-by-finite group, E.

It follows from the definition of the soluble radical that N < Oy (F). Thus,
O, (E) is the preimage under p of Oy (G).

The permutation representation of G' may be utilised to compute O (G); for

a detailed discussion of the soluble radical algorithm for permutation groups, see
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(Seress|, 2003, Chap. 6). Given a generating set, X, of Oy (G), the method described
Subsection can be used to find a set, X < F, which, under p, maps to X. The
soluble radical of E is then (X, N).

4.3.2 Sylow Subgroups

In this subsection, it is assumed that F is finite.

Construction

Let p be a prime dividing |E| and let H, be a Sylow p-subgroup of G. Observe that
a Sylow p-subgroup of the preimage, H, = p~*(H,), is a Sylow p-subgroup of E.
Thus, one may compute a Sylow p-subgroup of F as follows. First, find a Sylow
p-subgroup, H,, of G. This is done using the available methods for permutation
groups (see [Holt et al., 2005, Chap. 4). Then, using a method similar to that of
Subsection m, generate H, = p~'(H,) as a subgroup of E. This group is finite and
soluble, and so, one may produce a consistent power-conjugate presentation defin-
ing it using the method of Subsection of Chapter [3] The existing methods for
computing Sylow subgroups in finite soluble groups represented by power-conjugate
presentations are now applicable (see [Seress, 2003, Chap. 7). Finally, the isomor-
phism from the subgroup defined by the power-conjugate presentation can be used

to map a generating set for a Sylow p-subgroup back into E.

Conjugacy

It is also possible to design an algorithm which, when given two Sylow p-subgroups
of F, returns an element which conjugates one Sylow subgroup to the other. The
first step is to find, using the available functions for permutation groups (see [Holt
et al., 2005, Chap. 4), an element g € G which conjugates p(P;) to p(P,) in G. Using
the method of Subsection a preimage, g € F, for ¢ may be found. It follows
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then that P/ is a Sylow p-subgroup of the group, p~'(p(P,)) = P,N, which contains
P, as a Sylow p-subgroup.

The group, P, N, is finite and soluble, and so may be represented by a consistent
power-conjugate presentation. One may then find, using the available methods for
finite soluble groups (see [Seress, 2003, Chap. 7), a conjugating element, y € PN,

such that PP = P, as required.



Chapter 5

Conjugacy

The material presented in this chapter utilises the machinery developed thus far to
perform some advanced structural calculations within polycyclic-by-finite groups.
Specifically, the question of element conjugacy is addressed.

The chapter begins with an algorithm to compute the centre of a given polycyclic-
by-finite group. Following this, a method to construct centralisers of elements be-
longing to a finite polycyclic-by-finite group is described. The centraliser algorithm
is developed using the theory of extensions and cohomology; a synopsis of the re-
quired material is found in Section of Chapter [2l The problem of determining
whether two elements are conjugate is intimately connected to the determination
of centralisers, and may be solved algorithmically with a slight modification of the
centraliser method. This algorithm is presented as the final instalment of the chap-
ter.

The underlying idea of the algorithms presented here is to transform the problem
into one of linear algebra, and then use the available methods for matrix groups to

perform the computation.

70
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5.1 The Centre

The approach to computing the centre of a given polycyclic-by-finite group, F, is as

follows:
1. Find a normal abelian subgroup, A, of E that contains Z(FE).

2. For each member, x, of a generating set, X, for F, compute the matrix,
M, that specifies the conjugation action of that generator on elements of A

(written as vectors).
3. Construct a matrix whose null space corresponds to the image of Z(FE) in A.
4. Map a set of vectors generating Z(FE) in A back into E.

The following simple lemma furnishes one with a feasible choice for the normal

abelian subgroup.
Lemma 5.1. Let G be a group with soluble radical, S. Then Z(G) < Z(S) < G.

Proof. The subgroup, Z(G)S, is soluble, so Z(G) < S and hence, Z(G) < Z(S).

Normality of Z(S) in G follows from Z(S) being characteristic in S. O

Let S be the soluble radical of E. Then by Lemma 5.1} Z(E) is contained in the
normal abelian subgroup, Z(.S).

The soluble radical, S, can be computed as a subgroup of F using the method
described in Subsection of Chapter [4], after which it is rewritten as a polycyclic
group by the procedure given in Subsection of Chapter [3] The available func-
tions for polycyclic groups may then be utilised to compute the centre, Z(S), of S
as an abelian group; see (Holt et al. [2005, Chap. 8) for the finite case and (Eick,
2001) for the infinite case.

Write Z(S) as an abelian group, A, with invariant factor decomposition,

k
Zmlx"'XthXZ,
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where m; | m;,1 for each ¢. Writing the elements of A as row vectors, let @y, ..., d;x
be the standard basis for A relative to its invariant factor decomposition. Let x € X.
Regarding matrices as acting on the right, the i-th row of the matrix, M,, over Z,

defining conjugation in A by x is given by

c?i:v

expressed as a row vector, where E acts on A by conjugation.

The element, @;x, is found by first mapping a; into the group F, and then using
the multiplication algorithm of Chapter |3 to perform the conjugation. The result is
mapped back into A and written as a row vector.

An element, Z' € A, lies in Z(F) if and only if, for each x € X,

M, = 7 (5.1)

A matrix whose null space corresponds to the set of all such z is constructed as

follows. Let D be the t x (¢ + k) matrix over Z,

my 0O 0 0 0
0 my 0 0 0
0 --- 0
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Let X = {x1,...,2,} and let T, = M, — I for each x € X, where [ is the identity

(t + k) x (t + k) matrix. Form the following matrix, @, over Z

Ty | Toy | -+ | T

q

D

where blank spaces indicate zero entries.

Claim 5.2. If a vector, 2 € A, lies in Z(E), then there exists a vector (2’ | ¥) €
ZHa+t)+k in the null space of Q. Conversely, the first t 4+ k entries of any vector in

the null space of @) define a vector belonging to Z(E).

Proof. Suppose that Z € A lies in Z(E). Then for each z; € X, 2T, = 0, equality

being in the abelian group, A = Z,,, x -+ x Z,,, x Z¥. Viewing 7 as a vector in
7tk 2T, = 0 is equivalent to Z7T] », = —u;D for some 0; € Z'. Hence, the vector
(2| vy |---| v,) belongs to ker(Q).

Conversely let ¥ € ker(Q)) and partition ¥ into segments, the first of length ¢ + k,
and the rest each of length ¢: (2| ¥, |---| ¥;,). Then ZT,, = —; D for each i, which,

as above, is equivalent to 2T, = 0 in A, whence 7 lies in Z(E). O

Thus, the image of Z(E) in A, can be recovered from a generating set of ker(Q).
Mapping this image back into £ completes the computation.

Pseudocode for computing the centre in this manner is presented in Algorithm 5.1}
The function takes as input a polycyclic-by-finite group, F, generated by a set,
X ={x1,..., 24}

The runtime of CENTRE is dominated by the calculation of the null space in
Line [0 The fastest known algorithms to perform such computations use p-adic

expansions, and were introduced by [Dixon| (1982)). They require O(c*(log, 7)?) time
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Algorithm 5.1 Finding the centre

1: function CENTRE(FE)
2: Find the soluble radical, S, of F

3: Write Z(S) as an abelian group: Z(S5) < Do, X +++ X Lo, x ZF with standard

basis {@1, ..., d;. 1} relative to this decomposition
4: for re X d(l
a|x
5: T, « - [t+k
p 4T
6: end for
mi 0 -+ 0 0 --- 0
0 my -~ 0 0 -+ 0
7 D1 . . . 0 .0 = D has dimension t x (t + k)
0 O my; 0 -+ 0
To | Ty |-+ | T,
D
8: Q < D
D
9: Compute generating set, Y, for ker(Q)
10: Yy
11: for €Y do
12: Form vector, i/4 defined by the first ¢ + k£ entries of ¥/
13: Yy<—Yyu {3714}

14: end for
15 return (¢ '(Va))
16: end function
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for an r x ¢ matrix. For recent developments in this area, see (Haramoto and
Matsumoto, 2009). It is worth noting here that, if £ = 0 and m; = m for each i
and some m € N, then the computation can be performed entirely in 7Z,,, offering
a significant improvement in efficiency. For a practical account of computations of

this type, the reader is referred to (Holt et al., [2005, Chap. 7).

5.2 The Conjugacy Problem

The Conjugacy Problem is one of the fundamental decision problems in group theory,
and it is known that the problem is undecidable for many classes of groups (see
Chandler and Magnus, [1982). The class of polycyclic-by-finite groups, however, is
a subclass of the class of finitely presented groups that possess solvable conjugacy
problem. For a systematic account of the decision problems that are solvable in the
class of polycyclic-by-finite groups, the reader is referred to (Baumslag et al.| [1991)).

The treatment of the conjugacy problem in this section focuses on the finite
case, and extends the ideas of Holt et al| (2005, Sec. 8.8). It may be possible to
generalise the methods presented here to cope with infinite groups using the work
of [Eick| (2001). However, at present, the algorithms are primarily targeted at finite

insoluble groups with large soluble normal subgroup.

5.2.1 Centralisers

Let E be a finite group with soluble normal subgroup, and assume that F is repre-

sented as described in Chapter [3] In this subsection, a method of computing

Cple) ={f e E| fe=ef}

for an element, e € E, is introduced.

The centraliser, Cg(e), is the stabiliser of e under the conjugation action of
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E on its elements. Therefore, it is possible, in theory, to design a determinis-
tic algorithm to compute Cg(e) by adapting the orbit-stabiliser method described
in Subsection to this case. However, this approach would inevitably involve
computing and storing explicitly the entire orbit, e”. This can be time and space

consuming. A more effective strategy is presented in the sequel.

Affine Actions

Before describing the algorithm itself, a digression must be made to introduce the
concept of an affine action of a group on a vector space, which is required for the

application at hand.

Definition 5.3. Let V =~ K¢ be a finite-dimensional vector space over a field K,
let p: G — Endg (V) be a linear action of a group, G, on V, and let § : G — V
be a derivation (see Equation ) with respect to the action, ¢. Then the map,
a: G — Sym(V), defined by v = v#9) + §(g) is called an affine action of G' on
V.

Keeping the notation of Definition [5.3] it is straightforward to check that a is a

homomorphism:

pelgh) — gyelgh) 4 5(gh)
— p¥loh) | 5(g)so(h) + 0(h)

- (Uso(g) + 5(g))so(h) + 0(h)

_ o9y

Thus, an affine action is an action of a group, GG, on a vector space, V', but not a
linear action unless 6 = 0.

If V is identified with K¢ and Endg (V) with GL(d, K), then the affine action,
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a, corresponds to the homomorphism, &: G — GL(d + 1, K), given by

0
afg) = #19) 7
0
(g) 1

where, for ve K", (v | 1) = (v | 1) - a(g).

The Centraliser Algorithm

Assume that the group, E, is represented as described in Chapter [3| with respect to
the normal subgroup, /N, and associated quotient, G. The normal subgroup, N, is

soluble and finite, and hence possesses a normal elementary abelian series:

N=Nz=---=N,=N;y; =1.

The basic idea of the method is an induction downwards along this normal series.
Suppose that NV, is a p-group of rank, d, say, where p is prime, and assume, by
induction, that the centraliser in the factor group E/N; has already been computed.
That is, a set of generators in £ whose image in E/N; generates Cg/n,(eNy), is
known. Define C to be the subgroup of E such that C/N, = Cgy,(eNy). The

following proposition is elementary.
Proposition 5.4. The mapping 6: C — N, defined by ¢ — |e, c] is a derivation.

Proof. For ee F and ¢, ¢y € C:

[e,cica] = e (c1ca) tecie = ey tele, c]ca = [e, c1]®[e, ca).

The commutativity of N; is used in the last equality. O]
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The group N; may be identified with the additive group IFZ, and additive notation
may be used for its elements. The conjugation action of C' on N; may then be
written as a homomorphism, ¢: C — GL(d,F,), and one may consider J as a
derivation of the form ¢: C' — Fz. These can be combined to give an affine action,

a: C'— GL(d + 1,FY), defined by:

( 0 )
- ¢(c)
0
5(¢) |

This affine action yields the following characterisation of Cg(e).

Proposition 5.5. The centraliser, Cg(e), is the stabiliser in C' of the vector,
(0,...,0,1) e Fi+,

where C' acts on Fﬁ“ via a.

Proof. The stabiliser in C' of (0,...,0,1) under the action of « is the kernel of the
derivation, 0. By the definition of d, ker(d) = Cc(e). As Cg(e) < C, it follows that
Cc(e) = CE(B) ]

Hence one obtains an effective method to compute Cc(e). The algorithm com-
mences by computing a set of elements in £ whose images in the quotient group,
E/N, generate the centraliser, Cg/n(e). This centraliser is computed using the
known permutation representation for E/N by the already available methods for
permutation groups described in (Seress, 2003) and (Holt et al., [2005, Chap. 4).
The algorithm then proceeds to iterate down the normal elementary abelian series,

solving the problem for successively larger quotients.
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This method is similar to the method involving a single orbit-stabiliser compu-
tation, but the induction method computes relatively small orbits of vectors instead
of one relatively large orbit of elements in a polycyclic-by-finite group. Thus, the
induction method is usually more efficient than the single orbit-stabiliser application.

An algorithm for computing the centralisers in this manner is presented in Al-
gorithm The function takes as input a polycyclic-by-finite group, E, and an
element, e € E, and operates as described above to compute Cg(e). The notation
of this subsection is kept in the description of the algorithm. In particular, it is
assumed that the group, F, is represented as described in Chapter [3| with respect

to the normal subgroup, N, and associated quotient, G.

Algorithm 5.2 Finding centralisers
1: function CENTRALISER(E, )

2: Compute a set, X, of generators in FE for the image of the centraliser,
C E/N(GN ) in B

3: Compute a normal elementary abelian series, N = Ny =--- =N, = N; ;| =
1, for N
4: for i <~ 1tot do
5: Express the elementary abelian section N;/N; ;1 as vector space, V', with
standard basis {¥7, ..., U4}
6: for € X do
7: Express 6(z) = e 'z~ texN;;, as a vector, U, € V
?711‘ 0
8: M, «— o : > x acts on NV;/N; ;1 by conjugation
V4T 0
Uy 1
9: end for
10: Compute the stabiliser, By, of W = (0,...,0,1) in B={(M, |z e X)
11: Find the image, X', in F of a generating set for By
12: X <X

13: end for
14: return (X)
15: end function
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5.2.2 Conjugacy Testing

The problem of checking whether two elements e, f € E are conjugate can be solved
with a variation of the centraliser algorithm.

Keeping the notation of Subsection [5.2.1 assume, by induction, that the cen-
traliser in the factor group E/N, has already been computed. That is, a set of
generators in £/ whose image in £/N, generates C'/Ny = Cg/n,(eN), is known. As-
sume also, again by induction, that e and f are equal in the factor group E/N;. The

following proposition forms the basis of the conjugacy testing algorithm.
Proposition 5.6. If the elements e, f € E are conjugate, then the element induced
by e~' f must lie in the orbit of the vector,

(0,...,0,1) e R+t

P

under C', where C' acts on Fg“ via o

Proof. Suppose that e and f are conjugate in E. Then there exists y € E such that

eV = f, or equivalently

[e.yl =e7'f.

By assumption, e ' f € N; and so, from the equality above, [e,y] € N, or equiva-
lently N,y € C/N,.
Therefore, y € C', and
0(y) = eyl =e7'f,

and the element induced by e~ f lies in the orbit of the vector, (0,...,0,1) € Fi+!,

under C'. O

Each time Line of CENTRALISER is executed, a stabiliser computation is

performed. In the test for conjugacy, the underlying orbit is also computed. By

Proposition if the element induced by e !f is not in this orbit, then e and f
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are not conjugate. Otherwise, there exists an element, y € E, such that e 'y ley is
equal to e 1 f in the considered factor, i.e. e is equal to f in the considered factor.
This conjugating element is found using a transversal of the stabiliser in image of
the affine map. The element, f, is is modified to f¥~', so that e and f are now equal
in the considered factor (as in Proposition , and the algorithm proceeds to the
next induction step.

The algorithm commences by attempting to find an element conjugating e to f
in the quotient group, E/N (see (Seress, 2003) and (Holt et al., 2005, Chap. 4) for
details).

An algorithm for checking element conjugacy in this manner is presented in
Algorithm [5.2l The function takes as input a polycyclic-by-finite group, F, and
elements, e, f € F, and operates as described above to determine whether e and f
are conjugate in F, returning an element, y € E, such that e¥ = f in the affirmative
case. The notation of this subsection is kept in the description of the algorithm. In
particular, it is assumed that the group, F, is represented as described in Chapter

with respect to the normal subgroup, N, and associated quotient, G.
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Algorithm 5.3 Testing Element Conjugacy
1: function ISCONJUGATE(E, e, f)

2 if e and f are not conjugate in £/N then
3 return false, -

4: end if
5

6
7

Find y € E such that ¥ is equal to f in E/N

fer
: Compute a set, X, of generators in E for the image of the centraliser,
CE/N(QN) in B

8: Compute a normal elementary abelian series, N = Ny =--- = N, = N; ;| =
1, for N
9: for i — 1to t do
10: Express the elementary abelian section N;/N; 1 as vector space, V', with
standard basis {¥7, ..., U4}
11: for xr € X do
12: Express 6(z) = e 'z 'exN;,; as a vector, @, € V
N 0
13: M, «— _ : : > z acts on N;/N;,1 by conjugation
Uik 0
U, 1
14: end for
15: Compute the orbit, Og, and stabiliser, Bg, of @/ = (0,...,0,1) in B =
(M, |zeX)
16: Express e 1 f as a vector, st € V
17: if Ut € Oz then
18: return false, -
19: end if
20: Find yiocal € E such that e¥eel is equal to f in E/N;y
21: [« fyi,ial = f is now equal to e in G/N;
22: Y < Yiocal " Y
23: Find the image, X', in F of a generating set for By
24: X <X
25: end for
26: return true, y

27: end function




Chapter 6

Conclusion

This chapter begins by illustrating the algorithms developed in the thesis by per-
forming some example computations on polycyclic-by-finite groups using the package
developed. The following section discusses aspects of the implementation, including
native support for polycyclic-by-finite groups in the Magma Computational Algebra
System based on the work of this thesis. The final section outlines the potential for

continued research in this direction.

6.1 Examples and Run-times

Presented here is a selection of examples of computation with polycyclic-by-finite
groups using the code developed. See Appendix [A] for details on its usage. Tables
of run-times for various computations in several different example groups are given
at the end of this section.

The first three examples use groups belonging to the database of perfect groups

provided by Magma.

83
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Example 6.1. Element arithmetic and conjugacy testing in a perfect group.

> D := PerfectGroupDatabase();

> E := PermutationGroup(D, 1920, 7);
> Order(E);

1920

> N := SolubleRadical(E);
> Q, rho := RadicalQuotient(E);
> G := PCBFMasterConstruct(E, N, Q, rho); // construct group

> PCBFGrpOrder(G); // order of group

1920

> g := PCBFRandom(G); // random element
> h := PCBFRandom(G);

> f := PCBFMult(G, g, h); // g * h

> finv := PCBFInv(G, f); // £ -1

> e := PCBFMult(G, f, finv);

> PCBFIsIdentity(G, e); // e should be the identity

true

> ¢ := PCBFConjugate(G, g, h); // h™-1 * g x h

> isconj, hprime := PCBFIsConjugate(G, g, c); // check conjugacy - should be
true

> isconj;

true
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Example 6.2. Computing the centre of a perfect group.

> D := PerfectGroupDatabase();
> E := PermutationGroup(D, 322560, 1);
> N := SolubleRadical(E);

> Q, rho := RadicalQuotient(E);

> G := PCBFMasterConstruct(E, N, Q, rho);

> PCBFGrpOrder (G) ;

322560

> Z := PCBFCentre(G); // compute centre of G

> PCBFGrpOrder(Z) eq Order(Centre(E)); // orders should match

true

Example 6.3. Computing a centraliser in a perfect group.

> D := PerfectGroupDatabase() ;

> E := PermutationGroup(D, 120);
> Order(E) ;

375000

> N := SolubleRadical(E);
> Q, rho := RadicalQuotient(E);
> G := PCBFMasterConstruct(E, N, Q, rho);

> PCBFGrpOrder (G) ;

375000
> g := PCBFRandom(G) ;
> C := PCBFCentraliser(G, g); // centraliser of g in G

> PCBFGrpOrder(C) ;

30
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Example 6.4. Computing the derived group of a subgroup of AGL(4, 3).

> G := AGL(n, q);
> N := MinimalNormalSubgroups(G) [1];
> M := MaximalSubgroups(Stabiliser(G, 1));

> gps := [ sub< G | N, m‘subgroup > : m in M ];

> #gps;

\4

E := gps[1];

> Order(E);

233280

> S := SolubleRadical(E);

> Q, rho := RadicalQuotient(E);

> Order(Q);
1440
> H := PCBFMasterConstruct(E, S, Q, rho);

>L :

PCBFDerivedGroup (H) ;
> PCBFGrpOrder(L) eq Order (DerivedGroup(E)); // should be true

true
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Example 6.5. In this example, the PCBFEleOrder function is used to compute the

order of an element in an automorphism group of a finite group.

\Y
4]
]

SmallGroup(729, 102);

\4
=
i

AutomorphismGroup(S);

\2
e
i

PermutationGroup(A);

> Order(P);

221079456

> Degree(P);

702

> IsSoluble(P);

false

> N := SolubleRadical(P);

> Q, rho := RadicalQuotient(P);

> G := PCBFMasterConstruct(P, N, Q, rho);
> PCBFGrpOrder (G) ;

221079456

> g := PCBFRandom(G);

> PCBFEleOrder(G, g); // order of g

24

> H := PCBFsub(G, [gl); // subgroup generated by g

> PCBFGrpOrder (H); // should be 24

24
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Example 6.6. Computing the centre of a reducible matrix group.

> D1

ClassicalMaximals("L", 5, 2 : classes := 1);

> D2 :

ClassicalMaximals("L", 3, 2 : classes := 1);
> X := [DirectProduct(dl, d2) : di1 in D1, d2 in D2];
> IsIrreducible(X[1]);

false

> E := Image(PermutationRepresentation(X[11));

> Order(E);

7741440

> S := SolubleRadical(E);

> Q, rho := RadicalQuotient(E);

> Order(Q);

20160

> G

PCBFMasterConstruct(E, S, Q, rho);

> Z :

PCBFCentre(G);
> PCBFGrpOrder(Z) eq Order(Centre(E)); // should be true

true
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Example 6.7. Let G be the projective special linear group acting on a vector space
of dimension 5 over the field F5. The code that follows constructs an extension of
an irreducible module of GG, by (G, as a record of type PCBF. The order of a random
element of this extension is computed. See for details of constructions involving

the type ModCoho.

> G := PSL(5, 2);
> I := IrreducibleModules(G, GF(2));
> C := CohomologyModule(G, I[2]); // module of dimension 5

> H2 := CohomologyGroup(C, 2);

> E, rho := Extension(C, H2.1);

> EG := PCBFModCohoConstruct(C, E, rho);
> y := PCBFRandom(EG) ;

> PCBFEleOrder (EG, y);
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Example 6.8. In the code below, an extension of the natural permutation module
over 7Z of the alternating group, As, is constructed as a record of type PCBF. The
derived subgroup of this extension is then computed. This is an example of an
infinite polycyclic-by-finite group represented using the methods described in this

thesis. See for details of constructions involving the type ModCoho.

> G := Alt(5);

> M := PermutationModule(G, Integers());
> C := CohomologyModule(G, M);

> _ := CohomologyGroup(C, 2);

> E, rho := Extension(C, [1]);

> EG := PCBFModCohoConstruct(C, E, rho);

> PCBFNormalSubgrp (EG) ;

GrpGPC of infinite order on 5 PC-generators
PC-Relations:

> X := PCBFDerivedGroup(EG);

> PCBFQuotGrp(X);

Permutation group acting on a set of cardinality 5
Order = 60 = 272 * 3 * 5

1, 3, 4

(2, 4)(@3, 5

(1, 4, 3)

(2, 3, 5)

(2, 5, 3

(2, 5, 4)
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Example 6.9. Consider the Heineken group defined by the finite presentation,

{a,b,c | |a,|a,b]] = ¢, [b,|b,c]] = a,|c,|c,al] = b).

This group has a quotient with the structure [22!] - A5. The snippet of code that
follows constructs this quotient as a record of type PCBF and computes Sylow 2-
and 3- subgroups. See for details in constructions involving quotients of finitely

presented groups.

>E := Group< a, b, ¢ | (a, (a, b)) =¢c, (b, (b, &) =a, (c, (c, a)) = b>; //
Heineken group

> Q := Alt(5);

> rho := Homomorphisms(E, Q) [1];

> K :

Kernel(rho);

> K :

Rewrite(E, K : Simplify := false);

> L, psi := pQuotient(X, 2, 5 : Print := 1);

Lower exponent-2 central series for K

Group: K to lower exponent-2 central class 1 has order 275
Group: K to lower exponent-2 central class 2 has order 2710
Group: K to lower exponent-2 central class 3 has order 2716

Group: K to lower exponent-2 central class 4 has order 2720
Group: K to lower exponent-2 central class 5 has order 2724
> G := PCBFFPQuotConstruct(E, Q, rho, L, psi);

> Factorisation(PCBFGrpOrder(G));

[<2, 26>, <3, 1>, <5, 1>]

> P2 := PCBFSylow(G, 2); // Compute Sylow 2-subgroup

> Factorisation(PCBFGrpOrder(P2)); // should be 2726

[<2, 26>]

> P3 := PCBFSylow(G, 3);

> Factorisation(PCBFGrpOrder(P3)); // should be 371

[<3, 1>]
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Tables 6.6 display a set of run-times in Magma for a variety of computations
using the newly implemented suite of PCBF-group functions, over a collection of
test groups. In particular, for each PCBF-group, run-times are measured for the

following, each over 100 runs, choosing elements at random where applicable:
(i) Multiplying a pair of elements
(ii) Finding the inverse of an element

(iii) In the finite case, finding a Sylow 2-subgroup and a Sylow p-subgroup, where

p is the largest prime dividing the order of the group
(iv) Computing the centre of the group

Tables all follow the same format; the first and second columns of each
table give the order (or in some cases, the structure) of the polycyclic normal sub-
group, N, and the finite quotient, (), respectively. The largest prime, p, dividing
the order of group is recorded in the third column. The remaining columns give
run-times as indicated, in seconds, and rounded to three decimal places. A “-” in-
dicates that the table entry in question is not applicable for the particular example
group, for instance, the run-time for a Sylow subgroup computation in an infinite
group. In each table, the groups are ordered by increasing size of Q).

For each group listed in Tables [6.1H6.5] the first line of data records run-times
using the PCBF representation of the group. For the sake of comparison, the second
line of data gives run-times for similar computations using the existing representation
of the group in Magma. In the case where there exists no native Magma method
to perform the computation in question using the group’s existing representation,
the time taken is indicated by “c0”. This occurs most often with finitely presented
groups, for which no feasible permutation representation is available. There exist

no intrinsic functions to compute the centre, or to find Sylow subgroups of a finitely
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presented group in Magma. As a result, comparison run-times are unobtainable for
such examples.

Table gives run-times for a set of finite perfect groups. These groups are
taken from the Magma Perfect Group Database, and their constructions follow the
form of Examples [6.1

Tables and investigate subgroups of AGL(3,5) and AGL(4,3) respec-
tively. The standard Magma method is used to construct the groups, AGL(n,q),
and subgroups are generated as in Example [6.4]

Table displays run-times for a collection of reducible matrix groups. These
groups are constructed by forming direct products of the maximal subgroups of the
classical groups as in Example [6.6] For a survey on the subgroup structure of the
finite classical groups, the reader is referred to (Kleidman and Liebeck| 1990).

Table [6.5] explores the performance of the package for extensions of modules as
described in Section [2.3] In each of the finite groups of Table[6.5] the extensions are
created by first performing a search for all irreducible modules of the given matrix
group, after which the Magma cohomology functions are utilised. Example [6.7]
illustrates such a construction. The infinite examples of Table[6.5|are constructed as
in Example [6.8] where a module of a suitable matrix group is constructed explicitly.
All of the extensions of Table [6.5] are non-split, except for the fifth, for which only
a split extension is possible.

Table consists of a collection of test groups, each of which map onto As.
For each test group, an appropriate p-quotient of the kernel of the epimorphism is
computed, and then an extension of that quotient by As is constructed using the
methods described in this thesis. See Example for a sample construction.

The format of Table is as follows. The first column gives the presentation of
the large group, along with the map onto As. The second column gives data relating
to the p-quotient, namely, its order and lower exponent-p class. The third column

records the largest prime, ¢, dividing the order of the extension. The remaining
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columns give run-times as indicated, in seconds, and rounded to three decimal places.
No comparison run-times are available for these test groups, as there is no existing
standard method in Magma to construct extensions of this type.

It is important to note here, that the current implementations of the algorithms
in this thesis are subject to the overhead of the Magma interpreter, which adds a
significant time cost. As discussed in Subsection [6.2.3] it is expected that, after na-
tive implementation and optimisation, run-times will improve by a factor of roughly

103. Tables of run-time data follow.
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Table 6.1: Run-times for perfect groups

Group Information

Run-times (seconds)

N Q p roy a7 Syl, Syl, Z

0.060 0.180  40.040  39.000  0.840
32 As 5)

0.000 0.000 0.000 0.010  0.000

0.060 0.180 52.640 48.350 0.610
3888 As 5)

0.000 0.000 0.000 0.000  0.000

0.050 0.140 34.930 36.190 3.480
6250 As 5)

0.000 0.000 0.000 0.010  0.000

0.080 0.180  70.600  39.230  1.710
7776 As 5)

0.000 0.000 0.000 0.000  0.000

0.120 0.360  55.360 0.190  0.200
15842 As 89

0.000 0.000 0.000 0.010  0.000

0.120 0.330 99.160  94.840  1.470
128 PSL(2,7) 7

0.000 0.000 0.000 0.000  0.000

0.210 0.470 156.660  80.630  9.370
2187 Ag 5)

0.000 0.000 0.010 0.000  0.000

0.610 0.840 319.970 547.010 13.660
128 Ay 7

0.000 0.000 0.000 0.000  0.000
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Table 6.2: Run-times for subgroups of AGL(3,5)

Group Information

Run-times (seconds)

N Q P r-y a Syl, Syl,, Z
0.000 0.010 0.210 0.210 0.690
46500 1 31
0.000 0.000 0.000 0.000 0.000
0.010 0.000 0.570 0.510 1.100
48000 1 )
0.000 0.000 0.000 0.000 0.000
0.100 0.310 44.660 50.510 0.290
500 120 5}
0.000 0.000 0.000 0.000 0.000
0.100 0.240 100.150 59.450 1.340
50000 120 5}
0.000 0.000 0.000 0.000 0.000
0.160 0.380 95.140 85.510 1.020
50000 120 5
0.000 0.000 0.000 0.010 0.000
2.810 3.090 4599.140 7793.520 0.190
250 372000 31
0.000 0.000 0.000 0.010 0.000
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Table 6.3: Run-times for subgroups of AGL(4, 3)

Group Information

Run-times (seconds)

N Q p r-y at Syl, Syl,, Z
0.000 0.010 1.250 1.200 1.820
186624 1 3
0.000 0.000 0.010 0.000 0.000
0.000 0.010 1.800 1.680 2.350
373248 1 3
0.000 0.000 0.010 0.010 0.000
0.000 0.000 6.620 6.520 7.420
15116544 1 3
0.000 0.000 0.010 0.010 0.000
0.280 0.500  896.200 101.900 0.340
162 1440 5
0.000 0.000 0.000 0.000 0.000
0.490 0.820 1013.610 142.860 0.500
648 1440 5
0.000 0.000 0.010 0.000 0.000
0.420 0.950 534.680 577.500 0.960
8748 5616 13
0.000 0.000 0.010 0.010 0.000
0.760 1.250 546.410 905.560 0.940
8748 5616 13
0.000 0.000 0.000 0.000 0.000
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Table 6.4: Run-times for reducible matrix groups

Group Information

Run-times (seconds)

N Q P roy a7t Syl, Syl,, Z

0.000 0.010 0.940 0.780  1.110
13824 1 3

0.000 0.000 0.000 0.000  0.000

0.140 0.360 96.260 125.460  5.100
192 PSL(2,7) 7

0.000 0.000 0.000 0.000  0.000

0.170 0.400 97.770  91.610  1.230
9216 PSL(2,7) 7

0.000 0.000 0.000 0.000  0.000

0.210 0.480 143.750  67.260  2.300
221184 PSL(2,7) 7

0.000 0.000 0.010 0.000  0.000

0.240 0.500 102.510 124.070  1.800
221184 PSL(2,7) 7

0.000 0.000 0.000 0.000  0.000

0.950 1.120 429.910 432.050 12.250
384 20160 7

0.000 0.000 0.000 0.000  0.000
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Table 6.5: Run-times for module extensions

Group Information

Run-times (seconds)

N Q D r-y ax ! Syl, Syl, Z
0.070 0.180 - - 2.900
YA As -
0.000 0.000 - - o0
0.150  0.350 - - 10.210
/4 PSL(2,7) -
0.000 0.000 - - 00
0.290 0.410 - - 13.750
ZlO AG _
0.000 0.000 - - o0
X 0.230 0.460  100.460 267.490 5.650
(Z/11Z)° PSL(2,11) 11
0.000 0.000 o0 o0 o0
0.800 1.450 - - 169.930
YA 960 -
0.000 0.000 - - o0
0.570 1.020 - - 107.550
/4 1344 -
0.000 0.000 - - o0
. 0.570 0.950  548.480 415.450  14.560
(7.)27.) PSL(4,2) 7
0.000 0.000 o0 o0 00
6 0.610 1.100 2061.020 269.010  22.200
(7)27)° PSU(4,2?) 5
0.000 0.000 00 o0 00
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The message to be taken from the data of Tables 6.6] is clear. Run-times
increase significantly as the size of the finite quotient increases. This agrees with
the complexity analysis of Theorem and reinforces the content of the discussion
immediately following that result. It should be noted that, the computation of
Sylow-2 subgroups proved, in most cases, to be the most expensive computation,
and that the run-time for computing the centre is dependent on the size of the
normal polycyclic subgroup, as illustrated by the final example of Table [6.6]

One may conclude from the run-time data, that, with appropriate optimisations,
the PCBF-group data structure is a suitable option for polycyclic-by-finite groups
for which there is no available permutation or matrix representation, but whose

finite quotient is small and easily represented as a permutation group.

6.2 Implementation

This section contains a description of the implementation of the polycyclic-by-finite
group package using the Magma Computational Algebra System, highlighting a few

technical details and efficiency considerations.

6.2.1 List of Functions

The author has implemented methods to perform the following operations in the

class of polycyclic-by-finite groups:

Multiply elements

Compute the natural map (and its inverse) from a group to the finite quotient

used in the construction

Invert elements

Compute the order of an element
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e Transfer to category GrpPC or GrpGPC

e Find the subgroup generated by a set of elements

e Test element membership in a given group

e Coerce an element into a group

e Find the normal closure of the subgroup generated by a set of elements

e Compute the commutator subgroup of two groups having a common super-

group

e Compute Sylow subgroups (in the finite case)
e Compute the centre of a group

e Compute the derived series of a group

e Compute the lower central series of a group
e Compute the centraliser of an element

e Test whether two group elements are conjugate, and, if so, return a conjugating

element

6.2.2 Technical Considerations

A major technical difficulty that arose during the course of the implementation
was the inability to define Magma homomorphisms to and from polycyclic-by-finite
groups represented using the newly defined structure.

The record (Rec) type in Magma was used to store the information defining
a polycyclic-by-finite group, and since elements of type Rec are not recognised by
Magma as algebraic structures (there is no binary operation), it was not possible

to construct native homomorphisms to or from polycyclic-by-finite groups. This
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problem was circumvented by maintaining data sets encoding homomorphisms, and
computing images and preimages via helper methods.

The lack of a mechanism by which homomorphisms may be created proved espe-
cially problematic in the centraliser and element conjugacy functions, where, in the
implementation, a finitely presented group is constructed and used to compute the
maps of Line [11] in Algorithm [5.2] and Line 23] in Algorithm [5.3] At present, there
is no feasible alternative to this costly solution. As a result, the implementations
of the centraliser and element conjugacy functions, in their present state, should be

regarded as experimental.

6.2.3 Native Support

In view of the author’s progress in the area, Prof. John Cannon, Head of the Magma
Computational Algebra Group, expressed interest in incorporating the methods de-
veloped by in to standard releases of the Magma Computational Algebra System, to
enable built-in support of polycyclic-by-finite groups. This necessitated direct col-
laboration between the author and members of the Magma Computational Algebra
Group.

To this end, in April, 2010, the author was invited by Prof. Cannon to visit
the University of Sydney for a 5 week period. During this time, the author worked
closely with Dr. William Unger to implement a set of functions for computing with
polycyclic-by-finite groups.

The first stage of the implementation involved defining internal Magma data
types for polycyclic-by-finite groups (New type: GrpPCBF) and for elements of
polycyclic-by-finite groups (New type: GrpPCBFELlt). These data types are defined
in a similar fashion as for the current standard Magma group types, Permutation
groups; GrpPerm, Matrix groups; GrpMat, Polycyclic groups; GrpPC (or GrpGPC), etc.

The construction functions for these types mimic the construction functions of the


http://www.maths.usyd.edu.au/u/john/
http://www.maths.usyd.edu.au/u/billu/
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author’s program code.

With these new types available, the author’s package code was completely rewrit-
ten to correspond with the new type definitions.

Naturally, many of the methods implemented for computing with polycyclic-by-
finite groups (listed in Section , depend heavily on element multiplication. As
a result a significant portion of time was devoted to improving the performance of
the multiplication algorithm.

After discussion with the author on the operation of the algorithm, a few op-
timisation adjustments were suggested by Dr. Unger. These yielded a noticeable
improvement in efficiency. After this, to avoid the inherent overhead that is associ-
ated with the Magma interpreter, the entire multiplication algorithm was rewritten
in the programming language C (the language in which the Magma Computational
Algebra System is written) and then added to the standard Magma library. The im-
plementation in C offered a significant performance gain — the speed of the function
was improved by a factor of roughly 103.

The results achieved were encouraging. The multiplication algorithm (and its

dependants) performed well under most of the tests administered.

6.3 Future Work

There are several subareas of this project that are deserving of continued research.
In addition to improvement in the performance of the multiplication algorithm, the

following functionality is desirable:

e Find normalisers of subgroups
e Test whether two given subgroups are conjugate
e Find all conjugacy classes of a group

e Compute the character table of a group
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Finding normalisers and testing subgroup conjugacy have immediate applications
to computing within automorphism groups of p-groups. This forms part of ongo-
ing research of Prof. Derek Holt and David Howden| at the Warwick Mathematics
Institute.

With regard to computing character tables of groups, the author plans to seek
the expertise of Dr. William Unger in adapting his recently developed methods to
the category of polycyclic-by-finite groups.

Another avenue which can be explored is the possibility of centraliser compu-
tation conjugacy testing in infinite polycyclic-by-finite groups. This may perhaps
involve extending the work of |[Eick (2001).

The author is confident that, with continued efforts at optimisation, the suite of
algorithms will soon prove to be even more useful from a practical point of view, in

the contexts described here, and otherwise.


http://www.warwick.ac.uk/~mareg/
http://www.warwick.ac.uk/staff/D.J.A.Howden/
http://www.maths.usyd.edu.au/u/billu/

Appendix A

Package Documentation

A.1 Introduction

The algorithms under development for polycyclic-by-finite groups employ current
methods available for polycyclic presentations, together with the well developed
base-and-strong-generating-set techniques used for computation with permutation
groups. This document describes the data structure and the functions that have
been implemented using the Magma Computational Algebra System. The current

version at the time of writing is: Magma V2.17-5.

A.2 Getting Started

To load all necessary function and record definitions, simply start Magma from the

directory in which the source code files are held and execute the command:

load "pcbfmain.m";

Alternatively, to load all function and record definitions, and execute a series of

tests on the source code, execute the command:

load "pcbfmain-test.m";

106
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A.3 Creation of a Group

To create a record of type PCBF representing a polycyclic-by-finite group the user is

required to supply:
(i) The polycyclic-by-finite group, F.

(ii) A normal polycyclic subgroup, N, of E such that the associated quotient is

finite.

(iii) The quotient, E/N, (of type GrpPerm or GrpMat) and the natural map, £ —
E/N.

A.3.1 Construction Functions

’PCBFMasterConstruct(E, N, Q, rho)‘

Constructs a record of type PCBF to represent the polycyclic-by-finite group,

E, with normal polycyclic subgroup, IV, and quotient group, Q.

In the method descriptions that follow, G, H and K denote groups of this type.

A.4 Basic Group Properties

The functions described here provide access to basic information stored for a PCBF-

group, G.

A.4.1 Infrastructure

’PCBFGenerators(G)‘

An enumerated sequence containing a complete set of generators for G.

[PCBFNGens (@) |

’ PCBFNumberOfGenerators(G) ‘

The number of defining generators for G.
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PCBFNormalSubgrp (G) |

A group of type GrpPC or GrpGPC (depending on whether G is finite or infi-
nite respectively) isomorphic to the polycyclic normal subgroup used in the

construction of the PCBF representation of G.

PCBFQuotGrp (G) |

The quotient group used in the construction on the PCBF representation of

G.

A.4.2 Numerical Invariants

[PCBFGrpOrder (G) |

The order of GG, returned as an ordinary integer.

A.4.3 Predicates

[PCBFIsFinite ()]

Returns true if G is finite, false otherwise.

[PCBFIsTrivial(@) ]

Returns true if G has order 1, false otherwise.

[PCBFIsSoluble ()]

[PCBFIsSolvable (@) |

Returns true if GG is soluble, false otherwise.

A.5 Elements

As discussed above, an element of a PCBF-group is stored as an ordered pair with
components belonging to the quotient group and normal polycyclic subgroup re-

spectively.
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A.5.1 Definition of Elements

’PCBFCreateElement(G, X, y)‘

Given elements, x, of the quotient group, and, y, of the normal subgroup used
in the construction of the PCBF representation of G, construct the element of

G defined by the ordered pair, (x,y).

PCBFrho(G, g)

Given an element, g, of G, return the image of g under the natural map onto

the quotient group used in the construction of G.

PCBFrhoinv (G, u)

Given an element, u, of the quotient group used to construct G, return an in-

verse image of u in G.

PCBFphiinv(G, n)

Given an element, n, of the normal subgroup group used to construct G, return

the image of n in G under the inclusion map.

[PCBFIdentity(G) |

PCBFIdA(G)

Construct the identity element of G.

A.5.2 Arithmetic Operations on Elements

New elements can be computed from existing ones using the following implementa-

tions of standard functions.

|PCBFMult (G, g, h) |

[PCBFMultiply(G, g, h) |

[PCBFStar (G, g, h)]

The product of the elements, g and h, of G.
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[PCBFInverse (G, g)]

[PCBFInv(G, g) |

The inverse of the element, g, of G.

’PCBFPower(G, g, n)‘

The n-th power of the element, g, of G, where n is an integer.

[PCBFDivide(G, g, h)]

[PCBFS1ash(G, g, h)

The quotient of the element, g, of G by the element, h, of G, i.e. the element,

g/h = gh™'.

’ PCBFConjugate(G, g, h)

The conjugate of the element, g, of G, by the element h, of GG, i.e. the element

g" = h='gh.

PCBFCommutator (G, g, h)

The commutator of the elements, g and h, of G, i.e. the element g~ *h~!gh.

PCBFSeqCommutator (G, [g,...,g,])

Given the sequence, ¢i,...,¢g,, of elements of G, return the commutator
(91,---,9n). Commutators are left-normed, so they are evaluated from left
to right.

A.5.3 Properties of Elements

[PCBFEle0rder (G, g) |

The order of the element, g, of G.

A.5.4 Predicates for Elements

’PCBFeq(G, g, h)‘

Given g and h belonging to G return true if g and h are the same element,
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false otherwise.

PCBFne (G, g, h)

Given g and h belonging to G return true if g and h are distinct elements,

false otherwise.

[PCBFIsIdentity(G, g)]

[PCBFISIA(G, g)|

Returns true if ¢ is the identity element in G and false otherwise.

A.5.5 Set Operations

[PCBFRandom (G) |

| PCBFRandomElement (G) |

Returns a pseudo-random element of G.

’PCBFRandomSequence(G, 1) ‘

’PCBFRandomElementSequence (G, ‘

Given a non-negative integer, [, construct a sequence of length [ of pseudo-

random elements of G.

’ PCBFRepresentative (G)

PCBFRep (G)

A representative element of G. For a PCBF-group this always returns the

identity element.

A.6 Subgroups

Subgroups of PCBF-groups are treated as independent PCBF-groups in their own

right, with the subgroup relationship maintained in internal data structures.
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A.6.1 Definition of Subgroups by Generators

[PCBFsub(G, L)]

Construct the subgroup of G' generated by the elements of the sequence, L.

[PCBFncl (G, L)]

Construct the normal closure of the subgroup of G generated by the elements

of the sequence, L.

A.6.2 Membership and Coercion

[PCBFin(G, g, H)]

Given an element, g, of G return true if g is an element of H, false otherwise.

[PCBFnotin(G, g, H) |

Given an element, g, of G return true if g is not an element of H, false oth-

erwise.

PCBFCoerce(G, g, H)

Given an element, g, of G and another PCBF-group, H, attempt to write ¢
as an element of H. If the rewrite is successful then the function returns true
and g written as an element of H, otherwise the function returns false and

an empty tuple.

A.6.3 Standard Subgroup Constructions

’PCBFSubgroupConjugate(G, H, g)‘

Construct the conjugate, g~ Hg, of the group, H, under the action of the el-

ement, g, of G. The group, H, is assumed to be a subgroup of G.

PCBFCommutatorSubgroup (H, K)

Construct the commutator subgroup of groups, H and K, where H and K are

subgroups of a common PCBF-group.
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PCBFSubgroupNormalClosure (G, H)

The normal closure of the subgroup, H, in the group, G.

A.6.4 Sylow Subgroups

[PCBFSylowSubgroup(G, p)]

[PCBFSylow (G, p)]

A Sylow p-subgroup for the finite PCBF-group, G.

’PCBFSylowConjugatingElement(G, H, X)

Given Sylow p-subgroups, H and K, of a finite PCBF-group, G, return the

element of G conjugating H into K.

A.6.5 Centralisers
’PCBFCentraliser(G, g) ‘

[PCBFCentralizer (G, g) |

The centraliser of the element, g, of the finite PCBF-group, G.

A.7 Normal Subgroups and Subgroup Series

A.7.1 Normal Structure
| PCBFSolubleRadical(G) |

[PCBFSolvableRadical(G)]
The soluble radical of G.

A.7.2 Characteristic Subgroups

’PCBFCentre(G)‘

| PCBFCenter (G) |
The centre of G.
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’ PCBFCommutatorSubgroup (G) ‘

| PCBFDerivedSubgroup (G) |

[PCBFDerivedGroup (G) |

The derived subgroup of G.

A.7.3 Subgroup Series

’PCBFDerivedSeries(G)‘

The derived series of GG. The series is returned as a sequence of subgroups.

’ PCBFLowerCentralSeries(G) ‘

The lower central series of G. The series is returned as a sequence of subgroups.

A.8 Conjugacy

|PCBFIsConjugate (G, g, h) |

Given elements, g and h, belonging to a finite PCBF-group, G, return the value
true if there exists ¢ € G such that ¢g¢ = h. If so, the function returns such a

conjugating element as second value.

A.9 Transfer Between Group Categories

A.9.1 Transfer to GrpPC or GrpGPC

’PCBFPolycyclicGroup(G) ‘

Write G as a GrpPC or a GrpGPC if GG is polycyclic. Attempts are made where
possible to return a GrpPC. If the category transfer is successful, an ordered

pair encoding the isomorphism is returned as a second value.

PCBFPolycycliciso(G, P, isodata, g)

Given a polycyclic group, P, isomorphic to G, return the image of the element,
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g, of G in P as defined by isodata.

PCBFPolycyclicisoinv(G, isodata, h)

Given an element, h, of a polycyclic group isomorphic to GG, return the image

of the element, h, in G as defined by isodata.



Appendix B

Program Listing

Listing B.1: grputils.m

1 /x
File: grputils.m
6 Last modified: Fri, 07 Jan 2011 17:21:11 +0000
Author(s): Shavak Sinanan <S.K.SinananQwarwick. ac. uk>
11
Company : University of Warwick <http://wuww. warwick. ac.
uk>

Description :
16

Miscellaneous group wutilities.

Notes :
21

MAGMA V2.16—13.

Copyright 2006—2010, University of Warwick. All rights reserved.

26

*/

31 WordMultiply := function (posimgs, negimgs, word)

116
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/*
Arguments:

posimgs: Sequence of group elements, Type(s): Setindz,
SeqEnum

negimgs: Sequence of group elements, Type(s): Setlndzx,
SeqEnum

word: Sequence of integers representing a word in group
elements indexed by posimgs and negimgs, Type(s): SeqEnum

Parameters:

Return Type(s):

GrpFElt

Description :

Computes the product of the sequence of group elements
represented by word.

*/

ans := Identity (Parent(posimgs[1]));
for i in [1 .. #word]| do
ans *:= word[i] gt 0 select posimgs|[word[i]|] else negimgs|[—
word [1]];
end for;

return ans;

end function;

Listing B.2: permsv.m

/*
File : pPETMSV .M
Last modified : Fri, 07 Jan 2011 17:21:11 +0000

Author(s): Shavak Sinanan <S.K.SinananQwarwick. ac.uk>
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12 Company : University of Warwick <http://www. warwick. ac.
uk>

Description :

17 This file contains some auxiliary methods for working with
orbits and Schreier
vectors.

Notes :
22

MAGMA V2.16—13.

Copyright 2006—2010, University of Warwick. All rights reserved.

27

*/

WordInverse := func < x | [ —y : y in Reverse(x) ]| >; // inverse
of a word

32
OrbitSV := function(alpha, X)
/*
37
Arguments:
alpha: Element of the set upon which the elements of X act,
Type(s): Elt
42

X: Sequence of elements of a group acting on the set to
which alpha belongs, Type(s): SeqEnum

a7 Parameters:

Return Type(s):

52 SeqEnum, SeqEnum

Description :
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72

v

82
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92

97

102
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119

Computes the orbit of the point alpha under the action of

X . The function returns the orbit and a Schreier
vector
corresponding to the orbit with indezxing relative to the
set, X.
*/
r o= #X;
v= [0];
orb := [alphal];
orbsize := 1;
c = 1;
while ¢ le orbsize do
pt := orbc];
for i in [1 r] do
ppt = pt X[i];

if ppt notin orb then
Append (~orb, ppt);

orbsize +:=
v[orbsize]

end if;
end for;

c +:= 1;
end while;
return v, orb;

end function;

BasicOrbitsSV :=

/*

Arguments:

G: Permutation group,

1;

i;

function (G, B, S)

Type(s): GrpPerm

B: Base of G, Type(s): SeqEnum

S: Strong generating set of G relative to B, Type(s):

SetIndz

Parameters:

Return Type(s):
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SeqEnum, SeqEnum

Description :

Computes the basic orbits and Schreier vectors (relative to

B and S) of G.

*/

| = 4B;
if 1 eq 0 then return [], []; end if;
m = #S;
X := Isetseq(S);
sv = [];
bo = [];
bs := [Stabiliser (G, B[1 .. i — 1]) : i in [1 .. 1]];
sv[1l], bo[l] := OrbitSV(B[1], X);
for i in [2 .. 1] do
indexmap := [k : k in [1 .. m] | X[k] in bs[i]];
sv[i], bo[i] := OrbitSV(B[i], X[indexmap]) ;
for j in [2 .. #sv][i]] do
sv[i][j] := indexmap[sv[i][]]];
end for;
end for;

return sv, bo;
end function;

SVWordInv := function(G, S, v, orb, pt)
/*
Arguments:
G: Permutation group, Type(s): GrpPerm
S: Strong generating set for G, Type(s): SetlIndzx

v: Schreier vector corresponding to orbit orb (with
indexing relative to S), Type(s): SeqEnum

orb: Sequence containing exactly the orbit of orb[1] under
S, Type(s): SeqEnum

pt: FElement of the set upon which G acts, Type(s): Elt
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152 Parameters:

Return Type(s):

157 SeqEnum

Description :

162 Returns inverse of what SVWord should return, as an integer
sequence i.e. a word in strong generators taking base point
to pt as defined by the Schreier wvector, wv.

pos := Position (orb, pt);

r := v|[pos];

w o= [];

while r ne 0 do

172 Append(~W, —r)§

pt := r gt 0 select pt " (S[r]"—1) else pt " (S[-r]);
pos := Position (orb, pt);
r := v[pos];

end while;
177 return WordInverse (w) ;
end function;

SVPermutationIlnv := function(G, S, v, orb, pt)

182

/*
Arguments:
187 G: Permutation group, Type(s): GrpPerm
S: Strong generating set for G, Type(s): SetlIndzx

v: Schreier vector corresponding to orbit orb (with
102 indexing relative to S), Type(s): SeqEnum

orb: Sequence containing exactly the orbit of orb[1] under
S, Type(s): SeqEnum

107 pt: FElement of the set upon which G acts, Type(s): Elt
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Parameters:

202

Return Type(s):
GrpPermKElt

207
Description :

Returns inverse of what SVPermutation should return. i.e. a
permutation (or matrixz) at level of basic orbit orb taking
212 base point to pt.

pos := Position (orb, pt);
217 I = Vv[pos];

u = Id(G);

y = 1d(G);

while r ne 0 do
y ;= 1 gt 0 select S[r]"—1 else S[—r];

222 u k= y;
pt = pt'y;
pos := Position (orb, pt);
r := v[pos];

end while;
227 return u” —1;
end function;

Listing B.3: recfrmtdef.m

/*

File: recfrmtdef.m
Last modified: Wed, 10 Nov 2010 16:37:18 +0000
7
Author(s): Shavak Sinanan <S.K.SinananQuwarwick. ac.uk>
12 Company : University of Warwick <http ://www. warwick. ac.
uk>

Description :
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17 The records used to represent PCBF-groups are defined here.

Notes :

22 MAGMA V2.16—135.

Copyright 2006—2010, University of Warwick. All rights reserved.

27 %/

// define record formats to store the relevant data

32
PDF := recformat<

G: GrpPerm, // the permutation group itself
natset: Setlndx, // the natural set on which G acts
B: SeqEnum, // base of gp

s7 bo: SeqEnum, // basic orbits of gp
S: SetIndx, // set of strong generators of gp
sgindexlist: SeqEnum, // sgindexlist[i] is list of indices of

strong gens lying in the i—th basic stabiliser G[i]

sv: SeqEnum, // sv/[i] is Schreier vector for basic orbit
number 1

tail : SeqEnum,

42 tailinv: SeqEnum,
utail : SeqEnum,
utailinv: SeqEnum
>

a7 PCBF := recformat<
E, // master group, used for testing
L, // normal subgroup, used for testing
Q, // quotient E/L
rho: Map, // natural homomorphism from E to Q, used for
testing
52 GR: Rec, // record of type PDF
strgenpreimgs: SetIndx, // preimages of strong generators
strgeninvpreimgs: Setlndx, // preimages of inverses of strong
generators
N: Grp, // polycyclically presented group isomorphic to L
phi: Map, // isomorphism from L onto N, used for testing
57 pcgens: Setlndx, // generators of polycyclic normal subgroup
pcgenconjugates: SeqEnum,
pcgenconjugatesinv: SeqEnum,
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tailelts: SeqEnum,
taileltsinv: SeqEnum,
62 e: Tup, // identity element of this PCBF-group
strgenpreimgsnf: SeqEnum,
strgeninvpreimgsnf: SeqEnum,
pcgensnf: SeqEnum, // sequence of elements (in normal form)
that generate mnormal subgroup
grpgens: SeqEnum, // sequence of elements (in normal form)
that generate the entire group
o ismaster: BoolElt, // true iff this record is created from a
MAGMA-known group
supergrp: Rec // parent group

>;
Listing B.4: permdata.m
v /x
File : permdata.m
¢ Last modified: Fri, 07 Jan 2011 17:21:11 +0000
Author(s): Shavak Sinanan <S.K.SinananQwarwick. ac.uk>
11
Company : University of Warwick <http://wuww. warwick. ac.
uk>

Description :
16
The methods in this file are used to collect the required data
from the
finite quotient of a polycyclic—by—finite group.

21 Notes:

MAGMA V2.16—13.

26 Copyright 2006—2010, University of Warwick. All rights reserved.

*/

2

s1 load 7 grputils.m”;
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load ”permsv.m”;
load 7recfrmtdef .m”;

forward StrongGenWord, WordPermutation;

GrpPermData := function(G, B, S, sv, bo)
/*
Arguments:
G: Permutation group, Type(s): GrpPerm
B: Base of G, Type(s): SeqEnum
S: Strong generating set of G, Type(s): SetIndz

sv: Seqeunce of Schreier vectors relative to (B, S),
Type(s): SeqEnum

bo: Sequence of basic orbits relative to B, Type(s):
SeqEnum

Parameters:

Return Type(s):

Rec

Description :

This function collects the data required from a permutation

group that is to be subsequently viewed as a quotient of a
PCBF-group .

For some 1 <= i <= #B, some 1 <= j <= #bo[i], let u be the
permutation defined by sv[i] which takes B[i] to bo[i][j].
Let z_k be a strong generator belonging to S[i], and let
h-1, h_2 be the permutations defined by sv[i] which take
B[i] to the image of B[i] under u + z_k, u * (x_k) "—1
respectively .

Then
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u *x v k = t_1 % h_1
and
u * (xk)"—1 =1t.2 % h_ 2

for some t_1, t-2 in G[i + 1]. The elements tail[i][j][k]
and tailinv[i][j][k] are lists of integers defining words
over S, which represent t_1 and t_2 respectively. If G is a
quotient group, E/N, of some larger group, E, then

u *x z_k = t_1 % h 1 * n_1
and
u * (x_k)"—1 =12 % h 2 x n.2

for some n_1, n_2 in N. The entries utail[i][j][k] and
wtailinv [i][j][k] act as pointers to the elements n_1 and
n_2, a 0 value indicating that the normal subgroup element
is trivial.

This function returns a record holding BSGS data for G
together with the arrays tail, tailinv, utail and utailinv
which are used in the construction of the PCBF-group of
which this group is a finite quotient.

*/

GR := rec<PDF | >;
GR G = G;
GR' natset := GSet(G);
GR'B := B;
1 := #GR B;
GRS := S;
m = #S;
GR bo := bo;
GR sv := sv;
bs := [Stabiliser (G, B[1 .. i — 1]) : i in [1 .. 1]];
sgindexlist:=[[1 .. m]];
for i in [2..1] do
sgindexlist [i] = [k : k in [1 .. m] | S[k] in bs[i]];
end for;
GR' sgindexlist := sgindexlist;
tail = [];
tailinv := [];
utail = [];

126
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utailinv = [];
get = 0;
gctinv = 0;

1 for i in [1 .. 1] do
tail [1]:=1];
tailinv [1] = [];
utail [i
utailin

]:
v
136 orb = G

[
sg = sgi
orbsize :=
for j in [

141 tail [1]]]
tailinv [i
utall[ ]

—
—.

pt := orb
146 nsg = #sg;

ipt = pt"S[sg[k]];
pos := Position (orb, ipt);
if v[pos]| eq sg[k] or v[j] eq —sg[k] then
151 // This image is a definition
tail [1][§][k] = [Integers()|];
utail [1][]j][k] = 0;
else
tail [1][j][k] := StrongGenWord(GR, SVPermutationlnv (G,
S, v, orb, pt)xS[sg[k]]* SVPermutationlnv(G, S, v,
orb, ipt) " —1);

156 get +:= 1;
utail [1][]j][k] = gct;
end if;
ipt := pt"(S[sg[k]]"—1);
pos := Position (orb, ipt);
161 if v[pos| eq —sg|k] or v[j] eq sg[k] then
// This image is a definition
tailinv [i]|[j][k] := [Integers() |];
utailinv [1][j][k] = 0;
else
166 tailinv [i][j][k] := StrongGenWord(GR, SVPermutationInv

(G, S, v, orb, pt)*(S[sglk]]"—1)*xSVPermutationInv (G
, S, v, orb, ipt)"—1);
getinv +:= 1;
utailinv [1][j][k] := gctinv;
end if;
end for;
171 end for;
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end for;

GR tail := tail;

GR utail := utail;

GR tailinv := tailinv;
GR utailinv := utailinv;
return GR;

end function;

StrongGenWord := function(GR, g)

/*
Arguments:
GR: Record of type PDF, Type(s): Rec

g: FElement of GR'G, Type(s): GrpPermElt

Parameters:

Return Type(s):

SeqEnum

Description :

Returns an integer sequence representing a word in the
strong gemnerators for g.

*/

wo= [
1 := #GR'B;
for i in [1 .. 1] do

ipt := GR'B[i]"g;
w = SVWordInv(GR'G, GR'S ,GR'sv[i], GR bo[i], ipt) cat w;
g *x:= SVPermutationInv(GR'G, GR'S, GR'sv[i], GR bo[i], ipt)
L1,
end for;
return w;

end function;

StrongGenNormalForm := function(GR, g)

128
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/*
221
Arguments:

GR: Record of type PDF, Type(s): Rec

226 g: Element of GR'G, Type(s): GrpPermPElt

Parameters:

231

Return Type(s):
SeqEnum

236
Description :

Returns a 2—D integer sequence representing the normal form
of g relative to the base and strong generating set held in

241 GR

*/

nf = [];
246 1 := #GR B;
for i in [1 .. 1] do
ipt := GR'B[i]"g;
nf[i] := SVWordlnv(GR'G, GR'S ,GR'sv[i], GR bo[i], ipt);
g *x:= WordPermutation(GR, nf[i]) "~ —1;
251 end for;
return nf;
end function;

256 WordPermutation := function(GR, w)

/*

Arguments:

261

GR: Record of type PDF, Type(s): Rec

w: Integer sequence representing word over the strong
generating set held in GR, Type(s): SeqEnum

266
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Parameters:

Return Type(s):

GrpPermKElt

Description :

Returns the permutation of GR'G represented by the integer
sequence w.

*/

g = Id(GR'G);
if IsEmpty(GR'S) then return g; end if;
wordlength := #w;
for i in [1 .. wordlength] do
g x:= w[i] gt 0 select GR'S[w[i]] else (GR S[—w[i]]) " —1;
end for;
return g;

end function;

Listing B.5: pcbfconstruct.m

File: pcbfconstruct.m

Last modified: Fri, 07 Jan 2011 17:21:11 +0000

Author(s): Shavak Sinanan <S.K.SinananQwarwick. ac.uk>

Company : University of Warwick <http://wuww. warwick. ac.
uk>

15 Description :

The methods in this file enable the user to:

Contruct records of type PCBF to represent polycyclic—by—
finite group.

2. Access basic structural information about a polycyclic—by—

finite group
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20 represented in a record of type PCBF.

Notes :

25 MAGMA V2.16—13.

Copyright 2006—2010, University of Warwick. All rights reserved.

30 */

load ”permdata.m” ;

35

PCBFMasterConstruct := function(E, L, Q, rho)
/*
w0  Arguments:
E: Polycyclic—by—finite group, Type(s): Grp

L: Polycyclic normal subgroup of E, Type(s): GrpPerm,
45 GrpMat

Q: Quotient E/L (finite), Type(s): GrpPerm

rho: Natural map E —> Q, Type(s): Map

50

Parameters:

55 Return Type(s):

Rec

60 Description :

Returns a record representing a PCBF-group isomorphic to F,
with mormal polycyclic subgroup and quotient ismorphic to L
and @) respectively .

65

*/
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EG := rec<PCBF | >;

EGE := E;
EG'L := L;
EG'Q := Q;
B := Base(Q);

S := StrongGenerators(Q);

ReduceGenerators (~Q); // a nonredundant set of strong
generators is required

S := StrongGenerators(Q);

bo := BasicOrbits (Q);

sv := SchreierVectors (Q);

GR := GrpPermData(Q, B, S, sv, bo);

EG'GR := GR;

EG rho := rho;

strgenpreimgs := (GR'S)QQrho;

EG strgenpreimgs := strgenpreimgs;

m := #strgenpreimgs;

strgeninvpreimgs := {@Q}; // this set is needed in the case
where a strong generator has order 2

for i in [1 .. m] do

Include (~strgeninvpreimgs, (Order(S[i]) eq 2) select
strgenpreimgs [i] else strgenpreimgs[i]”—1);

end for;

EG strgeninvpreimgs := strgeninvpreimgs;

// the following only works if L is of the type GrpPerm,
GrpMat, GrpAb or GrpGPC, phi : L —> N is an isomorphism
onto the polycyclically presented group, N

if IsFinite (L) then

N, phi := PCGroup(L);

else

N, phi := GPCGroup(L);
end if;
pcgens := PCGenerators(N);

r := #pcgens;
pcgenconjugates := [];
pcgenconjugatesinv = [];
for i in [1 .. m] do
pcgenconjugates[i] = [N | ];
pcgenconjugatesinv [i] = [N | ];
for j in [1 .. r] do
// computing conjugates of the j—th polycyclic generator
with the ith preimage of the strong generating set of @
and its inverse

yim := (pcgens][]])@@phi;

pcgenconjugates[i][j] := phi(yim strgenpreimgs[i]); //
stored as an element of N

pcgenconjugatesinv[i][j] := phi(yim strgeninvpreimgs|[i]);

// stored as an element of N
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end for;
end for;
1 := #GR'B; // number of elements in the stored base of the
quotient group
tail := GR tail;

tailinv := GR tailinv;

utail := GR utail;

utailinv := GR utailinv;

h = [];

g = [I;

tailelts = [N | ];

taileltsinv = [N | [;

for i in [1 .. 1] do
orb := GR bo[i];

v := GR sv[i];
sg := GR sgindexlist [i];
for j in [1 .. #orb] do
pt = orb[j];
for k in [1 .. #sg] do
g := SVWordInv(Q, S, v, orb, pt);
if utail[i][j][k] ne O then
ipt = pt'S[sg[k]];
h := SVWordInv(Q, S, v, orb, ipt);
ux := WordMultiply (strgenpreimgs, strgeninvpreimgs, g)
x strgenpreimgs|[sglk]];
th := WordMultiply (strgenpreimgs , strgeninvpreimgs,
tail[1]][j][k]) * WordMultiply (strgenpreimgs ,
strgeninvpreimgs, h);
tailelts [utail [i][j][k]] := phi((th"—1) * ux);
end if;
if utailinv[i][]j][k] ne O then
ipt := pt"(S[sg[k]]"—1);
h := SVWordInv(Q, S, v, orb, ipt);

uxinv := WordMultiply (strgenpreimgs , strgeninvpreimgs,
g) % strgeninvpreimgs[sg[k]];
th := WordMultiply (strgenpreimgs , strgeninvpreimgs,

tailinv [1][j][k]) * WordMultiply (strgenpreimgs ,
strgeninvpreimgs , h);
taileltsinv [utailinv [i][j][k]] := phi((th"—1) % uxinv)

end if;
end for;
end for;
end for;
EG'N := N;
EG pcgens := pcgens;
EG pcgenconjugates := pcgenconjugates;
EG pcgenconjugatesinv := pcgenconjugatesinv;
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EG tailelts := tailelts;
EG taileltsinv := taileltsinv;
e := <StrongGenNormalForm (GR, Id(GR'G)), Id(N)>;
EG e = e;
EG ismaster := true;
EG' strgenpreimgsnf = [];
EG strgeninvpreimgsnf := [];
for i in [1 .. #GR'S] do
EG strgenpreimgsnf[i] := <StrongGenNormalForm (GR, S[i]), Id(

N) >;
EG' strgeninvpreimgsnf[i] := <StrongGenNormalForm (GR, S[i
1"~1), 1d(N)>;
end for;
EG pcgensnf := [];
for i in [1 .. #pcgens] do
EG pcgensnf[i] := <e[l], pcgens[i]>;
end for;

EG phi := phi;

EG grpgens := EG strgenpreimgsnf cat EG pcgensnf;
EG supergrp := rec<PCBF | >;

return EG;

end function;

PCBFPrecomputedDataConstruct := function(GR, N, pcgens,

pcgenconjugates , pcgenconjugatesinv, tailelts , taileltsinv)
/*
Arguments :
GR: Record containing permutation group data, Type(s): Rec
N: Normal Subgroup, Type(s): GrpPC or GrpGPC
pcgens: Generating sequence of N, Type(s): SeqEnum

pcgenconjugates: 2—D sequence of conjugates, Type(s):
SeqEnum

pcgenconjugatesinv: 2—D sequence of conjugates, Type(s):
SeqEnum

tailelts: Sequence of tail elements, Type(s): SeqEnum

taileltsinv: Sequence of tail elements, Type(s): SeqEnum
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Parameters:

Return Type(s):

Rec

Description :

This function constructs a record representing a PCBF-group
from the data provided. The exact specifications of the
arguments are given below.

The record, GR, is assumed to be output from the function
GrpPermData. See the documentation in the function header
for details.

The group, N, is the normal polycyclic subgroup of the
polycyclic—by—finite group in question, of type either
GrpPC or GrpGPC.

The enumerated sequence pcgens contains the generating
sequence of N used to compute pcgenconjugates and
pcgenconjugatesinu.

Let § be the strong generating set held in the record GR.
The 2—D sequence pcgenconjugates contains the image of each
element of pcgens under the conjugation action of each
element of S. Specifically

pcgenconjugates[i[[j] = pcgens[j] S[i].

Similarly ,

pcgenconjugatesinv/[i[[j] = pcgens[j] (S[i]"—1).

The enumerated sequence tailelts contains the elements of N
that result when one attempts to right multiply (in the
proposed polycyclic—by—finite group) a basic transversal
element of the base and stromg generating structure held in
GR by a strong generator in S.

Let G be the permutation group held in GR, B its base and
assume that B defines the stabiliser chain

G[1] > G[2] > ... > Gm + 1] = 1.



B. Program Listing 136

240 For 1 <= i <=#B, 1<=j<=#GRbo[i], let g be the
permutation defined by sv[i] which takes B[i] to bo[i][j].
Let z_k be a strong generator belonging to S[i], and let h
be the permutation defined by sv/[i] which take B[i] to the
image of B[i] under g * z_k.

245

Then
g * x_k =t x h x n

250 for some t in G[i + 1], n in N. The element, t, is encoded
by the integer list GR tail[i][j][k] as described in the
function header of GrpPermData. The element, n, is stored
in tailelts as follows:

255 tailelts [GR utail [i][j][k]] = n,

where GR utail is the sequence of integer pointers computed
in GrpPermData. Likewise ,

260 tatleltsinv [GR uwtailinv[i[[j][k]] = n',
where

g * (z_k)"—1 =1t" % h'" x n'
265
for some t' in G[i + 1] (encoded by tailinv[i][j][k]), n'
in N.

A record representing a PCBF-group is returned.

270
Given the complicated nature of the arguments to this
function , the easiest course to follow may be to copy and
modify the code in the function PCBFMasterConstruct to suit
the particular example with which you wish to work.

275

rec<PCBF | >;

20 S := GR'S;

EG' GR := GR;
EG'N := N;
EG  pcgens := pcgens;
EG pcgenconjugates := pcgenconjugates;
255 EG pcgenconjugatesinv := pcgenconjugatesinv;
EG tailelts := tailelts;

EG taileltsinv := taileltsinv;
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e := <StrongGenNormalForm (GR, Id(GR'G)), Id(N)>;
EG e := e;

EG  ismaster := true;

EG strgenpreimgsnf := [];

EG strgeninvpreimgsnf = [];

for i in [1 .. #GR'S] do

EG strgenpreimgsnf[i] := <StrongGenNormalForm (GR, S[i]), Id(
N)>;
EG strgeninvpreimgsnf|[i] := <StrongGenNormalForm (GR, S[i
[7=1), 1d(N)>;
end for;

EG pcgensnf = [];
for i in [1 .. #pcgens] do
EG pcgensnf[i] := <e[l], pcgens[i]>;
end for;
EG grpgens := EG strgenpreimgsnf cat EG pcgensnf;
EG' supergrp := rec<PCBF | >;
return EG;

end function;

PCBFModCohoConstruct := function(C, E, rho)

/*

Arguments:
C: Cohomology Module, Type(s): ModCoho
E, rho : Result of call: E, rho := Extension(C, ?), Type(s):
Grp, Hom

Return Type(s):

Rec

Description :

Returns a record representing a PCBF-group isomorphic to F,
with normal abelian subgroup Module(C) and quotient
ismorphic to Group(C).

*/

EG := rec<PCBF | >;
EGE = E;



335

340

345

350

355

360

365

370

B. Program Listing 138

Q := Group(C);

EGQ Group (C) ;
B := C gr'b;
S := Cgr sg;
bo := C gr bo;
sv := C gr sv;
GR := GrpPermData(Q, B, S, sv, bo);
EG GR := GR;
EG rho := rho;
M := Module (C) ;
p := IsFinite (BaseRing(M)) select #BaseRing(M) else 0;
r := Dimension (M) ;
assert Ngens(E) eq #S + r;
L := sub<E | [E.i : i in [#S + 1 .. Ngens(E)]]>;
EG'L := L;
N := p ne 0 select AbelianGroup (GrpPC, [p : i in [1 .. T
1)
else AbelianGroup (GrpGPC, [p : i in [1 .. r]]);
EG'N := N;
phi := hom<L — N | [N.i : i in [1 .. r]]>;
strgenpreimgs := (GR' S)@QQrho;
m := #strgenpreimgs;
EG strgenpreimgs := strgenpreimgs;
strgeninvpreimgs := {@QQ}; // this set is needed in the
case where a strong generator has order 2
for i in [1 .. m] do
Include (~strgeninvpreimgs , (Order(S[i]) eq 2)
select strgenpreimgs[i] else strgenpreimgs]|i
7 =1);
end for;
EG strgeninvpreimgs := strgeninvpreimgs;
pcgens := PCGenerators(N);
EG  pcgens := pcgens;
pcgenconjugates := [];

pcgenconjugatesinv = [];
NF := E'NormalForm;
for i in [1 .. m] do
pcgenconjugates[i] = [N | ];
pcgenconjugatesinv [i] = [N | ];
for j in [1 .. r] do
// computing conjugates of the jth polycyclic generator
with the ith preimage of the strong generating set of @
and its inverse
yim := (pcgens][]])@@phi;
pcgenconjugates [i][j] := phi(NF(yim strgenpreimgs|[i])); //
stored as an element of N
pcgenconjugatesinv [i]]
strgeninvpreimgs [1i ]

j] = phi(NF(yim"
)); // stored as
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end for;
end for;

an element of N

1 := #GR'B; // number of elements in the stored base of the

quotient group
tail := GR tail;

tailinv := GR tailinv;
utail := GR utail;
utailinv := GR utailinv;
ho= [];
g = [];
wo=[];
tailelts = [N | ];
taileltsinv := [N | |;
for i in [1 .. 1] do
orb := GR bo[i];
v := GR sv[i];

sg := GR sgindexlist [i

for j in [1 .. #orb] do

pt := orb[j];
for k in [1..#sg]
g = SVWordInv (
if utail[i]][j]]
ipt := pt"S[s
h := SVWordInv

Q,
k]
glk
(Q

end if;

if utailinv[i][j][k] ne 0 then
ipt := pt"(S[sg[k]]”
h := SVWordlnv(Q,
uxinv := WordMultiply (strgenpreimgs , strgeninvpreimgs, g) x
strgeninvpreimgs [sg[k]];

do

, Pt);

ipt);

h := SVWordInv(Q, S, v,
orb, ipt);

ux := WordMultiply (
strgenpreimgs ,

strgeninvpreimgs , g)
x strgenpreimgs [sg[k

N
th := WordMultiply (

strgenpreimgs ,
strgeninvpreimgs ,
tail [1][]][k]) *
WordMultiply (
strgenpreimgs ,

strgeninvpreimgs, h);

tailelts [utail [1][j][k]]
;= phi(NF(th"—1 % ux
)) s

ipt);
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th := WordMultiply (
strgenpreimgs ,
strgeninvpreimgs ,
tailinv [1][j][k]) x
WordMultiply (
strgenpreimgs ,
strgeninvpreimgs , h);

taileltsinv [utailinv [i]]
j1[k]] := phi(NF(th

"—1 % uxinv));

end if;
end for;
410 end for;
end for;
EG pcgenconjugates := pcgenconjugates;
EG pcgenconjugatesinv := pcgenconjugatesinv;
EG tailelts := tailelts;
a5 EG taileltsinv := taileltsinv;
e := <StrongGenNormalForm (GR, Id(GR'G)), Id(N)>;
EG e = e;
EG ismaster := true;
EG' strgenpreimgsnf := [];
120 EG strgeninvpreimgsnf := [];

for i in [1 .. #GR'S] do
EG strgenpreimgsnf|[i] := <StrongGenNormalForm (GR, S[i]), Id(

N) >;
EG strgeninvpreimgsnf[i] := <StrongGenNormalForm
(GR, S[i]"=1), Id(N)>;
end for;
125 EG pcgensnf := [];
for i in [1 .. #pcgens| do
EG pcgensnf[i] := <e[l], pcgens[i]>;
end for;

EG' phi := phi;
130  EG grpgens := EG strgenpreimgsnf cat EG pcgensnf;
EG supergrp := rec<PCBF | >;
return EG;
end function;

435

PCBFFPQuotConstruct := function(G, Q, rho, L, psi)

/*
440 Arguments:

G: Finitely presented group, Type(s): GrpFP
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Q: Quotient of E wvia rtho, Type(s): GrpPerm
445
rho: Natural map E —> Q, Type(s): Map
L: Quotient of ker(rho) wvia psi Type(s): GrpPC, GrpGPC

450 psi: Natural map ker(rho) —> L, Type(s): Map

Parameters:

455

Return Type(s):
Rec

460

Description :

Returns a record representing a PCBF-group isomorphic to
the extension of L by Q.

465

N :
// psi : ker(rho) —> L
470 EG := rec<PCBF | >,

EGE = G;
EG'L := L;
EG'Q = Q;
B := Base(Q);

a5 S := StrongGenerators(Q) ;
ReduceGenerators (~Q); // a nonredundant set of strong
generators 1s required
S := StrongGenerators(Q);
bo := BasicOrbits (Q);

sv := SchreierVectors (Q);
0  GR := GrpPermData(Q, B, S, sv, bo);
EG'GR := GR;
strgenpreimgs := (GR' S)@QQrho;
EG strgenpreimgs := strgenpreimgs;
m := #strgenpreimgs;
5 strgeninvpreimgs := {@Q}; // this set is needed in the case
where a strong generator has order 2
for i in [1 .. m] do

Include (~strgeninvpreimgs, (Order(S[i]) eq 2) select
strgenpreimgs [i] else strgenpreimgs[i] —1);
end for;
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EG strgeninvpreimgs := strgeninvpreimgs;

pcgens := PCGenerators(N);

r = #pcgens;

pcgenconjugates := [];

pcgenconjugatesinv = [];

for i in [1 .. m] do
pcgenconjugates[i] = [N | ];
pcgenconjugatesinv [i] = [N | ];
for j in [1 .. r] do

// computing conjugates of the j—th polycyclic generator

with the ith preimage of the strong generating set of @

and 1ts inverse

yim := (pcgens[]])@QQpsi;
pcgenconjugates[i][j] := psi(yim strgenpreimgs[i]); //
stored as an element of N
pcgenconjugatesinv[i][j] := psi(yim strgeninvpreimgs|[i]);
// stored as an element of N
end for;
end for;

1 := #GR'B; // number of elements in the stored base of the

quotient group
tail := GR tail;

tailinv := GR tailinv;

utail := GR utail;

utailinv := GR utailinv;

ho:= [];

g = [];

tailelts = [N | ];

taileltsinv := [N | ];

for i in [1 .. 1] do
orb := GR bo[i];

v := GR sv[i];
sg := GR sgindexlist [i];
for j in [1 .. #orb] do
pt = orb[j];
for k in [1 .. #sg] do

g = SVWordInv(Q, S, v, orb, pt);

if utail[i][j][k] ne O then
ipt := pt"S[sg[k]];
h := SVWordInv(Q, S, v, orb,

ipt);

ux := WordMultiply (strgenpreimgs, strgeninvpreimgs, g)

x strgenpreimgs|[sglk]];

th := WordMultiply (strgenpreimgs , strgeninvpreimgs,
tail[i][j][k]) * WordMultiply (strgenpreimgs ,

strgeninvpreimgs , h);
tailelts [utail [1][]j][k]] :=
end if;
if utailinv[i][]j][k] ne O then

psi((th"—=1) % ux);
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ipt = pt " (S[sglk]]"—1);

530 h := SVWordInv(Q, S, v, orb, ipt);
uxinv := WordMultiply (strgenpreimgs , strgeninvpreimgs,
g) % strgeninvpreimgs[sg[k]];
th := WordMultiply (strgenpreimgs, strgeninvpreimgs,

tailinv [1][j][k]) * WordMultiply (strgenpreimgs ,
strgeninvpreimgs , h);

taileltsinv [utailinv [i][j][k]] = psi((th"—1) % uxinv)
end if;
535 end for;
end for;
end for;
EG'N = N;
EG pcgens := pcgens;
s20 HG pcgenconjugates := pcgenconjugates;
EG pcgenconjugatesinv := pcgenconjugatesinv;
EG tailelts := tailelts;
EG taileltsinv := taileltsinv;

e := <StrongGenNormalForm (GR, Id(GR'G)), Id(N)>;
a5 BEG e = e;

EG ismaster := true;
EG strgenpreimgsnf := [];
EG' strgeninvpreimgsnf := [];
for i in [1 .. #GR'S] do
550 EG strgenpreimgsnf[i] := <StrongGenNormalForm (GR, S[i]), Id(
N) >;
EG strgeninvpreimgsnf[i] := <StrongGenNormalForm (GR, S[i
1), 1d(N)>;
end for;
EG pcgensnf = [];
for i in [1 .. #pcgens]| do
555 EG pcgensnf[i] := <e[l], pcgens[i]>;
end for;

EG' phi := IdentityHomomorphism (L) ;
EG grpgens := EG strgenpreimgsnf cat EG pcgensnf;
EG supergrp := rec<PCBF | >;
560 return EG;
end function;

PCBFGenerators := function (EG)

565

/*
Arguments:

570 EG: PCBF-group, Type(s): Rec
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Parameters:

575

Return Type(s):
SeqEnum

580
Description:

Returns a sequence containing a full generating set for EG.

585 */

return EG grpgens;
end function;

590

PCBFNgens := function (EG)
/*
595 Arguments:
EG: PCBF-group, Type(s): Rec

Parameters:

600
Return Type(s):

RngIntElt

605
Description :

Returns the number of defining generators for EG.

*/

610

return #G grpgens;
end function;

615

PCBFNumberOfGenerators := function (EG)
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/*

Arguments:

EG: PCBF-group, Type(s): Rec

Parameters:

Return Type(s):

RnglntElt

Description :

*/

Returns the number of defining generators for EG.

return PCBFNgens(EG) ;

end

function;

PCBFQuotGrp := function (EG)

/*

Arguments:

EG: PCBF-group, Type(s): Rec

Parameters:

Return Type(s):

GrpPerm

Description :

*/

Returns a permutation group isomorphic to the
used to construct EG.

quotient group
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return EG Q;
end function;

PCBFNormalSubgrp := function (EG)

/*
Arguments:

EG: PCBF-group, Type(s): Rec

Parameters:

Return Type(s):

GrpPC or GrpGPC

Description:

Returns a polycyclically presented group isomorphic to the
normal subgroup group wused to comnstruct EG.

*/

return EG'N;
end function;

PCBFSuperGrp := function (EG)

/*
Arguments:

EG: PCBF-group, Type(s): Rec

Parameters:

Return Type(s):

Rec
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Description :
Returns the PCBF-group from which EG was primarily derived.
*/

return EG ismaster select EG else EG supergrp;
end function;

PCBFGrpOrder := function (EG)

/*
Arguments:

EG: PCBF-group, Type(s): Rec

Parameters:

Return Type(s):

RngIntElt

Description :

Returns the order of the PCBF-group EG.

*/

return Order (PCBFQuotGrp(EG)) * Order (PCBFNormalSubgrp (EG) ) ;

end function;

PCBFIsFinite := function (EG)

/*
Arguments :

EG: PCBF-group, Type(s): Rec

Parameters:
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Return Type(s)

BoolElt

Description :

Returns true

*/

if and only if EG is finite.

return IsFinite (PCBFGrpOrder (EG)) ;

end function;

PCBFIsTrivial :=

/*

Arguments:

function (EG)

EG: PCBF-group, Type(s): Rec

Parameters:

Return Type(s)

BoolFElt

Description :

Returns true

*/

if and only if EG is trivial.

return PCBFGrpOrder (EG) eq 1;

end function;

PCBFIsSoluble :=

/*

function (EG)
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Arguments:

EG: PCBF-group, Type(s): Rec

Parameters:

Return Type(s):

BoolFEIlt

Description :

Returns true if and only

*/

if EG is

return IsSoluble (PCBFQuotGrp(EG) ) ;

end function;

PCBFIsSolvable := function (EG)

/*

Arguments :

EG: PCBF-group, Type(s): Rec

Parameters:

Return Type(s):

BoolElt

Description :
Returns true if and only
*/

return PCBFIsSoluble (EG) ;

end function;

if EG is

soluble .

soluble.
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860

PCBFCreateElement := function(EG, g, n)
/*
ses  Arguments:
EG: PCBF-group, Type(s): Rec
g: FElement of EG'Q, Type(s): GrpPermKElt

870

n: Element of EG'N, Type(s): GrpPCEIlt or GrpGPCEIt

Parameters:

875
Return Type(s):

Tup

880
Description :

Returns an ordered pair representing the element, (g, n),
885 of EG.

*/
GR := EG' GR;

soo  return <StrongGenNormalForm (GR, g), n>;
end function;

PCBFIdentity := function (EG)

895

/*
Arguments:

900 EG: PCBF-group, Type(s): Rec

Parameters:

905

Return Type(s):
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Tup

Description :

Returns the identity element of EG.

*/

return EG e;
end function;

PCBFId := function (EG)

/*
Arguments :

EG: PCBF-group ,

Parameters:

Return Type(s):

Tup

Description :

Returns the identity element of EG.

*/

Type(s): Rec

return PCBFIdentity (EG) ;

end function;

PCBFrho := function(EG, ele)

/*
Arguments:

EG: PCBF-group ,

Type(s): Rec
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ele: Element of EG, Type(s): Tup

Parameters:

Return Type(s):

GrpPermEIlt

Description :

Returns the image of the element ele of EG under the
natural map onto the quotient EG'Q.

*/

word = [];
for i in [#ele[l] .. 1 by —1] do
word cat:= ele[1][i]; // first entry specifies a word in the
strong generators of the quotient group
end for;

return WordPermutation (EG'GR, word) ;

end function;

PCBFphi := function (EG, ele)

/*
Arguments:
EG: PCBF-group, Type(s): Rec

ele: Element of EG, Type(s): Tup

Parameters:

Return Type(s):

GrpPCFEIlt or GrpGPCEIt

Description :
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Returns the second component of the ordered pair, ele. This
is NOT a homomorphism as no check is made to determine

1005 whether ele represents an element of the normal subgroup
used in the construction of EG.

*/

w10 return ele [2];
end function;

PCBFphiinv := function (EG, n)

/*

1015

Arguments :
1020 EG: PCBF-group, Type(s): Rec

ele: Element of EG'N, Type(s): GrpPCEIlt or GrpGPCEIt

1025 Parameters:

Return Type(s):

1030 Tup
Description :
1035 Returns image in EG of the element, n, of EG'N.

*/
return <PCBFId(EG) [1], n>;

1040 end function;

PCBFeq := function (EG, elel, ele2)

1045 />/<

Arguments:

EG: PCBF-group, Type(s): Rec
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elel: Element of EG, Type(s): Tup

ele2: Element of EG, Type(s): Tup

Parameters:

Return Type(s):

BoolFEIlt

Description :

Returns true if and only if elel and ele2 are equal in EG.
*/
return PCBFrho(EG, elel) eq PCBFrho(EG, ele2) and PCBFphi(EG,

elel) eq PCBFphi(EG, ele2);

end function;

PCBFne := function (EG, elel, ele2)

/*

Arguments:
EG: PCBF-group, Type(s): Rec
elel: Element of EG, Type(s): Tup

ele2: Element of EG, Type(s): Tup

Parameters:

Return Type(s):

BoolFElt

Description :
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Returns true if and only if elel and ele2 are not equal in

EG.

*/

return not PCBFeq(EG, elel, ele2);
end function;

PCBFIsldentity := function (EG, ele)

/*

Arguments:

EG: PCBF-group, Type(s): Rec

ele:

Element of EG, Type(s):

Parameters:

Return Type(s):

BoolFEIlt

Description :

Tup

Returns true if and only if ele

EG.

*/

is the

return PCBFeq(EG, ele, PCBFId(EG));

end function;

PCBFIsld

/*

:= function (EG, ele)

Arguments:

EG: PCBF-group, Type(s): Rec

ele:

Element of EG, Type(s):

Tup

identity element of
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1145

Parameters:

uso  Return Type(s):

BoolFEIlt

1155 Description:

Returns true if and only if ele is the identity element of
EG.

1160 */

return PCBFIsldentity (EG, ele);
end function;

1165

PCBFRandom := function (EG)

/*
uro  Arguments:

EG: PCBF-group, Type(s): Rec

1175 Parameters:

Return Type(s):

1180 Tup
Description :
1185 Generates a pseudo—random element of EG.

*/

g := Random (EG Q) ;
190 1 := Random(EG'N) ;
return PCBFCreateElement (EG, g, n);
end function;
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PCBFRandomElement

/*
Arguments:

EG: PCBF-group ,

Parameters:

Return Type(s):

Tup

Description :

Generates a pseudo—random element of EG.

*/

:= function (EG)

Type(s): Rec

return PCBFRandom (EG) ;

end function;

PCBFRandomSequence

/*
Arguments:

EG: PCBF-group ,

Parameters:

Return Type(s):

SeqEnum

Description :

:= function (EG,

Type(s): Rec

1)
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Generates a sequence (of length 1) of pseudo—random
elements of EG.

v/

1245

randseq := [car<PowerSequence(PowerSequence(IntegerRing())),
EG'N> |];
for i in [1 .. 1] do
Append (~randseq , PCBFRandom (EG) ) ;
end for;

1250 return randseq;
end function;

PCBFRepresentative := function (EG)

1255

/*
Arguments :

1260 EG: PCBF-group, Type(s): Rec

Parameters:

1265

Return Type(s):
Tup

1270
Description :

Returns a representative element of EG.

1275 x/

return PCBFId(EG) ;

end function;

1280

PCBFRep := function (EG)

/*
1285  Arguments:

EG: PCBF-group, Type(s): Rec
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1290 Parameters:

Return Type(s):

1295 Tup
Description:
1300 Returns a representative element of EG.

*/

return PCBFRepresentative (EG) ;
1305 end function;

Listing B.6: pcbfarithmetic.m

/%

File: pcbfarithmetic.m
5
Last modified: Fri, 07 Jan 2011 17:21:11 +0000
Author(s): Shavak Sinanan <S.K.Sinanan@Quwarwick. ac. uk>
10
Company : University of Warwick <http://wuww. warwick. ac.
uk>

15 Description :
The methods in this file are used to perform element arithmetic
n

polycyclic—by—finite groups represented by records of type PCBF.

20

Notes :

MAGMA V2.16—13.

25

Copyright 2006—2010, University of Warwick. All rights reserved.
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*/

30

load ”pcbfconstruct.m”;

forward PCBFConjugateByStrongGen, PCBFConjugateByStrongGenWord ;

35

PCBFMult := function (EG, elel, ele2)

40

45

50

55

60

65

70

/*

Arguments:
EG: PCBF-group, Type(s): Rec
elel: Element of EG, Type(s): Tup

ele2: Element of EG, Type(s): Tup

Parameters:

Return Type(s):

Tup

Description :
Computes the product, elel x ele2.
*/

GR := EG'GR;
if PCBFrho(EG, ele2) eq Id(GR'G) then

return <elel [1], elel [2] x ele2[2]>; //easy

end if;

u =[]

1 := #GR B;

g = Id(GR'G);

N := EG'N;

rightword = [];

for i in [#ele2[1] .. 1 by —1] do

rightword cat:= ele2 [1]]i];
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end for;

leftword := [];

nrightseq = [];

nrightseq[1] := elel [2];

for i in [2 .. 1] do
nrightseq[i] = Id(N);

end for;

for i in [1 .. 1] do

g = WordPermutation (GR, elel [1]][i]);
pt := GR'B[i] g;
while #rightword gt 0 do
j = Position (GR bo[i], pt);
nshift = Id(N);
if rightword[1] 1t 0 then
pt := GR'B[i] (g * (GR S[—rightword [1]]) "—1);
k := Position (GR sgindexlist[i], —rightword[1]);
leftword cat:= GR tailinv [i][j][k];
if GR utailinv[i][j][k] ne 0 then
nshift := EG taileltsinv [GR utailinv [i][j][k]];
end if;
else
pt := GR'B[i] (g * GR S[rightword [1]]) ;
k := Position(GR  sgindexlist[i], rightword[1]);
leftword cat:= GR tail[i][j][k];
if GR utail[i][]j][k] ne O then
nshift := EG tailelts [GR utail [i][j][k]];
end if;
end if;

nrightseq[i] := nshift *+ PCBFConjugateByStrongGen (EG,

nrightseq[i], rightword[1]);

g := SVPermutationlnv(GR'G, GR'S, GR' sv[i], GR bo[i], pt);

Remove(~rightword , 1);
end while;

ul[i] := StrongGenWord(GR, g);
rightword := leftword;
leftword := [];

end for;

n := Id(N);

for i in [1 .. 1 by —1] do

n := PCBFConjugateByStrongGenWord (EG, n, u[i]) * nrightseq]i

I
end for;
return <u, n * ele2[2]>;

end function;

PCBFConjugateByStrongGen := function(EG, n, i)
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/*
Arguments:
125 EG: PCBF-group, Type(s): Rec
n: Element of EG'N, Type(s): GrpPCEIlt or GrpGPCEIt
1: Integer representing a preimage of a strong generator of
130 the quotient group, EG'Q, Type(s): RnglIntElt
Parameters:

135

Return Type(s):
GrpPCEIlt or GrpGPCEIlt

140
Description :

Returns the conjugate of the element, n, by the element of
EG represented by 1.

*/

145

N := EG'N;

1f n eq Id(N) then return n; end if;
10 W = Eltseq(n)

ans := Id(N);

for j in [1 .. #w] do
ans *:= i gt 0 select EG pcgenconjugates[i]|[]j] w[]j] else EG
pcgenconjugatesinv|[—1i]|[j] w[j];
end for;
155 return ans;
end function;

PCBFConjugateByStrongGenWord := function (EG, n, word)

160

/*
Arguments:
165 EG: PCBF-group, Type(s): Rec

n: Element of EG'N, Type(s): GrpPCEIlt or GrpGPCEIlt
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word: Sequence of integers representing a word in the
preimages of the strong gemerators of the quotient group,
EG'Q, Type(s): SeqEnum

Parameters:

Return Type(s):

GrpPCFEIlt or GrpGPCEIt

Description :

Returns the conjugate of the element n by the element of EG
represented by word.

*/
ans := n;
for i in [1 .. #word] do
ans := PCBFConjugateByStrongGen (EG, ans, word[i]) ;
end for;

return ans;
end function;

PCBFMultiply := function(EG, elel, ele2)
/*
Arguments:
EG: PCBF-group, Type(s): Rec
elel: Element of EG, Type(s): Tup

ele2: Element of EG, Type(s): Tup

Parameters:

Return Type(s):

Tup
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Description :

Computes the product elel * ele2.
o/
return PCBFMult (EG, elel, ele2);

end function;

PCBFStar := function(EG, elel, ele2)
/*
Arguments :
EG: PCBF-group, Type(s): Rec
elel: Element of EG, Type(s): Tup

ele2: Element of EG, Type(s): Tup

Parameters:

Return Type(s):

Tup

Description :
Computes the product elel x* ele2.
*/
return PCBFMult (EG, elel, ele2);
end function;
PCBFWordMultiply := function (EG, posimgs, negimgs, word)

/*

Arguments:
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EG: PCBF-group, Type(s): Rec

posimgs: Sequence of ordered pairs representing elements of
EG, Type(s): SeqEnum

negimgs: Sequence of ordered pairs representing elements of
EG, Type(s): SeqEnum

word: Sequence of integers representing a word in the
elements indexed by posimgs and negimgs, Type(s): SeqEnum

Parameters:

Return Type(s):

Tup

Description :

Computes the product of the sequence of elements of EG
represented by word.

*/

ans := PCBFId(EG) ;
for i in [1 .. #word] do
ans := PCBFMult(EG, ans, word[i] gt 0 select posimgs|[word]|i
]] else negimgs[—word[i]]) ;
end for;
return ans;

end function;

PCBFrhoinv := function (EG, g)

/*
Arguments:
EG: PCBF-group, Type(s): Rec

g: FElement of EG'Q, Type(s): GrpPermKElt
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Parameters:

Return Type(s):

Tup

Description :

Returns an inverse of the element, g, of EG'Q under the

natural map from EG onto EG'Q.

*/

word := StrongGenWord (EG'GR, g);

return PCBFWordMultiply (EG, EG' strgenpreimgsnf , EG

strgeninvpreimgsnf , word);
end function;

PCBFrhoinvSeq := function (EG, elts)

/*
Arguments:

EG: PCBF-group, Type(s): Rec

elts: sequence of elements of EG Q,

Parameters:

Return Type(s):

SeqEnum

Description :

Returns a sequence of preimages in EG corresponding to the

elements in elts.

*/

return [PCBFrhoinv(EG, elts[i])

Type(s): SeqEnum
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end function;

PCBFInverse := function (EG, ele)
/*
Arguments :
EG: PCBF-group, Type(s): Rec

ele: Element of EG, Type(s): Tup

Parameters:

Return Type(s):

Tup

Description :
Computes ele "—1.
*/
elt := PCBFrhoinv(EG, PCBFrho(EG, ele) " —1); // ele % elt is an
element of the mnormal subgroup used to construct EG
return PCBFMult(EG, elt , PCBFphiinv(EG, PCBFphi(EG, PCBFMult(

EG, ele, elt)) " —1));
end function;

PCBFInv := function(EG, ele)
/*
Arguments:
EG: PCBF-group, Type(s): Rec

ele: Element of EG, Type(s): Tup

Parameters:
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Return Type(s):

Tup

Description :
Computes ele "—1.
v/
return PCBFInverse (EG, ele);

end function;

PCBFDivide := function (EG, elel, ele2)
/*
Arguments :
EG: PCBF-group, Type(s): Rec
elel: Element of EG, Type(s): Tup

ele2: Element of EG, Type(s): Tup

Parameters:

Return Type(s):

Tup

Description :

Computes elel x (ele2) "—1.

*/

return PCBFMult(EG, elel, PCBFInverse (EG,
end function;

PCBFSlash := function (EG, elel, ele2)

ele2));
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/*
155 Arguments:
EG: PCBF-group, Type(s): Rec
elel: Element of EG, Type(s): Tup

460

ele2: Element of EG, Type(s): Tup
Parameters:
465
Return Type(s):

Tup

470
Description :

Computes elel x* (ele2) "—1.

475
*/
return PCBFDivide (EG, elel, ele2);

end function;

480

PCBFConjugate := function (EG, elel, ele2)

/*
485
Arguments:
EG: PCBF-group, Type(s): Rec
490 elel: Element of EG, Type(s): Tup

ele2: Element of EG, Type(s): Tup

495 Parameters:

Return Type(s):
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500 Tup
Description :
505 Computes elel "ele2 = (ele2) "—1 * elel % ele2.
*/
return PCBFMult(EG, PCBFMult(EG, PCBFInverse(EG, ele2), elel),
ele2);

510 end function;

PCBFCommutator := function (EG, elel , ele2)

515 /*

Arguments :

EG: PCBF-group, Type(s): Rec
520

elel: Element of EG, Type(s): Tup
ele2: Element of EG, Type(s): Tup

525
Parameters:

Return Type(s):
530

Tup

Description :

535

Computes (elel, ele2) = elel"—1 x (ele2)"—1 x elel x* ele2.

*/

ss0  return PCBFMult (EG, PCBFConjugate (EG, PCBFInverse (EG, ele2),
elel), ele2);
end function;

function PCBFSeqCommutator (EG, elts)

545



550

555

560

565

570

575

580

585

590

B. Program Listing

171

/*
Arguments:
EG: PCBF-group, Type(s): Rec

elts: Sequence of elements of EG, Type(s): SeqEnum

Parameters:

Return Type(s):

Tup

Description :

Computes the (left—normed) commutator of the elements in

elts .

*/

n = #elts;
if n eq 2 then
// base case n = 2
return PCBFCommutator (EG, elts[1], elts[2]);
end if;
// recurse here
return PCBFCommutator (EG, PCBFSeqCommutator (EG, elts[1
1]), elts[n])

end function;

PCBFPower := function (EG, ele, exp)

/*
Arguments:
EG: PCBF-group, Type(s): Rec
ele: Element of EG, Type(s): Tup

exp: Integer, Type(s): RnglntElt
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Parameters:

Return Type(s):

Tup

Description :

Computes ele "exp.

*/

if exp 1t 0 then
ele := PCBFInverse (EG, ele);
exp = —exp;
end if;
ans := PCBFIdentity (EG);
while exp gt 0 do
if IsOdd(exp) then
ans := PCBFMult(EG, ans, ele);
end if;
exp := exp div 2;
ele := PCBFMult(EG, ele, ele);
end while;
return ans;

end function;

PCBFEleOrder := function(EG, ele)

/*
Arguments:

EG: PCBF-group, Type(s): Rec

ele: Element of EG, Type(s): Tup

Parameters:

Return Type(s):

RngIntElt
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640
Description :

Computes the or

645 */

der of ele.

quotord := Order (PCBFrho(EG, ele));

return quotord =

)) s

end function;

Order (PCBFphi(EG, PCBFPower(EG, ele, quotord)

Listing B.7: pcbfcattrans.m

v /*

File :

¢ Last modified:

Author(s):

11
Company :
uk>

Description :
16

The methods in this
finite groups
represented by reco
representation S p

21

Notes :

MAGMA V2.16—13.

26

Copyright 2006—2010

*/

31

pcbfcattrans.m

Fri, 07 Jan 2011 17:21:11 +0000

Shavak Sinanan <S.K. SinananQuwarwick. ac. uk>

University of Warwick <http://wuww. warwick. ac.

file are used to rewrite polycyclic—by—

rds of type PCBF as GrpPC or GrpGPC if such a
ossible .

, University of Warwick. All rights reserved.

load ”pcbfarithmetic.m”;
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PCBFPolycyclicGroup := function (EG)

/*
Arguments :

EG: PCBF-group, Type(s): Rec

Parameters:

Return Type(s):

GrpPC or GrpGPC, Tup

Description :

Returns a group of type GrpPC or GrpGPC isomorphic to EG.
Data used to compute the isomorphism and its inverse 1is
returned as a second argument.

*/

// more rigorous testing to be done!

Q, kappa := PCGroup(PCBFQuotGrp(EG)); // kappa: EG'Q —> @
N := PCBFNormalSubgrp(EG); // N is of type GrpPC or GrpGPC
isgrppc := Type(N) eq GrpPC;

a := PCGenerators(Q);

b := PCGenerators(N);

pcgenpreimgs := [PCBFrhoinv(EG, a[i]@Qkappa) : i in [1 .. #a]]

cat [PCBFphiinv(EG, b[i]) : i in [1 .. #b]];
pclength = #a + #b;
F := FreeGroup(pclength);

c ;= {@F.i : i in [1 .. pclength] @Q}; // rank is finite so
this is ok

powerrelations := []; // power relations for new polycyclic
presentation

conjugaterelations := []; // conjugate relations for new

polycyclic presentation
p = [];
if Order(Q) gt 1 then
p := PCPrimes(Q) ;
end if;
m := isgrppc select PCPrimes(N) else PCExponents(N);
m := p cat m;
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for j in [1 .. #a] do
// the power and conjugate relations for the pc—generators
of the permutation group are computed in this loop
// isomorphic copies of the polycyclic relations for the
normal subgroup are added to R, along with the additional
conjugation relations
// power relations
rel i= c[j]m[j] = 1d(F);
rhs := PCBFPower(EG, pcgenpreimgs|[j], m[j]);
for i in [j + 1 .. #a] do
alpha := Eltseq (kappa(PCBFrho(EG, rhs)))[i];
rel := LHS(rel) = RHS(rel) % c[i]" alpha;
rhs := PCBFMult(EG, PCBFPower(EG, pcgenpreimgs|[i], —alpha)
, Ths);
end for;
eleseq := Eltseq(PCBFphi(EG, rhs));
for i in [Max(j, #a) + 1 .. pclength] do
rel := LHS(rel) = RHS(rel) * c[i] eleseq[i — #a];
end for;
Append (~powerrelations , rel);
// conjugate relations
for i in [1 .. j — 1] do
rel := c[j] c[i] = Id(F);
rhs := PCBFConjugate(EG, pcgenpreimgs[j], pcgenpreimgs|[i])
for k in [i + 1 .. #a] do
alpha := Eltseq (kappa(PCBFrho(EG, rhs)))[k];
rel := LHS(rel) = RHS(rel) % c[k] alpha;
rhs := PCBFMult(EG, PCBFPower(EG, pcgenpreimgs[k], —
alpha), rhs);
end for;
eleseq := Eltseq (PCBFphi(EG, rhs));
for k in [Max(i, #a) + 1 .. pclength] do
rel := LHS(rel) = RHS(rel) % c[k] eleseq[k — #a];

end for;
Append (~conjugaterelations , rel);
end for;
end for;
for j in [#a + 1 .. pclength] do

// the power and conjugate relations for the normal subgroup
generators are computed in this loop
// isomorphic copies of the polycyclic relations for the
normal subgroup are added to R, along with the additional
conjugation relations
// power relations
if m[j] ne 0 then
vel = c[j]'m[j] = Id(F);
eleseq := Eltseq(b[j — #a] ' m[j]);
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for i in [j + 1 .. pclength] do
rel := LHS(rel) = RHS(rel) % c[i] eleseq[i — #a];
end for;
Append (~powerrelations , rel);
end if;
for i in [1 .. #a] do
rel := c¢[j] c[i] = Id(F);

rhs := PCBFConjugate(EG, pcgenpreimgs[j], pcgenpreimgs[i])
for k in [i + 1 .. #a] do
alpha := Eltseq (kappa(PCBFrho(EG, rhs)))[k];
rel := LHS(rel) = RHS(rel) % c[k]" alpha;
rhs := PCBFMult(EG, PCBFPower(EG, pcgenpreimgs|k], —
alpha), rhs);

end for;
eleseq := Eltseq(PCBFphi(EG, rhs));
for k in [#a + 1 .. pclength] do
rel := LHS(rel) = RHS(rel) % c[k]  eleseq[k — #a];
end for;
Append (~conjugaterelations , rel);
end for;
for i in [#a + 1 j — 1] do
rel := c[j] c[i] = Id(F);
eleseq := Eltseq(b[j — #a] " b[i — #a]);
for k in [i + 1 .. pclength] do
rel := LHS(rel) = RHS(rel) % c[k] eleseq[k — #a];
end for;

<Append(~conjugaterelations , rel);
if m[i] eq 0 then

rel i= c[j]"(c[i] =1) = 1d(F);
eleseq := Eltseq(b[j] — #a] (b[i — #a] " —1));
for k in [i + 1 .. pclengt | do
rel := LHS(rel) = RHS(rel) * c[k| eleseq|[k — #a];
end for;
Append (~conjugaterelations , rel);
end if;
end for;
end for;
R := powerrelations cat conjugaterelations;
if isgrppc then
H, _ := quo<GrpPC : F | R>;
else
H, _ := quo<GrpGPC : F | R >;
end if;

return H, <kappa, pcgenpreimgs>; // the isomorphism kappa is
needed to compute the isomorphisms between EG and the new
polycyclic group
end function;
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161
PCBFPolycycliciso := function(EG, P, pcisodata, ele)
/*
Arguments:
EG: PCBF-group, Type(s): Rec

171 P: Polycyclic group isomorphic to EG, Type(s): GrpPC or
GrpGPC

pcisodata: Data to compute isomorphism, Type(s): Tup

176 ele: Element of EG, Type(s): Tup

Parameters:

181

Return Type(s):
GrpPCEIlt or GrpGPCEIlt

186

Description :

Computes the image of ele (in the polycyclic group
isomorphic to EG) as defined by pcisodata.

191

*/
kappa := pcisodata [1];
Q := Codomain (kappa) ;
196  pcgenpreimgs := pcisodata [2];
alpha := [];
t = 0;

if Order(Q) gt 1 then

t = #Eltseq(1d(Q));
200 end if;

for i in [1 .. t] do
alpha[i] := Eltseq (kappa(PCBFrho(EG, ele)))[i];
ele := PCBFMult(EG, PCBFPower(EG, pcgenpreimgs[i], —alphali
]), ele);
end for;

200 alpha cat:= Eltseq(PCBFphi(EG, ele));
return P ! alpha;
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end function;

211 PCBFPolycyclicisoSeq := function (EG, P, pcisodata, elts)

/*

Arguments :

216

EG: PCBF-group, Type(s): Rec

P: Polycyclic group isomorphic to EG, Type(s): GrpPC or
GrpGPC
221

pcisodata: Data to compute isomorphism, Type(s): Tup
elts: Sequence of elements of EG, Type(s): SeqEnum

226

Parameters:

Return Type(s):
231

SeqEnum

Description :
236
Returns a sequence of the respective images (in P) of each
element of elts.

*/
return [PCBFPolycycliciso(EG, P, pcisodata, elts[i]) : i in [1

.. #elts |];

end function;

241

216 PCBFPolycyclicisoinv := function (EG, pcisodata, y)

/*
Arguments:
251

EG: PCBF-group, Type(s): Rec

pcisodata: Data to compute isomorphism, Type(s): Tup
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y: FElement of identified polycyclic group isomorphic to EG,
Type(s): GrpPCEIlt or GrpGPCEIt

Parameters:

Return Type(s):

Tup

Description :

Computes the image of y in EG as defined by pcisodata.

*/

ans := PCBFId(EG) ;
alpha := Eltseq(y);
for i in [1 .. #alpha] do
ans := PCBFMult(EG, ans, PCBFPower(EG, pcisodata[2][i],
alpha[i]));
end for;
return ans;

end function;

PCBFPolycyclicisoinvSeq := function(EG, pcisodata, pcelts)

/*
Arguments:
EG: PCBF-group, Type(s): Rec
pcisodata: Data to compute isomorphism, Type(s): Tup
y: Sequence of elements of the polycyclic group isomorphic
to EG, Type(s): SeqEnum

Parameters:

Return Type(s):
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SeqEnum

Description :
306
Returns a sequence of the respective images (in EG) of each
element of y.

*/
311

return [PCBFPolycyclicisoinv (EG, pcisodata, pcelts[i]) : i in

[1 .. #pcelts]];
end function;

Listing B.8: pcbfschreiersims.m

/*

File : pcbfschreiersims.m
Last modified: Sun, 06 Feb 2011 22:14:18 +0000
7
Author(s): Shavak Sinanan <S.K.SinananQwarwick. ac.uk>
12 Company : University of Warwick <http://wuww. warwick. ac.
uk>

Description :
17 The methods in this file allow one to work with the permutation
action
(induced by the quotient group) of a polycyclic—by—finite group
represented
by a record of type PCBF.

22 Notes:

MAGMA V2.16—13.

27 Copyright 2006—2010, University of Warwick. All rights reserved.

*/
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32 load ”pcbfcattrans.m’;

PCBFQuotAction := function (EG, alpha, ele)
ar
Arguments:
EG: PCBF-group, Type(s): Rec
: alpha: Element of the set upon which EG'Q acts, Type(s):
Elt

ele: Element of EG, Type(s): Tup

47

Parameters:

52 Return Type(s):

Elt

57 Description :

Computes the action of the first component of ele on the
point alpha.

62 */

word = [];
S := EGGR'S;
for i in [#ele[l] .. 1 by —1] do
67 word cat:= ele[1][i];
end for;
gamma := alpha;
for i in [1 .. #word]| do
gamma := word[i] gt 0 select gamma (S[word[i]]) else gamma

“((S[=word[i]]) "=1);
72 end for;
return gamma;
end function;

77 PCBFQuotOrbit := function (EG, alpha, X)
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/*
Arguments:
EG: PCBF-group, Type(s): Rec

alpha: Element of the set upon which EG'Q acts, Type(s):
Elt

X: Sequence of ordered pairs representing elements of EG,
Type(s): SeqEnum

Parameters:

Return Type(s):

SeqEnum, SeqEnum

Description :

Computes the orbit of the point alpha under the action of
X . The function returns the orbit and a Schreier
vector

corresponding to the orbit with indering relative to the

set X.

*/

r = #X;
v o= [0];
orb := [alpha];
orbsize := 1;
c = 1;
while ¢ le orbsize do
pt := orb[c];
for i in [1 .. r]| do

ppt := PCBFQuotAction(EG, pt, X[i]);
if ppt notin orb then
Append (~orb, ppt);
orbsize +:= 1;
v[orbsize] = 1i;
end if;
end for;
c +:= 1;
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end while;
return v, orb;
127 end function;

PCBFQuotSVWordInv := function (EG, Ypos, Yneg, v, orb, pt)

132 /’k
Arguments :

EG: PCBF-group, Type(s): Rec
137

Ypos: Sequence of ordered pairs representing elements of
EG, Type(s): SeqEnum

Yneg: Sequence of ordered pairs representing elements of
142 EG, Type(s): SeqEnum

v: Sequence of integers representing a Schreier wvector
(with indexing relative to Ypos and Yneg), Type(s): SeqEnum

147 orb: Sequence containing ezxactly the orbit of orb[1] under
Y, Type(s): SeqEnum

pt: Element of the set upon which EG'Q acts, Type(s): FElt

152

Parameters:

Return Type(s):
157

SeqEnum

Description :
162
Returns inverse of what PCBFQuotSVWord should return, as an
integer sequence i.e. a word in strong generators taking
base point to pt as defined by the Schreier vector v.

wr o/

pos := Position (orb, pt);
r := v[pos];
w o= [];

172 while r ne 0 do
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Append (~w, —1);
y := r gt 0 select PCBFInverse(EG, Ypos[r]|) else Yneg[—r];
pt := PCBFQuotAction(EG, pt, y);
pos := Position (orb, pt);
r := v[pos];

end while;

return WordInverse (w) ;

end function;

PCBFQuotSVElement := function(EG, Ypos, Yneg, v, orb, pt)
/*
Arguments:
EG: PCBF-group, Type(s): Rec

Ypos: Sequence of ordered pairs representing elements of
EG, Type(s): SeqEnum

Yneg: Sequence of ordered pairs representing elements of
EG, Type(s): SeqEnum

v: Sequence of integers representing a Schreier vector
(with indexing relative to Ypos and Yneg), Type(s): SeqEnum

orb: Sequence containing exactly the orbit of orb[1] under
Y, Type(s): SeqEnum

pt: FElement of the set upon which EG'Q acts, Type(s): Elt

Parameters:

Return Type(s):

Tup

Description :

Returns the element of EG in normal form taking pt to base
point as defined by the Schreier vector v.

*/
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pos := Position (orb, pt);
222 T := v[pos];
u := PCBFId(EG) ;
y := PCBFId(EG) ;
while r ne 0 do
y := r gt 0 select PCBFInverse(EG, Ypos[r]) else Yneg[—r];

207 u := PCBFMult(EG, u, y);
pt := PCBFQuotAction(EG, pt, y);
pos := Position (orb, pt);
r := v[pos];

end while;
232 return u;
end function;

PCBFQuotSVElementInv := function (EG, Ypos, Yneg, v, orb, pt)
/*
Arguments:
242 EG: PCBF-group, Type(s): Rec

Ypos: Sequence of ordered pairs representing elements of
EG, Type(s): SeqEnum

247 Yneg: Sequence of ordered pairs representing elements of
EG, Type(s): SeqEnum

v: Sequence of integers representing a Schreier vector
(with indezxing relative to Ypos and Yneg), Type(s): SeqEnum
252

orb: Sequence containing exactly the orbit of orb[1] under
Y, Type(s): SeqEnum

pt: FElement of the set upon which EG'Q acts, Type(s): Elt

257

Parameters:

262 Return Type(s):

Tup

267 Description :
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Returns the element of EG in normal form taking base point
to pt as defined by the Schreier wvector wv.

*/
return PCBFInverse (EG, PCBFQuotSVElement (EG, Ypos, Yneg, v,
orb, pt));
end function;
PCBFQuotStrip := function (EG, ele, B, S, Sinv, sv, bo)
/*
Arguments:
EG: PCBF-group, Type(s): Rec
ele: Element of EG, Type(s): Tup
B: Base of EG'Q, Type(s): SeqEnum

S: 2-D sequence of ordered pairs representing elements of
EG, Type(s): SeqEnum

Sinv: 2-D sequence of ordered pairs representing elements
of EG, Type(s): SeqEnum

sv: Sequence of integer sequences each representing a
Schreier vector (with indexing relative to the sequences of
S and Sinv), Type(s): SeqEnum

bo: Sequence containing exactly the orbits of each base
point under S, Type(s): SeqEnum

Parameters:

Return Type(s):

Tup, RnglntElt

Description :

Strips the element ele as if it were an element of the
quotient permutation group wusing the “base” B and "strong
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generating set” represented by the indexed set S.

317

*/

// bol[i] is the i—th basic orbit, and sv[i] is the Schreier
vector corresponding to this orbit and the generating set
specified by S[i]

h := ele;
322 1 .= #B;
for i in [1 .. 1] do

// h fizes base points B[1], B[2], ..., B[i —1]
pt := PCBFQuotAction(EG, B[i], h);
if pt notin bo[i] then

327 return h, i;
end if;
u := PCBFQuotSVElement (EG, S[i], Sinv[i], sv[i], bo[i], pt);
b := PCBFMult(EG, h, u);

end for;
332 return h, 1 + 1;
end function;

PCBFDepth := function (EG, B, ele)

337

/*
Arguments:
342 EG: PCBF-group, Type(s): Rec
B: Sequence of elements of EG'GR natset, Type(s): SeqEnum

ele: Element of EG, Type(s): Tup

347

Parameters:

352 Return Type(s):

RngIntFElt

357 Description :

Returns the integer k such that ele fizes B[1], B[2], ...,
B[k — 1] and moves B[k].
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se2 */

for k in [1 .. #B] do
if PCBFQuotAction(EG, B[k], ele) ne B[k] then return k; end
if;
end for;
37 return #B + 1;
end function;

PCBFFindNewBasePoint := function (EG, Omega, ele)

372

/*
Arguments:
377 EG: PCBF-group, Type(s): Rec

Omega: Non—empty sequence of elements of EG'GR natset
containing a base for EG'GR'G, Type(s): SeqEnum

382 ele: FElement of FG with non—trivial first component,
Type(s): Tup

Parameters:

387
Return Type(s):

Elt

392
Description :

Returns a point in Omega that is moved by ele.

397

*/

i = 1;
while PCBFQuotAction (EG, Omega[i], ele) eq Omegal[i] do
102 i +:= 1;
end while;
return Omega|i];
end function;

407

PCBFStandardSchreierSims := function (EG, gens)
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/*
a2 Arguments:
EG: PCBF-group, Type(s): Rec

gens: Sequence of ordered pairs representing elements of
17 EG, Type(s): SeqEnum

Parameters:

422

Return Type(s):
SeqEnum, SetIndxz, SeqEnum

427
Description :
Returns a "base” and ”"strong generating set” for the
subgroup of EG generated by gens, together with a
432 generating sequence for the intersection of this subgroup
with the image of EG'N in EG.

*/

wr B = []; // new base
Omega = EG GR B;
G := EG'GR G;

k := 0;
S = [I;
442 Sinv := [];
bo = [];
sv = [];
strippedgens := [];
mixedgens := [];
w7 for 1 in [1 .. #gens] do
if PCBFrho(EG, gens[i]) ne Id(G) then
Append (~mixedgens, gens[i]);
elif not PCBFIsId(EG, gens[i]) then
Append (~strippedgens , gens[i]);
452 end if;
end for;
strippedgensinv := [PCBFInv(EG, x) : x in strippedgens];
depth = [];

for i in [1 .. #mixedgens]| do
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dept

h[i] := PCBFDepth(EG, B, mixedgens[i]);

if depth[i] eq k + 1 then
Append (~B, PCBFFindNewBasePoint (EG, Omega, mixedgens|[i]));

k +:= 1;
end if;
end for;
for i in [1 .. k] do
S[i] := [mixedgens[j] : j in [1 .. #mixedgens] | depth[j] ge
1]
Sinv[i] := [PCBFInv(EG, x) : x in S[i]];
S[i] cat:= strippedgens;
Sinv[i] cat:= strippedgensinv;
sv[i], bo[i] := PCBFQuotOrbit(EG, B[i], S[i]);
end for;
NH := sub<EG'N | [PCBFphi(EG, x) : x in strippedgens]|>;
i = k;
uptodate := true;
while i ge 1 do
for pt in bo[i] do
ul := PCBFQuotSVElementInv(EG, S[i], Sinv][i], sv[i], bo[i
]7 pt);
for x in S[i] do

pt2 := PCBFQuotAction(EG, pt, x);

u2 := PCBFQuotSVElement (EG, S[i], Sinv[i], sv[i], bo[i],

pt2);
ele := PCBFMult(EG, PCBFMult(EG, ul, x), u2);
if PCBFIsId(EG, ele) then continue x; end if;
uptodate := true;
ele, j := PCBFQuotStrip(EG, ele, B, S, Sinv, sv, bo);
if PCBFrho(EG, ele) ne Id(G) then
// new strong generator at level j
uptodate := false;
if j gt k then
// extend base
Append (~B, PCBFFindNewBasePoint (EG, Omega, ele));

k +:= 1;
S[k] := strippedgens; // maintain inclusion
Sinv [k] := strippedgensinv; // maintain inclusion
end if;
elif PCBFphi(EG, ele) notin NH then
uptodate := false;

Append (~strippedgens , ele);
Append (~strippedgensinv , PCBFInv(EG, ele));
NH := sub<EG'N | NH, PCBFphi(EG, ele)>;
b=k

end if;

if not uptodate then
for t in [i 4+ 1 .. j] do
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502 Append (~S[t], ele);
Append (~Sinv [t ], PCBFInv(EG, ele));
sv[t], bo[t] := PCBFQuotOrbit(EG, B[t], S[t]);
end for;
i =3j 4+ 1;
507 break pt;
end if;
end for;
end for;
i —= 1;
si2 end while;
SGS := {@a};
for i in [1 .. #S] do
for j in [1 .. #S][i]] do
if PCBFrho(EG, S[i]|[j]) ne Id(G) then
517 Include (~SGS, S[i][j]);
end if;
end for;
end for;
return B, SGS, Generators (NH);
522 end function;

PCBFNCLSchreierSims := function (EG, gens)
521 /%
Arguments :
EG: PCBF-group, Type(s): Rec
532

gens: Sequence of ordered pairs representing elements of
EG, Type(s): SeqEnum

537 Parameters:

Return Type(s):

542 SetIndx , SeqEnum
Description :
547 Returns a "base” and ”"strong generating set” for the

subgroup of EG generated by gens, together with a
generating sequence for the intersection of this subgroup
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with the image of EG'N in EG.

*/

B := []; // new base
Omega = EG GR B;
G := EG'GR G;
k := 0;
S = [];
Sinv :=
bo = [];
sv = [];
depth = [];
strippedgens := [];
mixedgens = [];
for i in [1 .. #gens]| do

if PCBFrho(EG, gens[i]) ne Id(G) then

(G)
Append (~mixedgens, gens|[i]);
elif not PCBFIsId(EG, gens|[i])
[1

"-—-O

[1;

then
Append (~strippedgens , gens[i]);
end if;
end for;
depth = [];
for i in [1 .. #mixedgens| do
depth[ | := PCBFDepth(EG, B, mixedgens|[i]) ;
if depth[i] eq k + 1 then
Append (~B, PCBFFindNewBasePoint (EG, Omega, mixedgens[i]));
k +:= 1;
end if;
end for;
for i in [1 .. k] do
S[i] := [mixedgens[j] : j in [1 .. #mixedgens] | depth[j] ge
i];
Slnv[l] [PCBFInv(EG, x) : x in S[i]];
v[i], b [1] := PCBFQuotOrbit (EG, B[i], S[i]);
end for;
i = k;

while i ge 1 do
for pt in bo[i] do
ul := PCBFQuotSVElementInv(EG, S[i], Sinv][i], sv[i], bo[i
], pt);
for x in S[i] do
pt2 := PCBFQuotAction(EG, pt, x);
u2 := PCBFQuotSVElement (EG, S[i], Sinv[i], sv[i], bo[i],
pt2);
ele := PCBFMult(EG, PCBFMult(EG, ul, x), u2);
if PCBFIsId(EG, ele) then continue x; end if;
ele, j := PCBFQuotStrip(EG, ele, B, S, Sinv, sv, bo);
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if PCBFrho(EG, ele) ne Id(G) then
// new strong generator at level j
if j gt k then
// extend base

Append (~B, PCBFFindNewBasePoint (EG, Omega, ele));

for t in [i 4+ 1 .. j] do
Append (~S[t], ele);
Append (~Sinv [t], PCBFInv(EG, ele));

sv[t], bo[t] := PCBFQuotOrbit(EG, B[t], S[t]);
end for;
i =3+ 1;
break pt;

elif not PCBFIsId(EG, ele) then
Include (~strippedgens , ele);
end if;
end for;
end for;
i —= 1;
end while;
SGS := {@a};
for i in [1 .. #S] do
for j in [1 .. #S[i]] do
Include (~SGS, S[i][j]):
end for;
end for;
// find normal closure of strippedgens in the subgroup
generated by gens

NHgens := [PCBFphi(EG, x) : x in strippedgens];
NH := sub<EG'N | NHgens>;
closurefound := false;

while not closurefound do
for a in NHgens do
for ele in mixedgens do
apreimg := PCBFphiinv(EG, a);

newconj := PCBFphi(EG, PCBFConjugate(EG, apreimg, ele));

if newconj notin NH then
NH := sub<EG'N | NH, newconj>;
end if;
end for;

end for;
closurefound := true;
NHgens := Generators (NH);
// test to see if mormal closure has been found
for a in NHgens do
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for ele in mixedgens do
apreimg := PCBFphiinv(EG, a);
newconj := PCBFphi(EG, PCBFConjugate (EG, apreimg, ele));
if newconj notin NH then
// conjugates still missing
closurefound := false;
break a;
end if;
end for;
end for;
end while;
return B, SGS, NHgens;
end function;

PCBFNCLKeepBaseSchreierSims := function (EG, gens)
/*
Arguments:
EG: PCBF-group, Type(s): Rec

gens: Sequence of ordered pairs representing elements of
EG, Type(s): SeqEnum

Parameters:

Return Type(s):

Setindx , SeqEnum

Description :

Returns a “base” and ”strong generating set” for the
subgroup of EG generated by gens, together with a
generating sequence for the intersection of this subgroup
with the image of EG'N in EG. The base returned is the same
as that for EG'GR'G.

B := EG'GR'B; // base to be used in Schreier—Sims procedure
G := EG'GR G;
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k := #B; // this does not change as it is known that no

element of EG (with nontrivial first

the elements of B
S = [];
Sinv = [];
bo = [];
sv = [];
strippedgens := [];
mixedgens := [];
depth = [];
for i in [1 .. #gens] do

if PCBFrho(EG, gens[i]) ne Id(G) then
Append (~mixedgens, gens[i]);

entry) can fix all of

depth[#mixedgens] := PCBFDepth(EG, B, gens[i]);
elif not PCBFIsId(EG, gens[i]) then
Append (~strippedgens , gens[i]);
end if;
end for;
for i in [1 .. k] do
S[i] := [mixedgens[j] : j in [1 .. #mixedgens] | depth[]j] ge
i
Slnv[l] [PCBFInv(EG, x) : x in S[i]];
v[i], b [1] := PCBFQuotOrbit (EG, B[i], S[i]);
end for;
i = k;
while i ge 1 do
for pt in bo[i] do
ul := PCBFInverse(EG, PCBFQuotSVElement(EG, S[i], Sinv[i],
sv[i], boli], pt));
for x in S[i] do

pt2 := PCBFQuotAction(EG, pt, x);

u2 := PCBFQuotSVElement (EG, S[i], Sinv][i], sv[i], bo[i],

pt2);
ele := PCBFMult(EG, PCBFMult(EG, ul, x), u2);
if PCBFIsId(EG, ele) then continue x; end if;
ele, j := PCBFQuotStrip(EG, ele, B, S, Sinv, sv, bo);
if j le k then
// new strong generator ele at level j
for t in [i 4+ 1 .. j] do

Append (~S[t], ele);

Append (~Sinv [t ], PCBFInv(EG, ele));

sv[t], bo[t] := PCBFQuotOrbit(EG, B[t], S[t]);
end for;
i =3+ 1;
break pt;

elif not PCBFIsId(EG, ele) then
Include (~strippedgens , ele);
end if;
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732 end for;
end for;
i —= 1;
end while;
SGS := {@a};
37 for 1 in [1 .. #S] do
for j in [1 .. #S][i]] do
Include (~SGS, S[i][j]);
end for;
end for;
722 NHgens := [PCBFphi(EG, x) : x in strippedgens];
NH := sub<EG'N | NHgens>;
// find normal closure of NH in subgroup generated by gens
closurefound := false;
while not closurefound do
747 for a in NHgens do
for ele in mixedgens do
apreimg := PCBFphiinv(EG, a);
newconj := PCBFphi(EG, PCBFConjugate(EG, apreimg, ele));
if newconj notin NH then

752 NH := sub<EG'N | NH, newconj>;
end if;
end for;
end for;
closurefound := true;
757 NHgens := Generators (NH);

// test to see if mormal closure has been found
for a in NHgens do
for ele in mixedgens do
apreimg := PCBFphiinv(EG, a);
762 newconj := PCBFphi(EG, PCBFConjugate (EG, apreimg, ele));
if newconj notin NH then
// conjugates still missing
closurefound := false;
break a;
767 end if;
end for;
end for;
end while;
return B, SGS, NHgens;
772 end function;

PCBFsubBasicOrbits := function(EG, B, S)

T />/<

Arguments:
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EG: PCBF-group, Type(s): Rec

B: Base of the corresponding quotient group of the subgroup
of EG generated by S, Type(s): SeqEnum

S: Sequence of ordered pairs representing elements of EG,
Type(s): SetIndx

Parameters:

Return Type(s):

SeqEnum, SeqEnum

Description :

Computes the basic orbits and Schreier wvectors
(relative to B and S) of the corresponding quotient group

of the subgroup of EG generated by S. This function is no
longer used.

*/

1 = #B;
if 1 eq 0 then return [], []; end if;
m = #S;
X := Isetseq(S);
rhoX := [PCBFrho(EG, X[i]) : i in [1 .. m]];
Gsub := sub<EG'GR'G | rhoX>;
sv = [];
bo = [];
bs := [Stabiliser (Gsub, B[1 .. i — 1]) : i in [1 .. 1]];
sv[1l], bo[l] := PCBFQuotOrbit(EG, B[1], X);
for i in [2 .. 1] do
indexmap := [k : k in [1 .. m] | rhoX[k] in bs[i]];

sv[i], bo[i] := PCBFQuotOrbit(EG, B[i], X[indexmap]) ;
for j in [2 .. #sv[i]] do
sv[i][j] i= indexmap [sv[i][j]];
end for;
end for;
return sv, bo;
end function;

Listing B.9: pcbfsubgroup.m
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/*

File: pcbfsubgroup .m
5
Last modified: Sun, 06 Feb 2011 22:14:18 +0000
Author(s): Shavak Sinanan <S.K.SinananQ@Quwarwick. ac. uk>
10
Company : University of Warwick <http://www. warwick. ac.
uk>

15 Description :

The methods in this file are used to construct subgroups of
polycyclic—by—finite groups represented by records of type PCBF.

20

Notes :

MAGMA V2.16—13.

25

Copyright 2006—2010, University of Warwick. All rights reserved.

*/

30

BATCHSIZE := 10;

load ”"pcbfschreiersims.m”;
)

35

forward PCBFiotaSeq, PCBFiota, PCBFiotainv,
PCBFCleanGeneratingSet , PCBFsubConstruct;

20 function PCBFsub(EG, gens)

/*

Arguments:
45

EG: PCBF-group, Type(s): Rec
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gens: Sequence of ordered pairs representing elements of
EG, Type(s): SeqEnum or SetIndz

Parameters:

Return Type(s):

Rec

Description :

Returns a PCBF record representing the subgroup of EG
generated by the elements in gens.

*/

if not EG ismaster then
// subgroups are only constructed as subgroups of a master
group
gens := PCBFiotaSeq(EG, gens);
EG := EG supergrp; // master group
return PCBFsub(EG, gens);
end if;
gens := PCBFCleanGeneratingSet (EG, gens);
B, SGS, LHgens := PCBFNCLSchreierSims (EG, gens):;
sgseq := Isetseq (SGS);
sgseq, pointer := PCBFCleanGeneratingSet (EG, sgseq);
if pointer le #sgseq then
LHgens cat:= sgseq|[pointer .. #sgseq];
end if;
strgenpreimgs := {@Q}; // indexed set to correspond with
definiton
S := {@a}; // indexed set to correspond with record definition
for i in [1 .. pointer — 1] do
Include (~strgenpreimgs , sgseq|i]); // preimages for strong
generators in transversal
Include (~S, PCBFrho(EG, sgseq[i])); // strong generators for
permutation bit of subgroup
end for;
QH := sub<EG'Q | S>;
sv, bo := BasicOrbitsSV (QH, B, S);
GR := GrpPermData(QH, B, S, sv, bo);
LH := sub<EG'N | LHgens>;
return PCBFsubConstruct (EG, LH, GR, strgenpreimgs);
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end function;

PCBFCleanGeneratingSet := function (EG, gens)
95
/*
Arguments :
100 EG: PCBF-group, Type(s): Rec

gens: Sequence of ordered pairs representing elements of
EG, Type(s): SeqEnum

105

Parameters:

Return Type(s):
110

SeqEnum, RnglntElt
Description :

115 Returns a sequence which contains mo redundant gemerators
and generates the same subgroup in EG as gens.

*/

gensl := [car<PowerSequence (PowerSequence(IntegerRing())), EG

N> | |; // the mized generators
120 gensr := [car<PowerSequence(PowerSequence(IntegerRing())), EG
N> | |; // these elements map to the trivial element in the

quotient group
for i in [1 .. #gens] do
// monredundant generating set created from gens in one pass
if PCBFrho(EG, gens[i]) eq Id(EG'GR'G) then
// gens[i] maps to the identity in the quotient group
125 if gens[i][2] ne Id(EG'N) then
// add nontrivial generator to gensr
Include (~gensr, gens[i]);

end if;
else
130 // check to see whether gens[i] has the same image in the
quotient group as any previously added generator
b= 1

while j le #gensl do
if gens[i][1l] eq gensl[j][1l] then
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ele := PCBFMult(EG, gens[i], PCBFInverse(EG, gensl[j])

) ;
// ele maps to the identity in the quotient group
hence it can be added to gensr
if ele[2] ne Id(EG'N) then
// add nontrivial generator to gensr
Include (~gensr, ele);
end if;
break; // throw gens[i] away
else
// continue checking
j += 1;
end if;
end while;
if j gt #gensl then Append(~gensl, gens[i]); end if; //
genuine new generator

end if;

end

for;

return gensl cat gensr, #gensl + 1;

end fu

nction;

PCBFsubConstruct := function(EG, LH, GR, strgenpreimgs)

/*

Argu

ments:

EG: PCBF-group, Type(s): Rec

LH: Intersection of the subgroup of EG generated by S and

th

GR:

th

e image of EG'N in EG, Type(s): GrpPC or GrpGPC

e subgroup of EG to be constructed as a permutation

group , Type(s): Rec

strgenpreimgs: Indexed set containing preimages (in EG) of
the strong generators for the corresponding quotient group

of

Para

the subgroup of EG to be constructed, Type(s): Setindzx

meters:

Return Type(s):

Re

c

Record holding data for corresponding quotient group of
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Description :

Mimics the construction in PCBFMasterConstruct to construct
a PCBF record representing the required subgroup of EG.

*/

EGsub := rec<PCBF | >;
EGsub'E = EGE;
EGsub"GR := GR;
EGsub*Q := GR'G;
EGsub'N := LH;

EGsub® supergrp := EG;

EGsub® strgenpreimgs := strgenpreimgs;
m := #strgenpreimgs;

strgeninvpreimgs := {QQ};

for i in [1 .. m] do

Include (~strgeninvpreimgs , (PCBFEleOrder(EG, strgenpreimgs]|i
]) eq 2) select strgenpreimgs[i] else PCBFInv(EG,
strgenpreimgs[i]));

end for;

EGsub® strgeninvpreimgs := strgeninvpreimgs;

e := <StrongGenNormalForm (GR, Id(GR'G)), Id(LH)>;
EGsub’e := e;

pcgens := PCGenerators(LH) ;

r := Fpcgens;

pcgenconjugates := [];

pcgenconjugatesinv = [];

for i in [1 .. m] do

pcgenconjugates|[i] := [LH | ];

pcgenconjugatesinv [i] := [LH | ];

xim := strgenpreimgs]|[i];

for j in [1 .. r] do

// computing conjugates of the jth polycyclic generator
with the ith preimage of the strong generating set of @
and its inverse

yim := PCBFphiinv(EG, EG'N | pcgens|[j]);

pcgenconjugates|[i][j] := LH ! PCBFConjugate(EG, yim,
strgenpreimgs [i]) [2]; // stored as an element of LH
pcgenconjugatesinv[i][j] := LH ! PCBFConjugate (EG, yim,
strgeninvpreimgs|[i]) [2]; // stored as an element of LH
end for;
end for;

1 := #GR'B; // number of elements in the stored base of the
quotient group

S := GR'S;

tail := GR tail;
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220 tailinv := GR tailinv;
utail := GR utail;
utailinv := GR utailinv;
ho:= [];

g = [];

225 W o= [];
tailelts := [LH | |;
taileltsinv := [LH | |;
for i in [1 .. 1] do

orb := GR bo[i];

230 v = GR sv[i];

sg := GR sgindexlist [i];
for j in [1 .. #orb] do

pt := orb[]];
for k in [1 .. #sg] do
235 g := SVWordInv(GR'G, S, v, orb, pt);

if utail[i][j][k] ne O then
ipt = pt"S[sglk]];
h := SVWordInv(GR' G, S, v, orb, ipt);
ux := PCBFMult(EG, PCBFWordMultiply (EG, strgenpreimgs,
strgeninvpreimgs, g), strgenpreimgs/[sg[k]]);
240 th := PCBFMult (EG, PCBFWordMultiply (EG, strgenpreimgs ,
strgeninvpreimgs , tail[i][j][k]), PCBFWordMultiply
(EG, strgenpreimgs, strgeninvpreimgs, h));
tailelts [utail[i][j][k]] := LH ! PCBFphi(EG, PCBFMult(
EG, PCBFInv(EG, th), ux));
end if;
if utailinv[i][j][k] ne 0 then
ipt := pt"(S[sg[k]]"—1);
245 h := SVWordInv(GR'G, S, v, orb, ipt);
uxinv := PCBFMult(EG, PCBFWordMultiply (EG,
strgenpreimgs , strgeninvpreimgs, g),
strgeninvpreimgs [sg[k]]) ;
th := PCBFMult (EG, PCBFWordMultiply (EG, strgenpreimgs ,
strgeninvpreimgs , tailinv[i][j][k]),
PCBFWordMultiply (EG, strgenpreimgs ,
strgeninvpreimgs, h));

taileltsinv [utailinv[i][j][k]] := LH ! PCBFphi(EG,
PCBFMult (EG, PCBFInv(EG, th), uxinv));
end if;
250 end for;
end for;

end for;

EGsub® pcgens := pcgens;

EGsub® pcgenconjugates := pcgenconjugates;
255 EGsub® pcgenconjugatesinv := pcgenconjugatesinv;

EGsub® tailelts := tailelts;

EGsub" taileltsinv := taileltsinv;
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EGsub' ismaster := false;
EGsub® pcgensnf := [];
260 for i in [1 .. #pcgens] do
EGsub’ pcgensnf[i] := <e[l], pcgens[i]>;
end for;
EGsub' strgenpreimgsnf := [];
EGsub® strgeninvpreimgsnf = [];
265 for 1 in [1 .. #strgenpreimgs| do
_, EGsub'strgenpreimgsnf[i] := PCBFiotainv(EGsub,
strgenpreimgs[i]) ;
—, EGsub'strgeninvpreimgsnf[i] := PCBFiotainv(EGsub,
strgeninvpreimgs|[i]) ;
end for;
EGsub® grpgens := EGsub  strgenpreimgsnf cat EGsub’ pcgensnf;
270 return EGsub;
end function;

PCBFiotainv := function (EGsub, ele)

275

/*
Arguments:
280 EGsub: PCBF-group, Type(s): Rec

ele: Ordered pair representing an element of
EGsub supergrp, Type(s): Tup

285

Parameters:

Return Type(s):
290

BoolEIlt, Tup

Description :
295
Tests to see if ele is an element of EGsub and if it is,
returns true and the mormal form of ele in the subgroup.
ele is assumed to be a member of the super group of EGsub.
Some of this code overlaps with the PCBFQuotStrip function.
300 Do NOT use this method directly. Use PCBFCoerce instead .

*/
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if EGsub’ismaster then return true, ele; end if;
EG := PCBFSuperGrp(EGsub) ;
h := ele; // element of EG
B := EGsub'GR'B;
strgenpreimgs := EGsub’ strgenpreimgs;
strgeninvpreimgs := EGsub’ strgeninvpreimgs;
bo := EGsub GR bo;
sv := EGsub"GR sv;
1 .= #B;
u =[]
for i in [1 .. 1] do
// strip—Ilike process
// h fizes base points B[1], B[2],..., B[i —1]
pt := PCBFQuotAction(EG, B[i], h);
if pt notin bo[i] then
return false, <>;
end if;
ul[i] := PCBFQuotSVWordInv(EG, strgenpreimgs ,
strgeninvpreimgs , sv[i], bo[i], pt);
h := PCBFMult(EG, h, PCBFInv(EG, PCBFWordMultiply (EG,
strgenpreimgs , strgeninvpreimgs, uli])));
end for;
// if ele is an element of EGsub then its first component is u
h := ele;
word = [];
for i in [1 .. 1] do
word cat:= WordInverse(u[i]);
end for;

// premultiply h by the inverse of the element encoded by u to

h
if
n
if
re
end

find the component belonging to EG'N
:= PCBFMult (EG, PCBFWordMultiply (EG, strgenpreimgs,
strgeninvpreimgs , word), h);

PCBFrho(EG, h) ne Id(EG'GR'G) then return false, <>; end if

9

:= PCBFphi(EG, h);

n notin EGsub'N then return false, <>; end if;
turn true, <u, EGsub’N ! n>;
function;

PCBFiota := function (EG, ele)

/*

Arguments:

EG: PCBF-group, Type(s): Rec
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ele: Ordered pair representing an element of EG, Type(s):
Tup

Parameters:

Return Type(s):

Tup

Description :

Returns the image of ele in the super group to which it
belongs. Do NOT wuse this method directly. Use PCBFCoerce
instead .

*/

if EG ismaster then return ele; end if;
EGsupergrp := PCBFSuperGrp (EG) ;

word = [];

for i in [#ele[l] .. 1 by —1] do
word cat:= ele[1][1];

end for;

return PCBFMult( EGsupergrp, PCBFWordMultiply (EGsupergrp, EG’

strgenpreimgs , EG strgeninvpreimgs, word), <PCBFId(
EGsupergrp) [1], EGsupergrp N ! ele[2]>);

end function;

PCBFiotaSeq := function (EG, elts)

/*

Arguments:
EG: PCBF-group, Type(s): Rec
elts: Sequence of ordered pairs representing elements of
EG, Type(s): Segenum

Parameters:

Return Type(s):
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SeqEnum

395
Description :

Returns a sequence of the respective images (in the super
400 group to which they belong) of each element of elts.

*/
return [PCBFiota(EG, elts[i]) : i in [1 .. #elts]];

105 end function;

PCBFCoerce := function(EG1, ele, EG2)
410 /*
Arguments:
EG1: PCBF-group, Type(s): Rec
415
ele: Ordered pair representing an element of EGI1, Type(s):
Tup

EG2: PCBF-group, Type(s): Rec

420

Parameters:

125 Return Type(s):

BoolElt, Tup

430 Description :
Coerces the element, ele, of EG1 into EG2.
*/

return PCBFiotainv(EG2, PCBFiota(EG1, ele));
end function;

435

110 PCBFin := function(EG1, ele, EG2)
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/*

Arguments:

445

EG1: PCBFE-group, Type(s): Rec
ele: Ordered pair representing an element of EGI1, Type(s):
Tup

450

EG2: PCBF-group, Type(s): Rec
Parameters:
455
Return Type(s):

BoolFEIlt

460
Description :

Returns true if and only if the element, ele, of EGI is an
465 element of EG2.

*/

ans, _ := PCBFCoerce(EG1, ele, EG2);
470 return ans;
end function;

PCBFnotin := function(EG1, ele, EG2)

475

/*
Arguments:
180 EG1: PCBF-group, Type(s): Rec

ele: Ordered pair representing an element of EGI1, Type(s):
Tup

485 EG2: PCBF-group, Type(s): Rec

Parameters:
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Return Type(s):

BoolElt

Description :

Returns true if and only if the element, ele, of EGI is not
an element of EG2.

*/
return not PCBFin(EG1, ele, EG2);

end function;

PCBFQuotSubrhoinv := function (EG, H)
/*
Arguments:
EG: PCBF group, Type(s): Rec

H: Subgroup of EG'Q, Type(s): GrpPerm
Parameters:

Return Type(s):

Rec

Description :

Returns the preimage of the subgroup, H, of EG'Q in EG.

*/

Hgens := Setseq(Generators(H));
gens := PCBFrhoinvSeq(EG, [EG'Q ! Hgens[i] : i in [1 .. #Hgens
]]) cat EG pcgensnf;
return PCBFsub(EG, gens);
end function;
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PCBFSolubleRadical := function (EG)
540 /*
Arguments:

EG: PCBF group, Type(s): Rec

545

Parameters:

sso  Return Type(s):

Rec

555 Description :
Returns the soluble radical of EG.
*/

return PCBFQuotSubrhoinv (EG, SolubleRadical (EG'Q));
end function;

560

ses PCBFSolvableRadical := function (EG)

/*

Arguments:

570

EG: PCBF group, Type(s): Rec
Parameters:
575
Return Type(s):

Rec

580

Description :
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Returns the soluble radical of EG.

*/

retu

rn PCBFSolubleRadical (EG) ;

end function;

PCBFncl := function (EG, gens)

/*

Arguments:

EG: PCBF-group, Type(s): Rec

gens: Sequence of ordered pairs representing elements of

EG, Type(s): SeqEnum or Setlndz

Parameters:

Return Type(s):

Rec

Description :

Returns a PCBF record representing the normal closure of
the subgroup of EG generated by the elements in gens.

*/

closurefound := false;
G = EG;
X := PCBFGenerators(G) ;
Y := gens;
H := PCBFsub(G, Y);
while not closurefound do
for i in [1 .. BATCHSIZE] do

g := PCBFRandom(G) ;
_, h := PCBFCoerce(H, PCBFRandom(H), G);
gen := PCBFConjugate(G, h, g);
if PCBFnotin(G, gen, H) then
Append (~Y, gen);
H := PCBFsub(G, Y);
end if;
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end for;
closurefound := true;
for x in X do

for y in Y do

if PCBFnotin(G, PCBFConjugate(G, y, x), H) then

closurefound := false;
break x;
end if;
end for;
end for;
end while;
return H;
end function;

PCBFSubgroupNormalClosure := function (G, H)

/*
Arguments:
G: PCBF-group, Type(s): Rec

H: Subgroup of G, Type(s): Rec

Parameters:

Return Type(s):

Rec

Description :

Returns a PCBF record representing the normal closure of

the subgroup H in G.

*/

h := PCBFGenerators(H);
elts = [];
for i in [1 .. #h] do

_, elts[i] := PCBFCoerce(H, hli], G);

end for;
return PCBFncl(G, elts);
end function;
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PCBFSubgroupConjugate := function(G, H, g)

/*

Arguments:
G: PCBF-group, Type(s): Rec
H: Subgroup of G, Type(s): Rec
g: FElement of G, Type(s): Tup

Parameters:

Return Type(s):
Rec

Description :
Returns a PCBF record representing the conjugate of the
subgroup H in G.

*/

h := PCBFGenerators(H);

elts = [];

for i in [1 .. #h] do
_, elts[i] := PCBFCoerce(H, hli], G);

end for;

return PCBFsub(G, [PCBFConjugate(G, elts[i] ,g) : i in [1 .. #
elts]]);

end function;

Listing B.10: pcbfderived.m

/*

File: pcbfderived.m

Last modified: Sun, 06 Feb 2011 22:14:183 +0000
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o Author(s): Shavak Sinanan <S.K.SinananQwarwick. ac. uk>
Company : University of Warwick <http ://wuww. warwick. ac.
uk>

14
Description :

The methods in this file are used to construct derived subgroups
and series

of polycyclic—by—finite groups represented by records of type
PCBF.

19
Notes :

MAGMA V2.16—13.

24
Copyright 2006—2010, University of Warwick. All rights reserved.

*/

29

load ”pcbfsubgroup.m”;

3¢« PCBFCommutatorSubgroup := function (H, K)

/*

Arguments:
39

H: PCBF-group, Type(s): Rec
K: PCBF-group, Type(s): Rec
44

Parameters:

Return Type(s):
49

Rec

Description :
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Returns a PCBF record representing the commutator subgroup
of H and K. The PCBF-groups H and K are assumed to be
subgroups of some common PCBF-group. Do NOT use this
function to compute derived subgroups. The function
PCBFDerivedGroup is more efficient.

EG := PCBFSuperGrp(H) ;
X := PCBFGenerators(H) ;
Y := PCBFGenerators(K);
L := PCBFsub(EG, PCBFiotaSeq(H, X) cat PCBFiotaSeq(K, Y));
// [H, K] is the normal closure in L of the subgroup generated
by [z, y] with = in X, y in Y
C := [car<PowerSequence (PowerSequence (IntegerRing())), L' N>
NE
for i in [1 .. #X] do
_, x := PCBFCoerce(H, X[i], L);
for j in [1 .. #Y] do
_, v := PCBFCoerce(K, Y[j], L);
Append (~C, PCBFCommutator(L, x, y));
end for;
end for;
return PCBFncl(L, C);

end function;

PCBFDerivedGroup := function (G)

/*
Arguments:

G: PCBF-group, Type(s): Rec

Parameters:

Return Type(s):

Rec

Description :

Returns a PCBF record representing the derived subgroup of
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G.

*/

X := PCBFGenerators(G) ;
// G' is the normal closure in G of the subgroup generated by

(z1, z2) with
return PCBFncl (G,
X1]);

end function;

xl, z2 in X
[PCBFCommutator (G, x1, x2)

PCBFDerivedSubgroup := function (G)

/*
Arguments :
G: PCBE-group ,

Parameters:

Return Type(s):
Rec

Description :

Type(s): Rec

x1 in X,

x2 in

Returns a PCBF record representing the derived subgroup of

G.

*/

return PCBFDerivedGroup (G) ;

end function;

PCBFDerivedSeries

/*
Arguments :

G: PCBE-group ,

Parameters:

:= function (G)

Type(s): Rec
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Return Type(s):
149

SeqEnum

Description :
154
Returns a sequence containing the derived series of G.

19 DS = [G];
H := PCBFDerivedGroup (G) ;
i = 1;

while Order (PCBFQuotGrp(H)) 1t Order (PCBFQuotGrp(DS[i])) or
PCBFNormalSubgrp (H) ne PCBFNormalSubgrp(DS[i]) do
Append (~DS, H);

164 H := PCBFDerivedGroup (H) ;

i +:= 1;

end while;

return DS;

end function;

169
PCBFLowerCentralSeries := function (G)

/*
174

Arguments:
G: PCBF-group, Type(s): Rec
179

Parameters:

Return Type(s):
184

SeqEnum

Description :

Returns a sequence containing the lower central series of

G.
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*/
194
LCS := [G];
H := PCBFDerivedGroup (G) ;
i = 1;

while Order (PCBFQuotGrp(H)) 1t Order (PCBFQuotGrp(LCS[i])) or
PCBFNormalSubgrp (H) ne PCBFNormalSubgrp (LCS[i]) do
199 Append (~LCS, H);
H := PCBFCommutatorSubgroup (G, H);
i +:= 1;
end while;
return LCS;
204 end function;

Listing B.11: pcbfsylow.m

v /x
File: pchfsylow.m
¢ Last modified: Sun, 06 Feb 2011 22:14:18 +0000
Author(s): Shavak Sinanan <S.K.SinananQwarwick. ac.uk>
11
Company : University of Warwick <http ://www. warwick. ac.
uk>

Description :
16
The methods in this file are used to construct Sylow subgroups

of (finite)
polycyclic—by—finite groups represented by records of type PCBF.

21 Notes:

MAGMA V2.16—13.

26 Copyright 2006—2010, University of Warwick. All rights reserved.

*/

2

s1 load ”pcbfderived .m”;
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PCBFSylow := function (G, p)

/*
Arguments:
G: PCBF-group, Type(s): Rec

p: Prime integer, Type(s): RnglIntElt

Parameters:

Return Type(s):

Rec

Description :
Returns a Sylow p—subgroup of G.
v/
H := PCBFQuotSubrhoinv (G, Sylow(G'Q, p)); // the Sylow p—

subgroups of G are exactly the Sylow p—subgroups of H
K, pcisodata := PCBFPolycyclicGroup (H) ;

sylowgensK := Setseq(Generators(Sylow (K, p)));
sylowgensG := [car<PowerSequence(PowerSequence (IntegerRing()))
, GN> |

for i in [1 .. #sylowgensK] do
// map back into K, then into H then into G

_, sylowgensG[i] := PCBFCoerce(H, PCBFPolycyclicisoinv (H,
pcisodata, K ! sylowgensK|[i]), G);
end for;

return PCBFsub(G, sylowgensG);

end function;

PCBFSylowSubgroup := function (G, p)

/*

Arguments:
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G: PCBF-group, Type(s): Rec

p: Prime integer, Type(s): RnglIntElt

Parameters:

Return Type(s):

Rec

Description :

Returns a Sylow p—subgroup of G.
*/
return PCBFSylow (G, p);

end function;

PCBFSylowConjugatingElement := function(G, P1, P2)
/*
Arguments :
G: PCBF-group, Type(s): Rec
P1: Sylow p—subgroup of G, Type(s): Rec

P2: Sylow p—subgroup of G, Type(s): Rec

Parameters:

Return Type(s):

Tup

Description :

Returns an element of G comnjugating P1 into P2.
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*/

126
// incomplete
Q = GGR'G;

rhoP1 := PCBFQuotGrp(P1)
rhoP2 := PCBFQuotGrp(P2)
131 P2N := PCBFQuotSubrhoinv

soluble

?

_, z := IsConjugate (Q, rhoPl, rhoP2);

g := PCBFrhoinv(G, z);

P1 := PCBFSubgroupConjugate (G, P1, g); // P1 is now a Sylow p—
subgroup of P2N

// do the work wusing power—conjugate presentations
PCBFPolycyclicGroup (P2N) ;

136 L, isodata :=
gens = [];

for x in PCBFGenerators(P1) do

-

11 end for;
LP1 := sub<
gens = [];

ele := PCBFCoerce(P1l, x, P2N);
Append (~gens, PCBFPolycycliciso(P2N, L, isodata

| gens>; // image of PI1 in L

for x in PCBFGenerators(P2) do
_, ele := PCBFCoerce (P2, x, P2N);

146 Append (~gens, PCBFPolycycliciso(P2N, L, isodata,

end for;

LP2 := sub<L | gens>; // image of P2 in L
z := IsConjugate (L, LP1, LP2);

-

(G, rhoP2); // P2N is finite and

_, y := PCBFCoerce(P2N, PCBFPolycyclicisoinv (P2N, isodata, z),

G) ;

151 return PCBFMult(G, g, y);

end function;

Listing B.12: pcbfcentre.m

/*

3 File:

Last modified:

8

Author(s):

Company :
uk>

13

pcbfcentre.m

Sun, 06 Feb 2011 22:14:13 +0000

Shavak Sinanan <S.K. Sinanan@warwick. ac . uk>

University of Warwick <http://wuww. warwick. ac.
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Description :

The methods in this file are used to compute the centre of a
18 polycyclic—by—finite group represented by records of type PCBF.

Notes :

23 MAGMA V2.16—135.

28

33

38

43

48

53

58

Copyright 2006—2010, University of Warwick. All rights

*/

load " pcbfsylow .m”;

PCBFCentre := function (G)

/*
Arguments:

G: PCBF-group, Type(s): Rec

Parameters:

Return Type(s):

Rec

Description :
Returns the centre of G.
*/

S := PCBFSolubleRadical (G);

K, pcisodata := PCBFPolycyclicGroup(S); // pcisodata

an isomorphism from S onto P
C := Centre(K);
if IsTrivial (C) then return PCBFsub(G,

[1); end if;

reserved .

encodes



63

68

73

78

83

88

93

98

B. Program Listing 223

centregensG := [car<PowerSequence(PowerSequence(IntegerRing())
), GN> [];
if PCBFIsSoluble(G) then

// C is the centre of G
centregensC := Setseq(Generators(C));
for i in [1 .. #centregensC| do
// map back into K, then into S and then into G
_, centregensG[i] := PCBFCoerce(S, PCBFPolycyclicisoinv (S,
pcisodata, K | centregensC[i]), G);
end for;
return PCBFsub(G, centregensG);

end if;

AC, kappa := AbelianGroup(C); // kappa: C —> AC
invars := Invariants (AC);

r := Finvars;

Z := Integers();

mats := [MatrixAlgebra(Z, r) | |;

I := IdentityMatrix(Z, r);

O := ZeroMatrix(Z, r, 1);

// for each generator of G, calculate the matrix specifying
conjugation action of that generator on AC, and subtract
the identity matrix

subjgens := PCBFGenerators(G) ;

matseq = [];
for i in [1 .. #subjgens] do
for j in [1 .. r] do
_, g := PCBFCoerce(S, PCBFPolycyclicisoinv (S, pcisodata, K
' (AC.j @@ kappa)), G);
_, s = PCBFCoerce(G, PCBFConjugate(G, g, subjgens[i]), S)
matseq[j] := Eltseq((C ! PCBFPolycycliciso (S, K, pcisodata
, 8)) @ kappa);
end for;
mat := Matrix(matseq) — I;
if mat ne O then Append(~mats, mat); end if;
end for;

if #mats eq 0 then
// C is the centre of G

centregensC := Setseq(Generators(C));
for i in [1 .. #centregensC| do
// map back into K, then into S then into G
_, centregensG[i] := PCBFCoerce(S, PCBFPolycyclicisoinv (S,
pcisodata, K | centregensC[i]), G);
end for;
return PCBFsub(G, centregensG);
end if;

// the elements in the centre of G are basically those in the
nullspace of each of the matrices. But the matrices are
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over the integers, and solutions modulo invars[i] are
required. To handle this, extra rows are adjoined to the

matrices

invarmat := O;

for i in [1 .. r]| do invarmat[i][i] := invars|[i]; end for;

modmats = [];

103 for i in [1 .. #mats| do
modmats[i] := VerticalJoin ([mats[i]] cat [O : j in [1

i — 1]] cat [invarmat]| cat [O : j in [i+ 1 .. #mats
115

end for;

// now the centre corresponds to the intersection of the
nullspaces of the matrices — equivalently , the nullspace of
their horizontal join

nsmat := NullspaceMatrix (HorizontalJoin (modmats)) ;

s centregensC := [C | ];
for i in [1 .. Nrows(nsmat)] do

a := AC ! Eltseq(ExtractBlock(nsmat, i, 1, 1, r));
if a ne AC ! 0 then
Append (~centregensC , a @QQ kappa);
113 end if;
end for;
for i in [1 .. #centregensC]| do
// map back into K, then into S and then into G
_, centregensG[i] := PCBFCoerce(S, PCBFPolycyclicisoinv (S,
pcisodata, K ! centregensC[i]), G);
ns end for;
return PCBFsub(G, centregensG);
end function;

123 PCBFCenter := function (G)

/*

Arguments:

128

G: PCBF-group, Type(s): Rec
Parameters:
133
Return Type(s):

Rec

138
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Description :

Returns the centre of G.

143

*/

return PCBFCentre(G) ;
end function;

Listing B.13: pcbfcentraliser.m

/*

File: pcbfcentraliser—test.m
Last modified: Sun, 06 Feb 2011 22:14:18 +0000
7
Author(s): Shavak Sinanan <S.K.SinananQwarwick. ac.uk>
12 Company : University of Warwick <http ://www. warwick. ac.
uk>
Description :

17 The methods in this file are used to compute the centraliser of
an element
belonging to a polycyclic—by—finite group represented by records

of type
PCBF.

22 Notes:

MAGMA V2.16—13.

27 Copyright 2006—2010, University of Warwick. All rights reserved.

*/

2

32 load ”pcbfcentre.m”;

PCBFCentraliser := function (G, g)
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/*
Arguments:
G: PCBF-group, Type(s): Rec

g: Element of G, Type(s): Tup

Parameters:

Return Type(s):

Rec

Description :

Returns the centraliser of g in G.
*/

if PCBFeq(G, g, PCBFId(G)) then return G; end if; // cheap
check for g = PCBFId(G)

Q = G'GR'G;

:= PCBFrhoinvSeq (G, Setseq(Generators(Centraliser (Q, PCBFrho

(G, g))))) cat G pcgensnf; // generators of inverse image

of centraliser of g in the quotient

C := PCBFsub(G, c);

N := ElementaryAbelianSeriesCanonical (G'N); // the canonical
version of the elementary abelian series function is used
as a sequence of normal subgroups is required

t o= #N;

// the centraliser of g in G/N[1] has been computed, so it 's
time to move downward through the elementary abelian series

for i in [1 .. t — 1] do

M, phi := GModule(N[1], N[i], N[i + 1]); // phi : N[i] —> M
F := Field (M) ;

d := Dimension (M) ;

A = GL(d + 1, F);

o

I := Id(A);
bas := [PCBFphiinv(G, (M.k)@@phi) : k in [1 .. d]];
cimgs = [A | |;
for j in [1 .. #c] do
y = [];

for k in [1 .. d] do
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// computing k—th row of the image of c[i] under the
affine map

y[k] := Eltseq ((PCBFphi(G, PCBFConjugate(G, bas[k], c[j
])))@phi) cat [Zero(F)];
end for;
y[d + 1] := Eltseq ((PCBFphi(G, PCBFCommutator(G, g, c[j]))
)@phi) cat [Id(F)];
82 cimgs[j] = (A ! Matrix(y)); // these images should really

be used to define a homomorphism, but homomorphisms
involving PCBF groups have not yet been implemented
internally in MAGMA
end for;
defcimgs = [A | ];
cnew := [car<PowerSequence(PowerSequence(IntegerRing())), G
N> [
indexmap := [];
87 // clean generating set
for j in [1 .. #cimgs] do
if cimgs[j] eq I then
Append (~cnew, c[j]);
continue;
92 end if;
for k in [1 .. #defcimgs]| do
if cimgs[j] eq defcimgs[k] then
Append (~cnew, PCBFMult(G, c[indexmap [k]], PCBFInverse(

G, c[jl))):
continue j;
97 end if;
end for;

// cimgs[j] is a genuine new generator
Append (~defcimgs , cimgs|[j]);
Append (~indexmap, j); // this sequence is needed to
correspond the position of cimgs[j] in defcimgs to j
102 end fOI‘;
if defcimgs eq [] then continue; end if;
B := sub<A | defcimgs>; // range of alpha
// compute stabliser in B of (0, ., 0, 1)
V := VectorSpace (A);

107 trickvec := V.(d + 1);
S := Stabiliser (B, trickvec);
s := Setseq(Generators(S));

// map S back into G
// the code that follows is slow and should be rewritten
when homomorphims involving PCBF-groups become available
112 L, psi := FPGroup(B);
// to map S back into G, the preimage kernel of psi in G is
needed
rels := Relations(L);
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kerpsipreimggens := [];
for j in [1 .. #rels] do
117 ele := PCBFId(G);
word := Eltseq (LHS(rels[j])*(RHS(rels[j])" " —1));
// multiply word in G
for k in [1 .. #word] do
ele := PCBFMult(G, ele, word[k] 1t 0 select PCBFInverse(
G, c|indexmap[—word[k]]]) else c[indexmap|[word[k]]]) ;
122 end for;

_, kerpsipreimggens[j] := PCBFCoerce(G, ele, C);
end for;
kerpsipreimg := PCBFncl(C, kerpsipreimggens);
kerpsipreimggens := PCBFGenerators(kerpsipreimg);
127 offset := #cnew;
for j in [1 .. #kerpsipreimggens] do
_, cnew|[offset + j] := PCBFCoerce(C, kerpsipreimggens|[j],
G);
end for;
for j in [1 .. #s] do
132 ele := PCBFId(G);

word := Eltseq(s[j]@QQpsi);
// multiply word in G
for k in [1 .. #word] do
ele := PCBFMult(G, ele, word[k] It 0 select PCBFInverse(
G, c|indexmap[—word[k]]]) else c[indexmap|[word[k]]]) ;
137 end for;
Append (~cnew, ele);
end for;
C = cnew;
C := PCBFsub(G, c¢);
12 end for;
return C;
end function;

17 PCBFCentralizer := function (G, g)

/*
Arguments:
152
G: PCBF-group, Type(s): Rec
g: FElement of G, Type(s): Tup

157
Parameters:
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Return Type(s):
162

Rec

Description :
167
Returns the centraliser of g in G.

*/

12 return PCBFCentraliser (G, g);
end function;

Listing B.14: pcbfconjugacy.m

/*

File: pcbfconjugacy.m
Last modified: Sun, 06 Feb 2011 22:14:18 +0000
7
Author(s): Shavak Sinanan <S.K.SinananQwarwick. ac.uk>
12 Company : University of Warwick <http://www. warwick. ac.
uk>

Description :

17 The methods in this file are used to test conjugacy of elements
belonging
to a polycyclic—by—finite group represented by records of type
PCBF.

Notes:
22

MAGMA V2.16—13.

Copyright 2006—2010, University of Warwick. All rights reserved.

27

*/
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load ”pcbfcentraliser .m”;

PCBFIsConjugate := function(G, g, h)

/*

Arguments:
G: PCBF-group, Type(s): Rec
g: FElement of G, Type(s): Tup

h: Element of G, Type(s): Tup
Parameters:

Return Type(s):

BoolFElt, Rec

Description :

Returns true, and an element conjugating g into h, if ¢ and
h are conjugate in G, false otherwise.

*/

if PCBFeq(G, g, h) then return true, PCBFId(G); end if; //
cheap check for g = h

Q = G GRG;

N := ElementaryAbelianSeriesCanonical (G'N); // the canonical
version of the elementary abelian series function is used
as a sequence of normal subgroups is required

t = AN

gbar := PCBFrho(G, g);

hbar := PCBFrho(G, h);

isconj , zbar := IsConjugate(Q, gbar, hbar);

if not isconj then return false, _; end if; // g and h aren't
even conjugate in the quotient @

z := PCBFrhoinv (G, zbar); // preimage of conjugating element

h := PCBFConjugate(G, h, PCBFInv(G, z)); // h is now equal to
g in the quotient G/N

230
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C

C

:= PCBFrhoinvSeq (G, Setseq(Generators(Centraliser (Q, PCBFrho
(G, g))))) cat G pcgensnf; // generators of inverse image

of centraliser of g in the quotient
:= PCBFsub(G, c¢);

// the centraliser of g in G/N[1] has been computed, so it 's

time to move downward through the elementary abelian series

for i in [1 .. t — 1] do

ele := PCBFId(G);

M, phi := GModule(N[1], N[i], N[i + 1]); // phi : N[i] — M
F := Field M);

d := Dimension (M) ;

A = GL(d + 1, F);

I := Id(A);
bas := [PCBFphiinv(G, (M.k)@@phi) : k in [1 .. d]];
cimgs = [A | |;
for j in [1 .. #c] do
y =[]

for k in [1 .. d] do
// computing k—th row of the image of c[i] under the
affine map
y k] := Eltseq ((PCBFphi(G, PCBFConjugate(G, bas[k], c[j
])))@phi) cat [Zero(F)];
end for;
y[d + 1] := Eltseq ((PCBFphi(G, PCBFCommutator(G, g, c[j]))
)@phi) cat [Id(F)];
cimgs[j] = (A ! Matrix(y)); // these images should really
be used to define a homomorphism, but homomorphisms

involving PCBF groups have not yet been implemented
internally in MAGMA

end for;

defcimgs = [A | |];

cnew := [car<PowerSequence(PowerSequence(IntegerRing())), G
N> [

indexmap := [];

// clean generating set
for j in [1 .. #cimgs]| do
if cimgs[j] eq I then
Append (~cnew, c[j]);
continue;
end if;
for k in [1 .. #defcimgs] do
if cimgs[j] eq defcimgs[k] then
Append (~cnew , PCBFMult(G, c[indexmap [k]], PCBFInverse(

G, c[jl))):
continue j;
end if;
end for;

// cimgs[j] is a genuine new generator
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Append (~defcimgs , cimgs[j]);
Append (~indexmap, j); // this sequence is needed to
correspond the position of cimgs[j] in defcimgs to j
end for;
112 if defcimgs eq [] then
// if defcimgs is empty, then the new centraliser is equal
to the old centraliser
// if g and h are conjugate, then they should already be
equal in N[i + 1]
if PCBFphi(G, PCBFMult(G, PCBFInv(G, g), h)) notin N[i +
1] then
return false, _;
117 end if;
continue;
end if;
B := sub<A | defcimgs>; // range of alpha
L, psi := FPGroup(B); // image of B as a finitely presented
group
122 // compute stabliser in B of (0, ..., 0, 1)
V := VectorSpace (A);
orbvec := V.(d + 1);
S := Stabiliser (B, orbvec);
O := Orbit (B, orbvec);
127 tau, P := OrbitAction(B, O); // P is a permutation group
which gives the action of B on O, tau : B—> P
testvec := V | (Eltseq ((PCBFphi(G, PCBFMult(G, PCBFInv(G, g)
, h)))@phi) cat [Id(F)]); // this wvector will be tested
for membership in the orbit O
if testvec notin O then
return false, _;
end if;
132 isconj , zperm := IsConjugate (P, tau(orbvec), tau(testvec));
if not isconj then
return false, _;

end if;
ele := PCBFId(G);
137 word := Eltseq ((zperm@Qtau)@QQpsi) ;

// find preimage in C of (local) conjugating element
for k in [1 .. #word] do
ele := PCBFMult(G, ele, word[k] 1t 0 select PCBFInverse(G,
c[indexmap[—word[k]]]) else c[indexmap[word[k]]]) ;
end for;
142 h := PCBFConjugate (G, h, PCBFInv(G, ele)); // h is now equal
to g in the quotient G/N[i + 1]
z = PCBFMult(G, ele, z); // modify (global) conjugating
element

// map S back into G
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// the code that follows is slow and should be rewritten
when homomorphims involving PCBF-groups are implemented
// to map S back into G, the preimage of the kernel of psi
in G is needed
147 rels := Relations(L);
kerpsipreimggens := [];
for j in [1 .. #rels] do
ele := PCBFId(G) ;
word := Eltseq(LHS(rels[j]) x (RHS(rels[j])"—1));
152 // multiply word in G
for k in [1 .. #word] do
ele := PCBFMult(G, ele, word[k] It 0 select PCBFInverse(
G, c[indexmap[—word[k]]]) else c[indexmap[word[k]]]) ;

end for;
_, kerpsipreimggens[j] := PCBFCoerce(G, ele, C);
157 end for;
kerpsipreimg := PCBFncl(C, kerpsipreimggens);
kerpsipreimggens := PCBFGenerators(kerpsipreimg);
offset := #cnew;
for j in [1 .. #kerpsipreimggens| do
162 _, cnew|[offset + j] := PCBFCoerce(C, kerpsipreimggens|[j],
G);
end for;
s = Setseq(Generators(S));

for j in [1 .. #s] do
ele := PCBFId(G);
167 word := Eltseq(s[]j]@Q@Qpsi);
// multiply word in G
for k in [1 .. #word]| do
ele := PCBFMult(G, ele, word[k] 1t 0 select PCBFInverse(
G, c|indexmap|[—word[k]]]) else c[indexmap|[word[k]]]) ;

end for;
172 Append (~cnew, ele);
end for;
C := cnew;
C := PCBFsub(G, c¢);
end for;

177 return true, z;
end function;

Listing B.15: pcbfmain.m

/*

File: pcbfmain .m

Last modified : Sun, 06 Feb 2011 22:14:18 +0000
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Author(s): Shavak Sinanan <S.K.SinananQuwarwick. ac.uk>
12 Company : University of Warwick <http://www. warwick. ac.
uk>
Description :

17 Root file for the PCBF package.

Notes :

22 MAGMA V2.16—135.

Copyright 2006—2010, University of Warwick. All rights reserved.

27 %/

load ”pcbfconjugacy .m”;
load ”pcbfexamples.m” ;

32

PCBFNormalForm := function (EG, e)

/*
37
Arguments :

EG: PCBF-group, Type(s): Rec
42 e: element of original polycyclic—by—finite group, Type(s):

GrpElt

Parameters:

47
Return Type(s):

GrpPermEIlt

52

Description :
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Computes the mnormal form of the element y in the PCBF-group
57 EG. USED FOR TESTING ONLY.

*/

g = EG rho(e);
62 word := StrongGenWord (EG'GR, g);
return <StrongGenNormalForm (GR, g), EG phi(WordMultiply (EG
strgenpreimgs , EG strgeninvpreimgs , word) —1 x e)>;
end function;

o7 function PCBFRevert (EG, ele)

/*

Arguments:

72

EG: PCBF-group, Type(s): Rec

ele: ordered pair representing an element of the PCBF-group
EG, Type(s): Tup

7

Parameters:

s2  Return Type(s):

GrpFElt

87 Description :

Returns the element of the original master group
represented by ele. USED FOR TESTING ONLY.

92  x/

if not EG ismaster then
// recurse if the given group is mot a master group
return PCBFRevert (EG supergrp , PCBFiota(EG, ele));

o7 end if;

phi := EG phi;

word = [];

for i in [#ele[l] .. 1 by —1] do
word cat:= ele[1][1];
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102 end for;
ans := WordMultiply (EG  strgenpreimgs , EG strgeninvpreimgs ,
word ) ;
ans *:= ele [2]@@Q@phi;
return ans;
end function;

107

function PCBFRevertSeq(EG, elts)

/*
112
Arguments:
EG: PCBF-group, Type(s): Rec
117 elts: sequence of ordered pairs representing elements of
the PCBF-group EG, Type(s): Tup
Parameters:
122

Return Type(s):

SeqEnum

127
Description :

Returns a sequence of elements of the original master group

132 corresponding to elts. USED FOR TESTING ONLY.

*/
return [PCBFRevert (EG, elts[i]) : i in [1 .. #elts]];

137 end function;

function PCBFRevertSub (EG)
142 /*
Arguments:

EG: PCBF-group, Type(s): Rec

147
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Parameters:

Return Type(s):

Grp

Description :

Returns a subgroup of EG'E isomorphic to EG.
USED FOR TESTING ONLY.

*/

return sub<EG E | PCBFRevertSeq(EG, PCBFGenerators(EG)) >;

end function;
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