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Lies, Damn Lies ... and Differential Equations

David Tall

Mathematics Education Research Centre
University of Warwick
COVENTRY CV4 7AL

The title ofthis article is amisquotation ofDisraeli'scomment onstatistics, butthere is
every reason to apply it to the way we curretglgch differentiabquations at A-level. The
problem is that wedry to make thetheory ‘easier’ forthe students byconcentrating on
simple speciatases,not delving too deeply into the technicalitiekhis tactic has two
fundamental flaws. First, the oversimplificationtbé theory caread to misrepresentation
and falsification of themathematicafacts. Secondthe presentation of the theory as a
number of speciatasesmay lead to the mistaken belief that differentgjuations are
solved by a number of isolated techniques (separationadfbles, exact solutions,
integrating factors, and so on), without any perceivable owatadhale binding the theory
together.

The arrival of the computer gives us the opportunity for a fresh lotile dheory to give a
clearer insight into the fundamental ideas. Using simple numerical methods it is possible to
sketch the solutions of differentiatjuations, showingisually how the theoryworks and

under what circumstances there are likely to be difficulties.

A terminological inexactitude

The simplest kind of differential equation is of the form:

dy/dx=f(x)

and a solution is a functionx suchthat I'(x)=f(x). The function I) is oftencalled the
"improper integral” of ) or, more appropriatelythe "antiderivative"found by reversing
the process of differentiation.

For example, if

dy/dx=2x
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then one solution isXf=x2 and a more general solutiorxi&-c for some constait

It is common practice in A-levdkxts to move quickly on to the more general function
f(x)=x", to announce that the general solution of

dy/dx=xn (1)
is (for nz—1)
y=x"*1/(n+1)+c.

Regrettably, there is a logical flaw in the argument, and a serious one &uihpbsehat
I(X) is one solution of a differential equation (1).

Let P be the statement XJ€I(x)+c’ and Q be ‘X) is a solution of (1)then P implies Q
(by differentiation) put it does not follow that Q implies Fheconverse failsvhenn is a
negative integer, as can be seen by considesng.

The solution of the equation
dy/dx=1/x2  (2)

is a functiony=I(x), whose graph hagradient 1(x)=1/x2 everywhere. Thismay be
represented in a picture by drawing short lines through a selection of pgiptsychthat
the gradient of eackhort segment is X2 (taking the value ok at themidpoint). The
resulting picture is shown in figure 1.
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Figure 1 : A ‘direction diagram’ of line segments of gradient 1/x2



A solution of the differential equation (2) is found by tracing a cyri€x) in such a way
that the curvalways hagradient 1x2. A sketch of thesolution curvemay be built up
numerically by starting at any poink,y), moving a shortistance in the direction with
gradient 1¥2, then recalculating the gradient at the point reached and repeatipgp tess.
(An even more accurate method is to calculate the gradiéa(&tyop), taking a temporary
step a shordistance in this direction t8=(x1,y1). Instead of moving to thipoint,
recalculate the gradient here, then move baék émd take a step in the directimund by
averaging the two calculations. It is this improved versiothefcalculation that issed in
Graphic Calculus IP to give a more accurate picture.)

A typical solution istraced in figure 2. Infollowing the directions of theshort line
segmentsthe solution curve does not cross over the y-axis
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Figure 3 : A solution of the differential equation

We need to be #ttle more careful about what weean by asolution of a differential
equation. One possiblity is what | shall term a connestdation, in whichthe differential
equation is considered to describe toatinuous motion of a poinkfy). Such a solution
curve is in one piece and will not cross the y-axis. If it is to the left, it will be in the form

I(X)=—1k+c for x<O0.

The second possibility is to allow the solution to be a more gefugretion In this case it
is permissible to move over the otherside andndependentlydraw another part of the
solution curve to give the more general form

1/x 0
1(x)= @zllx::ﬁ 8(; o))



where the constantsandk may be different.

The necessity of spelling out the difference between ttvesecasesmay seem a small
matter. Perhaps is. But in mathematicghat most logical of sciences, from suckmall
deficiencies may grow fundamental weaknesses in the theory. When | was writing my first
mathematical textbook, my friend angentor,Walter Ledermann, told méhat in teaching

you need not tell the whole truth, but you should never lie...

When the ‘arbitrary constant’ is used in more general differezfjahtionsthe problem is
compounded.

Blind manipulation of formulae

A recent A-level question asked candidates to:

obtain the general solution of
dy
Ygx secx = 142, (3)

A typical solution might involve separating the variables in the form

y
(1-y?)

dy = cosX dx

and integrating to obtain the ‘general solution’:
—In|1y2| = sinx+c. (4)

But what does this solution mean? Is this truly the ‘general solutidhéisensethat every
solution of the differential equation (2) is found by givingn appropriate value in (4)? In
truth it is not, for in dividing by 32 one has losthe two functionsy=1 andy=-1 which
are clearly solutions. Formal manipulations performed withoware may lead to
inaccuracies.

Is it possible to describe a solutionarplicit termswith y given as a function of? This
may be investigated by careful manipulation of the formulae, but it is easier to visualize in a
picture.



A geometric picture of solutions

Writing the equation in the form
dy/dx = cosX(1-y2)/ly (5)

and drawing short line segments of gradient
cosX(1-y?2)ly,

gives figure 3. Superimposed onaite afew curvesobtained by followingthe gradient
directionsusing numerical calculations. Theurves athe top and bottom give oscillating
graphs with y expressible as a functiorxdbut others neardhe x-axis seem to be closed
loops. Some of the solutions are explicit functions and others may be implicit...
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Figure 3 : Numerical solutions of a differential equation

If one considered the loops to gifumctionsolutions, it would be necessaryselect either

the upper or lower half silvat each value of gives rise to a singlealue ofy. In a fit of
extravagant imagination would betheoreticallypossible tadefine a broader function by
taking several separatkalf-loops, choosing aifferent constant oneach. Though
mathematically possibly, this would be physically perverse. Naturally occurring differential
equations, expressirfyctuations takingplace in reatime, have connectesblutionsthat

vary continuously. In the rather artificial case given here, to me it feels natural to allow both
the oscillating explicit functions and the looping implicit curves as genuine solutions.



Vertical tangents

A technical difficulty of some importance occurs with the appasehitions inthe form of
closed loops. Wherevgr0 the gradientyldx is not defined in(3). Forthis reason some
mathematicians domot allow such loops to be solutions. (See, fotample, Neill and
Shuard page 146.)

However, if one regardghe tangent as waector (dx,dy), as in an earlier article ithis
series® then the equation, in the form

(1-y?)cosXx dx =y dy, (5)

may be considered as an equafionthe direction of the tangerector. When y=0, this
reduces to

cosxdx=0

and (for cos2£0) this implies d=0 and gives &ertical tangent direction fgdy)=(0,dy).
With this interpretation it igpossible to consider a point moving rigiound one of the
closed loops.

| acknowledge freely that equations (3) and (6) are not égiyvalent. (For example, one
may takecosZ=0 in (6), but not in(3).) But in interpreting differentiaequations, one
shouldattempt to get thenost natural form othe equation.The difficulty clearly arises
from the way in which equation (3) is written using the expressiorksec2

Following one’s nose

The idea behind the solution of a first order differential equation

dy/dx=f(x,y)

now becomes plain to see. It is simplynatter ofdrawing a curve which everywhere has
gradient f&,y).

The slightly more general equation

dy
axy)gx =fxy) ()



follows in the sameway when fk,y)/g(x,y) is well-defined and the case xg()=0,
f(x,y)20 may be conveniently considered as having a vertical tangent.

For example

dy
yax = X (8)

is the differential equatiosuchthat the tangent ¢ddy) is in the direction of the vector
(y,-X), which is always at right angles to the vectqgy)( The solution curveare therefore
circles (figured). (Here it is amatter oftaste, or convention, whether onewsling to
regard equation (8) as being essentially the samg@as=ek/y...)
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Figure 4 : A solution of dy/dx=—x/y

The only time when it is not possible trace asolution of equatior{6) is at points where
the equation does not define the directiondy). For example, irequation(1) wherey=0
and cos2=0, or in equation (7) at the origin. Such points are callggllarities

This gives the central idea for solving a first order differential equation:
where the direction {qdy) is defined, follow it.The only places where a

solution is not possibleare where the differential equationhas a
singularity.

Such singularities can occur in unexpected places.



A text-book | favour for its direct and clear approach is BostodBh&ndlel. However, |
did have problems with my computer prograrnen Itried it out on one of theery first
problems on differential equations in the book (page 328):

‘A curve is suchthat atany point the gradient multiplied by the
coordinate is equal to three times #reoordinate athat point. If the
curve passes through (1,4), find its equation.’

The given condition is written as

the variables are separated to give

dy ax
v =%

and the equation integrated to give
Inly| = 3 Ink| +A,
for an arbitrary constat. Further simplification gives
y=kx3
wherek is a constant, and the solution througii, y=4 hask=4.

Imagine my surprise when | typélde formula into my differential equations program and
attempted to draw a solution (figure Fhe direction diagram clearhowsline segments
that follow the shape of cubics itthe form y=kx3 for k positive, negative, or zero. Yet
when a solutiorcurve is followed throughhe origin it isliable to shoots off at an odd
angle. The one in figure 5 started at (-4.95, -4.95), computing with Xiséep 0.1.



dyrsdx=3y-x
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Flgure 5 : A peculiar solution

| was, at first, convinced that there was a bug in the program and spentirseringing to
find it. Then | realized that the bug was not in the compuitingas in theanalytic solution
as given inthe book Consideringthe original equation(9) as specifyingthe tangent
direction of the curve in the form

x dy = 3y dx,
describes the direction everywhere, except at the origin where it becomes
0.dy = 0.ck.

This gives no information about the tangent directidratsoever. Thus, ibne is viewing

the solution, in the most general sense, as being any wiesedirection is specified by

the differential equation, at the origin there are no restrictions -in the words of Cole Porter -
anything goesA more general solution of the equation is

B Skx3 (x<0)
Y=gexd (x=20)

where the constanksandc may be different.

Nearthe origin the directionsary greatly in a smaltegion. Asmall error in numerical
calculations and serendipity will land on arrow pointing in a vengifferent direction,
hence the wildness of the direction taken by different curves leaving the origin.



Simultaneous Differential Equations

Although simultaneous first order differential equations are certainly not part éflevel
syllabus, it isimportant to look briefly athem numerically teseehow they are simple
generalizations of the case we have just considered.

Consider the example of a poirfy) moving according to the two equations:
dy/dt=y
dy/dt =

wheret is time. Imagine the point,&,y) in threedimensions moving along a curve which
has tangent direction tdx,dy) determined by the equations:

dx =y dt, dy =—x dt. (10)
The tangent vector is
(dt,dx,dy) = (ct, y dt, = dt)

which is in the direction (§,~X).
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Figure 6 : A numerical solution of simultaneous differential equations

Using thisinformation it is possible to sketch soluticnrves. Figure 6 shows such a
solution curve projected on to the coordinate planes. At each pryitthe solution curve

—-10 -



has direction (J,—x) in (t,x,y)-space.The projection of thesecond and third coordinates
onto the x-y planegivesthe circularsolution seen earlier. Dividinthe equations irf{10)
one obtains the equatiog/dx = —x/y.

Similar interesting phenomena ocaouhen differential equationgor dy/dx are given in
terms of ¢/dt and d/dt. For example, the equations:

dx/dt=y, dy/dt = (1-y2)cosx

may beseen to reduce to equati¢®) by dividing the second bythe first. But in this
explicit form, they give information as to thepeed otthe point &(t),y(t)) moving round
solution curves. Figure ghowsthree numericakolutions starting at=0, x=0 with y
successively -1.5, 0, 1.5. The outer ones give part abribaal oscillatingsolutions (and
negative t would give the other part), but the inner solution travels round in a loop...

dxsdt=y
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Figure 7 : Three solutions of dx/dt=y, dy/d=(1-y2)cos2x

Higher order differential equations

A typical higher ordedifferential equatiormet at A-level is thesecond ordedifferential
equation

d2x/dt2=—x.

—-11 -



Unlike a first ordedifferential equation, this does n@eem to have a directidor each
point (t,x). Figure 8 shows aumber of distinctsolutions drawn(numerically) starting
from the origin in differentdirections.There is no simple direction field with a single
direction to follow at each point and the simjulea of‘following one's nose’ noveeems
inappropriate.

1a diyrdx2=—y
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Flgure 8 : Many solutions of a second order differential equation through one point (in this case the origin)
But this is not so. By introducing another variable for the first derivative,
v=dx/dt,
the original equation may be written as two simultaneous equations:
dx/dt=v
dv/dy=-x.

These are precisely the equations studied irptheious section, witly in place ofy. A
solution follows the tangential directiont dk,dv) in three-space given by

(dt,dx,dv)=(dt,vdx,-xdv).

This is shown in figure 9, starting &0, x=0, v=1. The curve in three space is a spiral and
its projection ontahe t-x andt-v planes are thesine and cosine shaped curves found
earlier. The projection onto thxev plane is again circular.
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Figure 9 : A solution to d2x/d2=—x using the substitution v=dx/dtin (t,x,v) space

The general idea of a solution

The procesggiven in theprevious sectiorcan be applied to many higher degree ordinary
differential equations. For instance, given

a3x o dx dx
g3 ~ S gz —d co$

the substitutions
v=dx/dt
v=d2x/dt?
can be employed to transform the equation into the equivalent system
du/d=usinx-v+cog
dv/dt=u
du/dt=v.

Thus the ‘nose-following’ can be performed againtjr,(,v)-space.Although pictures in
four-dimensional space are difficult Wwisualize,the information can be contained in three
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simultaneous projections ir,X), (t,u), (t,v) planes,giving a geometricalflavour once
more.

Theoretically one may cope in the samway with ordinarydifferential equations of higher
order, orwith a number of simultaneous differential equationsvafious orders.This
means that the simpfést-order case is truly representative of what happerteegrmore
general situation and is therefore worthy of extended study in the early stages.

What to do in future

How will this change what we do in school? It will firstake us realize that the formal
technigues of solvingifferential equations taught ii-level are flawed. The new
technology for drawing numerical solutions provides the opportunity now to allow students
to explore the behaviour of solutions geometrically to gain greater insight inidetige In

this way wemay begin to sedow the power of numerical and graphical methods
complement those of formal manipulation. In the words of Neill and Shuard (page 147):

The three methods dftudying a first ordedifferential equation, the
sketching of solutiorcurves,their numericalevaluation, and obtaining
explicit formulae for them by integration, all contribute to an
understanding of the solution.
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