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Summary 

The extraction of meaningful features from an image forms an important area of image 
analysis. It enables the task of understanding visual information to be implemented in a 
coherent and well defined manner. However, although many of the traditional approaches to 
feature extraction have proved to be successful in specific areas, recent work has suggested 
that they do not provide sufficient generality when dealing with complex analysis problems 
such as those presented by natural images. 

This thesis considers the problem of deriving an image description which could form the basis 

of a more general approach to feature extraction. It is argued that an essential property of such 
a description is that it should have locality in both the spatial domain and in some 
classification space over a range of scales. Using the 2-d Fourier domain as a classification 
space, a number of image transforms that might provide the required description are investi- 
gated. These include combined representations such as a 2-d version of the short-time Fourier 
transform (STFT), and multiscale or pyramid representations such as the wavelet transform. 
However, it is shown that these are limited in their ability to provide sufficient locality in both 
domains and as such do not fulfill the requirement for generality. 

To overcome this limitation, an alternative approach is proposed in the form of the multireso- 
lution Fourier transform (MFT). This has a hierarchical structure in which the outermost lev- 
els are the image and its discrete Fourier transform (DFT), whilst the intermediate levels are 
combined representations in space and spatial frequency. These levels are defined to be 
optimal in terms of locality and their resolution is such that within the transform as a whole 
there is a uniform variation in resolution between the spatial domain and the spatial frequency 
domain. This ensures that locality is provided in both domains over a range of scales. The 
MFT is also invertible and amenable to efficient computation via familiar signal processing 
techniques. Examples and experiments illustrating its properties are presented. 

The problem of extracting local image features such as lines and edges is then considered. A 
multiresolution image model based on these features is defined and it is shown that the MET 
provides an effective tool for estimating its parameters.. The model is also suitable for 
representing curves and a curve extraction algorithm is described. The results presented for 
synthetic and natural images compare favourably with existing methods. Furthermore, when 
coupled with the previous work in this area, they demonstrate that the MFT has the potential 
to provide a basis for the solution of general image analysis problems. 
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CHAPTER ONE 

INTRODUCTION 

1.1: The Image'Analysis Problem 

For most people, describing what they see in an image does not present any great 

difficulty. Irrespective of the content of the image, they will be able to provide some 

sort of description which relates directly to the visual information and is a meaningful 

interpretation of the image. The process by which such descriptions are arrived at is 

an example of image analysis, and given its capacity for dealing with visual data, it is 

something that the human visual system (HVS) does particularly well. 

In computer vision, which is concerned with building automated vision machines [5), 

the problem of image analysis is one of computing appropriate descriptions from 

image data. These data are derived from a visual scene using a suitable sensor, such 

as a camera, which projects the light energy reflected from objects in the scene onto a 

2-d plane., In order that a computer can process this image, it is then converted into a 

discrete array of numbers (known as `picture elements' or pixels) which represent the 

average luminance or colour in the vicinity of discrete grid points on the plane. This 

acquisition stage is analogous to the eye in the HVS and the resulting data to the so- 

called `retinal image' [52). Depending upon the application, the image data may also 

form part of a sequence to enable the machine to process motion, or may possibly be 

derived from several displaced sources in order to capture 3-d information. 

Vision machines have applications in a wide range of areas, including medicine, com- 

merce and scientific research [94)[95]. Consequently, the requirements of image 

analysis vary widely and depend upon the underlying properties of the visual 
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information involved. For example, it may be sufficient to regard an image as essen- 

tially 2-d and produce a description which is based upon 2-d attributes, such as orien- 

tation in the image plane or relative spatial location. - This type of analysis is often 

acceptable when dealing with data such as satellite imagery or some medical applica- 

tions. On the other hand, it may be necessary to consider 3-d aspects of the scene, in 

which depth, surface orientation, etc, play an important role. This is clearly appropri- 

ate when dealing with more general vision problems. ' Other examples might be the 

analysis of motion or stereopsis. Furthermore, image analysis is often of use in areas 

related to computer vision, such as image coding [69], in which a perceptual com- 

ponent is often beneficial. 

,. 

The diversity of the above requirements means that image analysis employs a multi- 

tude of techniques and methodologies. These range from identifying homogeneous 

regions' of texture to deriving 3-d shape from shading in the 2-d plane. However, 

although. these individual tasks are clearly important, it is also apparent that there is a 

common operation to be performed when addressing image analysis problems. To 

obtain a meaningful description from an image, it is necessary to transform the array 

of pixel values (which constitute the visual input) into a set of symbols with appropri- 

ate relationships, eg `the object A is of class B and is at location C' [109]. In this 

sense, - the problem of image analysis is well defined: the inference of a symbolic 

description from a given input signal. By recognising this property, it is possible to 

consider the individual tasks mentioned above within a single framework. In doing so 

it ensures that they are applied in a rigorous and coherent manner and not as an ad hoc 

collection of unrelated operations. It has been suggested that this approach is essential 

if solutions are to be found to the increasingly complex problems being presented by 

more general vision requirements [72][109][114]. 
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A major requirement in deriving appropriate symbols to represent a visual scene is the 

extraction of meaningful features from the image data. These include lines, edges, 

and textural properties, and give rise to a feature description which provides a more 

suitable basis for determining the content and structure of the image. It is therefore 

vital that such features are chosen carefully and with due regard for the requirements 

of subsequent processing. Indeed, the derivation of effective feature descriptions is an 

important operation in all areas of image analysis [94][95]. This is considered in 

greater detail in the remainder of this chapter. 

1.2. Feature Based Image Description 

Feature description methods originate from their use in pattern recognition systems 

[44]. The basic paradigm for such systems is illustrated in fig 1.1, where a feature 

extraction process is implemented prior to a classification or decision stage. Broadly 

speaking, a feature is an entity which is obtained from the input data via an appropri- 

ate measurement and this then forms the input to the subsequent processing. If a set 

of features is chosen carefully, then the classification or decision stages can be made 

more effective and reduced in complexity. The basic idea is that the features should 

capture the important characteristics of the input data that underlie the particular pat- 

terns being represented. If this is achieved, then the discrimination of different pat- 

terns becomes a much easier task than simply considering the data in its original form. 

An alternative view of the feature extraction operation in fig 1.1 is that it represents a 

transformation of the input data into what is known as the feature space [44]. The 

dimensions of this space are given by the chosen features in the set. Any further pro- 

cessing, such as classification or decision making, is then conducted within this 

feature space and its success is dependent upon the suitability of the space to solve the 
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data feat= 
description 

feature classification / 
sensor extraction decision stage ý"" decision 

Figure 1.1 Basic pattern recognition paradigm. 

problem, ie whether it provides sufficient class separability, noise immunity, etc. 

Regarding the use of feature descriptions in this way enables a more quantitative 

measure to be applied to the concept of a feature set characterising a particular prob- 

lem [44]. 
»r 

The above ideas are readily extended to the problems of image analysis. In deriving 

appropriate symbols to represent a visual scene there is a need to understand and 

recognise the patterns being presented by the input array of pixels. These patterns are 

the result of the light reflected from entities in the scene impinging onto a 2-d plane. 

The patterns of interest are therefore those that convey information about the scene, eg 

shape, texture, boundaries of homogeneous regions, etc, and these then give clues 

about the content of the scene such as objects (their location and orientation) and the 

background environment. Thus although the pattern recognition paradigm of fig 1.1 is 

somewhat complicated by the diversity of the patterns being presented and. the 

requirements of the problem, the motivation for extracting important features within 

the data is still applicable. Such features should be visually meaningful and capture 

the characteristics of the data that provide information about the visual scene. Having 
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obtained these features, the task of inferring the content of a scene becomes an easier 

and less complex operation in much the same way as in the original pattern recogni- 

tion problems. Furthermore, the analogy of feature extraction representing a transfor- 

mation of the data into a feature space enables these processes to be conducted in a 

1 1, more rigorous and well defined manner. 
- 

The use of feature descriptions has formed a part of image analysis since the idea of 

processing images was first conceived. The first serious attempt at a `vision machine', 

proposed by Roberts in 1965 [92], was based upon the detection of edge features and 

since then the majority of image analysis systems have been based upon some sort of 

feature description. Amongst these, there are two areas which have received particu- 

lar attention: the use of local features to identify lines and edges; and the use of tex- 

tural features to represent regional properties. In the next section, the features used in 

these applications are considered and their important properties noted. 

1.3. Applications of Feature Descriptions 

1.3.1. Edge Detection 

As mentioned above, edge detection methods were used in the earliest attempts at 

automated vision. The motivation is that transitions between luminance values in an 

image, which correspond to lines and edges, are perceptually important and provide a 

number of clues for interpreting the visual information. A basic assumption therefore 

is that the image consists of regions which are of constant or slowly varying lumi- 

nance value and that the relevant local features are the boundaries between these 

regions, represented by relatively rapid transitions in luminance. 
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Methods of edge detection are based upon some local operation that has a maximum 

response in the vicinity of luminance discontinuities. By applying this operation to 

the whole image an estimate is obtained of the location of discontinuities and hence 

the local features. This apparently straightforward principle is complicated, however, 

by the fact that a discontinuity may also correspond to spurious features such as noise 

or random fluctuation. A considerable amount of attention is therefore paid to detect- 

ing only discontinuities that correspond to the features of interest. - 

The local operation in edge detection usually takes the form of convolving a 2-d ker- 

nel with the image, There are a vast number of possible kernels, ranging from simple 

masks [79] to more sophisticated designs based on signal processing principles [65]. 

As already noted, a significant performance criterion is noise immunity and there are a 

number of techniques used to reduce the effects of noise. These include spatial 

averaging [93] and frequency domain methods [65][96]. Other properties of lines and 

edges such as orientation and scale have also played an important part in successful 

detection [22][65]. These methods are considered in greater detail in chapter 4 of this 

thesis. 

Local features can be used in a number of ways to enable a scene to be interpreted. 

Their main importance is that they convey structural information about the scene, eg 

the boundaries of objects are often characterised by an edge contour. This means that 

they are useful for both 2-d and 3-d interpretation tasks., These include the isolation 

and recognition of objects [5], inferring 3-d structure from motion [103] and stereopsis 

[72]. Lines and edges can also be significant in their own right to enable the 

identification of roads or waterways in satellite imaging for example [79]. 

Significant motivation for using local features has also come from the evidence pro- 

vided by physiological investigations into the workings of the HVS. The major 



7 

advances in this area were initially based around the discovery of simple cells in 

mammalian vision that responded to such features [53]. Furthermore, the response is 

not simply to the features but specifically to those features in given orientations and 

with specific forms of motion (a comprehensive explanation of these findings is pro- 

vided in [52]). This evidence prompted a number of workers to propose theoretical 

ideas for vision, the best known of these being probably that proposed by Marr [721, in 

which a wide range of vision tasks were explained using local features as a basis. 

1.3.2. Texture Analysis and Segmentation 

Another important application of feature descriptions has been in the area of charac- 

terising regional properties. It is often the case that some statistical or structural 

homogeneity amongst a group of pixels is perceptually important and can provide 

information about the content of a scene, These relationships can be analysed using 

textural features which capture the important properties of such groupings. 

The classification of a texture which constitutes the whole image data has many con- 

nections with traditional pattern recognition problems. Referring to fig 1.1, textural 

features are derived from the data which are then input to an appropriate classifier. 

The features are chosen to reflect the various properties of texture including fineness 

and coarseness, directionality and regularity. There are a number of different 

approaches to the type of feature used and these are all based upon some global pro- 

perty of the pixels concerned. Examples are autocorrelation functions, spectral power 

density, and co-occurrence probabilities (see eg [48]). Thus in the case of the auto- 

correlation function, its fall off in a particular direction can characterise the coarseness 

of a texture and the directionality of texture can be determined from its Fourier spec- 

trum. 
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The above classification of texture assumes that the image consists of a single textured 

region. However, an image will in general contain a number of contiguous regions and 

there is often a requirement in image analysis to segment the image into these regions. 

The textural features mentioned so far are derived from a global property of the image 

pixels and as such do not provide any absolute positional information, ie although 

they may provide information about the relative distribution of values over the image 

plane (eg an autocorrelation measure) they do not provide any direct position informa- 

tion. This means that individual regions can only be identified by treating the problem 

as a decision problem and deriving appropriate criteria, such as a maximum likelihood 

or Bayesian rule [44], to classify each pixel. Since this takes no account of spatial 

organisation, the estimation of region boundaries is often limited [113]. Several 

methods have been proposed to overcome this by providing the classification and 

decision stage with positional information. Examples include the use of features 

defined over a range of scales [98][113], iterative or relaxation techniques [17] and 

`split-and-merge' methods [27]. In all these methods, however, there is inherently a 

trade-off between the resolution of position and class information and this must be 

addressed if the classification of regions is to be successful [113]. 'Indeed, this is a fun- 

damental consideration when deriving feature descriptions, a point which will be 

returned to in later discussions (cf section 2.5.1). 

The analysis of texture using feature descriptions has a number of applications. In the 

case of data which can be considered as 2-d, such as medical or satellite imagery, it 

has considerable use in segmenting the image into homogeneous regions [95]. These 

regions may correspond to significant areas, such as those corresponding to medical 

tumours, or maybe classified as belonging to certain types of crops, vegetation, etc. 

Textural features also have application when inferring 3-d aspects of a scene, where 

surface orientation can be determined which can then lead to information about 3-d 

shape [117). 
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1.4. The Need for a Unified Approach 

As noted in the previous sections, the extraction of meaningful image features forms 

an important area of image analysis. However, recent work has suggested that many 

existing techniques are not sufficiently general to deal with complex analysis prob- 

lems [113][114]. This section considers this in greater detail and proposes a basis for a 

possible solution. 

A good example of the problem is apparent in the traditional approaches to the 

identification of lines and edges and the analysis of texture described in the section 

1.3. The difficulty can be appreciated by taking a closer look at the features used in 

these areas and noting that there exists a fundamental difference in their properties. 

This relates to their relative locality in the spatial domain and can be summarised as 

follows: 

(i) The features used to represent lines and edges are inherently local in the spatial 

domain; they are based upon local transitions in luminance value. 

(ii) The features used to represent textural properties are more global in nature; they 

are based upon a population or subpopuladon of pixels. 

The implication of this is that the two types of feature refer to different aspects of the 

information being sought about a given image primitive. The features used in edge 

detection are providing essentially positional information, ie the location of luminance 

discontinuities. On the other hand, features used in the analysis of texture are provid- 

ing information about the class of a region based upon some `global' property of the 

pixels. Furthermore, the basic attributes of these features are apparently at odds - the 

need for locality to represent position and the need for a more global approach to 
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represent class. 

This latter dichotomy underlies the lack of generality of the above methods. If there is 

a requirement for both local and global information, then neither of the two feature 

types in (i) and (ii) will provide a satisfactory solution. An example of this was noted 

in section 1.3.2 concerning the segmentation of textured regions: although texture 

may be classified by global features, the identification of boundaries in such an 

analysis is limited because it necessarily encompasses areas of the image in which 

there may exist several different regions [113]. Thus there is a conflict between the 

requirement for a global analysis to classify the regions and a more local approach in 

order to identify individual regions. A similar difficulty can be encountered when 

analysing an image using locally defined features. If the image contains homogeneous 

regions, then it is likely that many edge features will be detected within such regions. 

However, although in certain instances it may be possible to use this information for 

classification [40], in general it will not be sufficient to characterise the underlying 

region properties. Hence in this case the difficulty is reversed - the problem demands 

a more global approach instead of the local features used in the analysis. 

The above discussion has wider implications for image analysis. In general problems, 

such as those presented by natural images, it is inevitable that a wide range of image 

properties will need to be considered, eg the classification of textured regions, the 

identification of boundaries between such regions, and at the same time the estimation 

of the location and orientation of lines and edges. To do this, however, the feature 

descriptions used must be generally applicable and not confined to a specific task. As 

already noted, it is often the case that existing approaches to feature description do not 

fulfill this requirement. 
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An immediate thought might be to make use of more than one approach to obtain the 

range of required features. However, such a solution presents numerous problems, not 

least in the fact that it would be difficult to combine the result of one method with that 

of another method. This would then inevitably lead to contradictory information. For 

example, a pixel or local region could be classified by an edge detection scheme as 

corresponding to an edge, while an analysis based on textural properties classifies it as 

belonging to a textured region - which method is more correct? 

Clearly this does not represent a satisfactory solution. The overall conclusion must be 

that a more general approach is required, one in which the wide range of feature 

requirements can be met by a single method. A possible way of achieving this is to 

seek a description of the image (via a suitable transformation) that provides informa- 

tion about all perceptually important features. For example, such a description should 

have sufficient locality in the spatial. domain to represent line and edge features and be 

sufficiently global to enable the definition of regional features. Analysis solutions 

based upon this description would then have access to image features that were suit- 

able for a number of applications. In this sense it would represent a general purpose 

tool for image analysis. 

There has recently been a growing amount of interest in the need for this type of 

approach and this has led to the use of methods which are both local in the spatial 

domain and in some class space [46][109][114]. These methods have been shown to 

provide advantages in a number of image analysis areas, including texture analysis 

and segmentation [66][99][113], line and edge extraction [65], and stereopsis [114]. Up 

to now, however, these techniques have remained essentially separate implementa- 

tions of a general philosophy and have not taken the form of a unified image descrip- 

tion. It is the aim of the work described in this thesis to derive such a description and 

apply it to a typical image analysis problem. 
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1.5. Thesis Outline ,, °, 

This thesis can be considered to consist of two parts: the derivation and definition of a 

unified image description; and the application of this description to the problem of 

extracting line and edge features from an image. -. °---r- 

The requirements of a suitable image description are considered in chapter 2. It is 

shown that the description must have locality in both position and class space over a 

range of resolutions if it is to represent features that are generally applicable. A 

number of existing image transforms that may provide such a description are con- 

sidered. However, it is argued that these fail to provide sufficient locality in both 

position and class space. This leads to the derivation of a new transform, known as 

the multiresolution Fourier transform (MFT). 

This transform is formally defined in chapter 3. It has a hierarchical structure which 

can be viewed as providing local spectrum estimates over a range of spatial scales. 

The transform is invertible and can be efficiently implemented using familiar signal 

processing techniques. A general class of transforms is also introduced. Initial exper- 

iments and examples are presented for both synthetic and natural images. 

Application of the MFT to the problem of extracting line and edge features is con- 

sidered in chapters 4-6. A multiresolution image model based on such features is 

introduced in chapter 4. It is demonstrated that it has considerable generality and can 

be used to represent curves and boundaries. 

Chapter 5 describes an estimation scheme for the model. This is based upon a local 

maximum likelihood estimator and a hierarchical decision process. A scheme for 

extracting curves is also defined within the same framework. 
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It is shown in chapter 6 that the MFT provides an effective and efficient tool for 

implementing the estimation scheme defined in chapter 5. Results are presented for 

both synthetic and natural images. 

Finally, chapter 7 concludes the work with a synopsis and a discussion about the 

direction of future work. ̀  

1.6. Mathematical Preliminaries 

It will be convenient in much of this thesis to make use of linear operator notation. 

This section presents the various conventions that are adopted. 

Discrete signals will be represented by vectors which are indicated by boldface lower 

case letters. For example, the 1-d signal v (i), 05i<M, is represented by 

v= [vi] v, = v(i) OSi <M (1.1)ý 

where vi is the ith component of the vector v. Linear operators will be indicated by 

boldface upper case letters and for the 1-d case are assumed to be (M x M) matrices, ie, 

A= [ai] OSk, I <M (1.2) 

and if v in eqn (1.1) is assumed to be. an (M x 1) column vector, then the vector 

u=Avisgivenby 

M-1 

uk = aj vi (1.3) 
1=0 
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which is the result of operating on the vector v with the operator A. 

The above notation is also adopted when the underlying problem has more than one 

dimension. In these cases, the components of vectors and operators are indexed by 

the appropriate number of indices, ie one for each dimension. For example, the 2-d 

signal v (k, l), 0: 5 k, 1 < M, is represented by 

v=[ Vu ] v, a =V (k, 1) 0: 5 k, 1 <M (1.4) 

where vj is the (k, l)th component of the vector v and the vector u= Av, which is also 

defined on a 2-d support, is given by 

M-1 M-1 
u/i aklm� vmn (1.5) 

MO n. O 

where a, ,, are the components of the operator A. Note that this equation can also be 

written as a matrix operation by defining the vectors and operators in terms of column 

vectors and matrices [84]. 

It will be convenient to define sets of vectors and operators and these will be indexed 

either by subscript . 

[v0v1 V2.... v�] (1.6) [ Ao Al A2 .... A� 1 

or within parentheses 

[ v(O) v(1) v(2) .... v(n) ][ A(O) A(1) A(2) .... A(n) 1 (1.7) 
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Several operators will be used frequently and it is worth defining them here to avoid 

unnecessary clutter in the text. This is done for the 1 -d case, although they are readily 

extended to higher dimensions. To represent operations in the frequency domain, the 

discrete Fourier transform (DFT) operator will be used [91]. This is defined by 

zn xt 
F [fkt l Ar =eJM (1.8) 

and has an inverse operator F' 

F' F=F F+ =1 (1.9) 

where + indicates conjugate transpose and I is the identity operator. 

Two other useful operators are those that represent shifts in frequency and position 

[111]. Thus the frequency shift operator W is defined by 

J2n 
w, u = 6(k-l) e 

where S(k) is the Kronecker delta (5(0) = 1, S(k) =0 for k: 0) and the circular shift 

operator S by 

skj = 6(k+1-1) (1.11) 

where (k+1-1) is calculated modulo M. 
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These operators have the following properties 

S-1 = ST S=F W* F+ = F+ WF (1.12) 

W-1 = W+ W=F= F+ ST F (1.13) 

where T indicates the transpose operation. 

Finally, it will also be useful to represent truncation and bandlimiting operations [111]. 

This can be done using the truncation operator T( I') defined by 

Sk! 0Sk <F 
tkl(r) =0 else 

(1.14) 

and the bandlimiting operator B( 92) defined by 

B 
, _= 

r T( 0)F (1.15) 

where r and S2 are the truncation and bandlimiting intervals respectively. 



17 

CHAPTER TWO I ... 

TOWARDS A UNIFIED IMAGE DESCRIPTION 

2.1. Introduction 

The derivation of an appropriate feature description forms the first stage of most 

image analysis. systems. It was shown in chapter 1 that many of the descriptions 

currently being utilised are not suitable when dealing with general analysis problems 

such as those presented by natural images. This led to the conclusion that a new 

approach was needed, in the form of an image description that provides information 

relevant to all perceptually important features. The purpose of this chapter is to dis- 

cuss the requirements of such a description and then to define a transformation of the 

image data that will satisfy these requirements. The approach adopted is first to estab-- 

lish an underlying property of useful image features and then to base the required 

transformation upon this property. 

2.2. A Common Property of Image Features 

As noted in the previous chapter, image analysis involves making a transition from an 

array of pixel values to a symbolic description of the image. These symbols provide 

information about the content of an image, and as remarked by Marr [72], enable deci- 

sions to be made about "what is where". Such symbolic descriptions therefore have 

two important components [113]: a class component which indicates what something 

is; and a position component indicating where that something is located. 
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This property of symbols implies that the features used to derive them must have a 

common property, namely a degree of locality both in position and in some as yet 

unspecified class space, In other words, they should provide information about the 

spatial organisation of an image as well as information about the classification of 

separate entities. Note that this `dual locality' is precisely what is missing from the 

earlier edge detection and texture analysis methods discussed in section 1.3. Each is 

based upon features which have locality in one domain but not in both. 

A further important requirement of the features used to derive symbols is that over the 

range of possible features the locality in each domain should not be fixed. The 

features need to have various degrees of spatial locality and extend over different 

sized areas of the classification space. A good example of this is in the identification 

of homogeneous regions. These regions will have different spatial areas and will 

require different, resolutions in the classification space. Hence the features used to 

represent such regions must have similar properties., This multiresolution requirement 

has been recognised by a number of workers [68][72]. 

Starting from two fundamental requirements of symbols, ie "what" and "where" infor- 

mation, has therefore led to a common property of the features needed to derive such 

symbols -a degree of locality in both position and class space which varies over the 

range of possible features. Consequently, if an image description is to enable such 

features to be derived then it must incorporate this important property. Although this 

is not the only property that may be considered, it is one that is generally applicable 

and is thus consistent with the need for generality sought in the present work. This 

can be contrasted with other approaches, such as those based on intensity changes in 

the image [72], in which it could be argued that generality has not been maintained 

[113]. 
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It remains to decide upon a suitable classification space in which to base the required 

description. There are several possible candidates, but one that has a number of advan- 

tages is that provided by Fourier analysis. These methods have a well established 

theoretical base [14], and have found extensive use in identifying a wide range of 

image features [26][63][65][114]. In addition, there has been a considerable amount of 

work in physiology and psychology which suggests that it may be used in some form 

by the human visual system [21][24][50][104]. Although the latter is by no means con- 

elusive, coupled with the theoretical and application arguments it does suggest that the 

Fourier domain is an appropriate choice. 

2.3. Requirements for an Image Transform 

In the previous section an essential property of the description sought in this work was 

derived. Based on this and other general properties, it is possible to formulate the 

requirements of an image transform that will be able to provide such a description. 

These are as follows: 

(i) Locality -a property of meaningful features established in the previous section is 

that they should have a degree of locality in position and class space. If the 

classification space is assumed to be the Fourier domain,, then this implies that the 

required description should provide information from both the spatial domain and the 

spatial frequency domain. In other words, the associated image transform should be 

one that represents a transformation into a space that is intermediate between the 

image and its Fourier transform. The resulting image description (or representation) is 

then known as a combined representation in space and spatial frequency (cf section 

2.4). 
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(ii) Resolution -, the previous section also established that the locality of features 

should exist over a range of scales. The implication of this for the type of transform 

described in (i) is that its resolution in space and spatial frequency should be adequate 

to represent the range of localisation exhibited by all the features of interest. For 

example, it should have sufficient spatial resolution to provide the required positional 

information and sufficient spatial frequency resolution to provide the required class 

information. 

(iii) Invertibility - given that the above transform could be defined, then it will be 

advantageous if the transform were also invertible. This property will ensure that the 

information contained in the image is being preserved by the transformation, ie it pro- 

vides an alternative representation of the image without loss of information. In addi- 

tion, it will also provide a useful means of assessing the properties of models and 

further processing defined within the transform space. -t 
.y 

(iv) Computational efficiency - as mentioned in chapter 1, image analysis is an ever 

expanding area of research with a wide range of applications. It is therefore desirable 

that the techniques employed are amenable to straightforward and efficient implemen- 

tation.. This is particularly true for techniques aimed at general use. The required 

transform should therefore have computational properties which are comparable to 

existing and established methods. A computationally inefficient and cumbersome 

transform will not only have limited use but also preclude general accessibility. 

(v) Linearity - the final requirement for the transform is that it should be linear. This 

will ensure a predictable response in the transform space to the addition or weighting 

of features, and so will simplify analysis. Furthermore, it will enable familiar signal 

processing operations, such as filtering, to be considered within the transform frame- 

work. 
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In the following sections, existing techniques that are relevant to the above require- 

ments are considered. An appropriate image transform based on these techniques is 

defined in section 2.6. 

2.4. Combined Spatial and Spatial Frequency Representations 

2.4.1. Introductory Remarks 

In the previous section it was established that some form of representation which was 

intermediate between the image and the spatial frequency domain would possess pro- 

perties essential to a unified image description. Representations that provide informa- 

tion about a signal from both its original domain and the corresponding frequency 

domain have received considerable attention in the literature, particularly for the , 
1-d 

case. The purpose of this section is to present and evaluate their characteristics. The 

best known of these fall broadly into two classes: linear forms based around the 

short-time Fourier transform (STFT); and bilinear forms, of which the Wigner distri- 

bution (WD) is the most widely used. For simplicity of notation and analysis, they 

will be considered in their 1-d form. Both classes are readily extended to the 2-d case. 

2.4.2. Linear Forms 

The linear forms can all be considered to be versions of the STFT. For a continuous 

1-d signal y (t), its STFT is defined by the following pair of equations [89] 

M 

Y(t, w) =fh (t-t) y (t) e f0 dt 
_ 

(2.1) 
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00 M 

Y (t) = 2n Jjf (t -i) Y (T, c») ei`s` dti d co (2.2) 

where the synthesis equation holds provided that 

jh (t) f (-t) dt =1 (2.3) 

The functions h (t) and f (t) are known as the analysis and synthesis windows respec- 

tively. 

The representation is clearly linear, ie if 

Y2(t) =- a Y1(t) +b yo(t) (2.4) 

where a and b are constants, then 

Y2(ti, uO) =a Y1(T, w) +b Yo(cc, w) (2.5) 

Note that for a given t= tio, the function Y(zo, o) is the Fourier transform of the win- 

dowed signal w ('to, t) 

w(To, t) = h(TO-t) y(t) (2.6) 

and if h (t) is chosen to be localised in both domains, then the STET can be recognised 
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as a combined representation which is intermediate between the signal and its Fourier 

transform. 

Two dimensional forms of eqns (2.1) and (2.2) are readily defined. 

There are a number of related versions. The STFT of a discrete-time signal x (n) is 

given by [89] 

X (n, co) =jh (n m) x (m) e j0) & (2.7) 
Mx-" 0 

x (n) ` .. 
1 

27c 
Jf (n-r) X (r, w) ei`'"`dw (2.8) 

where the discrete window functions now satisfy 

ih (m) f (-m) =1 (2.9) 

Eqn (2.7) represents the discrete signal x (n) by a function of a continuous variable co 

for each value of n and thus contains redundant information. This redundancy is 

minimised by defining a discrete STFT [89] 

2n 

(2.10) X (n, k) _h (nR -m) x (m) eý M0Sk <M 
_ 

where R and M are the sampling intervals in each domain. Appropriate choice of 
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these parameters and synthesis window f (n) means that the original signal can be 

reconstructed according to 

2n j- 

x(n) _ Y, Zf (n-m) X(m, k) e 'ý (2.11) 
L-o M- 

provided that the two window functions satisfy 

f (n -sR) h (sR -n +pM) = 6(p) for all n (2.12) 

Note the further constraint on suitable windows due to the sampling process. 

The discrete STFT is the simplest example of a multirate filter bank [97][107]. These 

are defined by [97] 

X(n, k) _Z hk(nR-m) x(m) (2.13) 
m 

where the analysis windows hk(n) are no longer modulated versions of a baseband 

filter as in eqn (2.10), but are now independent functions of frequency. This has 

important' implications in coding applications, where reconstruction need no longer 

rely upon satisfying the sampling theorem on a channel-by-channel basis as implied 

by eqns (2.11) and (2.12), but can make use of methods that are able to remove alias- 

ing in the synthesis procedure [97]. The most popular of these methods is based upon 

quadrature mirror filter (QMF) techniques [421. 
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A relative of the STFT is the Gabor representation [45]. For a number of years this 

remained a separate entity and it was not until recently that a relationship was for- 

mally recognised [9]. This is probably due to the fact that it starts from a different 

viewpoint, namely the expansion of a continuous signal y (t) in terms of a linear com- 

bination of elementary functions, ie 

a 40 
y (r) =EE CkJ gkl(t) kom.... /-+. 

where 

Skr(t) = g(t-kT) e1(tsu+0) 

and 

g (t) = e-'Oct2 

TO =Va 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

As can be seen, the elementary functions gkl(t) are modulated and position shifted 

versions of a Gaussian window g (t). This window is optimally concentrated into the 

intervals T and S2, and as such satisfy a minimum uncertainty condition [45][83] (see 

later in this section). Consequently, the representation in eqn (2.14) expands the sig- 

nal y (t) in the signal/frequency plane defined by the indices (k, n. However, due to 

the fact that the functions g, u(t) are not orthogonal, an analytic solution for the 
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coefficients C, I is not straightforward (Gabor suggested an iterative solution). Bas- 

tiaans [8][9] recently introduced the following solution based upon an auxiliary func- 

tion 'y(t) 

Ckt -fy (t) Y(t -kT) e dt (2.18) 

where " indicates complex conjugate and y(t) and g (t) are related by a biorthonormal- 

ity condition [9] 

J y(t) ge(t) dt = 3(k) 8(1) (2.19) 

This condition is related to that for the discrete STFT in eqn (2.12). 

A 2-d version of the Gabor representation is also readily defined [37). 

Efficient implementation of the various forms of the STFT is based upon fast Fourier 

transform (FFT) techniques [2][88]. This does not however apply to the Gabor 

representation, where calculation of the coefficients via eqn (2.18) is expensive in 

terms of computation [87]. To avoid this, Daugman [38] proposed an iterative scheme 

for his 2-d version. 

The resolution of all these representations is determined by the windows and elemen- 

tary functions. The degree of energy concentration in a given domain defines the 

resolution achievable in that domain. A central feature of the work of Gabor was the 

realisation that a signal cannot be simultaneously concentrated to an arbitrary extent 
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in both domains. This is known as the uncertainty principle in signal processing 

[45)[83]. In fact, there exists a lower limit on the product of `durations' of a signal in 

each domain and signals which satisfy this limit are regarded as having a minimum 

uncertainty condition. This applies to the elementary signals employed by Gabor and 

as such the representation in eqn (2.14) has optimal resolution. It is of course possible 

to employ windows with a similar property when implementing the STFT. 

The STET is the most well established combined representation due to its invertibility 

and computational advantages. It is used extensively in speech processing (90), linear 

time-varying filtering [89) and adaptive processing [2][61]. Multirate filter banks are 

also used widely, mainly in speech and image coding [97][106]. 

Application of the Gabor representation has been limited due to its computational 

difficulties. However, it is interesting to note in the context of this present work that it 

has received considerable interest from workers in vision research. Its relevance to 

the study of the visual system was first noted by Marcelja [71] in 1980, and this was 

supported by a number of other workers, eg [37][86]. More recently, the work of 

Daugman [38], Porat and Zeevi [87] and Friedlander and Porat [43] have implemented 

the representation for both 1-d and 2-d cases. 

2.4.3. Bilinear Forms 

Introduced to overcome the resolution restriction imposed on the linear forms by the 

window functions, bilinear combined representations provide a type of energy density 

measure of a signal at a given instant in each domain. The most notable of these are 

the Wigner distribution (WD) [29]-[31] and the ambiguity function (AF) [83]. Since 

these have a similar definition, being related by a 2-d Fourier transform [31], it suffices 
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here to consider only the more widely used WD. 

The WD for a continuous signal 'y (t) is given by (29] 

W(t, (O) =f y(t+2) y*(t-2) e -j' dt (2.20) 

and therefore at t= to, the WD is the Fourier transform of a function which 

corresponds to taking symmetrical correlation products about to. The term `energy 

density measure' derives from its ability to preserve the energy distribution of the sig- 

nal in both domains [15]. However, its use is often disputed due to the fact that the 

, WD is not guaranteed to be nonnegative [15][29]. It is also worth noting that in gen- 

eral the WD is not invertible [29]. 

The use of the correlation term means that the WD is a bilinear function. In other 

words, the WD of the sum of two signals is not simply the sum of their respective 

WD's, ie if 

y2(t) = YI (t) + y0(t) (2.21) 

then 

W2(t, o) = W1(t, o) + W0(t, (o) + 2ReW01(t, o) (2.22) 

where Re indicates the complex real part and W01(t, w) is the cross-WD 
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M 
a 

Woi(t, co) =j yi(t+Z) y(t_ ) e-j0 dti (2.23) 

The WD of a discrete-time signal is not so well defined as in the continuous case and a 
number of versions exist. The following was adopted in [30] 

W (n, co) =2x (n +k) x* (n -k) e 12kW (2.24) 

where n is the discrete variable and o) is a continuous frequency variable. This version 

suffers an aliasing problem which is common to a greater or lesser extent in others 

[32]. The problem derives from the fact that W (n, CO) is periodic with period it due to 

the factor 2 in the exponent of eqn (2.24). Since the spectra of discrete-time signals 

have period 2n, W (n, co) will contain aliasing components. A number of techniques, 

including oversampling and prefiltering, have been proposed to overcome this 

difficulty [25](32][59]. 

The infinite 'summation in eqn (2.24) means that a variant of the WD needs to be 

employed in practice. This led to the pseudo-WD proposed in [29] 

W(n, ci)) =2 x(n+k) x*(n-k) h(k) e j2kw (2.25) 

where h (n) is some finite window function. The effect is a smoothed WD in fre- 

quency, ie 

W (n, o» =W (n, w) *W H((o) (2.26) 
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where H (w) is the DFf of h (n) and *0) denotes discrete convolution wrt the variable 

w. Another example of this is the smoothed-WD introduced in [59]. Both of these 

forms of the WD can be implemented using FFT techniques. 

In the continuous case, the bilinear forms dö achieve better resolution than their linear 

counterparts. This is clear from eqn (2.20) where the lack of a window. function 

means that maximal resolution is achieved [60). However, in practice this advantage 

does not apply to either the pseudo or smoothed WD's. In these cases a window func- 

tion is employed which means that their resolution is restricted by the uncertainty 

principle. In fact, the WD is further disadvantaged by its bilinearity, which often 

means that it is difficult to interpret for complicated signals, due to the presence of the 

cross-terms in eqn (2.22) [62]. Suggestions have been made for removing these 

cross-terms, although this has had limited success [59][62]. 

Despite this, the WD has been applied in a number of areas. These include optics [7], 

vision research [58] and speech analysis [105]. Of particular interest here is the work 

of Jacobson and Weschler [58]. These workers used a 2-d WD in order to define a 

model of the operation of simple and complex cells within the striate cortex. 

2.5. Multiscale Representations 

2.5.1. Fixed Window Size and Uncertainty 

The resolution of the representations considered in the previous section is dependent 

upon a basis or window function. Such a function cannot be arbitrarily localised in 

both domains and therefore the representations are inherently restricted by uncer- 

tainty: defining the spatial resolution automatically sets a tight bound on the 
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maximum frequency resolution. What this implies in practice is that an arbitrary fixed 

window size must be employed, albeit based upon a window with optimal joint locali- 

sation. 

This presents a considerable difficulty. As noted in section 2.2, image features that 

are generally applicable have varying degrees of locality in both space and spatial fre- 

quency. However, if one of the above representations is used, then it would mean 

adopting a trade-off between the locality of features in each domain. Indeed, choos- 

ing a given window size may provide sufficient frequency resolution to enable a 

feature to classify an object, but it may also mean that several objects are then present 

within the spatial extent of the window and thus prohibit identification. 

The problem is clearly related to the uncertainty principle and is a fundamental prob- 

lem when trying to simultaneously locate and classify image properties [109). A good 

example of this is in the analysis of homogeneous regions mentioned at the beginning 

of this chapter. To obtain a reliable classification, it would be necessary to use 

features that are derived from a reasonably wide sample window, which would then 

preclude the accurate location of the boundary. In other words, the locality in position 

is sacrificed for locality in classification. 

A possible solution to this dilemma is to make use of techniques that are finding 

increasing use in image processing. Multiscale methods recognise the limitations of 

an arbitrary fixed window size and seek an image representation in terms of windows 

that are scaled versions of each other. As it turns out, although these methods possess 

multiple resolution in the spatial domain, they fail to provide sufficient spatial fre- 

quency resolution. Nonetheless, their contribution in this area is important and, as 

will be shown later, they form a subset of the class of transforms sought in the present 

work. 
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2.5.2. Pyramid Representations and the Wavelet Transform 

There is a wide range of methods that represent an image in terms of scaled and 

translated versions of a single window function. ' Although they often have a slightly 

different appearance in notation, their properties and underlying characteristics are 

essentially the same. The common feature is that they all consist of different resolu- 

tions of the image, which are then usually arranged in a pyramidal data structure. The 

generation of these different resolutions is typically achieved by some type of smooth- 

ing operation followed by a decimation process; the smoothing operator is then known 

as the `generating kernel'. More recently, there has been interest in the use of kernels 

which have a degree of frequency and orientation selectivity, and to seek an orthogo- 

nal representation in terms of these kernels. The most notable contributions in this 

area are considered in this section. 

The basic pyramid representation consists of a number of stacked 2-d arrays, each of 

which represents a different spatial resolution of the image. ` The bottom level is usu- 

ally the image and subsequent arrays have dimensions (and resolutions) that decrease 

by a constant factor. For an image v (k, l ), 0<k, l<M, where M=e, a typical gen- 

eration scheme is the following recursive smoothing and decimation operation 

K-1 K-1 
Sn(k, 1) =EE w(p, q) 8(n-1)(2k+p, 21+q) 

p-0 q-0 

OSk, l <2N-n 
0<n <N (2.27) 

where g,, (k,! ) are the coefficients, or nodes, on level n of the representation, the gen- 

erating kernel w (p, q) is of finite size KxK, and the image forms the initial level 

8o(k, 1) =v (k, 1) 0: 5 k, l <M (2.28) 
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The kernel w (p, q) therefore defines the transformation function between the different 

resolutions. 

The simplest example is the quadtree representation [100], where the kernel is the 

unweighted averaging of nodes in a2x2 region, ie K=2 and w (p, q) is given by 

w(p, q) =4 OSp, q<2, (2.29) 

Each node on levels above the base level is therefore the average of its four `child' 

nodes on the previous level. This representation is particularly easy to implement, 

since it is amenable to fast recursive computation. 

Alternative kernels have been proposed which have a smoother spatial response and 

better joint localisation in the spatial and spatial frequency domain. Various examples 

and their associated properties have been considered in the literature [19][76][81]. An 

example is the Gaussian kernel [19], where w(p, q) approximates a Gaussian function 

defined on a limited support and with an appropriate variance. 

The Laplacian pyramid representation is derived from the levels of a `Gaussian' 

pyramid [16][18][35]. Each node is given by 

doýk, l) = gniký1) - gý(n+l)ýk, l) (2.30) 

where the nodes g�(k, I) are generated according to eqn (2.27), with w (p, q) an approx- 

imation to a Gaussian function and the nodes g'(n+1)(k, 1) are interpolated from the 

nodes g(i+1)(k, l) such that the dimensions of the arrays gn(k, l) and g'n+l(k, l) are the 
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same. From the above it can be seen that the levels of the Laplacian pyramid are the 

difference between successive levels of the Gaussian pyramid; it can be shown that 

this is equivalent to generating the levels by convolving the image with a kernel that 

approximates a Laplacian operator and then sampling the result [18]. The approximat- 

ing kernel is known as a difference-of-Gaussians (DOG) [73]. Exact reconstruction is 

possible from this representation and its main use has been in image coding [18]. Its 

advantage over the simpler representations is that discontinuities in the image, such as 

lines and edges, are represented in the pyramid over a range of scales (a characteristic 

of the Laplacian operator) and these tend to be enhanced following reconstruction 

from a coding process. Since these features are important to the observer, the results 

have a more acceptable appearance than those based on methods less well matched to 

human visual perception. 

A useful way to visualise the operations being performed in the above examples is to 

consider the frequency response of the different kernels. These are illustrated in figs 

2.1a and 2. Ib for the Gaussian and Laplacian pyramids respectively. The former is 

simply a lowpass filter whose bandwidth is a function of the level; the different levels 

are therefore just smoothed versions of each other. In the case of the Laplacian, the 

kernel is frequency selective; referring to a different circular band of the frequency 

domain for each level. Lines and edges, which correspond to an energy concentration 

in an orthogonal direction in frequency, are therefore represented on each level at a 

different scale (or frequency band). Note that the Laplacian pyramid has removed the 

redundancy apparent in the Gaussian based pyramid. 

The above examples are all isotropic representations, eg lines and edges are 

represented equally, independent of their orientation. A natural extension is therefore 

to introduce anisotropy, or orientation selectivity, by dividing up the frequency 

domain as shown in the examples of figs 2. lc-2.1d. Such methods were recently 
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Figure 2.1. Frequency domain decomposition for various 
multiscale representations. 

proposed by a number of workers [1][108][113]. Kernels are defined which have the 

appropriate frequency responses and then a filtering and decimation operation with the 

image produces the required data. From the responses in fig 2.1 it is clear that these 

recent methods are related to the combined representations considered in section 2.4. 

However, in these cases the frequency domain is represented on a logarithmic scale; 

the resolution varies (uniformly) over the domain. This correspondence was noted by 

Daugman [38] in his implementation of the Gabor representation, where he derived a 

version which was based upon oriented and logarithmically scaled elementary func- 

lions. 

All the above versions have recently been placed into the theoretical framework of 

wavelet transforms [36][70]. The theory was originally defined by Meyer [77] and has 

been extended for both the 1-d and 2-d cases by a number of other workers [36]. It 

concerns the definition of functions which involve the projection of the signal onto a 
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space defined by dilations and translations of so called "wavelets" 0(t), ie for the 1-d 

continuous signal z (t) [36] 

1 M. 

U(T, a) =a2 f*(ý6) x(t) dt (2.31) 

where U(r, a) is known as the continuous wavelet transform. The redundancy in the 

2-d `scale-space' (ti, (Y) [118], due to the overlapping of the wavelets, can be reduced 

by employing the discrete wavelet transform [36] 

U(m, n) =aj 4'(t Onx(t) dt (2.32) 

where the translation and dilation parameters now have discrete values 

ßm = ßä tim = To aö (2.33) 

and tin depends upon ßm so that as the scale parameter m increases, the translation 

steps move further apart to account for the widening of the functions 0(") in eqn 

(2.32). The pyramid representations discussed above are versions of this discrete form 

applied to 2-d discrete data. 

In general wavelet transforms are not invertible, although by judicious choice of the 

wavelet function, inversion does become possible. An example is the Laplacian 

pyramid. Another example is when the wavelets are chosen to be orthonormal over 

the dilations and translations used in the transform [36]. The majority of recent work 

in these representations has concentrated on defining such orthogonal transforms, 
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where the wavelets or kernels are both frequency and orientation selective [1][70]. 

Multiscale methods have been applied to a wide range of image processing tasks. 

Perhaps the most popular is image data compression, where almost all the above ver- 

sions have been applied. These include coders defined on the quadtree [110], the 

Laplacian pyramid [18] and the more recent orientation selective representations 

[1][108]. Other applications include segmentation [17][98][12], restoration [33] and 

edge detection [10][56]. "- - 

However, although the above methods illustrate the advantages that can be gained by 

representing the image over a range of spatial resolutions, they do not provide the 

unified description sought in this work. This is because the limitations of a fixed win- 

dow representation have only been addressed in terms of the spatial domain; the result 

in the frequency domain is still an arbitrary fixed resolution, albeit an orientation 

selective one. Furthermore, the frequency domain is no longer represented in a uni- 

form way: separate subbands correspond to different spatial resolutions. These two 

properties are evident from the kernel frequency responses in fig 2. I. 

To illustrate the effect of this upon an analysis problem, consider the available 

coefficients within one of the above representations that correspond to a finite spatial 

region. The coefficients are non-uniformly distributed across the frequency domain 

and they refer to different spatial resolutions of the region. The first problem, there- 

fore, is how to combine this inhomogeneous set of coefficients to provide an effective 

classification space. Clearly this is not as straightforward as a simple Fourier 

representation. Secondly, the resolution in frequency is fixed by the choice of the 

scale parameter and generating kernel or wavelet, and hence the problem of classify- 

ing arbitrary features remains. For example, it would not be possible, given a division 

of the frequency domain as in fig 2.1c, say, to distinguish between two features which 
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have orientations closer than the (fixed) orientation bandwidth of the representation. 

In other words, these methods are limited by uncertainty in the frequency domain in a 

similar way to those discussed in section 2.4. It is shown in the next section that to 

overcome this problem it is necessary to adopt an approach which combines both of 

these methods into a single entity. 

2.6. -A Multiresolution Approach 

2.6.1. Summary of Existing Methods 
rýý--ai 

The joint localisation property of image features suggested the use of a combined spa- 

tial and spatial frequency representation to provide a unified description. The two 

classes of such representations, linear and bilinear, were considered in section 2.4. Of 

these, a version of the linear STFT can be defined to have a number of advantages: 

optimal localisation; invertibility; and computational efficiency. However, an 

inherent limitation is that a trade-off must be adopted between the resolution obtained 

in each domain, leading to a compromise which is inevitably inadequate for some 

features. 

Multiscale methods provide a partial solution to this limitation by seeking to represent 

the image over a range of spatial resolutions. However, as was shown in the last sec- 

tion, this leads to representations in which the frequency domain has an arbitrarily 

fixed resolution and is non-uniformly represented. It is therefore desirable to seek a 

more general description, one in which both domains are represented in a uniform 

manner and over a multiplicity of resolutions. 
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2.6.2. A Unified Description 

In order to provide the required description, a new transformation is adopted in this 

work which is based upon the STFT and is a generalisation of the multiscale methods. 

The basic idea is to combine a set of STFT's into a single hierarchical transform. The 

individual levels are then defined so that within the limits imposed by uncertainty, the 

resolution in each domain varies uniformly over the transform, ranging from the origi- 

nal signal to its DFT. Specifically for the 2-d case, the bottom level is the original 

image and the top level is the DFT, while the intermediate levels are STFT's with 

increasing spatial frequency resolution and decreasing spatial resolution, where the 

change of resolution is by a factor of two in each domain. Hence the transform con- 

tains the `full range' of resolutions in both domains. This new description is known as 

the multiresolution Fourier transform (MFT). 

A concrete example will help to make the above description clear. Consider the 1-d 

signal v (i) represented by the vector v, where vi =v (1), 0<1<M and M= 2N, then 

its MFT vector u(n) is given by 

uik(n) =1 WIC Sr* -fg(n) 
)+v- 

(2.34) 

0<i <fl4 0 Sk<r. S2�=2" Styr =M 05n5N 

where the operators W and S are the frequency and position shift operators defined in 

section 1.6 and g(n) is a family of analysis vectors which have optimal localisation in 

a signal domain interval of size I'n and a frequency domain interval of size San. A 

comparison with eqn (2.10) shows that the MFT, for a given value of n, is a discrete 

STFT with an analysis window given by the vectors g(n) and resolutions in each 

domain defined by the parameters r and 52,,. There are N levels of the transform and 
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level 0 
discrete Fourier 
transform 

Qn 

level 1 
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level 2 

elementary 
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frequency level 3 

domain original signal 

signal domain 

Figure 2.2. Signal/frequency diagram for 1-d MFT. 

the level index n defines the ratio of resolution between the two domains as illustrated 

in fig 2.2. 

The rectangular boxes or `elementary cells' in fig 2.2 correspond to the position and 

frequency shifted versions of the analysis vectors in eqn (2.34), ie Wkf)" S-`r" g(n). 

Since each coefficient of the MFT is derived from the inner product of these versions 

with the original signal, each cell can be considered to represent a single degree of 

freedom within the transform. The dimensions of the cells, I", and 52, 
x, are the effec- 

tive durations of the analysis vectors in each domain. In other words, the vectors are 

defined such that their `duration product' satisfies 

F,, Stn =M On = 2n 0SnSN (2.35) 

It is clear that this relationship ensures that both domains are completely represented 
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Figure 2.3. Spatial/spatial frequency diagram for 2-d N=. 

by the MFT at each level. 

An extension of the above example to the 2-d case is straightforward. The resulting 

tessellation of each domain for a cartesian separable implementation is illustrated in 

fig 2.3. In this case there are five dimensions in the transform; two spatial, two spatial 

frequency and a level or resolution index. The elementary cells of a 2-d MFT 

corresponding to a single degree of freedom are therefore 4-d `hypercubes', which in 

fig 2.3 are symmetrical in both the spatial and spatial frequency dimensions. 

It is important to note from fig 2.3 (and fig 2.2) that for a given level (and thus resolu- 

tion) both the spatial and spatial frequency domain are uniformly represented within 

the MFT. Recall that this was not the case for the multiscale methods discussed in 

section 2.5. Furthermore, it is clear from figs 2.1 and 2.3 that the MFT is in fact a 

ý, 
, ý.. _ 
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generalisation of these methods and includes them as a subset. In other words, for a 

given coordinate space, the MFT will contain a set of possible multiscale representa- 

tions. 

To conclude, the 2-d MFT has the following important properties which satisfy the 

requirements of the image description sought in the present work (cf section 2.3): 

(i) Locality -a level of the MFT is a combined spatial and spatial, frequency 

representation of the image. By choosing analysis vectors that are optimally localised, 

each level is an optimal representation at its prescribed resolution in each domain. 

(ii) Resolution - the MFT contains a multiplicity of resolutions in both domains. 

These range from the image to its DFT. The different resolutions consist of 

coefficients that are uniformly distributed across the whole domain. Hence there will 

exist a set of coefficients in the MFT that can represent an arbitrary degree of locality 

in either domain exhibited by a given feature. 

(iii) Invertibility - since the STFT can be defined to be invertible by judicious choice 

of window function, the MFT has a similar property. 

(iv) Computational efficiency - each level of the MFT can be efficiently computed in 

a similar manner to a STFT using familiar FFT techniques. 

(v) Linearity - the STFT is linear by definition and this also applies to the MFT. 

In the remainder of this thesis, the MFT is considered in greater detail and its applica- 

tion to a typical image analysis problem is presented. 
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CHAPTER THREE 

THE MULTIRESOLUTION FOURIER TRANSFORM 

3.1, Introduction 

The requirements for a unified image description were considered in the previous 

chapter. It was shown that existing methods fail to provide a suitable solution and that 

a more general approach needs to be taken. This led to the introduction of the mul- 

tiresolution Fourier transform (MFT), which combines the approach of multiscale 

techniques with that of combined spatial and spatial frequency representation. In this 

chapter, the transform is considered in more detail. The forward and inverse 

transforms are defined using linear operator notation and the important properties of 

the transform are noted. It is then shown that there exists a general class of such 

transforms and the details of this class are considered. The chapter concludes by 

describing an efficient implementation scheme and presenting various examples of the 

transform. 

3.2. Forward Transform Definition 

The MFT was introduced in section 2.6. It has a hierarchical structure in which each 

level resembles a STFT with minimum uncertainty window functions. The resolution 

of these levels, determined by the parameters ra and 52,, for the signal and frequency 

domains respectively, varies uniformly over the transform from the original signal to 

its DFT according to a scale parameter n. For a signal vector v, the transform vector 

u is given by 



v u= G' 

where the operator G is partitioned into level operators G(n) 

G=[ G(0) G(1) ...... G(n) ...... G(N) 

and the vector u is partitioned into level vectors u(n) 

U= 

U(O) 
u(1) 

u(n) 

u(N) 
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(3.1) 

(3.2) 

(3.3) 

where the resolution of u(n) in the signal and frequency domains is determined by the 

parameters I',, and Q, The operators G(n) are then defined by the analysis vectors 

gik(n) 

G(n) _[ goo(n) .... go(r, i)(n) .... gik(n) .... 9(r4-1)(1)(n) 
] 

(3.4) 

where 

gik(n) = Wkf2" S_ir. g(n) (3.5) 

05 ß< S2n 0S k< r, Q. 2* il" r= M 05 n <N 
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and W and S are the frequency and position shift operators defined in eqns (1.10) and 

(1.11). A given vector gjk(n) is therefore a frequency and position shifted version of a 

basic analysis vector g(n). 

The definition of the set of analysis vectors g(n) follows directly from the discussion 

in section 2.6. The requirement is that their energy should be concentrated into inter- 

vals of size rn and 52,, in the signal and frequency domains respectively. These inter- 

vals can be represented by the truncation and bandlimiting operators T(r,, ) and B(92', ) 

defined in section 1.6. Using these operators, it is possible to define a set of functions 

which satisfy the required energy concentration criteria and provide an invertible 

transform which can be efficiently implemented (cf sections 3.2 and 3.6). These are 

from the class of finite prolate spheroidal sequences (FPSS) [111] and they are defined 

by the following eigenvalue problem 

B(fn) T(rn) g(n) _ 2Lo g(n) (3.6) 

where Xo is the largest eigenvalue of the operator B(Q, ß) T(r ). The vectors g(n) are 

therefore bandlimited and it can be shown that among bandlimited vectors they have 

maximum energy concentration in the interval defined by T(F) [111]. Note that from 

the above equations, these vectors ensure that the signal and frequency domains are 

partitioned as illustrated in fig 2.2. 

In a similar manner to the STFT [89], it is possible to consider two separate interpreta- 

tions of a level of the MFT for a given value of n. This can be done by noting that 

from eqns (3.1)-(3.5), the coefficients u; k(n) are given by 

uik(n) = g+(n) Sir, W kn, 
v (3.7) 
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Figure 3.1. Filter bank interpretation of 1-d IvIFT. 

and that this equation can be interpreted in one of two ways. First, for a given value 

of k= ko, the coefficients are the sampled output of a filter with impulse response 

g1'(n) = g! (n), 1'= M-l (mod M), and input given by the frequency shifted signal 

W k0f)" 
v, where the sampling factor is I',,. In this case, the vector u(n) can be 

represented by the filter bank arrangement shown in fig 3.1. Secondly, for a given 

value of i=ip, the coefficients form an estimate of a sampled Fourier spectrum of a 

local region in the signal domain centred at i 0F +i'� /2, with sampling interval 52n. 

This region corresponds to weighting the signal by a function which is given by a 

shifted version of the vector g* (n) and the interpretation is illustrated in fig 3.2. 

As noted above, a given level of the MFT resembles a discrete STFT. What distin- 

guishes the MFT is the incorporation of the scale parameter n, which gives the 

transform a multiresolution structure. Its significance is that it determines the resolu- 

tion in each domain of the vectors u(n). For n=0, the vector u(0) is the DFT of the 
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Figure 3.2. Local spectrum interpretation of 1-d MET. 

signal 

u(O) = G+(0) v=Fv G+(0) =F (3.8) 

As n increases, the resolution in the signal domain increases and the resolution in the 

frequency domain decreases, culminating in the original signal 

u(N) = G+(N) v=v G+(N) =1 (3.9) 

Generalisation of the transform to 2-d is straightforward, particularly for a cartesian 

separable implementation. In this case, the 2-d transform operator G2 is simply the 

Kronecker product of its 1-d counterparts GX and Gy [84] 
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Figure 3.3. Local spectrum interpretation of 2-d MFT. 

u= G2 v=( GX 0 Gy) v (3.10) 

where the 2-d image v (Q), ), 0<_ i, j<M, is represented by stacking its rows into the 

(M2 x 1) image vector v, ie 

V(iM+j) =v (i, j) 0: 5 i, j< M (3.11) 

This 2-d version can be interpreted in a similar way to the 1-d case. For the remainder 

of this thesis it will be convenient to adopt the `local spectrum' interpretation illus- 

trated in fig 3.3. The level vectors u(n) are then considered to consist of a set of local 

2-d spectrum estimates, each referring to a square region of the image and denoted by 

the vectors uzy (n), 05x, y <5. 
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Alternative 2-d implementations could also be considered, most notably a polar separ- 

able version, and these may have certain advantages. For example, the concept of 

orientation in the 2-d plane is naturally represented in polar coordinates and the 

corresponding transform is likely to have greater orientation selectivity. However, an 

important advantage of the cartesian separable case is that of computational efficiency 

(cf section 3.6). Moreover, the cartesian separable form is both easier to analyse and 

more directly related to the conventional DFT. It was therefore provisionally decided 

to employ this form for the bulk of the work reported hereafter, only adopting the 

polar separable form if significant difficulties were experienced in the implementation 

of for example orientation estimation procedures. However, this turned out not to be 

the case (cf chapter 6), and so the cartesian separable form was used exclusively. 

3.3. The Inverse Transform 

3.3.1. Exact Inversion 

A signal may be reconstructed from each level vector u(n) of its MFT by the applica- 

tion of an inverse operator H(n) 

v= H(n) u(n) (3.12) 

which is related to the forward operator by 

v= H(n) Gi'(n) v (3.13) 

and hence 
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G(n) = H-1(n) (3.14) 

If H(n) is defined in terms of synthesis vectors hik(n) 

H(n) = hoo(n) .... ho o (n) .... ha(n) .... hcsi>(r. 
-i)(n) (3.15 criý z. - ) 

then from eqns (3.4) and (3.14), the analysis vectors and synthesis vectors are related 

by 

g; k+(n) hik"(n) = 6(i - i) S(k - k') (3.16) 

For a unitary transform, in which the analysis vectors are orthonormal, the synthesis 

vectors are simply equal to their analysis counterparts [84]. This is not the case for the 

MFT. Although the vectors in eqn (3.5) are orthogonal across frequency bands [111] 

g'(n) g; "k-(n) =0k ;& k' (3.17) 

the same does not apply with respect to position in the signal domain. However, there 

does exist an alternative set of vectors which satisfy eqn (3.16) and enable an exact 

reconstruction. 

These are defined in a similar manner to the analysis set, ie 

hik(n) = W" S-ire h(n) (3.18) 
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where the frequency domain vectors 

g(n) =F g(n) h(n) =F h(n) (3.19) 

are related by 

1/S2n 0<i<S2n 
g' (n) hi (n) -0 else (3.20) 

and the component magnitudes of g(n) are non-zero in the frequency band of interest 

(see appendix I) 

o 
St(n) I =0 

0<i<On 

else (3.21) 

In other words, the vectors h(n) are defined to have an inverse frequency response to 

that of the vectors g(n). 

To see that such a choice of h(n) is correct, note that from eqns (3.5) and (3.18), the 

lhs of eqn (3.16) can be written as 

gik+(n) hi'k' (n) = g+(n) Sire W-kit. Wk'S2* S-"r a h(n) 

Noting that for r 52, E =M 

S`r" Wkf" = Wks" S`r" 

(3.22) 

(3.23) 
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and using the properties of the operators S and W defined in eqns (1.12) and (1.13), 

eqn (3.22) becomes 

gik+(n) hi'k'(n) = g+(n) S(`-i')ra W(k'-k)'-4 h(n) 

= g(n) F+ F S(`-t')r, w(k=k)2� F+ F h(n) 

= g+(n) F' F S(`-` )r" F+ S(k-k')n "F F+ F h(n) 

_ (n) W(i-i')r� S(k-k'Q. h(n) (3.24) 

1' 

r { 

,t 

i 

i 

I 

t' 
.r 

t 

1 

l 

S 

1 

r 

where g(n) and h(n) are defined as in eqn (3.19). Now, given the bandlimiting pro- 

perties of g(n) and h(n) 

ww 

T(in) fi(n) = (n) T(in) h(n) = h(n) (3.25) 

and the definition of h(n) in eqn (3.20), eqn (3.24) becomes for k ;& k' 

g;, t+(n) hik-(n) =0k *k' (3.26) 

while for k= k' 

£2. -1 A*j 
27c r. (1-i7l 

gik*(n) hi'k'(n) = Y, gl (n) hl(n) 
eM k=k' 

1=0 

_e k=k' 
n l=0 

11 i=i' 
=101 i' k= k' (3.27) 

,,. 
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and hence 

gjk+(n) hi'k"(n) = S(i - i') S(k - k') (3.28) 

as required by eqn (3.16). 

The above inversion is directly related to the sampling theorem and is an intuitive 

result when one considers the synthesis filter bank in fig 3.4, where the input to the kth 

channel are the coefficients u; k(n) for 0 <_ i< nn. The synthesised signal is then gen- 

erated by interpolating (expanding and filtering) each of the I'� channels using a filter 

with impulse response hi(n), frequency shifting each output by On, and summing over 

all the channels. It can be seen from the analysis filter bank in fig 3.1 and the relation- 

ship between the analysis and synthesis filters in eqn (3.20), that each channel of the 

analysis filter bank is reconstructed exactly and that the original signal results follow- 

ing summation. 

wý ý�k _P1 
M 

V. 
1 

.........::: > h (n) ......,:;, ý u (n) .......... r in i(in-1) 

Figure 3.4. Synthesis filter bank interpretation of 1-d inverse MFT. 
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3.3.2. A Multilevel Inverse 

It was noted in chapter 2 that useful image features have a degree of locality in both 

the spatial and spatial frequency domain which varies over a number of different reso- 

lutions. This implies that they will be optimally represented within the structure of a 

2-d MFT by a set of coefficients from several different levels. Given that it would be 

possible to define a selection process to identify the relevant coefficients, the question 

then arises as to whether it is possible to invert a `sparse' transform, ie one that con- 

tains coefficients from different levels with no single level having a complete set. 

This can be investigated by defining an operator to represent the selection of 

coefficients from different levels of the MFT. Denoting this `selection operator' by C 

and considering the 1-d case, it is given by 

S(i-i') 8(k-k') 
Ci/; 'k' (n) =0 

iff selection criterion true at u; k(n) 
else (3.29) 

ie the level operator C(n) operating on the level vector u(n) selects a number of 

coefficients while setting the remainder to zero. A multilevel inverse is then defined 

as 

r=F H(n) C(n) u(n) 
n 

(3.30) 

where r is the reconstructed signal and H(n) is the inverse operator defined in the pre- 

vious section. 
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Although trivial cases can be identified in which it is possible to exactly reconstruct an 

image from coefficients selected from different levels of a 2-d MFT, in general such a 

reconstruction will yield errors. The scale of these errors are determined by several 

factors: 

(i) the degree of localisation in the spatial domain of the selected coefficients. 

(ii) the form of the synthesis vector h(n). 

(iii) the spectral distribution of the original image v. 

The above factors can be appreciated by considering the filter bank in fig 3.4 and not- 

ing that an arbitrary selection operator C(n), operating on the vector u(n), corresponds 

to a non-uniform sampling process. Since each level is a complete representation in 

terms of the sampling theorem, this additional sampling will result in aliasing errors in 

the reconstruction. These errors can then be'determined from the synthesis formula in 

eqn (3.13). It suffices here, however, to note that the factors listed above will deter- 

mine the degree of aliasing and that these are similar to those encountered in other 

sampling/reconstruction problems [951. Their significance when reconstructing an 

image from a sparse transform is summarised below: 

(i) The selection of coefficients corresponding to a relatively large spatial region 

(dependent upon the level) will in general mean that the central area of the 

region will contain small errors on reconstruction. 

(ii) A synthesis vector with a smoothly varying spatial response will result in more 

`acceptable' errors, reducing the edge ripples normally associated with aliasing 

effects. 



56 

(iii) A reconstruction for an image that possesses relatively large low frequency com- 

ponents will result in unpleasant high frequency aliasing as the spectrum `folds 

back'., This is particularly true for natural images. 

3.4. Properties of the Transform 

3.4.1. Linearity and Shift Invariance 

The MFT is a linear transform, ie for the vector w=ax+by 

G+w=aG+x+bG{'y (3.31) 

where a and b are constants. This follows directly from eqns (3.1)-(3.5). It is worth 

noting that although not considered in the present work, this linearity property would 

have important advantages if one were to consider the definition of linear filtering 

operations within the context of the transform (see Portnoff [89]). 

A level of the transform represents shifts in position up to a factor r,, 

G+(n) Srr" v= S'r" G+(n) v05r< nn (3.32) 

and shifts in frequency up to a factor 52,, 

Gi'(n) Wsa" v .= Wso" G+(n) v05 s< r (3.33) 
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This shift invariant property is readily shown by considering a level of the MFT for 

the position and frequency shifted signal WsQ" Srr" v and noting that from eqns 

(3.4) and (3.5) 

u(n) = G+(n) tea Srr" v 

lS 
WSa. G(n)J+ v 

= Srr" WSn G+(n) v (3.34) 

3.4.2. Local Spectrum Estimation 

The 2-d MFT can be interpreted as a set of `local' spectrum estimates spaced uni- 

formly over the image plane (section 3.2). If the transform is to be utilised in a way 

which assumes this interpretation, then the properties of these spectra need to be con- 

sidered. 

This is best achieved by again considering the 1-d case and noting that from eqns (3.7) 

and (3.23), the coefficients uik(n) for a given i=io are related to the shifted signal 

S`0r" v by 

, 
U10k(n) = g+(n) W-kS2 SZor, v (3.35) 

From eqn (1.13) this becomes 

uiok(n) =CF g(n), + Skn" F S`Or" v (3.36) 
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In other words, the spectrum estimate u; ok(n), 
0 <_ k< Fa, is a sampled version of the 

convolution between the (shifted) signal spectrum and the spectrum of the analysis 

vector g(n). The estimate is therefore a biased estimate and the nature of this bias is 

illustrated in fig 3.5. Note that for a given frequency coo = 2irf ko/M, the estimate is 

the sum of frequency coefficients in its vicinity weighted by the components of the 

vector S-k0! Q" F g(n). 

S° 
Qn 

Fg (n) 

ir 
FS on 

(ko+2) Qn 

............. .:..... 
SFg (n) 

uik (n) 

k 
ko k0+1 ko+2 

Figure 3.5. Spectrum estimate ui k(n) interpreted 
0 

as a sampled convolution. 

The above is a familiar problem in spectrum estimation when the estimate is of the 

form defined by eqn (3.35) [49][64]. As can be seen from fig 3.5, the bias is reduced 

by using an analysis vector which has a small effective bandwidth, although this in 

turn implies that a trade-off must be made with the locality of the estimate (principle 

of uncertainty). Hence the optimal vectors in this respect are the finite prolate 

spheroidal sequences. This not unsurprising conclusion was also arrived at by Harris 

[49] in a comprehensive survey of available analysis windows. Furthermore, 
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Thomson [101] has made use of this optimality for general spectrum estimation. The 

local spectra of the MFT therefore constitute optimal estimates in terms of locality 

given their predefined resolution in each domain. It is also worth noting that the 

above bias can also be reduced by applying a prewhitening operation to the input sig- 

nal [64][101] (cf section 3.6.4). 

3.4.3. Hierarchical Properties 

Up to now the transform has only been interpreted in terms of the separate level vec- 

tors u(n). For the 2-d case, however, there is a hierarchical correspondence between 

the coefficients of the level vectors which enables an interpretation of the transform as 

a whole. The basic structure is that of a vector quadtree, in which each node is a spa- 

tial frequency vector and as such can be shown to represent a generalisation of the 

pyramid techniques discussed in section 2.5.2. 

The quadtree is such that each node is defined as the local spectral coefficients 

uzy (n) OsnsN Osx, y<0,, (3.37) 

which has associated child nodes 

u(2z+r)(2y+s)(n+l) OSx, y<OO,, OSr, s<2 (3.38) 

The leaf nodes are then the image v 
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u (n) 
xy 

u (n+1) 
2x(2y+ 

Figure 3.6. Spatial correspondence between parent and 
child node in 2-d MFT. 

uuy 00 (N) = vy 05x, y <M (3.39) 

and the root node is the 2-d DFT vector 

uoo (0) =Fv (3.40) 

The relationship between parent and child nodes is one of spatial correspondence as 

illustrated in fig 3.6. The frequency vector at the parent node refers to the (square) 

local region whose four quadrants are the regions referred to by each of the child vec- 

tors (section 3.2). 

u (n+1) u (n+1) 
2x2y (2x+1)2y 
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3.5. A General Class of Transforms 

3.5.1. Motivation 

Although the combined spatial and spatial frequency structure of the 2-d MFT is an 

optimal representation in the sense that it minimises redundancy (section 2.6.2), there 

are conditions which suggest that this optimality should be relaxed. These conditions 

are primarily motivated by heuristic arguments and result in part from the application 

of the MFT to image analysis problems. The outcome is a general class of the 

transforms which are related to the original version defined in section 3.2. 

The goal is to achieve greater locality of energy in the spatial dimension of the 

spatial/spatial frequency diagram of fig 2.3. In other words, each analysis vector in 

the MFT should have increased energy concentration in its respective spatial region. 

The resulting transform would then have improved spatial locality, which is clearly of 

interest when analysing local image regions. However, from the principle of uncer- 

tainty, this necessitates an increase in the bandwidth of the signals, ie the duration pro- 

duct of eqn (2.35) becomes 

52, E I', =aMa>0 (3.41) 

where ß is known as the relaxation parameter. A level of the new spatial/spatial fre- 

quency diagram is illustrated in fig 3.7a for ß=2, where the dotted lines indicate the 

new frequency region of the cell A. Note that there is now an overlapping in fre- 

quency of the cells. 
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Figure 3.7. Relaxed spatial/spatial frequency diagram 

for generalised transform. 

A consequence of this bandwidth expansion is that the diagram of fig 3.7a is no longer 

an optimal description in terms of the sampling theorem (section 2.6.2). To achieve 

an optimal description, the spatial separation of the cells needs to be reduced such that 

S=F, /6 6 (3.42) 

The resulting diagram is shown in fig 3.7b. Note that now there is also an overlapping 

of cells in the spatial dimension and that the degree of overlapping in space and fre- 

quency is determined by the relaxation parameter o', which can be set as appropriate. 

However, from fig 3.7b and in terms of computational efficiency (cf section 3.7), a 

suitable value is 6=2. The implication of the above is that a general class of MFT's 

can be defined, the structure of which are considered in the following two sections. 
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3.5.2. Filter Relaxation and Spatial Oversanºpling 

A generalised 1-d MFT is defined by the operator G(ß) which, has associated level 

operators G(ß, n ), 0SnSN, given by 

G(a, n) = 
[goo(n) 

.... 
go(r. 

-i)(Q, n) .... g1 (a, n) .... gýaß, -i)(r. -i)(a, n)] (3.43) 

where 

gik(ß, n). Wkf2� S-ir�la g(ß, n) 

OSi<a , 0>0 05k<F, K2, i = 2" 

(3.44) 

I'a ýn =M 

and the analysis vectors g(a, n) are adaptations of the FPSS g(n) 

I g(ß, n) =- B(ß Stn) T(rn) g(n) 1 (3.45) 

These generalised analysis vectors are therefore relaxed in terms of bandwidth with 

respect to the vectors g(n) (from 52, E to ß Stn) and will consequently have greater 

energy concentration in the interval defined by T(F ). 

Comparison of eqns (3.5) and (3.44) indicates that in the signal domain the 

coefficients of the generalised transform are oversampled in comparison with the ori- 

ginal transform. This ensures that the representation is complete in terms of the sam- 

pling theorem (ie it accounts for the increase in bandwidth of the analysis vectors) and 

retains the invertibility of the transform (cf section 3.5.3). However, this also means 

that the number of coefficients is increased by a factor a. 
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Interpretation of this generalised transform is similar to that for the original transform. 

However, in the filter bank and local spectrum interpretations, the frequency intervals 

and signal domain regions are now overlapping (as opposed to being contiguous). 

This provides an additional advantage since it means that `boundary events', ie those 

falling on the edges of signal domain regions or frequency bands, will be less disad- 

vantaged than in the non-overlapping original version. These events will now be 

within the energy concentration regions of the analysis vectors and will have greater 

energy value in the transform. This useful property resembles the use of overlapping 

data samples in spectrum estimation problems [49][911. The properties outlined in 

section 3.4 also apply to the generalised version, although the local spectra on each 

level will have more bias (dependent on the value of ß), since the bandwidth of the 

analysis vectors has been increased. 

3.5.3. General Inverse Transform 

The inversion is best considered using the synthesis filter bank in fig 3.4. There are 

two possible inverse procedures, one is similar to that of the original inverse, while 

the other makes use of the overlapping in frequency apparent in the generalised ver- 

sion. 

From figs 3.1 and 3.4, it is clear that the original signal can be reconstructed from the 

coefficients by defining the synthesis vector as before, ie 

1/fln 05i <S2� 
gi (ß, n) hi(ß, n. ) =0 else 

(3.46) 
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where 

g(ß, n) =F g(a, n) h(ß, n) =F h(a, n) (3.47) 

Note that the frequency interval remains at 92� and is not a Q, x, the bandwidth of the 

new analysis vectors. The inversion follows from the discussion in section 3.3.1. 

An alternative inverse can also be defined which makes use of the overlapping in the 

frequency responses of the analysis vectors. Referring to fig 3.4, instead of requiring 

that each bandpass signal is to be reconstructed exactly, it is sufficient to require that 

the summation of the analysis-synthesis frequency response products result in a `flat' 

response overall. Obviously this applies in the original inverse definition. However, 

this no longer implies that the synthesis vector must have an inverse frequency 

response to that of the analysis vector. Provided the overall response is unity then the 

original signal is reconstructed. This enables the adoption of synthesis vectors 

without frequency domain discontinuities (as in the original inverse) and enables the 

analysis vector to be reapplied for synthesis without noticeable error (cf section 3.6.3). 

3.6. Implementation 

3.6.1. The Forward and Inverse Transform 

Implementation of the MFT can be considered using the analysis and synthesis filter 

banks in figs 3.1 and 3.4. Referring to fig 3.1, the transform coefficients are generated 

by uniform sampling of the output of a set of filters, each with impulse response g'(n) 

and inputs which are frequency shifted versions of the input signal. The signal is 
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reconstructed in the opposite manner (fig 3.4) - expanding, -, application of synthesis 

filter, frequency shifting and summation of the resulting bandpass signals. These two 

operations can be efficiently implemented when the computation is performed in the 

frequency domain and use is made of the fast Fourier transform (FFT) [91]. 

It is simplest to consider the original 1-d MFT and note that from eqn (3.7) the 

coefficients uik(n) for a given k= ko are given by the sampled convolution relation- 

ship 

u`ko(n) = g+(n) Sire W-'kof2. v (3.48) 

Using the sampling property of the DFT [14], the 92,, th order DFT with respect to the 

index i of these coefficients is given by 

u A, (n) =1 S(w+rC2)(n) V(W+. koQ, +rs2�) 05w<fl (3.49) 
r* -o 

where g(n) =F g(n), v=Fv, and the subscripts are calculated modulo M. Since g(n) 

is bandlimited (eqn 3.25), ie g 
u, (n) =0 for Co >_ 52,,, the above equation reduces to 

ü 
wxo (n) = r. S w(n) v" ýuý, kosýýý 05w< 52, E (3.50) 

which is simply the product of the analysis vector frequency response and a shifted 

version of the signal spectrum. Hence, the coefficients u1ko(n) can be generated by 

applying eqn (3.50) to the DFT of the input signal and forming the ) th order inverse 

DFT of the result. 
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Reconstruction of the original signal is the reverse procedure. From eqns (3.20) and 

(3.50) the vector v is given by 

v(u,, kn. ) =M hi(n) ü (n) OSw<S2� 05k <F (3.51) 

Arg 

where h(n) =F h(n). The original signal is therefore reconstructed by forming the 

f,, th order DFT wrt the index i of the coefficients Ulk(n) for each value of k, imple- 

menting eqn (3.51) and deriving the Mth order inverse DFT of the result. Both this 

and the forward transform procedure can be efficiently implemented using the FFT (cf 

section 3.6.2). Since the generalised transform is also based on bandlimited analysis 

vectors, its implementation takes a similar form. 

For a 2-d cartesian separable implementation it is convenient to introduce an appropri- 

ate frequency shift in the MFT so that the spatial frequency vectors possess a sym- 

metry property. This is particularly useful when extracting orientation information (cf 

chapter 6). In the present work, this is achieved by frequency shifting the input signal 

such that 

(M-1) 

Vý =W2V (3.52) 

It can then be shown that the components of the spatial frequency vectors uxy(n) of 

the resulting MFT are related by 

(x +y) 

uuy, u(n) = uuyk',. (n) e (3.53) 

OSk, l<r, k'=r -1-k 
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where the phase term 2n(x +y)/S2� results from the definition of the analysis vectors 

in eqn (3.6), ie the truncation interval defined by the operator T(r ). The magnitude 

values of the components of u, o, (n) therefore possess a 2-fold rotational symmetry 

about the notional centre of the 2-d lattice (k, l). This symmetry property enables the 

extraction of orientation information within such a lattice to be easier from both a con- 

ceptual and practical point of view. 

3.6.2. Computational Requirements 

As demonstrated in the previous section, implementation of the transform can be 

efficiently based upon the FFT. This enables a 2-d DFT of order M to be calculated 

using M2log2M complex multiplications [91]. In this section the number of calcula- 

tions required to generate a complete 2-d MFT (and inverse) is considered in terms of 

this basic operation. 

Consider first the generation of an intermediate level u(n), 1SnS N-i. ` With refer= 

ence to the previous section, by extending eqn (3.50) to the 2-d case and assuming the 

image DFT to be available, the number of required operations x,, is given by 

= I'n2 (Sin + Stn 1092 nn ) on = 2n 

= M2 (1 + n) (3.54) 

where the product in eqn (3.50) is of dimension Stn for the 2-d case and each f th 

order inverse DFT requires S2, z, 10g2S2,, operations. 
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Thus for the complete transform consisting of N levels (including the initial DFT of 

the image which also forms level 0) 

2: n+ M2Iog2M (3.55) 
R-1 

which becomes from eqn (3.54) 

=2C( log2M )2 +3 log2M - 2, (3.56) 

and is less than a factor of log2M times that for the FFT. Obviously the same number 

of operations is required for the inverse transform. In the case of a generalised 

transform, computation increases according to the relaxation parameter a 

r 
a2 22 

I (log2M )2 + log2M -2]+ M2 log2M (3.57) 

3.6.3. Finite Prolate Spheroidal Sequences 

The analysis and synthesis vectors of the forward and inverse transform are derived 

from FPSS's according to eqns (3.6) and (3.20). In the case of a generalised 

transform, a single vector can be utilised for both analysis and synthesis without 

noticeable error. 

For a given order of transform, the vectors need only be generated once and can then 

remain in situ. In the case of the original transform defined in section (3.2) this 
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requires the solution of the eigenvalue problem in eqn (3.6) and then the analysis vec- 

tors for the 2-d cartesian separable transform are given by 

g2(n) = gx(n) ® gy(n) (3.58) 

where gx(n) and gy(n) are the analysis vectors of the corresponding 1-d transforms. 

Software routines are readily available to solve eigenvalue problems and since com- 

putational time is not an issue, these can be used accordingly. However, if these are 

not available, then the successive approximation method for the FPSS's suggested by 

Wilson [111] provides a suitable alternative. This latter technique was used in the 

work described here. The magnitude response in the spatial and spatial frequency 

domain of the 2-d analysis vectors g2(n) for n=3 and n=4 are shown in fig 3.8. 

level 3 

level 4 

spatial domain spatial frequency 
domain 

Figure 3.8. Magnitude response of MFI' analysis vectors for M=64. 
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For a generalised version of the MFT, both forward and inverse transforms can be 

implemented using the same set of vectors g((Y, n) given by eqn (3.45). With a relax- 

ation parameter 6=2, these vectors are shown in fig 3.9 for n=3 and n=4, where it 

should be noted that in the spatial domain the vectors have greater energy concentra- 

tion and less sideband energy than those in fig 3.8. 

level 3 

level 4 

spatial domain spatial frequency 
domain 

Figure 3.9. Magnitude response of generalised MFT analysis vectors for 6=2 and M=64. 

The error following reconstruction from a generalised transform can be assessed by 

considering the overall frequency response of the analysis and synthesis filter banks 

(section 3.5.3). Fig 3.10a shows the set of analysis-synthesis frequency response pro- 

ducts corresponding to each channel of the filter banks for level 3 of a 1-d generalised 

MFT with a=2. The summation of these is shown in fig 3.10b, where the maximum 

deviation from unity is 0.08 and results in negligible error following reconstruction. 
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63 

1.5 

0 
B 63 

(a) 

Analysis-synthesis frequency response products 

for generalised MFT with ä =2 and M=64. 

(b) 

Summation of responses in (a). 

Figure 3.10. Combined analysis-synthesis frequency response for generalised MFT. 

3.6.4. Prewhitening 

As noted in section 3.4.2, the local spectra of the MFT constitute biased estimates of 

the `true' spectrum. Prewhitening is a technique which is often employed in spectrum 

estimation methods to reduce this bias [64][101] and can therefore be used to further 

improve the MFT estimates. However, before defining the type of prewhitening used 

in this work, it is worth noting some additional reasons for considering its use. 

The first thing to note is that in general natural images contain significant low fre- 

quency energy. An examination of the spectral envelope of such an image will reveal 

that the majority of the energy is centred about the dc value. However, the interesting 

image features, such as lines, edges and textural properties, correspond to the higher 

frequency ranges of the spectrum. Thus, in order to reduce any bias that the predom- 

inant low frequency energy might cause in the analysis of these features, it would be 

beneficial to "even-out" the magnitude values of the frequency components, ie to 

employ some form of prewhitening. 
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A further consideration is that in deriving image features the interest is in the underly- 

ing structure of an image [68]. This structure relates not only to the magnitude of the 

spectral components, but also to their relative phase values. In fact, it could be sug- 

gested that the latter has greater importance, a view supported by Oppenheim and Lim 

in their work on the -importance of phase in images [82]. The work demonstrated that 

the magnitude distribution of an image spectrum is not crucial to the structure of an 

image, whereas the relative phase values appear to be highly significant. This sug- 

gests that any analysis should place greater importance on the relationship between 

phase values (cf chapters 4 and 5) and should not be unduly biased by the magnitude 

distribution. However, this should not mean that magnitude values are totally ignored, 

since small random fluctuations (noise) in the spectrum will have correspondingly ran- 

dom phase values. '' 

Prewhitening of spectra is widely adopted in spectrum estimation with varying 

degrees of complexity [64][101]. A simple approach is adopted here. It takes the form 

of weighting the image spectrum by a symmetric pre-emphasis function 

1-cosa( p7C )P 
<A 

59) "'(P) -1 else 
(3. 

where p is the radial frequency in radians and A and a define the degree of pre- 

emphasis. The operation is therefore equivalent to highpass filtering the image using 

a filter which has a raised cosine roll-off and is consequently a very simple attempt to 

prewhiten the spectrum. However, it is straightforward to implement and has been 

found to be effective for the work described later in this thesis (cf chapter 6). The 

selection of parameter values, will obviously depend upon the particular image 
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involved, whether any noise energy is known a priori to be present and the resolution 

of any subsequent processing. 

3.7. Examples and Preliminary Experiments 

3.7.1. Synthetic Images 

Examples of the 2-d MFT for two synthetic images are presented. Each is designed to 

illustrate in a simple way the properties and potential of the transform. The images 

are monochrome and of dimension 512 x. 512 pixels with an 8-bit grey level at each 

pixel. Complex magnitude, values of the MFT coefficients for a given,: level are 

displayed on a discrete lattice of size 52,, x SZZ, where at each point the frequency 

coefficients uo, kl (n), 05k, l 
,<T, are shown as a 2-d block. A grid is placed on the 

display to indicate the individual blocks. This display technique corresponds closely 

to the local spectrum interpretation of the 2-d MFT (cf section 3.2). 

The first example illustrates the ability of the transform to decorrelate image data in 

the spatial/spatial frequency plane. The synthetic image is shown in fig 3.11a and 

consists of three regions: an oriented, texture; a 2-d sinusoid; and a random texture, 

The oriented texture is an impulse noise field filtered by an oriented Gaussian filter 

v (k, 1) =g (k, 1) *n (k, 1) (3.60) 

where 

(k, 1) = e`(akZ+bkl+clz) (3.61) 
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and 

1 
n (k, 1) _o 

4(k, 1) Z 0.5 
(3.62) 

and ý(k, l) is a normally distributed random variable with variance 1. 

The DFT of the image is shown in fig 3.1 lb and levels 4 and 5 of its MFT are shown 

in figs 3.11c and 3.1 ld. It can be seen that the MFT representations are intermediate 

between the extremes of the image and its DFT. In the original image, no information 

is apparent concerning the properties of the different regions; whereas in the DFT, this 

property information is available (eg note the spatial frequency impulses correspond- 

ing to the sinusoid), although no indication is given about the location of the regions. 

The MFT levels, however, provide both property and positional information at two 

different resolutions, level 4 having greater spatial frequency resolution and level 5 

greater spatial resolution. 

The second example demonstrates the multiresolution property of the transform. Fig 

3.12a shows an image which consists of different sized circular discs of fixed lumi- 

nance value centred nonuniformly over the image plane. This image was prewhitened 

using the function described in section (3.6.4) with a=2 and A= n/ 16, and then lev- 

els 3,4, and 6 of its MFT were calculated. These are shown in the remaining plates of 

fig 3.12. Note that at levels with high spatial resolution, the boundaries of the circles 

are represented by energy concentrated in an orthogonal orientation within the local 

spectra of the MFT. In contrast, on levels with high frequency resolution, a given cir- 

cle is represented within a single spectrum by symmetrically distributed energy. 
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3.7.2. Natural Images 

The MFT for the `girl' image shown in fig 3.13a is presented. The image was prewhi- 

tened using the function in eqn (3.59) with a=2 and A= n/ 16. Levels 3-5 of the gen- 

eralised MFT with a=2 for a 256 x 256 pixel version of this image are shown in figs, 

3.13b-d. A 512 x 512 pixel version is used in the following chapters of this thesis, 

however the number of MFT coefficients is then 1024 x 1024 which exceeds the 

display capacity of the equipment used and therefore cannot be shown here. 

In addition to the properties already illustrated for the synthetic images of the previous 

section, several factors should be noted concerning the results in fig 3.13. 

(i) The change in spatial and spatial frequency resolution between the levels of the 

transform. 

(ii) The distribution of energy in the local spectra: oriented and concentrated in the 

vicinity of line and edge features; uniformly distributed in more complex 

regions. 

(iii) Within certain regions features are adequately represented by local spectra at 

high spatial frequency resolution (eg the mirror edge), whilst other regions 

require greater spatial resolution (eg the eyes). 

3.7.3. Threshold Coding 

A simple experiment to assess thevalidity of the MFT representation is worth record- 

ing. For a subset of transform levels the coefficient magnitudes are thresholded such 
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that those below the threshold are set to zero while those above remain as before. The 

transform is then inverted using the multilevel inverse of section 3.3.2 and the result 

assessed. 

This is conveniently represented by a threshold selection operator C, similar to those 

discussed in section 3.3.2, which is defined as (for the 1-d case) 

S(i - i') S(k - k') I u; k(n) to 
0 else (3.63) 

where t,, is the threshold and is chosen to give a uniform distribution of coefficients 

over the levels. The multilevel inverse r is then given by 

r= H(n) C(n) u(n) (3.64) 
"n 

where H(n) is the inverse operator. 

The above was implemented for the MET (cs = 1) of a 512 x 512 pixel version of the 

`girl' image. Levels 4-6 were used in the scheme and the total number of coefficients 

prior to thresholding was 3x 512 x 512. Figure 3.14 shows the result of two recon- 

structions in which the number of coefficients after thresholding has been reduced to 

7% and 4% respectively. 

There are two points to note about these results. The first is that even using small 

numbers of coefficients the reconstructions are of acceptable quality. The main error 

is aliasing caused by the inversion using a subset of coefficients (cf section 3.3.2) and 

it is particularly visible in fig 3.14b. This takes the form of ripples in the vicinity of 
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edge features and if studied carefully can be seen to exist at various frequencies 

depending upon the level from which it was derived from. The second point to note is 

that the reconstructed images retain the important features of the original. In particu- 

lar, notice that the perceptually significant edge features are retained, ensuring that the 

images have a sharpness quality comparable to that of the original. Thus, although 

this experiment is very simple and the choice of coefficients is based solely on their 

magnitude value, it does illustrate that the MFT is capable of emphasising the 

significant features in an image. This ability underlies the use of the multiscale 

methods in coding applications [1][70][108]. 
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(a) Original image. 

(c) MFT level 4. 
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(b) Discrete Fourier transform. 

(d) MFT level 5. 

Figure 3.11. MFT examples for'textures' image. 



(a) Original image. 

(c) MFT level 4 

(b) MFT level 3. 

so 

Figure 3.12. MFT examples for'discs' image. 

(d) MFT level 6. 



(a) Original image. 

(c) MFT level 4. 

(b) MFT level 3. 
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Figure 3.13. MFT examples for 'girl' image. 

(d) MFT level 5. 
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(a) Reconstruction from 7% of coefficients. (b) Reconstruction from 4% of coefficients. 

Figure 3.14. Threshold coding examples for 'girl' image. 



83 

CHAPTER FOUR 

REPRESENTING LOCAL IMAGE FEATURES 

4.1. - Introduction 

The aim of the remaining chapters in this thesis is to illustrate how the MPT can be 

used to detect and estimate image features. The approach taken is to consider a 

specific example, which provides a general framework and methodology for using the 

transform. As noted in chapter 1, feature descriptions have been mainly applied to the 

representation of lines and edges and texture. These areas are accepted as being 

important in a wide range of computer vision and image processing tasks. It is there- 

fore appropriate to use one of these as the example to be considered in this work. 

Of the above possibilities, it was felt that it would be more instructive to consider the 

analysis of local image features such as lines and edges. The reason for this choice 

was twofold., First, the existing methods in this area are most often based within some 

form of single resolution or simple pyramid framework - less consideration has been 

given to taking a more complex multiscale or multiresolution approach. The work 

will therefore provide a useful insight into a predominantly untried area of feature 

extraction. On the other hand, there has been considerable work done in the extrac- 

tion of textural features within a multiscale framework. The work of Spann and Wil- 

son [99][112][113] in this area has shown clearly the advantages that can be gained 

when applied to segmentation problems. Since the MFT is a generalisation of multis- 

cale techniques (cf section 2.6), it would be possible to extend their ideas and yield 

similar results. Hence, the advantages for texture analysis have already been shown, it 

remains to show that similar advantages can be gained when dealing with spatially 

localised features. 
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The purpose of this chapter is to consider the various aspects of local feature extrac- 

tion and to review the existing approaches to the problem. Once this has been done, 

the problem will then be defined in a multiresolution context, leading to an image 

model which` forms the basis of a detection and estimation scheme described in 

chapter 5. Finally, the model is shown to be generally applicable and readily extended 

to more complex features. 

4.2. A Review of Existing Methods 

4.2.1. General Properties 

An examination of a typical image will reveal the existence of regions which are one 

dimensional, have an associated orientation and contain a boundary between constant 

luminance levels. Indeed, an image can be considered to consist entirely of such 

regions, each contiguous to one another and of different size and orientation. These 

regions are typically known as lines and edges, although a more general term is local 

image features. 

Such features are an important part of image structure and often form part of more 

global attributes such as boundaries and curves (72]. Their existence can derive from 

the boundary of an object, indicating its shape and orientation, or they can character- 

ise lighting and reflectance in an image. Indeed, the cartoon drawing, which is based 

upon emphasising these features and often provides an instantly recognizable image, 

is an example which illustrates this structural importance. Support for this is also pro- 

vided by evidence from studies*into the workings of the human visual system. Phy- 

siologists, prompted by the pioneering work of Hubel and Wiesel [53], have demon- 

strated the existence of so called `simple cells' in the striate cortex that respond to 



lines and edges at specific orientations [52]. 

". 

4.2.2. Detection Methods 
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The importance of local features has been recognised both in computer vision and 

image processing [5][94][95]. Detection and estimation schemes have received consid- 

erable attention, leading to a wide range of approaches which are based upon different 

underlying models. There are several reviews available in the literature 

[39][85][94][95]. , 

The aim of these methods is to detect the luminance discontinuity, and in some cases 

the orientation, associated with a local feature. The various forms include: gradient 

methods [22][92][93]; the detection of zero crossings in the second derivative [47][73]; 

the use of edge masks or templates [79]; frequency domain methods [65][96]; various 

parametric approaches [54][55]; and those based upon statistical models [51]. 

There are several issues that effect the choice of an appropriate method. These 

include noise sensitivity, spatial resolution and computational efficiency. The 

appropriate method is also often dictated by the application. For instance, if the 

images involved are relatively noiseless and contain well defined edges, then a simple 

edge mask is likely to be acceptable. However, if the images are more complex or of 

imperfect quality, then a less noise sensitive and variable resolution method would be 

more appropriate. 

A recent development in this area has been the recognition that the orientation associ- 

ated with a local feature is an important characteristic. Some of the above mentioned 

schemes are based only upon detecting luminance discontinuity and this ignores the 
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two dimensionality of the problem: for a local feature to exist it must have an associ- 

ated orientation. Indeed, it is this anisotropy that distinguishes the local feature from a 

random fluctuation in the image. This is supported by the evidence mentioned earlier 

that simple cells in the striate cortex are not just sensitive to any line or edge, but to 

these features at specific orientations. 

The importance of orientation has been incorporated into the recent advances in this 

area. Intended for general application, such as the processing of natural images, these 

new developments have been based upon the use of local operators which are tuned to 

a finite number of orientations. The results of applying these operators are then com- 

bined to give an estimate of the feature strength and its orientation. There are several 

versions available of this general technique [22][65]. These methods either employ 

prefiltering [22] or are defined in the frequency domain [65] to minimise noise sensi- 

tivity. They are also applied over a range of spatial resolutions to detect both the fine 

detail and broad edges in an image. 
T 

4.2.3. Curves and Boundaries 

Once local features have been detected using an appropriate scheme, the question then 

arises as to whether it is possible to combine a suitable subset of them into a single 

entity, such as a curve or object boundary. Indeed, isolated features by themselves 

have limited use in an analysis. This problem has been considered in the literature 

and several reviews are available [5][95]. Methods vary according to the amount of 

prior knowledge that is assumed about the boundaries in the image. This knowledge 

may consist of local constraints such as a maximum curvature value or more global 

constraints such as specific shape identification. However, the most important issue in 

all these methods is that they are dependent to a greater or lesser extent upon the 
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initial local feature detection. 

The methods fall broadly into two classes. The first is edge following, in which 

features that are in close proximity are joined up according to some boundary accep- 

tance function and so form a list of features that follow the boundary. The acceptance 

function can take various forms, ranging from a simple shortest distance measure to a 

more complex curvature measure. These methods necessarily involve some type of 

search process and this has been done using heuristic methods [3][23][74] and dynamic 

programming [28][78]. The advantage of these methods is that they are generally 

applicable since only local boundary constraints are imposed. They can also be rea- 

sonably efficient in terms of computation. However, they are critically dependent 

upon the feature detection input, since if an edge is to be followed then all the relevant 

sections must be present. Boundary gaps or complicated fine detail areas will cause 

problems. 

The second class consists of methods which are based around the Hough transform 

[5][57]. The basic idea is to determine some parametric representation of the boun- 

dary, create a discrete accumulator array with the parameters as coordinates and then 

for each local feature increment the appropriate components in the accumulator array 

that correspond to boundaries that `contain' the feature. Local maxima in the accumu- 

lator array then indicate the boundaries present in the image. These methods have 

been considered extensively by many workers, and the variations range from simple 

straight line detectors [41) to more general shape detection [4]. The advantage of these 

methods is that they are less dependent upon the detected features since the process is 

global and not effected by local errors such as gaps. When a specific shape is required 

to be detected in an image these methods are appropriate. However, there are a 

number of computational problems and also a requirement for a sufficiently large 

number of detected features [5]. 
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4.2.4. Comments on Existing Methods 

The above review of existing methods is not intended to provide an exhaustive refer- 

ence, but is an attempt to illustrate the various aspects involved in representing and 

subsequently detecting local image features. The main conclusion that can be drawn 

is that the area has received considerable attention over a period spanning almost 25 

years and as yet no unified approach has emerged. The various schemes and even 

recent developments, although achieving considerable success, have remained essen- 

tially ad hoc with no regard for any subsequent analysis. A good example of this is 

illustrated in the case of curve and boundary identification considered in the previous 

section. Although methods of feature detection have improved, curve and boundary 

identification has remained a separate process, implemented within an entirely dif- 

ferent framework. . This approach completely ignores the inherent relationship 

between the two feature types. In the next section it is shown that this need not be the 

case and that a unified approach to both feature detection and curve identification can 

be adopted by making use of multiresolution techniques. 

4.3. Adopting a Multiresolution Approach 

4.3.1. An Image Model 

The important property of local features is that they are characterised by regions 

which can be assumed to be essentially one dimensional, each containing a luminance 

boundary and having an associated orientation. It is this property that underlies the 

recent developments in detection methods [22][65]. A multiresolution approach to the 

problem can also be based upon this property, and provide a number of advantages. 
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The use of any detection methods implies the existence of some underlying image 

model. In the models mentioned above, the image is assumed to consist of the 1-d 

regions that characterise local features. A general model would allow such regions to 

be of any shape- and size, although in practice a regular structure is imposed upon the 

model. The local operators used in the detection process define the size and shape of 

the regions within the model. A certain amount of variation is introduced by using 

operators at different spatial sizes, although this has yet to be incorporated into any 

coherent framework. 

It is possible however to take a more general approach by basing the detection process 

upon a multiresolution image model. This has a hierarchical structure and represents 

an image by local features defined at different spatial resolutions. A simple example, 

and the one that is adopted in this work, is to assume that the image consists of con- 

tiguous square regions, each corresponding to a local feature with a particular orienta- 

tion. The size of these regions can range from a single pixel to the complete image, as 

shown in fig 4.1a, and a typical example of the model is illustrated in fig 4.1b for a 

simple line drawing. Note that the fine detail in the image is represented by short line 

segments corresponding to small regions, whereas large isolated lines are represented 

by larger regions at a decreased spatial resolution. 

Although the above model does not enable any variation in region shape, it does 

incorporate a well defined range of spatial scalings of the prototype square shape and 

this will be shown to have considerable generality for representing features. It also 

has the advantage that it is a simple structure which is easy to understand and this has 

important implications when considering an appropriate detection process. However, 

before it can be utilised in such a scheme, it must first be considered in a mathematical 

form. This is the subject of the next section, 
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(a) Spatial regions of model (b) Typical example 

Figure 4.1. Multiresolution image model. 

4.3.2. Linear Recursive Form of the Model 

The model described in the previous section is a simple example of a general class of 

multiresolution image models [ 116]. These have a linear structure and are defined by 

the following recursive operation. 

v(n) = A(n) v(n-1) + B(n) w(n) 0<n : 5N (4.1) 

where the vectors v(n) and w(n) represent 2-d arrays of size MxM, M= 2N. These 

arrays are divided into 52, E x S2� contiguous regions, each of size rx I", and 

arranged as in fig 4.1 a. The number of regions is defined by the scale parameter n and 
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the vectors are indexed by four indices to indicate the region structure 

v(n) =[v, n, kt(n) 
I 

w(n) =[ wxyk! (n) 
J 

05x, y <nK OSk, l <I'� r f2n =M 12� = 2" OSn SN 

(4.2) 

where xy indicates a given region and kl a position within that region. In terms of the 

model, the vectors w(n) represent feature innovations and the region vectors wxy(n) 

contain a finite number of separate image features. Furthermore, subject to the initial 

condition 

v(O) = B(O) w(O) (4.3) 

the resulting image v (Q) is given by 

v (Q) = vij00(N) (4.4) 

The purpose of the operators A(n) and B(n) in eqn (4.1) is to `construct' the image by 

selecting appropriate regions from both the previous levels via v(n-1) and from the 

innovation levels w(n). This general model therefore enables the image to be 

represented by features that are defined over the complete range of resolutions, from 

per pixel to global definition. 

To obtain the simple model adopted in this present work it is necessary to impose two 

additional constraints upon this general model. First, the innovation vectors w., (n) 

are restricted to a class that contains single local features 
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wXykl(n) = h�xy(k, l) + g(xr + k, yT,, +1) (4.5) 

where h,, , (k, l) is some locally defined real function which has an associated orienta- 

tion 9, ßy and centroid position vector Txy(n). This function represents the local 

feature and is confined within the region boundaries, ie the vector q1(n) is defined 

with respect to the centre of the region and its components are such that 

'ýlxy(n) "= 
Cr 0(n) , ii 1(n) 

r21 sT o(n) , fl , j(n)s!:, sr +' (4.6) 

as illustrated in fig 4.2. The function g (x, y) in eqn (4.5) is a smooth real function 

which is globally defined and represents a lowpass version of the image. 

(n) 
xy 

,.... .......... 

Y rn 

......... 

xr 

Figure 4.2. Parameters of functionh (kj) 
. nxy 

Secondly, the hierarchical structure of the general model is limited by ensuring that a 

given image region is represented exclusively by a single innovation vector at an 

appropriate scale. 'In other words, from eqn (4.1), the operators A(n) and B(n) are 
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defined such that a vector v., y(n) is either equal to a new feature vector 

vey(n) = wxy(n) (4.7) 

or is equal to a quadrant of the relevant vector on the previous level 

vxy, j(n) -= Vrspq(n-1) 0! 9 k, l <1 (4.8) 

r=ý 2ý s=1 21 p= (x-2r)F +k q= (y-2s)1'n+l 

where the notation Ix/21 indicates that x/2 is truncated to the nearest integer. The 

above criterion ensures that the model structure resembles the example in fig 4.1b. 

4.3.3. Curve Representation 

The image model considered in the previous two sections provides a straightforward 

way of representing curves in an image. It is ageneral approach and avoids a number 

of problems associated with traditional methods. 

Curves are represented in a piecewise manner using the local features in the model. ' 

Each feature is assumed to represent a section of the curve and the change in orienta- 

tion between adjacent sections provides a local curvature measure., An example is 

illustrated in fig 4.3. Note that the regions associated with the local features, and thus 

the curve sections, vary in size according to the curvature value: small regions 

corresponding to high curvature and vice versa. Features are formed into a curve 

representation providing they satisfy a maximum curvature and `best fit' criterion. 
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Figure 4.3. Curve representation in the mulciresolution 
image model. 

This is discussed in section 5.5, where a hierarchical curve extraction scheme is 

described. 

The above method of representing curves has a number of advantages. It requires 

only a local curvature criterion to be met, but at the same time it leads to an extraction 

process that avoids several problems associated with other general methods such as 

edge following. The first is that the input features are defined over a local region and 

not on a per pixel basis, reducing the chance of local errors `breaking' the curve. A 

further advantage, and a more important one, is that the hierarchical structure of the 

model in which the curve is represented means that the extraction can be implemented 

in a hierarchical manner, regarding sections of the curve in a fine-to-coarse analysis as 

opposed to `following' them sequentially. This not only reduces the searching 

involved in the extraction process, but also provides a capability to fill in gaps on a 

local basis, an ability which has traditionally only been associated with parametric 

local feature blocks 
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methods such as the Hough transform. 

In short, and as will be shown in chapter 6, the multiresolution model removes redun- 

dancy from the input feature data and consequently reduces the error rate when curves 

are extracted from the data. 

4.4. Frequency Domain Modelling of Local Features 

4.4.1. Motivation 

The model described in the previous section is based upon regions which contain local 

features. These are represented in eqn (4.5) by a locally defined function h,, (k, l). 

The purpose of this section is to describe a suitable model for this function. - 

As discussed in section 4.2.2, a number, of techniques exist for modelling local 

features, including both spatial and frequency domain methods. In the present work, a 

model based upon the latter is adopted. These methods have a well defined represen- 

tation of local orientation and can be defined to minimise noise sensitivity [65][96]. ; 

For simplicity, the model is introduced in the context of a continuous spatial domain 

with ideal oriented local features and ignoring any constraint imposed by the limited 

size of the regions. This general approach is then extended to account for the locality 

within the image model and to enable the existence of local feature segments within 

the regions. 
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4.4.2. Continuous Case 

An ideal local feature in the continuous 2-d spatial domain can be represented by the 

following oriented region 

v (x, y) =v (x cos 0+y sin 0) (4.9) 

and its Fourier transform given by 

V (o , coy) = 5( co, sin8 - coy cos 0)V (cux cos9 + coy sin 0) (4.10) 

where V((o) is some complex function in one dimension and V((o,,, coy) is confined to 

a line which is perpendicular to the orientation of the feature in the spatial domain. 

Simple examples of such regions are line and edge features, where the v (x) in eqn 

(4.9) are ideal rectangular pulses and step functi ons respectively. 

However, these are not the only features which can be defined in such a way. For 

example, an oriented texture also falls into the same class and has an equally concen- 

trated spectrum. 
- 

To differentiate between these and the local features such as lines 

and edges, it is necessary to consider the nature of the complex function V (co) in eqn 

(4.10). 

Local features give rise to an essentially linear component in the phase of this func- 

tion. Specifically, if ij is defined as the centroid of v (x), then the argument of V (CO) is 

given by (see Papoulis (831) 

Arg [ V(w) ]= co 11 +s (4.11) 
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V(W) =I V(W) I eJ `�'-n+E 

requency 
in 

spatial domain 

Figure 4.4. Linear phase property of ideal local feature. 

where e is a phase constant. In other words, the offset of these features is directly pro- 

portional to the phase variation of the spectrum in an orthogonal orientation as illus- 

trated in fig 4.4. In direct contrast, fields such as an oriented texture do not possess 

this property, the phase variation in these cases tending to be of a random nature. 

The importance of this linear phase property underlies the work of Oppenheim and 

Lim [82]. These workers showed that the randomisation of phase in an image led to a 

critical breakdown in its structure, ie the visually significant lines and edges were 

severely distorted. It is interesting to note that a similar experiment with the magni- 

tude of the spectrum, although causing noticeable error, did not lead to unrecognizable 

results, thus confirming the crucial part played by the phase. The logical outcome of 

this is to incorporate such information into the feature model. 

lk Fourier transform 
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A simple way to achieve this is to make the assumption that the continuous Fourier 

spectrum can be sampled at regular intervals ps = sn/S in a given orientation 0 to 

yield a sequence of complex samples u( ps, 0 ), 1SsSS. Eqn (4.11) then implies a 

relationship between these samples given the presence of a feature: the phase value of 

a, sample at radial 
, 
frequency ps depends on the values of previous samples 

(Ps-1, Ps-2' """) only through the last sample at ps-i. Such a relationship then sug- 

gests that a suitable model is one that takes the form of a normal Markov process [61 

u (Ps" 8) =au (Ps-i, 0) +ßv (Ps, e) s>1 (4.12) 

u(P1,8) _ '(Pi, 0) (4.13) 

where 

a= jal e -j0(") OSlal< 1 (4.14) 

and Ia1.2 =1- ß2. The complex innovations v( ps, 0) are normally distributed with 

zero mean and unit variance 

,. x.. 1 ., E v(P,, 0) =0 +jO 

It is then easily shown that 

(4.15) 

) (4.16) E V( Psi 01) v*(Pr. 02 )= 6(s - r) 6(e1 - 02 
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EU (P� A1) u* (Pr, 02 )= a(s-r) 6(el ` 62) szr (4.17) 

The above model clearly incorporates the linear phase requirement, indeed if the 

feature is present, then from egns (4.11) and (4.12) 

( 8k) _ (Ps - Ps-1 ) r1k (4.18) 

where 1k is the offset of the feature corresponding to the orientation 8k. 

Note that the model of eqn (4.12) tends to the continuous case as S -4 oo. Further- 

more, if it is assumed that there are a total of 05k<K local features with spatial fre- 

quency orientations 8x, then the Fourier spectrum u( ps, 0) can be written as 

X-1 
u( Ps, B) _ T, u(P,. Ok) 6( e- 8k) (4.19) 

k=O 

where u(p, 9k ) is defined according to eqn (4.12). 

4.4.3. Adaptation to Local Analysis 

The feature model needs to be modified to account for the limited region size 

prescribed by the image model and the consequent requirement for some type of local 

analysis. To represent such an analysis at a scale defined by the parameter n, define a 

circular region of radius rn and assume that there are K features with spatial frequency 

orientations 8k and spatial offsets rIk uniformly distributed between (0,1t) and 

(-r,,, r,, ) respectively. 
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0 radial frequency. component 

w. 
mi 

Figure 4.5. Position vectors wmi and `^'sk' 

Since the region has a finite extent, an appropriate spectral estimate will have finite 

resolution (cf section 3.4.2). Ignoring the errors due to the sampling of the continuous 

spectrum, ie for large S, such an estimate can be approximated by 

1 x-i S 
u (mý 1) 

_EEU 
(Ps ek) H'n (I I 

mini -ask 
I I) (4.20) 

where the individual components have radial frequency pm = mn/2r,, 1 <_ mSM, and 

orientations yr, = iit/L, 0S i<L. The vectors Wmj and wsk correspond to the position 

in the spatial frequency domain of the components and the data, ie 

Ami =[p, cos Vi , Dm sin W, ] Wsk =[ PS cos Ak , P. sin Ak 1 (4.21) 

as shown in fig 4.5. The transformed data window w, ý(w) in eqn (4.20) therefore 

represents the `smearing' or bias introduced by the finite resolution estimate. For 
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simplicity it is assumed to be circular symmetric and that w, ß(0) = 1. The factor II NT 

in eqn (4.20) ensures that the energy in the estimate is independent of the number of 

features present. 

4.4.4. Local Feature Segments 

In a local analysis of a spatial region, a feature can be considered to have a finite 

length in the direction of its orientation. This gives rise to the concept of a feature 

segment, which has its centroid within the region boundaries. Indeed, such segments 

are more consistent with the locally defined functions h,, y (k, l) in the image model, 

where the centroid is given by the position vector TXy(n). By adopting a similar 

approach to the previous sections, it is possible to incorporate these segments into the 

local feature model. 

It is best to consider a segment as being generated by the multiplication of the 

`infinite' length feature by a smooth and locally defined window function. This will 

be centred at the centroid of the segment and have a small effective area in com- 

parison with the scale window discussed in the previous section. In the frequency 

domain, this corresponds to convolving the spectrum with the transformed window, 

the effect being to smooth out the energy concentration as illustrated in fig 4.6. Note 

the finite concentration of energy in the form of an oriented and elongated region. 

The phase variation across a perpendicular section of this region will be linear and 

directly proportional to the position of the segment. To see this, consider the ideal 

case of a continuous oriented segment 

v (x, y) =v(x cos 0+y sin 0) v'( x sin 0-y cos 0) (4.22) 
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spatial frequency 
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Figure 4.6. Linear phase property of local feature segment. 

where v'(x) defines a 1-d variation perpendicular to the orientation 6. The Fourier 

transform of this segment is 

V(coX, coy )= V(wXcosO+uoysin8) W(co, sinO-wycos 0) (4.23) 

where V'( o) represents the smoothing out of the spectrum due to the finite length of 

the segment as illustrated in fig 4.6. 

Using a similar argument to before, this function will have a linear phase component 

which is proportional to the centroid of v'(x), ie 

Fourier transform 

Arg[ V'(co)] = co il' + c' (4.24) 

Iv(ý,, )I ej(Jn+E 
feature segment 
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where e is a phase constant. By combining the two centroids i and 11', it is possible 

to define the centroid of the segment by the position vector B" (fig 4.6) 

TI" _ TI + TI' (4.25) 

where TI and 'I' are the orthogonal vectors 

TI _[ il cos 0, q sin 0] TI' _[- r' sin 0, TI' cos 0] (4.26) 

Referring to the image model defined in section 4.3.2, the centroid position vectors 

'rlxy (n) corresponding to the local features h, ixy (k, l) in eqn (4.5) are equivalent to the 

vectors 'q" defined above. 

4.5. A General Class of Models 

This chapter has considered a particular form of multiresolution image model. 

Although it provides an adequate framework for representing local features, it is a sim- 

ple example of a more general class of models which are capable of representing more 

complex features. 

Various forms of the model have already been applied in a number of image process- 

ing areas. The work of Spann and Wilson [113] in texture analysis has already been 

mentioned, but other applications include image restoration [33][34] and coding [102]. 

All these have illustrated the advantages that can be gained from a multiresolution 

approach. 
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The model can be extended to represent more complex features. There are two 

aspects to this: 

(i) The definition of feature innovation vectors w(n) in eqn (4.1) to include other 

feature types such as curvature, circles, junction points, etc and the definition of 

appropriate models for such features. 

(ii) The lifting of the restriction on multiple feature regions and enabling a given 

spatial region to have many features defined at a number of different resolutions. 

Although the above have yet to be considered and present numerous questions con- 

cerning implementation and suitable models etc, the important thing to note is that 

such extensions are considered within the same framework and not as a separate pro- 

cess. In other words, the image analysis problem is still being considered in a unified 

manner. 

An additional point to note, and one that will be illustrated in chapter 6, is that the 

MFT provides a suitable framework for estimating the parameters of these models. 

This further enhances the idea of a unified approach, since not only are the image 

models defined as a similar structure but also the means of estimation can be based 

within the same representation space. 
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CHAPTER FIVE 

A DETECTION AND ESTIMATION ALGORITHM 

5.1. Introduction 
Ix 

The image model introduced in chapter 4 has a hierarchical structure and is based 

upon local features defined at different spatial resolutions. There are three parameters 

associated with each feature: the scale n at which it is defined; its orientation 8, ßy; and 

its position vector r , (n). A frequency domain model was defined for these local 

features. 

The purpose of this chapter is to describe a detection and estimation algorithm which 

assumes the above model. There are three phases to the algorithm. First, for contigu- 

ous spatial regions of a given size, parameter estimates based on the frequency 

domain model are obtained for features in uniformly distributed orientations. 

Secondly, these estimates are used to detect the single feature regions prescribed by 

the image model. Finally, the detected local features are used to extract curves in the 

image according to the representation described in section 4.3.3. The algorithm 

assumes the availability of local spectrum estimates over the full range of scales and 

corresponding to the spatial regions illustrated in fig 4.1 a. It is shown in chapter 6 that 

these estimates are provided by the MFT of the image. 

5.2. Estimation of Local Features 

The frequency domain model of local features defined in section 4.4 is based upon a 

normal Markov process. It will be shown that the parameters of this model can be 
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estimated using a maximum likelihood (ML) estimation scheme. The continuous 

model is considered first and is then extended to include the effects of local analysis 

and the estimation of feature segments. 

Recall that for the continuous case, a local feature is modelled in the frequency 

domain as a normal Markov process 

u(P,, e) =a u( PS-� 0)+ß v(PS. 0) s> 1 (5.1) 

where 

a= ýaIe jO(') (5.2) 

and the spectral coefficients u( pr, 0) lie in an orientation 0 which is perpendicular to 

the spatial orientation of the feature and v( ps, 0) is a normally distributed complex 

random variable with zero mean. It is readily shown, eg [61, that given this model a 

ML estimate for a can be obtained from the correlation statistic 

s-i 
R (8) = S' -17, u *(ps, e) U (P, +1, e) (5.3) 

s=1 

where the resulting estimates are unbiased, since from eqns (4.16) and (4.17) 

EER(8) 1 IaI=O] = Ev`(Ps, e) v(Ps+t, e) =0 (5.4) 

and 
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E[R(0) I IaI>0] =. a = (a(e'O(8) (5.5) 

Furthermore, the magnitude value IR (O) I provides a certainty measure for the 

existence of the feature which is based upon the energy of the projection of the signal 

onto the subspace spanned by the model of eqn (5.1), and not upon a simple energy 

calculation in the given orientation. This means that a distinction is made between the 

local features of interest and other oriented features (cf section 4.4.2). The offset of 

the feature follows from eqn (4.18) 

Vi(e) 

F. 
(5.6) 

(Ps+l - Ps) 

where 

e(O) = Arg (R (0) ] (5.7) 

The above estimation is based upon a continuous model that takes no account of the 

local analysis required by the image model. As discussed in section 4.4.3, such an 

analysis must be performed using a finite resolution spectrum. An approximation for 

such a spectrum is defined in eqn (4.20). This assumes that there are K uniformly dis- 

tributed features with orientations 0k and offsets ilk at a scale defined by the parame- 

ter n. The individual spectral coefficients u (m, i) have radial frequency p�, =mit/2rn, 

1Sm5M, and orientation yrj = in IL, 05 i< L. 

From this local spectrum it is possible to derive a set of correlation statistics R (i) 

corresponding to each spectral orientation yri 
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R(i) = M1 1 
-' u`(m, i) u(m+l, i) (5.8) 

Clearly the estimates derived from these statistics will be biased, and this can be 

investigated by considering their expected values given the presence of K features, ie 

from eqns (4.17) and (4.20) 

Mý-+1K-1 S 
Yd (5.9) E[R (i)1 K) K (M_1) Ld 

ZI Yd W (I l 
00"i - Wsk 

11) 
Wn(I 

I 
CO(m+lk - (Ork 11) air S1 

where ak =I ak Ie jý' and k=nT /2r, ß is the phase increment representing the offset 

of the kth feature. } 

As was explained in section 4.4.3, the data window w�(co) in eqn (5.9) represents the 

smearing caused by the finite resolution of the estimated spectrum. If this smearing is 

assumed to be localised by the appropriate choice of window and sampling intervals, 

then the complicated sum in eqn (5.9) can be approximated by 

E[R(i)IK] Z 
kZtwn(llW, 

ý-W,, UU)Wn(lIW(m+i)+-CO(m+l)kll) Ilk (5.10) 

where ke Ai iff 16k -i t/L 1: 5 it/L. This equation simplifies still further if it is 

assumed that only one feature is present, ie K=1 

ch 
M-1 

M1 wn(Il corm - 0)., 11) WXI co(M+1)i " 0)(M+i)i 11) 

L 
i7c (s 

L 
E[R(i)j1] =0 fie, - 1'. 

(5.11) Li 
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By comparing this with the continuous case in eqn (5.5), it can be seen that the aver- 

age magnitude of the statistic is reduced due to the effect of the data window, ie 

W, (ýI °mi-wm1ýý) w (ýýýým+ý -0)(m+ý>ýýý) 5 M-1 (5.12) 

However, if it is assumed that the addition of overlapping data windows leads to a 

`flat response', and that M and L are large, then the summation of adjacent statistics 

gives 

E [R(i)+R(i+1) 1] 
= ai 

L 50 s (` +1)7C 

=0 else (5.13) 

Therefore, although the statistic is reduced by the misalignment of the sampling orien- 

tations Vi with that of the feature 81, there is significant contribution in the orienta- 

tions which straddle 81. 

From eqn (5.10), the existence of more than one feature, K>1, will result in the corr- 

uption of the statistic due to interference from features with similar orientations. In 

addition, other orientations will in general contain significant feature energy. 

In section 4.4.4 the concept of a local feature segment was introduced and it was 

shown that its centroid is given by the position vector 

'n" = 11 + Ti (5.14) 

where il and TI' are defined in eqn (4.26) and illustrated in fig (4.6). 
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From eqns (4.24) and (4.26), an estimate for the vector I' can be obtained from the 

linear phase component within the spectral coefficients in an orientation perpendicular 

to that corresponding to the feature. As in the case of r above, an estimate of the 

offset in this orientation can be obtained via a correlation statistic C (8), ie for the con- 

tinuous spectrum u( pS, 0) 

S S/2-1 
C`gJ. 

S(S-1)s=lr=1-S/2 
u#(Psrºeý1-Ysr) ul /ps(r+I)r8 iýs(r+l)ý (5.15) 

where 

Pý = Ps + p? yý = tari 1(r/s) (5.16) 

ias illustrated in fig 5.1. 

Figure S. I. Illustration of parameters Psr and Ysr 

Hence the statistic C (8) is calculated in a perpendicular direction to that of R (8), 

using data symmetrically about the orientation 8 and averaging in the radial direction. 
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Assuming the presence of a single feature, then the required estimate is 

C (O) ] (5.17) 
(Pr+l - Pr) 

However, unlike the estimation of the offset il, the existence of more than one feature 

in the continuous case will result in a corruption of the statistic C (0). This is because 

it is calculated from coefficients which are at different orientations about the feature 

orientation 0. To reduce this corruption, the correlation in eqn (5.15) is modified to 

give the following weighted correlation 

, ss12.1 -. 
CO 

1) ßa 
U(P. ). u (Pý�8+Ys, ) u(P, (, +J), 0+Yd(. +i)) (5.18) 

S(S .. 

where the real function v(p) is localised and symmetric about p=0. This 

modification ensures that the statistic is calculated within an elongated region central 

about the orientation 0 similar to that in fig 4.6, hence limiting corruption from other 

features to those with similar orientations. In the case of a local analysis, it is possible 

to derive a set of such correlation statistics C (i) in uniformly distributed orientations 

yr1. As in the case of the statistics R (i), errors will be introduced by the finite resolu- 

tion spectral estimate and the misalignment of features with the discrete orientations. 

Once again these errors are minimised if a single feature is present. 

To conclude, assuming the availability of a finite resolution spectrum estimate u (m, i) 

for a given local region, it is possible to obtain ML estimates al for features in uni- 

formly distributed orientations Vi = in/L. If a single feature is present in the local 

region, then there will be significant contribution in those estimates corresponding to 

the orientations which straddle the orientation corresponding to that of the feature. 
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The magnitudes of these estimates are reduced in the presence of more than one 

feature, particularly when features are in similar orientations. Estimates of the posi- 

tion of features in the orientation yr; can be obtained via 4(i) = Arg( R (i) ] and the 

position of segments by including the estimate in the orthogonal orientation, 

e'(i) = Arg[ C (i) 1. 

5.3. Single Feature Regions 

5.3.1. Motivation 

The image model defined in chapter 4 is based upon regions which contain a single 

local feature. In the previous section, however, a region-based estimation scheme was 

described in which parameter estimates were obtained for features in a finite number 

of uniformly distributed orientations. To provide a decision scheme for the image 

model, it is therefore necessary to devise a method which identifies those regions that 

satisfy the single feature hypothesis. 

An obvious way to proceed is to consider the distribution of estimate magnitudes (or 

certainty measures) over all orientations. A local maximum in this distribution would 

indicate the presence of a feature in a given orientation and a single, highly concen- 

trated maximum would suggest that the underlying region is likely to contain just the 

one feature. What is required therefore is a measure of the anisotropy or `oriented- 

ness' of the distribution. One such measure can be obtained by adopting the analogy 

of point masses rotating about a fixed axis, a system which is often encountered in 

mechanics. Using the theory of the moments of inertia [13], it is possible to determine 

the principal axis, or in this case the principal orientation, of such a system and to 

obtain an estimate of the degree of mass concentration. This is considered in the next 
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section. 

An additional criterion for testing the single feature hypothesis is that of scale con- 

sistency: if a region is considered to contain a single feature at a given scale, then this 

should be confirmed by any information obtained at a smaller scale, the assumption 

being that no contradictory evidence should be obtained within any subregions if only 

one feature is present. Such a consistency test is considered in section 5.3.3. 

5.3.2. Principal Orientation 

A system of point masses rotating about a fixed axis can be analysed by considering 

the moments of inertia. The technique is used extensively in various areas of mechan- 

ics [13). A related problem is an analysis of the dispersion of a set of (weighted) 

points with respect to the centroid of the set, and the determination of the principle 

axes. The latter has found use in image processing to represent orientation in both 2-d 

and 3-d space [5][67]. 

Define the set of points by the position column vectors x;, where the origin is assumed 

to be the centroid of the points. The `inertia tensor' is then given by [13] 

P= mi Pi 

where 

T 
Pi = xi xi 

(5.19) 

(5.20) 
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and mi is the weight associated with the point whose position vector is xi. Since P is 

real symmetric, its eigenvectors are orthogonal and it can be shown (eg [51) that the 

eigenvector corresponding to the smallest eigenvalue' defines the direction of 

minimum dispersion. In other words, the principal axis is given by the eigenvector 

corresponding to the largest eigenvalue. The difference between the eigenvalues is 

then a measure of the dispersion, eg in the 2-d case one large eigenvalue and one 

small one indicates that the points are concentrated about the orientation given by the 

angle of the eigenvector corresponding to the largest eigenvalue. 

The above theory can be applied in the present 2-d case. From section 5.2, the set of 

`point masses' are the estimate magnitudes I ai I_IR (i) ( with position vectors 

x; =j X12 cos yr; sin yri ] (5.21) 

corresponding to the orientations yfi = ix/L, 0: 5 i<L. The following tensor is then 

defined 

P1 P2 
P=! at I P1 = (5.22) 

P2 -PI 

where 

T cos 2ifj sin 2yri 
Pi = xi x; -I= sin 2yt, --cos 2yti (5.23) 

is the traceless tensor corresponding to the orientation yr; and having identical eigen- 

vectors and difference of eigenvalues to xi xi. The eigenvalues of P are then related 
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by 

I+P2)2 (5.24) 

and thus a suitable measure of the dispersion of the estimates iai (is the statistic 

=Pi+ P2 (5.25) 

which represents the difference in the eigenvalues. The principal orientation is then 

given by 

e1(1) 00 .- tari-1 
e0 (1) 

(5.26) 

where e(1) is the eigenvector corresponding to the eigenvalue X1. 

Recall that the requirement is to determine when the estimates I a; I correspond to a 

single feature region. To assess whether the statistic ý can be used for this task, con- 

sider its expected value when a single feature is present with an orientation 0. Ignor- 

ing any errors due to sampling when calculating the correlation statistics R (i), ie L 

and M are assumed to be large in eqn (5.11), then from eqns (5.22) and (5.25) this is 

given by 

E[CI1]=E[IR (e) 12 ]( cos220 + sin228 ) (5.27) 

=E [JR(0)J2 l 
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where R (0) is the correlation statistic calculated in the orientation 8. Now, if an addi- 

tional feature is present in an orientation uniformly distributed between (0,0 + n/2 ), 

then this expected value becomes 

8+2 

E[C12] = 
Zn E[JR (A) 12 ]j( cos 20 + cos 20, )2 +( sin 20 + sin 20, )2 d81 (5.28) 

0 

where it is assumed that the region energy is independent of the number of features 

and that the magnitude of the correlation statistic is the same for both features. The 

above equation simplifies to 

5.29 ECýI21 =z E[IR(e)12] =z E[ýI1] () 

and the statistic C is reduced by half if the region contains two features. It is clear that 

further reduction will occur if more features are present. Therefore, in this case, t 

provides a suitable statistic to test the single feature hypothesis. However, its effec- 

tiveness is obviously determined by the ability of the correlation statistics to represent 

separate orientations, which is further dependent upon the availability of a local spec- 

tral representation with sufficient resolution. 

5.3.3. Scale Consistency 

An additional criterion for testing the single feature hypothesis for a given region is 

that of scale consistency. This is based upon the premise that if a region contains only 

one feature, then an analysis of subregions should not indicate anything to the 
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parent feature 

child feature 

(a) consistent (b) inconsistent 

Figure 5.2. Consistent and inconsistent feature information. 

contrary, eg the existence of a feature in a subregion which does not correspond to the 

feature already identified. 

In this work, the consistency test is based upon the four quadrants of a region which 

correspond to the adjacent level in the multiresolution model framework. This is 

illustrated in fig 5.2, where the single feature identified in the parent region is com- 

pared with those (if any) identified in its four child regions. If the features within the 

child regions agree with that at the parent level as in fig 5.2a, then the single feature 

hypothesis is accepted within the parent region. However, if as in fig 5.2b, one or 

more children disagree, then the hypothesis is rejected. The test also requires that 

either each child region should satisfy the single feature criterion described in the pre- 

vious section or has no significant contribution in its feature estimates; otherwise the 

information at the child level is regarded as indeterminate and the hypothesis at the 

parent level is rejected. 

There are two parameters in the above agreement criterion: the orientation and posi- 

tion of the features. Denoting the orientation and position vector of the parent feature 

by A and ri" = 11 + il' respectively, a suitable consistency measure with respect to each 

child is 
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'/ 
child feature 

parent feature 
Ani = II11 II - XT Ye - ýý n ýtý ýý 

Figure 5.3. Calculation of position difference &T) i. 

Cosa(A71i 
'r ) cosa(8 - 0; ) 

2A IATlil<A 1e-e; l<n/2 
c (t) =0 else A, a>0 (5.30) 

where 6; is the orientation of the feature associated with ith child and 

onº = 11 7111 - X; Ye - IITI (i) II (5.31) 

represents the difference in position indicated by the parent and the ith child as illus- 

trated in fig 5.3. In this case, rl"(i) =T 1(i) + T'(i) is the position vector corresponding 

to the ith child, x, indicates the position of the child region centre with respect to that 

of the parent region, and ye is a unit vector in the orientation 0. Note that this differ- 

ence measure is based upon the feature offsets in the direction orthogonal to their 
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orientation (ie 'I and TL(i)) and not upon their estimated centroids which, because of 

the change in scale between parent and child, are not comparable. 

The consistency measure c (i) varies between 0 and 1, taking larger values when both 

the orientation and position of parent and child are similar. A significant difference 

in either or both of these parameters leads to a reduction in its value. The parameters 

a and A in eqn (5.30) enable an adjustment of the response of the measure. 

5.4. A Hierarchical Detection Scheme 

The detection criteria described in the previous section can be combined into a single 

hierarchical scheme. The aim is to identify the separate and contiguous regions of the 

multiresolution image model defined in section 4.3 and illustrated in fig 4.1. 

The scheme is based upon the availability of local spectrum estimates for the full 

range of region sizes. Local feature estimates in uniformly distributed orientations 

corresponding to each region are obtained according to section 5.2. It is useful to 

visualise these estimates as forming the nodes of a quadtree, where the root node 

refers to the largest region, ie the image, and subsequent child nodes refer to quadrants 

as the image is recursively split into squares. 

The detection scheme is a recursive process that starts at the root node and then 

proceeds as follows: 

(i) Calculate the sum of the correlation magnitudes IR (i) I over all orientations yfi. 

These may be normalised values according some hierarchical normalisation pro- 

cess (cf section 6.2.3). If the sum is less than a threshold, the region is classified 
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as ̀ lowpass' and the process stops by truncating the tree at the current node. 

(ii) Otherwise, calculate the anisotropy statistic ý according to section 5.3.2. If it is 

less than a threshold, the region is classified as containing more than one feature. 

The region is then split and the process is repeated for each child node (qua- 

drant). '.,.. 

(iii) Otherwise, calculate the sum of the correlation magnitudes for each child node. 

If one or more are greater than a threshold, calculate the statistic C and the con- 

sistency measure c (i) for the relevant children. If either of these is less than a 

threshold, an inconsistency is noted and the region is split, repeating the process 

for each child node. 

(iv) Otherwise, the region is classified as containing a single feature and the process 

stops by truncating the tree at the current node. 

t .,.. 

Once the above scheme is ' completed, the image will be represented by a truncated 

quadtree that divides it into different sized spatial regions which are classified as 

either containing a single local feature or are essentially lowpass regions, ie they are 

defined by the function g (x, y) in eqn (4.5). The resulting structure resembles that in 

fig4.1b. 

The parameters of the multiresolution image model have therefore been determined: a 

finite set of features each defined at a scale n and having orientations O,, and position 

vectors 1)",,, (n). As discussed in chapter 4, these local features can be used to extract 

curves in an image and this is considered in the next section. 
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S. S. Curve Extraction 

5.5.1. Recursive Curve Forming 

The representation of curves within the multiresolution image model was described in 

section 4.3.3. It is a piecewise representation, with local features defined at different 

spatial resolutions representing sections of the curve. The local curvature is given by 

the change in orientation between adjacent features and a given curve satisfies a max- 

imum curvature criterion. Using the local features that result from the detection 

scheme described in the previous section, it is possible to base a curve extraction 

scheme upon this representation. 

The scheme is recursive and operates on the truncated quadtree that results from the 

local feature detection. Recall that the nodes in this tree correspond to square regions 

of the image, and that the leaf nodes are either classified as single feature regions or 

lowpass regions. The idea is to use an upward directed process within this tree to 

form a curve by combining features at successively lower spatial resolutions, until at 

some node the curve is completely identified. This involves applying the following 

steps at each node in the tree, starting at the root node: 

(i) For each child node that is not a leaf node apply steps (i)-(iii). 

(ii) Form all possible curve sections by combining appropriate features or curve sec- 

tions defined at each child node. This is the local curve forming operation and is 

described below. 

(iii) Assign these sections to the current node. 
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Figure 5.4. Hierarchical curve extraction. 

The scheme is therefore a fine-to-coarse analysis that begins by descending to the 

nodes whose child nodes are all leaf nodes. Curve sections are then formed and these 

are propagated up through the tree to enable them to be combined with other similarly 

formed sections or features defined at lower spatial resolutions. An example of a 

curve formed in this way is illustrated in fig 5.4, where the complete curve is extracted 

after three levels of the tree have been processed. 

The local curve forming operation used in the above scheme is based upon a heuristic 

search using the features or curve sections defined at the child nodes of the current 

node. The requirement is to combine appropriate features or sections into new sec- 

tions according to a maximum curvature and `best fit' criteria. In other words, a curve 

section is formed provided that the curvature represented by adjacent features is less 

than a threshold and that these curvature values are the minimum that can be 
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associated with the relevant features, ie they cannot be combined with other features 

to give a smaller curvature value. The measure of curvature used in this search is 

described below. Before this however, it is worth illustrating the curve forming pro- 

cess by considering some specific examples. These are shown in fig 5.5, where the 

current node is denoted p and it has child nodes p0-p3. A given child node can be 

one of three possible types: 

(i) A leaf node that has an associated feature, eg node p1 in example (a). 

(ii) An intermediate node that has associated curve sections formed at previous lev- 

els or features that have propagated up from previous levels, eg nodes p2 and p1 

in examples (b) and (c) respectively. 

(iii) A leaf node that has been classified as representing a lowpass region, although 

has an associated feature estimate, eg node p0 in example (b). 

The outcome of the search process in the examples (a)-(d) is summarised below (see 

also the table in fig 5.5) 

(a) A new curve section is formed by combining features (f2, foo --fo2, f, )" 

Feature f3 is also assigned to the current node since it is defined at the boundary 

of the child regions and could therefore combine with adjacent nodes at a higher 

level. 

(b) Two curve sections are formed from the feature sets U20 - f22, fo * fl ) and 

(f23, f3 ). Note that the lowpass node PO contributes its feature fo since it com- 

pletes a curve. This is an example of the ability of the extraction scheme to fill 

in curve gaps. 
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Figure 5.5. Local curve forming examples. 
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(c) Two curve sections are formed from the feature sets (fo, f2) and 

U10 -. f 12, . 
fso -132 )" Feature f13 is discarded since it is isolated within the 

child node regions. 

(d) 
.A 

curve section is formed from features (fo, f3) and features fi and f2 

assigned to the current node. Although these features are associated with 

lowpass regions, they can still be combined with adjacent nodes that appear at 

higher levels. However, a curve section may not be formed by combining only 

features from lowpass regions. Once again the curve (fo, f3 ) is an example of 

the scheme overcoming the problem of missing sections in a curve. 

The curvature measure used in the curve forming process is based upon the rate of 

change of orientation between two features. An example is illustrated in' fig 5.6, 

where the features have orientations 01 and 02 and position vectors i1" and 112". In 

general, and as shown in fig 5.6, these features will be defined at different spatial reso- 

lution.. The curvature is then given by I 

c=1-4 11Y291 + d' I( +II Y2e2 + d' (I 
] 

(5.32) 

where y202 and Y2ez are unit vectors in the orientations 281 and 202, d' is the unit vec- 

tor in the same direction as the difference vector between the feature positions 

d=x+r12"-l1i" (5.33) 1l Ild d'_ 

and x is the centre offset vector between the two regions associated with the features 

as shown in fig 5.6. 
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Figure 5.6. Parameters of local curvature measure. 

The change in orientation represented by the two features is accounted for in the cur- 

vature measure c by the addition of the unit vectors y2e1 and Y292 with the difference 

vector d'. Note that these vectors are defined using a double angle representation in 

order to overcome the ambiguity associated with feature orientations: an orientation 0 

is equally represented by vectors whose orientations are 0 and 0+ it. The use of the 

double angle overcomes this by ensuring that each orientation has a unique vector 

[65]. The resulting curvature measure in eqn (5.32) varies between 0 and 1, attaining a 

maximum value when the features are perpendicular and a minimum value when they 

have the same orientation. 

5.5.2. B-Spline Polynomial Fitting 

The result of the curve extraction scheme is that a given curve is represented by local 

features which have an associated position and orientation. The representation is 

therefore piecewise and each section is given by a straight line. It is possible, 
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Figure 5.7. B-spline curve and guiding polygon. 

however, to define a more continuous curve by fitting a polynomial to the set of 

feature positions. Such a curve is clearly more suited to those found in natural 

images. 

There are a number of techniques available for fitting polynomials to a set of data 

points. A review of the various methods is provided in [5] [11] and they include alge- 

braic planar curves, parametric and rational polynomials and B-spline methods. The 

latter is frequently used since it is particularly easy to implement and has several 

advantages which are relevant when dealing with natural curves. 

The B-spline is a piecewise polynomial curve which is controlled by a guiding 

polygon, where the vertices of the polygon are the set of data points. An example is 

illustrated in fig 5.7. Cubic polynomials are normally used for the splines since they 

are the lowest order in which the curvature can change sign. The main advantage of 

B-splines, apart from the fact that they can be computed efficiently, is that the result- 

ing curves appear to be a natural choice given the particular guiding polygons. In 

other words, they closely approximate curves that might have been fitted with the aid 

of the human eye. This makes the technique particularly suitable for image analysis. 
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A B-spline polynomial can be defined as [11] 

N-1 
P (x) =Yx; B; k(x) (5.34) 

«o 

where xi are position vectors representing the set of N data points and B; k(x) are the 

basis functions of the spline. These nonnegative functions are defined on a limited 

support and hence the curve points only depend on a subset of neighbouring data 

points. This provides local control on the shape of the resulting polynomial approxi- 

mation. The parameter k in eqn (5.34) controls the continuity of the curve. There are 

a number of different basis functions that can be used [11] and these vary in complex- 

ity. In the present work those defined in [80] were adopted, primarily because they 

can be generated using a simple recursive procedure. 

A curve resulting from the extraction scheme can be considered to have associated 

features ff, 0: 5 i<L, each defined at positions represented by the 2-d vectors 111". 

Using eqn (5.34), the B-spline approximation for this curve is then given by 

L-1 
P (x) =ZT" Bik(X) (5.35) 

i-o 

where x is a 2-d vector representing a point on the spline and Bjk(x) is defined as in 

[80] with k=3. Although this is a simple example of fitting a spline to the set of 

feature positions (eg it might have been possible to make use of the orientation infor- 

mation associated with each feature), it was found that the results obtained were 

acceptable (cf chapter 6) and that limited return would be gained from using a more 

complicated method. 
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CHAPTER SIX 

ESTIMATOR IMPLEMENTATION AND RESULTS 

6.1. Introduction 

In the previous two chapters an image model based on local features has been intro- 
., 

duced and a detection and estimation scheme described. The purpose of this chapter 

is to show how the MFT can be used to implement the estimation scheme and to con-, 

sider two important issues in this implementation, namely the problem of phase ambi- 

guity when estimating the parameters of the linear phase model and the normalisation 

of the calculated statistics used in the estimation process. Note that once an appropri-- 

ate implementation method has been defined, then the detection of single feature 

regions and the extraction of curves follows directly from the discussion in the previ-, 

ous chapter. This chapter also considers the problem of reconstructing an image from 

the estimated parameters of the model and shows that if the MFT is used as an estima- 

tion tool, then this reconstruction can be achieved in 'a consistent and well defined 

way. Finally, the chapter concludes by presenting feature estimation, single feature 

detection and curve extraction results for synthetic and natural images. 

6.2. An MFT Based Estimator 
{ 

6.2.1. The Estimator 

The MFT provides local spectrum estimates over the full range of scales. Specifically, 

if it is considered as a vector quadtree (cf section 3.4.3), then its spatial frequency vec- 

tors uxy(n) refer to the individual regions of the multiresolution image model shown in 
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fig 4.1a. Hence the MFT has a structure which is the same as that which underlies the 

model and it therefore serves as a basis for implementing the estimation scheme. 

Before considering the implementation in detail, it is worth describing the idea behind 

the scheme. From chapter 4, the estimation of local features is based upon the 

existence of a linear phase component within the spatial frequency coefficients of a 

local spectrum estimate in an orientation perpendicular to that of the feature. The 

multiresolution image model assumes that the image consists of such features defined 

within different sized spatial regions (a typical example is shown in fig 4.1b). There- 

fore, since the MFT provides local spectrum estimates for these regions it can be used 

as an estimation tool. Specifically, if a region contains a local feature as illustrated in 

fig 6.1, then this will give rise to a linear phase component in the MFT coefficients 

which is directly related to the centroid position of the feature. Thus by operating on 

the MFT coefficients to detect this property the existence or nonexistence of a local 

feature can be estimated. 

The above does assume, however, that the local spectrum estimates provided by the 

MFT are not significantly biased. It was shown in section 3.4.2 that in terms of local- 

ity the estimates represent optimal estimates since the vectors used in the generation 

have minimum uncertainty. However, the local feature estimation described in sec- 

' tion 5.2 was based on a number of assumptions about the type of window functions 

used and also upon a polar separable implementation. The MFT used in this work is 

cartesian separable and therefore any estimation of the local features must necessarily 

be an approximation. Despite this, experiments have shown that such an approxima- 

tion does not lead to any significant bias and that acceptable estimates can be 

obtained. The details of how this is achieved is considered in the remainder of this 

section and the results are presented in section 6.4.1. 
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Figure 6.1. Estimation of local feature offset using the MFT. 

Recall from the previous chapter that the estimation scheme is based upon calculating 

the correlation statistics R (i) and C (i) in a discrete number of uniformly distributed 

spatial frequency orientations \jti. As discussed above, these can be calculated by 

using the local spectrum estimates on each level of the MFT. Adopting the notation 

of chapter 3 for a generalised 2-d MFT, there are o 52, E xc 52, E spatial frequency vec- 

tors uXy(ß, n) with resolution rn xF. In the present work these are defined on a Carte- 

sian lattice and it is therefore necessary to obtain the correlation statistics by interpola- 

tion. Towards this, define the following set of orientation vectors of dimension 

F /2 x1 for each spatial frequency vector 

z, y; (n) = Ai(n) uXy(6, n) 0: 5 i< I'�/2 (6.1) 
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Figure 6.2. Extracting orientation information from cartesian separable lv[FT. 

wxyin(n) = Bim(n) uxy(6, n) 05i, m <F� /2 (6.2) 

where the operator A" (n) defines the interpolation in an orientation yt; =i itL /I-,, 

within the 2-d lattice of uy(n). The resulting vector zXy(n) is then a polar representa- 

tion of this vector. In a similar manner, B; n, (n) defines an interpolation in the perpen- 

dicular direction with an offset m as illustrated in fig 6.2a. 

For each orientation, the components of zy; (n) and w, j, m(n) are uniformly spaced at 

unit intervals. In the present work they are obtained using a bilinear interpolation for- 

mula, which has the advantage that it is simple to implement and computationally 

efficient. Higher order methods could be used, although the results presented in sec- 

tion 6.4 suggest that the extra complexity and computation would have limited return. 

In general, a required component will lie in a square region whose corner values are 

given by four available coefficients as shown in fig 6.2b. The interpolated value is 
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then given by 

z= (1-ep)(1-Aq)u00 +, &p-, &q)u10+Aq(1-Ap)uoi'+OpOquI1 (6.3) 

where u po -u 11 are the available coefficients and Op, Eq is the position of the 

required value z with respect to the coefficient uOO. 

The correlation statistics can be defined in terms of the above orientation vectors. 

From eqns (5.8) and (5.18), they are defined for each MFT vector u,, (n) as 

R, ryi(n) =z yi(n) X(n) z., yi(n) (6.4) 

? r. 12-1 
Cxyi (n) = Z- w in(n) X(n) Y(n) wxyim(n) (6.5) 

r. 
m-0 

where X(n) is the non-circular shift operator 

x, d(n) = 6(k+1-1) O5k, l<r /2 (6.6) 

and Y(n) represents the weighting function in eqn (5.18). In the current implementa- 

tion this is defined to be 

6(k -1) 
v, U (n) 0 

4 
-a� Sk 5 

4° 
tlln 

else (6.7) 



where a� is given by 

1 

a_ 2n1-n 

2ni ns 

nZn1 

n25n <nl 

n <n2 

nl>n2 
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(6.8) 

and sets the range of coefficients for calculating C, ry; (n) according to the spatial fre- 

quency (and thus orientation) resolution of uxy(n), ie it increases the number of 

coefficients as the resolution increases (cf section 5.2). 

In terms of the MFT coefficients, eqns (6.4) and (6.5) become 

Rxyi(n) =u y(ß, n) Aj+(n) X(n) As(n) u.,, y(ß, n) (6.9) 

2 ria-i 
C, yi(n) = T� 

uI 
y(ß, n) Bin(n) X(n) Y(n) Bim(n) ux, (ß, n) (6.10) 

For an orientation yr, a certainty measure for a feature is indicated by the magnitude 

of RXyi (n ). The position of this feature is then derived from the arguments of the 

statistics R) (n) and C,., jm(n) according to eqns (5.6) and (5.17), ie from fig 4.6 

'rt., yi(n) +T '(n ) (6.11) 

where 



135 

iii! (n) =[ 'rim,; (n) cosytj , tim,; (n) sinyr; 1 (6.12) 

il' i(n) =[ -'1,, t(n) sinyr1, T1 gi(n) cosyrj ] (6.13) 

and 

, q, i (n) =. 2' Arg[ Ri (n) 1 rl Xyt (n) = 2n 
Arg [ C. i (n) ] (6.14) 

A measure of the distribution of features and an estimate of the principal orientation 

within the region can then be obtained from the inertia tensor P described in section 

5.3.2. Having obtained this orientation from the eigenvector e, say, then an estimate 

of the `principal feature' position can be derived from the additional statistics 

R, Cye(n) = zx'ye(n) X(n) zzye(n) (6.15) 

r. /2-1 
Cxye(n) = 

rA wx, 'yem(n) X(n) Y(n) wxyem(n) (6.16) 
I .. 0 

where 

0= tan 1 el 
eo 

0S0<7t (6.17) 

and z, e(n), w., yo n(n) are the vectors in the principal orientation 9 and 0+n! 2 respec- 

tively. 
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6.2.2. Phase Ambiguity 

The correlation statistics determine the average phase increment between adjacent 

components in a given orientation. This increment is then directly proportional to the 

position of the feature. However, due to the inherent periodicity of phase values, there 

exists a problem of ambiguity in determining this position. In fact, that derived from 

the principal value of the phase may equally refer to a number of other possibilities. 

To see this, note from eqn (6.14) that the phase increments, A say, are given by 

0ý= 21r(ý +mF) (6.18) 
F. 

where 11 is the required position value. Therefore, as shown in fig 6.3a for the 1-d 

case, a given iý corresponds to the set of values t1 + mF. 

I'n ghost feature 

rn 

2 

Figure 6.3. Feature offset repetition due to phase ambiguity. 

Of course, since the MFT analysis vectors are localised, significant contribution in the 

correlation statistics will be due to those features in the vicinity, ie either within the 
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region itself or in an adjacent one. However, this still leaves the possibility of ghost- 

ing in regions that are next to a particularly strong feature. A way of reducing this is 

to make use of the generalised MFT. To see this, compare the example of fig 6.3a 

with that of fig 6.3b which shows the offset repetition for a generalised MFT with 

ß=2. The region size in these two examples is I',, and r /2 respectively. However, 

since the frequency resolution is the same, the offset repetition remains at intervals of 

r',, in both cases. Now, if it is assumed that an offset value for a region is discarded if 

it falls outside of the boundary, then what is the minimum distance between a feature 

that gives rise to a ̀ ghost feature' and the centre of the region? Denoting this by 0, it 

is given by 

A= rn (1 -26) (6.19) 

and clearly this increases with the value of ß. Employing a generalised transform 

therefore reduces the problem of ambiguity since the features that can cause the ghost- 

ing effects are further from the region of interest and consequently contribute less 

energy to the local MFT coefficients. Furthermore, the analysis vectors used in a gen- 

eralised transform are more spatially localised and therefore this reduces any energy 

leakage between regions (cf section 3.5.1). In the present work a value of a=2 has 

been found to be adequate given the analysis vectors being used. 

6.2.3. Normalisation 

A feature which is less localised will have a correspondingly lower contribution in the 

correlation statistics. However, is such a feature less important than a well defined 

neighbour? This is a difficult question and involves issues such as the use of 
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thresholding and the importance of context. Nonetheless, a reasonable way to proceed 

is to employ some type of local normalisation. 

In its simplest form this would consist of scaling all the measurements within a given 

region with respect to the maximum in that region. However, when regions have a 

small area then this would disregard the existence of larger regions containing a single 

feature. A compromise is to employ a hierarchical normalisation process which can 

be readily defined on the structure of the MFT. The basic idea is that the normalisa- 

tion factor for a given region is derived not only from the measurements of that region 

but also from those at higher scales.. In other words, within the MFT the measure- 

ments at child nodes are normalised to a certain extent by their ancestor nodes (cf sec- 

tion 3.4.3). 

One such scheme can be defined in terms of a recursive process. Define the norrnali- 

sation factor for a region xy at scale index n as 

Rxy(n) _ (1-ß)Rx'y(n-1) + J3ý R., yi(n) n>0 05ßS1 (6.20) 

Re(0) =. IRei(0)1 (6.21) 

where 

x'=121 y'=r 1 (6.22) 

The correlation statistics are then modified such that 

R yý (n) = 
Rey` (n) 

(6.23) 
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The value of j3 in eqn (6.20) determines the `size' of the local normalisation. For 

example, a small value will mean that the magnitude of the statistics are influenced by 

features in a wider surrounding area. As ß increases this area reduces until when 

0=1 it is simply a region by region normalisation. 

6.2.4. Computational Requirements 

Assuming the availability of an appropriate MFT, the additional calculations required 

to determine the correlation statistics are considered in this section. 

For each spatial frequency vector the set of orientation vectors 2xyi(n) and wxy; m(n) 
need to be calculated. Assuming that these are calculated in r . 1L orientations and 

that each component is derived from a bilinear interpolation which requires the 

equivalent of 2 complex multiplications, the number of complex multiplications per 

spatial frequency vector is then (cf eqns (6.1), (6.2) and (6.5)) 

Ni = L~, 2ý + 
2" 

(tan + 1) 

= 
L"2 (an + 1) (6.24) 

where a,, is given by eqn (6.8). 

From eqns (6.4) and (6.5), the number required to calculate the correlation statistics 

Rxy1(n) and Cxyj (n) is 
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NR = L" (2" -1+ 2a,, 2" 

2 
L" (and' 2 (6.25). 

Hence for a given spatial frequency vector . 

N (n) =N: + NR (6.26) 

and for the c; 2 S22 on each level of a generalised transform 

= a2 C22 N(n) aCxy(n) 

= 62 Sin (N1 + NR) 

2r2 i. = 62 an 
L" 

(an + 1) +L (a,, +2 

(3an+2 C; 2 LZ 

02 2 (6an +5) (6.27) 

For example, using a generalised MFT with a= 2 and estimating r,, l2 orientations 

per region (L=2), this gives 

N0(n) =6 an +5 (6.28) 

complex multiplications per pixel., In the present work a,, has been limited to a max- 

imum value of 2, ie T( 0(n) 17, and has led to satisfactory results. 



141 

6.3. Image Reconstruction 

An appropriate method of establishing the validity of a signal model is to reconstruct 

the signal from the parameter estimates. In the present case, this is particularly 

straightforward given the invertibility of the MFT. 

The idea is to reconstruct the relevant MFT coefficients and then use the inverse pro- 

cedure to provide a reconstructed image. In the multiresolution image model, the 

parameters obtained refer to local features defined at different spatial resolutions and 

these are determined from the spatial frequency vectors on different levels of the 

MFT. Hence to produce a reconstructed image, these vectors are first reconstructed 

and the resulting pseudo-MFT levels inverted using the multilevel inverse procedure 

described in section 3.3.2. 

For each local feature in a given orientation, the correlation statistics used in the esti- 

mation scheme provide an estimate of the linear phase increment in an orthogonal 

orientation within the relevant spatial frequency vector.. The phase, values of the 

coefficients can therefore be reconstructed by using the linear model defined in section 

4.4.2 with the phase increment given by the estimated value. The linear model also 

assumes a constant phase component, ie e in eqn (4.11), and this can be calculated at 

the same time as the correlation statistics and then added in at the reconstruction 

stage. 

However, the correlation statistics give no indication of the magnitude distribution 

along each orientation, although they do provide a measure of the energy, variation 

over all orientations given the linear phase model.. It is therefore necessary to model 

the magnitude distribution using some other method. This could consist of deriving a 

separate model for the distribution and estimating its parameters from the transform 
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coefficients, eg approximating it using an nth order polynomial. In the present work, 

however, a much simpler approach is adopted. The radial magnitude is modelled 

using a simple prototype function which is weighted according to the distribution of 

magnitudes within the correlation statistics. Despite its simplicity, this approach has 

been shown to give acceptable results. 

The multiresolution image model is based upon regions which contain single local 

features. Hence the spatial frequency vectors must be reconstructed from information 

referring to a single orientation. This introduces the problem of modelling the 

response in the other orientations, ie how should the phase values in these orientations 

relate to those in the orientation corresponding to that of the feature and how should 

the magnitude values vary? Once again there are obviously methods that could be 

employed to estimate these parameters from the data having identified a single feature 

region. However, experiments have shown that a simple approach can also be taken 

in this case and yield satisfactory results. This involves assuming that the phase 

response varies in only the orientation of interest and that the magnitude response 

resembles the elongated region associated with a feature segment illustrated in fig 4.6. 

The implication of this approach is that the resulting feature after reconstruction will 

be centred about an orientation orthogonal to itself, ie there will be no offset along its 

orientation, and its length will be determined by the function which is used to produce 

the width of the elongated region. The results presented in the next section show that 

these effects do not produce gross errors in the reconstructed image. 

A spatial frequency vector of the MFT is therefore reconstructed in the following 

manner. For a feature corresponding to an orientation 8 detected at scale index n and 

within spatial region xy, the associated vector is reconstructed using the correlation 

statistics R, ry0(n) such that 
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I 

9+n/z 

if (6, n) 
xykl 

Figure 6.4. Reconstruction of MET coefficients. 

Uykl(6, n) = m0(k, 1)e-'o'va 05 k<I'n r< <F, (6.29) 

and 

* 
-i (X +i > 

üx,, U(6, n) = unkn) e (6.30) 

oSk<r� 0 <l< 2" k'=I'�-1-k 1'=I'�-1-1 

where 

$Xye = Arg[ Rxye(n) ] xo + EXye(n) (6.31) 

is the reconstructed phase value according to the linear model of section 4.4.2 and xo 

is the perpendicular distance between the coefficient and the orientation 9+ it/2 as 
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shown in fig 6.4. The phase constant c e(n) in eqn (6.31) is calculated as the average 

constant in the orientation 0 within the MFT coefficients uXy(a, n) and the magnitude 

function me (k, l) in eqn (6.29) is based upon an average profile derived from these 

coefficients in a finite number of orientations and weighted according to the magni- 

tude of the correlation statistic RXye(n). Note from eqn (6.30) that half of the 

coefficients in the reconstructed vector ii (ß, n) are derived using the symmetry pro- 

perty of the coefficients in a frequency shifted MFT as described in section 3.6.1. 

The above reconstruction can be applied to each of the spatial frequency vectors 

corresponding to the single feature regions detected by the scheme described in 

chapter 5. This will then result in a set of pseudo-MFT levels s(a, n) with spatial fre- 

quency vectors given by 

üxy(ß, n) iff x, y e An 
S,, y(a' n) =0 else (6.32) 

where 0 is the null vector and An denotes the set of spatial regions on level n of the 

multiresolution image model that contain single features. The reconstructed image is 

then given by 

r= H(a, n) s(ß, n) (6.33) 

neA 

where A denotes the selected levels and H(ß, n) is the inverse operator defined in sec- 

tions 3.2.1 and 3.5.3. 
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6.4. Experimental Results 

The estimation and detection schemes described in this and the previous chapter were 

implemented for three images: the `discs' in fig 3.12a; the `girl' in fig 3.13a; and the 

`boats' in fig 6.7a. These images are 512 x 512 pixels with an 8-bit grey level at each 

pixel. All three were prewhitened using the function defined in section 3.6.4 with 

a=2 and A= n/ 16. The results are shown in figs 6.5-6.8 and they are considered in 

the following sections. 

6.4.1. Local Feature Estimation 

The estimation of local features using the MFT described in this chapter was imple- 

mented for the three images. Recall from section 6.2 that the scheme involves obtain- 

ing estimates in a number of uniformly distributed orientations within the spatial fre- 

quency vectors on each level of the transform. These estimates consist of the position 

of the feature, ie its centroid il", o, (n ), and a certainty measure given by the magnitude 

of the correlation statistic Rxyi(n). 

The results for several MFT levels are shown in figs 6.5a-d, 6.6a-d, and 6.7b-e. Apart 

from fig 6.5d, these results were obtained using generalised MFT's with ß=2. The 

estimated features on a given level are displayed by constructing an image in which 

each feature is represented by a straight line within the spatial region referred to the 

spatial frequency vector from which the estimate was obtained. This line is at the 

appropriate orientation and position and extends to the boundaries of the region. If the 

position estimate is such that it would render the line outside of the region, the feature 

is assumed to be in an adjacent region and the feature is not displayed. The luminance 

value of each line is then set to the magnitude of the correlation statistic R-I(n). In 
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the case of the natural images, these values were first normalised using the hierarchi- 

cal process described in section 6.2.3. 

For all the images it can be seen that the scheme successfully identifies features at a 

given resolution provided that they satisfy the line or edge segment model. At higher 

levels of the MFT where the spatial resolution is greater (smaller region sizes), this 

condition is met by short segments and consequently fine detail is well represented. 

This detail is lost at lower levels, where the spatial resolution is reduced and the 

model is only appropriate for larger features. A good example of this can be seen in 

the `discs' image. On level 3 (fig 6.5a), where the local region size is 32 x 32, only 

the larger discs are represented, whereas on level 5 (fig 6.5c) all the discs are well 

represented. This is also apparent in both of the natural images. The eyes and feath- 

ers are visible at the higher levels of the `girl' image and only the larger features such 

as the mirror, hat, etc, at the lower levels. Similar points can be made concerning the 

results for `boats' image. 

To illustrate the problem of phase ambiguity and the advantages that can be gained 

when using a generalised MFT (cf section 6.2.2), fig 6.5d shows the feature estimates 

obtained from level 5 of an MFT with ß=1 for the `discs' image. The ghosting that 

results from phase ambiguity is clearly visible in this result; regions adjacent to edge 

features contain ghost features parallel to the true edge and at a distance which is a 

multiple of the region size r, Note that this is not apparent in fig 6.5b, which is the 

comparable level in terms of region size of an MFT with a=2. 

The background noise in the estimates for the natural images results mainly from the 

normalisation process which was used. In order to ensure that interesting features 

with relatively low values are not missed, the normalisation process is employed to 

increase their value. However, the consequence of this is that spurious features are 
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also increased in value and therefore there exists a trade-off, between identifying all 

the relevant features and being able to ignore the spurious ones. ' Although on each 

level this would appear to be a problem, the later results will show' that the 

identification of the features corresponding, to the overall' image model ' is " not 

adversely effected by this noise due to the requirement for scale consistency (cf sec- 

tion 5.3.3). 

The results presented compare favourably with the recent developments in detecting 

such features, eg [22][65]. In particular, the method of detecting features at different 

resolutions may be compared with scale space methods [10]. It should also be pointed 

out that although based on different properties, the use of frequency domain charac- 

teristics has previously been shown to be successful, eg in the work of Knutsson [65]. 

However, it should also be emphasised that the overall approach in this work is that 

these features represent an intermediate stage and that the next task is to select those 

features that optimally represent the image according to the multiresolution image 

model of section 4.3. The results of implementing this process are considered in the 

next section. 

6.4.2. Hierarchical Feature Detection 

The image model defined in section 4.3 is based upon regions which contain single 

local features. In sections 5.3 and 5.4, a scheme was described which is designed to 

identify such regions from the results of the feature estimation presented in the previ- 

ous section. The scheme is based upon principal orientation and scale consistency cri- 

teria, and takes the form of a recursive hierarchical process as defined in section 5.4. 

Once this process is complete, the result is a truncated quadtree in which the leaf 

nodes refer to contiguous regions of different sizes and these regions are classified as 
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either containing a single feature or as being a lowpass region. 

The detection scheme was implemented for the three images using the feature esti- 

mates already presented. The results are shown in figs 6.5e, 6.6e, and 6.7f, where the 

single feature regions are indicated by a line within the relevant region at an appropri- 

ate orientation. and position, and the lowpass regions are indicated by a fixed lumi- 

nance value. Figures 6.6f and 6.7g show the single feature regions superimposed 

upon the original natural images. 

The results illustrate the ability of the scheme to select regions containing a single 

feature and to classify lowpass regions. In the case of the `discs' image all the 

features have been selected at an appropriate resolution and the lowpass regions have 

been successfully identified. For example, the larger disc is primarily represented by 

features from level 3 (cf fig 6.5a) and the smaller discs are represented by features 

from levels 4 and 5 (cf figs 6.5b-c). In particular, note that where a larger region con- 

tains more than one feature the scheme has successfully split the region until only sin- 

gle feature regions remain, eg in areas where two discs are close together. This is a 

good example of the scheme being able to select the resolution appropriate to a given 

area of the image. 

Similar remarks can be made about the results obtained for the natural images. Thus 

the boundary of the hat in the `girl' image is represented by features from level 3 (cf 

fig 6.6a), whilst the detail of the feathers and eyes are represented at level 6 (cf fig 

6.6d). The splitting of regions is also apparent and this has been particularly success- 

ful at the junctions of curves. For example, the junction between the shoulder and the 

hair has been split until it is represented by four single feature regions. Note also that 

although in the feature estimates there was significant noise present in several areas, 

this has not led to a large number of single feature regions being detected in those 
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areas. This is due in part to the imposition of the scale consistency requirement,, 

which in the case of spurious and random features is not generally satisfied. 

However, although the majority of important local features have been suitably 

selected in the ̀ girl' image, there are a few anomalies and these are also apparent to a 

greater extent in the more complex `boats' image. There are two main sources of 

error: 

(i) Lowpass classification - although in general the classification of lowpass regions 

has been acceptable (eg the shoulder and background in the `girl' image) there are 

cases where a lowpass region appears to correspond to a single feature. Examples of 

this are at the top of the hat and in parts of the column on the left hand side. However, 

examination of these areas in the original image will reveal that the discontinuities 

corresponding to the local features are not significant and thus detection is made more 

difficult. This can be verified by reference to the feature estimates in figs 6.6a-d and is 

a typical problem encountered when detecting local features. As mentioned in the 

previous section, the utilisation of a normalisation process reduces these problems to a 

certain extent, although there is necessarily, a trade-off between detecting these 

relevant features and those that are spurious (the scale consistency requirement is not 

sufficient to reject all spurious features). Note, however, that although in this case the 

regions have been classified as lowpass, the information concerning the features in 

those regions is still available and can be used in further processing (cf section 5.5.1 

and 6.4.3). 

(ii) Complex regions - in a number of cases, particularly in the `boats' image, the 

scheme has classified a region as containing a single feature when it appears to con- 

tain several features. There are two main reasons for this: features are either too close 

in terms of position and/or orientation with respect to the resolution of the respective 
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level of the MFT; or there exists a relatively strong feature amongst weaker ones. - In 

these cases the simplicity of the model and the single feature detection criteria are not 

sufficient to separate the individual features. This problem will be discussed further in 

chapter 7. 

Despite the above difficulties, the results of the feature detection have illustrated that 

the overall approach and the use of the MFT as an estimation tool is capable of pro- 

viding multiresolution feature descriptions of an image. This has only been shown to 

a limited extent by other methods, eg the multiscale representations [1][70][108], and 

confirms the view that such descriptions can only be achieved if a sufficiently general 

image representation such as the MFT is used (cf section 7.3). In the next section, 

results are presented for the curve extraction scheme described in section 5.5 and 

these further illustrate the benefits that can be gained from this approach. 

6.4.3. Curve Extraction 

As described in section 4.3, the multiresolution image model enables the representa- 

tion of curves in an image. Using the single feature detection results presented in the 

previous section, curves can be extracted from the image based upon this representa- 

tion and using the extraction scheme defined in section 5.5.1. This is a hierarchical 

process that constructs curves in a fine-to-coarse analysis over the truncated quadtree 

resulting from the single feature detection (fig 5.4). Once the curves have been 

extracted they are represented in a piecewise manner by a set of local feature seg- 

ments. These can then be used to derive a B-spline representation of the curves as 

described in section 5.5.2. 
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The results of the curve extraction are shown in figs 6.5f, 6.6g, and 6.7h. In these 

results separate B-spline curves are indicated by unbroken lines of fixed luminance 

value. Thus in the `discs' image there are 11 curves each corresponding to a complete 

circle. In the `girl' image the hat, mirror, shoulder, etc, are all represented by single 

isolated curves and similar examples can be found in' the `boats' image. The scheme 

has therefore been successful in extracting the major curves in these images. Note in 

particular that in a number of cases the scheme has filled in the gaps (lowpass regions) 

that are apparent in the detection results of the previous section. As noted in that sec- 

tion, although some regions may be classified as being lowpass, the information con- 

cerning the features in those regions is still available and can be used to complete a 

given curve as these results have illustrated. A good example of this is the top of the 

hat in the `girl' image. 

In the case of small and detailed curves within complex areas of the' image, the 

scheme has been less successful. This is apparent in a number of cases for the `boats' 

image. One reason for this is the reliance on the single feature detection results, 

which as noted in the previous section are often unreliable in complex areas. An addi- 

tional problem associated with the curve extraction scheme is that the construction of 

a curve is based upon orientation and spatial position information. At higher levels of 

the MFT, which correspond to sufficiently short feature segments to represent detailed 

curves, both orientation and spatial information are necessarily at low resolution. 

Hence curve extraction is limited and possibly not an appropriate operation to be 

addressing in such areas. This is again related to the principle of uncertainty and will 

be discussed further in section 7.2. 

As noted in section 4.2, there have been a number of methods proposed for identifying 

curves and boundaries. Of these, methods which are based upon some type of edge 

following are comparable to the techniques used in this work, eg [3][23][74][78]. The 
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majority of work in this area has been done using either medical or satellite imagery 

[3](79] or `object inspection' type images [74], although some work in image coding 

has used natural scenes, eg results are presented in (23] for the `girl' image. The 

results presented here compare favourably with the latter. 

6.4.4. Image Reconstruction 

Section 6.3 described a method of reconstructing an image using local features defined 

at different spatial resolutions. The idea is to reconstruct the relevant levels of the 

MFT according to the local feature model using the parameters derived from the sin- 

gle feature detection scheme. The resulting pseudo-MFT is then inverted using the 

multilevel inverse procedure described in section 3.3.2. The scheme was imple- 

mented using the estimates for the `girl' image presented in section 6.4.2. and the 

results are shown in figs 6.8a-f. 

Figures 6.8a-c show separate reconstructions from the features on levels 4-6 and fig 

6.8d shows a combined reconstruction from levels 3-6. Since the features are derived 

from prewhitened images which are effectively high pass filtered versions of the origi- 

nal (section 3.6.4), these reconstructed images are all high pass images. Despite this, 

it can be seen that the reconstructions clearly correspond to line and edge features at 

different resolutions and that this indicates the suitability of the model to represent 

local image features. To demonstrate this further, fig 6.8f shows the result of adding 

the high pass feature image in fig 6.8d to the lowpass image in fig 6.8e which approxi- 

mates the lowpass version removed by the prewhitening process. Comparison of figs 

6.8e and 6.8f reveals that the addition of the reconstructed edge features increases the 

sharpness of the former. 
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These reconstruction results are particularly important since they illustrate the useful- 

ness of the MFT as an estimation tool. In particular, if the MFT is used to estimate 

the parameters of a given model, then the process of synthesising images based on 

those parameters can be achieved in a relatively straightforward manner and without 

any adverse effects caused by the structure of the transform. 
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(a) Local feature estimates level 3. (b) Local feature estimates level 4. 

(c) Local feature estimates level S. (d) Local feature estimates level 5 (6 =1). 

Figure 6.5. Results for 'discs' image. 
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Figure 6.5. (cont) Results for 'discs' image. 
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(a) Local feature estimates level 3. (b) Local feature estimates level 4. 

(c) Local feature estimates level 5. (d) Local feature estimates level 6. 

Figure 6.6 Results for 'girl' image. 
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(e) Hierarchical feature detection. 

(g) Curve extraction. 
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(f) Hierarchical feature detection (overlay). 

Figure 6.6. (cont) Results for'girl' image. 



158 

(a) original image. (b) Local feature estimates level 3. 

(c) Local feature estimates level 4. (d) Local feature estimates level 5. 

Figure 6.7. Results for'boats' image. 



159 

(e) Local feature estimates level 6. (f) Hierarchical feature detection. 
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(g) Hierarchical feature detection (overlay). (h) Curve extraction. 

Figure 6.7. (cont) Results for'boats' image. 
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(a) Reconstruction from level 4 features. (b) Reconstruction from level 5 features. 

(c) Reconstruction from level 6 features. (d) Reconstruction from levels 3-6 features. 

Figure 6.8. Image reconstruction results. 
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(e) Lowpass filtered image. (f) Summation of lowpass image and 

reconstructed image in fig 6.8d. 

Figure 6.8. (cont) Image reconstruction results. 
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CHAPTER SEVEN 

CONCLUSIONS AND FURTHER WORK 

The work described in this thesis has addressed the problem of defining an image 

description that could form the basis for a unified approach to feature extraction. - It 

can be considered to consist of two parts: the derivation and definition of a suitable 

description in the form of the multiresolution Fourier transform (MF1); and the appli- 

cation of the transform to a typical image analysis problem. To conclude the thesis, it 

is appropriate to recall the principal arguments and results of these two areas and dis- 

cuss their implications in a wider sense and with regard to the direction of further 

work. 

7.1. A Unified Image Description 

The importance of extracting meaningful features from an image in order to derive 

appropriate symbolic descriptions was discussed in chapter 1. Using the principles of 

pattern recognition methods, it was shown that the identification of such features 

enables the inference of structure and content from an image. Two specific and 

important examples of this were considered in greater detail: the use of local features 

such as lines and edges; and the use of regional features such as those associated with 

textural properties. Both of these are used extensively in image analysis, with appli- 

cations ranging from 2-d segmentation to the analysis of motion and stereopsis. 

It was noted, however, that the traditional methods used to extract these features exhi- 

bit a limitation when addressing general analysis problems. This relates to their rela- 

tive locality in the spatial domain - the extraction of local features has been primarily 
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based upon local operations, whilst regional features have been extracted using essen- 

tially global methods. The limitation of this is that the two approaches represent a 

dichotomy, neither is suitable for both types of feature extraction. However, when 

dealing with general analysis problems, such as those presented by natural images, 

there is a need to extract a wide range of features and hence if an analysis is based 

upon these traditional methods it would mean using several different approaches. The 

result of this would be a collection of unrelated operations combined into a single ad 

hoc solution. Although in certain circumstances this might be acceptable, it cannot 

represent a general solution of the feature extraction 'problem. 

The conclusion of the discussion in chapter 1 was that an approach was needed in 

which a range of feature extraction problems could be addressed. It was suggested 

that one way of achieving this was to seek a description of the image (via a suitable 

transformation) that characterises the properties of all the features of interest. For 

example, such a description should have sufficient spatial locality ' to be able to 

represent lines and edges and be sufficiently global to represent regional properties. 

As was pointed out, these ideas are not new and there has been considerable interest in 

such an approach. In particular, the work of Granlund [46] and Wilson et al 

[109][112][114] was noted. These workers have made a number of advances in this 

area and have demonstrated the benefits that can be gained. However, although the 

basic ideas were laid out in [ 112], these have not been incorporated into a single image 

description. Thus, motivated by the previous work, the aim of this work has been to 

arrive at a contender for such a description. 

The requirements of a suitable description and the associated transformation were 

investigated in chapter 2. It was shown that an essential property of meaningful 

features is that they provide information about position and class, ie "what" something 

is and "where" that something is located. This characteristic has been noted before 
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[72][113][114] and relates directly to the inherent nonstationarity of image properties. 

Furthermore, it implies that this nonstationarity must be incorporated into the required 

description if it is to be generally applicable, ie it must possess locality in both posi- 

tion and in some class space [113]. - In other words, if useful features possess position 

and class information, then the description from which they are derived must provide 

this information. 

ýý ... 

A further characteristic of useful features noted in chapter 2 is that their degree of 

locality in position and class space varies from one feature to the next. This relates to 

the idea of features existing at different resolutions and has been generally recognised 

[68][72]. The implication for a unified description is that not only should it have local- 

ity in both position and class space but that this locality should exist over a wide range 

of scales. This important requirement has formed the basis for the work described in 

this thesis and although it is not the only one that could be postulated, it was felt that it 

represented a fundamental property of features and as such is consistent with the need 

for generality. 

The above observations assume the existence of a suitable class space in which to 

base the required description., Feature extraction methods have utilised a number of 

possibilities, including both statistical and Fourier methods. ' It was noted in chapter 2, 

however, that the latter has a number of advantages (in particular its tractability) and 

was therefore adopted. As a result, the requirements of a suitable description were 

formalised as follows: 

(i) It should have locality in both the spatial domain and in the spatial frequency 

domain. 
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(ii) ° The locality in requirement (i) should exist over a wide range of scales in both 

domains. 

A transformation of the image data that would provide such a description was there- 

fore identified as one which represents a transformation into a space that provides both 

spatial and spatial frequency information. Furthermore, the resolution in each domain 

within that space should be sufficient to represent the features of interest. It was also 

noted that if such a transformation was to be useful then it must possess other impor- 

tant properties, including amenability to efficient computation, invertibility and linear- 

ity. 

Signal transformations that provide information from the original signal domain and 

the corresponding frequency domain (so-called combined representations) were 

reviewed in chapter 2. These were classified into two groups: linear forms and bil- 

inear forms. It was noted that of these, a 2-d version of the linear short-time Fourier 

transform (STFT) possessed the most advantageous properties. These included inverti- 

bility, efficient computational properties, and a superior resolution in practical cases. 

However, in common with the other representations, the STFT was shown to be lim- 

ited in its ability to provide arbitrary resolution simultaneously in both domains. This 

results because it is necessarily based upon a windowing operation and the uncertainty 

principle [451 precludes any window function from having an arbitrarily high concen- 

tration in both the spatial and spatial frequency domain. The consequence of this is 

that a resolution trade-off must be adopted and this further implies that the require- 

ment (ii) above is not satisfied. The relationship between this locality restriction and 

the difference between traditional feature extraction methods can therefore be noted: 

in both cases there is an absence of simultaneous locality in position and class. 

Indeed, this has prompted the suggestion that the uncertainty principle lies at the heart 
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of the vision problem [109]. 

A partial solution to the problem of uncertainty is to make use of multiscale methods 

and these were also reviewed in chapter 2. They have found extensive use in image 

processing in response to the need to process images over a range of spatial scales. 

The general form is that of a pyramid structure [100] in which the image is represented 

at different spatial resolutions on each level. However, although recently there has 

been a move towards some form of frequency selectivity [1][70][108], these methods 

fail to provide sufficient locality in the frequency domain and in fact are still limited 

in this respect by uncertainty. - 

After reviewing the above transformations, the overall conclusion of chapter 2 was 

that it was necessary to adopt a more general approach. This led to the introduction of 

the MFT, which is essentially a generalisation of the multiscale and combined 

representations., It has a hierarchical structure in which each level resembles a STFT 

with minimum uncertainty window functions. The outermost levels of this structure 

are the original signal and its discrete Fourier transform (DFT), while the intermediate 

levels are such that there is a uniform variation in resolution in each domain between 

these two extremes., Such a structure therefore has locality in both domains and over a 

full range of resolutions - something which existing methods fail to provide indepen-, 

dently. 

The MFT was formally defined in chapter 3. It was expressed in the form of a linear 

operator which is partitioned into level operators and is defined in terms of a set of 

analysis vectors. These represent the windowing operation performed by each level of 

the transform and are position and frequency shifted versions of a set of basic vectors., 

These vectors are defined to have minimum uncertainty according to the resolution of 

the different levels and are derived from the family of finite prolate spheroidal 
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sequences (FPSS) [111]. Each level of the MET can be interpreted in one of two 

ways: either as the output of a filter bank with bandpass filters having contiguous fre- 

quency responses; or as 'a set of local spectrum estimates referring to contiguous 

regions of the signal domain. The transform was defined in its 1-d form, although it 

was shown that it is readily extended to the 2-d case. A Cartesian separable imple- 

mentation is particularly straightforward (it is simply the Kranecker product of its 1-d 

counterparts) and it was adopted throughout this work. II 

The MFT is an invertible transform. This results from the bandlimiting properties of 

the analysis vectors and an inverse operator was defined in chapter 3. The inversion 

procedure can also be considered in terms of a synthesis filter bank. The concept of a 

multilevel inverse was also introduced, in which a sparse transform containing a sub- 

set of coefficients on several levels is inverted. Although in general such an inversion 

is not exact, it was noted that by selecting an optimal set of coefficients it could be 

hoped to minimise errors. This method of inversion was used in later work. 

Several properties of the transform were noted in chapter 3. These were: linearity; 

position and frequency shift invariance up to a given factor, local spectral properties; 

and hierarchical properties. It was shown that the local spectra of the MFT represent 

optimal estimates in terms of locality due to the minimum uncertainty properties of 

the analysis vectors. It was also noted that the hierarchical structure of the transform 

can be considered as a vector quadtree in which the local spectra correspond to the 

nodes of the tree. 

Chapter 3 also introduced a general class of MFT. This was motivated by the need for 

increased locality in the spatial domain of a 2-d MFT. A generalised transform is 

defined by a relaxation parameter which determines the increase in locality. However, 

this locality can only be achieved at the expense of an increase in the number of 
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coefficients to ensure that the transform remains complete and invertible. It has been 

found in this work that a generalised 2-d MFT which has four times the number of 

coefficients of the original form provides a sufficient increase in spatial locality for the 

analysis problems considered. 

The basic structure of the MFT means that it can be efficiently implemented by mak- 

ing use of methods based upon the fast Fourier transform (FFT). It was shown that the 

implementation of each level of the transform corresponds to a series of filtering 

operations which can be conveniently implemented in the spatial frequency domain. 

As a result, the MFT requires only an order of magnitude increase in computation 

over that for a conventional radix-2 FFT (approximately by a factor of log M for an 

image of dimension MxM pixels). 

Several examples and experiments illustrating the properties of the transform were 

presented in chapter 3. These demonstrated the ability of the transform to decorrelate 

the image data in the spatial/spatial frequency plane and to do so over a number of dif- 

ferent resolutions. Examples were presented for both synthetic and natural images. A 

simple threshold coding experiment was also recorded in which it was shown that 

important image features were emphasised within the transform coefficients. 

7.2. Local Feature Estimation 

Chapters 4-6 of this thesis considered the application of the MFT to a typical image 

analysis problem. It was decided to address the problem of extracting local image 

features such as lines and edges. This decision was based on the observation that the 

use of multiresolution methods in this area has received very little attention, although 

they would appear to offer a number of advantages. Furthermore, it was noted that 
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such an approach has been applied to the alternative area of texture analysis 

[99][112][113] and that the present work would therefore be complementary to previ- 
ous investigations. 

A review of existing approaches to local feature extraction was presented in chapter 4. 

These range from simple spatial templates to more sophisticated frequency domain 

methods. However, as noted earlier, the majority of methods are designed specifically 

for edge detection and do not admit generalisation to other feature types. In this 

sense, the area of local feature extraction epitomises the problem being addressed in 

this work. This was further emphasised in the review of existing approaches to curve 

detection based on such features also presented in chapter 4. This task is often per- 

formed within a separate framework from the original feature extraction (which is 

surprising given the inherent relationship between the two feature types) and is a good 

example of a series of ad hoc solutions being applied in order to arrive at the required 

result. 

To demonstrate that multiresolution methods, and in particular the MFT, can form a 

basis for a more coherent approach, a multiresolution image model was introduced. It 

has a hierarchical structure in which the image is assumed to consist of different sized 

square regions each containing a single local feature. The model is a simple example 

of a more general class of models which have a linear recursive form and are designed 

to incorporate image properties over a full range of resolutions [116). In the present 

work, these properties are restricted to single oriented local features defined within 

contiguous regions. The structure of the model is also amenable to the representation 

of curves and boundaries. This takes the form of a piecewise representation in which 

the curve or boundary is represented by local feature segments. It was shown that due 

to the multiresolution structure of the model, this type of representation provides a 

number of advantages including the reduction of redundancy and enabling the 
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definition of computationally efficient curve extraction schemes. 

The local features within the image model are represented by a frequency domain 

model. It was noted that the use of frequency domain properties has previously been 

shown to be advantageous when extracting local features [65][96]. The model used in 

this work is based upon the observation that an oriented local feature such as an edge 

or line segment will give rise to an essentially linear phase relationship between spa- 

tial frequency coefficients in that orientation corresponding to the feature. The linear 

component of this relationship is then directly related to the position of the feature. It 

was noted that this property of such features underlies the importance of phase infor- 

mation in images [82]. Furthermore, by incorporating the relationship into a suitable 

model it enables these features to be distinguished from other oriented features such as 

those associated with some forms of texture. A local feature model was therefore 

introduced in the form of a normal Markov process in the relevant orientation of the 

spatial frequency domain. Within this model, the linear phase component is 

represented by the phase value of the complex recursion coefficient associated with 

the process. By assuming the existence of a finite number of features, this also led to 

the definition of a general model for the (continuous) frequency domain. - 

This continuous model was then adapted to take account of the locality requirement in 

the image model. Features are assumed to exist within local regions of the image and 

therefore some type of local analysis is required which necessarily means that the 

derived frequency information will be of finite resolution [64][83]. It was shown that 

this could be approximated by the introduction of a window function into the model to 

represent the smearing of the frequency domain due to the local analysis window. 

This approach was also extended to include the concept of a feature segment in which 

an "infinite" feature is replaced by one having finite length in the direction of its orien- 

tation. It is worth pointing out here that these adaptations of the continuous model 
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attempt to take account of the discrete nature of practical problems and in so doing 

make a number of simplifications and approximations. However, as the later results 

illustrated, they do not appear to introduce any gross errors into the model. 

An estimation and detection scheme for the multiresolution image model was 

described in chapter 5. The scheme is based upon the assumption that local spectrum 

estimates are available corresponding to the admissible regions of the model. It was 

shown that a ML estimation scheme could be defined for the local feature model and 

that this yielded an unbiased estimate in a given orientation assuming a continuous 

spectrum. In the case of a local analysis, only a finite number of orientations can be 

considered and this will necessarily be biased due to the smearing introduced by the 

window in the frequency domain. However, it was shown that if a single feature was 

assumed to be present, then this bias is limited and acceptable estimates can be 

obtained in orientations that straddle the orientation corresponding to the feature. A 

similar scheme was defined to estimate the parameters of feature segments. 

The multiresolution image model is based upon contiguous regions containing single 

local features and chapter 5 described a hierarchical detection scheme to identify such 

regions given feature estimates in a finite number of orientations. This is a recursive 

process which employs a principal orientation measurement for each potential single 

feature region and a scale consistency criterion between a region and its subregions. 

These criteria were designed to ensure that the regions selected not only possessed 

properties associated with them containing a single feature (ie significant contribu- 

tions in estimates centred about one orientation) but that this information is confirmed 

by estimates obtained within their subregions. The result of the process is the selec- 

tion of a number of contiguous spatial regions and these can be considered to form the 

leaf nodes of a truncated quadtree in which nodes refer to different sized spatial 

regions. 
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Chapter 5 also described a curve extraction scheme based upon the representation of 

curves within the model. This is a recursive curve forming process performed on the 

truncated quadtree resulting from the single feature detection. The basic idea is that 

curves are constructed in a piecewise manner by a fine-to-coarse analysis as the pro- 

cess ascends the tree. At a given node, local segments of the curve are formed using a 

local curvature measure and a heuristic search amongst the local features and curve 

segments defined at its four child nodes. It was shown that the scheme has the poten- 

tial to perform `gap-filling' due to the multiresolution structure of the image model 

and that it is amenable to efficient implementation. 

It was shown in chapter 6 that the MFT can be used as an effective estimation tool for 

the local feature estimation scheme described in chapter 5. Specifically, the local 

spectra of the transform are those that are assumed to be available in the design of the 

estimation scheme. The relevant statistics can therefore be calculated from these local 

spectra and this leads to estimates for the parameters of the local feature model, ie 

position and certainty measures for features in a number of discrete orientations. This 

was shown not to require excessive computation. 

An important consideration when implementing the estimation scheme is the problem 

of phase ambiguity and this was investigated in chapter 6. The periodicity of phase 

values means that the estimation of the linear phase component prescribed by the 

feature model leads to ambiguity as to the position of a feature and gives rise to the 

detection of ghost features. It was shown that this can be reduced by employing a 

generalised transform which has the dual effect of reducing the ambiguity and increas- 

ing the spatial concentration of the local spectrum estimates (and hence reducing leak- 

age between regions). Another important issue in estimating local features is that of 

normalisation, le assessing the relative importance of two features given a difference 

in their certainty measures. The approaches to this problem can vary between relying 
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entirely upon the estimated values or normalising the values on a region by region 

basis. A compromise has been adopted in this work so that some kind of simple con- 

text dependency can be incorporated into a normalisation scheme. ' This is related to 

the probability of finding a feature in a given region and is a hierarchical process in 

which a feature certainty measure is normalised according to the existence of features 

in its vicinity, where the size of the vicinity can be defined as appropriate. 

Results of implementing the local feature estimation, single feature detection and 

curve extraction schemes on synthetic and natural images were presented in chapter 6. 

In the case of the feature estimation, the results demonstrated that feature parameters 

could be successfully estimated at different resolutions on the levels of the MFT. 

These range from detailed features at higher levels to more coarse features at lower 

levels. However, although in general these results have shown the validity of the 

scheme, there are a number of issues that need to be considered further: 

(i) Noise sensitivity - the performance of the scheme in the presence of noise was 

not investigated. There are a range of applications in which image quality may be 

degraded and if the scheme is to be effective in these cases then its noise sensitivity 

will need to be assessed. The fact that the local feature model is based upon fre- 

quency domain properties does mean that it should be possible to minimise the effects 

of noise [65] [96] and this would represent an important line of further research. 

(ii) Normalisation, - it was noted above that the normalisation process used in the 

scheme introduces a degree of context dependency. However, this has not been 

quantified in any way and the selection of normalisation parameters was based purely 

on subjective criteria, ie whether it produced a reasonable trade-off between feature 

and noise visibility. It would therefore be advantageous and theoretically more 

acceptable if this operation could be defined in a rigorous manner, although such an 
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exercise is complicated by the inherent nonlinearity of the operation. 

(iii) Prewhitening - the local feature estimation results were derived from images 

that had been prewhitened using the simple method described in chapter 3. The 

justification for this preprocessing was to reduce any bias that may be caused by the 

predominantly lowpass frequency envelope of natural images. Since interesting 

features exist within highpass intervals of the frequency domain (eg lines, edges and 

texture) any such bias would be undesirable in a feature analysis operation. However, 

the approach adopted in this work is very simple (it is effectively a high pass filtering 

operation) and it is likely that a number of advantages could be gained by employing a 

more sophisticated technique [64][101]. Such an approach may also be more amenable 

to direct reconstruction of the image from the feature estimates which in this work has 

been based upon the addition of an approximation to the lowpass image removed by 

the prewhitening function. 

.ýý.. 

The single feature detection and curve extraction results based on the above feature 

estimates were also shown to be generally successful. In the case of the former, 

features were identified at appropriate resolutions and it was demonstrated that the 

scheme is capable of splitting regions of the image until single feature regions are 

obtained. The resulting feature estimates then represent a considerable reduction in 

redundancy over conventional edge representations of images. However, as noted in 

chapter 6, there are cases in which difficulties are encountered and these are particu- 

larly apparent in complex areas of natural images. The problems relate to an inability 

of the scheme to separate features within such regions and derives from the inap- 

propriateness and simplicity of the single feature criteria employed, ie the principal 

orientation and scale consistency measures. A further development of these criteria 

would therefore be beneficial, particularly in the area of establishing more sophisti- 

cated models to represent the presence of several features or specific combinations of 
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features, eg vertices, shapes, etc. This is relevant to the discussion in chapter 4 con- 

cerning the definition of a general class of feature based multiresolution image 

models. ' ', 

The above difficulty with complex regions also gives problems for the curve extrac- 

tion algorithm. Although the significant and isolated curves were identified for both 

synthetic and natural images, it was apparent that it was not suitable in detailed and 

complex regions of the image. This is not surprising given the simplicity of the 

method and it could be argued that in such regions a piecewise linear representation of 

a curve is not appropriate. Once again this suggests that more complex models in 

such regions would be beneficial. An example of this might be to extract vertices 

from an image in order to identify curve endings [751. 

Chapter 6 also presented results of reconstructing images from the single feature esti- 

mates. This represents an important attribute when using the MFT in image analysis 

since it provides a coherent way of assessing the appropriateness of models defined 

within the transform structure (note that this facility is not generally possible in other 

approaches to image analysis). The results presented illustrate the applicability of the 

overall image model and the local feature model. However, the method of reconstruc- 

tion used in this work does involve a number of simplifications and it is anticipated 

that the results could be improved by further work in this area. In particular, the 

method of modelling the magnitude response of the MFT local spectra by using a 

weighted average magnitude profile could be replaced by a more sophisticated 

scheme. As mentioned earlier, an alternative ý prewhitening method 'could also 

improve the quality of the reconstruction. It should be emphasised that these issues 

are important since the invertibility property of the MFT is one of its advantages and 

that the whole question of obtaining reconstructions for a given image model will 

therefore represent a significant area of further research. 
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7.3. Concluding Remarks 

As mentioned at the beginning of this chapter, the work described in this thesis has 

investigated the possibility of defining an image description which could form the 

basis of a 'unified approach to feature extraction. This led to the introduction of the 

MFT and its application to the problem of extracting local features from an image. 

The transform was shown to have properties that are generally applicable and the 

application results were comparable to those of existing methods. However, does this 

imply that the original specification for a `unified approach' has been met? 

Of course, such a question can only be fully answered by illustrating the use of the 

MFT in a wide range of different tasks. This will clearly involve a considerable 

amount of work and in any case the intention is that the transform should form a basis 

for further research into new feature types as well as existing requirements. However,, 

the properties of the MFT are based upon a substantial amount of previous work. This 

has considered the use of a basic structure for feature extraction [46][113][114] and has 

noted the important role played by uncertainty [109)[113] and the use of multiresolu- 

tion techniques [113][116]. Applications have included texture analysis and segmenta- 

tion [66][99][112][113], line and edge extraction [65], image coding and restoration 

[33][34][102] and stereopsis [114). It is envisaged that such operations could also be 

incorporated into the framework of the MFT. The implication - therefore is that 

although this work has only considered one particular aspect of feature extraction, pre- 

vious work does suggest that similar results could be obtained in other areas. Thus, 

although it has not been completely demonstrated that the MFT can provide a unified 

approach to image analysis, the potential for achieving this goal is apparent. 

It is also worth recalling another issue that was discussed earlier in chapter 2. There 

has been a considerable amount of interest in recent years concerning the use of 
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multiscale methods in image analysis (particularly in recent publications on the 

Wavelet transform [36][701) and it is reasonable to compare the MFT with these 

methods. As noted in chapter 2, the MFT can be regarded as a generalisation of these 

methods and consequently could be expected to be able to perform the work reported 

in the multiscale literature. Up to now this work has been mainly concerned with 

applications in image coding, although there has been some work reported on edge 

detection [56][70]. However, this and previous work has demonstrated that a mul- 

tiresolution approach can be used in a wider range of applications and achieve accept- 

able results. Although this is by no means conclusive, it does suggest that the general- 

isation provided by the MFT is a more appropriate form on which to base solutions to 

image analysis problems. 

To conclude, the MFT provides an image description that possesses properties which 

are applicable to general feature extraction. Although in specific applications it may 

be possible to define a nearly optimal or efficient solution, the MFT has the potential 

to provide a useful and effective solution for a number of different problems. Further. 

more, it is a transform which has a well defined mathematical basis and can be com- 

puted in an efficient manner using familiar signal processing techniques. In this sense 

it fulfills the requirements of a general purpose image analysis tool. However, there is 

still a large amount of work to be done before its potential can be brought to fruition 

and it is hoped that this thesis will provide a suitable basis for this to be achieved. 
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APPENDIX I 

Non-Zero Frequency Response of Analysis Vectors 

It is shown that the analysis vectors g(n) of the 1-d MFT have non-zero magnitude 

within their respective frequency band, ie 

at 0 OSi<On 
18t(n) 1=0 

else (Al) 

where 

g(n) =F g(n) (A2) 

and 

B(On) T(rn) g(n) = %. o g(n) (A3) 

Equation (A3) can be expressed in terms of the vectors 9A (n). This can be achieved by 

applying the operator F to both sides to give 

T(Qn) F T(r) g(n) =F g(n) (A4) 

and then from eqn (A2) 

T(Qn) B(rn) i(n) = 1o i(n) (A5) 
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which can also be written as 

T(in) B(rn) T(fl) g(n) = Xo i(n) (A6) 

where the introduction of the operator T(52, ß) has no effect since the vector g(n) is by 

definition truncated to the interval defined by T(i2,, ) [ill]. 

The above equation then enables a reduced problem to be defined, ie 

A(n) x(n) = Xo x(n) 

where A(n) is a 52, E x 52, E operator and x(n) is a 52, E x1 vector st 

(A7) 

aik(n) = bik(rn) 0! 9 i, k < On (A8) 

and 

xi (n) = 8i (n) 0Si< S2n (A9) 

From eqn (Al), the problem is now to show that the component magnitudes of the 

vector x(n) are non-zero. 

This can be done by rewriting eqn (A7) as 

W°` A(n) W-a W°` x(n) = X. Wa x(n) (A 10) 
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where W°` is a 0n x 52, E frequency shift operator and a is a positive integer. The 

proof then follows from the theorem of Perron and Frobenius which states that the 

eigenvectors of an irreducible nonnegative matrix have real and positive components 

[84]. This can be applied to eqn (AlO), where after some straightforward although 

extensive manipulation, it can be shown that the operator Wa A(n) W' is both 

irreducible and nonnegative for some value of a. Hence the vector WI x(n) will have 

nonnegative components. Since the operator W' implies the multiplication of each 

component by a complex exponential with unit magnitude (eqn 1.8), the component 

magnitudes of the vector x(n) are also nonnegative. Combining this with eqns (Al) 

and (A9) completes the proof. 
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