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Summary

The extraction of meaningful features from an image forms an important area of image
analysis. It enables the task of understanding visual information to be implemented in a

coherent and well defined manner. However, although many of the traditional approaches to
feature extraction have proved to be successful in specific areas, recent work has suggested
that they do not provide sufficient generality when dealing with complex analysis problems

such as those presented by natural images.

This thesis considers the problem of deriving an image description which could form the basis
of a more general approach to feature extraction. It is argued that an essential property of such
a description is that it should have locality in both the spatial domain and in some
classification space over a range of scales. Using the 2-d Fourier domain as a classification
space, a number of image transforms that might provide the required description are investi-
gated. These include combined representations such as a 2-d version of the short-time Fourier
transform (STFT), and multiscale or pyramid representations such as the wavelet transform.
However, it is shown that these are limited in their ability to provide sufficient locality in both
domains and as such do not fulfill the requirement for generality.

To overcome this limitation, an alternative approach is proposed in the form of the multireso-
lution Fourier transform (MFT). This has a hierarchical structure in which the outermost lev-
els are the image and 1ts discrete Fourier transform (DFT), whilst the intermediate levels are
combined representations In space and spatial frequency. These levels are defined to be
optimal in terms of locality and their resolution is such that within the transform as a whole
there is a uniform variation in resolution between the spatial domain and the spatial frequency
domain. This ensures that locality i1s provided in both domains over a range of scales. The
MEFT is also invertible and amenable to efficient computation via familiar signal processing
techniques. Examples and experiments illustrating its properties are presented.

The problem of extracting local image fcatures such as lines and edges is then considered. A
multiresolution image modecl based on these features is defined and it is shown that the MFT
provides an effective tool for estimating its parameters. . The model is also suitable for
representing curves and a curve extraction algorithm is described. The results presented for
synthetic and natural images compare favourably with existing methods. Furthermore, when
coupled with the previous work in this area, they demonstrate that the MFT has the potential

to provide a basis for the solution of general image analysis problems.
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CHAPTER ONE -

INTRODUCTION

1.1. The Image Analysis Problem

For most people, describing what they see in an image does not present any great

difficulty. Irrespective of the content of the image, they will be able to provide some
sort of description which relates directly to the visual information and is a meaningful
interpretation of the image. The process by which such descriptions are arrived at is
an example of image analysis, and given its capacity for dealing with visual data, it is

something that the human visual system (HVS) does particularly well.” =~ -

In computer vision, which is concerned with building automated vision machines [5],
the problem of image analysis is one of computing appropriate descriptions from
image data. These data are derived from a visual scene using a suitable sensor, such
as a camera, which projects the light energy reflected from objects in the scene onto a
2-d plane.' In order that a computer can process this image, it is then converted into a
discrete array of numbers (known as ‘picture elements’ or pixels) which represent the
average luminance or colour in the vicinity of discrete grid points on the plane. This
acquisition stage is analogous to the eye in the HVS and the resulting data to the so-
called ‘retinal image’ [52]. Depending upon the application, the image data may also
form part of a sequence to enable the machine to process motion, or may possibly be

derived from several displaced sources i1n order to capture 3-d information.

Vision machines have applications in a wide range of areas, including medicine, com-
merce and scientific research [94][95]. Consequently, the requirements of image

analysis vary widely and depend upon the underlying properties of the visual



information involved. For example, it may be sufficient to regard an image as essen-
tially 2-d and produce a description which is based upon 2-d attributes, such as orien-
tation in the image plane or relative spatial location. " This type of analysis is often
acccptaBIe when dealing with data such as satellite imagery or some medical applica-
tions. On the other hand, 1t may be necessary to consider 3-d aspects of the scene, in
which depth, surface orientation, etc, play an important role. This is clearly appropri-
ate when dealing with more general vision problems.’ Other examples might be the
analysis of motion or stereopsis. Furthermore, image analysis is often of use in areas
related to computer vision, such as image coding [69], in which a perceptual com-

ponent 1s often beneficial.

; E!jﬂ

The diversity of the above requirements means that image analysis employs a multi-
tude of techniques and methodologies. These range from identifying homogeneous
regions of texture to deriving 3-d shape from shading in the 2-d plane. However,
although.these individual tasks are clearly important, it is also apparent that there is a
common operation to be performed when addressing image analysis problems. To
obtain a meaningful description from an image, it is necessary to transform the array
of pixel values (which constitute the visual input) into a set of symbols with appropri-
ate relationships, eg ‘the object A is of class B and 1s at location C’ [109]. In this
sense, the problem of image analysis is well defined: the inference of a symbolic
description from a given input signal. By recognising this property, it is possible to
consider the individual tasks mentioned above within a single framework. In doing so
it ensures that they are applied in a rigorous and coherent manner and not as an ad hoc
collection of unrelated operations. It has been suggested that this approach is essential
if solutions are to be found to the increasingly complex problems being presented by

more general vision requiremenfs (72]1[109][114].



A major requirement in deriving appropriate symbols to represent a visual scene is the
extraction of n:ieaningful features from the image data. These include lines, edges,
and textural properties, and give rise to a feature description which provides a more
suitable basis for determining the content and structure of the image. It is therefore
vital that such features are chosen carefully and with due regard for the ;-equiremcnts

of subsequent processing. Indeed, the derivation of effective feature descriptions is an

important operation in all areas of image analysis [94][95]). This is considered in

greater detail in the remainder of this chapter.

1.2. Feature Based Image Description

erature desc:riptibn methods oﬁginate from theirh use in pattern recognition systems
[44]. The basic paradigm for such systems is illustrated in fig 1.1, where a feature
extraction process is implemented prior to a classification or decision stage. Broadly
speaking, a feature is an entity which is obtained from the input data via an appropri-
ate measurement and this then forms the input to the subsequent processing. If a set
of features 1s chosen carefully, then the classification or decision stages can be made
more effective and reduced in complexity. The basic idea is that the features should
capture the important characteristics of the input data that underlie the particular pat-
terns being represented. If this is achieved, then the discrimination of different pat-

terns becomes a much easier task than simply considering the data in its original form.

An al?tem“ativeﬁ\tfiew of the feature éﬁ:traction operation in fig 1.1 is that it freprcéents a
transformation of the inpl;t data into what is known as the feﬁﬁmre}space [44]. The
dimensions of this space are given by the chosen features in the: set. Any fUIthCl; pro-
cessing, such as classification ;)r decision making, ism thcﬁ chonducted within this

feature space and its success is dependent upon the suitability of the space to solve the
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Figure 1.1 Basic pattern recognition paradigm.
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problem, ie whether it provides sufficient class separability, noise immunity, etc.
Regarding the use of feature descriptions in this way enables a more quantitative

measure to be applied to the concept of a feature set characterising a particular prob-

lem [44].

The above ideas are readily extended to the problems of image analysis. In deriving
appropriate symbols to represent a 'visual scene there is a need to understand and
recognise the patterns being p:resentewdT by the input array of pixels. These patterns are
the result of thchlight reflected from entities in the scene impinging onto a 2-d plane.
The patgtems of intereét are therefore those that convey information about the scene, eg
~shape, texture, boundariesjof homogeneous regions, etc, and these then give clues
about the content of the scene isuch as objects (their location and o;'ientation) and the
background envhonment. Thus although the pattern recognition paradigm of fig 1.1 is
somewhat complicated by the diversity of the patterns being presen£ed and. the
requirements of the problem, the motivation for extracting important features W1thm
the data 1s still applicable. Such features shc;uld be visually meaningful and capture

the characteristics of the data that provide information about the visual scene. Having
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obtained these features, the task of inferring the content of a scene becomes an easier
and less complex operation in much the same way as in the original pattern recogni-
tion problems. Furthermore, the analogy of feature extraction representing a transfor-

mation of the data into a feature space enables these processes to be conducted in a

more rigorous and well defined manner.

| . *

The use of feature descriptions has formed a part of 1mage analysis since the idea of
processing images was first conceived. The first serious attempt at a ‘vision machine’,
proposed by Roberts in 1965 [92], was based upon the detection of edge features and
since then the majority of image analysis systems have been based upon some sort of
feature description. Amongst these, there are two areas which have received particu-
lar attention: the use of local features to identify lines and edges; and the use of tex-
tural features to represent regional properties. In the next section, the features used in

these applications are considered and their important properties noted.

1.3. Applications of Feature Descriptions

1.3.1. Edge Detection

As mentioned above, edge detection methods were used in the earliest attempts at
automated vision. The motivation is that transitions between luminance values in an
image, which correspond to lines and edges, are perceptually impoﬁant and provide a‘
number of clues for interpreting the visual information. A basic assumption therefore
1s that the image consists of regions which are of constant or slowly varying lumi-

nance value and that the relevant local features are the boundaries between these

regions, represented by relatively rapid transitions in luminance.



Methods of edge detection are based upon some local operation that has a maximum
response in the vicinity of luminance discontinuities. By applyin.g this operation to
the whole image an estimate is obtained of thé location of discontinuities and hence
the local features. This apparently straightforward principle is complicated, however,
by the fact that a discontinuity may also correspond to spurious features such as noise
or random fluctuation. A considerable amount of attention is therefore paid to detect-

ing only discontinuities that correspond to the features of interest.-

The local operation in edge detection usually takes *the form of convolving a 2-d ker-
nel with the image, There are a vast number of possible kernels, ranging from simple
masks [79] to more sophisticated designs based on signal processing principles [65].
As already noted, a significant performance criterion is noise immunity and there are a
number of techniques used to reduce the effects of noise. These include spatial
averaging [93] and frequency domain methods [65][96]. Other properties of lines and
edges such as orientation and scale have also played an important part in successful

detection [22])[65]). These methods are considered in greater detail in chapter 4 of this

thesis.

Local features can be used in a number of ways to enable a scene to be interpreted.
Their main importance is that they convey structural information about the scene, eg
the boundaries of objects are often characterised by an edge contour. This means that
they are useful for both 2-d and 3-d interpretation tasks.- These include the isolation
and recognition of objects [5], inferring 3-d structure from motion [103] and stereopsis

[72]. Lines and edges can also be significant in their own right to enable the

identification of roads or waterways in satellite imaging for example [79]. -

Significant motivation for using local features has also come from the evidence pro-

vided by physiological investigations into the workings of the HVS. The major
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advances in this area were initi'ally based around the discovery of simple cells in
mammalian vision that responded to such features [53]. Furthermore, the response is
not simply to the features but specifically to those features in given orientations and
with specific forms of motion (a comprehensive explanation of these findings is pro-
vided in [52]). This evidence prompted a number of workers to propose theoretical
ideas for vision, the best known of these being probably that proposed by Marr [72], in

which a wide range of vision tasks were explained using local features as a basis. * -

1.3.2. Texture Analysis and Segmentation ” S SIRE SRt

Another important application of feature descriptions has been in the area of charac-
terising regional properties. It is often the case that some statistical or structural
homogeneity amongst a group of pixels is perceptually important and can provide
information about the content of a scene. These relationships can be analysed using

textural features which capture the important properties of such groupings.

The classification of a texture which constitutes the whole image data has many con-
nections with traditional pattern recognition problems. Referring to fig 1.1, textural
features are derived from the data which are then input to an appropriate classifier.
The features are chosen to reflect the various properties of texture including fineness
and coarseness, directionality and regularity. There are a number of different
approaches to the type of feature used and these are all based upon some global pro-
perty of the pixels concerned. Examples are autocorrelation functions, spectral power‘
density, and co-occurrence probabilities (see eg [48]). Thus in the case of the auto-
correlation function, its fall off in a particular direction can cﬁaracterise the coarseness

of a texture and the directionality of texture can be determined from its Fourier spec-

trum.



The above classification of texture assumes that the image consists of a single textured
region. However, an image will in general contain a number of contiguous regions and
there 1s often a requirement 1n image analysis to segment the imagé into these regions.
The textural features mentioned so far are derived from a global property of the image
pixels and as such do not provide any absolute positional information, ie although
they may provide information about the relative distribution of values over the image
plane (eg an autocorrelation measure) they do not provide any direct position informa-
tion. This means that individual regions can only be identified by treating the problem
as a decision problem and deriving appropriate criteria, such as a maximum likelihood
or BayEsian rule [44], to classify each pixel. Since this takes no account of spatial
organisation, the estimation of region boundaries is often limited {113].  Several
methods have been proposed to overcome this by providing the classification and
decision stage with positional information. Examples include the use of features
defined over a range of scales [98][{113], iterative or relaxation techniques [17] and
‘split-and-merge’ methods [27]. In all these methods, however, there is inherently a
trade-off between the resolution of position and class information and this must be
addressed if the classification of re gions is to be successful [113]. Indeed, this is a fun-

damental consideration when deriving feature descriptions, a point which will be

1 £ -
ot . - *

returned to in later discussions (cf section 2.5.1).

The analysis of texture using feature descriptions has a number of applications. In the
case of data which can be considered as 2-d, sﬁch as medical oi' satellite imagery, it
has considerable use in segmenting the image into homogeneous regions [95]. These
regions may correspond to significant areas, such as those corresponding to medical
tumours, or maybe classified as beldnging to certain types of crops, vegetation, etc.
Textural features also have appiication when inferring 3-d aspects of a scene, where

surface orientation can be determined which can then lead to information about 3-d

shape [117].



1.4. The Need for a Unified Approach

As noted in the previous sections, the extraction of meaningful image features forms
an important area of image analysis. However, recent work has suggested that many
existing techniques are not sufficiently general to deal with complex analysis prob-

lems [113][114]. This section considers this in greater detail and proposes a basis for a

possible solution.

A good example of the problem is apparent in the traditional approaches to the

identification of lines and edges and the analysis of texture described in the section

1.3. The difficulty can be appreciated by taking a closer look at the features used in
these areas and noting that there exists a fundamental difference in their properties.

This relates to their relative locality in the spatial domain and can be summarised as

follows:

(i) The features used to represent lines and edges are inherently local in the spatial

domain; they are based upon local transitions in luminance value.

(1) The features used to represent textural properties are more global in nature; they

are based upon a population or subpopulation of pixels.

The implication of this is that the two types of feature refer to different aspects of the
information being sought about a given image primitive. The features used in edge
detection are providing essentially positional information, ie the location of luminance
discontinuities. On the other hand, features used in the analysis of texture are provid-
ing information about the class of a region based upon some ‘global’ property of the
pixels. Furthermore, the basic attributes of these features are apparently at odds - the

need for locality to represent position and the need for a more global approach to
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represent class. . S

This latter dichotomy underlies the lack of generality of the above methods. If there is
a requirement for both local and global information, then neither of the two feature
types in (i) and (ii) will provide a satisfactory solution. An example of this was noted
in section 1.3.2 concerning the segmentation of textured regions: although texture
may be classified by global features, the identification of boundaries in such an
analysis is limited because it necessarily encompasses areas of the image in which
there may exist several different regions [113]). Thus there is a conflict between the
requirement for a global analysis to classify the regions and a more local approach in
order to identify individual regions. A similar difficulty can be encountered when
analysing an image using locally defined features. If the image contains homogeneous
regions, then it is likely that many edge features will be detected within such regions.
However, although in certain instances it may be possible to use this information for
classification [40], in general it will not be sufficient to characterise the underlying
region properties. Hence in this case the difficulty is reversed - the problem demands

a more global approach instead of the local features used in the analysis.

The above discussion has wider implications for image analysis. In general problems,
such as those presented by natural images, it is inevitable that a wide range of image
properties will need to be considered, eg the classification of textured regions, the
identification of boundaries between such regions, and at the same time the estimation
of the location and orientation of lines and edges. To do this, however, the feature
descriptions used must be generally applicable and not confined to a specific task. As

already noted, it is often the case that existing approaches to feature description do not

fulfill this requirement.
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An immediate thought might be to make use of more than one approach to obtain the
range of required features. However, such a solution presents numerous problems, not

least in the fact that it would be difficult to combine the result of one method with that

of another method. This would then inevitably lead to contradictory information. For
example, a pixel or local region could be classified by an edge detection scheme as
corresponding to an edge, while an analysis based on textural properties classifies it as

belonging to a textured region - which method is more correct? '™

Clearly this does not represent a satisfactory solution. The overall conclusion must be
that a more general approach is required, one in which the wide range of feature
requirements can be met by a single method. A possible way of achieving this is to
seek a description of the image (via a suitable transformation) that provides informa-
tion about all perceptually important features. For example, such a description should
have sufficient locality in the spatial domain to represent line and edge features and be
sufficiently global to enable the definition of regional features. Analysis solutions -
based upon this description would then have access to image features that were suit-

able for a number of applications. In this sense it would represent a general purpose

tool for image analysis.

There has recently been a growing amount of interest in the need for this type of
approach and this has led to the use of methods which are both local in the spatial
domain and in some class space [46][109][114]). These methods have been shown to
provide advantages in a number of image analysis areas, including texture analysis
and segmentation [66][99](113], line and edge extraction [65], and stereopsis [114]. Up
to now, however, these techniques have remained essentially separate implementa-
tions of a general philosophy and have not taken the form of a unified image descrip-

tion. It is the aim of the work described in this thesis to derive such a description and

apply it to a typical image analysis problem.
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1.5. Thesis Qutline o Co T s Pt e

+ 1t'w"'qLi- - L a"@-‘e ..% i

This thesis can be considered to consist of two parts: the derivation and definition of a
unified 1mage description; and the application of this description to the problem of

extracting line and edge features from an image. .- . =~ - = - ..

The requirements of a suitable image description are considered in chapter 2. It is
shown that the description must have locality in both position and class space over a
range of resolutions if it 1S to represent features that are generally applicable. A
number of existing image transforms that may provide such a description are con-
sidered. However, it is argued that these fail to provide sufficient locality in both

position and class space. This leads to the derivation of a new transform, known as

the multiresolution Fourier transform (MFT).

This transform is formally defined in chapter 3. It has a hierarchical structure which
can be viewed as providing local spectrum estimates over a range of spatial scales.
The transform is invertible and can be efficiently implemented using familiar signal
processing techniques. A general class of transforms 1s also introduced. Initial exper-

iments and examples are presented for both synthetic and natural images.

|
L
1

Application of the MFT to the problem of extracting line and edge features is con-
sidered in chapters 4-6. A multiresolution image model based on such features is

introduced in chapter 4. It is demonstrated that it has considerable generality and can

be used to represent curves and boundaries.

Chapter 5 describes an estimation scheme for the model. This is based upon a local

maximum likelihood estimator and a hierarchical decision process. A scheme for

extracting curves is also defined within the same framework.
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It is shown in chapter 6 that the MFT provides an effective and efficient tool for

implementing the estimation scheme defined in chapter 5. Results are presented for

¥ ; .
v R

both synthetic and natural images. -

LA Ty

Finally, chapter 7 concludes the work with a synopsis and a discussion about the

direction of future work.

1.6. Mathematical Preliminaries

It will be convenient in much of this thesis to make use of linear operator notation.

This section presents the various conventions that are adopted.

Discrete signals will be represented by vectors which are indicated by boldface lower

case letters. For example, the 1-d signal v (i), 0 Si < M, is represented by

v = [v] v; = v(@) 0<i<M (L)

where v; is the ith component of the vector v. Linear operators will be indicated by

boldface upper case letters and for the 1-d case are assumed to be (M x M) matrices, ie.
A = [ay] 0<kl<M (1.2)

and if v in eqn (1.1) is assumed to be an (M x 1) column vector, then the vector

q=Avisgivénby

Uy = Y, aq i (1.3)
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which is the result of operating on the vector v with the operator A.

The above notation is also adopted when the underlying problem has more than one
dimension. In these cases, the components of vectors and operators are indexed by

the appropriate number of indices, ie one for each dimension. For example, the 2-d

signal v (k,1), 0 <k,l < M, is represented by
v = [vy] vy = vkl 0<ski<M (1.4)

where vy is the (k,)th component of the vector v and the vector u = Av, which 1s also

defined on a 2-d support, is given by

M-l M-1

Uy =. Y, aum,,: Vinn | (1.5)
m=0 =0

where a,,;,,, are the components of the operator A, Note that this equation can also be

written as a matrix operation by defining the vectors and operators in terms of column

vectors and matrices [84].

It will be convenient to define sets of vectors and operators and these will be indexed

either by subscript.
[ Vo Vi V2 e Vp ] [ Ag Ay Ay ... A ] (1.6)
or within parentheses

[ v(0) v(1) v(2) .... v(n) ] [ A(Q) A(1) AQ2) .... A(n) ] (1.7)
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Several operators will be used frequently and it is worth defining them here to avoid
unnecessary clutter in the text. This is done for the 1-d case, although they are readily
extended to higher dimensions. To represent operations in the frequency domain, the

discrete Fourier transform (DFT) operator will be used [91]. This is defined by

F = [fu] Ju = —\[-;76 M (1.8)

and has an inverse operator F*
F*t F = FF =1 (1.9)

where * indicates conjugate transpose and I is the identity operator.

Two other useful operators are those that represent shifts in frequency and position

[111]. Thus thé frequéhcy sHift operator W is defined by

wy = S(k-1) e M (1.10)

where &8(k) is the Kronecker delta (8(0) =1, 6(k) =0 for k # 0) and the circular shift

operator S by

Sy = Ok+1-1D (1.11)

where (k+1-1) is calculated modulo M.
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These operators have the followin g properties

! = §' S =FW F =F WF (1.12)

wl = wt W=FSF =F S F (1.13)

where * 1ndicates the transpose operation.

Finally, it will also be useful to represent truncation and bandlimiting operations [111].

L

This can be done using the truncation operator T(T") defined by

[ %%  0<k<T ’
and the bandlimiting operator B( Q ) defined by
B = F" T(Q)F (1.15)

where I" and Q are the truncation and bandlimiting intervals respectively.
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CHAPTER TWO

TOWARDS A UNIFIED IMAGE DESCRIPTION

2.1. Introduction

The derivation of an appropriate feature description forms the first stage of most
image analysis -systems. It was shown in chapter 1 that many of the descriptions
currently being utilised are not suitable when dealing with general analysis problems
such as those presented by natural images. This led to the conclusion that a new
approach was needed, in the form of an image description that provides information
relevant to all perceptually important features. The purpose of this chapter is to dis-
cuss the requirements of such a description and then to define a transformation of the
image data that will satisfy these requirements. The approach adopted is first to estab-

lish an underlying property of useful image features and then to base the required

transformation upon this property.

2.2. A Common Property of Image Features

As noted in the previous chapter, image analysis involves making a transition from an
array of pixel values to a symbolic description of the image. These symbols provide
information about the content of an image, and as remarked by Marr [72], enable deci-
sions to be made about "what is where".- Such symbolic descriptions therefore have
two important components [113]: a class component which indicates what something

is; and a position component indicating where that something is located.
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This property of symbols implies that the features used to derive them must have a
common property, namely a degree of locality both in position and in some as yet
unspecified class space. In other words, they should provide information about the
spatial organisation of an image as well as information about the classification of
separate entities. Note that this ‘dual locality’ is precisely what is missing from the
earlier edge detection and texture analysis methods discussed in section 1.3. Each is

based upon features which have locality in one domain but not in both. .

A further important requirement of the features used to derive symbols is that over the
range of possible features the locality in each domain should not be fixed. The
features need to have various degrees of spatial locality and extend over different
sized areas of the classification space. A good example of this is in the identification
of homogel.:leous regions. These regions will have different spatial areas and will
require different resolutions in the classification space. Hence the features used to

represent such regions must have similar properties.. This multiresolution requirement

has been recognised by a number of workers [68][72].

Starting from two fundamental requirements of symbols, 1e "what" and "where" infor-
mation, has therefore led to a common property of the features needed to derive such
symbolg - a degree of locality in both position and class space which varies over the
range of possible features. Consequently, if an image description is to enable such
features to be derived then it must incorporate this important property. Although this
1s not the only property that may be considered, it is one that is generally applicable

and is thus consistent with the need for generality sought in the present work. This

can be contrasted with other approaches, such as those based on intensity changes in

the 1mage [72], in which it could be argued that generality has not been maintained

[113].
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It remains to decide upon a suitable classification space in which to base the required

description. There are several possible candidates, but one that has 'a number of advan-
tages is that provided by Fourier analysis. These methods have a well established
theoretical base [14], and have found extensive use in identifying a wide range of
image features [26][63]1[65]1{114]. In addition, there has been a considerable amount of
work in physiology and psychology which suggests that it may be used in some form
by the human visual system [21][24][50]{104]. Although the latter is by no means con-

clusive, coupled with the theoretical and application arguments it does suggest that the

Fourier domain is an appropriate choice.

L F k-

2.3. Requirements for an Image Transform '

-

In the previous section an essential property of the description sought in this work was
derived. Based on this and other general properties, it is possible to formulate the

requirements of an image transform that will be able to provide such a description.

These are as follows:

(i) Locality - a property of meaningful features established in the previous section is
that they should have a degree of locality in position and class space. If the
classification space is assumed to be the Fourier domain, then this implies that the
required description should provide information from both the spatial domain and the
spatial frequency domain. In other words, the associated image transform should be
one that represents a transformation into a space that is intermediate between the
image and its Fourier transform. The resulting image description (or representation) is

then known as a combined representation in space and spatial frequency (cf section

2.4).



20

(ii) Resolution - the previous section also established that the locality of features
should exist over a range of scales. The implication of this for the type of transform
described in (i) is that its resolution in space and spatial frequency should be adequate
to represent the range of localisation exhibited by all the features of interest. For
example, it should have sufficient spatial resolution to provide the required positional

information and sufficient spatial frequency resolution to provide the required class

information.

(iii) Invertibility - given that the above transform could be defined, then it will be
advantageous if the transform were also invertible. This property will ensure that the
information contained in the image is being preserved by the transformation, ie it pro-
vides an alternative representation of the image without loss of information. In addi-

tion, it will also provide a useful means of assessing the properties of models and

further processing defined within the transform space. .- - -

b ¥ .._& L. BY .

(iv) Computational efficiency - as mentioned in chapter 1, image analysis is an ever
expanding area of research with a wide range of applications. It is therefore desirable
that the techniques employed are amenable to straightforward and efficient implemen-
tation.. This is particularly true for techniques aimed at general use. The required
transform should therefore have computational properties which are comparable to

existing and established methods. A computationally inefficient and cumbersome

transform will not only have limited use but also preclude general accessibility.

(v) Linearity « the final requirement for the transform is that it should be linear, This
will ensure a predictable response in the transform space to the addition or weighting
of features, and so will simplify analysis. Furthermore, it will enable familiar signal

processing operations, such as filtering, to be considered within the transform frame-

ot

work.
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In the following sections, cxistiﬁg techniques that are relevant to the above require-

ments are considered. An appropriate image transform based on these techniques is

defined in section 2.6. |

2.4. Combined Spatial and Spatial Frequency Representations

2.4.1. Introductory Remarks

In the previous section it was established that some form of representation which was
intermediate between the image and the spatial frequency domain would possess pro-
perties essential to a unified image description. Representations that provide informa-
tion about a signal from both its original domain and the corresponding frequency
domain have received considerable attention in the literature, particularly for the 1-d
case. The purpose of this section is to present and evaluate their characteristics. The
best known of these fall broadly into two classes: linear forms based around the

short-time Fouﬁer transform (STFT); and bilinear forms, of which the Wigner distri-

bution (WD) is the most widely used. For simplicity of notation and analysis, they

will be considered in their 1-d form. Both classes are readily extended to the 2-d case.

2.4.2. Linear Forms

The linear forms can all be considered to be versions of the STFT. For a continuous

1-d signal y (), its STFT is defined by the following pair of equations [89]

Y(r,w) = [ h(=0) y(@) eV ae - (@0)
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y@) = -21; _J; _L fG-1) Y(ro) ef® dt do (2.2)

where the synthesis equation holds provided that
[ h@) f(-1) ar = 1 (2.3)

The functions A(¢) and f (¢) are known as the analysis and synthesis windows respec-

tively.

The representation 1s clearly linear, ie if

y2(2) = a y1(t) + b yo() (2.4)

where a and b are constants, then

Yo(t,w) = a Y (t,00) + b Yo(T,0) (2.5)

Note that for a given T = 1p, the function Y (Tp,®) is the Fourier transform of the win-

dowed signal w (tg,?)
w(to,t) = h(to-t) (1) (2.6)

and if A4 (¢) is chosen to be localised in both domains, then the STFT can be recognised
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as a combined representation which is intermediate between the signal and its Fourier

transform.

Two dimensional forms of eqns (2.1) and (2.2) are readily defined.

There are a number of related versions. The STFT of a discrete-time signal x (n) is

given by [89]

X(ne) = X hlr-m) x(m) eom @.7)

x(n) = -2-1-; i é fln-r) X(r.0) ei®dg (2.8)

where the discrete window functions now satisfy

Y hOm) f(=m) = 1 2.9)

Eqn (2.7) represents the discrete signal x (n) by a function of a continuous variable @

for each value of n and thus contains redundant information. This redundancy is

minimised by defining a discrete STFT [89]

S o i km |
X(nk) = 3 h(R-m)x(m)ye ™  oOsk<M  (2.10)

where R and M are the sampling intervals in each domain. Appropriate choice of
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these parameters and synthesis window f (n) means that the original signal can be

reconstructed according to

S S ’ * | 21,
18 5 M
x(n) = — 3 Y f(-m) X(mk) e (2.11)
M k=0 m=—oo
provided that the two window functions satisfy
Y f(n-sR) h(sR-n+pM) = 8(p) for all n (2.12)

£ § =00

Note the further constraint on suitable windows due to the sampling process.

The discrete STET is the simplest example of a multirate filter bank [97][107]). These

are defined by [97]

X(nk) = ¥ h(aR-m) x(m) (2.13)

where the analysis windows h;(n) are no longer modulated versions of a baseband
filter as in eqn (2.10), but are now independent functions of frequency. This has
important implications in coding applications, where reconstruction need no longer
rely upon satisfying the sampling theorem on a channel-by-channel basis as implied
by eqns (2.11) and (2.12), but can make use of methods that are able to remove alias-

ing in the synthesis procedure [97]. The most popular of these methods 1s based upon

quadrature mirror filter (QMF) techniques [42].
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A relative of the STFT is the Gabor representation [45]. For a number of years this
remained a separate entity and it was not until recently that a re*lationship was for-
mally recognised [9]. This is probably due to the fact that it starts from a different

viewpoint, namely the expansion of a continuous signal y () in terms of a linear com-

bination of elementary functions, ie

y(t) = é.. ,§. Cugu®> e
where
gu(t) = g(t—kT) e/ H¥+0) (2.15)
) = e | (2.16)
and
TQ = \/:g « ,’ . (2.17)

As can be seen, the elementary functions g4 (¢) are modulated and position shifted
versions of a Gaussian window g (¢). This window is optimally concentrated into the
intervals T and €2, and as such satisfy a minimum uncertainty condition [45](83] (see
later in this section). Consequently, the representation in eqn (2.14) expands the sig-
nal y(¢) in the signal/frcqucncj plane defined by the indices (k,/). However, due to

the fact that the functions g (t) are not orthogonal, an analytic solution for the
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coefficients Cy is not straightforward (Gabor suggested an iterative solution). Bas-

tiaans [8][9] recently introduced the following solution based upoﬁ an auxiliary func-
tion Y(¢)

‘.}.n’:

= [ y() ¥ (¢-kT) e ar (2.18)

where * indicates complex conjugate and Y(¢) and g (¢) are related by a biorthonormal-

ity condition [9]
[ ¥() gu@) d& = k) &) (2.19)

This condition is related to that for the discrete STFT in eqn (2.12).

A 2-d version of the Gabor representation is also readily defined [37].

Efficient Eimplcmcntation of the various forms of the STEFT 1s based upon fast Fourier
transform (FFT) techniques [2][88]. This does not however apply to the Gabor
representation, where calculation of the coefficients via eqn (2.18) is expensive in

terms of computation [87). To avoid this, Daugman [38] proposed an iterative scheme

for his 2-d version.

-

The resolution of all these representations is determined by the windows and elemen-
tary functions. The degree of energy concentration in a given domain defines the

resoluuon achlcvablc in that domain. A central feature of the work of Gabor was the

realisation that a signal cannot be simultaneously concentrated to an arbitrary extent
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in both domains. This is known as the uncertainty principle in signal processing
[45])(83]. In fact, there exists a lower limit on the product of ‘dmaﬁons' of a signal in
each domain and signals which satisfy this limit are regarded as having a minimum
uncertainty condition. This applies to the elementary signals employed by Gabor and
as such the representation in eqn (2.14) has optimal resolution. It is of course possible

to employ windows with a similar property when implementing the STFT.

The STFT 1s the most well established combined representation due to its invertibility
and computational advantages. It is used extensively in speech processing [90], linear
time-varying filtering [89] and adaptive processing [2]{61]. Multirate filter banks are
also used widely, mainly in speech and image coding [97][106].

Application of the Gabor representation has been limited due to its computational
difficulties. However, it is interesting to note in the context of this present work that it
has received considerable interest from workers in vision research. Its relevance to
the study of the visual system was first noted by Marcelja [71] in 1980, and this was
supported by a number of other workers, eg [371[86]. More recently, the work of

Daugman {38], Porat and Zeevi {87] and Friedlander and Porat [43] have implemented

the representation for both 1-d and 2-d cases.

2.14:.3. Bilinear Forms

Introduced to overcome the resolution restriction imposed on the linear forms by the
window functions, bilinear combined representations provide a type of energy density
measure of a signal at a given instant in each domain. The most notable of these are
the Wigner distribution (WD) [29]-[31] and the ambiguity functic;n (AF) [83]. Since

these have a similar definition, being related by a 2-d Fourier transform [31], 1t suffices
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here to consider only the more widely used WD.

The WD for a continuous signal y (¢) is given by [29]
=~W (1, 0) = f y (t+-;-) y*(t—;mg—-) e I dr (2.20)

and therefore at t =1y, the WD is the Fourier transform of a function which
corresponds to taking symmetrical correlation products about zp. The term ‘energy

density measure’ derives from its ability to preserve the energy distribution of the sig-

nal in both domains [15]. - However, its use 1s often disputed due to the fact that the
‘WD is not guaranteed to be nonnegative [15]{29]. It is also worth noting that in gen-

eral the WD is not invertible [29]. - ‘ S

]
? P 1 et
¥

The use of the correlation term means that the WD 1is a bilinear function. In other

words, the WD of the sum of two signals is not simply the sum of their respective

WD’s, ie if
T @ = @ +ye® (2.21)
then
Wot,0) = Wi, o) + Wolt,®) + 2Re Wo, (1, o) (222

where Re indicates the complex real part and W (7, ) is the cross-WD
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Woi(t,w) = f )’1(f+'§*) )’S(f-g‘)re"jmﬁdt: o u62-2ﬂ3)

The WD of a discrete-time signal is not so well defined as in the continuous case and a

number of versions exist. The following was adopted in [30]

Wnw) = 2 Y x(n+k) x (n—k) e 7% (2.24)
| n | L

where n is the discrete variable and ® is a continuous frequency vaﬁﬁBIe.‘ This version
suffers an aliasing problem which is common to a greater or lesser extent in others
[32]. The problem derives from the fact that W (n, ) is periodic with period & due to
the factor 2 in the cxpénent of cqn*(2.24). Since the spectra of discrete-time signals
have period 2r, W (n, ®) will contain aliasing components. A number of techniques,
inchiding oversampling and prcﬁltcﬁng, have been ?proposed to overcome thi£

difficulty [25](32}[59].

The infinite summation in eqn (2.24) means that a variant of the WD needs to be

employed in practice. This led to the pseudo-WD proposed in [29)]

| W(n, éu)) = 2 i x(n+k) x*(n—k) h(k) e™7% (2.25)
km—ce

where h(n) is some finite window function. The effect 1s a smoothed WD in fre-

quency, ie

W(no) = Wno) *o H@ . (2.26)
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where H () 1s the DET of A (n) and *, denotes discrete convolution wrt the variable

®. Another example of this is the smoothed-WD introduced in i59]. Both of these
forms of the WD can be implemented using FFT techniques. |

In the continuous case, the bilinear forms do achieve better resolution than their linear
counterparts. This is clear from eqn (2.20) where tiae lack of a window- functién
means that maximal resolution 'is achieved [60] . However, in practice this advantage
does not apply to either the pseudo or smoothed WD’s. In these cases a window func-
tion s employed which means that their resolution is restricted by the uncertainty
principle. In fact, the WD is further disadvantaged by its bilinearity, which often
means that it is difficult to interpret for complicated signals, due to the presence of the

cross-terms in eqn (2.22) [62]. Suggestions have been made for removing these

cross-terms, although this has had limited success [59])[62].

Despite this, the WD has been applied in a number of areas. These include optics [7],
vision research [58] and speech analysis [105]. Of particular interest here is the work

of Jacobson and Weschler [58]. These workers used a 2-d WD in order to define a

model of the operation of simple and complex cells within the striate cortex.

2.5. Multiscale Representations

2.5.1. Fixed Window Size and Uncertainty

The resolution of the representations considered in the previous section is dependent

upon a basis or window function. Such a function cannot be arbitrarily localised in
both domains and therefore the representations are inherently restricted by uncer-

tainty: defining the spatial resolution automatically sets a tight bound on the
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maximum frequency resolution. What this implies in practice is that an arbitrary fixed

window size must be employed, albeit based upon a window with optimal joint locali-

sation.

This presents a considerable difficulty. "As noted in section 2.2, image features that
are generally applicable have varying degrees of locality in both space and spatial fre-
quency. However, if one of the above representations is used, then it would mean
adopting a trade-off between the locality of features in each domain. Indeed, choos-
ing a given window size may provide sufficient frequency resolution to enable a

feature to classify an object, but it may also mean that several objects are then present

within the spatial extent of the window and thus prohibit identification.

The problem is clearly related to the uncertainty principle and is a fundamental prob-
lem when trying to simultaneously lpcate and classify image properties [109]). A good
example of this is in the analysis of homogeneous regions mentioned at the beginning
of this chapter. To obtain a reliable classification, it would be necessary to use
features that are derived from a reasonably wide sample window, which would then

preclude the accurate location of the boundary. In other words, the locality in position

is sacrificed for locality in classification.

A possible solution to this dilemma is to make use of techniques that are finding
increasing use in image processing. Multiscale methods recognise the limitations of
an arbitrary fixed window size and seek an image representation in terms of windows
that are scaled versions of each other. As it turns out, although these methods possess
multiple resolution in the spatial domain, they fail to provide sufficient spatial fre-
quency resolution. Nonetheless, their contribution in this area is important and, as

will be shown later, they form a subset of the class of transforms sought in the present

work.
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2.5.2. Pyramid Representations and the Wavelet Transform

There 1s a wide range of methods that represent an image in terms of scaled and
translated versions of a single window function.” Although they often have a slightly
different appearance in notation, their properties and underlying characteristics are
essentially the same. The common feature is that they all consist of different resolu-
tions of the image, which are ihen usually arranged in a pyramidal data structure. The
generation of these different resolutions is typically achievéd by some type of smooth-
ing operation followed by a decimation process; the smoothing operator is then known
as the ‘generating kernel’. More recently, there has been interest in the use of kernels
which have a degree of frequency and orientation selectivity, and to seek an orthogo-

nal representation in terms of these kernels. The most notable contributions in this

area are considered in this section.

The basic pyramid representation consists of a number of stacked 2-d arrays, each of
which represents a different spatial resolution of the image. The bottom level is usu-
ally the image and subsequent arrays have dimensions (and resolutions) that decrease
by a constant factor. For an image v(k,l), 0<k,l <M, where M =2V, a typical gen-

eration scheme is the following recursive smoothing and decimation operation

T
-+

K-1K-1 ' 0SSkl <2V
gn(k; l) ~ Z Z W(Pr‘]) 3(n-1)(2k+P: 2!+Q) O<n<N (2*27)
p=0 ¢=0

where g,(k,[) are the coefficients, or nodes, on level n of the representation, the gen-

erating kernel w (p,q) 1s of finite size K X K, and the image forms the initial level - -

golk,l) = vk1) 0ski<M (2.28)
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The kernel w(p,q) therefore defines the transformation function between the different

resolutions. o , e o

The simplest example is the quadtree representation [100], where the kemel is the

unweighted averaging of nodes in a 2 X 2 region, ie K=2 and w (p,q) is given by -
w.q) = ..i. . 0<pg<2 (2.29)

Each node on levels above the base level is therefore the average of its four ‘child’
nodes on the previous level. This representation is particularly easy to implement,

since it is amenable to fast recursive computation.

Alternative kernels have been proposed which have a smoother spatial response and
better joint localisation in the spatial and spatial frequency domain. Various examples
and their associated properties have been considered in the literature [19](76](81]. An
example 1s the Gaussian kernel [19], where w(p,q) approximates a Gaussian function

defined on a limited support and with an appropriate variance.

The Laplacian pyramid representation is derived from the levels of a ‘Gaussian’

pyramid [16]{18][35]. Each node is given by
dn(krl) = 3!:("!1) - g'(u-{-l)(k,l) (2-30)

where the nodes g,(k,!) are generated according to eqn (2.27), with w (p,q) an approx-
imation to a Gaussian function and the nodes g’(,+1)(%, IS are interpolated from the

nodésJ~ g (n+1)(k, 1) such that the dimensions of the arrays g,(k,!) and g’ (k,0) are the
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same. From the above it can be seen that the levels of the Laplacian pyramid are the
difference between successive levels of the Gaussian pyramid; it‘can be shown that
this is equivalent to generating the levels by convolving the image with a kernel that
approximates & Laplacian operator and then sampling ﬁe result [18). The approximat-
ing kernel is known as a difference-of-Gaussians (DOG) [73). Exact reconstruction is
possible from this representation and its main use has been in image coding [18]. Its
advantage over the simpler representations is that discontinuities in the image, such as
lines and edges, are represented in the pyramid over a range of scales (a characteristic
of the Laplacian operator) and these tend to be enhanced following reconstruction
from a coding process. Since these features are important to the observer, the results

have a more acceptable appearance than those based on methods less well matched to

human visual perception.

A useful way to visualise the operations being performed in the above examples is to
consider the frequency response of the different kernels. These are illustrated in figs
2.1a and 2.1b for the Gaussian and Laplacian pyramids respectively. The former is
simply a lowpass filter whose bandwidth is a function of the level; the different levels
are therefore just smoothed versions of each other. In the case of the Laplacian, the
. kernel is frequency selective; referring to a different circular band of the frequency
domain for each level. Lines and edges, which correspond to an energy concentration
in an orthogonal direction in frequency, are therefore represented on each level at a
. different scale (or frequency band). Note that the Laplacian pyramid has removed the

redundancy apparent in the Gaussian based pyranud.

The above examples are all isotropic . representations, €g lines and edges are
represented equally, independent of their orientation. A natural extension is therefore
to introduce anisotropy, or orientation selectivity, by dividing up the frequency

domain as shown in the examples of figs 2.1c-2.1d. Such methods were recently
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(a) Gaussian

(b) Laplacian

(c) Polar separable
orientation

T
d) Cartesian separable Ll.i..
@) orientation RN

Figure 2.1. Frequency domain decomposition for various
multiscale representations,

proposed by a number of workers [1]{108]{113]. Kernels are defined which have the
appropriate frequency responses and then a filtering and decimation operation with the
image produces the required data. From the responses in fig 2.1 it is clear that these
recent methods are related to the combined reprcscntatioﬁs cobnsidcred in section 2.4,
However, in these cases the frequency domain is represented on a logarithmic scale;
the resolution varies (uniformly) over the domain. This correspondence was noted by
Daugman [38] in his implementation of the Gabor representation, where he derived a

version which was based upon oriented and logarithmically scaled elementary func-

tions.

All the above versions have recently been placed into the theoretical framework of

wavelet transforms [36][70]. The theory was originally defined by Meyer [77] and has

been extended for both the 1-d énd 2-d cases by a number of other workers [36]. ‘It

concerns the definition of functions which involve the projection of the signal onto a
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space defined by dilations and translations of so called "wavelets" ¢(¢), ie for the 1-d

continuous signal x(¢) [36]
. __l_ “*. ’ : - o " = . .
U(to) = 6 2 | ¢*(-‘§‘-) x@)d . (2.31)

where U (t,0) is known as the continuous wavelet transform. The redundancy in the
2-d ‘scale-space’ (7,0) [118), due to the overlapping of the wavelets, can be reduced

by employing the discrete wavelet transform [36]

t~nt,,
Om

U(m,n) = 6,2 [ 0"(—=) x(t) dr (2.32)

where the translation and dilation parameters now have discrete values

Om = OF T, = Ty OO (2.33)

and 7T, débends upon G,, so that as the scale parameter m increases, the translation
steps move further apart to account for the widening of the functions ¢(*) in eqn

(2.32); The pyramid rcpregentaﬁohs discussed above are versions of this discrete form

applied to 2-d discreté data.

In general wavelet transforms are not invertible, although by judicious choice of the
wavelet function, inversion does become possible. An example is the Laplacian
pyramid. Another example is when the wavelets are chosen to be orthonormal o;fér
the dilations and translations used in the transform [36]. The majority of recent work

in these representations has concentrated on defining such orthogonal transforms,
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where the wavelets or kernels are both frequency and orientation selective [1][70].

Multiscale methods have been applied to a wide range of image processing tasks..
Perhaps the most popular is image data compression, where almost all the above ver-
sions have been applied. These include coders defined on the quadtree [110], the
Laplacian pyramid [18] and the more recent orientation selective representations

[1]{108]. Other applications include segmentation {17][98][12], restoration [33] and

edge detection [10](56].: .- .-+ -

However, although the above methods illustrate the advantages that can be gained by
representing the image over a range of spatial resolutions, they do not provide the
unified description sought in this work. This is because the limitations of a fixed win-
dow representation have only been addressed in terms of the spatial domain; the result
in the frequency domain is still an arbitrary fixed resolution, albeit an orientation
selective one. Furthermore, the frequency domain is no longer represented in a uni-

form way: separate subbands correspond to different spatial resolutions. These two

properties are evident from the kernel frequency responses in fig 2.1.

To illustrate the effect of this upon an analysis problem, consider the available
coefficients within one of the above representations that correspond to a finite spatial
region. The coefficients are non-uniformly distnbuted across the frequency domain
and they refer to different spatial resolutions of the region. The first problem, there-
fore, is how to combine this inhomogeneous set of coefficients to provide an effective
classification space.  Clearly this is not as straightforward as a simple - Fourier
representation. Secondly, the resolution in frequency is fixed by the choice of the
scale parameter and generating kernel or wavelet, and hence the problem of classify-
ing arbitrary features remains. For example, it would not be possible, given a division

of the frequency domain as in fig 2.1¢, say, to distinguish between two features which
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have orientations closer than the (fixed) orientation bandwidth of the representation.

In other words, these methods are limited by uncertainty in the frequency domain in a

similar way to those discussed in section 2.4. It is shown in the next section that to

overcome this problem it is necessary to adopt an approach which combines both of

;

these methods into a single entity.

2.6." A Multiresolution Approach

2.6.1. Summary of Existing Methods

i‘ r

The joint localisation property of image features suggested the use of a combined spa-
tial and spatial frequency representation to provide a unified description. The two
classes of such representations, linear and bilinear, were considered in section 2.4. Of
these, a version of the linear STFT can be defined to have a number of advantages:
optimal localisation; invertibility; and computational efficiency. However, an

inherent limitation is that a trade-off must be adopted between the resolution obtained

in each domain, leading to a compromise which is inevitably inadequate for some

features.

Multiscale methods provide a partial solution to this limitation by seeking to represent
the image over a range of spatial resolutions. However, as was shown in the last sec-
tion, this leads to representations in which the frequency domain has an arbitrarily
fixed resolution and is non-uniformly represented. It is therefore desirable to seek a

more general description, one in which both domains are represented in a uniform

manner and over a multiplicity of resolutions.
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2.6.2. A Unified Description

In order to provide the required description, a new transformation is adopted in this
work which is based upon the STI;T and 1s a generalisation of the multiscale methods.
The basic idea is to combine a set of STFT’s into a single hierarchical transform. The
individual levels are then defined so that within the limits imposed by uncertainty, the
resolution in each domain varies uniformly over the transform, ranging from the origi-
nal signal to its DFT. Specifically for the 2-d case, the bottom level is the original
image and the top level ié the DFT, while the intermediate levels are STFT’s with
increasing spatial frequency resolution and decreasing spatial resolution, where the
change of resolution is by a factor of two in each domain. Hence the transform con-

tains the ‘full range’ of resolutions in both domains. This new description is known as

the multiresolution Fourier transform (MFT).

A concrete example will help to make the above description clear. Consider the 1-d

signal v (i) represented by the vector v, where v; =v (i), 0<i <M and M =2V, then

its MET vector u(n) is given by

) = [ W T g | v @34

0<i <2, 0k T, Q, =2" Q,I,=M OsngN

where the opc;ators W and S' are the frequency ﬁnd position shift operators defined in
section 1.6 and g(n) is a family of analysis vectors which have optimal localisation in
a signal domain interval of size I',, and a frequency domain interval of size ,. A
comparison with eqn (2.10) shows that the MFT, for a given value of n, is a discrete
STFT with an analysis window given by the vectors g(n) and resolutions in each

domain defined by the parameters I',, and Q,,. There are N levels of the transform and
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Figure 2.2. Signal/frequency diagram for 1-d MFT.

the level index n defines the ratio of resolution between the two domains as illustrated

in fig 2.2.

The rectangular boxes or ‘elementary cells’ in fig 2.2 correspond to the position and
frequency shifted versions of the analysis vectors in eqn (2.34), ie whs gl g(n).
Since each coefficient of the MFT is derived from the inner product of these versions

with the original signal, each cell can be considered to represent a single degree of
freedom within the transform. The dimensions of the cells, I',, and (2,,, are the effec-

tive durations of the analysis vectors in each domain. In other words, the vectors are

defined such that their ‘duration product’ satisfies

IA

r,Q =M Q =2 0<ngN (2.35)

It is clear that this relationship ensures that both domains are completely represented
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Figure 2.3. Spatial/spatial frequency diagram for 2-d MFT.

by the MFT at each level.

An extension of the above example to the 2-d case 1s straightforward. The resulting
tessellation of each domain for a cartesian scparable implementation 1is illustrated in
fig 2.3. In this case there are five dimensions in the transform; two spatial, two spatial
frequency and a level or resolution index. The elementary cells of a 2-d MFT
corresponding to a single degree of freedom are therefore 4-d ‘hypercubes’, which in

fig 2.3 are symmetrical in both the spatial and spatial frequency dimensions.

It is important to note from fig 2.3 (and fig 2.2) that for a given level (and thus resolu-
tion) both the spatial and spatial frequency domain are uniformly represented within

the MFET. Recall that this was not the case for the multiscale methods discussed in

section 2.5. Furthermore, it is clear from figs 2.1 and 2.3 that the MFT is in fact a
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generalisation of these methods and includes them as a subset. In other words, for a

given coordinate space, the MFT will contain a set of possible multiscale representa-

E

tions.

To conclude, the 2-d MFT has the following important properties which satisfy the

requirements of the image description sought in the present work (cf section 2.3):

(i) Locality - a level of the MFT is a combined spatial and spatial frequency
representation of the image. By choosing analysis vectors that are optimally localised,

each level is an optimal representation at its prescribed resolution in each domain.

(ii) Resolution - the MFT contains a multiplicity of resolutions in both domains.
These range from the image to its DFT. The different resolutions consist- of
coefficients that are uniformly distributed across the whole domain. Hence there will
exist a set of coefficients in the MFT that can represent an arbitrary degree of locality

in either domain exhibited by a given feature.

(iii) Invertibility - since the STFT can be defined to be invertible by judicious choice

of window function, the MET has a similar property.

(iv) Computational efficiency - each level of the MFT can be efficiently computed in

a similar manner to a STFT using familiar FFT techniques.
(v) Linearity - the STFT is linear by definition and this also applies to the MFT.

In the remainder of this thesis, the MFT is considered in greater detail and its applica-

tion to a typical image analysis problem is presented.
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CHAPTER THREE

THE MULTIRESOLUTION FOURIER TRANSFORM

3.1. Introduction

The requirements for a unified image description were considered in the previous
chapter. It was shown that existing methods fail to provide a suitable solution and that
a more general approach needs to be taken. This led to the introduction of the mul-
tiresolution Fourier transform (MFT), which combines the approach of multiscale
techniques with that of combined spatial and spatial frequency representation. In this
chapter, the transform is considered in more detail. The forward and inverse
transforms are defined using linear operator notation and the important properties of
the transform are noted. It is then shown that there exists a general class of such
transforms and the details of this class are considered. The chapter concludes by

describing an efficient implementation scheme and presenting various examples of the

transform.

3.2. Forward Transform Definition

The MFT was introduced in section 2.6. It has a hierarchical structure in which each
level fesembles a STFT with minimum uncertainty window functions. The resolution
of these levels, determined by the parameters I',, and £, for the signal and frequency
domains respectively, varies uniformly over the transform from the original signal to

its DFT according to a scale parameter n. For a signal vector v, the transform vector

u is given by
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> u = G'v 3 | " (3.1
where the oﬁéra:tof G is partitioned into level operators G(n)
G = | GO GO v G o GOV ] . (32)

and the vector u is partitioned into level vectors u(n)

u(0)
u(l)

a(n) (3.3)

;I(N)

Tk

where the resolution of u(zn) in the signal and frequency domains is determined by the

parameters I',, and £2,. The operators G(n) are then defined by the analysis vectors

gix(n)

G(n) = [ 2oo(n) ... Bow,-1)(7) ... Bix(R) ... g(n.—l)(r_-l)('{)] (3.4)

where

El

gx(n) = W= 7T o) T @3S)

0<i<Q, 0<k<l, ,=2" QT,=M 0<ns<N
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and W and S are the frequency and position shift operators defined in eqns (1.10) and

(1.11). A given vector g;.(n) is therefore a frequency and position shifted version of a

basic analysis vector g(n).

The. definition of the set of analysis vectors g(n) follows directly from the discussion
in section 2.6. The requirement is that their energy should be concentrated into inter-
vals of size I',, and 2, in the signal and frequency domains respectively. These inter-
vals can be represented by the truncation and bandlimiting operators T(I",) and B(Q,,)
defined in section 1.6. Using these operators, it is possible to define a set of functions
which satisfy the required energy concentration criteria and provide an invertible
transform which can be efficiently implemented (cf sections 3.2 and 3.6). These are

from the class of finite prolate spheroidal sequences (FPSS) [111] and they are defined

by the following eigenvalue problem
B(Q,) T(Tn) gln) = Ao gn) (6

where A is the largest eigenvalue of the operator B(2,) T(I';). The vectors g(n) are
therefore bandlimited and it can be shown that among bandlimited vectors they have
maximum energy concentration in the interval defined by T(I',) [111]. Note that from

the above equations, these vectors ensure that the signal and frequency domains are

partitioned as illustrated in fig 2.2.

In a similar manner to the STFT [89], it is possible to consider two separate interpreta-

tions of a level of the MFT for a given value of n. This can be done by noting that

from eqns (3.1)-(3.5), the coefficients u;;(n) are given by

kS,

uir(n) = g*(n) s W \ (3.7)
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Figure 3.1. Filter bank interpretation of 1-d MFT.

and that this equation can be interpreted in one of two ways. First, for a given value
of k = kg, the coefficients are the sampled output of a filter with impulse response
g1’ (n) =g;(n), I”=M -] (mod M), and input given by the frequency shifted signal
W ol v, where the sampling factor is I,,. In this case, the vector u(n) can be

represented by the filter bank arrangement shown in fig 3.1. Secondly, for a given

value of i =iy, the coefficients form an estimate of a sampled Fourier spectrum of a
local region in the signal domain centred at igl ,+1,/2, with sampling interval £2,,.
This region corresponds to weighting the signal by a function which is given by a

shifted version of the vector g (n) and the interpretation is illustrated in fig 3.2.

As noted above, a given level of the MFT resembles a discrete STFT. What distin-

guishes the MFT is the incorporation of the scale parameter n, which gives the

transform a multiresolution structure. Its significance is that it determines the resolu-

tion in each domain of the vectors u(n). For n =0, the vector u(0) is the DFT of the
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Figure 3.2. Local spectrum interpretation of 1-d MFT.

signal

u@0 = G*@ v = F v G*'(0) = F (3.8)

As n increases, the resolution in the signal domain increases and the resolution in the

frequency domain decreases, culminating in the original signal

uN) = G*(\N) v = v G*N) = 1 (3.9)

Generalisation of the transform to 2-d is straightforward, particularly for a cartesian
separable implementation. In this case, the 2-d transform operator G7 is simply the

Kronecker product of its 1-d counterparts G and Gy [84]



48

2-d discrete
Fourier transform

spatial frequency

-------------------------------- original domain

- e . S G S S S S . R S

---------------- image

spatial domain

Figure 3.3. Local spectrum interpretation of 2-d MFT.

u=Gyv=(G ®G)v (3.10)

where the 2-d image v (i,j), 0 <1i,j < M, 1s represented by stacking its rows into the

(M?* x 1) image vector v, ie

Vim+)) = V(Q.J) 0<i,j<M (3.11)

This 2-d version can be interpreted in a similar way to the 1-d case. For the remai<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>