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Abstract 
The boundary irregularity of skin lesions is of clinical significance for the early detection of 
malignant melanomas and to distinguish them from other lesions such as benign moles. The 
structural components of the contour are of particular importance. To extract the structure from 
the contour, wavelet decomposition was used as these components tend to locate in the lower 
frequency sub-bands. Lesion contours were modeled as signatures with scale normalization to 
give position and frequency resolution invariance. Energy distributions among different wavelet 
sub-bands were then analyzed to extract those with significant levels and differences to enable 
maximum discrimination. 
Based on the coefficients in the significant sub-bands, structural components from the original 
contours were modeled, and a set of statistical and geometric irregularity descriptors researched 
that were applied at each of the significant sub-bands. The effectiveness of the descriptors was 
measured using the Hausdorff distance between sets of data from melanoma and mole contours. 
The best descriptor outputs were input to a back projection neural network to construct a 
combined classifier system. Experimental results showed that thirteen features from four 
sub-bands produced the best discrimination between sets of melanomas and moles, and that a 
small training set of nine melanomas and nine moles was optimum. 
 
Keywords: melanoma detection, structural irregularity of contours, wavelet decomposition, 
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1. Introduction 
Melanomas are malignant tumors comprised of epidermal or mucosal cells and have a high 
possibility of lymphatic metastasis resulting in unfavorable prognosis. Early detection of 
melanomas in clinics depends on a well-known ABCD rule to determine the benign or 
malignant nature of skin lesions [1]. That is, Asymmetry of the lesion’s boundaries, Boundary 
irregularity, Color distributions and lesion Diameters. Alternative classifications based on color 
texture appearance has been researched recently [2, 3], and by employing a biopsy and electron 
tomography, a classification from 3D cell images has been reported [4]. The technique of 
dermoscopy used polarized light or oil coverage to make more of a lesion’s structure visible [5]. 
CAD systems have been researched to aide the clinician. These often comprise image 
acquisition, artifact detection, lesion segmentation, feature extraction and lesion classification 
stages [6]. 
In the previous decade, there have been many studies concerning the boundary irregularity of 
lesions using both geometric [7,8,9,10] and local fractal [11] measures. There are two types of 
irregularities found on boundaries: textual and structural, these correspond to fine changes and 
obvious convex and concave features respectively [7]. The structural irregularity has clinical 
importance for melanoma diagnosis. The first task of boundary irregularity analysis is to 
identify and extract the boundary as a 1D signal from the 2D image. The contours of skin 
lesions can be considered as a mixture of structural and textural irregularity as can be seen by 
following those in Fig.1. The benign mole is smooth with little variation on its contour, while 
that of the melanoma contains many indents and protrusions in its structure, and has an obvious 
visual roughness. However, for measurements of structural irregularity, multi-scale analysis of 
skin lesion boundaries is an important technique for correctly isolating the structural from the 
textural information. Wavelet transforms are useful multi-resolution analytical tools for 
revealing object information at a defined scale or to select particular frequency bands of interest 
[12]. A requirement for the design of structural irregularity descriptions is to explore ways of 
extracting features not only from structural variations along the original contour, but also to 
separate the scaled information in the significant sub-bands and thus with this extra information 
to improve the accuracy of the diagnosis. 
Previously T. K. Lee proposed an irregularity measure based on a deduced scale level using a 
curvature model of multi-scaled boundaries [7]. However it involved heavy computation as the 
proposed irregularity index was evaluated from a hierarchical structure with its roots as global 
curve segments and leaves as local segments for each of the consecutive smoothed contours. 
The Gaussian smoothing-scale increases on the original lesion contour indicated the evolution 
of the curve’s indented and protruding segments. 
The motivation for this study is to show that the filtered information in the sub-bands can be 
used by structural irregularity descriptors to provide a good separation between melanomas and 
benign moles. We show that multi-scale wavelet decomposition of the extracted contour 
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followed by the selection of significant sub-bands can be an appropriate approach for the 
evaluation of structural irregularity. The novelty of the proposed structural irregularity features 
is:- (1) The extracted structural components of the contours are reconstructed by the summation 
of the approximate wavelet coefficients at the selected maximum scale and only those detail 
coefficients that are from structurally significant sub-bands; (2) Two classes of statistical and 
geometric irregularity descriptors are defined and used. These were evaluated in each of the 
significant sub-band to determine firstly that they were independent and did not correlate with 
other features, and secondly their effectiveness in distinguishing between melanomas and moles 
was measured. Features were discarded if they did not separate sets of moles and melanomas 
sufficiently in order to maintain a compact feature space.  
The steps in the procedure to reconstruct just the structural components of the contours are:- 
Perform a 1D wavelet decomposition to produce a series of detailed contour signals for all the 
lesion contours in the data set; Calculate energy measures for each of the detail, that is high 
frequency, sub-bands; Perform a Hausdorff Distance (HD) [13,14] analysis based on energy 
values in each sub-band to determine which detail coefficients are significant for distinguishing 
the two sets; Select the significant sub-bands; Label the sub-bands with scales below these as 
containing the textural component of the contour and rejected them from further consideration; 
Sum the approximation coefficients and the remaining detail coefficients to generate the 
connected structural component of the contour. This procedure approximately isolates the 
structural portion of the original contour, and then the irregularity descriptors are used to refine 
this and partition the lesions appropriately. 
 

 

(a)                                       (b) 
Fig.1 Images of skin lesions (a) mole (b) melanoma 

 
Section 2 describes the procedure to extract the structural components of the lesion contours 
including the wavelet decomposition, the scale normalization necessary to process contours of 
different length, and the selection of the significant sub-bands. Section 3 discusses the design of 
the statistical and geometric descriptors of contour irregularity that are applied at multi-scales. 
Section 4 concerns the selection techniques that ensure features are independent and that the 
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feature vector is compact. Section 5 provides the experimental results for the significant 
structural component extraction and feature evaluation. A combined classifier using a back 
projection neural network is described together with issues concerning training and the 
evaluation of the structure of the feature vector. Finally Section 6 provides conclusions. 
 
2. Extraction of the structural components of the skin lesion contours 
2.1 Wavelet decomposition of a lesion contour 
The contour of a skin lesion in an image is described by the points. C={x1,y1,x2,y2,…,xN,yN}. 
There are two ways of to represent this 2D data as a 1D signal: 1) The contour is split into two 
1D sub-vectors Cx={x1,x2,…,xN} and Cy={y1,y2,…,yN}; or 2) The contour is modeled as a 
signature Cr={r1,r2,…,rN} where the radial distance from the geometric center, 

2'2' )()( yyxxr iii −+−= , i=1,2,…n and (x',y') is the coordinate of the geometric center of 

the closed contour. The signature representation was adopted in the paper as it provided the 
advantage of position invariance.  
 
2.1.1 Scale normalization  
It was noted that many moles have a shorter contour for a given nominal area than do 
melanomas. Together with size variability between the samples in the database, this can lead to 
variations in estimated frequency and resolution in the frequency domain. Scale normalization is 
required to enable a comparison between moles and melanomas in this domain. The proposed 
normalization was modified from [15] to give radius:  
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Where i is an integer used to resample the contour points with a spacing distance of (n/N) and 

the ceiling function    is used to produce an integer index to r. The values µ1 and µ2 are the 

averaged radial distances of all the melanomas and benign moles respectively in the data base. 
Their inclusion provides a mean value platform on to which the lowest level approximation 
coefficients will be superimposed. T is a threshold used to determine if a mole has a small value 
of r. If so, r is increased to reach a similar size to that of a melanoma. For melanomas and large 

moles, the value of r is never increased. ir′  is the radial distance of the ith point of a contour 

after this normalization. The lesions were sometimes small with r(i) < T, and sometimes not 
circular with sections where r(i) < T. In these cases normalizing the individual r(i) was 
performed to improve the discrimination of the classifiers described in the later sections. 
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2.1.2 Wavelet decomposition 
Wavelet decomposition is a powerful tool for multi-scale signal analysis. By using a pair of 
low-pass and high-pass filters, an original signal is decomposed into approximation and detail 
coefficients with the approximations feeding into the next level of decomposition, and thus 
creating a decomposition tree [16]. The tree structure of such a 1D wavelet decomposition is 
shown in fig 2. 

 
 

Fig.2 Tree structure of wavelet decomposition 
 
 
A 1D wavelet decomposition is performed on a contour signature Cr. The approximate and 

detail coefficients at scale i are given by { }i
M

iii aaaA ,, 21=  and { }i
M

iii dddD ,, 21=  

respectively where M = N / 2i. As the scale increases, the approximate coefficients are further 
decomposed into low and high frequency components at the next higher scale. Generally the 
textural components of a contour occupy the lower scale, higher frequency bands, with the 
energy distributed evenly between bands to give a relatively small total energy within each. 
However the structural components generally have a larger energy and occupy the lower 
frequency bands. By using wavelet decomposition to level s, an original contour signature Cr is 

transformed to a series of sub-band signals 11,,, DDDA sss − covering the whole signal 

frequency space at ],2/1,0[ maxfs ]2/1,2/1[ max
1

max ff ii − , 1,2,,1, −= ssi  and fmax is half 

the sampling frequency. This represents a concatenation of the frequency bands from the lowest 
to the highest. The task is to identify at which decomposition levels the structural components of 
a lesion contour can be extracted and which sub-bands in the frequency domain are significant 
for distinguishing moles and melanomas. 
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2.2 Sub-band descriptions of contour structural components 
For a 1D contour signal, the FFT provides the magnitude and phase against frequency. The 
weakness of the FFT is that the spectral profiles are unrelated to the position of an event in the 
boundary and the resolution is fixed throughout the frequency band. On the other hand the 
discrete wavelet transform (DWT) presents the capability of confining signal components to 
dyadically increasing width frequency bands with different resolutions. The left two columns of 
Fig.3 present mole, and the right two melanoma data. The plot in the first row of the first 
column is the FFT spectrum of a mole where the zero frequency component has been translated 
to the center. The plot on the right indicates the sub-band division in the frequency domain 
when two levels of wavelet decomposition are implemented. A1, A2, D1, D2, refer to approximate 
and detail signals. The plots in the rows below show the signals in each band. Similarly the two 
columns on the right are for a melanoma. Differences can be seen between the mole and the 
melanoma signals in the D1 and D2 bands. We continue to describe the selection of the bands 
which enable the best discrimination between moles and melanomas. 

 
Fig.3 Spectral and wavelet comparisons between a mole and a melanoma. Mole: (a) FFT, (b) A1, 
A2, D1, D2 wavelet coefficient frequency map, (c) A1, (d) D1, (e) A2, (f) D2; Melanoma: (g) FFT, 
(h) A1, A2, D1, D2 wavelet coefficient frequency map, (i) A1, (j) D1, (k) A2, (l) D2; 
 
 
2.2.1 Significant sub-band selection 
To obtain just the contour’s structural components, several lower frequency sub-bands need to 
be identified from which to reconstruct that portion of the original contour using both 
multi-scale approximate and detail coefficients. The evaluation of the significant sub-band range 
was performed between each of the sample sets by HD distribution analysis at each level of 
wavelet decomposition [17]. When analyzing the decomposition of a contour signal, the total 
energy at any decomposition level indicates the significance of that sub-band frequency to the 
original signal. The energy of a wavelet sub-band Dj is defined as 
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2)(∑=
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j
ij DE   j=1,2,…n           (2) 

 
2.2.2 Procedure for investigating significant sub-band selection 
An algorithm was developed to identify those sub-bands which enabled the largest 
discrimination between moles and melanomas. Given a set of p benign mole contours, 

},,,{ 21
b
p

bbb xxx =Ω  where b
kx  was the kth contour, and a set of q melanoma contours, 

},,,{ 21
m
q

mmm xxx =Ω  where m
kx  was the kth contour. 

 
Step1. For a preset maximum level of wavelet decomposition n, calculate the wavelet energy for 

every contour b
kx  and m

kx within each set Ωb and Ωm. First perform wavelet decomposition to 

obtain the detail sub-band signals, Dn, Dn-1, … D1, for each lesion contour, and then calculate the 

energy for either b
kx or m

kx in each band, b
lkE  and m

lkE , where sub-band nl ,,2,1 =  

using Eq.(2). 

Step2. Form energy sets },,{E 21
b b

lp
b
l

b
l EEE ，=  and },,{E 21

m m
lq

m
l

m
l EEE ，=  from the 

individual energies calculated for each transformed benign and melanoma contour at each 

sub-band nl ,,2,1 = . 

Step3. Compute the lHD  value between energy sets of moles bE and melanomas mE  for 

each band nll ,,2,1, = . This measures the discrimination between the two classes for each 

sub-band. 

Step4. Plot the distribution of lHD  with respect to sub-band number l . The sub-bands with 

the highest HD are considered as the most significant and used in the final classification. 
Step5. The sub-bands with the higher HDs are considered as significant bands for use in 
classification. 
 
2.2.3 Extraction of the structural component of a lesion contour 
Based on the theory of wavelet reconstruction, the structural component of a lesion contour is 

given by combining the significant coefficient groups from 11,,, DDDA sss −  where the 

original decomposition was stopped at level s. The decomposed detail sub-bands need to be 
divided into high-scale (low-frequency) and low-scale (high-frequency) groups using a 
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threshold st so that: 

tssss
s DDDAC ++++= − 1     (3) 

121 DDDC tt ss
t +++= −−         (4) 

Where Cs contains lower-frequency information and represents the structural component of the 
contour, and Ct contains higher-frequency information and represents the textural component. 
Choosing both s and st are difficult tasks, as a large s generates many narrow sub-bands close to 
zero frequency. Although these will contain structural information that will be relatively free of 
textural irregularity, there is an extra cost in increased computational complexity. A small s can 
lead to structural contours contaminated with textural irregularity. The value of st chosen is 
crucial to obtain useful structural and textural contour information. The significant sub-band 
selection process described in Section 2.2.2 was run on the test data and in practice the HD 
distribution (Fig. 4) produced had a single peak that lead to the straightforward selection of a 
single, general value for st as described in Section 5.1.  
 

3. Descriptors of contour irregularity at multiple scales 
Irregularity measures of object boundaries are key components for shape related classifications. 
They are used after the contour structural components have been extracted. There are two 
categories of irregularity descriptors, with one based on statistical measures, and the other on 
geometry. The descriptors are only extracted at the previously determined significant levels 

Ω∈jj, , where Ω is a significant level set formed by the sub-band selection procedure of 

Section 2.2.2. 
 
3.1 Statistical measures 
Together with the mean and variance of the energy of Dj at each significant level [9], the 
following features related to contour irregularity were defined:- 
 

1) Entropy of wavelet energy, ( )j
i

N

i

j
ij ppw log

1
∑
=

−=                 (5) 

where jj
i

j
i EEp = is the energy probability of the ith component of Dj , Ej is the total energy 

of the coefficients in band j as calculated by eqn (2), and 
2j

i
j

i DE = . The energy entropy 

measures the magnitude of signal fluctuations.  

2) Ultimate width. For any signal { }NxxxX ,..., 21= , the ultimate width is defined as 

µ
σ×

=
2width                  (6) 
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Where µ and σ are the mean and variance of signal X. A large width indicates sharp variations. 
 
3.2 Geometric based irregularity measures 
At each significant level j, a supposed structural component Cj, s ≥ j ≥ st of a contour is 
reconstructed from the wavelet coefficients, Cj = As + Ds + Ds-1 + … + Dj. In addition to a 
simple variance measure [11], the other irregularity measures of the reconstructed contours are 
evaluated as:- 

Radial Deviation, |)(|1

1
∑
=

−=
N

i
i rr

N
RD                  (7) 

where r  is the mean radius of the contour signature. 
 

Contour Roughness [8], ∑ −=
=

+
N

i
ii rr

N
Ro

1
1 ||1

    (8) 

  

Irregularity Measure, 
)(

)(

s

sj
SArea

SCArea
IM

⊕
=     (9) 

where Ss is reconstructed from the approximate data, As, at the significant level s, and ⊕  is the 
exclusive-or operator. 
 
4. Feature selection  
Feature selection was performed to remove some measures that were too similar to others and to 
identify those that were most independent for inclusion in an efficient feature vector. Initially 25 
features were identified from six irregularity descriptors at four scales plus IM at the threshold 
scale st. Then a correlation analysis followed by a performance based feature selection was 
performed as detailed below. 
 
4.1 Correlation analysis 
Correlation analysis is a popular tool for removing those redundant features that have a strong 

relationship to others within a feature vector [18]. Given a feature vector { }ntttF ,,, 21   and a 

sample set { }mxxxS ,,, 21 = , the correlation coefficient ρij of any pair of features ti,tj is 

calculated as follows: 



10 
 

( )( )

( ) ( )∑∑

∑

==

=

−−

−−

=
m

p
jpj

m

p
ipi

m

p
ipjipi

ij

ztzt

ztzt

1

2

1

2

1ρ    (10) 

where zi is the mean value of feature ti in the sample set and tpi is the value of ti for the sample xp. 
The absolute value of ρij indicates the correlation between ti and tj, so a redundant feature will 
have a large ρij.  
The following is the procedure for removing redundant features using correlation analysis:- 
Step 1. Given an original feature vector F and a sample set S, Calculate a matrix of correlation 

coefficients, njijiij ≤≤≠ ,1,,ρ  using Eq.(10). ; 

Step 2. Given a preset threshold T, split the pairs of features (ti,tj ), where (i ≠ j, 1 ≤ i, j ≤ n), into 

two sets, where njijiTFF ij ≤≤≠<= ,1,,|1 ρ  is a set that does not contain redundant 

features in F, and }|}),{,{2 TjiptF ijp ≥∈= ρ  is generated by choosing either feature of a 

highly correlated pair. Selection can equally be random, or we kept the one that computed most 
efficiently. 

Step 3 The final feature set after removing redundant components is given by 21 FFF ∪=′ . 

 
4.2 Performance based feature selection 
After removing the redundant features from the vector, those remaining are largely independent. 
Further analysis is then performed to select the best features based on their discrimination 
performance. To evaluate the discrimination, the contribution to the correct classification for 
each feature is evaluated [7]. Given a sample set of skin lesions with manually labeled classes 
w1 and w2, representing benign moles and malignant melanomas respectively, the probability 

distributions ( )2| wtP i , and ( )1| wtP i  are evaluated for each feature. Suppose the prior 

probabilities p(w1) and p(w2) are equal, then the posterior probabilities ( )itwp |1  and 

( )itwp |2  will be closely related to ( )1| wtp i  and ( )2| wtp i . The classification is perfectly 

separable when any value of ( ) 0| 2 ≠wtp  has the corresponding value of ( ) 0| 1 =wtp , and 

is absolutely inseparable when ( ) ( )12 || wtpwtp =  at any point [19].  

However, medically, the probability of a benign mole p(w1) is larger than that of a melanoma 
p(w2). With the Bayesian rule, the discrimination can be stated: If 
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)()|()()|( 2211 wpwxpwpwxp > , then 1wx∈ . Here this is simplified to be 

)|()|( 21 wxpwxp >  using )()( 21 wpwp = . This proposed simplification is justified when 

)|( 1wxp is located to the left side of )|( 2wxp . This is true as the features, measuring contour 

roughness, take smaller values in moles than that in melanomas. In addition, our rule has the 
same averaged error probability as the Bayesian, because if 

)|()|( 21 wxpwxp > , )()( 21 wpwp > , then 

)()|()()|()()|( 221211 wpwxpwpwxpwpwxp >> ⇒ )()|()()|( 2211 wpwxpwpwxp >  

Generally conditional probabilities of the feature ti for two classes will be overlapped. The 
degree of overlapping of the two probability distributions was used as a measure of 
classification error for any single feature ti.  

Suppose },,,{ 21 rtttF =′  was the feature vector after redundancy removal. The steps used 

for performance based feature selection were:- 

Step 1: Conditional probability distributions. For each feature Fti ′∈ , calculate the 

conditional probability distributions )|( 1wtp i  and )|( 2wtp i for benign and malignant 

lesions in the sample sets; 
Step 2: Accumulated probabilities. Given a threshold T, find an appropriate value of k to 

compute the accumulated probabilities TpP k
j

b
j

i
b ≥∑= =1 and ∑= +=

N
kj

m
j

i
m pP 1 for each 

feature it . Where b
jp and m

jp  are the jth values of )|( 1wtp i and )|( 2wtp i . 

Step 3: Feature verification. For each feature Fti ′∈  ( pi ≤≤1 ), If i
bP  ≥ T and i

mP  ≥ T, 

the feature ti is verified with a classification error of less than 1-T, otherwise ti is discarded. 
Where T is a preset value that is chosen to be large enough to secure a sufficient classification 

accuracy. The final feature set is then },,,{ **
2

*
1

*
qtttF = , Fti ′∈* ( pqqi ≤≤≤ ,1 ).  

 
5. Experimental results 
Three experiments were performed:- Significant wavelet sub-band selection; Reconstruction of 
skin lesion contour from wavelet decompositions; And an evaluation of the proposed 
multi-scale descriptors of contour irregularity using a combined classifier based on a back 
projection neural network  

The test data comprised 134 images of skin lesions, with 72 melanomas and 62 moles. 
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They were downloaded from the Dermnet Skin Disease Image Atlas database at 
http://www.dermnet.com/. The images were randomly selected from the database, after viewing 
to remove some images that contained defocussed patches. Most images were of size 120x120 
pixels, and if not, they were converted to this size by resampling. Each was converted from 
color to gray level before processing. For the purpose of classification, a training set was formed 
by randomly selecting 31 moles and 36 melanomas from the sample set, with the remaining 
samples being used as test samples. The experiments were implemented using MATLAB 7.6. 
 
5.1 Significant level selection and reconstruction of the structural component of a contour  
Based on the procedure for significant sub-band selection described in Section 2.2.2, the 
significant levels were identified using the training set and the ‘db3’wavelet. The maximum 
level of decomposition was preset to 10. Then the HD between the averaged sub-band energies 
of the wavelet detail coefficients for each class was measured at each level. The distribution is 
shown in Fig.4 where it can be seen that levels 1 to 5 have a low flat distribution, levels 6 to 9 
have a monotonically increasing HD, and that the HD at level 10 has decreased again. 
The coefficients in levels D1 to D5 cover the higher frequencies where there are similar small 
textural variations for both moles and melanomas. The detail coefficients in D10 locate at the 
low frequencies where there is some basic structure, but for computational efficiency it was 
found to be better to use this when included in the approximation set A9. Therefore, as expected, 
with HDs up to 3.1, the middle-frequency bands represented by D6 to D9 have been shown to 
contain significant discrimination information, and these were selected as the significant levels. 

 
Fig.4 HD distribution of wavelet detail signals v. level 

 
It is simple to reconstruct the structural components of the contour after the significant levels in 
the wavelet decomposition stack have been determined. Fig.5 shows the extracted contours of a 
mole (a,b,c) and a melanoma (d,e,f), where Fig.5 a) and d) are the original contours. Fig.5 b) 

http://www.dermnet.com/
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and e) are the corresponding contours reconstructed from A9 and D1 to D5. The approximation 
coefficient, A9 has been included to give the basic structure of the contour onto which the more 
complex textural part has been superimposed. Fig.5 c) and f) are reconstructed from A9 and D6 
to D9 (s = 9, st = 6), that is the boundaries representing the structural portion of the original 
lesion. With the textural information removed, these have the property of the highest 
discrimination between different lesion classes. In the remainder of the paper these significant 
sub-bands will be referred to as the structural sub-bands. 

 
Fig.5 Contours after wavelet reconstruction. (a) Mole - original, (b) Mole - textural, (c) Mole – 
structural, (d) Melanoma – original, (e) Melanoma – textural, (f) Melanoma – structural. (Angle 
in degrees and Radius in pixels, with inner dotted circle at 100 and solid circle at 200).   

 
 

5.2 Results of feature selection 
As described in Section 4, the original feature vector consisted of 25 irregularity features that 
were formed from seven measures, six of which were applied at each of four significant 
sub-bands. At the first stage of feature selection, correlation analysis, nine of these features were 
removed to decrease redundancy. Table 1 shows the retained (tick) and removed (cross) features. 
The average energy, wavelet entropy and ultimate width were reliable features at most levels of 
the significant sub-bands. The other independent features retained included the variance at the 
two higher levels (8 and 9), the radial deviation at level 6, the contour roughness at level 7, and 
the irregularity measure at level 6.  
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Wavelet 
Level   

Averaged 
energy 

Wavelet 
entropy 

Ultimate 
width  

Variance Radial 
deviation 

Contour 
roughness 

Irregularity 
measure 

6 √ √ √ x √ x √ 
7 √ √ √ x x √  
8 √ √ x √ x x  
9 √ √ √ √ x x  

 
Table 1. Results of feature selection after correlation analysis   
 
After removal of the redundant features identified by the correlation analysis, selection was 
taken further for the remaining 16 features by a classification performance analysis of each 
feature. As discussed in Section 4.2, the cumulative probability distribution of each feature was 

calculated for both the benign, ∑=
=

k

i

b
ib pP

1
, and the melanomas, ∑=

+=

N

ki

m
im pP

1
, in the sample 

sets, where N was the largest observed value for that feature and k was a value satisfying 

TpP
k

i

b
ib ≥=∑

=1

. A threshold T = 0.75 was chosen experimentally that indicated correct 

classification for every feature when applied to the benign samples in the training set. Then the 
feature had to meet the requirement Pm > T to be retained within the overall feature vector. Fig.6 
presents the results of the final feature selection.  

   
Fig.6 Plot of accumulated probabilities:- (a) Pb ; (b) Pm, for each of the 16 features 

 
In Fig 6 it can be confirmed that all the features had a value of Pb larger than threshold T = 0.75 
and there were three features with Pm values that were less than T. They were the averaged 
energy at level 9, and variances at level 8 and 9. These were discarded, leaving 13 features for 
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further classification. It was noticed that some Pm values approached 1.0, signifying there was 
little overlap between the probability distributions of the benign and melanoma sets for these 
features. 
 
5.3 Combined classification results 
The results of selections and tests on the individual features have been presented in Sections 5.1 
and 5.2. In this section a Back Projection (BP) neural network is described that was used to 
perform classification of skin lesions based on a combination of the 13 selected features. The 
neural network had a structure of three layers:- input layer with 13 nodes; hidden layer with 3 
nodes; and output with one node [20]. The training parameters were a preset training error of 
0.01 and a maximum training number of 1000 iterations. As before, the main training set was 
formed by randomly selecting 31 moles and 36 melanomas from the sample set, with the 
remaining samples forming the testing set. A sub-set of the large training set was randomly 
formed to produce an alternative small training set of 9 moles and 9 melanomas. To study the 
discrimination ability of the proposed multi-scale based feature vector and to refine its operation, 
some classification experiments were performed to compare firstly single-scale with multi-scale 
features, and then multi-scale feature either before feature selection (25 features), or after (13 
features). This was performed with both the small and large sized training sets to see which gave 
the best results. 

 
5.3.1 Before feature selection 
Four experimental schemes were tried for training the BP network:- (1) Multi-scale, with all 25 

features and the small training set; (2) Single scale, with 7 features at level 9 and the small training 

set; (3) Multi-scale features and the large training set; and (4) Single scale features and the large 

training set. After each training and processing of the test data, their corresponding Receiver 

Operating Characteristic (ROC) plots were generated and are shown in Fig.7.  

The input layer of the neural network has m values, where m is the number of features calculated 

from each sample in the test data set. The output of the network produces a single real value between 

0 and 1 to indicate which class the sample belongs to for each of the S samples in the test data set. 

Overall the network produces an output vector with dimension S. Given a threshold value between 0 

and 1, the output vector is converted to a binary vector with elements 0 and 1 indicating the class 

estimations. Each sample in the set has previously been classified by a clinician and so the TP and 

FP values for this threshold can be calculated. This process is repeated for a range of thresholds 

between 0 and 1 and the resulting FP,TP pairs plotted as an ROC curve that spans from the bottom 

left (1,0) to the top right corner (0,1). 

The nearer the ROC trace is to the top left corner, the better the discrimination of a scheme 
[21,22,23]. Fig.7 shows that the worst plot, is the single scale with a small training set, and the 
best, that clearly locates towards the top left corner, was for the multi-scale features using the 
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small training set. This had a better classification power than the multi-scale scheme using the 
large training set. The multi-scale features were always found to perform better than the single 
scale features. In addition, the multi-scale features provided a way of improving the 
discrimination when only a small sized training set was available.  

 
Fig.7 ROC plots of the different training schemes before feature selection. 

 

 
5.3.2  After feature selection 
In this section the classification performances of the features selected by the different schemes 
have been compared. Feature selection has only been reported for the multi-scale case as the 
results of Section 5.3.1 have already confirmed multi-scale processing to be superior. The 
following experiments were designed to compare the multi-scale features before and after 
selection using both the large and small training sets. In order to reach a generality for the small 
training set, an averaged ROC plot has been generated from 15 randomly selected possible 
small training sets of 9 moles and 9 melanomas. In effect this was achieved by providing 15 
parallel neural networks, averaging their real valued outputs, converting this to binary at each 
threshold value from 0 to 1 and then plotting the TP, FP rates accumulated from all the test 
samples on the ROC. The number of combination of all possible sets was too big to test 

at ( )9
31

9
36 CC × . 

The ROC in Fig.8 gives a comparison of results when features are used at multiple-scales. 
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Results are with and without feature selection, and for large and small training image sets. From 
Fig.8 the best classification performance is for 13 selected multi-scale features with a small 
training set. It should be noted that this ROC plot has resulted from the averaged outputs of the 
15 separately trained neural network classifiers using the test set. The next best is for the 13 
selected multi-scale features with a large training set, followed by the 25 original multi-scale 
features using the large training set, and finally the 25 original multi-scale features using the 
small training set. 

 
Fig.8 ROC plots for feature selection using multi-scale features 

 
 
5.3.3 Design of parallel classifiers using small training sets 
The results in Fig 8 have indicated that the averaged output of 15 neural classifiers using small 
training sets can outperform a single classifier using a large training set. However a single 
classifier using a small training set may or may not outperform that with a large training set. The 
following experiments were performed to ascertain the optimum size of the training set.  
For the many neural networks produced by training using randomly chosen small data sets, an 
ROC plot from their averaged outputs was compiled after feeding the test data to each of them 
in turn. To find the optimum size of the training set, sizes of small training sets of melanomas 
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plus moles were chosen at 3+3, 6+6, 9+9, 16+16, 23+23, 30+30, and tested together with the 
large training set of 36+36. In the experiments 15 training sets were randomly selected for each 
size from the full set of training data. Fig.9 presents the performance using the area under the 
ROC plot against training set size for the pre- and post-selection schemes. The trace marked by 
diamonds is for a ROC plot from the averaged outputs of the 15 classifiers before feature 
selection whereas that marked by circles is post feature selection.  
As indicated in Fig.9, the scheme using the averaged outputs of the 15 classifiers post-feature 
selection performs best. It was noticed from the experiments that the averaged output value of all 

networks, using a combination model of many parallel network classifiers, may overcome the 

weakness of any single classifiers in the case of small training sets. The peak area of the ROC for 
the averaged outputs of the neural network classifiers, post-feature selection was for a training 
set of 9 melanomas plus 9 moles, indicating this to be the optimum size. 

 

Fig.9 Performance against size of training set 
 

    
Table 2 lists the ROC performances for each of the two single scale and the four multi-scale 
schemes tested. The performance is indicated by the measures of the sensitivity, specialty and 
area covered by each ROC plot, where the paired values of sensitivity and specialty are the True 
Positive Rate (TPR) and False Positive Rate (FPR) coordinates of the point on each ROC plot 
closest to the top left corner [21,22,23]. With the lowest values, the single scale features with the 
small training set have the worst results, and the multi-scale features after feature selection and 
using the small training set the best.  
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Scheme Specialty Sensitivity Area of ROC 
Single scale features with small sample set 0.64566 0.69444 0.69534 
Single scale features with large sample set 0.87903 0.55556 0.75179 
Original multi-scale features with small sample set 0.83871 0.69444 0.81541 
Original multi-scale features with large sample set 0.80645 0.69444 0.81989 
Selected multi-scale features with large sample set 0.74194 0.83333 0.83333 
Selected multi-scale features with small sample set 0.90323 0.83333 0.89068 

 
Table 2. Comparison of classification performances 

 

 
5.3.4 Discussion 
In general, Fig.8 and Table 2 indicate that multi-scale features have better discrimination than 
single scale features, and that, after feature selection, multi-scale schemes have better 
performances than schemes without selection. The best ROC plot was for multi-scale selected 
features using the small training set. It outperformed the corresponding scheme using the large 
training set. There are two reasons for this in that each of the 13 selected multi-scale features 
had a good individual performance when used for skin contour irregularity measurement and so 
a small training set was probably sufficient. Secondly the performance of a neural network with 
a BP training algorithm can be degraded by using a large training set that may cause a solution 
to become stuck in a local minimum [24].  

 

6 Conclusions 
A method that examines the structural content of the contour of skin lesion images has been 
proposed that determines if the lesion is a melanoma or a benign mole. The contour contained 
both structural and textural information, but it was demonstrated that the structural information 
was most important in the determination. 
The 1D contour signal was filtered into sub-bands using the discrete wavelet transform (DWT) 
down to level 9. The structural information was found to lie mostly at the lower frequencies, in 
the detail levels from 6 to 9 plus the approximation at level 9. These were denoted as significant 
levels, and the information within them was shown to provide the best classification separation 
between sets of melanomas and moles. The DWT was found to enable efficient processing of 
the signals. 
A number of statistical and geometric feature descriptors of contour irregularity were developed. 
These were computed in each of the significant sub-bands. To enable an efficient system, these 
features were selected using a two stage process. Firstly correlation analysis was used to remove 
redundant features, and secondly the performance of each feature in separating sets of 
melanomas and moles was measured and compared. 
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A classifier using a combination of features was designed using a back-projection neural 
network. The system was optimized to obtain the maximum true positive rate and minimum 
false positive rate for separation. Issues of training were explored, and a small, randomly chosen, 
sub-set of 9 melanoma and 9 mole images found to provide the best results. Of the seven 
available features, six were applied in four significant sub-bands and one in a single sub-band, 
forming twenty five measurements in total. As described above these had been ranked in order 
of effectiveness, and it was found the best combined classifier resulted when just the best 
thirteen measures were used.  
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