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W(h)ither Calculus?
David Tall

In the dying years of the twentieth century, calculus stands atdlsroads, so we are
told. But is itabout to stride purposefully imew directions, oguietly fade away and
die? After threehundred years athe majorfocus of mathematics, the arrival of the
computer threatens to thrust the calculus from centre stagdores pressurising this
change are potent ancbmplex. They come with bewilderingspeed, causing a
heightened sense ekcitementfor a few participants at théorefront and a mixture of
anxiety or indifferencdor manywho canonly stand and watffor the outcome.There
may beexperts whaclaim toknow what thisoutcome will be, but the truth ithat a
huge paradigmatic change is in progress and only a fool, or a prophet, (or both) would
claim to see far into the future. Burkhatgtinpoints the dilemma:

‘One otherunusual factor makes curriculudevelopment involving

advanced technology more difficult thasual. It isthe mismatch of

time-scales between technical chan@me year) and curriculum
change (ten years).’

The factors influencing change ithe calculus are mostly of recewmintage. For

example,the arrival of thehigh resolution graphics othe Apple computer in the
U.S.A. was followed bythe development of a number @fackages, such as
ARBPLOT?! for the study of calculus topics.

Symbolic manipulators, requiring much more memifarythe programs,arrived quite
separately on mainframes which oftiacked graphical capabilities. The fateful year
1984 first saw dull page advertisemetior the computer algebrsystemMACSYMA
(in theAmerican Mathematical Monthlyhat

can simplify, factor or expandexpressions, solveequations
analytically or nurerically, differentiate, compute definite and
indefinite integrals, expand functions ihaylor or Laurentseries,
compute Laplace transforms ...’

In effect, such a systeman carry outll theroutine manipulations of the calculus on
which many students rely to accumulate most of their marks in calculus examinations.

In America, where 400,000 students study calculumlige oruniversity everyyear,

there is a growing realisation that the needs of many are chaRginthem calculus is
a peculiar mixture of the algorithms of differentiation and integrattamd in the
British sixth-form, brewed up with ane theoreticabspects oimathematicabnalysis
taught in British universities. Writing in 1984, E.E. Moise commented:
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‘For the overwhelming majority of students, the calculus is not a body
of knowledge, but a repertoire of imitative behaviour patterns’.

A number ofAmericanprofessorg argued for asignificant decrease in thigaditional
diet and a corresponding increase in what tleey ‘discrete mathematics’ suitable for
applications in computer science.

In Britain the coldwind of change is only just beginning bdow its icy blast on the
sixth-form pure mathematics syllabus. But the sky is rettiémorning... Schools are
beginning to realise the fulinpact of thechanges at 16&nd their resultant effects on
the teaching of calculus at A-level. Asis happens two opposing fact@se coming
into play that are peculiar to thgritish system. Orthe onehand,the broader span of
the new G.C.S.E. contains lesstloé material that isurrently considered as essential
prerequisites forthe calculus(for example there will bdess stress oralgebraic
manipulation). This will rake it difficult to reach the same level of performance at A-
level, producing a pressure foeduction in contentaccompanied byome desire to
increase investigational elemetitsoughthe introduction ottoursework. Orhe other
hand, the agreed ‘common coreshared byA-level ExaminationBoards will, in
practice, militate against major changes.

But change willcome,because theressure othe computer in everyalk of life will

be so great that it withot be deniedMany of thebenefits of the computer are very
positive, if it is used in aappropriatevay. Inthis context, ‘appropriate’ is a simple
term to define: we must retain control over the thitngé we hurans do well angbass
to the computer those things that it does better.

Suitably programmedthe computer isvery good attotally reliable numerical and
symbolic calculations, together with providing almost instant mowgngphical
displays. It is certainly muchetter at thesthings than waneremortals.The obvious
move to make is to develop a curriculumhere these computdacilities areused to
their fullestadvantage, without losing sight tfe human need to have a curriculum
which gives insight into the processes being used.

In each of the three major areasmerical graphical and symboli¢ there is a broad
spectrum ofactivity possible, fromthe use of prepared software tondividual
programming by thetudents. Adime passesthis spectrum willbecomeless clearly
defined. Softwarewill become moreopen-ended,allowing the user to develop
individual modifications anédditions,meanwhile languages will become more subtle
and provide newacilities that arecloser to thepowerful software beingleveloped
today. Atthe same time the distinction between the awical, the graphical and the



symbolic will also become more diffuse as multi-representational softwdeyédoped
to link the three areas together.

Numerical Methods

Numerical methods have been with us longer than dynamic graphics or symbolic
manipulation, but their full impadiasyet to be realized in the A-levelrriculum. For

many years,they have been aoption, usually athe end of thecourse, tosolve
problems numerically that are either difficult,iorpossible, to solve symbolically. For
instance,there may be no formul&or the solution of acomplicated polynomial
equation, such as

X9-pxs-+2 = 0, (1)
but it is certainly amenable to a numerical solution.

The Newton-Raphson method for the solution of an equatiprOftarts with ayuess
for the root, say,, then repeatedly replacesby

Xn+1 = Xn_f(xn)/fl(xn)-

If the graph is reasonably straight near a root>xand close tat, the sequencg;, X,
... quickly homes in on it.

The Newton-Raphsomnethod in this form requireke knowledge ofthe calculus (to
calculate x)) before itcan beused.But its purpose is purely testimate a numerical
approximation to aoot. An obviousapproach is to perforrthe calculationusing a
numerical approximation to the gradient instead of deeivative. The numerical
formula:

f(x+h)-f(x)
X) = ——p——

will give a close approximation to the gradiéot anappropriate small value d&f (say
h=0.0001) and then the iterative formula:

Xne1 = X—f(X2)/9(Xn)
can be used to home in on a solution.

Before thecomputer, thiscalculation might be quitéorbidding to carryout. Now a
language like BBC BASIC will do all the hard work using formulae such as:



1000 DEF FNf(x)=x"9-PI*x"5-SQR(2)
2000 DEF FNg(x)=(FNf(x+h)-FNf(x))/h
3000 DEF FNnext(x)=x-FNf(x)/FNg(x)
With h defined as a small number, for any value tife command
PRINT FNnext(x)
will print the next approximation in the sequence.

New featuresalready available on more advancesmputers,will soon nake this
power even more user-friendly. Figure 1 shows a screen dispthg ebove program
as | wrote it on aMacintosh computeusing "True BASIC" (a new version of the
language fromthe originalinventors of BASIC,Kemeny andKurz®). There are
‘windows’ on the screen that can be moved around at will. In one the progrdredras
typed, beginning withthe function definitiongust mentioned, prompting for anput
of the starting value of, defining a small value of h, then enteringP® LOOP’ to let
s=nextf), printing the value of s, checking to seesifx, and if it does, exiting the
loop, otherwiseetting x=s and going roundhe loop again. Wen x doesequal s,
control passes tdhe statement after tHeop, printing thesolution, and ending the
program.

" & File Edit Search Format Run Fonts

Newton-Raphson
DEF f(x)=x"9-pi*x"5-sqr(2)
DEF gi{x)=(f{x+h)-f(x))/h
DEF next (x)=x-f{x)/g{x)

Output

| 1.80024
| 1.63381

50349
. 41491
37205
3626
36219
36219
36219
| 1.36219
isolution is 1.36219

INPUT prompt "x=":x
LET h=0.00001
0o
LET s=next(x)
PRINT s
IF x=s then EXIT DO
LET x=s
LoopP
PRINT "solution is ";x
END

Command

?

Figure 1 : The Newton-Raphson algorithm in TRUE BASIC

As well as a usual keyboard, the Macintosh comphuasra ‘mouse’ (a box with lzall

inside to be moved around on the desk) controlling the position of an onscreen pointer.
To run the program, the pointer was moved to the "go lighthertraffic light symbol

at theside andthe mouse control button clickedlhe ‘Output’ window shows the
output of theprogram, requestinthe value ofx before printing the iterations in the
loop until the value ox is constant.



This power withnumerical calculations wilsurely have gprofound effect on the
curriculum. Numerical solutions of equations could be studied meaningkfibyethe
calculus, not as an optional extra to cope with awkward cases afterwardmaihie
donenow, with pupils using personal calculators, whilst a siraglmputer in the room
could beused for nore insightful clasgliscussion and investigations by pupils on a
rota system. As thprice of technology fé¢, massivecomputerpowerwill be placed

in the hands of individual pupils, so it is wise feachers to experience thdaeilities

in preparation for future trends.

Spread Sheets

Anotherway of usingthe power ofthe computer ighrough comrarcially available
spreadsheetd.hese can benost powerful ifthe pupil is incontrol, butthey areless
easy to understand when used byeacherfor class demonstratioriThe onscreen
layout is very condensed am@ch entryposition onthe screerhas three different
meanings: each store can havateel attached to it to nanig it can have a numerical
value displayed onscreen andt@n have an optional formula to bsed incalculating
its numerical value.

To demonstrate these three different aspects | designed vibanh Ithe Algebraic
Calculatof9, which has three separate columns, the left for the label, the middle for the
numerical value and the rigfdr the optionalformula. Figure 2showsthe algebraic
calculator beingused tocalculate aroot of the equationsolved earlier using True
BASIC. The entries are typed iasing the cursor keys tomove round from one
position to another. The first rosontains the value of the functidn calculatedusing

the formulax®-px®-sqr2, the second row contains the value of the derivdtiveng the
formula 9¢-5px4, and thethird row calculates the value of usingthe formulax—f/d.

Each time theSPACEBAR on thekeyboard is touchedhe whole display is re-
calculated, so that successive presses iterate the Newton-Raphson formula.



Algebraic Calculator

var value ormula

f | -0.0808008086 | x°-nx>-s5qr2
d | 32.61122826 | 9x®-5mx*

x |+1.362198986 | x-f/d

tcalculate
Hides|fleveal

les:radians ommands [lew [Huit
H wi

Figure 3 : The Algebraic Calculator

There are some that think that spread-sheets will prgoowerful new ways of doing
mathematics. My own observation is thawiirks well for certaintypes of calculation,
but it may require considerabteentalgymnastics tavork out precisely where to put
the variables in the display (e.g. the variabie figure 3 is input irthe bottomrow, to
be re-calculated after the variablesand d). Programming languages with subtle
looping controls such dsepeat thiscalculation until the given condition msatisfied”
are far more flexible than currespreadsheets, thougliture developments may
modify this observation. Once again it is a case of ‘letting the computinode things
that it does well’, selecting the appropriate software for the given problem.

Dynamic Graphical Displays

Numbers bythemselves are rarely as informative as graphical representation of the
data. For instance, findingll solutions ofequation(1) would be somuch more
straightforward if a graph of the function were drawn.

Early calculus software concentrated on trying to represent standard theory visually on
the computer. For exampléARBPLOT?! begins itswork on differentiation with a
program on ‘limits’ with a graphicatersion of ‘if | specifyepsilon, canyou specify

delta, so that, whexdiffers froma by lessthan deltathe value of ) differs from a
specific numberA (the limit) by lessthan epsilon?’Other software carried out the
mathematics and showed the results as pictures.



My own work, described in earlier articles in tisries, hagoncentrated on seeking a

new approach to the subject that is more meaningful for the learner. After a great deal of
investigative researdh, it proved possible to develop what | term a cognitive approach

to thesubject. First onenay see, by using @rogram such aMagnify (in Graphic
Calculus 12), that small portions of many graphs under high magnification look almost
straight. | see this ‘local straightness’'tas fundamental idea in tlealculus. Itcan be

used graphically before formal calculus to determine the gradient of a greqatal All

one does is highlynagnify a bit of thegraph andthe (approximate) gradient of the
graph is the gradient of this straight line.

This gives a new approach which does not relyhen‘intuitive notion’ of a tangent as
a "straightline which touches a curve at one poimly"”. We could define gpractical
tangent at a point=a on a curvey=f(x) to be a straighline through two veryclose
points @,f(a)), (a+h,f(a+h)) on thecurve. This is amperativedefinition, inthe sense
that it can beused tocalculategood approximations tthe tangentwhich are quite
adequate for pictures, whereas the ‘intuitive definition’ is of limited value in drawing.

A program (such as GRADIENT in Graphic Calculus 1) which slidpeaatical tangent
along the curve and simultaneously plots the value of the gradienteag graphthen
displays the dynamic notion of the gradient graph. Again, theseddedse introduced
before the symbolic differentiation if one so desires.

Likewise, dynamically movingorograms such a8REA and SIMPSON (in Graphic
Calculusll) can beused tovisualize how the areaunder a graphmay be calculated
dynamically as a growing area function, quite separate fhensymbolic manipulation
involved in integration.

The combination of numerical solutions of equations, numerical tangents and gradients,
and numerical calculations of area could easily become part of a numerical pre-calculus
course, parts of whickould be studiedefore, orparallel with, the corresponding
calculus notions. The numerical methods option in the Oxfaiel/el mathematics has

been modified withsuch anapproach in mind. When the symbolmethods of
differentiation and integration aiatroduced,they can then be linked to a cognitive
understanding which of the underlying dynamic processes.

Symbolic Manipulation

Recent developed software to carry out the symbolic manipulation of differentiation and
integration is of a different order of complexity frahe kind of software discussed so
far. Numerical and graphical routines can be programmed in languages such as BASIC
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which fit into the small memories of computetsch aghe BBC. Manipulators require
languages that can cope recursively with strings of symbols and tend to ngezhfer
memory space, although rudimentary manipulatars be writterfor small computers
using languages like Lisp, Logo or Prolog.

The rules for differentiation are of two kinds:
» derivatives of specific functions such as constants, sin, cos, etc,
» generalrules for composites of functions ipairs, such as the

derivative of thesum f+g, orthe compositefog, in terms of the
derivatives of f and g.

These rules are quifermal, without anyreference to limitingprocessesThey simply
operate on strings of symbols that, for the moment, can be divestegiraheaning as
functions.

To write a symbolic differentiation procedure in Logo onay use what Ishall term
‘symbolic functions’, which are

(a) either constants or strings of letters and digits such a& 3ijn, cos,
In, f, g, ul, u2, etc

(b) or triples in the form [u o v] where u, are again symbolifunctions
and o is one of the symbols +, -, *, /, 0, .

Thus the following are symbolic functions:
sin, cos, [sin / cos], [f/ [In + g1]], etc.

In this notation the derivative of cos may be written as
[0 - sin]

and the derivative of tan as
[1/][cos ™ 2]].

The formal differentiation procedure D is then defined to operate on a ‘symbolic
function’ f. If f is a word, D outputs the derivative if it is known, or the symbol f'. If f
is not a word, it must betaple so the generalles of differentiatiormay beused to
reduce the problem recursively.

For instance, D [sin + cos] would be broken down to [D sin + D easigh is [cos +
[0 — sin]].



The manner irwhich this is done requires ldtle experience withithe nitty gritty of
Logo and the precise details are left as an interesting challenge for Logo programmers.

Such a procedure D, thoudtandling differentiation quitaicely, soon gives results
that begin to look quite complicated. For example:

SHOW D [x * 7]
[7* [x ™ 6]]
SHOW D D [f + g]
"+ 9]
SHOW D [sin / cos]
[[[cos * cos] - [sin * [0 - sin]]] / [cos ~ 2]].

This leads on tadhe human need to simplifgxpressions, possiblperforming a
translation from standard mathematical notation into ‘symiohctions’, applying the
procedure D, then translating the result back into standard mathematical notation.

It is not a simple task, especially as standard’ notation is not quite as well regulated as it
might be. It alscopens upthe thorny question as to what constitutes ‘appropriate
mathematical notation’. Thenswermight be differenfor humans and computers, for
humans have a limited ability to grasp long strings of symbols which compaieaiie

with ease. Conversely, humacan interpreshorthand symbolisrthat they mayfind

difficult to translate into computer terms. It may be easier to program a coropirtgr

a formula such as

[lfa~*[x"2]]+[b*x]] +c]
whilst preferring

ax2+bx+c
for ordinary discourse.

Despite these notationdifficulties, it is arevelationfor pupils with a knowledge of
Logo to explorethe differentiationprocedure, if only to sethat it is a well-defined
algorithm.



Symbol Manipulators

Symbol manipulators are now becoming more widely available. The first such software
was written on mainframe computers because it requaist memory andspeed.
Subsequent generations, suclmagIATH? works on more generallgvailablemicros
including the IBM. Its successDreriveis more a general symbolic facility withbetter

user interface, whilst nowhere are several fully fledged symbolic manipulat@ingch

work on faster IBM compatibles and Macintosh computernth larger memory
capacities, includinyl/APLE andMathematica

All manipulators can carry out formal differentiatiasing fairly normalnotation, most

being able to cope wittmplicit multiplication, though requiring idiosyncratic notation,
such asthe usual computerarrow ~ for powers.But someare less good with
integration, as they essentially attempt to try outvilm@ous routines availablsuch as
integration by substitution or by parts, and may not be well enough programmed to use
subtle substitutions. Inextreme cases it is possible for suchanipulators to
differentiate a formula K) to get the derivative df but be unable to recognize the
formula dk) as one that can be integrated.

This state of affairdhas been altered by an algorithm &fisch (1969) which can
systematically decide if a functiohas an ‘elementary integral’. (Technically an
elementary function is one built dppm constants anthe integration variableising

arithmetic operations, exponentialdpgarithms and thesolutions of algebraic

equations.) Further details and references are described by Davenport

Some symbolic manipulators now incorporate Rigch algorithm taguaranteefinding
an elementary integral function when one exists.

It is still early days in the use of these manipulators in education. Several of my friends
who are applied research mathematiciaits examples where they have besnie to
usethe symbolmanipulator to carry out a gredéal of routinework in a short time.
Onewrote privately to me explainingow he usedane tocalculate a large nuver of
partial derivatives for a problem in general relativity:

‘It took about 1/2 an hour to write out the functions and about 1 hr 30

to 1 hr 45 minutes to perforthe differentiations and simplifications

on the computer. | estimatieat working about 3hrs a dayjncluding
rechecking the calculations would have taken about a month.’

At an undergraduatéevel Lane et al® quote a number of examples of student
investigations usingthe symbolic manipulatoiMAPLE (produced at \&terloo
University, Ontario) including an investigation into the function
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(x"2-4)/(x2-1)

by getting thesystem to findhe zeros ofthe numerator andenominator, taalculate
the derivative tdind maximaand minima, and son. In Britain we would expect A-
level students to crack this problem lgnd.But the inplication here is that once one
understands the ideas behind simgieblems, itmay bepossible to us¢he symbolic
manipulator to solve more complicated examples.

Experiencesusing symbolic manipulators with studentsave beenmixed. Lane's
experience is a positive one: he claithat symbolic manipulators can hesed with
profit for exploration of ideas and problem-solving. Elsewhere there is both enthusiasm
and a growing awareness of possipitfalls in using symbolic manipulators in the
mathematicalcurriculum. For instance, a nimer of universities in Canada have
students working wittsymbolic systems to solve problems whdiee fundamental
ideasshould be straightforward, but involving cputation of derivatives or integrals
which are moredifficult. The idea is teset up an effectivgartnership between the
student doingthe mathematicalthinking and the computedoing the routine
calculations. Though there was a measursuatesssome students fourttiemselves
with very little they could accomplish, ondke routineparts ofthe mathematics were
taken away from them.

Those whoget themost out of symbolic manipulatoese oftenexperts with a good
understanding othe calculus before thestart. Toenablestudents to useymbolic
manipulators effectively seems to require an imaginative programme of tasks based on a
prior understanding of the fundamental processes.

Multiple Representations

The current buzz-words in American mathematical education are ‘multiple-
representatiosystems’.The idea here is tproduce softwarg¢hat canfurnish several
differentways of viewing aproblem simultaneouslyenabling thestudent to see the
links betweenthem. Graphic Calculusis a multiple representatiosystem, inthat it
includes simultaneous numerical and graphical elements, but it currently lacks symbolic
differentation. Some new programsitten on computers with larger memories now
include simultaneous numerical, graphical and symbolic faciliies.instance,John
Kemeny'sCalculus? for the Macintosh ot.B.M. computer includes a differentiation
algorithm andprovides facilities to draw graphs andheir first and subsequent
derivatives, together witthe display of tables ohumericalvalues. Figure 3hows a
sequence of operations in whitte formulasin(x) is entered, its graph plotted, the
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derivative formulacalculated(but not displayed) anthe derivativegraph plotted. The
derivative may be revealed by selecting the fornmyg&on, but it is also possible to
conjecture what it may be and superimpose the graph of the conjecture before revealing
the actualderivative. Thusthe programmay beused forinvestigating derivatives,
though it lacks the facilities of Graphic Calculus to demonstrate the dygaovich of

the global gradient function.

r hl
Calculus

Enter formula.
fix) = 7 sin{x)

Option 7 plot
From, to? -2%pi,2%pi,-2%pi,2%pi

Option 7 deriv _ 7
Option 7 plot ’%%

Option 7

(new ] (deriv] (formula] (plot ] [table ]

(o1d 1] [clear ] [exit]

Figure 3 : The graph of the (symbolic) derivative of sin(x)

Deep Structure and Surface Structure

Looking at the calculus from numerical, graphical and symbolic viewpoints exposes the
major difference between the deep structure of limiting processes and notraies aff
change and cumulativgrowth onthe onehand,and thesurface structure of symbolic
manipulation to obtain formal derivatives and integrals onatier. Inthe current
calculus curriculum mosstudentsmainly learn thesurface structure of symbolic
differentiation.

It may not be absolutelglear where the calculus will go in the neXew years,
particularly whatew topics incomputer studiesmay need to be introduced fieplace
current content. But it is hard teelieve that the fundamental ideas of change and
growth represented most clearly by graphical techniques will be supplewéedif the

rise of numericalmethods andhe streamlining of symbolic manipulatachanges the
balance of the curriculum.

Symbolic manipulatorare, inoneway, aredherring. They are certainly valuable in
complicatedcases where computation by hand becowmgsressive,but in thereal
world there are many problems in integration and differential equatibice have no
elementary solutions for which symbolic manipulation is useless.
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Even though it may not be clear whehe current change in paradigm wéld, it is a
sensible course fdeachers and pupils ®mbrace computanethods toget to know
what they can do and what their limitaticm®. Inthe presentA-level systemthe deep
structure of the calculus is well served by an exploratiomnefgraphical approach and
a more imaginative use of numerical techniques.
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