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W(h)ither Calculus?

David Tall

In the dying years of the twentieth century, calculus stands at the crossroads, so we are

told. But is it about to stride purposefully in new directions, or quietly fade away and

die? After three hundred years as the major focus of mathematics, the arrival of the

computer threatens to thrust the calculus from centre stage. The forces pressurising this

change are potent and complex. They come with bewildering speed, causing a

heightened sense of excitement for a few participants at the forefront and a mixture of

anxiety or indifference for many who can only stand and wait for the outcome. There

may be experts who claim to know what this outcome will be, but the truth is that a

huge paradigmatic change is in progress and only a fool, or a prophet, (or both) would

claim to see far into the future. Burkhardt 2 pinpoints the dilemma:

‘One other unusual factor makes curriculum development involving
advanced technology more difficult than usual. It is the mismatch of
time-scales between technical change (one year) and curriculum
change (ten years).’

The factors influencing change in the calculus are mostly of recent vintage. For

example, the arrival of the high resolution graphics on the Apple computer in the

U.S.A. was followed by the development of a number of packages, such as

ARBPLOT 1 for the study of calculus topics.

Symbolic manipulators, requiring much more memory for the programs, arrived quite

separately on mainframes which often lacked graphical capabilities. The fateful year

1984 first saw a full page advertisement for the computer algebra system MACSYMA

(in the American Mathematical Monthly) that

‘... can simplify, factor or expand expressions, solve equations
analytically or numerically, differentiate, compute definite and
indefinite integrals, expand functions in Taylor or Laurent series,
compute Laplace transforms ...’

In effect, such a system can carry out all the routine manipulations of the calculus on

which many students rely to accumulate most of their marks in calculus examinations.

In America, where 400,000 students study calculus at college or university every year,

there is a growing realisation that the needs of many are changing. For them calculus is

a peculiar mixture of the algorithms of differentiation and integration found in the

British sixth-form, brewed up with more theoretical aspects of mathematical analysis

taught in British universities. Writing in 1984, E.E. Moise commented:
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‘For the overwhelming majority of students, the calculus is not a body
of knowledge, but a repertoire of imitative behaviour patterns’.

A number of American professors 7 argued for a significant decrease in this traditional

diet and a corresponding increase in what they term ‘discrete mathematics’ suitable for

applications in computer science.

In Britain the cold wind of change is only just beginning to blow its icy blast on the

sixth-form pure mathematics syllabus. But the sky is red in the morning... Schools are

beginning to realise the full impact of the changes at 16+ and their resultant effects on

the teaching of calculus at A-level. As this happens two opposing factors are coming

into play that are peculiar to the British system. On the one hand, the broader span of

the new G.C.S.E. contains less of the material that is currently considered as essential

prerequisites for the calculus (for example there will be less stress on algebraic

manipulation). This will make it difficult to reach the same level of performance at A-

level, producing a pressure for reduction in content, accompanied by some desire to

increase investigational elements through the introduction of coursework. On the other

hand, the agreed ‘common core’ shared by A-level Examination Boards will, in

practice, militate against major changes.

But change will come, because the pressure of the computer in every walk of life will

be so great that it will not be denied. Many of the benefits of the computer are very

positive, if it is used in an appropriate way. In this context, ‘appropriate’ is a simple

term to define: we must retain control over the things that we humans do well and pass

to the computer those things that it does better.

Suitably programmed, the computer is very good at totally reliable numerical and

symbolic calculations, together with providing almost instant moving graphical

displays. It is certainly much better at these things than we mere mortals. The obvious

move to make is to develop a curriculum where these computer facilities are used to

their fullest advantage, without losing sight of the human need to have a curriculum

which gives insight into the processes being used.

In each of the three major areas: numerical, graphical and symbolic, there is a broad

spectrum of activity possible, from the use of prepared software to individual

programming by the students. As time passes, this spectrum will become less clearly

defined. Software will become more open-ended, allowing the user to develop

individual modifications and additions, meanwhile languages will become more subtle

and provide new facilities that are closer to the powerful software being developed

today. At the same time the distinction between the numerical, the graphical and the
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symbolic will also become more diffuse as multi-representational software is developed

to link the three areas together.

Numerical Methods

Numerical methods have been with us longer than dynamic graphics or symbolic

manipulation, but their full impact has yet to be realized in the A-level curriculum. For

many years, they have been an option, usually at the end of the course, to solve

problems numerically that are either difficult, or impossible, to solve symbolically. For

instance, there may be no formula for the solution of a complicated polynomial

equation, such as

x9-px5-÷2 = 0,  (1)

but it is certainly amenable to a numerical solution.

The Newton-Raphson method for the solution of an equation f(x)=0 starts with a guess

for the root, say x1, then repeatedly replaces xn by

xn+1 = xn–f(xn)/f '(xn).

If the graph is reasonably straight near a root and x1 is close to it, the sequence x1, x2,

... quickly homes in on it.

The Newton-Raphson method in this form requires the knowledge of the calculus (to

calculate f'(x)) before it can be used. But its purpose is purely to estimate a numerical

approximation to a root. An obvious approach is to perform the calculation using a

numerical approximation to the gradient instead of the derivative. The numerical

formula:

g(x) = 
f(x+h)-f(x)

h  

will give a close approximation to the gradient for an appropriate small value of h (say

h=0.0001) and then the iterative formula:

xn+1 = xn–f(xn)/g(xn)

can be used to home in on a solution.

Before the computer, this calculation might be quite forbidding to carry out. Now a

language like BBC BASIC will do all the hard work using formulae such as:
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 1000 DEF FNf(x)=x^9-PI*x^5-SQR(2)

 2000 DEF FNg(x)=(FNf(x+h)-FNf(x))/h

 3000 DEF FNnext(x)=x-FNf(x)/FNg(x)

With h defined as a small number, for any value of x the command

PRINT FNnext(x)

will print the next approximation in the sequence.

New features, already available on more advanced computers, will soon make this

power even more user-friendly. Figure 1 shows a screen display of the above program

as I wrote it on a Macintosh computer using "True BASIC" (a new version of the

language from the original inventors of BASIC, Kemeny and Kurz 5). There are

‘windows’ on the screen that can be moved around at will. In one the program has been

typed, beginning with the function definitions just mentioned, prompting for an input

of the starting value of x, defining a small value of h, then entering a ‘DO LOOP’ to let

s=next(x), printing the value of s, checking to see if s=x, and if it does, exiting the

loop, otherwise letting x=s and going round the loop again. When x does equal s,

control passes to the statement after the loop, printing the solution, and ending the

program.

Figure 1 : The Newton-Raphson algorithm in TRUE BASIC

As well as a usual keyboard, the Macintosh computer has a ‘mouse’ (a box with a ball

inside to be moved around on the desk) controlling the position of an onscreen pointer.

To run the program, the pointer was moved to the "go light" on the traffic light symbol

at the side and the mouse control button clicked. The ‘Output’ window shows the

output of the program, requesting the value of x before printing the iterations in the

loop until the value of x is constant.
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This power with numerical calculations will surely have a profound effect on the

curriculum. Numerical solutions of equations could be studied meaningfully before the

calculus, not as an optional extra to cope with awkward cases afterwards. This may be

done now, with pupils using personal calculators, whilst a single computer in the room

could be used for more insightful class discussion and investigations by pupils on a

rota system. As the price of technology falls,  massive computer power will be placed

in the hands of individual pupils, so it is wise for teachers to experience these facilities

in preparation for future trends.

Spread Sheets

Another way of using the power of the computer is through commercially available

spreadsheets. These can be most powerful if the pupil is in control, but they are less

easy to understand when used by a teacher for class demonstration. The onscreen

layout is very condensed and each entry position on the screen has three different

meanings: each store can have a label attached to it to name it, it can have a numerical

value displayed onscreen and it can have an optional formula to be used in calculating

its numerical value.

To demonstrate these three different aspects I designed what I term the Algebraic

Calculator 10, which has three separate columns, the left for the label, the middle for the

numerical value and the right for the optional formula. Figure 2 shows the algebraic

calculator being used to calculate a root of the equation solved earlier using True

BASIC. The entries are typed in using the cursor keys to move round from one

position to another. The first row contains the value of the function f, calculated using

the formula x9-px5-sqr2, the second row contains the value of the derivative d using the

formula 9x8-5px4, and the third row calculates the value of x using the formula x–f/d.

Each time the SPACE BAR on the keyboard is touched, the whole display is re-

calculated, so that successive presses iterate the Newton-Raphson formula.
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Figure 3 : The Algebraic Calculator

There are some that think that spread-sheets will produce powerful new ways of doing

mathematics. My own observation is that it works well for certain types of calculation,

but it may require considerable mental gymnastics to work out precisely where to put

the variables in the display (e.g. the variable x in figure 3 is input in the bottom row, to

be re-calculated after the variables f and d). Programming languages with subtle

looping controls such as "repeat this calculation until the given condition is satisfied"

are far more flexible than current spreadsheets, though future developments may

modify this observation. Once again it is a case of ‘letting the computer do those things

that it does well’, selecting the appropriate software for the given problem.

Dynamic Graphical Displays

Numbers by themselves are rarely as informative as graphical representation of the

data. For instance, finding all solutions of equation (1) would be so much more

straightforward if a graph of the function were drawn.

Early calculus software concentrated on trying to represent standard theory visually on

the computer. For example, ARBPLOT 1 begins its work on differentiation with a

program on ‘limits’ with a graphical version of ‘if I specify epsilon, can you specify

delta, so that, when x differs from a by less than delta, the value of f(x) differs from a

specific number A (the limit) by less than epsilon?’ Other software carried out the

mathematics and showed the results as pictures.
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My own work, described in earlier articles in this series, has concentrated on seeking a

new approach to the subject that is more meaningful for the learner. After a great deal of

investigative research 11, it proved possible to develop what I term a cognitive approach

to the subject. First one may see, by using a program such as Magnify (in Graphic

Calculus I 12), that small portions of many graphs under high magnification look almost

straight. I see this ‘local straightness’ as the fundamental idea in the calculus. It can be

used graphically before formal calculus to determine the gradient of a curved graph. All

one does is highly magnify a bit of the graph and the (approximate) gradient of the

graph is the gradient of this straight line.

This gives a new approach which does not rely on the ‘intuitive notion’ of a tangent as

a "straight line which touches a curve at one point only". We could define a practical

tangent at a point x=a on a curve y=f(x) to be a straight line through two very close

points (a,f(a)), (a+h,f(a+h)) on the curve. This is an operative definition, in the sense

that it can be used to calculate good approximations to the tangent which are quite

adequate for pictures, whereas the ‘intuitive definition’ is of limited value in drawing.

A program (such as GRADIENT in Graphic Calculus I) which slides a practical tangent

along the curve and simultaneously plots the value of the gradient as a new graph then

displays the dynamic notion of the gradient graph. Again, these ideas can be introduced

before the symbolic differentiation if one so desires.

Likewise, dynamically moving programs such as AREA and SIMPSON (in Graphic

Calculus II) can be used to visualize how the area under a graph may be calculated

dynamically as a growing area function, quite separate from the symbolic manipulation

involved in integration.

The combination of numerical solutions of equations, numerical tangents and gradients,

and numerical calculations of area could easily become part of a numerical pre-calculus

course, parts of which could be studied before, or parallel with, the corresponding

calculus notions. The numerical methods option in the Oxford A-level mathematics has

been modified with such an approach in mind. When the symbolic methods of

differentiation and integration are introduced, they can then be linked to a cognitive

understanding which of the underlying dynamic processes.

Symbolic Manipulation

Recent developed software to carry out the symbolic manipulation of differentiation and

integration is of a different order of complexity from the kind of software discussed so

far. Numerical and graphical routines can be programmed in languages such as BASIC
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which fit into the small memories of computers such as the BBC. Manipulators require

languages that can cope recursively with strings of symbols and tend to need far greater

memory space, although rudimentary manipulators can be written for small computers

using languages like Lisp, Logo or Prolog.

The rules for differentiation are of two kinds:

• derivatives of specific functions such as constants, sin, cos, etc,

• general rules for composites of functions in pairs, such as the
derivative of the sum f+g, or the composite fog, in terms of the
derivatives of f and g.

These rules are quite formal, without any reference to limiting processes. They simply

operate on strings of symbols that, for the moment, can be divested of their meaning as

functions.

To write a symbolic differentiation procedure in Logo one may use what I shall term

‘symbolic functions’, which are

(a) either constants or strings of letters and digits such as 3, -7, sin, cos,
ln, f, g, u1, u2, etc

(b) or triples in the form [u o v] where u, v are again symbolic functions
and o is one of the symbols +, -, *, /, o, ^.

Thus the following are symbolic functions:

 sin, cos, [sin / cos], [f / [ln + g1]], etc.

In this notation the derivative of cos may be written as

 [0 - sin]

and the derivative of tan as

 [1 / [cos ^ 2]].

The formal differentiation procedure D is then defined to operate on a ‘symbolic

function’ f. If f is a word, D outputs the derivative if it is known, or the symbol f'.  If f

is not a word, it must be a triple so the general rules of differentiation may be used to

reduce the problem recursively.

For instance, D [sin + cos] would be broken down to [D sin + D cos], which is [cos +

[0 – sin]].
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The manner in which this is done requires a little experience with the nitty gritty of

Logo and the precise details are left as an interesting challenge for Logo programmers.

Such a procedure D, though handling differentiation quite nicely, soon gives results

that begin to look quite complicated. For example:

SHOW D [x ^ 7]

 [7 * [x ^ 6]]

SHOW D D [f + g]

 [f '' + g '']

SHOW D [sin / cos]

 [[[cos * cos] - [sin * [0 - sin]]] / [cos ^ 2]].

This leads on to the human need to simplify expressions, possibly performing a

translation from standard mathematical notation into ‘symbolic functions’, applying the

procedure D, then translating the result back into standard mathematical notation.

It is not a simple task, especially as standard’ notation is not quite as well regulated as it

might be. It also opens up the thorny question as to what constitutes ‘appropriate

mathematical notation’. The answer might be different for humans and computers, for

humans have a limited ability to grasp long strings of symbols which computers handle

with ease. Conversely, humans can interpret shorthand symbolism that they may find

difficult to translate into computer terms. It may be easier to program a computer using

a formula such as

[[[a * [x ^ 2]] + [b * x]] + c]

whilst preferring

 ax2+bx+c

for ordinary discourse.

Despite these notational difficulties, it is a revelation for pupils with a knowledge of

Logo to explore the differentiation procedure, if only to see that it is a well-defined

algorithm.
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Symbol Manipulators

Symbol manipulators are now becoming more widely available. The first such software

was written on mainframe computers because it require vast memory and speed.

Subsequent generations, such as muMATH 7 works on more generally available micros

including the IBM. Its successor Derive is more a general symbolic facility with a better

user interface, whilst now there are several fully fledged symbolic manipulators which

work on faster IBM compatibles and Macintosh computers with larger memory

capacities, including MAPLE and Mathematica.

All manipulators can carry out formal differentiation using fairly normal notation, most

being able to cope with implicit multiplication, though requiring idiosyncratic notation,

such as the usual computer arrow ^ for powers. But some are less good with

integration, as they essentially attempt to try out the various routines available, such as

integration by substitution or by parts, and may not be well enough programmed to use

subtle substitutions. In extreme cases it is possible for such manipulators to

differentiate a formula f(x) to get the derivative d(x) but be unable to recognize the

formula d(x) as one that can be integrated.

This state of affairs has been altered by an algorithm of Risch (1969) which can

systematically decide if a function has an ‘elementary integral’. (Technically an

elementary function is one built up from constants and the integration variable using

arithmetic operations, exponentials, logarithms and the solutions of algebraic

equations.) Further details and references are described by Davenport 3.

Some symbolic manipulators now incorporate the Risch algorithm to guarantee finding

an elementary integral function when one exists.

It is still early days in the use of these manipulators in education. Several of my friends

who are applied research mathematicians cite examples where they have been able to

use the symbol manipulator to carry out a great deal of routine work in a short time.

One wrote privately to me explaining how he used one to calculate a large number of

partial derivatives for a problem in general relativity:

‘It took about 1/2 an hour to write out the functions and about 1 hr 30
to 1 hr 45 minutes to perform the differentiations and simplifications
on the computer. I estimate that working about 3 hrs a day, including
rechecking the calculations would have taken about a month.’

At an undergraduate level Lane et al. 6 quote a number of examples of student

investigations using the symbolic manipulator MAPLE (produced at Waterloo

University, Ontario) including an investigation into the function
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 (x^2-4)/(x^2-1)

by getting the system to find the zeros of the numerator and denominator, to calculate

the derivative to find maxima and minima, and so on. In Britain we would expect A-

level students to crack this problem by hand. But the implication here is that once one

understands the ideas behind simple problems, it may be possible to use the symbolic

manipulator to solve more complicated examples.

Experiences using symbolic manipulators with students have been mixed. Lane's

experience is a positive one: he claims that symbolic manipulators can be used with

profit for exploration of ideas and problem-solving. Elsewhere there is both enthusiasm

and a growing awareness of possible pitfalls in using symbolic manipulators in the

mathematical curriculum. For instance, a number of universities in Canada have

students working with symbolic systems to solve problems where the fundamental

ideas should be straightforward, but involving computation of derivatives or integrals

which are more difficult. The idea is to set up an effective partnership between the

student doing the mathematical thinking and the computer doing the routine

calculations. Though there was a measure of success, some students found themselves

with very little they could accomplish, once the routine parts of the mathematics were

taken away from them.

Those who get the most out of symbolic manipulators are often experts with a good

understanding of the calculus before they start. To enable students to use symbolic

manipulators effectively seems to require an imaginative programme of tasks based on a

prior understanding of the fundamental processes.

Multiple Representations

The current buzz-words in American mathematical education are ‘multiple-

representation systems’. The idea here is to produce software that can furnish several

different ways of viewing a problem simultaneously, enabling the student to see the

links between them. Graphic Calculus is a multiple representation system, in that it

includes simultaneous numerical and graphical elements, but it currently lacks symbolic

differentation. Some new programs written on computers with larger memories now

include simultaneous numerical, graphical and symbolic facilities. For instance, John

Kemeny's Calculus 4 for the Macintosh or I.B.M. computer includes a differentiation

algorithm and provides facilities to draw graphs and their first and subsequent

derivatives, together with the display of tables of numerical values. Figure 3 shows a

sequence of operations in which the formula sin(x) is entered, its graph plotted, the
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derivative formula calculated (but not displayed) and the derivative graph plotted. The

derivative may be revealed by selecting the formula option, but it is also possible to

conjecture what it may be and superimpose the graph of the conjecture before revealing

the actual derivative. Thus the program may be used for investigating derivatives,

though it lacks the facilities of Graphic Calculus to demonstrate the dynamic growth of

the global gradient function.

Figure 3 : The graph of the (symbolic) derivative of sin(x)

Deep Structure and Surface Structure

Looking at the calculus from numerical, graphical and symbolic viewpoints exposes the

major difference between the deep structure of limiting processes and notions of rate of

change and cumulative growth on the one hand, and the surface structure of symbolic

manipulation to obtain formal derivatives and integrals on the other. In the current

calculus curriculum most students mainly learn the surface structure of symbolic

differentiation.

It may not be absolutely clear where the calculus will go in the next few years,

particularly what new topics in computer studies may need to be introduced to replace

current content. But it is hard to believe that the fundamental ideas of change and

growth represented most clearly by graphical techniques will be supplanted, even if the

rise of numerical methods and the streamlining of symbolic manipulators changes the

balance of the curriculum.

Symbolic manipulators are, in one way, a red herring. They are certainly valuable in

complicated cases where computation by hand becomes oppressive, but in the real

world there are many problems in integration and differential equations which have no

elementary solutions for which symbolic manipulation is useless.
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Even though it may not be clear where the current change in paradigm will lead, it is a

sensible course for teachers and pupils to embrace computer methods to get to know

what they can do and what their limitations are. In the present A-level system the deep

structure of the calculus is well served by an exploration of the graphical approach and

a more imaginative use of numerical techniques.
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