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Abstract

A set of graphs may acquire various desirable properties, if we apply suitable restrictions
on the set. We investigate the following two questions: How far, exactly, must one restrict
the structure of a graph to obtain a certain interesting property? What kind of tools are
helpful to classify sets of graphs into those which satisfy a property and those that do not?

Equipped with a containment relation, a graph class is a special example of a partially
ordered set. We introduce the notion of a boundary ideal as a generalisation of a notion
introduced by Alekseev in 2003, to provide a tool to indicate whether a partially ordered set
satisfies a desirable property or not. This tool can give a complete characterisation of lower
ideals defined by a finite forbidden set, into those that satisfy the given property and to
those that do not. In the case of graphs, a lower ideal with respect to the induced subgraph
relation is known as a hereditary graph class.

We study three interrelated types of properties for hereditary graph classes: the exis-
tence of an efficient solution to an algorithmic graph problem, the boundedness of the graph
parameter known as clique-width, and well-quasi-orderability by the induced subgraph rela-
tion.

It was shown by Courcelle, Makowsky and Rotics in 2000 that, for a graph class, bound-
edness of clique-width immediately implies an efficient solution to a wide range of algorithmic
problems. This serves as one of the motivations to study clique-width. As for well-quasi-
orderability, we conjecture that every hereditary graph class that is well-quasi-ordered by
the induced subgraph relation also has bounded clique-width.

We discover the first boundary classes for several algorithmic graph problems, including
the Hamiltonian cycle problem. We also give polynomial-time algorithms for the dominating
induced matching problem, for some restricted graph classes.

After discussing the special importance of bipartite graphs in the study of clique-width,
we describe a general framework for constructing bipartite graphs of large clique-width. As
a consequence, we find a new minimal class of unbounded clique-width.

We prove numerous positive and negative results regarding the well-quasi-orderability of
classes of bipartite graphs. This completes a characterisation of the well-quasi-orderability of
all classes of bipartite graphs defined by one forbidden induced bipartite subgraph. We also
make considerable progress in characterising general graph classes defined by two forbidden
induced subgraphs, reducing the task to a small finite number of open cases. Finally, we
show that, in general, for hereditary graph classes defined by a forbidden set of bounded
finite size, a similar reduction is not usually possible, but the number of boundary classes
to determine well-quasi-orderability is nevertheless finite.

Our results, together with the notion of boundary ideals, are also relevant for the study
of other partially ordered sets in mathematics, such as permutations ordered by the pattern
containment relation.

viii



Chapter 1

Introduction

The theory of graphs is rich, active and has expanded rapidly in the recent years. It

has applications and surprising connections to a large array of disciplines, including

topology, computer science and to seemingly unrelated subjects such as psychology.

The structure of general graphs is usually rather complex, both algorithmically

and combinatorially. However, under some restrictions, it may acquire some desir-

able properties. A natural question arises: How far, exactly, must one restrict the

structure of a graph to obtain a certain interesting property? What kind of tools

are helpful to classify sets of graphs into those that satisfy a property and those

that do not?

In this thesis, we explore the above questions with respect to various desirable

properties, such as polynomial-time solvability of some algorithmic graph problems,

boundedness of clique-width and well-quasi-orderability. The reader is assumed to

have a basic working knowledge of functions, sets, and binary relations.

1.1 Graphs: Basic Definitions and Conventions

Definition 1.1.1. A graph G is defined by the ordered pair of sets (V (G), E(G)),

where each member of E(G) is a subset of V (G) of cardinality 2.

• Members of V (G) are called vertices and members of E(G) are called edges .

• An edge {x, y} is often denoted xy for short, and it is said to be adjacent to

(or incident at) x and y.

• For a vertex x ∈ V (G), we denote by N(x) the set of vertices in V (G) that

are adjacent to x. The cardinality of the set N(x) is called the degree of x. A

graph whose every vertex has degree k is called k-regular .

1



• For a vertex subset W ⊂ V (G), the notation G[V (G) \ W ] (or sometimes

just G \ W ) will refer to the graph with vertex set V (G) \ W and edge set

{xy ∈ E(G) : x, y 6∈W}. Such a graph is called an induced subgraph of G.

• For an edge subset F ⊂ E(G), the notation G \ F will refer to the graph with

vertex set V (G) and edge set E(G) \ F .

• For an edge e = xy ∈ E(G), the edge contraction G/e will have vertex set

(V (G) \ {x, y}) ∪ {z} and edge set

{x′y′ ∈ E(G) : x′, y′ /∈ {x, y}} ∪ {z′z : z′x ∈ E(G) or z′y ∈ E(G)}

• By G+H we denote the disjoint union of two graphs G and H. In particular,

mG = G+ . . .+G is the disjoint union of m copies of G.

Unless we state otherwise, V (G) will be assumed to be finite, in which case the

graph G is said to be finite.

A graph is most often visualised by plotting its vertices as points on a plane

and drawing each edge as a line segment that identifies a pair of vertices by its

end-points.

Figure 1.1: A 3-edge graph on 3 vertices.

There is a natural way to define what it means for two graphs to be ’identical’:

Definition 1.1.2. Graphs G and H are said to be isomorphic if there exists a bi-

jection f : V (G) −→ V (H) such that xy ∈ E(G) if and only if f(x)f(y) ∈ E(H). A

set of graphs is called a graph class or a graph property , when any two isomorphic

graphs are taken to be equal.

Definition 1.1.3. The complement graph G of G is defined as the graph with vertex

set V (G) and edge set E(G) := {e ⊆ V (G) : |e| = 2 and e 6∈ E(G)}.

2



Figure 1.2: A graph and its complement.

There are a few basic graphs that will be referred to repeatedly:

• An empty (edgeless) graph on n vertices, denoted by nK1, is a graph on n

vertices with no edges.

• A complete graph on n vertices, denoted by Kn is the graph nK1.

• The chordless path on n vertices will be denoted by Pn.

• The chordless cycle on n vertices will be denoted by Cn.

Figure 1.3: From left to right: 4K1,K4, P4 and C4

We need a few more definitions.

Definition 1.1.4. Let G be a graph.

• A subset of V (G) that induces an empty graph is called an independent set.

• A subset of V (G) that induces a complete graph is called a clique.

Definition 1.1.5. A graph G is said to be connected if any two vertices of G are

the end-vertices of a chordless path in G. If a graph G is not connected, its maximal

connected induced subgraphs are called the connected components of G.

3



1.2 A Quick Introduction to Partial Orders

In this thesis, we will consider various partial orders on sets of graphs. With this in

mind, we need to introduce some basic concepts about partially ordered sets.

Definition 1.2.1. A binary relation on a set X is a subset of X2.

Definition 1.2.2. A partial order ≤ on a set X is a binary relation on X with the

following properties:

1. reflexivity. For each x ∈ X, we have x ≤ x.

2. anti-symmetry. For any x, y ∈ X, if x ≤ y and y ≤ x, then x = y.

3. transitivity. For any x, y, z ∈ X, if x ≤ y and y ≤ z, then x ≤ z.

A set X := (X,≤), considered under a specific partial order ≤, is called a

partially ordered set or a poset.

Definition 1.2.3. A binary relation that satisfies reflexivity and transitivity, but

not necessarily anti-symmetry, is called a quasi-order.

Example 1.2.1. The set Z of integers is partially ordered by each of the fol-

lowing two binary relations: ≤ (’less than or equal to’) and divisibility.

Example 1.2.2. The set of permutations on n items can be given a partial

order, called pattern containment (see e.g. [Atkinson et al., 2002]).

To define this order, suppose the permuted set is [n] := {1, 2, . . . , n}. With

each permutation π on [n], we can naturally associate a ’word’, given by the

sequence π(1)π(2) . . . π(n). By a subword of π, we mean any subsequence of

entries of π (not necessarily consecutive). We say that ’permutation π contains

permutation σ as a pattern’ if there is an order-preserving bijection from σ to

a subword of π. (A map f is called order-preserving if f(x) ≤ f(y) whenever

x ≤ y.)

4



We will be interested in some special subsets of posets:

Definition 1.2.4. A subset X of a poset (Y,≤) is a chain if for any x, y ∈ X, the

elements x and y are comparable, i.e. we have x ≤ y or y ≤ x.

Example 1.2.3. (Z,≤) is a chain in itself.

Definition 1.2.5. A subset X of a poset (Y,≤) is an antichain if for any x, y ∈ X,

the elements x and y are incomparable, i.e. we have x 6≤ y and y 6≤ x.

Example 1.2.4. The set of prime numbers is an antichain in the set N of

positive integers partially ordered by divisibility.

The following rather intuitive theorem illuminates the relationship between

chains and antichains:

Theorem 1.2.1 ([Dilworth, 1950]). Let Y be a finite poset. Then the maximum

cardinality of an antichain in Y is equal to the the minimum number of chains in

any partition of Y into chains.

Most of the posets considered in this thesis will be lower ideals:

Definition 1.2.6. A subset X of a poset (Y,≤) is a lower ideal of Y if for any

x ∈ X and y ∈ Y such that y ≤ x, we have y ∈ X.

Definition 1.2.7. For an antichain M of a poset (Y,≤), we define the set Free≤(M) :=

{y ∈ Y : x 6≤ y for all x ∈M}.

The following simple proposition suggests an alternative way to define a lower

ideal, by considering the minimal elements excluded from it:

Proposition 1.2.2. Let (Y,≤) be a poset that does not contain any infinite de-

scending chains. If X is a lower ideal of Y , there is a unique antichain N such that

X = Free≤(N), given by setting N to be the set M of minimal elements in Y \X.

Moreover, X is a lower ideal if and only if X = Free≤(N) for an antichain N .

5



Proof. Suppose that X is a lower ideal of Y and let M be the set of minimal elements

in Y \ X. Then clearly M is an antichain, by minimality of its elements. To see

that X ⊆ Free≤(M), it suffices to show that for any y ∈ X, we have x 6≤ y for

all x ∈ M . Suppose, for contradiction, that x ≤ y for some x ∈ M . Then x ∈ X
by definition of a lower ideal, giving a contradiction. To see that Free≤(M) ⊆ X,

it suffices to show that if x ∈ Free≤(M), then x ∈ X. Suppose, for contradiction,

that x ∈ Y \X. Then there must be a minimal element z ∈ Y \X such that z ≤ x,

contradicting the fact that x ∈ Free≤(M). Thus X = Free≤(M) for the antichain

M of minimal elements in Y \X.

Now let us show the uniqueness of M as an antichain N such that X =

Free≤(N). Suppose that N is an antichain such that X = Free≤(N). Clearly

N ⊆ Y \X, by definition of Free≤(N). First we claim that N ⊆M . Suppose that

for some x ∈ N , there exists a z ∈ Y \ X such that z 6= x and z ≤ x. But then,

since N is an antichain, we must have x′ 6≤ z for all x′ ∈ N (otherwise x′ ≤ z ≤ x).

But then z ∈ X, contradicting our assumption. To see that M ⊆ N , we suppose,

for contradiction, that x ∈ M \ N . But then x ∈ X, by minimality of x in Y \X
together with the definition of Free≤(N). This is a contradiction to the assumption

that x ∈M . Thus N = M , proving uniqueness of M .

Now suppose that X = Free≤(N) for an antichain N . By the previous para-

graph, M ⊆ N (this part of the proof never used the assumption that X is a lower

ideal). Let us show that X is a lower ideal. Suppose x ∈ X and pick some y ∈ Y
such that y ≤ x. Then y ∈ X, since otherwise there would exist some z ∈ M for

which z ≤ y ≤ x, contradicting the fact that x ∈ Free≤(N). Thus X is a lower

ideal.

Proposition 1.2.2 gives rise to the following definition:

Definition 1.2.8. For any lower ideal X of a poset (Y,≤), the set M of forbidden

elements of X, denoted by M := Forb(X), is defined as the unique set of minimal

elements in Y \X. The set M is also the unique antichain such that X = Free≤(M).

1.3 Partial Orders on Sets of Graphs: Hereditary Graph

Properties

There are three basic partial orders that are commonly applied to graphs:

1. G is an induced subgraph of H if G it can be obtained from H by a sequence

of vertex deletions.
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2. G is a subgraph of H if G can be obtained from H by a sequence of edge and

vertex deletions.

3. G is a minor of H if G can be obtained from H by a sequence of edge and

vertex deletions and edge contractions.

We will focus on the induced subgraph relation, which will be denoted by ≤
without further notice. It is easy to check that it is a partial order on graphs. In

Definition 1.2.6, we defined lower ideals on posets. For a graph class ordered by

induced subgraphs, we use the following terminology:

Definition 1.3.1. A graph property (or graph class) X is called hereditary if it is

a lower ideal (of the class of all graphs) with respect to the induced subgraph relation.

That is, whenever G ∈ X and H ≤ G, we have H ∈ X.

Definition 1.3.2. The corresponding lower ideals with respect to the subgraph and

minor relations will be called monotone properties and minor-closed properties,

respectively. With these definitions, it is immediately clear that any minor-closed

property is monotone, and any monotone property is hereditary.

The following proposition is a direct corollary of Proposition 1.2.2:

Proposition 1.3.1.

• For any hereditary graph class X there is a unique set M of minimal (forbid-

den) graphs not in X.

• Equivalently, for any antichain M , we may define X as the maximal hereditary

graph class not containing any graph in M .

• We use the notation X := Free(M) and talk about the class of M -free graphs.

We use the term set of forbidden elements to describe M . If M is finite, we

say that X is finitely defined.

In general, the problem of finding the forbidden induced subgraph characteriza-

tion of a hereditary class is far from being trivial, as the example of perfect graphs

shows [Chudnovsky et al., 2006].

The importance of the forbidden induced subgraph characterization of a hered-

itary class of graphs can be illustrated by the following example. In 1969, “Journal

of Combinatorial Theory” published a paper entitled “An interval graph is a com-

parability graph” [Jean, 1969]. One year later, the same journal published another
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paper entitled “An interval graph is not a comparability graph” [Fishburn, 1970],

revealing a mistake in the earlier paper. With the induced subgraph characterization

this mistake could not occur, because it is not difficult to check the following:

Proposition 1.3.2. Consider two hereditary graph classes X := Free(M) and

Y := Free(N). Then X is a subclass of Y if and only if for every H ∈ N , there

exists some G ∈M such that G ≤ H.

Proof. First suppose that X is a subclass of Y . Suppose, for contradiction, that for

some H ∈ N , there exists no G ∈ M such that G ≤ H. Then, by definition of X,

we have H ∈ X. Since H /∈ Y , we deduce that X is not a subclass of Y . This is a

contradiction.

Conversely, suppose that for every H ∈ N , there exists some G ∈ M such that

G ≤ H. Suppose, for contradiction, that some graph belongs to X, but not to Y .

Pick a minimal such graph H. Then H ∈ N , by definition. Thus there exists some

G ∈M such that G ≤ H. This implies that H /∈ X, which is a contradiction.

Therefore, given two hereditary classes of graphs and the induced subgraph char-

acterization for both of them, it is a simple task to decide the inclusion relationship

between them. Apparently, in 1969 the induced subgraph characterization was not

available for interval or comparability graphs. Nowadays, it is available for both

classes.

Definition 1.3.3. For a graph class X, we define the complement class X (or

co-X) as follows: X := {G : G ∈ X}.

The proof of the following proposition is trivial:

Proposition 1.3.3. For any hereditary graph class X := Free(M), we have X =

Free(M).

Let us give examples of some important hereditary graph classes:

Example 1.3.1.

• If X = Free(C3, C4, C5, . . .), then X is known as the class of forests. A

connected forest is called a tree.

• If X = Free(C3, C5, C7, . . .), then X is known as the class of bipartite

graphs. The vertex set V of any bipartite graph can be partitioned into

two independent sets (A,B).
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• If X = Free(C4, C5, C6, . . .), then X is known as the class of chordal

graphs. Another term for chordal graphs is triangulated graphs.

• If X = Free(C3, C5, C6, C7, . . .), then X is known as the class of chordal

bipartite graphs. Note that the only induced cycle permissible in a chordal

bipartite graph is a C4.

• If X = Free(P4), then X is known as the class of cographs. This impor-

tant and well-studied class is the closure of {K1} under the two operations

of graph complementation and disjoint union.

1.4 Boundary Ideals

In Section 1.3, we pointed out that a hereditary graph class can be characterised in

terms of minimal graphs that do not belong to the class. Let us ask the following

question: is it possible to characterise a family of hereditary graph classes in terms

of minimal classes that do not belong to the family? More formally, assume we are

given a family of hereditary graph classes U (the universe) and consider a subfamily

A ⊆ U with the property that if a class X belongs to A then any subclass of X from

the same universe also belongs to A.

(Q) Is it possible to characterise the family A in terms of minimal classes from U
that do not belong to A?

We will attempt to attack the question (Q) for various families A of lower ideals

of a poset.

Notation. We will refer to the following notations throughout this section:

• Let ≤∗ be a partial order on a countable set S.

• Let U (the universe) be the family of all subsets of S that are lower ideals with

respect to ≤∗.

• Recall that by Proposition 1.2.2, any lower ideal X in U is defined by a unique

set M of forbidden elements. We denote X := Free≤∗(M).

• We will consider a subfamily A ⊆ U closed under taking subsets in U .
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1.4.1 Motivations

In order to give motivation for the main notion of this section, the notion of ’bound-

ary ideals’, let us first discuss some previously studied cases where the answer to

question (Q) is known to be positive or negative.

Our first example is of combinatorial nature and deals with the notion of the

speed of a hereditary property. The speed of a hereditary property is the number Xn

of n-vertex graphs in a hereditary class X studied as a function of n. It is known

[Balogh et al., 2000] that the family U of all hereditary graph classes is partitioned

with respect to the speed of classes into discrete layers. The lowest layer of this

hierarchy contains finite classes of graphs, i.e. classes with finitely many graphs.

Let us quote Ramsey’s theorem:

Theorem 1.4.1. For any pair (m,n) of positive integers, there exists a positive

integer R(m,n) (called a Ramsey number) such that any graph on R(m,n) vertices

either contains a clique of size m or an independent set of size n.

From Ramsey’s theorem, it follows that there are two minimal classes of graphs

that do not belong to the layer of finite classes: complete graphs and their comple-

ments (edgeless graphs). Both of these classes are infinite, and any class excluding

at least one complete graph and one edgeless graph (i.e. any class of the form

Free(Kn,Km)) is finite. All classes in all other layers are infinite, and there are

infinitely many such layers. The first four lower layers containing infinite classes of

graphs are [Scheinarman and Zito, 1994]:

• constant layer contains classes X with log2 |Xn| = O(1),

• polynomial layer contains classes X with log2 |Xn| = Θ(log2 n),

• exponential layer contains classes X with log2 |Xn| = Θ(n),

• factorial layer contains classes X with log2 |Xn| = Θ(n log2 n).

Each of these layers contains a finite collection of minimal classes. For instance,

in the factorial layer there are exactly nine minimal classes [Balogh et al., 2000].

Therefore, the family of subfactorial classes can be characterised by nine minimal

classes that do not belong to this family, which gives an example of a positive answer

to question (Q).

If we now move to the factorial layer, the question becomes much harder, because

this layer is substantially richer. It contains plenty of graph classes of theoretical

and practical importance, such as forests, interval, permutation, chordal bipartite,
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threshold graphs, cographs, and even more generally, all minor-closed graph classes

(other than the class of all graphs) [Norine et al., 2006]. Therefore, it would be

interesting to characterize the factorial layer in terms of minimal superfactorial

classes. However, none of such classes have been identified so far, and possibly, no

such class exists. To better explain this phenomenon, let us consider the following

example.

It is known that the class of bipartite graphs is superfactorial. Moreover, sub-

classes of bipartite graphs defined by forbidding

(1) either large cycles, such as (C10, C12, . . .)-free bipartite graphs or (C8, C10, . . .)-

free bipartite graphs,

(2) or small cycles, such as C4-free bipartite graphs or (C4, C6)-free bipartite

graphs,

are superfactorial. The first sequence can be extended by adding to it the class of

chordal bipartite graphs, i.e. (C6, C8, C10, . . .)-free bipartite graphs, which is still

superfactorial [Spinrad, 1995]. However, by adding to the set of forbidden graphs

one more cycle, i.e. C4, we obtain the class of forests, which is factorial. On the

contrary, the second sequence of graph classes can be extended to an infinite chain

by forbidding more and more cycles. In other words, for any k ≥ 2, the class

of (C4, C6, . . . , C2k)-free bipartite graphs is superfactorial [Lazebnik et al., 1995],

and only the limit of this sequence, which is again the class of forests, is factorial.

Therefore, in this sequence there is no minimal superfactorial class, which gives an

example of a negative answer to question (Q).

Another important negative instance to question (Q) concerns the computa-

tional complexity of the so-called maximum independent set problem in hered-

itary graph classes. The attempt to identify the ’minimal graph classes’ for which

the problem is not computationally simple (i.e. ’not polynomial-time solvable’) is

what originally motivated Alekseev to introduce the definition of ’boundary classes’

in [Alekseev, 2003]. We will postpone the more detailed discussion of this fam-

ily of graphs until Section 2.1, where we define algorithmic notions more formally.

For now, let us extend the definition of boundary classes from graphs to ideals of

arbitrary nature.

1.4.2 Definitions and tools

We now introduce a definition and a lemma that are prerequisites for defining the

notion of a boundary ideal.
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Definition 1.4.1. A non-empty subset X of S is called a limit ideal for the family

A (A-limit for short) if and only if X =
∞⋂
i=1

Xi, where X1 ⊇ X2 ⊇ . . . is a sequence

of ideals that belong to U \ A.

If X is the limit ideal of a sequence X1 ⊇ X2 ⊇ X3 ⊇ . . ., we say that the sequence

converges to X. Observe that we do not require the ideals in the sequence X1 ⊇
X2 ⊇ . . . to be distinct, which means that every ideal from U \A is A-limit. On the

other hand, this definition also allows some ideals that belong to A to be limit for

this family.

Alekseev showed (for sets of graphs) that every ideal Y ∈ U \ A contains a

minimal A-limit ideal. We extend Alekseev’s notion of ’boundary classes’ (and the

relevant proofs) to ’boundary ideals’ within the more general framework of partially

ordered sets [Alekseev, 2003]. To properly define this notion, we first need some

lemmata.

Lemma 1.4.2. A finitely defined non-empty ideal is a limit ideal if and only if it

belongs to U \ A.

Proof. Every ideal in U\A is a limit ideal by definition. Now letX = Free(G1, . . . , Gk)

be a limit ideal and let X1 ⊇ X2 ⊇ X3 ⊇ . . . be a sequence of ideals from U \ A
converging to X. Obviously, there must exist a positive integer n such that Xn

is (G1, . . . , Gk)-free. But then for each i ≥ n, we have Xi = X and therefore X

belongs to U \ A.

Lemma 1.4.3. If an ideal Y contains a limit ideal X, then Y is also a limit ideal.

Proof. Let X1 ⊇ X2 ⊇ X3 . . . be a sequence of ideals from U \ A converging to X.

Then the sequence (X1 ∪Y ) ⊇ (X2 ∪Y ) ⊇ (X3 ∪Y ) . . . consists of ideals from U \A
and it converges to Y .

Lemma 1.4.4. If a sequence X1 ⊇ X2 ⊇ X3 . . . of limit ideals converges to a non-

empty ideal X, then X is also a limit ideal.

Proof. Let G := {G1, G2, . . .} be the set of minimal elements of S that do not belong

to the ideal X. For each natural k, define X(k) to be the ideal Free(G1, . . . , Gk).

Since no element in G belongs to X, for every k there is an n such that Xn does not

contain G1, . . . , Gk, which means Xn ⊆ X(k). Therefore, by Lemma 1.4.3, X(k) is

a limit ideal, and by Lemma 1.4.2, X(k) does not belong to A. This is true for all

natural k, and therefore, X(1) ⊇ X(2) ⊇ X(3) . . . is a sequence of ideals from U \ A
converging to X, i.e. X is a limit ideal.
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Lemma 1.4.5. Every ideal X from U \A contains a minimal limit ideal Y . More-

over, there exists a sequence of ideals from U \ A converging to Y , such that each

ideal in the sequence is a subset of X.

Proof. Let X be an ideal from U \ A. To reveal a minimal limit ideal contained in

X, let us fix an arbitrary linear order L of elements of S and let us define a sequence

X1 ⊇ X2 ⊇ . . . of ideals as follows. We define X1 to be equal X. For i > 1, let G be

the first element of S in the order L such that G belongs to Xi−1 and Xi−1∩Free(G)

is a limit ideal. If there is no such element G, we define Xi := Xi−1. Otherwise,

Xi := Xi−1 ∩ Free(G).

Denote by Y the intersection of ideals X1 ⊇ X2 ⊇ X3 . . .. Clearly, Y ⊆ X.

By Lemma 1.4.4, Y is a limit ideal. Let us show that Y is a minimal limit ideal

contained in X. By contradiction, assume there exists a limit ideal Z which is

properly contained in Y . Let H be an element of Y which does not belong to Z.

Then Z ⊆ Y ∩ Free(H) ⊆ Xk ∩ Free(H) for each k. Therefore, by Lemma 1.4.3,

Xk ∩ Free(H) is a limit ideal for each k. For some k, the element H becomes the

first element in the order L such that Xk ∩ Free(H) is a limit ideal. But then

Xk+1 := Xk ∩Free(H), and H belongs to no ideal Xi with i > k, which contradicts

the fact that H belongs to Y .

Lemma 1.4.5 motivates the following key definition.

Definition 1.4.2. A minimal limit ideal for A is called a boundary ideal, boundary

class for A.

The importance of this notion is due to the following theorem.

Theorem 1.4.6. A finitely defined ideal belongs to A if and only if it contains no

boundary ideal for A.

Proof. From Lemma 1.4.5 we know that every ideal from U \A contains a boundary

ideal. To prove the converse, consider a finitely defined ideal X containing a bound-

ary ideal. Then, by Lemma 1.4.3, X is a limit ideal, and therefore, by Lemma 1.4.2,

X does not belong to A.

As a tool to detect minimality of a limit ideal, we will use the following helpful

minimality criterion.

Lemma 1.4.7. An A-limit ideal X = Free(M) is minimal (i.e. boundary) if and

only if for every element x ∈ X there is a finite set T ⊆M such that Free({x}∪T ) ∈
A.
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Proof. Suppose X is a boundary ideal for A, and assume for contradiction that there

is an element x ∈ X such that for every finite set T ⊆M we have Free({x} ∪ T ) ∈
U \A. Let M := {m1,m2, . . .} and Zi := Free(x,m1,m2, . . . ,mi). Then Zi ∈ U \A
for each i and therefore Z := ∩iZi is an A-limit ideal. It contains no element from

M and it does not contain x. Therefore, it is a proper subset of X, contradicting

the minimality of X.

Conversely, assume that for every element x ∈ X there is a finite set T ⊆ M

such that Free({x} ∪ T ) ∈ A, and suppose for contradiction that there exists an

A-limit ideal Z which is properly contained in X. Since Z is a limit ideal, there

exists a sequence Z1 ⊇ Z2 ⊇ . . . of ideals from U \ A converging to Z. Pick any

element x ∈ X \Z and a finite set T ⊆M such that Free({x}∪T ) ∈ A. Then there

must exist a Zn which is ({x} ∪ T )-free, in which case Zn ∈ A, since A is closed

under taking subsets in U . This contradiction finishes the proof.

Convention

In this thesis, we will usually choose S to be the set of all graphs and ≤∗ to be

the induced subgraph relation ≤. In this case, U is the family of all hereditary

graph classes and A is a subfamily closed under taking hereditary subclasses.

Note. In further chapters, we will search for boundary ideals for three special types

of families A:

1. A is the family of hereditary graph classes for which an algorithmic graph

problem P is solvable in polynomial time.

2. A is the family of hereditary graph classes for which the graph parameter

called ’clique-width’ is bounded.

3. A is the family of hereditary graph classes that are well-quasi-ordered by the

induced subgraph relation ≤.

Definitions and further details will be provided in the respective chapters.

It is non-trivial to decide the number of boundary ideals for a family A and,

indeed, to determine the structure of the boundary ideals. As we shall see in fur-

ther chapters, Lemma 1.4.5 and Theorem 1.4.6 can often prove the existence of a

boundary ideal, even when its structure remains unknown. Some families may even

have an uncountable number of boundary ideals [Malyshev, 2009].
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Chapter 2

Algorithmic Graph Problems

2.1 The Time Complexity of Algorithmic Graph Prob-

lems

We start with a few basic definitions:

Definition 2.1.1. An algorithm (for a problem) is called polynomial-time if for an

input of size n, the algorithm solves the problem in p(n) elementary steps for some

polynomial p(n). The class of problems for which there exists a polynomial-time

algorithm is usually denoted by P.

Intuitively speaking, polynomial-time problems tend to have ’fast’ algorithms,

and the problems are thus considered to be ’easy’. Of course, the definitions of

’fast’ and ’easy’ are somewhat subjective and the truth of the matter depends on

the degree of the polynomial in the algorithm for solving the problem. The typical

size of the input could also be a concern. In any case, polynomial-time algorithms

are often practical for real-world applications.

NP-complete problems have, for decades, defied all attempts to produce po-

lynomial-time algorithms. Thus, it is commonly assumed and hypothesised that

NP 6= P . Proving this hypothesis remains one of the biggest and most important

open challenges in computer science. From the assumption that NP 6= P , we

deduce that NP-complete problems are not polynomial-time solvable. In this thesis,

we will generally make this assumption. There exist other useful time complexities

in addition to P and NP, (indeed there exist entire hierarchies of them), however we

will not consider them in this thesis.
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2.2 Boundary Classes for Algorithmic Graph Problems

One of the typical ways to relax a difficult algorithmic graph problem is to restrict the

class of input graphs. Literature contains thousands of results analyzing particular

problems on various classes of graphs.

The main idea of the notion of boundary classes is to turn from the study of

individual classes of graphs to that of families of graph classes. In such families,

certain classes are critical in the sense that they separate “difficult” instances of a

problem from “simple” ones. To give an example, consider the family of minor-closed

classes. An important representative of this family is the class of planar graphs, (the

class of graphs embeddable into the Euclidean plane), which is of interest both from

theoretical and practical point of view. The theoretical importance of this class

is partially due to the fact that many algorithmic problems, such as maximum

independent set or minimum dominating set, are NP-hard in planar graphs.

On the other hand, if a minor-closed class X excludes at least one planar graph, then

many algorithmic problems, including the two mentioned before, are polynomial-

time solvable for graphs in X. (This is because both the tree-width and clique-width

are then bounded by a constant in such classes X. We will return to these notions in

the next chapter.) Thus, the family of minor-closed graph classes that are “simple”

in the above sense can be characterised by the unique minimal class which does not

belong to this subfamily, namely the class of planar graphs.

Unfortunately, the restriction to minor-closed classes is not always justified in

the study of algorithmic problems, since many classes that are important from an

algorithmic point of view, such as bipartite graphs or graphs of bounded vertex

degree, are hereditary but not minor-closed.

In this thesis, we attempt to classify hereditary graph classes according to

whether certain algorithmic graph problems are polynomial-time solvable or not,

when restricted to the classes. Due to Lemma 1.4.5 and Theorem 1.4.6, the no-

tion of boundary classes can aid us in this pursuit. In this chapter, we will discuss

boundary classes for families A of hereditary classes for which an algorithmic graph

problem R is solvable in polynomial time. We will talk about ’boundary classes for

R’.

To increase the reader’s familiarity with the notion of boundary classes, let us

consider an example that deals with the maximum independent set problem. In

this example, the universe U is the family of all hereditary classes of graphs, and

A is the family of hereditary graph classes where the problem is polynomial-time

solvable. In this example, and any other example of algorithmic nature, we assume
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that P 6= NP , since otherwise the notion of boundary classes is not applicable.

It is known (see e.g. [Murphy, 1992]) that the problem is NP-complete in the

class of (C3, C4, . . . , Ck)-free graphs for any particular value of k. By pushing the

parameter k to infinity, we obtain a limit class for this problem, which is the class

of graphs without cycles, i.e. the class of forests. However, the class of forests is not

a minimal limit class for this problem, because from the same paper [Murphy, 1992]

we know that the problem is NP-complete for graphs of vertex degree at most 3 in

the class Free(C3, C4, . . . , Ck). Therefore, the class of forests of degree at most three

is a limit class for the problem in question. But this class again is not a minimal

limit class, because Alekseev found in [Alekseev, 2003] a smaller limit class: the

class of forests every connected component of which has at most 3 leaves. This class

is of special interest in the study of boundary properties. Let us introduce a special

notation for it:

Y : the class of forests every connected component of which has at most 3 leaves.

Alekseev also proved in [Alekseev, 2003] that Y is a minimal limit class, i.e. a

boundary class, for the independent set problem. So far, this is the only boundary

class known for this problem. But the importance of this class is not only due to

this fact. This class also appears in many other problems.

For instance, Y is a boundary class for the minimum dominating set problem.

In terms of boundary classes, currently this is the most explored problem. The

paper [Alekseev et al., 2004] describes three boundary classes for this problem. One

of them is Y , the other is the class of line graphs of graphs in Y , and the third class

is also related to the class Y . Remember that Y is a class of bipartite graphs, i.e.

graphs partitionable into two independent sets. By replacing one of these sets by

a clique we obtain a split graph, i.e. a graph partitionable into an independent set

and a clique. The class of split graphs obtained in this way from graphs in Y is the

third boundary class for the dominating set problem.

Y also is a boundary class for some other graph problems, not necessarily of

algorithmic nature (see e.g. [Alekseev et al., 2004, 2007; Lozin, 2008]). However,

this class is not boundary for every graph problem. For instance, the hamiltonian

cycle problem is not of this type. In Section 2.3, we discover the first two boundary

classes for this problem.

In addition to the hamiltonian cycle problem, we study two other algorithmic

graph problems in this chapter: the k-path partition problem and the dominat-

ing induced matching problem. We identify some boundary classes for these

problems and find polynomial-time solutions in some restricted classes of graphs.
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2.3 The Hamiltonian Cycle Problem

In a graph, a Hamiltonian cycle is a cycle containing each vertex of the graph exactly

once. Determining whether a graph has a Hamiltonian cycle is an NP-complete

problem. Moreover, it remains NP-complete even if restricted to subcubic graphs,

i.e. graphs of vertex degree at most 3. However, under some further restrictions, the

problem may become polynomial-time solvable. A trivial example of this type is the

class of graphs of vertex degree at most 2. Our goal is to distinguish boundary graph

properties that make the problem difficult in subcubic graphs. In our study, we

restrict ourselves to the properties that are hereditary in the sense that whenever a

graph possesses a certain property the property is inherited by all induced subgraphs

of the graph.

In [Alekseev et al., 2007], it was observed that there must exist at least five

boundary classes of graphs for the Hamiltonian cycle problem, but none of them

has been identified so far. We will discover the first two boundary classes for the

problem in question.

If the degree of each vertex of G is exactly 3, we call G a cubic graph, and if the

degree of G is at most 3, we call G subcubic. A vertex of degree 3 will be called a

cubic vertex.

As in the study of other algorithmic problems, we will assume that P 6= NP ,

since otherwise the notion of boundary classes is not applicable. Our goal is to

identify a boundary class of graphs for the family of hereditary classes where the

hamiltonian cycle problem is polynomial-time solvable. The hereditary classes

of graphs that do not belong to this family will be called HC-tough.

2.3.1 Approaching a limit class

As we mentioned earlier, the hamiltonian cycle problem is NP-complete for

subcubic graphs [Itai et al., 1982]. Recently, it was shown in [Alekseev et al., 2007]

and [Arkin et al., 2007] that the problem is NP-complete for graphs of large girth,

i.e. graphs without small cycles. In this section, we strengthen both these results.

First, we show that the problem is NP-complete in the class of subcubic graphs,

in which every cubic vertex has a non-cubic neighbor. Throughout the section, we

denote this class by Γ.

Lemma 2.3.1. The hamiltonian cycle problem is NP-complete in the class Γ.

Proof. It was proved in [Plesńik, 1979] that the hamiltonian cycle problem is

NP-complete in the class of directed graphs, where every vertex has either indegree
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1 and outdegree 2, or indegree 2 and outdegree 1. The lemma is proved by a

reduction from the hamiltonian cycle problem on such graphs, which we call

Plesńik graphs. Given a Plesńik graph H, we associate with it an undirected graph

from Γ as follows. First, we consider all the prescribed edges of H, i.e. directed

edges u→ v, such that either u has outdegree 1, or v has indegree 1 (or both). We

replace every such edge by a prescribed path u → w → v, where w is a new node

of indegree and outdegree 1. Then, we erase orientation from all edges, and denote

the resulting undirected graph by G.

Clearly, G ∈ Γ. Assume H has a directed Hamiltonian cycle. Then the cor-

responding edges of G form a Hamiltonian cycle in G. Conversely, if G has a

Hamiltonian cycle, then it must contain all the prescribed paths, and therefore the

corresponding Hamiltonian cycle in H respects the orientation of the edges.

Now we strengthen Lemma 2.3.1 as follows. Denote by Yi,j,k the graph rep-

resented in Figure 2.1 and call any graph of this form a tribranch. Also, denote

Yp = {Yi,j,k : i, j, k ≤ p} and Cp = {Ck : k ≤ p}. Finally, let Xp be the class of

Cp ∪ Yp-free graphs in Γ.
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Figure 2.1: A tribranch Yi,j,k

Lemma 2.3.2. For any p ≥ 1, the hamiltonian cycle problem is NP-complete

in the class Xp.

Proof. We reduce the problem from the class Γ to Cp∪Yp-free graphs in Γ. Let G be

a graph in Γ. Obviously, every edge of G incident to a vertex of degree 2 must belong

to any Hamiltonian cycle in G (should G have any). Therefore, by subdividing each

of such edges with p new vertices we obtain a graph G′ ∈ Γ which has a Hamiltonian

cycle if and only if G has. It is not difficult to see that G′ is Yp-free. Moreover, G′

has no small cycles (i.e. cycles from Cp) containing at least one vertex of degree 2. If

G′ has a cycle C ∈ Cp each vertex of which has degree 3, we apply to any vertex a0
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of C the transformation Fp represented in Figure 2.2, where a3 denotes a non-cubic

neighbor of a0. We claim that Fp transforms G′ into a new graph in Γ, which has a

Hamiltonian cycle if and only if G has. To see this, note that any Hamiltonian cycle

in G′ contains exactly one of the three paths (a1, a0, a3), (a1, a0, a2) and (a2, a0, a3).

Then, clearly, G′ has a Hamiltonian cycle if and only if the transformed graph has

a Hamiltonian cycle containing exactly one of the following three paths:

• (a1, xp+1, xp, . . . , x2, x1, x0, yp+1, yp, . . . , y2, y1, y0, a0, a3)

• (a1, xp+1, xp, . . . , x2, x1, x0, a0, y0, y1, y2, . . . , yp, yp+1, a2)

• (a2, yp+1, yp, . . . , y2, y1, y0, xp+1, xp, . . . , x2, x1, x0, a0, a3)

Moreover, the transformation Fp increases the length of C without producing any

new cycle from Cp or any tribranch from Yp. Repeated applications of this trans-

formation allow us to get rid of all small cycles. Thus, any graph G in Γ can be

transformed in polynomial time into a Cp∪Yp-free graph in Γ, which has a Hamilto-

nian cycle if and only if G has. Together with the NP-completeness of the problem

in the class Γ, this proves the lemma.
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Figure 2.2: Transformation Fp

2.3.2 Limit class

The results of the previous section show that
⋂
p≥1
Xp is a limit class for the hamil-

tonian cycle problem. Throughout the section we will denote this class by X .

In the present section, we describe the structure of graphs in the class X . Let us

define a caterpillar with hairs of arbitrary length to be a subcubic tree in which all

cubic vertices belong to a single path. An example of a caterpillar with hairs of

arbitrary length is given in Figure 2.3.
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Figure 2.3: A caterpillar with hairs of arbitrary length

Lemma 2.3.3. A graph G belongs to the class X if and only if every connected

component of G is a caterpillar with hairs of arbitrary length.

Proof. If every connected component of G is a caterpillar with hairs of arbitrary

length, then G is a subcubic graph without induced cycles or tribranches. Therefore,

G belongs to X .

Conversely, letG be a connected component of a graph in X . Then, by definition,

G is a subcubic tree without tribranches. If G has at most one cubic vertex, then

obviously G is a caterpillar with hairs of arbitrary length. If G has at least two

cubic vertices, then let P be an induced path of maximum length connecting two

cubic vertices, say v and w. Suppose there is a cubic vertex u that does not belong

to P . The path connecting u to P meets P at a vertex different from v and w

(since otherwise P would not be maximum). But then a tribranch arises. This

contradiction shows that every cubic vertex of G belongs to P , i.e., G is a caterpillar

with hairs of arbitrary length.

In the next section, we will prove that X is a minimal limit class for the Hamil-

tonian cycle problem. Without loss of generality, we will restrict ourselves to those

graphs in X every connected component of which has the following “canonical” form:

Td (d ≥ 2) is a caterpillar with a path of length 2d (containing all cubic vertices)

and 2d − 1 consecutive hairs of lengths 1, 2, . . . , d − 1, d, d − 1, . . . , 2, 1. Figure 2.3

represents the graph T5. The following lemma is obvious.

Lemma 2.3.4. Every graph in X is an induced subgraph of Td for some d ≥ 2.

2.3.3 Minimality of the limit class

The proof of minimality of the class X will follow from the following application of

Lemma 1.4.7:
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Lemma 2.3.5. If for every graph G in X , there is a constant p = p(G), such that

the hamiltonian cycle problem can be solved in polynomial time for G-free graphs

in Xp, then X is boundary for the problem.

We apply Lemma 2.3.5 to prove the key result of this section.

Lemma 2.3.6. For each graph T ∈ X , there is a constant p such that the hamil-

tonian cycle problem can be solved in polynomial time for T -free graphs in Xp.

Proof. By Lemma 2.3.4, T is an induced subgraph of Td for some d. We define

p = 3× 2d, and will prove the lemma for Td-free graphs in Xp. Obviously, this class

contains all T -free graphs in Xp.
Let G be a Td-free graph in Xp. First we check if G has a vertex of degree 1. If

such a vertex exists, there is no Hamiltonian cycle in G. Now suppose that G has

no vertices of degree 1, so we assume that every vertex of G has degree 2 or 3.

For each vertex v of degree 2 in G, note that both edges incident to v must

belong to all Hamiltonian cycles of G, should any exist. We label an edge of G good

if we can argue that it must belong to all Hamiltonian cycles of G. Conversely, we

label an edge bad if we can argue that it cannot belong to any Hamiltonian cycle

of G. So we start by labelling edges good whenever they are incident to a vertex of

degree 2 in G.

For each cubic vertex v in G, we claim that there is a polynomial-time algorithm

to label at least two edges incident to v to be good (or the algorithm returns as

output that the graph has no Hamiltonian cycles). Let us first show that this

suffices to prove the lemma. Note that if for some vertex v of G, we determine three

good edges incident to v, then clearly G has no Hamiltonian cycle. Otherwise, if for

every vertex v ∈ G, we determine exactly two good edges incident to v, the good

edges clearly partition the graph into a collection of disjoint cycles. If this collection

contains exactly one cycle, then this is a Hamiltonian cycle contained in G. If the

collection contains more than one cycle, then by our definition of good, there are no

Hamiltonian cycles in G.

For an arbitrary cubic vertex v of G, we now attempt to label at least two edges

incident to v to be good. It suffices to repeat these steps for each cubic vertex v of

G. If, at any step, there is a labelling conflict, i.e. if we relabel a good edge to be

bad, or vice versa, it is clear that the graph G does not contain any Hamiltonian

cycles and we can stop the procedure.

In order to apply the procedure at a cubic vertex v of G, we start by showing

that the graph has a simple structure locally, around v. Denote by H the subgraph
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of G induced by the set of vertices of distance at most d from v. Since the degree of

each vertex of H is at most 3, the number of vertices in H is less than p. Since H

belongs to Xp, it cannot contain small cycles and small tribranches (i.e. graphs from

the set Cp ∪ Yp). Moreover, H cannot contain large cycles and large tribranches,

because the size of H is too small (less than p). Therefore, H belongs to X , and

obviously H is connected. Thus, H is a caterpillar with hairs of arbitrary length.

Observe that each leaf u in H is at distance exactly d from v, since otherwise u has

degree 1 in G. We now start the procedure:

1. Let P be a path in H connecting two leaves and containing all vertices of

degree 3 in H.

2. If every vertex of P (except the endpoints) has degree 3, then H = Td, which is

impossible because G is Td-free. Therefore, P must contain a vertex of degree

2. Let vi be such a vertex closest to v, and let (v = v0, v1, . . . , vi) be the path

connecting vi to v = v0 (along P ).

3. The edge vivi−1 has already been labelled good, as it is incident to a vertex of

degree 2. By the choice of vi, the vertex vi−1 has degree 3, and hence it has a

neighbor u of degree 2 that does not belong to P . Therefore, the edge uvi−1

has already been labelled good.

4. If the edge vi−1vi−2 belonged to a Hamiltonian cycle in G, there would be

three edges incident to vi−1, all belonging to the same Hamiltonian cycle.

This would be impossible, so we label vi−1vi−2 to be bad.

5. Now we label other edges incident to vi−2 to be good, since if G contains a

Hamiltonian cycle, the cycle must contain the vertex vi−2, without containing

the edge vi−1vi−2. So in particular, vi−2vi−3 is then labelled good.

6. We then label vi−3vi−4 to be bad, similarly to step 4. Inductively, we label

the edges of the path (v = v0, v1, . . . , vi) good and bad, alternately.

7. If the edge v0v1 is labelled bad, then any other edges incident to v = v0

can be labelled good, and so we have labelled two edges incident to v to be

good. Otherwise, both v0v1 and the edge connecting v to the vertex of degree 2

outside P are both labelled good, so again, we have labelled two edges incident

to v to be good.

Repeating this consideration for each cubic vertex v of G, we either reach a labelling

conflict (relabelling a good edge to be bad, or vice versa) or we have labelled at least
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Figure 2.4: Transformation R

two edges incident to each vertex v to be good, in polynomial time. This completes

the proof of the lemma.

From Lemmas 2.3.5 and 2.3.6 we conclude that

Theorem 2.3.7. X is a boundary class for the hamiltonian cycle problem.

2.3.4 One more boundary class

To obtain one more boundary class, we use the transformation R represented in

Figure 2.4. It is not difficult to see that a graph G has a Hamiltonian cycle if and

only if R(G) has. Let us denote by R(X ) the class of graphs obtained from graphs

in X by application of transformation R to each cubic vertex.

Theorem 2.3.8. R(X ) is a boundary class for the hamiltonian cycle problem.

2.3.5 Concluding remarks and related open problems

We revealed the first two boundary classes of graphs for the hamiltonian cycle

problem. The existence of one more boundary class for this problem arises from

the fact that hamiltonian cycle is NP-complete in the class of chordal bipartite

graphs (i.e. in the class Free(C3, C5, C6, C7 . . .)) [Müller, 1996]. This fact implies

that there must exist a boundary subclass of chordal bipartite graphs, i.e. a class Z

together with a sequence Z1 ⊆ Z2 ⊆ Z3 . . . of subclasses of chordal bipartite graphs

such that Z = ∩Zi and the problem is NP-complete in each class in the sequence

Z1 ⊆ Z2 ⊆ Z3 . . .. In fact, X is a subclass of chordal bipartite graphs. But we claim

that X is not equal to Z. Indeed, each class Zi in the sequence must contain a
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C4, since otherwise Zi is a subclass of forests where the problem is polynomial-time

solvable. But if each class contains a C4, then Z also must contain a C4, which is not

the case for the class X . Some hints regarding the structure of graphs in a boundary

class of chordal bipartite graphs are given in the following two observations.

Observation. Let Z1 ⊆ Z2 ⊆ Z3 . . . be a sequence of subclasses of chordal bipartite

graphs such that the hamiltonian cycle problem is NP-complete in each class in

the sequence. Then the class Z = ∩Zi must contain a fork Fp (the graph obtained

from a star K1,p by subdividing one edge exactly once) for all values of p and a

domino (the graph obtained from a chordless cycle C6 by adding an edge connecting

two vertices of distance 3).

Proof. Every connected domino-free chordal bipartite graph is distance-hereditary

[Bandelt and Mulder, 1986], and the clique-width of distance-hereditary graphs is

at most 3 [Golumbic and Rotics, 2000]. Also, the clique-width is bounded by a

constant in the class of Fp-free chordal bipartite graphs for any value of p [Lozin

and Rautenbach, 2004a]. It is known [Borie et al., 2009] that the hamiltonian

cycle problem can be solved for graphs of bounded clique-width in polynomial

time. Therefore, each class in the sequence Z1 ⊆ Z2 ⊆ Z3 . . . must contain a domino

and all forks Fp. Consequently, the class Z = ∩Zi must contain a domino and all

forks Fp.

Finally, we observe that for each boundary class of bipartite graphs, there must

exist a respective class of split graphs. Indeed, a bipartite graph G = (V1, V2, E)

has a Hamiltonian cycle only if |V1| = |V2|. If in such a graph we replace V1 (or

V2) by a clique, then the split graph obtained in this way has a Hamiltonian cycle

if and only if G has. Therefore, any result on the hamiltonian cycle problem in

bipartite graphs can be transformed into a respective result in split graphs.

2.4 The k-Path Partition Problem

In this section we study an algorithmic graph problem known as the k-path partition

problem:

Definition 2.4.1. The k-path partition problem (k-PP) is, given a graph G, the

problem of finding a minimum number of vertex-disjoint (not necessarily induced)

paths of length at most k that partition V (G).
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The k-path partition problem has several real-life applications, for instance in the

field of broadcasting in computer and communication networks [Yan et al., 1997].

The problem is known to be NP-complete in the class of all graphs [Garey and

Johnson, 1979]. To get an intuition for possible applications, one might consider the

problem of minimising the number of postal delivery vans needed to service a city,

where each van can only service a limited amount of customers (or can only drive

a limited distance) on its daily route, visiting each customer at most once. Clearly

this problem can be made to correspond to minimising the number of vans needed

to service all customers.

Let us also introduce a useful variant of this problem, called the Pk-partition

problem:

Definition 2.4.2. The Pk-partition problem is, given a graph G, the decision prob-

lem of deciding whether V (G) can be partitioned into vertex-disjoint subgraphs iso-

morphic to Pk.

Each of the above two algorithmic problems has an ’induced variant’, (i.e. the

induced k-path partition problem and the induced Pk-partition problem), each de-

fined by the additional requirement that the paths in the partitions must be induced

subgraphs of the underlying graph.

In order to highlight the usefulness of the Pk-partition problem, we note that

whenever this problem is NP-hard on a graph class X, then the k-path partition

problem must also be NP-hard on X. A similar statement obviously holds for the

induced variants of the two problems, respectively.

An overview of the complexity status of the k-path partition problem for various

graph classes is given in Figure 2.5. It is of particular note that although the problem

is known to be NP-complete on the class of convex graphs [Asdre and Nikopoulos,

2007] (a superclass of biconvex graphs), and polynomial-time solvable for bipartite

permutation graphs [Steiner, 2003] (a subclass of biconvex graphs), the complexity

status remains an open problem for the class of biconvex graphs.

2.4.1 A boundary class

In a paper by Steiner, the author used a reduction from exact cover by 3-sets

to show that the 3-path partition problem is NP-complete on comparability graphs

[Steiner, 2003]. Later, similar ideas were used in [Monnot and Toulouse, 2007], with

a reduction from k-dm (the k-dimensional matching problem), to prove that the

Pk-partition problem (and the induced Pk-partition problem) remains NP-complete
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on bipartite graphs of maximum degree 3, for any fixed k ≥ 3. As discussed in the

previous section, this is enough to show NP-completeness of the k-path partition

problem for the same graph class. In this section we will extend the latter proof

with the aim of discovering the first boundary class for the k-path partition problem

(k-PP).

A graph class X will be called k-PP-easy if the k-path partition problem is

polynomial-time solvable for graphs in X, and k-PP-tough otherwise. If P 6= NP ,

the family of k-PP-tough classes is disjoint from that of k-PP-easy classes, in which

case the problem of characterisation of these two families arises. By analogy with

the induced subgraph characterisation of hereditary classes, we want to characterise

the family of k-PP-easy classes in terms of minimal classes that do not belong to this

family. Unfortunately, a k-PP-tough class may contain infinitely many k-PP-tough

subclasses, which makes the task of finding minimal k-PP-tough classes impossible.

To overcome this difficulty, we employ the notion of a boundary class, which can be

defined (in this context) as follows.

A class of graphs S will be called a limit class for the k-path partition problem

if S =
∞⋂
i=1
Si, where S1 ⊇ S2 ⊇ . . . is a sequence of k-PP-tough classes. A minimal
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limit class will be a boundary class for the problem in question.

We define Hi and Si,j,k as the graphs represented in Figure 2.6.

Definition 2.4.3. We define Si to be the class of (C3, C4, . . . , Ci, H1, H2, . . . ,Hi)-

free bipartite graphs of maximum degree 3.

Lemma 2.4.1. Let G be a graph and e an edge in G. If G′ is the graph obtained

from G by subdividing the edge e exactly by mk times, for some positive integers k

and m, then G has a Pk-partition if and only if G′ has a Pk-partition.

Proof. Denote the endpoints of e by a and b. In G′, we denote the subdivided e by

S := (a, s1, s2, . . . , smk, b).

First suppose that G has a Pk-partition P. If e does not belong to any subgraph

Pk in the partition, then G′ has a Pk-partition P ′, which we define as the union of

P with the m disjoint copies of Pk that cover S in G′. So we may assume that e

belongs to some Pk in P, say P .

We claim that one can construct a Pk-partition P ′ of G′ by replacing P with

m + 1 disjoint copies of Pk. Suppose P = (p1, p2, . . . , pi, a, b, q1, q2, . . . , qj), where

i+ j + 2 = k. Then we let

(p1, p2, . . . , pi, a, s1, s2, . . . , sj+1) and (smk−i, smk−i+1, . . . , smk, b, q1, q2, . . . , qj)

be two of the m+1 paths to replace P . It remains to find a Pk-partition of the path

(sj+2, sj+3, . . . , smk−i−1), i.e. a path on mk − (i+ 1)− (j + 1) = (m− 1)k vertices.

There is a unique way to partition P(m−1)k into m− 1 copies of Pk.

Conversely, suppose that G′ has a Pk-partition P ′. If P ′ contains a Pk-partition

of S, we can just delete its members from P ′ to construct a Pk-partition P of G.

Otherwise, P ′ must contain two disjoint k-paths of the form

(p1, p2, . . . , pi, a, s1, s2, . . . , sj+1) and (smk−i, smk−i+1, . . . , smk, b, q1, q2, . . . , qj)
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Figure 2.6: Graphs Si,j,k (left) and Hi (right)
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where i+ j+2 = k (if the equation did not hold, it would be impossible to partition

the rest of the vertices in S into copies of Pk, contradicting the existence of P ′). In

this case, we just delete these two paths, as well as the m− 1 paths contained in S

from P ′. Finally we add to P ′ a single path P := (p1, p2, . . . , pi, a, b, q1, q2, . . . , qj).

This gives us a Pk-partition P of G.

Lemma 2.4.2. Si is k-PP-tough for each i ≥ 3.

Proof. Assuming that NP 6= P, it suffices to show that the Pk-partition problem is

NP-complete on Si. To this end, choose any positive integer m such that mk ≥ i.

Since we know that the Pk-partition problem is NP-complete on bipartite graphs of

maximum degree 3, it suffices to reduce each instance of that problem to an instance

of the Pk-partition problem on Si. Given any bipartite graph G of maximum degree

3, we perform mk subdivisions on each edge of G, resulting in a new graph. Denote

this new graph by G′′. By repeated applications of Lemma 2.4.1, we know that G′′

has a Pk-partition if and only if G does. Furthermore, G′′ clearly belongs to Si.

This completes the reduction.

Lemma 2.4.2 implies that Si is a k-PP-tough class for any i. Therefore, S :=⋂
i≥3

Si is a limit class for the k-path partition problem. It is easy to see that the

graphs in S are precisely the graphs of maximum degree at most 3, each connected

component of which is a tree with at most one cubic vertex, i.e. a graph of the form

Si,j,k displayed in Figure 2.6.

Our aim is to show that S is a minimal limit class. To this end, we use

Lemma 1.4.7, which is reproduced here for the convenience of the reader.

Lemma 2.4.3. An A-limit ideal X = Free(M) is minimal (i.e. boundary) if and

only if for every element x ∈ X there is a finite set T ⊆M such that Free({x}∪T ) ∈
A.

We will apply Lemma 2.4.3 in the case where X = S and A is the family of

k-PP-easy graph classes.

Lemma 2.4.4. Let G ∈ S and suppose G has s connected components. Choose a

positive integer constant t such that each connected component of G is an induced

subgraph of St,t,t, i.e. G ≤ sSt,t,t. Then the class

F := Free(G,K1,4, C3, . . . , C2t+1, H1, . . . ,H2t+1)

is k-PP-easy.
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Proof. For the purposes of our proof, we may assume that G = sSt,t,t . We claim

the following:

Claim 2.4.5. Let T be the class of graphs whose each connected component contains

at most one cycle. If the k-path partition problem is polynomial-time solvable for T ,

then the k-path partition problem is polynomial-time solvable for F .

Let us first show that the claim suffices to imply the Lemma. To do this, we

prove that for any T ∈ T , it is possible to find a minimum k-path partition of T

in polynomial time. For this purpose, we can clearly assume that T is connected

(we could otherwise consider each connected component of T in turn). If T is a

tree, we can apply a result from [Yan et al., 1997] stating that the k-path partition

problem is polynomial-time solvable for trees. If T contains exactly one cycle, this

cycle must be an induced subgraph of T . Choose any vertex v on the cycle. For

any possible k-path partition of T , its members must avoid at least one edge on the

cycle which is at distance of at most k/2 from v. By altering which one of these

k + 1 edges is deleted, we can create k + 1 different trees. We may assume that

k + 1 ≤ n := |V (T )| (since T certainly cannot have a path of length greater than

n). Thus there are at most n different trees to check, each of which can be checked

in polynomial time. Thus the claim implies the lemma.

We proceed to prove the claim, with the aim of inductively reducing each graph

F ∈ F to at most c(s) := 3s graphs whose each connected component has at most

one cycle. Suppose that F ∈ F has a connected component with at least two cycles.

Then, by assumption, the connected component must contain two distinct induced

cycles C := Cr and C ′ := Cl such that r, l ≥ 2t+ 2.

Choose a vertex w of C ′ that does not lie in C. Suppose v is a vertex of C that

minimises d(v, w), and let P ′ be the minimal induced path joining v and w. We

claim that there exists a copy of St,t,t in F , centered at v.

Clearly P ′ is disjoint from C \ {v}, by definition of v. If d(v, w) ≥ t, then it is

easy to see that F contains an induced copy of St,t,t, centered at v. Now assume that

d(v, w) < t. Clearly there are two disjoint induced copies of Pt in C ′, each starting

at w. Let us denote these two paths by P1 and P2. At least one of the two paths, say

P1, is disjoint from P ′ (otherwise F would contain an induced cycle on less than 2t+2

vertices, contradicting our assumption). So there exists a subpath P ′′ of P ′ ∪P1, of

length t+ 1 and starting at v. Then P ′′ is disjoint from C \ {v} (otherwise F would

contain an induced cycle on less than 2t+2 vertices, contradicting our assumption).

Also in this case, F clearly contains an induced copy of St,t,t, centered at v. Thus,

in any case, there exists a copy of St,t,t centered at v.
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For any possible k-path partition of F , its members must avoid at least one

neighbor of v. By altering which of these k edges is deleted, we can create 3 graphs

F2.

Now for each of the three choices of F2, supposing that F2 has a connected

component containing at least two cycles, we can similarly find a cycle C2 ∈ F2 and

a vertex v2 ∈ C2 such that there is a copy of St,t,t centered at v2. Furthermore we

may assume v2 6= v, since v is of degree less than 3 in F2, by construction. We can

then proceed to create 3 graphs F3.

Inductively, for each possible sequence (F, F2, . . . , Fi), supposing that Fi has a

connected component containing at least two cycles, we can find a cycle Ci ∈ Fi and

a vertex vi ∈ Ci such that there is a copy of St,t,t centered at vi. Furthermore we

may assume vi /∈ {v1, . . . , vi−1}, since the vertices of {v1, . . . , vi−1} are all of degree

less than 3 in Fi, by construction. We can then proceed to create 3 graphs Fi+1.

We note that any two copies of St,t,t with different central vertices in F are

disjoint and without any edges between them. This follows directly from the fact

that F is (H1, . . . ,H2t+1)-free. Furthermore, since F is (C3, . . . , C2t+1)-free, edge

deletions cannot create any new induced copies of St,t,t in F ; i.e. whenever F

contains St,t,t as a subgraph, it must contain it as an induced subgraph. In any

sequence (F, F2, . . . , Fs+1), we have found s disjoint induced copies of St,t,t, such

that there are no edges between any two of them, contradicting the assumption that

F is G-free. Thus there are at most 3s sequences (F, F2, . . . , Fj), where j ≤ s, and

Fj is a graph whose each connected component contains at most one cycle.

This concludes the proof of the claim, which in turn implies the Lemma.

Lemmata 2.4.3 and 2.4.4 together imply the following theorem.

Theorem 2.4.6. S is a boundary class for the k-path partition problem.

2.4.2 Concluding remarks and related open problems

We revealed the first boundary class of graphs for the k-path partition problem.

The existence of one more boundary class for this problem arises from the fact that

the problem is NP-complete in the class of convex graphs (which is a subclass of

chordal bipartite graphs, i.e. the class Free(C3, C5, C6, C7 . . .)) [Asdre and Nikopou-

los, 2007]. This fact implies that there must exist a boundary subclass of convex

graphs, i.e. a minimal class X defined by a sequence X1 ⊇ X2 ⊇ X3 . . . of subclasses

of convex graphs such that X = ∩Xi and the problem fails to be polynomial-time

solvable in each class of the sequence X1 ⊇ X2 ⊇ X3 . . ..
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There also remain some interesting graph classes for which the complexity status

of k-PP is open. The path partition problem is different from the k-path partition

problem in that there is no upper bound on the lengths of the paths in the desired

partition. In [Yaeh and Chang, 1998], it was shown that the path partition problem

is polynomial-time solvable in the class of bipartite distance-hereditary graphs. (The

proof uses a similar technique to that of the proof that k-PP is polynomial-time

solvable for trees [Yan et al., 1997].) The k-path partition problem, however remains

of unknown complexity on this class. Also, as mentioned in the previous section,

the complexity of k-PP is also unknown for the class of biconvex graphs.

2.5 The Dominating Induced Matching Problem

Given an edge e in a graph G, we say that e dominates itself and every edge sharing

a vertex with e. An induced matching in G is a subset of edges such that each edge

of G is dominated by at most one edge of the subset. In this section, we study

the problem of determining whether a graph has a dominating induced matching,

i.e., an induced matching that dominates every edge of the graph. This problem is

also known in the literature as efficient edge domination. Alternatively, the

problem can be viewed as a restricted version of vertex 3-colorability, i.e., the

problem of determining whether the vertices of a graph can be partitioned into three

independent sets. In the dominating induced matching problem we are looking

for a partition of a graph into three independent sets such that two of them induce

a 1-regular graph.

One more related problem is that of finding in a graph an induced matching

of maximum cardinality. Recently, it was shown in [Cardoso et al., 2008] that an

induced matching in a graph is dominating only if it is maximum in terms of its size.

Finding a maximum induced matching is a well-studied problem, which is NP-hard

in general graphs and in many particular classes such as bipartite graphs of degree

at most three [Lozin, 2002] or line graphs [Kobler and Rotics, 2003]. On the other

hand, the problem is known to be polynomial-time solvable for chordal graphs and

interval graphs [Cameron, 1989], circular-arc graphs [Golumbic and Laskar, 1993],

weakly chordal graphs [Cameron et al., 2003], convex graphs [Brandstädt et al., 2007]

and many other special classes (see e.g. [Cameron, 2004; Chang, 2004; Golumbic

and Lewenstein, 2000; Kobler and Rotics, 2003]).

The complexity of the dominating induced matching problem in special

graph classes is less explored. It is known that the problem is NP-complete in general

[Grinstead et al., 1993] and in some particular classes such as planar bipartite graphs
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[Lu et al., 2002] and d-regular graphs [Cardoso et al., 2008] (also see [Kratochv́ıl,

1994] for the case d = 3). Polynomial-time solutions are available only for bipartite

permutation graphs [Lu and Tang, 1998], chordal graphs [Lu et al., 2002] and claw-

free graphs [Cardoso and Lozin, 2009].

Our contribution to the topic is as follows. In Section 2.5.1, we identify the first

boundary class for this problem, and in Section 2.5.2 we extend two polynomial-

time results to larger classes. In particular, we show how to solve the problem

in polynomial-time for convex (bipartite) graphs (extending the result for bipar-

tite permutation graphs) and for E-free graphs (extending the result for claw-free

graphs).

A graph class X will be called DIM -easy if the dominating induced match-

ing problem is polynomial-time solvable for graphs in X, and DIM -tough otherwise.

If P 6= NP , the family of DIM -tough classes is disjoint from that of DIM -easy

classes, in which case the problem of characterization of these two families arises. By

analogy with the forbidden induced subgraph characterization of hereditary classes,

we want to characterize the family of DIM -easy classes in terms of minimal classes

that do not belong to this family. Unfortunately, a DIM -tough class may contain

infinitely many DIM -tough subclasses, which makes the task of finding minimal

DIM -tough classes impossible. To overcome this difficulty, we employ the notion

of a boundary class, which can be defined (in this context) as follows.

A class of graphs X will be called a limit class for the dominating induced

matching problem if X =
∞⋂
i=1

Xi, where X1 ⊇ X2 ⊇ . . . is a sequence of DIM -

tough classes. A minimal limit class will be a boundary class for the problem in

question.

2.5.1 A boundary class

Throughout the rest of the section we denote by Sk the class of (C3, . . . , Ck, H1, . . . ,Hk)-

free bipartite graphs of vertex degree at most 3 and by S the intersection
⋂
k≥0

Sk.

(See Figure 2.6 for the definition of Hi.)

The main result of this section is that the class S is a boundary class for the

dominating induced matching problem. First, we show that S is a limit class

for the problem and then we prove its minimality.

From [Grinstead et al., 1993] we know that determining if G has a dominating

induced matching is an NP-complete problem. Moreover, it is NP-complete even

for bipartite graphs [Lu et al., 2002] and graphs of vertex degree at most three

[Kratochv́ıl, 1994]. In this section, we strengthen these results by showing that the
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problem is NP-complete in the class Sk for any value of k. To this end, we use the

following technical lemma of Cardoso & Lozin:

Lemma 2.5.1. Let G be a graph and e an edge in G. If G′ is the graph obtained

from G by subdividing the edge e exactly three times, then G has a dominating

induced matching if and only if G′ has.

Proof. Denote the endpoints of e by a and b, and the three vertices subdividing the

edge e by x, y, z. Assume first that G has a dominating induced matching M . If

e = ab ∈ M , then the set M ′ = (M ∪ {ax, zb}) − {ab} is a dominating induced

matching in G′. If e = ab 6∈M and e is dominated by a certain edge of M incident

to a, then M ′ = M ∪ {yz} is a dominating induced matching in G′.

Conversely, suppose G′ has a dominating induced matching M ′. If neither xy

nor yz belong to M ′, then ax, zb ∈ M ′ and hence M = (M ′ − {ax, zb}) ∪ {ab} is

a dominating induced matching in G. Assume now without loss of generality that

yz ∈M ′. Then the set M = M ′ − {yz} is a dominating induced matching in G.

A direct consequence of this lemma is the following result, again by Cardoso &

Lozin.

Lemma 2.5.2. For any k, the dominating induced matching problem is NP-

complete in the class Sk.

Proof. We prove the lemma by reducing the problem from graphs of vertex degree

at most three, where the problem is known to be NP-complete.

Let G be a graph of vertex degree at most 3 and G′ a graph obtained from G by

a triple subdivision of an edge of G. Then G′ is also of degree at most three and it

has a dominating induced matching if and only if G has. If we subdivide each edge

e := ab of G three times, transforming e into e′ := axyzb, then we obtain a bipartite

graph. One can easily verify this by putting {a, y, b} in one color class and {x, z} in

the other, for each edge e of G. Applying this operation repeatedly, we can get rid of

small induced cycles and small induced graphs of the form Hi. The resulting graph

is bipartite, of maximum degree three and it has a dominating induced matching if

and only if G has. This proves the lemma.

Lemma 2.5.2 implies that Sk is a DIM -tough class for any k. Therefore, S =⋂
k≥0

Sk is a limit class for the dominating induced matching problem.

Next, we show that S is a minimal limit class for this problem.
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In general, the proof of minimality is not a trivial task. However, for the class

S some helpful tools have been developed in [Alekseev et al., 2007]. In particular,

it was shown that in the proof of minimality of the class S for an algorithmic

graph problem Π the following lemma plays a key role, where a monotone class is

a hereditary class closed under deletion of edges from graphs in the class. (This

lemma will only hold for specific algorithmic graph problems Π.)

Lemma 2.5.3. If X is a monotone graph class such that S 6⊆ X, then Π is polynomial-

time solvable for graphs in X.

The crucial role of the above lemma in the proof of minimality of S is based on

the following conclusion derived in [Alekseev et al., 2007].

Lemma 2.5.4. Let Π be a problem for which Lemma 2.5.3 holds. Then S is a

boundary class for Π whenever it is a limit class for the problem.

In order to show that Lemma 2.5.3 holds for the dominating induced match-

ing problem, we will use the following result from [Boliac and Lozin, 2002]. Knowing

the precise definition of the graph parameter called clique-width is not vital here, so

we postpone the relevant discussion until the following chapter.

Lemma 2.5.5. If X is a monotone graph class such that S 6⊆ X, then the clique-

width of graphs in X is bounded by a constant.

Now all we have to do to prove the minimality of the class S for the dominat-

ing induced matching problem is to show that the problem is polynomial-time

solvable for graphs of bounded clique-width.

Lemma 2.5.6. The dominating induced matching problem can be solved in

polynomial time in any class of graphs where clique-width is bounded by a constant.

Proof. In [Courcelle et al., 2000], it was shown that any decision problem expressible

in MSOL(τ1) (Monadic Second-Order Logic with quantification over subsets of ver-

tices, but not of edges) can be solved in linear time in any class of graphs of bounded

clique-width. The dominating induced matching problem can be expressed in

MSOL(τ1) in the following way:

∃B,W (Partition(B,W ) ∧ InducedMatching(B) ∧ IndependentSet(W )),
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where Partition(B,W ), InducedMatching(B) and IndependentSet(W ) are defined

by

Partition(B,W ) = ∀v(B(v) ∨W (v)) ∧ ¬∃u(B(u) ∧W (u)),

IndependentSet(W ) = ∀u, v((W (u) ∧W (v))→ ¬∃E(u, v)),

InducedMatching(B) = ∀u(B(u)→ ∃!v(B(v) ∧ E(u, v)).

Summarizing the above discussion we conclude that

Theorem 2.5.7. The class S is a boundary class for the dominating induced

matching problem.

2.5.2 Polynomial-time algorithms

In this section, we attack the problem from the polynomial side. Some partial

results of this type follow from Lemma 2.5.6. It is known that the clique-width

is bounded for P4-free graphs and some of their generalizations [Makowsky and

Rotics, 1999], distance-hereditary graphs [Golumbic and Rotics, 2000], and some

other classes (see e.g. [Lozin and Rautenbach, 2004b]). Together with Lemma 2.5.6,

this implies polynomial-time solvability of the problem in all those classes. On the

other hand, let us observe that boundedness of the clique-width is sufficient but not

necessary for polynomial-time solvability of the problem. Indeed, the clique-width

is bounded neither in chordal graphs [Makowsky and Rotics, 1999] nor in bipartite

permutation graphs [Brandstädt and Lozin, 2003], the only two previously known

classes with polynomial-time solvable dominating induced matching problem.

The NP-completeness result proved in the previous section suggests directions for

further steps in the search for DIM -easy classes.

Unless P = NP , according to Lemma 2.5.2, the problem is solvable in polyno-

mial time in a class of graphs X = Free(M) only if X excludes graphs from all

classes Sk, i.e., only if

(1) M ∩ Sk 6= ∅ for each k.

On the other hand, if the problem is solvable in polynomial time in any class X =

Free(M) satisfying (1) then obviously S is the only boundary class for the problem.

Proving or disproving uniqueness of the class S is a challenging research problem.

In this section, we restrict ourselves to distinguishing three major ways to satisfy

(1).

One way to satisfy (1) is to include in M a graph G belonging to S, which means

G has no induced cycles, no induced graphs of the form Hi and no vertices of degree

more than three. In other words, every connected component of G is of the form
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Si,j,k represented in Figure 2.6. Cardoso & Lozin studied the class of S1,1,1-free

graphs, also known as the claw-free graphs, and proved that the problem is solvable

in polynomial time in this class [Cardoso and Lozin, 2009].

If we do not include in M a graph G ∈ S, then to satisfy (1) M must contain

infinitely many graphs. Two basic ways to satisfy (1) with infinitely many graphs are

M ⊇ {Cp, Cp+1, . . .} and M ⊇ {Hp, Hp+1, . . .} for a constant p. Both polynomially

solvable cases mentioned in the introduction (bipartite permutation [Lu and Tang,

1998] and chordal graphs [Lu et al., 2002]) deal with graphs that do not contain

large induced cycles. We present a result of this type by extending polynomial-time

solvability of the problem from the class of bipartite permutation graphs to the class

of convex graphs. Finally, we consider classes Free(M) with M ⊇ {Hp, Hp+1, . . .}
and prove solvability of the problem in such classes whenever the degree of vertices

is bounded by a constant.

In our solution, we will use an alternative definition of the dominating induced

matching problem which asks to determine if the vertex set of a graph G admits a

partition into two subsets W and B such that W is an independent set and B induces

a 1-regular graph. Throughout the section we will call the vertices of W white and

the vertices of B black, and the partition V (G) = B ∪W black-white partition of

G. In other words, a graph G has a dominating induced matching if and only if G

admits a black-white partition. We will use these two notions interchangeably.

An assignment of one of the two possible colors to each vertex of G will be called

a coloring of G. A coloring is partial if only part of the vertices of G are assigned

colors, otherwise it is total. A partial coloring is valid if no two white vertices are

adjacent and no black vertex has more than one black neighbor. A full coloring is

valid if no two white vertices are adjacent and every black vertex has exactly one

black neighbor.

Before we proceed to give specific solutions, let us make a few observations valid

for arbitrary graphs. First, without loss of generality we will assume that

(A1) all of our graphs are connected, because for a disconnected graph G the prob-

lem is solvable if and only if it solvable for every connected component of

G.

We can also assume that

(A2) G has no induced path with three consecutive vertices of degree 2, because

any three consecutive vertices of degree 2 can be replaced by an edge and the

modified graph has a dominating induced matching if and only if the original

one has (Lemma 2.5.1).
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The assumption A2 implies in particular that any vertex of degree 1 is connected

to the nearest vertex of degree more than 2 by a chordless path of length at most 3.

Moreover, it is not difficult to see that if the length of the path is 3, we can delete

this path and the new graph has a dominating induced matching if and only if the

original one has. Therefore, in what follows we assume that

(A3) any vertex of degree 1 is connected to the nearest vertex of degree more than

2 by a chordless path of length at most 2.

Definition 2.5.1. A vertex of degree 1 will be called a leaf and the only neighbor

of a leaf will be called a preleaf.

It is not difficult to see that

Lemma 2.5.8. In any black-white partition of G, each preleaf is black.

This simple observation shows that analysis of local properties of a graph G may lead

to a partial coloring of G. With a more involved analysis, some stronger conclusions

can be made.

Application of Lemma 2.5.8 may lead either to the conclusion that the input

graph has no dominating induced matching or to a partial coloring of the graph.

We will assume that any partial coloring is maximal (i.e., cannot be extended to a

larger coloring) under some simple rules. The three obvious rules are

R1 : each neighbor of a white vertex must be colored black;

R2 : all neighbors of two black adjacent vertices must be colored white;

R3 : each vertex that has two black neighbors (not necessarily adjacent) must be

colored white.

Three other rules that will be used in our solutions are not so obvious, but are also

simple:

R4 : if a vertex v belongs to a triangle T and has a neighbor w outside T , then v

and w must be colored differently;

R5 : in any induced C4, any two adjacent vertices must be colored differently;

R6 : if a preleaf v is adjacent to more than one leaf, then all but one leaf adjacent

to v can be colored white.
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The main strategy in our polynomial-time solutions is the following. The algo-

rithm starts by finding an initial partial coloring of the input graph G by analyzing

local properties of G. Then the algorithm incrementally extends the partial col-

oring by application of the above rules and some more specific considerations. At

each step of the algorithm, we delete from G those colored vertices that have no

neighbors among uncolored ones (as they have no importance for the completion of

the procedure) and denote the resulting graph G0. By Rule R1, any colored vertex

of G0 is black, and by Rule R2, the set of colored vertices of G0 is independent.

Application of the above strategy either leads to a conflict (two adjacent vertices

colored white or a black vertex with more than one black neighbor) or reduces the

problem to a graph G0 for which the solution is simple.

A polynomial-time algorithm for convex graphs

Definition 2.5.2. A convex graph is a bipartite graph G = (V1, V2, E) in which at

least one of the parts, V1 or V2, has the adjacency property, i.e., the vertices in that

part can be ordered so that for any vertex v in the opposite part, N(v) forms an

interval (the vertices of N(v) appear consecutively in the order).

The class of convex graphs generalizes several important subclasses such as bi-

convex graphs and bipartite permutation graphs (see e.g. [Brandstädt et al., 1999]).

In the latter class, the dominating induced matching problem has a polynomial-

time solution [Lu et al., 2002]. In the present section, we extend this result to convex

graphs.

It is known (and can be easily seen) that no cycle of length more than 4 is

convex. Three other non-convex graphs that play an important role in our solution

are X, Y and Z, represented in Figure 2.7.
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Figure 2.7: Graphs X (left), Y (middle), and Z (right)

Lemma 2.5.9. The graphs X, Y and Z are not convex.

Proof. To prove the lemma for the graph X, assume by symmetry that the part of X

containing a0 has the adjacency property. Then both triples a0, b1, c0 and a0, d1, c0
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must create intervals, which means the vertices b1, a0, c0, d1 create an interval with

a0, c0 being in the middle. But then a0, a2 cannot create an interval. Therefore, X

is not convex.

Let v be the vertex of degree 3 in Y . The the part of Y containing v cannot have

the adjacency property, since otherwise v would be consecutive with three different

vertices in its part. Suppose the other part of Y has the adjacency property. Then

the three vertices adjacent to v must create an interval, and the middle vertex of

this interval must be also consecutive with one more vertex, which is impossible.

Therefore, Y is not convex.

Let v be a vertex of degree 3 in Z. By symmetry, we may assume that the part

of Z containing v has the adjacency property. But then v must be consecutive with

three different vertices in its part, which is impossible. Hence Z is not convex.

To solve the problem for a convex graph G, we start by coloring the vertices of

each C4 in G. According to Rule R4, the colors must alternate along the cycle in any

valid coloring of a C4. So, in general, an induced C4 admits two possible colorings.

However, as we prove below, in a convex graph only one coloring is possible, and

this coloring can be determined in a polynomial time.

Lemma 2.5.10. In a convex graph any C4 is uniquely colorable, and the only pos-

sible coloring of a C4 can be determined in polynomial time.

Proof. Let G be a convex graph and let vertices a0, b0, c0, d0 induce a C4. We will

illustrate the proof with the help of the picture of the graph X in Figure 2.7. The

algorithm that determines a coloring of the C4 = G[a0, b0, c0, d0] can be described

as follows.

Algorithm C4

1. If G[a0, b0, c0, d0] cannot be extended to an induced subgraph of G isomorphic

to X[a0, b0, c0, d0, a1, c1], then color a0 white.

2. If G[a0, b0, c0, d0, a1, c1] cannot be extended to an induced subgraph of G iso-

morphic to X[a0, b0, c0, d0, a1, b1, c1, d1], then color b0 white.

3. If G[a0, b0, c0, d0, a1, b1, c1, d1] cannot be extended to an induced subgraph of G

isomorphic toX[a0, b0, c0, d0, a1, b1, c1, d1, a2, c2], then color a0 black, otherwise

color a0 white.

Clearly, the algorithm has a polynomial running time. Now let us prove the

correctness of the algorithm.
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Suppose G[a0, b0, c0, d0] cannot be extended to X[a0, b0, c0, d0, a1, c1] and assume

by contradiction that there is a valid coloring of G in which a0, c0 are black and

b0, c0 are white. Denoting by a1 the unique black neighbor of a0 and by c1 the

unique black neighbor of c0, we conclude that G[a0, b0, c0, d0, a1, c1] is isomorphic to

X[a0, b0, c0, d0, a1, c1], which contradicts the assumption. This contradiction proves

the correctness of Step 1 of the algorithm.

SupposeG[a0, b0, c0, d0, a1, c1] cannot be extended toX[a0, b0, c0, d0, a1, b1, c1, d1]

and assume by contradiction that there is a valid coloring of G in which b0, d0 are

black and a0, c0 are white. Then a1, c1 are black (Rule R1). Denoting by b1 the

unique black neighbor of b0 and by d1 the unique black neighbor of d0 and remem-

bering that a black vertex cannot have more than one black neighbor, we conclude

that G[a0, b0, c0, d0, a1, b1, c1, d1] is isomorphic to X[a0, b0, c0, d0, a1, b1, c1, d1], which

contradicts the assumption. This contradiction proves the correctness of Step 2 of

the algorithm.

To show the correctness of Step 3, suppose G[a0, b0, c0, d0, a1, b1, c1, d1] can-

not be extended to X[a0, b0, c0, d0, a1, b1, c1, d1, a2, c2] and assume by contradiction

that there is a valid coloring of G in which a0, c0 are white and b0, d0 are black.

Then a1, c1 are black (Rule R1). Denoting by a2 the unique black neighbor of

a1 and by c2 the unique black neighbor of c1 and remembering that a black ver-

tex cannot have more than one black neighbor and that G has no induced cy-

cles except C4, we conclude that G[a0, b0, c0, d0, a1, b1, c1, d1, a2, c2] is isomorphic to

X[a0, b0, c0, d0, a1, b1, c1, d1, a2, c2], which contradicts the assumption. This contra-

diction proves the correctness of the first part of Step 3 of the algorithm.

The prove the second part of Step 3, suppose that G[a0, b0, c0, d0, a1, b1, c1, d1]

admits an extension to X[a0, b0, c0, d0, a1, b1, c1, d1, a2, c2] and assume by contra-

diction that there is a valid coloring of G in which a0, c0 are black and b0, d0 are

white. Then b1, d1 are black (Rule R1). Denoting by b2 the unique black neigh-

bor of b1 and by d2 the unique black neighbor of d1 and remembering that a

black vertex cannot have more than one black neighbor and that G has no in-

duced cycles except C4, we conclude that G[a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2] =

X[a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2], which is not possible because the latter

graph is not convex. This contradiction completes the proof of the lemma.

Lemma 2.5.10 and assumption A1 reduce the problem from convex graphs to

connected graphs without cycles, i.e., trees. Moreover, we will show that with the

help of Lemma 2.5.8 and rules R1 − R6 the problem further reduces to trees of a

special form which we call τ -caterpillars.
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Definition 2.5.3. A τ -caterpillar is a tree of vertex degree at most 3 in which

• all vertices of degree 3 lie on a single path,

• no two vertices of degree 3 are adjacent,

• the distance between any vertex of degree 3 and a nearest leaf is at most 2.

As before, we denote by G0 the subgraph of G obtained by deletion of those

colored vertices that have no neighbors among uncolored ones.

Claim 2.5.11. Let v be a vertex of degree at least 3 in G0. Then

• v has degree 3,

• each neighbor of v has degree at most 2,

• either v is a preleaf or v is adjacent to a preleaf.

Proof. Assume first that v is not adjacent to a leaf. To avoid an induced Y (Fig-

ure 2.7), at least one of the neighbors of v, say w, is a preleaf. By Rule R6, w

has degree 2 and by Lemma 2.5.8, w is colored black. Therefore, by Rule R3, no

other neighbor of v is a preleaf (otherwise v is white and hence does not belong to

G0). This implies that no neighbor of v has degree more than 2 (since otherwise

an induced Z arises) and the degree of v is exactly 3 (since otherwise an induced Y

arises).

Suppose now that v is adjacent to a leaf u. Then, by Lemma 2.5.8, v is black and

by Rule R6, u is the only leaf adjacent to v. No neighbor x of v is a preleaf, since

otherwise neither x nor v belong to G0 (Rule R2). This implies that the degree of v

is exactly 3 (since otherwise an induced Y arises) and no neighbor x of v has degree

more than 2 (since otherwise we are in the conditions of the previous paragraph

with respect to x, in which case x cannot be adjacent to a vertex of degree at least

3).

Lemma 2.5.12. G0 is a τ -caterpillar.

s s s s s s s s s s s s sss s ss s ss

Figure 2.8: An example of a τ -caterpillar
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Proof. The lemma is obviously true if G0 has at most 2 vertices of degree 3. Assume

now that G0 has at least three vertices of degree 3 and suppose by contradiction

that there is no path containing all of them. Then G0 must contain three vertices

u, v, w of degree 3 with no path containing them. Denote by P be the unique path

connecting u to w in G0 and by P ′ a shortest path connecting v to a vertex x of P .

By assumption x 6= u, v (otherwise P ∪ P ′ is a path containing all three vertices).

Then x is also a vertex of degree 3. By Claim 2.5.11, x is adjacent to none of the

vertices u, v, w, but then G0 contains Y as an induced subgraph. This contradiction

proves the lemma.

We denote by P = (v0, v1, . . . , vp) a maximal path containing all vertices of

degree three of G0. The maximality implies that both v0 and vp have degree 1 in

G0. According to the definition of a τ -caterpillar, there are two types of vertices of

degree 3 in G0: preleaves (type 1) and vertices adjacent to a preleaf (type 2). No

vertex v of degree three can be simultaneously of type 1 and type 2, since otherwise

v must be colored black and one of its neighbors must be colored black, in which

case neither v nor its black neighbor belong to G0.

If vi is of type 1, we denote by vi,1 the leaf adjacent to vi, and if vi is of type

2, we denote by vi,1 and vi,2, respectively, the preleaf adjacent to vi and the leaf

adjacent to vi,1.

To complete the procedure of coloring of G0, we will use, in addition to rules

R1−R6, one more rule:

R7 : if vi is of type 2, then color vi−2 and vi+2 black. To prove correctness

of this rule, assume that vi+2 is colored white. Then vi+1 must be black.

Remembering that vi+1 has degree 2, we conclude that vi must be black as

well, since otherwise vi+1 has no black neighbor. But now the black vertex vi

has two black neighbors vi,1 and vi+1. This contradiction shows that black is

the only possible color for vi+2, and similarly for vi−2.

Lemma 2.5.13. G0 admits a total valid coloring.

Proof. According to Rules R2 and R3, between any two nearest black vertices vi

and vj (i < j) of P , there are at least 2 uncolored vertices. According to assumption

A2, the number of uncolored vertices between vi and vj is exactly 2, unless one of

the uncolored vertices is of type 2, in which case j = i+ 4 (Rule R7).

We prove the lemma by induction on the number of vertices of type 2 in G0.

If there are no vertices of type 2, then p = 3k + 2 for some k and vertices v3i+1
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(i = 0, . . . , k) are black. There are two possible ways to extend this partial coloring

to a total valid coloring:

W1: vertices v3i (i = 0, . . . , k) are colored black and all the other vertices of G0 are

colored white,

W2: vertices v3i+2 (i = 0, . . . , k) are colored black and all the other vertices of G0

are colored white.

Assume now that G0 has at least one vertex of type 2, and let vt be such a

vertex with minimum index t. Let G′0 be the subgraph of G0 induced by vertices

v0, . . . , vt−1, and G′′0 the subgraph of G0 induced by the remaining vertices. By the

inductive hypothesis, G′′0 admits a total valid coloring φ, and G′0 has no vertices of

type 2. If vt is colored black in φ, apply coloring W1 to G′0, otherwise apply coloring

W2 to G′0. It is not difficult to see that in both cases we obtain a total valid coloring

of G0.

We now summarize the above discussion in Algorithm B below. This algorithm

is robust in the sense that it does not require the input graph G to be convex. The

algorithm either finds a black-white partition of G or reports that G has no such

partition or G is not convex.

Algorithm B

Input: a graph G

Output: a black-white partition of G or report “G has no black-white partition

or G is not convex”

1. As long as G has an induced C4, apply Algorithm C4 to color the vertices of

the C4. If the partial coloring obtained in this way is not valid or the subgraph

G0 of G is not a τ -caterpillar, then STOP and output “G has no black-white

partition or G is not convex”.

2. Apply Rule R7 to G0. If the partial coloring obtained by this application is

not valid, then STOP and output “G has no black-white partition or G is not

convex”.

3. Extend the partial coloring of G0 to a full coloring according to Lemma 2.5.13

and output the black-white partition of G.

Theorem 2.5.14. Algorithm B correctly solves the dominating induced match-

ing problem for convex graphs in polynomial time.

44



Correctness of the algorithm and its polynomial running time follow directly

from the results preceding the algorithm.

It is known [Cameron et al., 2003] that finding a maximum induced matching is

polynomial-time solvable in the class of weakly chordal graphs. This class general-

izes simultaneously two polynomially solvable cases for the dominating induced

matching problem, namely, chordal graphs and convex graphs. It would be inter-

esting to investigate whether these two cases can be extended to the larger class of

weakly chordal graphs.

A polynomial-time algorithm for E-free graphs

Cardoso & Lozin gave a polynomial-time algorithm for the dominating induced

matching problem in the class of claw-free graphs [Cardoso and Lozin, 2009]. We

extend this solution to E-free graphs, where E is the graph S1,2,2 (see Figure 2.9,

where this type of graph is again reproduced for the benefit of the reader). The

graph E = S1,2,2 contains a claw (i.e. S1,1,1) as an induced subgraph, and therefore

the class of E-free graphs extends the class of claw-free graphs. So this result extends

the result of Cardoso & Lozin on claw-free graphs.
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Figure 2.9: The graph Si,j,k

As with the case of convex graphs, our strategy in solving the problem is to

incrementally extend a partial valid coloring according to certain rules. This strategy

suggests a more general framework for the problem, in which the graph is given

together with a partial valid coloring. The question is to determine if the partial

coloring can be extended to a total valid coloring. We will refer to this more general

version of the problem as extension to dominating induced matching (edim

for short).

Let us recite the rules that we will use:

R1: each neighbor of a white vertex must be colored black;

R2: each neighbor of a matched black vertex must be colored white;
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R3: each vertex that has two black neighbors must be colored white;

R4: if a vertex v belongs to a triangle T and has a neighbor w outside T , then v

and w must be colored differently;

R5: in any induced C4, any two adjacent vertices must be colored differently.

Given a graph G and a partial coloring of its vertices, we can obviously ignore

those colored vertices that have no neighbors among uncolored ones. We shall call

such vertices irrelevant. Removing irrelevant vertices from the graph can reduce the

problem to a more specific instance. In particular, the following reduction is valid

for arbitrary graphs.

Figure 2.10: A diamond (left) and a butterfly (right).

Lemma 2.5.15. The edim problem can be reduced in polynomial time from an arbi-

trary graph G to an induced subgraph G′ of G such that G′ is (diamond, butterfly,K4)-

free and any every vertex of G′ has at most one neighbor of degree 1.

Proof. Since K4 is not 3-colorable, no graph G containing a K4 has a black-white

partition. This immediately reduces the problem from general graphs to K4-free

graphs. Also, by direct inspection the reader can easily check that the diamond

and butterfly have unique valid coloring represented in Figure 2.10. Therefore, if

a graph G contains a copy of an induced diamond or butterfly, the vertices of this

copy can be colored and removed from the graph, since they become irrelevant after

coloring all their neighbors.

Finally, assume G contains a vertex that has more than one neighbor of degree

1. If G admits a black-white partition, then all these neighbors, except possibly

one, are white. Moreover, if one of these neighbors must be black, then any one of

them can be assigned this color. Therefore, all but one neighbor of degree 1 can be

colored white and removed from the graph.

The following lemma provides a useful characterization of (diamond, butterfly,K4)-

free graphs.
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Lemma 2.5.16. Let G be a (diamond, butterfly,K4)-free graph and v a vertex of

G. Then the neighborhood of v contains at most one edge.

Proof. Assume N(v) contains two edges e1 and e2. If these edges share a vertex, then

their endpoints together with v induce either a diamond or a K4. If neither e1, e2

nor any other two edges share a vertex, then the endpoints of e1 and e2 together

with v induce a butterfly.

We conclude this section with a result that will be critical for solving the problem

in the class of E-free graphs.

Theorem 2.5.17. The edim problem can be solved in polynomial time in any class

of graphs where clique-width is bounded by a constant.

Proof. In [Courcelle et al., 2000], it was shown that any decision problem expressible

in MSOL(τ1, p) can be solved in linear time in any class of graphs of bounded

clique-width. MSOL(τ1) is a Monadic Second-Order Logic with quantification over

subsets of vertices, but not of edges. MSOL(τ1, p) is the extension of MSOL(τ1) by

unary predicates representing labels attached to vertices. Therefore, to prove that

extension to dominating induced matching is expressible in MSOL(τ1, p) all

we have to do is to show that dominating induced matching is expressible in

MSOL(τ1). This was done in the proof of Lemma 2.5.6.

The solution for E-free graphs is based on a reduction of the problem to graphs

of bounded clique-width. The reduction consists of two steps. In the first step,

we reduce the problem from the entire class of E-free graphs to graphs of bounded

vertex degree in this class. In the second step, we further reduce the problem to

graphs of bounded chordality, i.e., graphs without long induced cycles. Together,

bounded vertex degree and bounded chordality imply bounded clique-width.

The first step of the reduction is valid even for the larger class of S2,2,2-free

graphs.

Lemma 2.5.18. The edim problem in the class of S2,2,2-free graphs can be reduced

in polynomial time to graphs of vertex degree of at most 11 in this class.

Proof. Let G be an S2,2,2-free graph. According to Lemma 2.5.15, we may assume

without loss of generality that G is (diamond, butterfly,K4)-free and every vertex

of G has at most one neighbor of degree 1. Suppose G has a vertex v of degree at

least 12.
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Assume G admits a black-white partition in which v is colored white. Then every

neighbor of v is colored black. By Lemma 2.5.16, the neighborhood of v contains at

most one edge. Therefore, at least 3 neighbors of v are isolated in the subgraph of

G induced by N(v). Moreover, each of these three vertices must have its own black

neighbor. But then G contains an induced S2,2,2. This contradiction shows that

every vertex of degree more than 11 in an S2,2,2-free graph must be colored black in

any black-white partition of G (if there exists any).

From now on, we assume that v (and every other vertex of degree at least 12) is

colored black. If two nonadjacent neighbors of v, say x and y, have another common

neighbor, say z, then v, x, y, and z form an induced C4, in which case both x and

y must be colored white (Rule R5) and can be removed from G. Implementing this

rule with respect to each vertex of degree at least 12 reduces the problem to the case

when no two nonadjacent neighbors of a vertex of degree at least 12 have another

common neighbor. This also reduces the degree of v. If the degree is still at least

12, then the graph has no black-white partition. Indeed, if the degree of v is at

least 12, then N(v) contains at least nine vertices each of which is isolated in the

subgraph of G induced by N(v) and each of which has a private neighbor different

from v. Since the graph is S2,2,2-free, the set of 9 private neighbors does not contain

an independent set of size 3. Therefore, by Ramsey Theorem, it contains a clique

of size 4, in which case the graph has no black-white partition.

The above discussion shows that, given an S2,2,2-free graph G, we either reduce

the problem to an induced subgraph of G of vertex degree at most 11 or conclude

that G has no dominating induced matching. The polynomiality of the reduction is

obvious.

The next lemma implements the second step of the reduction in our solution.

Lemma 2.5.19. The edim problem in the class of E-free graphs of vertex degree at

most 11 can be reduced in polynomial time to (C9, C10, C11, . . .)-free graphs in this

class.

Proof. LetG be a connected E-free graph of vertex degree at most 11. By Lemma 2.5.15,

we also assume thatG is (diamond, butterfly,K4)-free. SupposeG contains a chord-

less cycle C = (1, 2, 3, . . . , k − 1, k) of length k ≥ 9. If G coincides with C, then the

problem is trivial. Otherwise, G contains a vertex v which has at least one neighbor

on C. Keeping in mind that the graph is diamond- and butterfly-free, we conclude

that v has at most 3 neighbors on the cycle, since otherwise v is the center of an

induced E. Also if v has exactly one neighbor on C, or two neighbors of minimum

48



distance at least 3 along the cycle, or three neighbors, then there is an induced E

centered at a neighbor of v on C. From the above discussion, it follows that v has

exactly two neighbors on C, either i, i+ 2 or i, i+ 1. Let us show that

R6′: if v is adjacent to i and i+ 2, then v and i+ 1 must be colored white.

Indeed, since v, i, i+1, i+2 create a C4, vertices v and i+1 must have the same color

(Rule R5). Assume v and i + 1 are colored black, which implies i, i + 2 are white

and therefore i − 1, i + 3 are black. If the graph admits a black-white partition,

v has a black neighbor, say w. If w is adjacent neither to i nor to i + 2 then

G[i − 1, i, i + 2, i + 3, v, w] = E, and if w is adjacent both to i and to i + 2 then

G[i, i+ 2, v, w] = diamond. Therefore, w has exactly one neighbor in {i, i+ 2}, say

i. Observe that replacing i+ 1 by v creates another cycle C ′ of length k, and from

the above discussion we know that w cannot have more than 2 neighbors on C ′.

Therefore, w is not adjacent to i− 2. But then G[i− 2, i− 1, i, i+ 1, i+ 2, w] = E.

This contradiction proves validity of Rule R6′.

Applying Rule R6′ as long as possible and removing irrelevant vertices from

the graph leaves us with the case when every vertex outside C that has a neighbor

on C is adjacent to exactly two consecutive vertices of C. Also, since the graph

is (K4, diamond, butterfly)-free, we conclude that every vertex of C that has a

neighbor outside C is adjacent to exactly one vertex outside C. Moreover, the

problem can be further reduced to the case when every vertex of C has a neighbor

outside C. This can be done according to the following rules. Assume i, i+1, . . . , i+

p, i+p+1 is a list of consecutive vertices on C such that i and i+p+1 have neighbors

outside C, while i+ 1, . . . , i+ p have no neighbors outside C.

R7′: If p ≥ 3, then replacing the path i, i+ 1, i+ 2, i+ 3, i+ 4 by an edge (i, i+ 4)

transforms G into a graph G′ which has a black-white partition if and only if

G has.

To see this, assume first that G has a black-white partition. We know that

i is adjacent to a vertex outside C, while i + 1 is not, i.e., there is a triangle

containing i but not i+ 1. Therefore, by Rule R4, i and i+ 1 must be colored

differently. Suppose i is black, then i + 1 is white, implying that i + 2 and

i+ 3 are black and i+ 4 is white. Therefore, by deleting from G the vertices

i + 1, i + 2, i + 3 and connecting i to i + 4 we obtain a graph G′ which also

has a black-white partition. If i is white, then i+ 1 and i+ 2 are black, i+ 3

is white and i + 4 is black, and again G′ has a black-white partition. The

converse statement (that a black-white partition of G′ implies a black-white

partition of G) can be shown by analogy.
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R8: If p = 2, then i, i + 3 must be colored white and i + 1, i + 2 must be colored

black.

Indeed, if i + 1 is white, then i + 2 is black (Rule R1) and therefore i + 3 is

white (Rule R4). But then black vertex i + 2 has no black neighbors in G.

This contradiction shows that i + 1 must be colored black. Symmetrically,

i+ 2 must be colored black. This implies that i, i+ 3 must be colored white.

R9: If p = 1, then i+ 1 must be colored white.

Indeed, if i+1 is black, then, by Rule R4, i and i+2 are white. But then black

vertex i + 1 has no black neighbors in G. Therefore, i + 1 must be colored

white.

Applying rules R7′, R8, R9 as long as possible and removing irrelevant vertices

from the graph reduces the problem to the case when every vertex outside C with

a neighbor on C is adjacent to exactly two consecutive vertices of C, and every

vertex of C has exactly one neighbor outside C, i.e., C is of even length. Moreover,

without loss of generality, every even edge belongs to a triangle and every odd edge

does not belong to any triangle. By Rule R4, the endpoints of odd edges must be

colored differently, which in turn implies that the endpoints of even edges must be

colored differently. In other words, the colors of the vertices alternate along the

cycle, while all its neighbors outside the cycle are black. This means that we can

choose arbitrarily one of the two possible ways to color the vertices of the cycle.

By coloring, for instance, the odd vertices of C white and removing them from the

graph, and repeating this procedure for each cycle of length at least 9, we reduce

the problem to graphs without long induced cycles.

Finding an induced cycle of length at least 9 can be done in O(n9) time. All

other operations of the reduction can also be implemented in polynomial time.

We now summarize the above discussion in the following conclusion.

Theorem 2.5.20. The (extension to) dominating induced matching prob-

lem can be solved in the class of E-free graphs in polynomial time.

Proof. By Lemmas 2.5.18 and 2.5.19, the edim problem can be reduced from E-free

graphs to graph of degree at most 11 and of chordality (the length of a longest

induced cycle) at most 8. It has been shown in [Bodlaender and Thilikos, 1997]

that if a graph has chordality at most c and maximum degree at most k, then its

tree-width is at most k (k − 1)c−3. Also, in [Corneil and Rotics, 2005] it was shown

that for any graph G, the clique-width of G does not exceed 3 · 2tw(G)−1, where
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tw(G) denotes the tree-width of G. Therefore, Lemmas 2.5.18 and 2.5.19 reduce

the problem from E-free graphs to graphs of bounded clique-width. Together with

Theorem 2.5.17 this implies a polynomial-time solution to the problem in the class

of E-free graphs.

2.5.3 Concluding remarks and related open problems

Further narrowing the gap between NP-complete and polynomially solvable cases of

the dominating induced matching problem is an interesting direction for future

research. In this respect, classes of graphs without long induced paths are of particu-

lar interest. Indeed, by forbidding a path Pk we simultaneously exclude a graph from

the class S, long cycles, and long graphs of the from Hk, which are the three major

ways to satisfy condition (1) stated in the beginning of Section 2.5.2. It is known

that the clique-width of P4-free graphs is at most 2, which implies polynomial-time

solvability of many algorithmic graph problems in this class, including dominat-

ing induced matching and maximum induced matching. Furthermore, one of

these two problems, dominating induced matching, has recently been shown to

be linear-time-solvable in the class of P7-free graphs [Brandstädt and Mosca, 2011].

Apart from this resolved case, for k ≥ 5, the complexity of the two problems in the

class of Pk-free graphs is unknown.

dominating induced matching and maximum induced matching are solv-

able in polynomial time for (Pk,K1,s)-free graphs, for any fixed k and s. For the

maximum induced matching problem, this was proved in [Lozin and Rautenbach,

2004a], while for the dominating induced matching problem, this trivially fol-

lows from Lemma 2.5.21 below (by [Cardoso and Lozin, 2009]), because the vertex

degree in the input graph must be bounded by a constant (depending on s), in which

case the number of vertices of the graph is bounded by a constant (assuming the

graph is connected).

Lemma 2.5.21. If a graph G has a dominating induced matching, then the neigh-

borhood of each vertex of G induces a subgraph each connected component of which

is a star K1,s for some s.
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Chapter 3

Clique-Width

3.1 Clique-Width: A Short Introduction

The notion of clique-width of a graph was introduced in [Courcelle et al., 1993] and

is defined as the minimum number of labels needed to construct the graph by means

of the four graph operations:

1. creation of a new vertex v with label i (denoted i(v));

2. disjoint union of two labeled graphs G and H (denoted G⊕H);

3. connecting vertices with specified labels i and j (denoted ηi,j);

4. renaming label i to label j (denoted ρi→j)

The clique-width of a graph G will be denoted cwd(G).

Every graph can be defined by an algebraic expression using the four operations

above. This expression will be called a k-expression if it uses k different labels. For

instance, the cycle C5 on vertices a, b, c, d, e (listed along the cycle) can be defined

by the following 4-expression:

η4,1(η4,3(4(e)⊕ ρ4→3(ρ3→2(η4,3(4(d)⊕ η3,2(3(c)⊕ η2,1(2(b)⊕ 1(a)))))))).

Alternatively, any algebraic expression defining G can be represented as a rooted

tree, called a parse tree, whose leaves correspond to the operations of vertex creation,

the internal nodes correspond to the ⊕-operations, and the root is associated with G.

The operations η and ρ are assigned to the respective edges of the tree. Figure 3.1

shows the tree representing the above expression defining a C5.
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Figure 3.1: The tree representing the expression defining a C5

Clique-width is a relatively new notion compared to another important graph

parameter, tree-width. The notion of clique-width generalizes that of tree-width in

the sense that graphs of bounded tree-width have bounded clique-width.

The importance of these graph invariants is due to the fact that numerous prob-

lems that are NP-hard in general admit polynomial-time solutions when restricted

to graphs of bounded tree- or clique-width (see e.g. [Arnborg and Proskurowski,

1989; Courcelle et al., 2000]). The celebrated result due to Robertson and Seymour

states that for any planar graph H there is an integer N such that the tree-width

of graphs containing no H as a minor is at most N [Robertson and Seymour, 1986].

In other words, the planar graphs constitute a unique minimal minor-closed class of

graphs of unbounded tree-width. A special role in this class is assigned to rectangle

grids, because every planar graph is a minor of some large enough grid and grids

can have arbitrarily large tree-width. Therefore, grids form the only “unavoidable

minors” in graphs of large tree-width. In the study of the notion of tree-width, the

restriction to the graph minor relation is justified by the fact that the tree-width of

a graph cannot be less than the tree-width of its minor. This is not the case with

respect to the notion of clique-width. Therefore, in the study of this notion the

restriction to the graph minor relation is not valid anymore. Instead, we restrict

ourselves to the induced subgraph relation, because the clique-width of a graph can-

not be less than the clique-width of any of its induced subgraphs [Courcelle and

Olariu, 2000]. The family of hereditary graph classes is much richer than that of

minor-closed graph classes, and we believe that the set of “unavoidable induced sub-

graphs” of large clique-width is more diverse than the set of “unavoidable minors”

of large tree-width.

We’d like to find some boundary classes for a family A of hereditary classes

for which the clique-width is bounded. This would help us classify graph classes

according to whether they have bounded clique-width or not, due to Lemma 1.4.5

and Theorem 1.4.6. In this thesis, we restrict to bipartite graphs and related classes.

This restriction can be motivated as follows.
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In [Boliac and Lozin, 2002], it was shown that if X is a hereditary class of graphs

of bounded clique-width, then the number Xn of n-vertex labelled graphs in X (also

known as the speed of X) is bounded by ncn for a constant c. Also, in [Allen et al.,

2009] it was shown that if Xn is strictly less than ncn for every constant c > 0,

then the clique-width of graphs in X is necessarily bounded. Therefore, each “non-

trivial” hereditary class X of bounded clique-width satisfies nc1n ≤ Xn ≤ nc2n for

some constants c1 and c2, i.e. X is a factorial class in the terminology of [Balogh

et al., 2000].

In [Lozin et al., 2011], it was conjectured that a hereditary graph property X

is factorial if and only if the fastest of the following three properties is factorial:

bipartite graphs in X, co-bipartite graphs in X and split graphs in X. It is known

that the “only if” part of this conjecture is valid, because all minimal factorial classes

are subclasses of bipartite, co-bipartite or split graphs.

The above discussion shows the importance of bipartite, co-bipartite and split

graphs in the study of factorial classes, and hence in the study of the notion of

clique-width, since all non-trivial hereditary classes of bounded clique-width are

factorial. Moreover, speaking of the notion of clique-width of graphs in these three

classes, we may restrict ourselves, without loss of generality, to bipartite graphs only

for the following reason. Every bipartite graph G can be transformed into a split

or co-bipartite graph by applying “local” complementation (i.e. complementation

of an induced subgraph of G) at most twice. In [Kaminski et al., 2009], it was

shown that local complementation does not change the clique-width of a graph “too

much”. In other words, the clique-width of graphs in a subclass X of bipartite

graphs is bounded if and only if it is bounded in the respective subclasses of split

and co-bipartite graphs (i.e. those obtained from X by local complementations).

This observation shows the exceptional role of bipartite graphs in the study of the

notion of clique-width.

In this chapter, motivated by the importance of bipartite graphs to the study of

clique-width, we propose a general framework for constructing bipartite graphs of

large clique-width. Suggested by this framework, we identify a new boundary class

for the family of graph classes of bounded clique-width and a new minimal hereditary

graph class of unbounded clique-width. In addition, we discover one more candidate

for being a minimal class of bipartite graphs of unbounded clique-width. This class

and a related class of split graphs are discussed in Section 3.3.
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3.2 Building Bipartite Graphs of Large Clique-Width

Recently, several constructions of bipartite graphs of large clique-width have been

discovered in the literature (see e.g. [Brandstädt and Lozin, 2003; Lozin and Rauten-

bach, 2006; Lozin and Volz, 2008]). We propose a general framework for developing

such constructions and use it to obtain new results on this topic.

As we mentioned in the previous section, in the study of clique-width we may

restrict to hereditary graph classes. If a class of graphs X is not hereditary, we can

extend it to a hereditary class by adding to it all induced subgraphs of graphs in X.

The hereditary closure of X will be denoted [X].

Recently, the clique-width has been shown to be unbounded in several hereditary

classes of bipartite graphs, such as chordal bipartite graphs [Boliac and Lozin, 2002],

bipartite permutation graphs [Brandstädt and Lozin, 2003], P7-free bipartite graphs

[Lozin and Volz, 2008] and bipartite graphs of bounded vertex degree and large

girth [Lozin and Rautenbach, 2006]. Our goal is to identify minimal hereditary

classes of graphs of unbounded clique-width. From this perspective, the class of

chordal bipartite graphs is of no interest, because it properly contains another class

of unbounded clique-width, namely, bipartite permutation graphs. On the contrary,

in any proper hereditary subclass of bipartite permutation graphs the clique-width

is bounded by a constant (see [Lozin, 2008] for a related result), i.e., the role of

bipartite permutation graphs in the family of hereditary classes is analogous to the

role of planar graphs in the family of minor-closed graph classes. This makes the

class of bipartite permutation graphs critically important in the study of the notion

of clique-width. In the attempt to identify more critical classes with respect to this

notion, we propose in the next section a general framework for constructing bipartite

graphs of large clique-width.

3.2.1 Building blocks and building operations

There are exactly three minimal factorial classes of bipartite graphs: the class of

graphs of vertex degree at most 1, the class of “bipartite complements” of graphs of

vertex degree at most 1, and the class of 2K2-free bipartite graphs (also known as

chain graphs). Graphs in these three classes will be used as building blocks in our

construction of bipartite graphs of large clique-width, as follows:

Building blocks:

Bn : the graph Bn has 2n vertices x1, . . . , xn and y1, . . . , yn and edges connecting,

for each i = 1, . . . , n, vertex xi to vertices yj with j ≥ i.
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Mn : the graph Mn has 2n vertices x1, . . . , xn and y1, . . . , yn and edges connecting

vertex xi to yi for each i = 1, 2, . . . , n, i.e., Mn is a collection of n disjoint

edges.

Fn : the graph Fn is the bipartite complement of Mn.

LetXn denote any of the building blocks described above. Notice that the clique-

width of Xn is at most 3 regardless of the choice of the block. Now we define two

building operations by means of which we will create graphs of large clique-width

out of Xn. In the description of the operations, we use the following terminological

convention: given a set C = {ci,j | 1 ≤ i, j ≤ n} of n2 elements, we call the elements

ci,1, . . . , ci,n the i-th row of C, and we call the elements c1,j , . . . , cn,j the j-th column

of C.

Building operations:

* n-concatenation n ∗Xn is the graph with n2 vertices C = {ci,j | 1 ≤ i, j ≤ n}
such that any two consecutive rows of C induce a copy of Xn, and there are

no other edges in the graph.

* orthogonal concatenationX
(2)
n is the graph with 2n+n2 verticesA = {a1, . . . , an},

B = {b1, . . . , bn} and C = {ci,j | 1 ≤ i, j ≤ n} such that

◦ A ∪B and C are independent sets;

◦ in the subgraph of X
(2)
n induced by A and C, the vertices of the same

row of C have the same neighborhood, and by contracting each row of C

to a single vertex we obtain an Xn;

◦ in the subgraph of X
(2)
n induced by B and C, the vertices of the same col-

umn of C have the same neighborhood, and by contracting each column

of C to a single vertex we obtain an Xn.

Examples.

1. The graph n ∗Bn was studied in [Brandstädt and Lozin, 2003; Lozin and Rudolf,

2007]. In particular, in [Brandstädt and Lozin, 2003] it was shown that the clique-

width of n ∗ Bn is at least n/6 and that n ∗ Bn is a bipartite permutation graph.

Moreover, in [Lozin and Rudolf, 2007] it was proved that n ∗ Bn is an n-universal

bipartite permutation graph, i.e., it contains every bipartite permutation graph with

n vertices as an induced subgraph. In other words, the role of the graph n ∗ Bn in

the class of bipartite permutation graphs is analogous to the role of the grids in the

class of planar graphs. We also repeat that the role of bipartite permutation graphs
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in the family of hereditary classes is analogous to the role of planar graphs in the

family of minor closed graph classes, as [{n ∗Bn : n ≥ 1}] is a minimal hereditary

class of unbounded clique-width.

2. The graph B
(2)
n was introduced in [Brandstädt et al., 2006] and was shown there

to have clique-width at least n. Therefore, the clique-width of graphs in the class

[{B(2)
n : n ≥ 1}] is unbounded. However, whether this is a minimal hereditary class

of unbounded clique-width is an open question.

In the next two sections we will study more constructions obtained by means of

the above operations. Not each of them leads to a graph of large clique-width. For

instance, n ∗Mn is the disjoint union of n chordless paths and therefore the clique-

width of n∗Mn is at most 3. However, n-concatenation of the bipartite complement

of Mn, i.e., the graph n ∗ Fn, has large clique-width, as we show in Section 3.2.2.

Moreover, in the same section we show that F := [{n ∗ Fn : n ≥ 1}] is a minimal

hereditary class of unbounded clique-width.

In Section 3.2.3, we study the class M := [{M (2)
n : n ≥ 1}] and show that it is

also of unbounded clique-width. However, this class is not a minimal hereditary class

of unbounded clique-width. Moreover, we discover an infinite decreasing sequence

M1 ⊃M2 ⊃ . . . of subclasses of M of unbounded clique-width. We also show that

the limit class of this sequence, i.e., the class
⋂
i≥1
Mi, is unique in the sense that

by excluding any graph from this class we obtained a subclass of M of bounded

clique-width.

3.2.2 A minimal class of unbounded clique-width

Recall that F is the hereditary closure of the set {n∗Fn : n ≥ 1}. Throughout the

section, we denote the set of vertices of the graph n∗Fn by V = {vi,j : 1 ≤ i, j ≤ n}.
Also, the subgraph of n∗Fn induced by any k consecutive rows of V will be denoted

k ∗ Fn, i.e. 2 ∗ Fn = Fn.

Theorem 3.2.1. The clique-width of the graph n ∗ Fn is at least bn/2c.

Proof. Let cwd(n ∗ Fn) = t. Denote by τ a t-expression defining n ∗ Fn and by

tree(τ) the rooted tree representing τ . The subtree of tree(τ) rooted at a node x

will be denoted tree(x, τ). This subtree corresponds to a subgraph of n ∗ Fn, which

will be denoted F (x). The label of a vertex v of the graph n ∗ Fn at the node x is

defined as the label that v has immediately prior to applying the operation x.

Let a be a lowest ⊕-node in tree(τ) such that F (a) contains a full row of V .

Denote the children of a in tree(τ) by b and c. Let us color all vertices in F (b) blue
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and all vertices in F (c) red, and the remaining vertices of n ∗ Fn yellow. Note that,

by the choice of a, the graph n∗Fn contains a non-yellow row (i.e. a row each vertex

of which is non-yellow), but none of its rows is entirely red or blue. We denote the

number of a non-yellow row of n ∗ Fn by r. Without loss of generality, we assume

that r ≤ dn/2e and that the row r contains at least n/2 red vertices, since otherwise

we could consider the rows in reverse order and swap colors red and blue.

Observe that edges of n ∗Fn between differently colored vertices are not present

in F (a). Therefore, if a non-red vertex distinguishes two red vertices u and v, then

u and v must have different labels at the node a. We will use this fact to show that

F (a) contains a set U of at least bn/2c vertices with pairwise different labels at the

node a. Such a set can be constructed by the following procedure.

1. Set i = r, U = ∅ and J = {j : vr,j is red}.

2. Set K = {j ∈ J : vi+1,j is non-red}.

3. If K 6= ∅, add the vertices {vi,k : k ∈ K} to U . Remove members of K from

J .

4. If J = ∅, terminate the procedure.

5. Increase i by 1. If i = n, choose an arbitrary j ∈ J , put

U = {vm,j : r ≤ m ≤ n− 1} and terminate the procedure.

6. Go back to Step 2.

It is not difficult to see that this procedure must terminate. To complete the

proof, it suffices to show that whenever the procedure terminates, the size of U is

at least bn/2c and the vertices in U have pairwise different labels at the node a

First, suppose that the procedure terminates in Step 5. Then U is a subset of

red vertices from at least bn/2c consecutive rows of column j. Consider two vertices

vl,j , vm,j ∈ U with l < m. According to the above procedure, vm+1, j is red. Since

n ∗ Fn does not contain an entirely red row, the vertex vm,j must have a non-red

neighbor w in row m+1. But w is not a neighbor of vl,j , trivially. We conclude that

vl,j and vm,j have different labels. Since vl,j and vm,j have been chosen arbitrarily,

the vertices of U have pairwise different labels.

Now suppose that the procedure terminates in Step 4. By analyzing Steps 2

and 3, it is easy to deduce that U is a subset of red vertices of size at least bn/2c.
Suppose that vl,j and vm,k are two vertices in U with l ≤ m. The procedure certainly

guarantees that j 6= k and that both vl+1,j and vm+1,k are non-red. If m ∈ {l, l+2},
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then it is clear that vl+1,j distinguishes vertices vl,j and vm,k, and therefore these

vertices have different labels. If m /∈ {l, l+ 2}, we may consider vertex vm−1,k which

must be red. Since n∗Fn does not contain an entirely red row, the vertex vm,k must

have a non-red neighbor w in row m − 1. But w is not a neighbor of vl,j , trivially.

We conclude that vl,j and vm,k have different labels, and therefore, the vertices of

U have pairwise different labels. The proof is complete.

By Theorem 3.2.1, the clique-width of graphs in F is unbounded. Now let us

show that F is a minimal hereditary class of unbounded clique-width. To this end,

we will employ a technical lemma proved in [Lozin, 2008]. First we need a definition.

Definition 3.2.1. For a graph G and a vertex subset W ⊂ V (G), two vertices of

W are said to be W -similar if they have the same set of neighbors in V \W . The

number of equivalence classes in W with respect to W -similarity is denoted by µ(W ).

Lemma 3.2.2. If the vertices of a graph G can be partitioned into subsets V1, V2, . . .

in such a way that for each i,

(1) cwd(G[Vi]) ≤ l with l ≥ 2,

(2) µ(Vi) ≤ m and µ(V1 ∪ . . . ∪ Vi) ≤ m,

then cwd(G) ≤ lm.

In particular, Lemma 3.2.2 implies the following corollary.

Corollary 3.2.3. The clique-width of k ∗ Fn is at most 2k.

Proof. Denote by Vi the i-th column of k ∗ Fn. Since each column induces an

independent set, it is clear that cwd(G[Vi]) ≤ 2 for every i. Trivially, µ(Vi) ≤ k,

since |Vi| = k. Also, denoting Wi := V1 ∪ ... ∪ Vi, it is not difficult to see that

µ(Wi) ≤ k for every i, since the vertices of the same row in Wi are Wi-similar. Now

the conclusion follows from Lemma 3.2.2.

Now we use Lemma 3.2.2 and Corollary 3.2.3 to prove the following result.

Lemma 3.2.4. For any fixed k ≥ 1, the clique-width of k ∗ Fk-free graphs in the

class F is bounded by a function of k.

Proof. Let k be a fixed number and G be a k ∗ Fk-free graph in F . By definition

of F , the graph G is an induced subgraph of n ∗ Fn for some n. For convenience,

assume that n is a multiple of k, say n = tk. The vertices of n ∗ Fn that induce G
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will be called black and the remaining vertices of n ∗ Fn will be called white. Also,

we will refer to the set of vertices of G in the same row of n ∗ Fn as a layer of G.

For 1 ≤ i ≤ t, let us denote by Wi the subgraph of n ∗ Fn induced by the k

consecutive rows (i − 1)k + 1, (i − 1)k + 2, . . . , ik. For simplicity, we will use the

term ’row r of Wi’ when referring to the row (i − 1)k + r of n ∗ Fn. We partition

the vertices of G into subsets V1, V2, ..., Vt according to the following procedure:

1. Set Vj = ∅ for 1 ≤ j ≤ t. Add every black vertex of W1 to V1 . Set i = 2.

2. For j = 1, . . . , n,

• if column j of Wi is entirely black, then add the first vertex of this column

to Vi−1 and the remaining vertices of the column to Vi.

• otherwise, add the (black) vertices of column j preceding the first white

vertex to Vi−1 and add the remaining black vertices of the column to Vi.

3. Increase i by 1. If i = t+ 1, terminate the procedure.

4. Go back to Step 2.

Let us show that the partition V1, V2, ..., Vt given by the procedure satisfies the

assumptions of Lemma 3.2.2 with l and m depending only on k.

The procedure clearly assures that each G[Vi] is an induced subgraph of Wi ∪
Wi+1. By Corollary 3.2.3, we have cwd(Wi ∪Wi+1) = cwd(2k ∗Fn) ≤ 4k. Since the

clique-width of an induced subgraph cannot exceed the clique-width of the parent

graph, we conclude that cwd(G[Vj ]) ≤ 4k, which shows condition (1) of Lemma 3.2.2.

To show condition (2) of Lemma 3.2.2, let us call a vertex vm,j of Vi boundary if

either vm−1,j belongs to Vi−1 or vm+1,j belongs to Vi+1 (or both). It is not difficult

to see that a vertex of Vi is boundary if it belongs either to the second row of an

entirely black column of Wi or to the first row of an entirely black column of Wi+1.

Since the graph G is k ∗ Fk-free, the number of columns of Wi which are entirely

black is at most k − 1. Therefore, the boundary vertices of Vi introduce at most

2(k − 1) equivalence classes in Vi.

Now consider two non-boundary vertices vm,j and vm,p in Vi from the same row.

It is not difficult to see that vm,j and vm,p have the same neighborhood outside Vi.

Therefore, the non-boundary vertices of the same row of Vi are Vi-similar, and hence

the non-boundary vertices give rise to at most 2k equivalence classes in Vi. Thus,

µ(Vi) ≤ 4k − 2 for all i.

An identical argument shows that µ(V1 ∪ ... ∪ Vi) ≤ 3k − 1 ≤ 4k − 2 for all i.

Therefore, by Lemma 3.2.2, we conclude that cwd(G) ≤ c(k) := 16k2 − 8k, which

completes the proof.
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Theorem 3.2.5. F is a minimal hereditary class of graphs of unbounded clique-

width.

Proof. Let X be a proper hereditary subclass of F and H ∈ F −X. Since H is an

induced subgraph of k ∗ Fk for some k, each graph in X is k ∗ Fk-free. Therefore,

by Lemma 3.2.4, the clique-width of graphs in X is bounded by a constant.

3.2.3 The class M and a boundary subclass

Recall that M is the hereditary closure of the set {M (2)
n : n ≥ 1}. By analogy

with Theorem 3.2.1, one can prove the following result.

Theorem 3.2.6. The clique-width of M
(2)
n is at least n/4.

Theorem 3.2.6 shows that the clique-width of graphs in the class M is un-

bounded. However, unlike the class F studied in the previous section, M is not a

minimal hereditary class of unbounded clique-width. To show this, let us provide an

alternative definition of the graph M
(2)
n . Let Kn,n be the complete bipartite graph

with vertices a1, . . . an in one part and vertices b1, . . . bn in the other part. Denote

by Mn,n the graph obtained from the Kn,n by subdividing each edge aibj by a new

vertex cij (i.e., by introducing vertex cij on the edge aibj). It is not difficult to

see that Mn,n coincides with M
(2)
n . Therefore, every graph in M is obtained from

a bipartite graph by subdividing each of its edges exactly once (or is an induced

subgraph of such a graph). We will call the vertices of type ai or bi in Mn,n black

and the vertices of type ci,j white.

We intend to show that M is not a minimal hereditary class of unbounded

clique-width. To this end denote by Sk be the class of (C3, . . . , Ck, H1, . . . ,Hk)-free

bipartite graphs of vertex degree at most 3 and by Mk the intersection Sk ∩M.

(Hi is defined as in Figure 2.6.)

Lemma 3.2.7. For any natural k, the clique-width of graphs in Mk is unbounded.

Proof. It is known that both the clique-width and tree-width are unbounded in the

class Sk for any value of k [Lozin and Rautenbach, 2006]. Since subdivision of an

edge does not change the tree-width of a graph (see e.g. [Lozin and Rautenbach,

2006]), by subdividing each edge of graphs in Sk exactly once we obtain a class

of graphs X of unbounded tree-width. Moreover, it is known that for graphs of

bounded vertex degree, the tree-width is bounded if and only if the clique-width is

bounded [Courcelle and Olariu, 2000]. Therefore, the clique-width of graphs in X

also is unbounded, and obviously X ⊆ Sk ∩M, which proves the lemma.
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Lemma 3.2.7 shows that M is not a minimal hereditary class of unbounded

clique-width. Indeed, for any k, the class Mk is a subclass of M simply because in

Mk the vertex degree is bounded by 3, while in M it is not. Moreover, it is not

difficult to see that M2,2 = M
(2)
2 is a C8, i.e., M8 is a subclass of M2,2-free graphs

in M.

Let us denote the limit class of the sequence S1 ⊃ S2 ⊃ S3 . . . by S, i.e.,

S =
⋂
k≥1

Sk. It is not difficult to see that S is the class of graphs every con-

nected component of which is of the form Si,j,k represented in Figure 2.6. Obvi-

ously, S is a subclass ofMk for each k. Therefore, S is a limit class of the sequence

M1 ⊃ M2 ⊃ M3 . . . as well. In the rest of the section, we show that S is a min-

imal limit subclass of M, i.e., for any graph H ∈ S, the clique width of graphs

in M∩ Free(H) is bounded by a constant. This will be done through a sequence

of auxiliary lemmas. The first lemma in this sequence was proved in [Lozin and

Rautenbach, 2004b].

Lemma 3.2.8 (Lozin and Rautenbach [2004b]). For a class of graphs X and

an integer ρ, let [X]ρ be the class of graphs G such that G−U belongs to X for some

subset U ⊆ V (G) of cardinality at most ρ, and let [X]B be the class of graphs every

block of which belongs to X. If the clique-width of graphs in X is bounded by p, then

the clique-width of graphs in [X]ρ is bounded by 2ρ(p + 1), and the clique-width in

[X]B is bounded by p+ 2.

In the proofs of the next lemmas we will frequently use the following obvious

observation.

Observation. Any cycle in any graph G ∈M is chordless.

Lemma 3.2.9. For k ≥ 3, the clique-width of graphs in Lk :=M∩Free(Ck, Ck+1, . . .)

is bounded by a function of k.

Proof. For k = 3, the proposition follows from the fact that every graph in L3 is a

forest. For k > 3, we use induction on k.

Let G be a graph in Lk+1. By Lemma 3.2.8, we can assume without loss of

generality that G is 2-connected. If G contains no cycles of length k, then G ∈ Lk
in which case the lemma follows by induction. Now let C be a cycle of length k in

G. We will show that any other cycle C ′ of length k in G (if any) has a common

vertex with C. Assume the contrary: C and C ′ are vertex disjoint. Consider two

edges e ∈ C and e′ ∈ C ′. Since G is 2-connected, there is a cycle containing both

e and e′. In this cycle, one can distinguish two disjoint paths P and Q, each of
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which contains the endpoints in C and C ′, and the remaining vertices outside the

cycles. The endpoints of the paths P and Q partition each of the cycles C and C ′

into two parts. The larger parts in both cycles together with paths P and Q form

a cycle of length at least k + 2, contradicting the assumption that G ∈ Lk+1. This

contradiction shows that any two cycles of length k in G have a vertex in common.

Therefore, removing the vertices of any cycle of length k from H results in a graph

in Lk, as required.

Lemma 3.2.10. For each k ≥ 1, the clique-width of graphs in M∩ Free(Sk,k,k) is

bounded by a function of k.

Proof. Let G ∈M∩Free(Sk,k,k). Consider a chordless path P of length 2k−2 and

a chordless cycle C of length at least 2k + 2 in G. If G does not contain such P

or C, the the clique-width of G is bounded according to Lemma 3.2.9. Assume P

and C are vertex disjoint. Since G is connected, there must exist a chordless path

P ′ connecting C to P . Since only black vertices of C can have neighbors outside C,

the vertex of P ′ that has a neighbor on C is white, and therefore this vertex has

exactly one neighbor on C. Similarly, it is not difficult to see that the vertex of P ′

that has a neighbor on P is adjacent to exactly one vertex of P . But now the reader

can easily find an induced Sk,k,k. This contradiction shows that P and C contain a

vertex in common. Therefore, the graph obtained from G by deletion of the vertices

of P belongs to L2k+2, and the proposition follows from Lemmas 3.2.8 and 3.2.9.

Theorem 3.2.11. For any graph H ∈ S, the clique-width of graphs inM∩Free(H)

is bounded by a constant.

Proof. Without loss of generality we will assume that every connected component of

H is of the form Sk,k,k for some even k ≥ 2 (obviously every graph in S is an induced

subgraph of a graph of this form). Let p be the number of connected components

of H, i.e., H = pSk,k,k. We will show that the clique-width of any graph G in

M ∩ Free(H) is bounded by a function of k and p. The proof will be given by

induction on the minimum number m ≤ p such that G is mSk,k,k-free. If m = 1,

then the clique-width of G is bounded according to Lemma 3.2.10. If G contains

an induced copy of Sk,k,k, then by deleting this copy we obtain a graph G′ which

is (m − 1)Sk,k,k-free. Indeed, if G′ contains an induced copy of (m − 1)Sk,k,k, then

there are no edges between this copy and the deleted copy of Sk,k,k in G, because

k is even, which means white vertices in both copies have no neighbors outside the

copies. By the induction hypothesis, the clique-width of G′ is bounded by a function

of k and p. Therefore, by Lemma 3.2.8, the clique-width of G is bounded as well,

since the number of deleted vertices is 3k + 1.
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3.3 Bipartite Double Bichain Graphs and Split Permu-

tation Graphs

In this section, we identify one more class of bipartite graphs of unbounded clique-

width. Moreover, we conjecture that this is a minimal class of bipartite graphs of

unbounded clique-width. The related class of split graphs (i.e. graphs obtained by

replacing one of the two parts of a bipartite graph with a clique) is known in the

literature as split permutation graphs. We reveal the relationship between the two

classes in Section 3.3.1. Then in Section 3.3.2, we prove that both of them have

unbounded clique-width.

3.3.1 An overview of some properties of split graphs

In this subsection we survey and extend results on some special graph classes that

will be of interest to us. We start with a few definitions:

Definition 3.3.1. A graph is a comparability graph if its edges admit a transitive

orientation. In other words, one can direct the edges in such a way that for any

directed path xyz, there is a directed edge (arc) xz. A graph is a co-comparability

graph if it is the complement of a comparability graph.

We will define permutation graphs in more detail later. For now, we will use the

following characterisation:

Theorem 3.3.1 ([Dushnik and Miller, 1941]). A graph is a permutation graph

if it is comparability and co-comparability.

Definition 3.3.2. For a graph G and vertices v, w ∈ G, we say that v dominates

w if N(w) \ {v} ⊆ N(v). It is easy to check that domination defines a quasi-order

on V (G). This quasi-order will be called the vicinal order.

Definition 3.3.3. The Dilworth number dilw(G) of a graph G is defined as the

minimum number of chains in any partition of V (G) into chains with respect to the

vicinal order. The same definition can be adapted to subsets of V (G).

Remark. By Theorem 1.2.1 [Dilworth, 1950], dilw(G) is the maximum size of an

antichain in V (G) with respect to the vicinal order.
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Example 3.3.1. A bipartite graph such that each part has Dilworth number 1

is called a bipartite chain graph. It is trivial to show that the class of bipartite

chain graphs is precisely the class of 2K2-free bipartite graphs.

Figure 3.2: A bipartite chain graph.

Definition 3.3.4. A split graph is a graph G whose vertex set V (G) is partitionable

into a clique and an independent set.

The class of split graphs is clearly hereditary and has a well-known characteri-

sation in terms of forbidden induced subgraph, due to Földes and Hammer:

Theorem 3.3.2 ([Földes and Hammer, 1977a]). The class of split graphs is

given by Free(2K2, C4, C5). In other words a graph is a split graph iff it is chordal

and co-chordal.

There is an obvious analogy between split graphs and bipartite graphs. In order

to relate properties of these two classes, we will define the following notation to be

used in this section:

Definition 3.3.5. For a split graph G, denote by β(G) the bipartite graph obtained

from G by replacing its clique-part with an independent set.

Remark. If we think of β as a function from the class of split graphs to the class

of bipartite graphs, then β is clearly surjective. Also note that for an arbitrary

bipartite graph H, the set β−1(H) will be a well-defined subset of split graphs with

cardinality 1 or 2. For a set of split graphs G we will denote β(G) := {β(G) : G ∈ G}.
For a set of bipartite graphs H, we will denote β−1(H) := ∪H∈H β−1(H).

Let us define an important class of graphs:
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Definition 3.3.6. A graph G is a threshold graph if there exists a real number S

and a real weight w(v) for each v ∈ V (G) such that

E(G) = {((u, v) ∈ V (G)2 : u 6= v and w(u) + w(v) ≥ S}.

Threshold graphs are motivated by applications in several disciplines such as

psychology, computer science and scheduling [McKee and McMorris, 1999]. The

following characterisation is due to Chvátal and Hammer:

Theorem 3.3.3 ([Chvátal and Hammer, 1973]). A graph is a threshold graph

iff it is a split cograph, i.e. a graph belonging to Free(2K2, P4, C4, C5).

Claim 3.3.4. The class G of threshold graphs corresponds to bipartite chain graphs

in the sense that H := β(G) is the class of 2K2-free bipartite graphs and β−1(H) = G.

Proof. This follows trivially from the observation that a split graph G is P4-free iff

β(G) is 2K2-free.

Given the claim, the following theorem will not come as a surprise to the reader.

Threshold graphs are precisely those graphs that form a chain with respect to the

vicinal order:

Theorem 3.3.5 ([Földes and Hammer, 1978]). A graph G is a threshold graph

iff dilw(G) = 1.

A natural question is to ask for a characterisation of graphs G with Dilworth

number at most two.

Definition 3.3.7. A graph is a threshold signed graph (TS-graph) if there exist real

numbers S, T and a real weight w(v) for each v ∈ V (G) such that

E(G) = {((u, v) ∈ V (G)2 : u 6= v and (w(u) + w(v) ≥ S or |w(u)− w(v)| ≤ T )}

Benzaken et a.l. proved that this slight generalisation of threshold graphs gives

the class of graphs with Dilworth number at most two:

Theorem 3.3.6 ([Benzaken et al., 1985a]). G is a TS-graph iff dilw(G) ≤ 2.

Recall that class of split graphs is the intersection of chordal graphs and co-

chordal graphs. Also, the class of permutation graphs is the intersection of compa-

rability graphs and co-comparability graphs [Dushnik and Miller, 1941]. We quote

one more result:
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Proposition 3.3.7 ([Gilmore and Hoffman, 1964]). Interval graphs are exactly

the chordal co-comparability graphs.

There are many equivalent ways to characterise split TS-graphs:

Theorem 3.3.8. The following are equivalent:

1. G is a split graph with dilw(G) ≤ 2.

2. G is a split TS-graph.

3. G is a split graph that is both an interval graph and a comparability graph.

4. G is a split permutation graph.

5. G is both an interval graph and a co-interval graph.

6. G is a (3-sun, co-3-sun, rising sun, co-rising sun)-free split graph.

The equivalence of 1. and 2. is just a restatement of Theorem 3.3.6. The

equivalence of 4. and 5. follows directly from Proposition 3.3.7. Since the same

proposition implies that a split graph is an interval graph iff it is a co-comparability

graph, the equivalence of 3. and 4. is also immediate. The proof of the equivalence

of 1. and 3. is given in [Földes and Hammer, 1977b]. Finally, the proof of the

equivalence of 1. and 6. is from [Akiyama et al., 1983].

In a much-quoted paper [Benzaken et al., 1985b], the authors claim to give a

shorter proof to the result in [Akiyama et al., 1983], having found a forbidden in-

duced subgraph characterisation for the class of TS-graphs. For the reader’s benefit,

we note that in the same paper (Theorem 5), the authors misquote a result from

the paper by Földes and Hammer, making an error in justifying the equivalence of

2. and 5.

From this point forward, we will generally refer to split TS-graphs as split per-

mutation graphs.

Definition 3.3.8. • A bichain graph is a bipartite graph such that at least one

part can be partitioned into at most two chains with respect to the vicinal order.

• A double bichain graph is a bipartite graph such that each part can be parti-

tioned into at most two chains with respect to the vicinal order.

We claim that there is a natural correspondence between split permutation graphs

and double bichain graphs:
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Proposition 3.3.9. Let G denote the class of split permutation graphs. Then β(G)

is the class of double bichain graphs and β−1(β(G)) is the class of split permuta-

tion graphs. Furthermore, double bichain graphs are precisely the (3K2, C6, P7)-free

bipartite graphs.

Proof. Let G be a split permutation graph. By Theorems 3.3.5 and 3.3.8, G can

be partitioned into two threshold graphs G1 and G2, each of which is a chain in G

with respect to the vicinal order. But then β(G1) and β(G2) will offer a suitable

partition of β(G), proving that it is a double bichain graph. Conversely, for any

double bichain graph H, one can easily partition any graph in β−1(H) into two

threshold graphs, each forming a chain with respect to the vicinal order.

To prove the forbidden induced subgraph characterisation for double bichain

graphs, it suffices to refer to Theorem 3.3.8, noting that

β(3-sun, co-3-sun, rising sun, co-rising sun) = (3K2, C6, P7) and

β−1(3K2, C6, P7) = (3-sun, co-3-sun, rising sun, co-rising sun). Clearly a split graph

G is (3-sun, co-3-sun, rising sun, co-rising sun)-free iff β(G) is (3K2, C6, P7)-free.

For completeness, let us give a direct proof for the forbidden induced subgraph

characterisation of double bichain graphs. This will also allow us to make some

observations about the respective characterisation for bichain graphs.

Proposition 3.3.10. The class of double bichain graphs is the class of (3K2, C6, P7)-

free bipartite graphs.

Proof. To prove the theorem, we will show that a bipartite graph G = (U, V,E)

with a bipartition U ∪ V is (P7, C6, 3K2)-free if and only if the vertices of each part

of the graph can be partitioned into at most 2 vicinal chains.

One direction of the proof is simple, because at least one part in each of the

graphs P7, C6 and 3K2 contains three vertices which are incomparable with respect

to the vicinal order.

Now assume that G is (P7, C6, 3K2)-free. Suppose, for contradiction, that in one

part of G, say U , there is an antichain of three vertices a, b, c with respect to the

vicinal order. Then, in the part V , there exists a vertex d which is adjacent to a

but not b, and a vertex e which is adjacent to b but not a. We will split the proof

into three cases:

Case 1. Suppose c is adjacent to both d and e. Then there must exist a vertex

f which is adjacent to a but not c. Vertex b must be non-adjacent to f , otherwise

afbecd would form an induced C6. So there must exist a vertex g which is adjacent
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to b but non-adjacent to c. Again, to avoid an induced C6, the vertex g must also be

non-adjacent to a. But then fadcebg forms an induced P7, which is a contradiction.

Case 2. Now suppose that c is adjacent to exactly one of d and e, say e. Then

there must exist a vertex g which is adjacent to b but not c, and a vertex h which is

adjacent to c but not b. If a were adjacent to neither of g and h, then adbgch would

form an induced 3K2. If a were adjacent to exactly one of g and h, say g, then

dagbech would form an induced P7. Finally, if a is adjacent to both g and h, then

agbech would form an induced C6. Each of these possibilities is a contradiction.

Case 3. Finally, suppose c is non-adjacent to d and e. Then there must exist

a vertex h which is adjacent to c but not b, and a vertex i which is adjacent to c

but not a. Note that h and i must not be the same vertex, since otherwise adbech

would form an induced 3K2. The vertex a must be adjacent to h, otherwise adbech

would form an induced 3K2. Similarly, b must be adjacent to i. Now dahcibe forms

an induced P7, which is a contradiction.

We have exhausted all possible cases, each leading to a contradiction. Thus our

proof is complete.

Note that all of the contradicting copies of P7 found in the proof of Proposi-

tion 3.3.10 have the same bi-coloring with respect to the considered (P7, C6, 3K2)-

free bipartite graph G. Thus we obtain the following immediate corollary:

Corollary 3.3.11. The class of (bichain) graphs G := (U, V,E) such that U has

Dilworth number at most 2 is precisely the class of (PU7 , C6, 3K2)-free bipartite

graphs, where PU7 is a copy of P7 containing exactly three vertices in U .

Trivially, the class of double bichain graphs G := (U, V,E) is merely the intersec-

tion of the two classes of (PU7 , C6, 3K2)-free bipartite graphs and (P V7 , C6, 3K2)-free

bipartite graphs. We can make an analogous statement for the class of bichain

graphs:

Corollary 3.3.12. The class of bichain graphs G := (U, V,E) is the union of the

two classes of (PU7 , C6, 3K2)-free bipartite graphs and (P V7 , C6, 3K2)-free bipartite

graphs, where PU7 and P V7 are defined as in the the previous corollary. Thus the

class of bichain graphs is the class of {3K2, C6} ∪ S-free bipartite graphs, where S
is the set of minimal graphs containing copies of both PU7 and P V7 .

Determining the set S in Corollary 3.3.12 would result in a forbidden induced

subgraph characterisation of bichain graphs.

In terms of split graphs G := (U, V,E), with clique-part U , we obtain:
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• β(co-rising sun) = PU7

• β(rising sun) = P V7

• β(3-sun) = C6

• β(co-3-sun) = 3K2

In [Földes and Hammer, 1977b], it is shown that split interval graphs (i.e.

split co-comparability graphs) are the (3-sun, co-3-sun, rising sun)-free split graphs.

Analogously, the split co-interval graphs (i.e. split comparability graphs) are the

(3-sun, co-3-sun, co-rising sun)-free split graphs.

In other words, split interval graphs are the split graphs whose ’independent

set’-part has Dilworth number at most 2. Analogously, the split co-interval graphs

are the split graphs whose clique-part has Dilworth number at most 2.

We may thus deduce that determining the set S in Corollary 3.3.12 would also

result in a forbidden induced subgraph characterisation of the class of all split graphs

that are either comparability or co-comparability.

3.3.2 Split permutation graphs of large clique-width

In this section, we prove that the clique-width of split permutation graphs can

be arbitrarily large. We quote the following theorem by Courcelle [Courcelle, 2004]

which deals with infinite countable graphs (i.e. graph whose vertex set is countable):

Theorem 3.3.13. If a countable graph G has clique-width greater than 22k+1, then

some finite induced subgraph of G has clique-width greater than k.

We consider a countable grid of vertices {v(i, j) : i, j ∈ N∪{0}}. We say that vertex

v(i, j) belongs to row i and column j. We define the following sets of vertices for all

i, j ∈ N ∪ {0} and all n ∈ N.

• Xi,n := {v(i, in+ 1), v(i, in+ 2), . . . , v(i, (i+ 1)n)} (A horizontal block)

• Yj,n := {v(jn+ 1, j), v(jn+ 2, j), . . . , v((j + 1)n, j)} (A vertical block)

• X0 := {x0, x1, x2, . . .}

• Y0 := {y0, y1, y2, . . .}

It is not difficult to see that the blocks are pairwise disjoint for fixed n. Now let

us define the graph Gn by

V (Gn) = X0 ∪ Y0 ∪ (∪∞i=0Xi,n) ∪ (∪∞j=0Yj,n)
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and E(Gn) = E0 ∪ Ex ∪ Ey, where

E0 = {(xi, xj) : i, j ∈ N∪{0}}∪{(xi, yj) : i, j ∈ N∪{0}}∪{(yi, yj) : i, j ∈ N∪{0}}

Ex = {(xi, v(r, s)), : i, r, s,∈ N ∪ {0}, r ≥ i and v(r, s) ∈ V (Gn)}

Ey = {(yj , v(t, u)) : j, t, u ∈ N ∪ {0}, u ≥ j and v(t, u) ∈ V (Gn)}

Lemma 3.3.14. Gn is a split permutation graph.

Proof. Since X0 ∪ Y0 is a clique (the edge set E0) and the remaining vertices form

an independent set, the graph Gn is a split graph. Also, if i < j, then N(xj) ⊂
N(xi) ∪ {xi} and N(yj) ⊂ N(yi) ∪ {yi}. Therefore, the set X0 ∪ Y0 can be split

into two vicinal chains. Finally, it is not difficult to see that the set of vertices in

horizontal blocks and the set of vertices in vertical blocks each forms a vicinal chain.

Therefore, the Dilworth number of Gn is at most 2 and hence by Theorem 3.3.8, Gn

is a split permutation graph.

Lemma 3.3.15. cwd(Gn) ≥ n/4.

Proof. Let T be a parse tree defining Gn. For a node a in T , we denote by T (a) the

subtree of T rooted at a. The label of a vertex v of the graph Gn at the node a is

defined as the label that v has immediately prior to applying the operation a.

Let a be a lowest
⊕

-node in T such that T (a) contains a full block (i.e. a full

set of form Xi,n or Yj,n) of Gn, and denote by b and c the two sons of a in T . We

colour the vertices of T (b) and T (c) by red and blue, respectively, and all the other

vertices by white. If u and v are red vertices and there exists a non-red vertex w

which is adjacent to u but not to v, we say that w distinguishes between u and v.

The following fact is easy to deduce:

• If w distinguishes between u and v, then u and v have different labels at node

a.

In order to justify this fact, we simply note that the operation of type η for

introducing the edge (w, u) is located outside T (a), so u and v must have different

labels to avoid creating an edge (w, v) under the same operation. Of course, the

respective fact holds for blue vertices u and v, where w is non-blue.

Due to the choice of a, the graph Gn does not contain an entirely red block or an

entirely blue block, but it contains a block with no white vertex. We may assume

without loss of generality that there exists such a block which is horizontal and
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contains at least n/2 red vertices. (Otherwise we could swap the roles of columns

and rows and/or the colors blue and red.) Let Xk,n be such a horizontal block.

To prove the lemma, we will show that Gn contains a subset of red vertices of

size at least n/4 whose members have pairwise different labels at node a. Any subset

of this type will be called good.

Consider the set Y ′0 := {yj ∈ Y0 : there exists a red vertex of Xk,n in column j}.
We split our proof into two cases.

Case 1. At least half of the vertices in Y ′0 are non-red. Let us denote the set of

non-red vertices of Y ′0 by Y ∗0 and let X∗ := {v(k, j) ∈ Xk,n : yj ∈ Y ∗0 }. Note that

|X∗| = |Y ∗0 | ≥ n/4. It suffices to show that X∗ is a good set of red vertices. Choose

any pair of vertices v(k, j1), v(k, j2) ∈ X∗ such that j1 < j2. Then, by definition,

the non-red vertex yj2 distinguishes between v(k, j1) and v(k, j2). By our earlier

observation, this implies that v(k, j1) and v(k, j2) have different labels at node a of

T . Thus X∗ is a good set of red vertices.

Case 2. At least half of the vertices in Y ′0 are red. Let us denote the set of red

vertices of Y ′0 by Y ∗∗0 . For each yj ∈ Y ∗∗0 , choose a non-red vertex v(i(j), j) ∈ Yj,n.

This is possible, since by minimality of node a, there exist no entirely red blocks in

Gn.

We denote X∗∗ := {v(i(j), j) : yj ∈ Y ∗∗0 }. Note that |Y ∗∗0 | = |X∗∗| ≥ n/4. It

suffices to show that Y ∗∗0 is a good set of red vertices. Choose any pair of vertices

yj1 , yj2 ∈ Y ∗∗0 such that j1 < j2. Then, by definition, the non-red vertex v(i(j1), j)

distinguishes between yj1 and yj2 . By our earlier observation, this implies that yj1

and yj2 have different labels at node a of T . Thus Y ∗∗0 is a good set of red vertices.

Since we attained a good set of red vertices in both cases, we are done.

Combining Theorem 3.3.13 and Lemmas 3.3.14 and 3.3.15, we obtain the fol-

lowing conclusion:

Theorem 3.3.16. The class of (finite) split permutation graphs has unbounded

clique-width.

With each split graph G = (K, I,E) we can associate a bipartite graph β(G),

as was done in Definition 3.3.5.

From Propositions 3.3.9 and 3.3.10, we can derive the following conclusion:

Corollary 3.3.17. The class of (P7, C6, 3K2)-free bipartite graphs (i.e. the class of

double bichain graphs) has unbounded clique-width.

72



3.4 Open Problems

An open problem arises from the fact that bipartite permutation graphs constitute

a minimal hereditary class (and thus a boundary class) of unbounded clique-width,

meaning that in all proper hereditary subclasses of bipartite permutation graphs

the clique-width is bounded by a constant. We now ask:

(1) Is the class of split permutation graphs a minimal hereditary class of graphs

of unbounded clique-width?

We believe that the answer to this question is affirmative and leave this as a con-

jecture for future research.

Recalling that planar graphs form the unique boundary class with respect to

boundedness of tree-width, and rectangle grids are canonical planar graphs with

respect to minor inclusion, it is not very surprising that most (if not all) of the

graphs of unbounded clique-width that have been found and studied also have a

grid-like structure. It is an interesting challenge to construct graphs of large clique-

width that do not adhere to this kind of structure, if possible.
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Chapter 4

Induced Subgraphs and

Well-Quasi-Orderability

4.1 Definitions and Examples

For definitions of a quasi-order and an antichain, we refer the reader to Section 1.2.

Definition 4.1.1. A quasi-order (X,≤) is a well-quasi-order if X contains no in-

finite strictly decreasing sequences and no infinite antichains.

According to the celebrated Graph Minor Theorem [Robertson and Seymour, 2004],

the set of all graphs is well-quasi-ordered by the minor relation. As a consequence,

any minor-closed graph class must be finitely defined (by a minimal set of forbidden

minors). This, however, is not the case for the more restrictive relations such as

subgraphs or induced subgraphs. Clearly, the cycles C3, C4, C5, . . . form an infinite

antichain with respect to both relations. Except for this example, only a few other

infinite antichains are known with respect to the subgraph or induced subgraph

relations. One of them is the sequence of graphs H1, H2, H3, . . . reproduced once

more in Figure 4.1(left). Moreover, in [Ding, 1992], the author proved that, in

a sense, the cycles C3, C4, C5, . . . and the graphs H1, H2, H3, . . . are the only two

infinite antichains with respect to the subgraph relation. More formally, Ding proved

that a class of graphs closed under taking subgraphs is well-quasi-ordered by the

subgraph relation if and only if it contains finitely many graphs Cn and Hn.

The situation with induced subgraphs is less explored. One of the first non-trivial

results in this area was proved by Damaschke, who showed that the class of cographs

is well-quasi-ordered by induced subgraphs [Damaschke, 1990]. A cograph is a graph

whose every induced subgraph with at least two vertices is either disconnected or
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the complement of a disconnected graph. The class of cographs is precisely the class

of P4-free graphs, i.e., graphs containing no P4 as an induced subgraph. Damaschke

also showed that the class of P4-free graphs is the only maximal monogenic class (i.e.

a class defined by a single forbidden induced subgraph) which is well-quasi-ordered

by induced subgraphs.

An attempt to prove a similar result for bipartite graphs was made by Ding, who

studied monogenic classes of bipartite graphs (i.e. classes of bipartite graphs defined

by a single forbidden induced subgraph) [Ding, 1992]. For some of these classes, he

proved well-quasi-orderability; and for some others, he found infinite antichains.

In this chapter, we provide a complete characterisation of monogenic classes of

bipartite graphs with respect to their well-quasi-orderability by induced subgraphs.

We also make considerable progress towards completing a wqo-characterisation of

classes of graphs that are defined by forbidding exactly two induced subgraphs. We

show that for finitely defined graph classes with larger forbidden sets, one cannot

expect a similar characterisation without relying on the notion of a boundary class.

Nevertheless, we prove that by bounding the size of the forbidden set, the (generally

infinite) number of boundary classes becomes finite.
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Figure 4.1: Graphs Hi (left) and Sun4 (right)

4.2 Well-Quasi-Orderability of Classes of Bipartite Graphs

The exclusion of an induced linear forest (disjoint union of paths) is obviously a

necessary condition for a class of graphs defined by finitely many forbidden induced

subgraphs to be well-quasi-ordered by induced subgraphs, since otherwise the class

contains infinitely many cycles. It is also necessary for such classes to exclude the

complement of an induced linear forest, since the complements of cycles also form

an antichain with respect to the induced subgraph relation.

As we mentioned in the previous section, Damaschke proved that the class of

cographs (P4-free graphs) is well-quasi-ordered by induced subgraphs [Damaschke,

1990]. It is not difficult to show that Damaschke’s result gives a complete charac-
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terisation of the well-quasi-orderability of monogenic graph classes (classes defined

by one forbidden induced subgraph). In this section, we achieve a similar charac-

terisation of monogenic classes of bipartite graphs, i.e. classes of bipartite graphs

defined by forbidding exactly one induced bipartite subgraph.

As a gateway from general graphs to bipartite graphs, Ding studied bi-cographs,

i.e., the bipartite analog of cographs: these are bipartite graphs whose every induced

subgraph with at least two vertices is either disconnected or the bipartite complement

of a disconnected graph [Ding, 1992]. Ding proved that the class of bi-cographs is also

well-quasi-ordered by induced subgraphs. In terms of forbidden induced subgraphs

this is precisely the class of (P7, Sun4, S1,2,3)-free bipartite graphs [Giakoumakis and

Vanherpe, 1997], where Sun4 is the graph represented in Figure 4.1(right) and S1,2,3

is a tree with 3 leaves being of distance 1,2,3 from the only vertex of degree 3.

In order to attain well-quasi-orderability in a class of bipartite graphs, one must

exclude not only an induced path, but also the bipartite complement P̃k of an in-

duced path Pk. Excluding an induced path and the bipartite complement of an

induced path is not, however, sufficient for a class of bipartite graphs to be well-

quasi-ordered. In [Ding, 1992], the author found an infinite antichain of (P8, P̃8)-free

bipartite graphs. On the other hand, he proved that (P6, P̃6)-free bipartite graphs

are well-quasi-ordered by induced subgraphs. Observe that the bipartite comple-

ment of a P7 is a P7 again. The question whether the class of P7-free bipartite

graphs is well-quasi-ordered remained open for about 20 years. In this section,

we answer this question negatively by exhibiting an antichain of 2P3-free bipartite

graphs. Moreover, we show that this antichain is also Sun4-free. On the other

hand, we show that (P7, Sun1)-bipartite graphs are well-quasi-ordered by the in-

duced subgraph relation, where Sun1 is the graph obtained from Sun4 by deleting

3 vertices of degree 1. We also obtain two other positive results. First, we show

that (P7, S1,2,3)-free bipartite graphs are well-quasi-ordered by induced subgraphs,

generalizing both the bi-cographs and P6-free graphs. Second, we prove that Pk-free

bipartite permutation graphs are well-quasi-ordered by induced subgraphs for any

value of k. The latter fact is in contrast with one more negative result of the section:

by strengthening the Ding’s idea, we show that (P8, P̃8)-free bipartite graphs are not

well-quasi-ordered even when restricted to biconvex graphs, a class generalizing bi-

partite permutation graphs. The relationship between the classes of graphs under

consideration is represented in Figure 4.2.

Let us repeat that Ding proved that the class of (P8, P̃8)-free bipartite graphs

is not well-quasi-ordered by the induced subgraph relation [Ding, 1992]. In this

section, we strengthen this result in two ways. First, as we mentioned earlier, we
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�� ��The class of (P8, P̃8)-free bipartite graphs

�� ��(P7, Sun4)-free bipartite graphs
�� ��(P8, P̃8)-free biconvex graphs

�� ��P7-free bipartite permutation

�� ��(P7, Sun1)-free
�� ��(P7, S1,2,3)-free

�� ��Pk-free bipartite permutation

�� ��(P6, P̃6)-free

�� ��(P7, Sun4, S1,2,3)-free

�� ��P6-free

Not WQO

WQO

Previously known results
New results

New results
Previously known results

Figure 4.2: Inclusion relationships between subclasses of bipartite graphs

show that 2P3-free bipartite graphs are not wqo. Then we prove that (P8, P̃8)-free

biconvex graphs are not wqo. To prove the results, in both cases we use the notion

of a permutation, i.e., a bijection of the set [n] := {1, 2, . . . , n} to itself. To represent

a permutation π : [n]→ [n], we use one of the following two ways:

• one-line notation, which is the ordered sequence (π(1), π(2), . . . , π(n)).

• a diagram (see Figure 4.3 for an example).
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2 3

1 2

5 1

3 4

7 4

5 6

9 6

7 8

12 8 11 10

9 10 11 12

Figure 4.3: Diagram representing the permutation (2, 3, 5, 1, 7, 4, 9, 6, 12, 8, 11, 10).

The permutation graph Gπ of a permutation π is the intersection graph of the

diagram representing π. Figure 4.4 gives an example of a permutation and its

permutation graph.

The composition µ ◦ ρ of two permutations µ and ρ is a permutation π such

that π(i) = µ(ρ(i)). The inverse of a permutation π is a permutation π−1 such that

π−1(π(i)) = i.
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Let π and ρ be two permutations given in one-line notation. We say that π

is contained in ρ if ρ has a subsequence which is order-isomorphic to π. It is not

difficult to see that if Gπ is not an induced subgraph of Gρ, then π is not contained

in ρ.

4.2.1 The class of (2P3, Sun4)-free bipartite graphs is not WQO

We start by introducing a special class of bipartite graphs defined as follows:

Definition 4.2.1. For each permutation π := πn on [n], the graph T := Tπ is a

bipartite graph with parts A ∪ C and B ∪D, where:

1. The vertex set of T is the disjoint union of four independent vertex sets

• A := {a1, a2, . . . , an},

• B := {b1, b2, . . . , bn},

• C := {c1, c2, . . . , cn},

• D := {d1, d2, . . . , dn}.

2. X(T ) := T [A∪B] is a 1-regular graph with ei := aibπ(i) being an edge for each

i ∈ [n].

3. Y (T ) := T [C ∪D] is a biclique (i.e., a complete bipartite graph).

4. Each of Z ′(T ) := T [A ∪ D] and Z ′′(T ) := T [B ∪ C] is a 2K2-free bipartite

graph defined as follows: for i = 1, 2, . . . , n,

• NZ′(ai) = {d1, . . . , di},

• NZ′′(bi) = {c1, . . . , ci}.

Any graph of the form Tπ will be called a T -graph.

In order to derive the main result of this section, we will show that every T -

graph is (2P3, Sun4)-free and that the set of T -graphs is not well-quasi-ordered by

induced subgraphs.

Lemma 4.2.1. Any T -graph is (2P3, Sun4)-free.

Proof. Suppose, for contradiction, that T contains an induced 2P3. Then it is easy

to check that each of the two P3 must contain at least one vertex in each of X(T )

and Y (T ). Note that the vertices in 2P3 ∩ Y (T ) must all belong to the same part

of the biclique Y (T ). We may assume without loss of generality that this part is D.
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It is clear that each P3 has an edge from A to D. But then Z ′(T ) is not 2K2-free,

a contradiction showing that T is 2P3-free.

Now suppose, for contradiction, that T contains an induced Sun4. Note that

any two vertices in the same part of Y (T ) have nested neighborhoods. Therefore,

no two vertices of degree 3 in the Sun4 can belong to the same part of Y (T ). This

implies that no two vertices of degree 3 in the Sun4 can belong to the same part of

X(T ). Therefore, each of A,B,C and D must contain exactly one vertex of degree

3 in the Sun4. Suppose that these vertices are a, b, c and d, respectively. The leaf

attached to a in the Sun4 cannot belong to B (since otherwise a has degree more

than 1 in X(T )) and cannot belong to D (since otherwise Y (T ) is not a biclique).

This contradiction shows that T is Sun4-free.

Now we turn to showing that the set of T -graphs is not well-quasi-ordered by

the induced subgraph relation. To this end, for each even n ≥ 6 we define a specific

permutation π∗n, as follows:

π∗n := (4, 2, . . . , 2j, 2j − 5, . . . , n− 1, n− 3) j = 3, . . . , n/2.

For instance, π∗6 = (4, 2, 6, 1, 5, 3) and π∗8 = (4, 2, 6, 1, 8, 3, 7, 5). For n = 10, we

use the diagram to represent π∗n (see Figure 4.4 (left)). This diagram can also be

interpreted as the subgraph X(T ) of Tπ∗10 , which can be seen by labeling the vertices

in the upper part of the diagram by a1, . . . , a10 consecutively from left to right and

the vertices in the lower part of the diagram by b1, . . . , b10 consecutively from left

to right. The permutation graph Gπ∗10 of the permutation π∗10 is represented in

Figure 4.4 (right).
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Figure 4.4: The permutation π∗10 (left) and the permutation graph Gπ∗10 (right)

The important fact about the permutations π∗n is that

Claim 4.2.2. The sequence π∗6, π
∗
8, π
∗
10 . . . is an antichain of permutations with re-

spect to the containment relation.
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This claim follows directly from the observation that no graph Gπ∗n is an induced

subgraph of Gπ∗m with n 6= m. Indeed, in one of the two graphs, the length of the

shortest induced path between the two disjoint triangles is strictly larger than in

the other graph, and this value cannot be decreased by vertex deletions. We now

use Claim 4.2.2 in order to prove the following result.

Lemma 4.2.3. The sequence Tπ∗6 , Tπ∗8 , Tπ∗10 , . . . is an antichain with respect to the

induced subgraph relation.

Proof. Suppose by contradiction that there is a graph H := Tπ∗m which is an induced

subgraph of a graph G := Tπ∗n for some even 6 ≤ m < n. We fix an arbitrary

embedding of H into G, i.e., we assume that V (H) ⊂ V (G). We will denote the

vertex subsets A,B,C,D of the graph H by A(H), B(H), C(H), D(H) and of the

graph G by A(G), B(G), C(G), D(G). Since both graphs are connected and in both

graphs the role of the parts A ∪ C and B ∪D is symmetric, we may assume that

Claim 4.2.4. A(H) ∪ C(H) ⊆ A(G) ∪ C(G) and B(H) ∪D(H) ⊆ B(G) ∪D(G).

Keeping Claim 4.2.4 in mind, we derive a series of conclusions. First, we show that

Claim 4.2.5. |A(H) ∩ C(G)| ≤ 1, |C(H) ∩ A(G)| ≤ 1, |B(H) ∩ D(G)| ≤ 1, and

|D(H) ∩B(G)| ≤ 1.

Proof. Suppose |A(H)∩C(G)| ≥ 2, and pick two distinct vertices ai, aj ∈ A(H) that

belong to C(G). Let π := π∗m. Since Y (G) is a biclique, both bπ(i) and bπ(j) must lie

in B(G), which contradicts the 2K2-freeness of Z ′′(G). Thus |A(H) ∩ C(G)| ≤ 1.

Similarly, suppose |C(H) ∩ A(G)| ≥ 2, and pick two distinct vertices ai, aj ∈
A(G) that belong to C(H). Let π := π∗n. Both of bπ(i) and bπ(j) cannot lie in B(H),

since this would contradict the 2K2-freeness of Z ′′(H).

Now suppose that bπ(i) belongs to B(H), but bπ(j) does not. The vertex aj

must have some neighbour b′j ∈ B(H) ∩D(G), whereas bπ(i) has a neighbour a′i ∈
A(H) ∩ C(G). But now there exists an edge a′ib

′
j , contradicting the 1-regularity of

X(H).

Finally, suppose that neither of bπ(i) and bπ(j) belong to B(H). Then ai and

aj must have neighbours b′i, b
′
j ∈ B(H) ∩D(G), i 6= j. But the inequality |B(H) ∩

D(G)| ≤ 1 follows from |A(H) ∩ C(G)| ≤ 1, by symmetry.

The rest of the proof follows by symmetry.

Now we prove that
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Claim 4.2.6. |X(H) ∩ Y (G)| ≤ 1 and |Y (H) ∩X(G)| ≤ 1.

Proof. By Claim 4.2.5 and the definition of Y (G), if the intersection X(H) ∩ Y (G)

contains two vertices, then these vertices must be adjacent. Let π := π∗m and suppose

an edge aibπ(i) of X(H) belongs to Y (G). By Claim 4.2.5, |D(H)∩B(G)| ≤ 1, which

means that ai is adjacent to all but at most one vertex of D(H). According to the

definition of H, we conclude that i ∈ {m − 1,m}. Similarly, bπ(i) is adjacent to

all but at most one vertex of C(H), implying that π(i) ∈ {m − 1,m}. Together

i ∈ {m − 1,m} and π(i) ∈ {m − 1,m} imply i = π(i) = m − 1. From this and

Claim 4.2.5 we conclude that both am ∈ A(H) and bm ∈ B(H) belong to X(G).

Also, since

• am−1 ∈ A(H) belongs to Y (G),

• am−1 is not adjacent to dm ∈ D(H) in H and

• Y (G) is a biclique,

we conclude that dm ∈ D(H) belongs to X(G). Similarly, cm ∈ C(H) belongs to

X(G). By the definition of Y (H), cm is adjacent to dm, and by the definition of

Z ′′(H), cm is adjacent to bm. But now cm, being a vertex of X(G), is adjacent to

two other vertices of X(G), i.e., dm and bm, contradicting the 1-regularity of this

graph. This contradiction shows that |X(H) ∩ Y (G)| ≤ 1.

The second inequality can be reduced to the first. Indeed, suppose we have an

edge cidi of Y (H) belonging to X(G). Then ci must have a neighbor in B(H) ∩
D(G). Similarly, di must have a neighbour in A(H) ∩ C(G). This contradicts

|X(H) ∩ Y (G)| ≤ 1.

Next, we show that

Claim 4.2.7. X(H) ∩ Y (G) = Y (H) ∩X(G) = ∅.

Proof. Assume first that X(H) ∩ Y (G) is not empty, and suppose without loss of

generality that a vertex ai of A(H) belongs to Y (G). Then, by Claim 4.2.6, all

vertices of B(H) belong to X(G). By Claim 4.2.5, |D(H)∩B(G)| ≤ 1, which means

that ai is adjacent to all but at most one vertex of D(H). According to the definition

of H, we conclude that i = m−1 or i = m. In either case, vertex bm is not adjacent

to ai, and the neighborhood of bm in the graph Z ′′(H) is strictly greater than the

neighborhood of bπ(i).
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Suppose i = m. By Claim 4.2.5, at least one of cm−1, cm ∈ C(H) belongs to

C(G), say cm ∈ C(G). But then am, bm−3, bm, cm induce a 2K2, contradicting the

2K2-freeness of Z ′′(G).

Suppose now that i = m − 1. By definition, the vertex am−1 of A(H) has a

non-neighbor in D(H). Therefore, the set D(H) must have a vertex in X(G). This

implies by Claim 4.2.6 that C(H) ⊂ C(G), and hence the vertices am−1, bm−1, cm, bm

induce a 2K2, contradicting the 2K2-freeness of Z ′′(G). This completes the proof

of the fact that X(H) ∩ Y (G) = ∅.

Now assume that Y (H)∩X(G) 6= ∅ and suppose without loss of generality that

a vertex di of D(H) belongs to X(G). By the definition of T -graphs, di must have

at least one neighbor in A(H). Since A(H) ⊂ A(G) (by the previous fact) and no

vertex of X(G) can have more than 1 neighbor in X(G), we conclude that di has

exactly one neighbor a ∈ A(H). On the other hand, by the definition of X(H),

vertex a must have exactly one neighbor in B(H), which is a subset of B(G) (by

the previous fact). But now a, being a vertex of X(G), has two neighbors in X(G),

contradicting the definition of this graph. Therefore, Y (H) ∩X(G) = ∅.

Claims 4.2.7 and Claim 4.2.4 together imply the following conclusion.

Claim 4.2.8. A(H) ⊆ A(G), B(H) ⊆ B(G), C(H) ⊆ C(G) and D(H) ⊆ D(G).

Assuming that H is an induced subgraph of G, we must conclude that the

ordering of vertices of A(H) respects the ordering of vertices of A(G), and similarly,

the ordering of vertices of B(H) respects the ordering of vertices of B(G). But then

we must conclude that π∗m is contained in π∗n which is a contradiction to Claim 4.2.2.

This contradiction completes the proof of the lemma.

Lemmas 4.2.1 and 4.2.3 imply the main result of this section.

Theorem 4.2.9. The class of (2P3, Sun4)-free bipartite graphs is not well-quasi-

ordered by the induced subgraph relation.

4.2.2 The class of (P8, P̃8)-free biconvex graphs is not WQO

A bipartite graph is biconvex if the vertices of the graph can be linearly ordered

so that the neighborhood of each vertex forms an interval, i.e., the neighborhood

consists of consecutive vertices in the order. Strengthening the result from [Ding,

1992], we show in this section that the class of (P8, P̃8)-free biconvex graphs is not

wqo by the induced subgraph relation. We start by introducing two special types

of permutations.
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Definition 4.2.2. A permutation πn is convex if for any 1 ≤ i ≤ n the set {i, i +

1, . . . , n − 1, n} forms an interval, i.e., the elements of the set occupy consecutive

positions in the permutation.

For instance, the permutation ρ = (1, 2, 3, 5, 7, 9, 10, 8, 6, 4) is convex. Indeed,

the elements of the set {5, 6, 7, 8, 9, 10} occupy positions 4, 5, 6, 7, 8, 9, the elements of

the set {6, 7, 8, 9, 10} occupy positions 5, 6, 7, 8, 9, and the same is true for any other

set of the form {i, i+1, . . . , n−1, n}. The permutation µ = (2, 3, 5, 7, 10, 9, 8, 6, 4, 1)

is another example of a convex permutation.

Definition 4.2.3. A permutation πn is biconvex if there are two convex permuta-

tions µ and ρ such that π = µ ◦ ρ−1.

To give an example, consider the following permutation:

π = (2, 3, 5, 1, 7, 4, 10, 6, 9, 8)

It is not difficult to verify that π = µ ◦ ρ−1, where µ and ρ are the two convex

permutations given above. For instance, π(1) = µ(ρ−1(1)) = 2, π(2) = µ(ρ−1(2)) =

3, π(3) = µ(ρ−1(3)) = 5, etc. Therefore, π is a biconvex permutation.

Now we introduce a special class of bipartite graphs defined as follows:

Definition 4.2.4. For a biconvex permutation π := πn such that π = µ◦ρ−1, where

µ and ρ are two convex permutations, the graph S := Sπ is a bipartite graph with

parts A ∪ C and B, where:

1. V (S) is the disjoint union of three independent vertex sets

• A := {a1, a2, . . . , an},

• B := {b1, b2, . . . , bn},

• C := {c1, c2, . . . , cn},

2. Each of X(S) := S[A∪B] and Y (S) := S[B ∪C] is a 2K2-free bipartite graph

defined as follows: for i = 1, 2, . . . , n,

• NX(bi) = {a1, . . . , aρ(i)},

• NY (bi) = {c1, . . . , cµ(i)}.

Any graph of the form Sπ will be called an S-graph.

Claim 4.2.10. Any S-graph is a (P8, P̃8)-free biconvex graph.
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Proof. Let S := Sπ be an S-graph associated with a biconvex permutation π := πn

such that π = µ ◦ ρ−1, where µ and ρ are two convex permutations. The (P8, P̃8)-

freeness of S follows from the 2K2-freeness of X(T ) and Y (T ). Now let us prove

that S is biconvex. To this end, we need to show that the vertices in each part of

the graph can be linearly ordered so that the neighborhood of any vertex in the

opposite part forms an interval. To achieve this goal we keep the natural order of

the vertices in the B-part, i.e., B = (b1, . . . , bn). The vertices of the A ∪C-part are

ordered under inclusion of their neighborhoods, increasingly for the A-vertices and

decreasingly for the C-vertices, i.e., the vertices with the largest neighborhood in

A and C are in the middle of the order. Now let us show that the defined order is

biconvex.

Let b be any vertex from B. If b is adjacent to any vertex a from A, then b is

adjacent to any vertex from A with larger neighborhood than N(a), i.e., b is adjacent

to any vertex of A following a. Similarly, if b is adjacent to any vertex c from C,

then b is adjacent to any vertex from C with larger neighborhood than N(c), i.e., b

is adjacent to any vertex of C preceding c. Therefore, N(b) is an interval.

Now let ai be a vertex from A. Let I be the interval (i.e., the set of positions)

of length n − i + 1 containing the elements {i, . . . , n} of the permutation ρ. Then

N(ai) = {bj : j ∈ I}, i.e., N(ai) is an interval. Similarly, if ci is a vertex from C

and I is the interval of length n − i + 1 containing the elements {i, . . . , n} of the

permutation µ, then N(ci) = {bj : j ∈ I}, i.e., N(ci) is an interval.

Now we define a specific permutation π∗n in the following way: for each even

n ≥ 8,

π∗n := (2, 3, 5, 1, . . . , 2j + 3, 2j, . . . , n, n− 4, n− 1, n− 2) j = 2, . . . , n/2− 4.

For instance, π∗8 = (2, 3, 5, 1, 8, 4, 7, 6) and π∗10 = (2, 3, 5, 1, 7, 4, 10, 6, 9, 8). The per-

mutation π∗12 is represented in Figure 4.3.

Let us show that π∗n is a biconvex permutation. To this end, we define two

convex permutations ρ∗n and µ∗n in the following way:

ρ∗n := (1, 2, 3, 5 . . . , odds, . . . , n− 3, n− 1, n, n− 2, . . . , evens, . . . , 6, 4).

µ∗n := (2, 3, 5 . . . , odds, . . . , n− 3, n, n− 1, n− 2, n− 4, . . . , evens, . . . , 6, 4, 1).
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It is not difficult to verify that for n = 10 the permutations π∗n, ρ∗n and µ∗n

coincide with the permutations π, ρ and µ defined in the beginning of the section.

Claim 4.2.11. π∗ = µ∗ ◦ ρ∗−1.

Proof. For small and large values of i, one can verify by direct inspection that

π∗(i) = µ∗(ρ∗−1(i)). Now let 4 < i < n− 3. If i is odd, then π∗(i) = µ∗(ρ∗−1(i)) =

i+ 2, and if i is even, then π∗(i) = µ∗(ρ∗−1(i)) = i− 2.

Lemma 4.2.12. The sequence Sπ∗8 , Sπ∗10 , Sπ∗12 , . . . is an antichain with respect to the

induced subgraph relation.

Proof. Suppose by contradiction that there is a graph H := Sπ∗m which is an induced

subgraph of a graph G := Sπ∗n for some even 8 ≤ m < n. We fix an arbitrary

embedding of H into G, i.e., we assume that V (H) ⊂ V (G). Since both graphs are

connected, we may assume that exactly one of the following two possibilities holds:

1. A(H) ∪ C(H) ⊆ A(G) ∪ C(G) and B(H) ⊆ B(G).

2. A(H) ∪ C(H) ⊆ B(G) and B(H) ⊆ A(G) ∪ C(G)

We claim that the first possibility holds.

Claim 4.2.13. A(H) ∪ C(H) ⊆ A(G) ∪ C(G) and B(H) ⊆ B(G).

Proof. Note that, by definition, A(G)∪C(G) can be partitioned into two chains with

respect to the neighborhood inclusion. On the other hand, the set B(H) does not

have this property, since bn/2, bn/2+1, bn/2+2 is an antichain of length 3 with respect

to the same relation. Indeed, ρ∗(n/2) = n− 3, ρ∗(n/2 + 1) = n− 1, ρ∗(n/2 + 2) = n

and µ∗(n/2) = n, µ∗(n/2 + 1) = n − 1 and µ∗(n/2 + 2) = n − 2. This proves the

claim.

We make the following helpful remark:

• If two vertices of B(H) are incomparable with respect to the neighborhood

inclusion in B(H), then these two vertices must also be incomparable with

respect to the neighborhood inclusion in B(G).

Let B′(H) be the incomparability graph for the relation of neighborhood inclu-

sion on the vertex set B(H). In other words, two vertices of B(H) are adjacent
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in B′(H) precisely when they are incomparable with respect to the neighborhood

inclusion. We define B′(G) similarly.

Clearly, by the above remark, B′(H) must be a subgraph of B′(G). But for any

even n ≥ 8, the graph B′(Sπ∗n) is simply the permutation graph Gπ∗n of π∗n and this

graph is represented in Figure 4.5.
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Figure 4.5: The graph B′(Sπ∗n) = Gπ∗n

It is not difficult to see that the sequence of graphs Gπ∗n , n ≥ 8, forms an

antichain with respect to the (induced) subgraph relation. Therefore, B′(H) is

not a subgraph of B′(G). As a result, H is not an induced subgraph of G. This

contradiction completes the proof of Lemma 4.2.12.

Lemma 4.2.12 and Claim 4.2.10 together imply the main result of this section:

Theorem 4.2.14. The class of (P8, P̃8)-free biconvex graphs is not well-quasi-ordered

by the induced subgraph relation.

4.2.3 The class of double bichain graphs is not WQO

Recall Definition 3.3.8:

Definition 4.2.5. A double bichain graph is a bipartite graph such that each part

is partitionable into two chains with respect to neighbourhood inclusion.

By Proposition 3.3.9, there is a natural correspondence between double bichain

graphs and split permutation graphs.

We will use a characterization of bipartite permutation graphs from [Lozin and

Rudolf, 2007].

Definition 4.2.6. Let us define a canonical bipartite permutation graph as follows.

For n > m, let Hm,n := (X,Y,E), where

• X = {x1, . . . , xn} and Y = {y1, . . . , yn}

• N(xi) = {yi, yi+1, . . . , yi+m} for 1 ≤ i ≤ n−m
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• N(xi) = {yi, yi+1, . . . , yn} for i > n−m

Proposition 4.2.15. A graph is a bipartite permutation graph if and only if it is

an induced subgraph of Hm,n for some m,n.

Canonical bipartite permutation graphs are revisited in Section 4.2.6.

Definition 4.2.7. Define φ := φm,n to be the following linear ordering on the ver-

tices of Hm,n:

• φ(xi) = 2i− 1 for each i.

• φ(yi) = 2i for each i.

Definition 4.2.8. For each graph Hm,n := (X,Y,E), define a double bichain graph

Φ(Hm,n) := (X ′, Y ′, E′) as follows:

• X ′ = {x1, y1, x2, y2 . . . , xn, yn} and Y ′ = {x′1, y′1, x′2, y′2 . . . , x′n, y′n}

• E′ = {(xi, x′i), (yi, y′i) : 1 ≤ i ≤ n} ∪
{(a, b′) : a, b ∈ V (Hm,n), (a, b) /∈ E and φ(a) < φ(b)}

Remark. Note that Φ(Hm,n) is a double bichain graph. This can be seen from the

definition of Hm,n by partitioning vertices v according to whether φ(v) is even or

odd.

Definition 4.2.9. Let G be any bipartite permutation graph. We define a double

bichain graph Φ(G) := Φm,n(G) by embedding G into some Hm,n and by letting

the ordering φ induce an ordering on the vertices of G. We define Φ(G) as the

corresponding induced subgraph of Φ(Hm,n).

Theorem 4.2.16. Any bipartite permutation graph G is the incomparability graph

(with respect to neighbourhood inclusion) of each part of the double bichain graph

Φ(G) := (A,B,E′).

Proof. Suppose that G is embedded into Hm,n := (X,Y,E) and so we have A ⊆ X ′

and B ⊆ Y ′. We will denote the vertices of Φ(G) by the same convention as the

corresponding vertices of Φ(Hm,n).
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We begin by showing that G is the incomparability graph of A. Let a, b ∈ A
and suppose that (a, b) ∈ E. Then (a, b′), (b, a′) /∈ E′, but (a, a′), (b, b′) ∈ E′. Thus

a and b are incomparable by neighbourhood inclusion.

Now let a, b ∈ A such that (a, b) /∈ E. We will show that a and b are comparable

by neighbourhood inclusion. We may assume that φ(a) < φ(b). Suppose that

(b, c′) ∈ E′. It suffices to show that (a, c′) ∈ E′.
If c′ = b′, then (a, c′) ∈ E′ by definition of E′. Otherwise, by the same definition,

(b, c) /∈ E and φ(b) < φ(c). Now, by the definition of Hm,n and the fact that

φ(a) < φ(b) < φ(c), we must have that (a, c) /∈ E and φ(a) < φ(c). But this implies

that (a, c′) ∈ E′.

The proof that G is the incomparability graph of B is symmetric. This can be

seen by applying the reverse ordering on B.

Corollary 4.2.17. The class of double bichain graphs is not WQO by the induced

subgraph relation.

Proof. We will show that the sequence Φ(H1),Φ(H2), . . . of double bichain graphs

forms an infinite antichain with respect to the induced subgraph relation, where Hi

is defined as in Figure 4.1. Suppose, for contradiction, that Φ(Hi) is the induced

subgraph of Φ(Hj) for some i < j.

By the previous theorem, Hj is the incomparability graph of each part of Φ(Hj).

From the definition of Φ(Hj), it is easy to check that deleting a vertex v of Φ(Hj)

will correspond to deleting a vertex from the incomparability graph of the part in

which v resides and (possibly) deleting edges from the incomparability graph of the

opposite part. Thus the incomparability graph of each part of Φ(Hi) must be a

subgraph of Hj . In other words, Hi must be a subgraph of Hj , which is impossible.

This contradiction proves the corollary.

Note that the same class was found to be of unbounded clique-width in Corol-

lary 3.3.17.

4.2.4 The class of (P7, S1,2,3)-free bipartite graphs is WQO

Ding showed that (P7, S1,2,3, Sun4)-free bipartite graphs and (P6, P̃6)-free bipartite

graphs are well-quasi-ordered by the induced subgraph relation [Ding, 1992]. Now

we extend both results to the larger class of (P7, S1,2,3)-free bipartite graphs. To

this end, let us introduce the following notation.
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Given a set of bipartite graphs F , we denote by [F ] the set of graphs constructed

from graphs in F by means of the following three binary operations defined for any

two disjoint bipartite graphs G1 = (X1, Y1, E1) and G2 = (X2, Y2, E2):

• the disjoint union is the operation that creates out of G1 and G2 the bipartite

graph G = (X1 ∪X2, Y1 ∪ Y2, E1 ∪ E2),

• the join is the operation that creates out of G1 and G2 the bipartite graph

which is the bipartite complement of the disjoint union of G̃1 and G̃2,

• the skew join is the operation that creates out of G1 and G2 the bipartite

graph G = (X1 ∪X2, Y1 ∪ Y2, E1 ∪ E2 ∪ {xy : x ∈ X1, y ∈ Y2}).

The importance of these operations is due to the following theorem.

Theorem 4.2.18. If F is a set of bipartite graphs well-quasi-ordered by the induced

subgraph relation, then so is [F ].

For the proof of this theorem, we refer the reader to Theorems 4.1 and 4.4 from

[Ding, 1992], where the author used this result (without formulating it implicitly)

in his proof that (P7, S1,2,3, Sun4)-free bipartite graphs and (P6, P̃6)-free bipartite

graphs are will-quasi-ordered by the induced subgraph relation. Now we combine

Theorem 4.2.18 with a result from [Fouquet et al., 1999] that can be formulated as

follows.

Theorem 4.2.19. The class of (P7, S1,2,3)-free bipartite graphs is precisely [{K1}].

Together, Theorem 4.2.18 and Theorem 4.2.19 imply the following conclusion.

Theorem 4.2.20. The class of (P7, S1,2,3)-free bipartite graphs is well-quasi-ordered

by the induced subgraph relation.

4.2.5 The class of (P7, Sun1)-free bipartite graphs is WQO

The graph Sun1 is obtained from Sun4 (Figure 4.1) by deleting three vertices of

degree 1. Therefore, the class of (P7, Sun1)-free bipartite graphs is a proper subclass

of (P7, Sun4)-free bipartite graphs. In contrast to the result of Section 4.2.1, below

we prove that (P7, Sun1)-free bipartite graphs are well-quasi-ordered by the induced

subgraph relation. According to Theorem 4.2.18, it suffices to show that the set of

connected (P7, Sun1)-free bipartite graphs is well-quasi-ordered by this relation. The

following lemma shows that the structure of connected graphs in this class containing

a C4 is rather simple.
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Lemma 4.2.21. Every connected (P7, Sun1)-free bipartite graph containing a C4 is

complete bipartite.

Proof. Let H be a (P7, Sun1)-free bipartite graph containing a C4. Denote by H ′

any maximal complete bipartite subgraph of H containing the C4. If H ′ 6= H, there

must exist a vertex v outside H ′ that has a neighbor in H ′. If v is a adjacent to

every vertex of H ′ in the opposite part, then H ′ is not maximal, and if v has a

non-neighbor in the opposite part of H ′, the reader can easily find an induced Sun1.

The contradiction in both cases shows that H ′ = H, i.e., H is a complete bipartite

graph.

It is not difficult to see that there is no infinite antichain of complete bipartite

graphs, which follows, for instance, from the fact that every complete bipartite graph

is P4-free and the class of P4-free (not necessarily bipartite) graphs is well-quasi-

ordered. This observation, together with Lemma 4.2.21, reduces the problem from

(P7, Sun1)-free bipartite graphs to (P7, C4)-free bipartite graphs. The proof that the

class of (P7, C4)-free bipartite graphs is well-quasi-ordered is based on the following

lemma.

Lemma 4.2.22. No (P7, C4)-free bipartite graph contains P9 as a subgraph (not

necessarily induced).

Proof. Let G be a (P7, C4)-free bipartite graph. To prove the lemma, we first derive

the following helpful observation.

Claim 4.2.23. If P := (a1, a2, . . . , a7) is a copy of P7 contained in G as a subgraph,

then P has exactly one chord in G, either a1a6 or a2a7.

Proof. Since G is P7-free, P must contain a chord, and since G is bipartite, any chord

of P connects an even-indexed vertex to an odd-indexed one. Among 6 possible

chords of P only a1a6 and a2a7 do not produce a C4, and these two chords cannot

be present in the graph simultaneously, since otherwise the vertices a1, a2, a7, a6

induce a C4. Therefore, P must contain exactly one of a1a6 or a2a7 as a chord.

Suppose now that Q := (b1, b2, . . . , b9) is a copy of P9 contained as a subgraph

in G, and for 1 ≤ i ≤ 3, let Qi := (bibi+1 . . . bi+6). If b1b6 is a chord of Q, then

Claim 4.2.23 applied to each of Q1, Q2 and Q3 implies that Q contains exactly two

chords, namely b1b6 and b3b8. But then the vertices b1, b6, b5, b4, b3, b8, b9 induce a

P7, a contradiction.
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The case when b1b6 is not a chord of Q is symmetric and also leads (with the

help of Claim 4.2.23) to an induced P7 in G. The contradiction in both cases shows

that G does not contain P9 as a subgraph.

Now we combine Lemma 4.2.22 with the following result from [Ding, 1992].

Theorem 4.2.24. For any fixed k ≥ 1, the class of graphs containing no Pk as

a (not necessarily induced) subgraph is well-quasi-ordered by the induced subgraph

relation.

Together Lemma 4.2.22 and Theorem 4.2.24 imply the main conclusion of this

section.

Theorem 4.2.25. The class of (P7, C4)-free bipartite graphs is well-quasi-ordered

by the induced subgraph relation.

4.2.6 The class of Pk-free bipartite permutation graphs is WQO

The class of bipartite permutation graphs is the intersection of bipartite graphs and

permutation graphs. This class is a subclass of biconvex graphs (see e.g. [Brandstädt

et al., 1999]). In contrast to the result of Section 4.2.2, we show that Pk-free bipartite

permutation graphs are well-quasi-ordered by the induced subgraph relation for

any fixed value of k. In general, bipartite permutation graphs are not well-quasi-

ordered by this relation, since they contain the antichain of graphs of the form Hi

(Figure 4.1). Our proof is based on a number of known results.

Denote by Hn,m the graph with nm vertices which can be partitioned into

n independent sets V1 = {v1,1, . . . , v1,m}, . . ., Vn = {vn,1, . . . , vn,m} so that for

each i = 1, . . . , n − 1 and for each j = 1, . . . ,m, vertex vi,j is adjacent to vertices

vi+1,1, vi+1,2, . . . , vi+1,j and there are no other edges in the graph. In other words,

every two consecutive independent sets induce in Hn,m a universal chain graph. An

example of the graph Hn,n with n = 5 is given in Figure 4.6.

It is not difficult to see that the graph Hn,n is a bipartite permutation graph.

Moreover, it was proved in [Lozin and Rudolf, 2007] that Hn,n is an n-universal

bipartite permutation graph in the sense that every bipartite permutation graph

with n vertices is an induced subgraph of Hn,n. This characterisation can be seen

to correspond naturally to the one given in Definition 4.2.6. If a connected bipartite

permutation graph is Pk-free, it occupies at most k consecutive levels of Hn,n. In

other words, every connected Pk-free bipartite permutation graph is an induced

subgraph of Hk,n.
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Figure 4.6: The graph H5,5

In order to prove that Pk-free bipartite permutation graphs are well-quasi-

ordered, we will show that any connected graph in this class is a k-letter graph.

This notion was introduced in [Petkovšek, 2002] and its importance for our study is

due to the following result, also proved in [Petkovšek, 2002].

Theorem 4.2.26. For any fixed k, the class of k-letter graphs is well-quasi-ordered

by the induced subgraph relation.

The k-letter graphs have been characterized in [Petkovšek, 2002] as follows. (For

a more complete discussion with definitions, see Section 4.4.2.)

Theorem 4.2.27. A graph G = (V,E) is a k-letter graph if and only if

1. there is a partition V1, . . . , Vp of V (G) with p ≤ k such that each Vi is either

a clique or an independent set in G,

2. there is a linear ordering L of V (G) such that for each pair of indices 1 ≤
i, j ≤ p, i 6= j, the intersection of E with Vi × Vj is one of

(a) L ∩ (Vi × Vj),

(b) L−1 ∩ (Vi × Vj),

(c) Vi × Vj,

(d) ∅.
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Corollary 4.2.28. Connected Pk-free bipartite permutation graphs are k-letter graphs.

Proof. From Theorem 4.2.27, it follows that an induced subgraph of a k-letter graph

is again a k-letter graph. In addition, we have seen already that any connected Pk-

free bipartite permutation graph is an induced subgraph of Hk,n. Therefore, all we

have to do is to prove that Hk,n is a k-letter graph. To this end, we define a partition

V1, . . . , Vk of the vertices of Hk,n by defining Vi to be the i-th row of Hk,n. Thus the

first condition of Theorem 4.2.27 is satisfied. Then we define a linear ordering L of

the vertices of Hk,n by listing first the vertices of the first column consecutively from

bottom to top, then the vertices of the second column, and so on. Now let’s take

any two subsets Vi and Vj with i 6= j. If they are not consecutive rows of the graph,

then the intersection of E with Vi × Vj is empty. If they are consecutive, then the

intersection of E with Vi × Vj is either L ∩ (Vi × Vj) (if i > j) or L−1 ∩ (Vi × Vj) (if

i < j). Thus the second condition of Theorem 4.2.27 is satisfied, which proves the

corollary.

Combining Corollary 4.2.28 with Theorems 4.2.18 and 4.2.26 we conclude that

Corollary 4.2.29. For any fixed k, the class of Pk-free bipartite permutation graphs

is well-quasi-ordered by the induced subgraph relation.

4.2.7 Characterisation of all monogenic classes of bipartite graphs

By Theorem 4.2.9, the class of 2P3-free bipartite graphs is not well-quasi-ordered

by the induced subgraph relation. On the other hand, by Theorem 4.2.20, the class

of (P7, S1,2,3)-free bipartite graphs is well-quasi-ordered by the same relation. For a

complete characterisation of the well-quasi-orderability of classes of bipartite graphs

defined by forbidding exactly one induced subgraph, it suffices to decide well-quasi-

orderability of the classes of H-free bipartite graphs for which H is a linear forest

such that (H 6≤ P7 or H 6≤ S1,2,3) and 2P3 6≤ H. Let us consider two examples of

such graphs H:

• If H = K2 + 3K1, then the class of H-free bipartite graphs is not WQO since

it contains the non-WQO class of S̃1,1,1-free bipartite graphs.

• If H = 3K2, then the class of H-free bipartite graphs is not WQO since it

contains the non-WQO class of C̃6-free bipartite graphs.

It is a routine exercise to check that any linear forest H not containing one of

these two examples must satisfy either H = nK1 or (H ≤ P7 and H ≤ S1,2,3) or

93



2P3 ≤ H. Note that for H = nK1, the class of H-free bipartite graphs is finite (by

Ramsey’s theorem) and thus WQO. Thus we have a complete characterisation of all

monogenic classes of bipartite graphs.

4.3 Bigenic Classes of Graphs

As we discussed in the previous section, there is a complete characterisation of well-

quasi-orderability by the induced subgraph relation in the case of monogenic graph

classes (due to Damaschke). We also completed a corresponding characterisation for

monogenic classes of bipartite graphs. Very little is known about well-quasi-ordered

classes of graphs defined by more than one forbidden induced subgraph.

In this section, we study the induced subgraph relation on bigenic graph classes,

i.e. graph classes defined by two forbidden induced subgraphs. We characterize

most of them (except finitely many specified cases) as being or not being wqo with

respect to this relation. One outcome of this analysis is that in this family there

are finitely many minimal classes which are not well-quasi-ordered by the induced

subgraph relation.

In [Damaschke, 1990], the following results were proved.

Theorem 4.3.1.

(A) A monogenic class Free(G) is WQO if and only if G is a (not necessarily

proper) induced subgraph of P4.

(B) The classes Free(K3, P5) and Free(K3,K2 + 2K1) are WQO.

Part (A) of this theorem provides complete characterization of monogenic classes

of graphs in terms of their well-quasi-orderability. In this section, we study bigenic

classes and extend part (B) of Theorem 4.3.1 in various ways. To this end, let us

first recall a few helpful results.

For an arbitrary set M , denote by M∗ the set of all finite sequences of elements

of M . If ≤ is a partial order on M , the elements of M∗ can be partially ordered

by the following relation: (a1, . . . , am) ≤ (b1, . . . , bn) if and only if there is an order-

preserving injection f : {a1, . . . , am} → {b1, . . . , bn} with ai ≤ f(ai) for each

i = 1, . . . ,m. The celebrated Higman’s lemma states [Higman, 1952]

Lemma 4.3.2. If (M,≤) is a WQO, then (M∗,≤) is a WQO.

Kruskal extended this result to the set of finite trees partially ordered under home-

omorphic embedding [Kruskal, 1960]. In other words, Kruskal’s tree theorem re-

stricted to paths becomes Higman’s lemma. Moreover, Kruskal proved his theorem
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under the additional assumption that the vertices of trees are equipped with labels

from a well-quasi-ordered set.

From Higman’s lemma it is not difficult to derive the following conclusion (see

[Damaschke, 1990] for a more general result).

Claim 4.3.3. A set of graphs X is well-quasi-ordered (by the induced subgraph re-

lation) if and only if connected graphs in X are well-quasi-ordered.

Since two graphs G and H are isomorphic if and only if their complements are

isomorphic, we conclude that

Claim 4.3.4. A set of graphs is a WQO if and only if the set of their complements

is a WQO.

From the Ramsey theory we know that for all values of n and m the class

Free(Kn,mK1) is finite. As an immediate corollary from this observation we obtain

the following conclusion.

Claim 4.3.5. The class Free(Kn,mK1) is WQO for all n and m.

The following result will also be useful in our study of bigenic classes of graphs.

Claim 4.3.6. The class Free(paw,H) is WQO if and only if the class Free(K3, H)

is WQO. ( Paw is the name for a complement of P3 +K1.)

Proof. The claim follows by combining Theorem 4.3.1 (A), Claim 4.3.3 and the

following fact proved in [Olariu, 1988]: every connected paw-free graph is either

K3-free or P 3-free.

In our analysis of bigenic classes two antichains will play a key role. These are:

• F = {K1,3,K3, C4, C5, C6, . . .}

• F = {K1,3,K3, C4, C5, C6, . . .}

Note that Free(F) is the class of linear forests, i.e. graphs every connected com-

ponent of which is a path. Similarly, Free(F) is the class of complements of linear

forests. The importance of the classes Free(F) and Free(F) is due to the following

result.

Claim 4.3.7. Let X = Free(G,H) be a bigenic class of graphs.

• If neither of G and H belong to Free(F), then X is not WQO.
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• If neither of G and H belong to Free(F), then X is not WQO.

• If one of G and H belongs to both Free(F) and Free(F), then X is WQO.

Proof. If neither of G and H belong to Free(F), then it is easy to see that X

contains infinitely many cycles, i.e. an infinite antichain. The second statement

follows by symmetry.

To prove the third statement, suppose G belongs to both Free(F) and Free(F).

It is not difficult to verify that G is an induced subgraph of P4. But then X is a

subclass of Free(P4), which is WQO by Theorem 4.3.1 (A).

According to Claim 4.3.7, in what follows we consider bigenic classes of graphs

Free(G,H) with G ∈ Free(F) and H ∈ Free(F).

4.4 Bigenic Classes of Graphs Which Are Well-quasi-

ordered

In this section, we reveal a number of bigenic classes which are well-quasi-ordered by

induced subgraphs. In fact, we prove stronger results that deal with a binary relation

which we call labelled-induced subgraphs. Assume (W,≤) is an arbitrary WQO. We

call G a labelled graph if each vertex v ∈ V (G) is equipped with an element l(v) ∈W
(the label of v), and we say that a graph G is a labelled-induced subgraph of H if G

is isomorphic to an induced subgraph of H and the isomorphism maps each vertex

v ∈ G to a vertex w ∈ H with l(v) ≤ l(w). We split the results of this section into

two parts depending on the technique we use to prove well-quasi-orderability.

4.4.1 Well-quasi-order and k-uniform graphs

Let k be a natural number, K a symmetric 0-1 square matrix of order k, and Fk a

simple graph on the vertex set {1, 2 . . . , k}. Let H be the disjoint union of infinitely

many copies of Fk, and for i = 1, . . . , k, let Vi be the subset of V (H) containing

vertex i from each copy of Fk. Now we construct from H an infinite graph H(K)

on the same vertex set by connecting two vertices u ∈ Vi and v ∈ Vj if and only if

uv ∈ E(H) and K(i, j) = 0 or uv /∈ E(H) and K(i, j) = 1. Finally, let P(K,Fk) be

the hereditary class consisting of all the finite induced subgraphs of H(K).

Definition 4.4.1. A graph G will be called k-uniform if there is a number k such

that G ∈ P(K,Fk) for some K and Fk.
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Theorem 4.4.1. For any fixed k, the set of k-uniform graphs is well-quasi-ordered

by the labelled-induced subgraph relation.

Proof. For a fixed k, there are only finitely many matrices K of order k and finitely

many graphs on the set {1, . . . , k}. Therefore, it suffices to prove the theorem for an

arbitrary matrix K and am arbitrary graph Fk, i.e. for a fixed property P(K,Fk).

Moreover, without loss of generality, we will identify each graph G ∈ P(K,Fk) with

an arbitrary embedding of G into H(K).

Since G is a finite graph, there is a finite number m of copies of the graph Fk (i.e.

of the graph which is used in the construction of H(K)) that contain at least one

vertex of G. We represent G by a binary k ×m matrix M = MG whose (i, j) entry

contains 1 if the i-th vertex of the j-th copy of Fk belongs to G, and 0 otherwise.

Now assume the vertices of G are labelled by the elements of a WQO set (W,≤).

We replace each non-zero entry of M by the label of the respective vertex of G, which

transforms M into a matrix M∗ = M∗G in the alphabet W0 = W ∪ {0}. We extend

(W,≤) to a WQO (W0,≤) by defining 0 ≤ x for each element x ∈W .

Let us denote the set {M∗G | G ∈ P(K,Fk)} byMk and define a binary relation

≤∗ on this set in two steps, as follows:

• for two words x = (x1 . . . xk) ∈W k
0 and y = (y1 . . . yk) ∈W k

0 , we define x ≤k y
if and only if xi ≤ yi for each i = 1, . . . , k.

• for two matrices M∗1 ∈Mk and M∗2 ∈Mk, we define M∗1 ≤∗ M∗2 if and only if

there is an injection mapping each column x of M∗1 to a column y of M∗2 with

x ≤k y.

From the definition of k-uniform graphs and the matrices of the form M∗G it

follows that in order to show that P(K,Fk) is well-quasi-ordered by the labelled-

induced subgraph relation it is enough to show that the set (Mk,≤∗) is a WQO.

This easily follows by a double application of Higman’s lemma [Higman, 1952]. The

first application implies that (W k
0 ,≤k) is a WQO (since (W0,≤) is a WQO), and the

second application implies that (Mk,≤∗) is WQO (since (W k
0 ,≤k) is a WQO).

Lemma 4.4.2. Let G be a graph and v a vertex of G. If G − v is a k-uniform

graph, then G is 2k + 1-uniform.

Proof. Let G−v be a k-uniform graph given together with an embedding into H(K).

We call the sets V1, . . . , Vk of H(K) color classes of the graph. First, we split each of

the k colour classes of G− v into two subsets (of vertices adjacent and non-adjacent

to v), which makes G − v a 2k-uniform graph. Then we add an extra colour class,
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containing vertex v only, and connect it to the rest of the graph accordingly. More

formally, assume G− v ∈ P(K,Fk). Viewing K as a graph with loops on the vertex

set {w1, . . . , wk}, split every looped vertex wi into two adjacent looped vertices w′i
and w′′i , split every loopless vertex wi into two non-adjacent loopless vertices w′i and

w′′i , and add an extra vertex (no matter with or without a loop) which is adjacent

to exactly one vertex in each pair w′i, w
′′
i . Also, split every vertex of Fk into two

non-adjacent vertices, and then add to Fk an isolated vertex. Denoting the resulting

graphs by K ′, F ′2k+1, we conclude that G ∈ P(K ′, F ′2k+1).

Corollary 4.4.3. Let X be a class of graphs and c,k constants. If every graph G

in X has a subset W of at most c vertices such that G−W is k-uniform, then every

graph of G is (2c(k + 1)− 1)-uniform.

Now we apply Lemma 4.4.1 and Corollary 4.4.3 to derive well-quasi-orderability

for some particular bigenic classes. In the proof of the next three theorems, S1,2,3

denotes a tree with three leaves being of distance 1,2 and 3 from the only vertex of

degree 3.

Theorem 4.4.4. The class Free(K3, P3 + 2K1) is WQO.

Proof. Note that P3 +2K1 is an induced subgraph of the following graphs: P7, S1,2,3

and Ci for i ≥ 8. Since (P7, S1,2,3)-free bipartite graphs are WQO (see Section 4.2.4),

we may restrict ourselves to graphs in Free(K3, P3 + 2K1) containing a C5 or a C7.

Let G be such a graph. By Claim 4.3.3 we may assume that G is connected.

Assume first that G contains a copy of C7, say C = (v1, v2, . . . , , v7). Suppose

G has a vertex u that does not belong to C. Due to the K3-freeness, u cannot have

more than 3 neighbours in C. If v has exactly three neighbours, then the only (up

to symmetry) possibility to avoid a K3 is when u is adjacent to v1, v3, v6, in which

case vertices v2, v4, v6, v7, u induce P3 + 2K1. If u has fewer than 3 neighbors in C,

finding one of the two forbidden graphs is a trivial task. Therefore, if G contains a

copy of C7, then G = C7.

Now we assume thatG contains an induced copy of C5, say C = (v1, v2, v3, v4, v5).

Let u be a vertex of G outside the cycle. Since G is K3-free, u can be adjacent to at

most two vertices of C, and if u has two neighbours in C, they are non-consecutive

vertices of the cycle. We denote the set of vertices in V (G)\V (C) that have exactly

i neighbours on C by Ni, i ∈ {0, 1, 2}. Also, for i = 1, . . . , 5, we denote by Vi the set

of vertices in N2 adjacent to vi−1, vi+1 ∈ V (C) (throughout the proof subscripts i

are taken modulo 5). We call two different sets Vi and Vj consecutive if vi and vj are
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consecutive vertices of C, and opposite otherwise. The proof will be given through

a series of claims.

(1) Each Vi is an independent set, and vertices in opposite sets Vi and Vj are

non-adjacent, which follows directly from the K3-freeness of G.

(2) Each vertex in Vi is adjacent to all but at most one vertex in Vi+1, since

otherwise a vertex x ∈ Vi together with any of its two non-neighbours y1, y2 ∈
Vi+1 and vertices vi−1, vi+1 would induce a P3 + 2K1.

(3) |N1| ≤ 5. Indeed, if |N1| > 5, then it contains two vertices x, y adjacent to

the same vertex vi of C. Then either G[vi, x, y] = K3 (if x is adjacent to y) or

G[vi+1, vi+2, vi+3, x, y] = P3 + 2K1 (if x is not adjacent to y).

(4) |N0| ≤ 1. Indeed, assume N0 contains two vertices x, y. If x is not adjacent

to y, then G[v1, v2, v3, x, y] = P3 + 2K1. Suppose now that x is adjacent to y.

Since the graph is connected, there must exist a path connecting x, y to the

cycle. Without loss of generality we may assume that x is adjacent to a vertex

z that has a neighbour on C. Then z is not adjacent to y (since G is K3-free)

and z has at least two non-adjacent non-neighbours on C, say v1 and v3. But

now G[z, x, y, v1, v3] = P3 + 2K2.

(5) If Vi and Vj are opposite, then at least one of them is empty. Indeed, assume

without loss of generality that V1 contains a vertex x and V3 contains a vertex

y, then G[v3, v4, y, x, v1] = P3 + 2K1.

By Claim (5), G contains at most two non-empty sets Vi and Vj and these sets

are consecutive. By Claims (1) and (2) these two sets induce a 2-uniform graph.

Therefore, by Claims (3) and (4) and Corollary 4.4.3 G is a k-uniform graph for a

constant k.

Theorem 4.4.5. The class Free(K3, co-gem) is WQO.

Proof. Note that a co-gem P4 + K1 is an induced subgraph of P6 and therefore of

any cycle Ci with i ≥ 7. Since P6-free bipartite graphs are WQO (see Section 4.2.4),

we may restrict our attention to graphs in Free(K3, P4 +K1) that contain a C5.

Let G be a graph in Free(K3, P4 + K1) containing an induced copy of C5, say

C := (v1, v2, . . . , v5). Every vertex outside C must have at least two neighbours on

the cycle (since otherwise an induced co-gem arises) and at most two neighbours

on the cycle (since otherwise a K3 arises). Therefore, every vertex outside C has
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exactly two neighbours on C and due to K3-freeness of G these neighbours are non-

consecutive vertices of the cycle. We denote the vertices outside C that are adjacent

to vi−1 and vi+1 by Vi. Then each Vi is an independent set and vertices in opposite

sets Vi and Vj are non-adjacent, since G is K3-free. In addition, every vertex in

Vi is adjacent to every vertex in Vi+1, since otherwise two non-adjacent vertices

x ∈ Vi and y ∈ Vi+1 together with vi−2, vi−1, vi+1 would induce a copy of P4 + K1.

Therefore, G is a 5-uniform graph, and hence, by Theorem 4.4.1, Free(K3, P4 +K1)

is a well-quasi-ordered class.

Theorem 4.4.6. The class Free(K3, P3 + P2) is WQO.

Proof. Note that a P3 +P2 is an induced subgraph of P6 and therefore of any cycle

Ci with i ≥ 7. Since P6-free bipartite graphs are WQO (see Section 4.2.4), we may

restrict ourselves to those graphs in the class Free(K3, P3 + P2) that contain a C5.

Let G be a connected (K3, P3 + P2)-free graph and let C = (v1, v2, v3, v4, v5)

be an induced cycle of length five in G. Let v be a vertex of G outside the cycle.

Since G is K3-free, v can be adjacent to at most two vertices of C, and if v has

two neighbours on C, they are non-consecutive vertices of the cycle. We denote

the set of vertices in V (G) \ V (C) that have exactly i neighbours on C by Ni,

i ∈ {0, 1, 2}. Also, for i = 1, . . . , 5, we denote by Vi the set of vertices in N2 adjacent

to vi−1, vi+1 ∈ V (C) (throughout the proof subscripts i are taken modulo 5). We

call two different sets Vi and Vj consecutive if vi and vj are consecutive vertices of

C, and opposite otherwise. Finally, we call Vi large if |Vi| ≥ 2, and small otherwise.

The proof of the theorem will be given through a series of claims.

(1) N0 is an independent set, since otherwise any edge connecting two vertices

x, y ∈ N0 together with v1, v2, v3 would induce a P3 + P2.

(2) No vertex x ∈ N1 has a neighbour in N0. Indeed, if x ∈ N1 is adjacent to vi

and z ∈ N0, then G[x, z, vi+1, vi+2, vi+3] is isomorphic to P3 + P2.

(3) Any vertex x ∈ N2 has at most one neighbour in N0. Indeed, if x ∈ Vi is

adjacent to z, z′ ∈ N0, then G[x, z, z′, vi+2, vi+3] is isomorphic to P3 + P2.

(4) |N1| ≤ 5. Indeed, if there are two vertices x, x′ ∈ N1 which are adjacent to the

same vertex vi ∈ V (C), then G[x, x′, vi, vi+2, vi+3] is isomorphic to P3 + P2.

(5) If Vi and Vj are opposite sets, then no vertex of Vi is adjacent to a vertex of

Vj , since G is K3-free.
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(6) If Vi and Vj are consecutive, then every vertex x of Vi has at most one non-

neighbour in Vj. Indeed, if x ∈ Vi has two non-neighbours y, y′ ∈ Vi+1, then

G[x, y, y′, vi−1, vi−3] is isomorphic to P3 + P2.

(7) Each Vi is an independent set, since G is K3-free.

(8) If Vi and Vj are two opposite large sets, then no vertex in N0 has a neighbour

in Vi∪Vj . Assume without loss of generality that i = 1 and j = 4, and suppose

for contradiction that a vertex x ∈ N0 has a neighbour y ∈ V1. Obviously x

has either at least one non-neighbor or at least two neighbors in V4. If x is

non-adjacent to a vertex z ∈ V4, then G[x, y, z, v3, v4] is isomorphic to P3 +P2,

and if x is adjacent to vertices z, z′ ∈ V4, then G[x, z, z′, v1, v2] is isomorphic

to P3 + P2.

Since G is connected and N0 is an independent set, every vertex of N0 has a

neighbour in N2 (see Claim (2)). Let us denote by V0 those vertices of N0 at least

one neighbour of which belongs to a large set Vi and by G0 the subgraph of G

induced by V0 and the large sets. From Claims (3) and (4), it follows that at most

15 vertices of G do not belong to G0. We will show that G0 is a k-uniform graph

for some constant k, which will imply by Corollary 4.4.3 that G is c-uniform for a

constant c. We may assume that G has at least one large set, since otherwise G0 is

empty. We will show that G0 is k-uniform by examining all possible combinations

of large sets.

Case 1: Assume that for every large set Vi there is an opposite large set Vj . Then

it follows from Claim (8) that V0 = ∅. Suppose there are two consecutive large sets

Vi and Vi+1 such that Vi contains a vertex x nonadjacent to a vertex y ∈ Vi+1. Then

Vi−1 is small. Indeed, if Vi−1 is large, then, by Claim (6), it must contain a vertex z

adjacent to x. But then vertices x, y, z, vi−1, vi+2 induce in G a P3 +P2. Therefore,

G0 does not contain vertices of Vi−1. Symmetrically, G0 does not contain vertices of

Vi+2. Therefore, if G contains a couple of non-adjacent vertices in two consecutive

large sets, then G0 consists of at most three sets: Vi, Vi+1 and Vi+3. By Claim (6),

Vi and Vi+1 induce a 2-uniform graph, and therefore, G0 is 3-uniform. If every two

vertices of G0 in consecutive large sets are adjacent, then G0 is 5-uniform.

Case 1 allows us to assume that G contains a large set such that the opposite

sets are small. Without loss of generality we let V1 be large, and V3 and V4 be small.

The rest of the proof is based on the analysis of the size of the sets V2 and V5.

Case 2: V2 and V5 are large. Then, by Claim (8), there are no edges between

V0 and V2 ∪ V5. As a result, if V0 has at least two vertices, then each vertex of V0
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has exactly one neighbour in V1. Indeed, assume vertex a ∈ V0 has at least two

neighbours b, c ∈ V1. Let d be any other vertex of V0 and e its neighbour in V1. By

Claim (3), e must be different from b and c. But then a, b, c, d, e induce a P3 + P2.

Therefore, if V0 has at least two vertices, G0 is a 4-uniform graph. If V0 has at most

1 vertex, we can neglect it by Corollary 4.4.3, which makes G0 a 3-uniform graph.

Case 3: V2 and V5 are small. Then G0 is a bipartite graph with bipartition

(V1, V0), and as in Case 2 if V0 has at least two vertices, then each vertex of V0 has

exactly one neighbour in V1, i.e. G0 is a 2-uniform graph.

Case 4: V2 is large and V5 is small, i.e. G0 is induced by V0 ∪ V1 ∪ V2. Denote

by V01 the vertices of V0 that have no neighbours in V2, by V02 the vertices of V0

that have have no neighbours in V1, and by V012 the vertices of V0 that have have

neighbours both in V1 and V2. Without loss of generality, we assume that each of

V01 and V02 has at least 2 vertices, since otherwise these sets can be neglected by

Corollary 4.4.3. Therefore, as in Case 2, each vertex of V01 has exactly one neighbor

in V1, and each vertex of V02 has exactly one neighbor in V2. This means that if

V012 is empty, then G0 is 4-uniform.

Suppose now that V012 contains a vertex x and let y be a neighbour of x in

V1 and z be a neighbour of x in V2. Then y and z are non-adjacent (since G is

K3-free) and therefore, by Claim (6), y is adjacent to every vertex of V2 \ {z} and

z is adjacent to every every of V1 \ {y}. From the K3-freeness of G it follows that

x has no neighbours in (V1 ∪ V2) \ {y, z}. Thus, each vertex V012 has exactly one

neighbour in V1 and exactly one neighbour in V2. We denote the vertices of V1 that

have neighbours in V012 by V ′1 , and the vertices of V2 that have neighbours in V012

by V ′2 . Also, for i = 1, 2 let V ′′i = Vi − V ′i .

It follows from the above discussion and Claims (3) and (6) that

• vertices of V012 have no neighbours in V ′′1 ∪ V ′′2 ,

• there are all possible edges between V ′1 and V ′′2 , and between V ′2 and V ′′1 .

• there are no edges between V01 ∪ V02 and V ′1 ∪ V ′2 .

Therefore, G0 is a 7-uniform graph.

4.4.2 Well-quasi-order, k-letter graphs and modular decomposition

To reveal more classes of graphs well-quasi-ordered by the induced subgraph re-

lation, we need to introduce more notions. We already mentioned a particular

characterisation of k-letter graphs in Section 4.2.6, but we define the notion here for

completeness. This class of graphs was introduced in [Petkovšek, 2002]:

102



Definition 4.4.2. A k-letter graph G is a graph defined by a finite word x1x2 . . . xn

on alphabet X of size k together with a subset S ⊆ X2 such that:

• V (G) = {x1, x2, . . . , xn}

• E(G) = {xixj : i ≤ j and (xi, xj) ∈ S}

For any fixed sets X and S ⊆ X2, the subsequence relation on words corresponds

precisely to the induced subgraph relation on k-letter graphs. Since there are only

finitely many different choices for S, the following is an immediate corollary of

Higman’s lemma:

Corollary 4.4.7 (Petkovšek, 2002). For any fixed k, the class of k-letter graphs

is WQO by induced subgraphs.

Using Higman’s lemma in all its generality (which is just a special case of

Kruskal’s tree theorem), the above corollary can be extended in the following way.

Corollary 4.4.8. For any fixed k, the class of k-letter graphs is WQO by the

labelled-induced subgraph relation.

Together, the two notions, k-uniform graphs and k-letter graphs, give a wide

range of hereditary classes well-quasi-ordered by the labelled-induced subgraph re-

lation. To further extend this family let us introduce more definitions.

Given a graph G = (V,E), a subset of vertices U ⊆ V and a vertex x ∈ V outside

U , we say that x distinguishes U if x has both a neighbour and a non-neighbour in

U . A subset U ⊆ V is called a module of G if no vertex in V \ U distinguishes U .

A module U is nontrivial if 1 < |U | < |V |, otherwise it is trivial. A graph is called

prime if it has only trivial modules.

An important property of maximal modules is that if G and the complement of

G are both connected, then the maximal modules of G are pairwise disjoint. More-

over, from the above definition it follows that if U and W are maximal modules,

then either there are all possible edges between them or no edges at all. Therefore,

by contracting each maximal module of G into a single vertex we obtain an induced

subgraph G0 of G which is prime. Sometimes this graph is called the character-

istic graph of G (alternatively, one can think of G as being obtained from G0 by

substituting its vertices by maximal modules of G). This property allows to recur-

sively decompose the graph into connected components, co-components or maximal

modules. This decomposition can be described by a rooted tree and is known in

the literature under various names such as modular decomposition [McConnell and

Spinrad, 1999] or substitution decomposition.
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The importance of the notion of modular decomposition for our study is due to

the following theorem.

Theorem 4.4.9. If the set of prime graphs in a hereditary class X is well-quasi-

ordered by the labelled-induced subgraph relation, then the class X is well-quasi-

ordered by the induced subgraph relation.

Proof. Assume to the contrary that X is not a WQO and let G = {G1, G2, . . .}
be an infinite antichain. By Higman’s lemma, we can assume that every graph

in G is connected and co-connected. We also assume that this antichain is min-

imal in the sense that there is no infinite antichain G′1, G
′
2, . . . with |V (G1)| =

|V (G′1)|, . . . , |V (Gi−1)| = |V (G′i−1)| and |V (Gi)| > |V (G′i)| for some i ≥ 1. Obvi-

ously, if X has an infinite antichain, then it has a minimal infinite antichain.

Since for each i ≥ 1, the graph Gi is both connected and co-connected, the

maximal modules of Gi are pairwise disjoint. We contract each maximal module of

Gi into a single vertex, obtaining in this way the characteristic graph G0
i , and assign

to each vertex of G0
i the subgraph of Gi induced by the respective module. In this

way, the antichain G transforms into an antichain G0 of prime graphs whose vertices

are labelled by some graphs from X. Due to minimality of G we may assume that

the set of labels is WQO by induced subgraphs. But then G0 must be WQO by

labelled-induced subgraphs, according to our assumption about prime graphs in X.

This contradiction shows that X is WQO by induced subgraphs.

We now use Theorem 4.4.9 to prove the following result.

Theorem 4.4.10. The classes Free(diamond, P5) and Free(diamond, co−diamond)

are WQO. ( Diamond is the name for the complement of a K2 + 2K1.)

Proof. To prove the theorem, we define several special types of graphs:

• A thin spider is a graph partitionable into a clique C and an independent set

S, with |C| = |S| or |C| = |S| + 1, such that the edges between C and S are

a matching and at most one vertex of C is unmatched.

• A matched co-bipartite graph is a graph partitionable into two cliques C1 and

C2, with |C1| = |C2| or |C1| = |C2| + 1, such that the edges between C1 and

C2 are a matching and at most one vertex of C1 is unmatched.
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• An enhanced co-bipartite chain graph is a graph partitionable into two cliques

C1 and C2, inducing the complement of a bipartite chain graph together with

at most three additional vertices a, b, c for which N(a) = C1 ∪ C2, N(b) = C1

and N(c) = C2.

• An enhanced (bipartite) chain graph is the complement of an enhanced co-

bipartite chain graph.

It is not difficult to see that any thin spider or matched co-bipartite graph is

2-uniform graph. and a chain bipartite graph is 2-letter graph.

It was proved in [Brandstädt, 2004] that every connected and co-connected prime

graph in the class Free(diamond, P5) is either a thin spider or a matched co-bipartite

graph or an enhanced chain graph or a graph with at most 9 vertices. In [Brandstädt

and Mahfud, 2002], it is shown that for a connected and co-connected prime graph

G in the class Free(diamond, co−diamond), either G or G is a matched co-bipartite

graph or G has at most 9 vertices. Together with Theorems 4.4.1,4.4.9 and Corol-

lary 4.4.8, this proves the theorem.

4.5 Bigenic Classes of Graphs Which Are Not Well-

quasi-ordered

Let us start by recalling a few known or easy results about infinite antichains and

classes which are not WQO. First we repeat that the set of cycles

C ={C3, C4, . . .} is an infinite antichain.

This example leads to several more infinite antichains. Denote by C̃2k the bipartite

complement of an even cycle C2k. Then obviously

C̃ ={C̃2k : k = 3, 4, . . .} is an infinite antichain.

Also, denote by C∗2k the graph obtained from an even cycle C2k by creating a clique

on the set of even-indexed vertices. It is easy to see that

C∗ ={C∗2k : k = 2, 3, . . .} is an infinite antichain.

Finally, denote by C∆
3k the graph obtained from a cycle C3k by connecting every two

vertices at distance 0 mod 3 from each other. In this way, we form three big cliques

of size k each. For k > 1, any triangle in C∆
3k must belong to one of the three created

cliques, and therefore it is not difficult to see that

C∆ ={C∆
3k : k = 2, 3 . . .} is an infinite antichain.
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To reveal more infinite antichains, let us note that the class of 3K2-free bipartite

graphs is not WQO [Ding, 1992] (see also Section 4.2 for a stronger result). This

class contains an infinite antichain B consisting of graphs partitionable into three

independent sets A,B,C so that each of A∪B and B∪C induces a 2K2-free bipartite

graph, with no other edges present. By creating a biclique between the sets A and

B (i.e. by creating all possible edges between these sets), we transform B into a

new sequence of graphs which will be denoted B∗. Also, by replacing A and C with

cliques (i.e. creating all possible edges inside the sets) we transform B into a new

sequence which will be denoted B∗∗. With the same proof that shows that B is an

antichain, one can show B∗ and B∗∗ are infinite antichains.

We now use the infinite antichains described above to prove the following results.

Theorem 4.5.1. The classes Free(C4, 2K2), Free(K3, 2P3), Free(K3,K2 +3K1),

Free(diamond, 4K1) and Free(K4, 2K2) are minimal bigenic classes which are not

well-quasi-ordered by the induced subgraph relation.

Proof. The class Free(C4, 2K2) contains Free(C5, C4, 2K2, ), i.e. the class of split

graphs, which in turn contains the antichain C∗. If we delete any vertex from C4

or 2K2, then we obtain an induced subgraph of P4. Since P4-free graphs are WQO,

Free(C4, 2K2) is a minimal not WQO class.

The class Free(K3, 2P3) contains 2P3-free bipartite graphs, which are not well-

quasi-ordered, as we found in Section 4.2. To show the minimality, let us call a bi-

genic class trivial if one of its forbidden graphs has fewer than 3 vertices. Obviously,

any trivial class is WQO. The class Free(K3, 2P3) contains two maximal non-trivial

bigenic subclasses: Free(K3, P3 + 2K1) and Free(K3, P3 + P2). Both of them are

WQO by Theorem 4.4.4 and Theorem 4.4.6, respectively. Thus, Free(K3, 2P3) is a

minimal bigenic class which is not WQO.

It is not difficult to see that the bipartite complement of K2 + 3K1 contains

either K1,3 or C4 for any bipartition of this graph. Therefore, if B is a bipartite

complement of K2 + 3K1, then the class of B-free bipartite graphs contains the an-

tichain C6, C8, . . .. As a result, the class of K2 + 3K1-free bipartite graphs contains

the antichain C̃, which implies that Free(K3,K2 + 3K1) is not WQO. To see the

minimality, observe that this class contains two maximal non-trivial bigenic sub-

classes: Free(K3, 4K1) and Free(K3,K2 +2K1). The first of them contains finitely

many graphs by Ramsey’s Theorem, the second is WQO by Theorem 4.4.6.

To see that Free(diamond, 4K1) is not WQO, observe first that every graph in

C∆ is partitionable into three cliques and therefore is 4K1-free. Also, any triangle

in a C∆
3k must belong to one of the three cliques created in the construction of this
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graph, and therefore, every graph in C∆ is diamond-free. Thus, Free(diamond, 4K1)

contains the antichain C∆ and therefore is not WQO. This class contains three

maximal bigenic classes: Free(K3, 4K1), Free(P3, 4K1) and Free(diamond, 3K1).

The first of them contains finitely many graphs (Ramsey’s Theorem), the second is

a subclass of P4-free graphs and the last one is a subclass of Free(gem, 3K1) which

is WQO by Theorem 4.4.5.

Finally, it is not difficult to see that every graph in B∗ is (K4, 2K2)-free and

therefore Free(K4, 2K2) is not WQO. The set of maximal bigenic subclasses of

Free(K4, 2K2) consists of Free(K3, 2K2) and Free(K4,K2 +K1). The first of them

is a subclass of (P5, diamond)-free graphs, which are WQO by Theorem 4.4.10, while

the second is a subclass of P4-free graphs and therefore is WQO as well.

Theorem 4.5.2. The classes Free(K3, 3K2), Free(gem,P4+K2) and Free(gem,P6)

are not WQO.

Proof. The class Free(K3, 3K2) contains the antichain B, which is easy to see. Now

let us show that Free(gem,P4 +K2) and Free(gem,P6) contain the antichain B∗∗.
From the definition of graphs in the set B∗∗ it follows that both A ∪ B and B ∪ C
induce P4-free graphs. Now it is not difficult to see that each graph in B∗∗ is P6-free

and P4 +K2-free. To see gem-freeness, note that any P4 must contain at least one

vertex in each of A,B and C, in which case there obviously cannot exist a vertex

dominating such a P4.

4.6 A Summary for Bigenic Classes

In the two previous sections we discovered a number of bigenic classes which are

well-quasi-ordered by the induced subgraph relation and a number of those which are

not. In the present section, we summarize the results obtained in Sections 4.4 and

4.5, and reveal all bigenic classes for which the question of well-quasi-orderability

is open. The first two columns of Table 4.1 contain a summary of the obtained

results. For convenience, we also include in the first column classes Free(P4) and

Free(Kn,mK1).

Proposition 4.6.1. Let X = Free(G,H) be a bigenic class containing neither

Free(F) nor Free(F). If

(1) X contains none of the non-WQO classes listed in Table 4.1 and none of their

complements, and
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WQO Classes Thm

Free(K3, P3 + 2K1) 4.4.4
Free(K3, P4 +K1) 4.4.5
Free(K3, P3 + P2) 4.4.6
Free(P5, diamond) 4.4.10
Free(diamond, co-diamond) 4.4.10
Free(P4) 4.3.1 (A)
Free(Kn,mK1) Claim 4.3.5

Not WQO Thm Not WQO Clm

Free(C4, 2K2) 4.5.1 Free(2K2, C5) 4.3.7
Free(K3, 2P3) 4.5.1 Free(C4, C5) 4.3.7
Free(K3,K2 + 3K1) 4.5.1 Free(C3, C4) 4.3.7
Free(diamond, 4K1) 4.5.1 Free(C3, C5) 4.3.7
Free(K4, 2K2) 4.5.1 Free(C3, C6) 4.3.7
Free(K3, 3K2) 4.5.2 Free(C3, C7) 4.3.7
Free(gem,P4 +K2) 4.5.2 Free(C3,K1,3) 4.3.7
Free(gem,P6) 4.5.2 Free(C4,K1,3) 4.3.7

Table 4.1: Some bigenic classes of graphs

(2) X is not contained in any of the WQO classes listed in Table 4.1 or their

complements,

then Free(G,H) is one the following 14 classes or one of their complements:

Free(K3, 2K2 +K1), Free(K3, P4 +K2), Free(K3, P5 +K1),

Free(K3, P6), Free(diamond, co− gem), Free(diamond, 2K2 +K1),

Free(diamond, P3 +K2), Free(diamond, P4 +K2), Free(diamond, P6),

Free(gem, 2K2), Free(gem, co− gem), Free(gem, 2K2 +K1),

Free(gem,P3 +K2), Free(gem,P5)

Proof. If X = Free(G,H) contains neither Free(F) nor Free(F), then Free(F)

contains G or H and Free(F) contains G or H. If one of G and H belongs to both

Free(F) and Free(F), then by Claim 4.3.7, X is a subclass of Free(P4). Therefore,

we may assume without loss of generality that

• G ∈ Free(F) and H ∈ Free(F).

Since C3, C5, 2K2 /∈ Free(F), we know that G is (C3, C5, 2K2)-free. If additionally

G is (K3, C4)-free, then G is an induced subgraph of P4. Therefore, we may assume

that
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• G contains either K3 or C4.

By symmetry, we assume that

• H contains either 3K1 or 2K2.

If G contains C4 and H contains 2K2, then X contains Free(C4, 2K2), in which case

assumption (2) fails. Since C4 is the complement of 2K2, we may assume without

loss of generality that

• G is a C4-free graph containing K3.

Now if H contains a graph from the set {K2 + 3K1, 3K2, 2P3}, then X contains one

of the non-WQO classes from Table 4.1. Therefore, we assume that

• H is (K2 + 3K1, 3K2, 2P3)-free.

Let H be a linear forest in Free(K2+3K1, 3K2, 2P3) that is not an induced subgraph

of P4.

- Since 2P3 is an induced subgraph of P7, we know that every connected com-

ponent of H is a path on at most 6 vertices.

- If H contains a P6, then H = P6, since otherwise K2 + 3K1 is an induced

subgraph of H.

- If H is a P6-free graph containing a P5, then H is either P5 or P5 +K1, since

otherwise 3K2 or K2 + 3K1 is an induced subgraph of H.

- If H is a P5-free graph containing a P4, then H is either P4 +K1 or P4 +K2,

since otherwise K2 + 3K1 is an induced subgraph of H.

- If H is a P4-free graph containing a P3, then H is one of P3 +K1, P3 + 2K1 or

P3 + K2, since otherwise at least one of K2 + 3K1, 3K2 or 2P3 is an induced

subgraph of H.

- If P2 is the longest path belonging to H, then H is one of K2 + 2K1, 2K2 or

2K2 +K1, since otherwise K2 + 3K1 or 3K2 is an induced subgraph of H.

- Otherwise H = nK1 for some n ≥ 3.

Since Free(Kn,mK1) is in Table 4.1, we may assume that either G is different

from a complete graph or H is different from an edgeless graph. Without loss

of generality, we will assume that H 6= nK1. Moreover, by Claim 4.3.6, a class

Free(G,P3 +K1) is WQO if and only if the class Free(G, 3K1) is WQO. Therefore,

we may assume that H 6= P3 +K1. This reduces the analysis to the case when
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• H ∈ R = {co-diamond, co-gem, 2K2, 2K2 + K1, P3 + 2K1, P3 + K2, P4 +

K2, P5, P5 +K1, P6}

Every graph in the set R contains either co-diamond or 2K2. Therefore, H contains

co-diamond or 2K2. If additionally G contains a K4, then X contains one of the

non-WQO classes from Table 4.1 or one of their complements. Therefore, we may

assume that

• G is K4-free.

Let G be a (C4,K4)-free graph containing a triangle in the class Free(F), or alter-

natively, G is a linear forest in Free(2K2, 4K1) containing K3.

- Since 2K2 is an induced subgraph of P5, we know that every connected com-

ponent of G is a path on at most 4 vertices.

- If G contains P4 and K3, then G = P4 +P1, since otherwise 4K1 or 2K2 is an

induced subgraph of G.

- If G is a P4-free graph containing P3 and K3, then G = P3+K1, since otherwise

4K1 or 2K2 is an induced subgraph of G.

- If G is a P3-free graph containing P2 and K3, then G = K2 + 2K1, since

otherwise 4K1 or 2K2 is an induced subgraph of G.

- G is a P2-free graph containing K3, then G = K3, since otherwise 4K1 is an

induced subgraph of G.

Again, we may assume that G 6= P3 +K1, i.e. G 6= paw, since this case reduces to

the case G = K3 by Claim 4.3.6. Therefore,

• G ∈ Q = {K3, diamond, gem}

It is not difficult to verify that if Free(G,H) is a bigenic class with G ∈ Q and

H ∈ R satisfying (1) and (2), then Free(G,H) is one of the following 14 classes:

Free(K3, 2K2 +K1), Free(K3, P4 +K2), Free(K3, P5 +K1),

Free(K3, P6), Free(diamond, co− gem), Free(diamond, 2K2 +K1),

Free(diamond, P3 +K2), Free(diamond, P4 +K2), Free(diamond, P6),

Free(gem, 2K2), Free(gem, co− gem), Free(gem, 2K2 +K1),

Free(gem,P3 +K2), Free(gem,P5)
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From Proposition 4.6.1 it follows, in particular, that there are finitely many

minimal bigenic non-WQO classes containing neither Free(F) nor Free(F). We

prove that

Theorem 4.6.2. There are finitely many minimal non-WQO classes of graphs de-

fined by at most two forbidden induced subgraphs.

To verify this theorem, we have to show that there are finitely many minimal

bigenic non-WQO classes containing either Free(F) or Free(F).

Proposition 4.6.3. If a class X = Free(G,H) contains either Free(F) or Free(F),

then X contains one of the non-WQO classes listed in Table 4.1 or one of their com-

plements.

Proof. Assume, without loss of generality, that X contains Free(F). This means

that neither of G and H belong to Free(F), or alternatively, both G and H contain

a graph from F as an induced subgraph.

(1) If G contains a cycle Ci of length i ≥ 6 and

H contains C3, then X contains one of Free(K3, 2P3), Free(C3, C6),

Free(C3, C7).

H contains C4, then X contains Free(C4, 2K2).

H contains C5, then X contains Free(2K2, C5).

H contains C3, then X contains the complement of Free(C3, C4).

(2) If G contains a C5 and

H contains C3, C3 or C5, then X contains Free(C3, C5) or its comple-

ment.

H contains C4, then X contains Free(C4, C5).

(3) If G contains a C4 and

H contains C3 or C4, then X contains Free(C3, C4).

H contains K1,3, then X contains Free(C4,K1,3).

(4) If G contains a C3 and H contains K1,3 or C3, then X contains Free(C3,K1,3).

(5) If both G and H contain K1,3, the X contains Free(C3,K1,3).
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Since every graph in F contains one of C3, C4, C5 or C3, items (1) and (2) in

the above analysis prove the theorem in the case when one of the forbidden graphs

contains a cycle of length at least 5. Items (3), (4) and (5) prove the theorem in the

case when one of the forbidden graphs contains C4, C3 or K1,3.

4.7 Boundary Classes for Well-Quasi-Orderability

Let Yk be the family of hereditary classes of graphs defined by k forbidden induced

subgraphs. In Theorem 4.6.2, we showed that there are only finitely many minimal

non-WQO classes defined by two forbidden induced subgraphs. However, in the case

of more than two forbidden induced subgraphs, the situation changes dramatically.

Theorem 4.7.1. For every k ≥ 3, the family Yk contains infinitely many minimal

non-WQO classes.

Proof. Consider the class Free(K1,3, C3, Ct) for any t ≥ 4. This class is non-WQO,

since it contains infinitely many cycles. Assume that it is not a minimal non-WQO

class in Y3, and let X ∈ Y3 be a proper subclass of Free(K1,3, C3, Ct) which is

non-WQO. Then the set of forbidden induced subgraphs for X contains a graph G

which is a proper induced subgraph of one of K1,3, C3, Ct. If G is a proper induced

subgraph of K1,3 or C3, then either G is an induced subgraph of P4, in which case

X must be WQO, or G consists of three isolated vertices, in which case X is WQO

too, because it is finite (every graph in X is (K3,K3)-free and hence has at most 5

vertices, by Ramsey’s theorem).

Assume now that G is a proper induced subgraph of Ct with t ≥ 4. Then

X ⊆ Free(K1,3, C3, Pt). We claim that in this case X is WQO again.

For any natural t, the class Free(K1,3, C3, Pt) is well-quasi-ordered. Since K1,3

is forbidden and C3 is forbidden, the degree of each vertex of any graph in

this class is at most 2, and since Pt is forbidden, every connected graph in this

class has at most t vertices. We know from Claim 4.3.3 that a class of graphs

is well-quasi-ordered if and only if the set of connected graphs in the class is

well-quasi-ordered. Since Free(K1,3, C3, Pt) contains finitely many connected

graphs, it is well-quasi-ordered.

Thus, the class Free(K1,3, C3, Ct) contains no proper subclass from Y3 which is

non-WQO, i.e. Free(K1,3, C3, Ct) is a minimal non-WQO class for all t ≥ 4.

For k > 3, the proof is similar, i.e. we consider the class Free(K1,3, C3, . . . , Ck, Ct)

and show that it is a minimal non-WQO class for any t > k.
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The finiteness of the number of minimal non-WQO classes in the family Y1∪Y2

implies, in particular, that the problem of deciding whether a class in this family is

WQO or non-WQO is polynomial-time solvable. For larger values of k, this approach

does not work, as is shown by Theorem 4.7.1. In the attempt to overcome this

difficulty, we will use the notion of boundary classes as a helpful tool to investigate

finitely defined classes of graphs.

We start by discovering a specific boundary class for the family of graph classes

that are WQO by the induced subgraph relation. This special case will be useful in

finding more boundary classes later.

Theorem 4.7.2. The class of linear forests is a boundary class for well-quasi-

orderability.

Proof. Let F be a linear forest. Without loss of generality, we may assume that

F = Pt, since every linear forest is an induced subgraph of Pt for some value of t.

Clearly, the class Free(Pt,K1,3, C3, C4, . . . , Ct) is a subclass of linear forests, and

obviously, the class linear forests is well-quasi-ordered. Therefore, by Lemma 1.4.7,

the class of linear forests is a minimal limit class.

In the proof of Theorem 4.7.2, we observed that the class of linear forests is

well-quasi-ordered by the induced subgraph relation. In fact, any boundary class

must be WQO.

Lemma 4.7.3. Every boundary class is well-quasi-ordered.

Proof. If a boundary class X is non-WQO, it must contain an infinite antichain

G1, G2, . . .. Then for any Gi, the class Free(Gi) ∩ X is a proper limit subclass of

X, contradicting the minimality of X.

4.7.1 On the number of boundary classes

In the previous section, we revealed one boundary class, the class of linear forests.

We denote this class by F . Are there other boundary classes? Yes, because for

any boundary class X, the class of complements of graphs in X is also boundary.

Therefore, the complements of linear forests form a boundary class; we denote this

class by F . As we shall see later, there are many other boundary classes. Moreover,

in this section we show that the family of boundary classes is infinite. To this end,

for any natural number k ≥ 1, we define the following graph operation. Given

graph G, we subdivide each edge of G by exactly k ‘new’ vertices and then create a

clique on the set of ‘old’ vertices. Let us denote the graph obtained in this way by
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G(k). Also, for an arbitrary hereditary class X, we define X(k) to be the class of all

induced subgraphs of the graphs G(k) formed from graphs G ∈ X.

It is not difficult to see that classes F (k), for various values of k, are pairwise

incomparable, i.e. none of them is a subclass of another. We will show that for any

k ≥ 3, the class F (k) is a boundary class. To this end, let us prove a few auxiliary

results.

Throughout the section, we denote by D the class of graphs of vertex degree at

most 2. Clearly, this is a hereditary class. The set of minimal forbidden induced

subgraphs for this class consists of 4 graphs (each of them has a vertex of degree

3 and the three neighbours of that vertex induce all possible graphs on 3 vertices).

We will show that for the class D(k), the situation is similar, in the sense that the

set of minimal forbidden induced subgraphs for it is finite, regardless of the value of

k.

Lemma 4.7.4. For each k ≥ 3, the set of minimal forbidden induced subgraphs for

the class D(k) is finite.

Proof. First of all, let us observe that the class D(k) is a subclass of the class M(k)

of graphs whose vertices can be partitioned into a clique A and a set of B of vertices

inducing a Pk+1-free linear forest (i.e. a graph every connected component of which

is a path on at most k vertices). M(k) is a wider class than D(k), since by definition

we do not specify what is happening between the two parts A and B for graphs in

M(k), while for graphs in D(k) there are severe restrictions on the edges between

A and B (these restrictions are described below). Therefore, the set of minimal

forbidden induced subgraphs for D(k) consists of the set M of minimal forbidden

induced subgraphs for M(k) and the set D of graphs from M(k) that restrict the

behavior of edges between A and B. We will show that both sets M and D are

finite.

For the finiteness of M we refer the reader to [Zverovich, 2002], where the

following result was proved: Let P and Q be two hereditary classes of graphs such

that both P and Q are defined by finitely many forbidden induced subgraphs, and

there is a constant bounding the size of a maximum clique for all graphs in P and

the size of a maximum independent set for all graphs in Q. Then the class of all

graphs whose vertices can be partitioned into a set inducing a graph from P and

a set inducing a graph from Q has a finite characterization in terms of forbidden

induced subgraphs. For the class M(k), we have Q = Free(K2) is the class of

complete graphs, in which case the the size of a maximum independent set is 1, and

P = Free(K1,3, C3, . . . , Ck+1, Pk+1), in which case the size of a maximum clique is
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at most 2. Therefore, M is a finite set.

In order to show that the size of D is bounded, let us describe the restrictions on

the behavior of edges connecting vertices of A to the vertices of B in graphs in the

class D(k). To simplify the task, we are working under the assumption that k ≥ 3.

(1) Every vertex of B has at most one neighbour in A;

(2) Only an end-vertex of a path in B can have a neighbour in A;

(3) If both end-vertices of a path in B have neighbours in A, then these neighbours

are different and the path has exactly k vertices;

(4) Let P and P ′ be two paths in B such that each contains exactly k vertices

and both end-vertices in both paths have neighbours in A. Then the pair of

neighbours of P in A and the pair of neighbours of P ′ in A are different, i.e.

they share at most one vertex.

(5) Every vertex of A has at most two neighbours in B.

It is not difficult to see that a graph G ∈ M(k) belongs to D(k) if an only if G

satisfies restrictions (1)− (5). The first four restrictions are common for any graph

G(k) (or an induced subgraph of G(k)) and they completely specify the behavior

of the edges connecting ‘new’ vertices to ‘old’ ones. Restriction (5) is specific for

graphs in D(k).

Now we translate restrictions (1) − (5) to the language of forbidden induced

subgraphs. We denote by Φ and T the two graphs represented in Figure 4.7.

Also, C ′′k+2 stands for the graph consisting of two cycles Ck+2 sharing an edge,

and diamond for K4 without an edge. It is a routine task to verify that the graphs

diamond,K1,4, C4, . . . , Ck+1, C
′′
k+2,Φ, T belong to M(k) but do not belong to D(k)

(for k ≥ 3). Moreover, they are minimal graphs that do not belong to D(k).
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Figure 4.7: The graphs Φ (left) and T (right)

Now letG be a graph inM(k) which is free of diamond,K1,4, C4, . . . , Ck+1, C
′′
k+2,Φ, T .

We assume that
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• every vertex of B has at least one non-neighbour in A, since otherwise this

vertex can be moved to A,

• A contains at least 3 vertices, because there are finitely many connected K1,4-

free graphs in M(k) with |A| ≤ 2, and a minimal graph in M(k) which does

not belong to D(k) must be connected.

Under these assumptions, the diamond-freeness of G guarantees that (1) is sat-

isfied.

Suppose that the part B of G contains a path in which a non-end-vertex v has

a neighbour x in A. Since |A| ≥ 3, there must exist two other vertices y, z ∈ A, and

these vertices must be non-adjacent to v, by (1). Since v is a non-end-vertex of a

path in B, it must have two distinct neighbours in the path, say u and w, with u

being non-adjacent to w. By (1), each of u and w has at most one neighbour among

x, y, z. If one of them is adjacent to x, then the forbidden graph Φ arises. If u or w

is adjacent to y or z, then a C4 arises, and if the vertices u,w have no neighbours

among x, y, z, then the graph T arises. This discussion shows that restriction (2) is

satisfied.

Assume both end-vertices of a path P in B have neighbours in A. Together with

(2), this gives rise to a chordless cycle C consisting of P and its neighbours in A.

If P has less than k vertices, then C is of size at most k + 1, which is forbidden. If

P has exactly k vertices and just one neighbour in A, then the size of C is k + 1,

which is impossible. Therefore, P has k vertices and 2 neighbours in A. Therefore,

restriction (3) is satisfied.

Let P and P ′ be two paths in B such that each contains exactly k vertices and

both end-vertices in both paths have neighbours in A. If the neighbours of P in A

coincide with the neighbours of P ′ in A, then G contains the forbidden graph C ′′k+2.

Therefore, restriction (4) is satisfied.

Finally, if a vertex x of A has at least three neighbours in B, say u, v, w, then

from the previous discussion, we know that u, v, w belong to different connected

components of B, and therefore, x, u, v, w together with any vertex y ∈ A different

from x induce a K1,4. This shows that restriction (5) is satisfied.

From the above discussion, we conclude that D must be finite, which completes

the proof of the lemma.

Lemma 4.7.5. Let G be a graph with at least 4 vertices, and let G(k) be an induced

subgraph of H(k). Then G is a subgraph of H.
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Proof. Observe that in the graphs G(k) and H(k), every ‘new’ vertex has degree

2, while every ‘old’ vertex has degree at least 3. Therefore, if G(k) is an induced

subgraph of H(k), then ‘new’ vertices of G(k) are mapped to ‘new’ vertices of H(k)

and ‘old’ vertices of G(k) are mapped to ‘old’ vertices of H(k). Let U be the set

of vertices whose deletion from H(k) results in G(k). If U contains a ‘new’ vertex

v subdividing an edge e of H, then U must contain all new vertices subdividing e,

since otherwise a pendant vertex appears, which is not possible for G(k). Obviously,

deletion of all new vertices subdividing e from H(k) is equivalent to deletion of the

edge e from H. Also, if U contains an ‘old’ vertex v of H, then U must contain

all new vertices subdividing all edges incident to v (in H), since otherwise again a

pendent vertex appears. Clearly, deleting from H(k) an ‘old’ vertex v together with

all new vertices subdividing all edges incident to v (in H) is equivalent to deleting

from H vertex v together with all edges incident to v. Therefore, if G(k) is an

induced subgraph of H(k), then G is a subgraph of H.

Theorem 4.7.6. For any natural number k ≥ 3, the class F (k) is a boundary class.

Proof. Let D be the class of graphs of vertex degree at most 2 and k ≥ 3 a natural

number. First, we show that F (k) is a limit class. To this end, define the sequence

F (k)
3 ,F (k)

4 , . . . of graph classes by F (k)
i := Free(C

(k)
3 , C

(k)
4 , . . . , C

(k)
i )∩D(k). It is not

difficult to see that the sequence F (k)
3 ,F (k)

4 , . . . converges to F (k). Also, for each i,

the class F (k)
i contains an infinite antichain, namely C

(k)
i+1, C

(k)
i+2, . . ., which follows

from Lemma 4.7.5 and the obvious observation that cycles form an antichain with

respect to the subgraph relation.

The proof of minimality of F (k) is similar to Theorem 4.7.2. We consider a

graph G in F (k) and without loss of generality assume that G = P
(k)
t , since ev-

ery graph in F (k) is an induced subgraph of P
(k)
t for some t. Then the class

Free(P
(k)
t , C

(k)
3 , C

(k)
4 , . . . , C

(k)
t ) ∩ D(k) is a subclass of F (k). By Lemma 4.7.4, this

class is finitely defined, and since F (k) is well-quasi-ordered, this class is well-quasi-

ordered too. Therefore, by Lemma 1.4.7, F (k) is a minimal limit class.

4.7.2 The well-quasi-orderability of finitely defined classes

In this section, we show that for any k ≥ 1, the set of boundary classes essential

for determining well-quasi-orderability of classes in Yk (the family of graph classes

defined by k forbidden induced subgraphs) is finite.

We start with the initial case k = 1, in order to apply induction for the general

case.
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Theorem 4.7.7. A monogenic class of graphs is wqo if and only if it contains

neither F nor F .

Proof. Let X = Free(G) be a monogenic class of graphs. If X contains F or F
then X is not wqo, by Theorem 1.4.6. Assume now that X contains neither F nor

F , i.e. G belongs both to F and to F . The intersection F ∩F is the class of graphs

free of

K1,3,K1,3, C3, C3, C4, C4, C5, C5, C6, C6, . . . .

K1,3 and every cycle Ci with i > 5 contain a C3. Therefore,

F ∩ F = Free(C3, C3, C4, C4, C5).

It is not difficult to verify that F ∩ F consists of P4 and its induced subgraphs.

In [Damaschke, 1990], it was shown that P4-free graphs are wqo by induced sub-

graphs.

Theorem 4.7.8. For any natural k, there is a finite set Bk of boundary classes

such that a class X = Free(G1, . . . , Gk) is wqo if and only if it contains none of the

boundary subclasses from the set Bk.

Proof. We prove the theorem by induction on k. For k = 1, the result follows from

Theorem 4.7.7.

To make the inductive step, we assume that the theorem is true for k − 1. Let

C be the set of graph classes Free(G1, . . . , Gk) such that

• each of the graphs G1, . . . , Gk belongs to one of the boundary classes in Bk−1,

• Free(G1, . . . , Gk) is not wqo.

Since the set Bk−1 is finite and each class in this set is well-quasi-ordered (Lemma 4.7.3),

we conclude (by Higman’s Lemma) that C is well-quasi-ordered by subclass inclu-

sion, and thus the set of minimal classes in C is finite; we denote this set by Ck.
For each class in Ck, we arbitrarily choose a boundary subclass contained in it

(such a boundary subclass must exist, by Theorem 1.4.6), and denote the set of

boundary classes chosen in this way by B. Since Ck is finite, B is finite too. Now we

claim that the theorem holds with Bk = Bk−1 ∪ B. To see this, consider a class of

graphs X = Free(G1, . . . , Gk). If it is wqo, then it does not contain any boundary

subclass from Bk, since it contains no boundary subclasses, by Theorem 1.4.6.

Suppose now that X = Free(G1, . . . , Gk) is not wqo. If each of the graphs

G1, . . . , Gk belongs to one of the boundary classes in Bk−1, then it must contain
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a class from Ck by definition of Ck and therefore it must contain a boundary class

from B ⊆ Bk. If one of the forbidden graphs, say Gi, does not belong to any class in

Bk−1, then we consider the class Free(G1, . . . , Gi−1, Gi+1, . . . , Gk). By induction,

it contains a boundary class from Bk−1. But then X contains the same boundary

class.

4.7.3 Remarks and open problems

We proved that for each k, there is finite collection of boundary properties that

allow us to determine whether a class of graphs defined by k forbidden induced

subgraphs is wqo or not. This conclusion is in a sharp contrast with the fact that

the number of boundary properties is generally infinite, for which we also gave a

proof. The proof of this fact is obtained with the help of a simple graph operation

applied to linear forests. More graph operations (complementation, “bipartite”

complementation, etc.) can produce more boundary classes related to the class

of linear forests. However, it is not clear whether there exist boundary properties

that are not derived from linear forests. Identifying such properties is a natural

open question.

To formulate one more open problem related to this topic, we extend the in-

duced subgraph relation to the more general notion known as the labelled-induced

subgraph relation, as in Section 4.4. For the reader’s convenience, we re-introduce

this notion here briefly. Assume (W,≤) is an arbitrary well-quasi-order. We call

G a labelled graph if each vertex v ∈ V (G) is equipped with an element l(v) ∈ W
(the label of v), and we say that a graph G is a labelled-induced subgraph of H if G

is isomorphic to an induced subgraph of H and the isomorphism maps each vertex

v ∈ G to a vertex w ∈ H with l(v) ≤ l(w).

It is interesting to observe that the class of linear forests, although well-quasi-

ordered by the induced subgraph relation, is not well-quasi-ordered by the labelled-

induced subgraph relation. On the other hand, all finitely defined classes which are

known to be well-quasi-ordered also are well-quasi-ordered by the labelled-induced

subgraph relation. This observation motivates the following conjecture.

Conjecture 4.7.1. Let X be a hereditary class which is well-quasi-ordered by the

induced subgraph relation. Then X is well-quasi-ordered by the labelled-induced sub-

graph relation if and only if the set of minimal forbidden induced subgraphs for X

is finite.
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Chapter 5

Conclusion

We began with two initial questions: How far, exactly, must one restrict the structure

of a graph to obtain a certain interesting property? What kind of tools are helpful

to classify sets of graphs into those which satisfy a property and those that do not?

With these two questions in mind, we have studied three main types of use-

ful properties that can be attained by classes of graphs: the efficient solvability

of algorithmic graph problems, the relative structural simplicity that comes with

boundedness of clique-width, and the elegance of being well-quasi-ordered (lacking

infinite antichains of graphs with respect to a binary relation).

It is worth noting that these three types of properties have some interrelation-

ships. For example, the boundedness of clique-width has implications for the efficient

solvability of a large number of algorithmic graph problems, as we discussed in Sec-

tion 3.1. So although Chapter 2 is mainly dedicated to the discovery of boundary

properties and polynomial-time algorithms in relation to algorithmic graph prob-

lems, the later chapters also have algorithmic incentives, among other motivations.

We found that bipartite graphs play a crucial role in the study of notions such

as clique-width (Section 3.2), and we proceeded to set up a general framework to

construct bipartite graphs of large clique-width. This led to several new discoveries,

for instance the discovery of a new minimal hereditary graph class of unbounded

clique-width.

In our study of well-quasi-orderability, we managed to complete a characterisa-

tion of hereditary classes of bipartite graphs defined by one forbidden induced bipar-

tite subgraph, into those classes which are WQO and those which are not. This was

achieved by proving the non-well-quasi-orderability of the class of P7-free bipartite

graphs. A similar characterisation already existed for general graph classes defined

by one forbidden induced subgraph [Damaschke, 1990]. We made major progress
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towards establishing such a characterisation for general graph classes defined by two

forbidden induced subgraphs, by determining the WQO-status of several interest-

ing graph classes, and by narrowing the open cases down to a small finite number.

After studying many cases of well-quasi-orderability with respect to the induced

subgraph relation in Chapter 4, evidence suggests that it is natural to make the

following conjecture relating well-quasi-orderability of graph classes to boundedness

of clique-width:

Conjecture 5.0.2. If a graph class X is well-quasi-ordered with respect to the in-

duced subgraph relation, then X has bounded clique-width.

To the best of our knowledge, there are no known counter-examples to this

conjecture.

The notion of boundary properties is a useful way of identifying whether a

graph class has a desirable property, in the case where it is not possible to simply

give a list of minimal classes that do not possess the given property. In particular,

we discovered new boundary properties in relation to various algorithmic graph

problems: for example, we found the first boundary properties for the family of

hereditary graph classes for which the Hamiltonian cycle problem is polynomial-

time solvable. Although it is a non-trivial task to find and list boundary properties,

or even to determine the number of boundary properties for a specific family of

graph classes, the task is worthwhile in order to study our two initial questions in a

more systematic way.

In the case of more restricted graph classes, such as those defined by finitely

many forbidden induced subgraphs, the notion of boundary properties is especially

important, since it can provide us with an exact tool for determining whether such

graph classes belong to a certain family (due to Theorem 1.4.6). If one can show that

for graph classes defined by a forbidden set of bounded size, the number of boundary

properties for a family A also becomes bounded, then this has obvious implications

for the complexity of the decidability problem: Does A include a specific finitely

defined class? We presented such a result for well-quasi-orderability in Section 4.7.

In addition to the challenge of identifying more boundary properties of graphs,

the notion of ’boundary ideals’ can be applied more generally to the study of other

partial orders. For instance, recently there has been considerable interest in the pat-

tern containment relation on permutations (see e.g. [Atkinson et al., 2002; Brignall,

2012; Murphy and Vatter, 2003; Vatter and Waton, 2011]). The problem of deciding

whether a permutation class given by a finite set of “forbidden” permutations is wqo
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or not was proposed in [Brignall et al., 2008]. The notion of boundary ideals could

be helpful in finding an answer to this question.

Boundary ideals seem to be a promising concept with which to relate various im-

portant partially ordered structures to each other, some of which have been studied

in relative isolation before. In this sense, this pleasingly generalised notion could be

seen to have a ’unifying’ effect as a mindset or framework for mathematical research.
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clique-width, 52

cograph, 9

comparability graph, 64

comparable, 5

complement, 2

complete graph, 3

composition, 77

concatenation, 56

connected, 3

connected component, 3

convex, 39

countable grid, 70

cubic, 18

cycle, 3

degree, 1

diamond, 46, 104

Dilworth number, 64

disjoint union, 2

dominating induced matching, 32

domination, 32

double bichain graph, 67, 86

edge, 1

edge contraction, 2

empty graph, 3

factorial, 10, 54

finitely defined, 7

forbidden set, 6

forest, 8

gem, 99

graph, 1

graph minor theorem, 74

Hamiltonian cycle, 18

hereditary, 7

Higman’s lemma, 94

incident, 1

independent set, 3

induced matching, 32

induced subgraph, 2, 6
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interval graph, 67

isomorphism, 2

k-letter graph, 92

k-path partition, 25

k-uniform graph, 96

Kruskal’s tree theorem, 94

labelled graph, 96

labelled-induced subgraph, 96, 104, 119

leaf, 38

limit ideal, limit class, 12

lower ideal, 5

matched co-bipartite graph, 104

minimality criterion, 13

minor, 7

minor-closed, 7

modular decomposition, 103

module, 103

monadic second order logic, 35

monogenic, 75

monotone, 7

neighborhood, 1

NP-complete, 15

order-preserving, 4

orthogonal concatenation, 56

parse tree, 52

partial order, 4

partially ordered set, poset, 4

path, 3

pattern containment, 4

paw, 95

permutation graph, 64, 77

polynomial-time, 15

preleaf, 38

prime graph, 103

property, 2

quasi-order, 4

Ramsey number, 10

regular, 1

speed, 10

split graph, 65

split permutation graph, 67

subcubic, 18

subgraph, 7

superfactorial, 11

thin spider, 104

threshold graph, 66

tree, 8

tree-width, 53

TS-graph, 66

vertex, 1

vicinal order, 64

well-quasi-order (WQO), 74
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A. Brandstädt, J. Engelfriet, H.-O. Le, and V.V. Lozin. Clique-width for four-vertex

forbidden subgraphs. Theory of Computing Systems, 34:561, 2006.
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