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Abstract 

A pulsed Nd:YAG laser with an approximately Gaussian beam shape is directed onto the surface of an 

aluminium sheet at an energy density below which damage by laser ablation occurs, generating Lamb 

waves in the sheet. The laser beam is raster scanned across the surface of the sample. The Lamb waves 

travel radially outwards from the generation point and are detected some distance away by an 

electromagnetic acoustic transducer with sensitivity to in-plane displacements of the sheet. A number 

of static EMATs are located around the edges of the sheet, some distance from the generation point. 

The presence of a crack-like defect on the sheet can be detected by either a sudden change in the 

ultrasonic waveform or by an enhancement in the frequency content of the waveform when the laser 

beam illuminates directly onto the crack.  

 

 

Keywords : laser ultrasound, lamb waves, EMATs 

 

 

 

 
1. Introduction 

 
Laser generated ultrasound [1-8]  has for some time been used  in research laboratories as it provides a 

non-contact, wideband and controllable generation source capable of simultaneously generating 

compression, shear and surface waves on a range of materials. A number of different types of pulsed 

lasers can be used to generate ultrasound [4], but the most common is probably the solid-state pulsed 

Nd:YAG laser, for many applications. 



 

At high energy densities, typically greater than 10
6
 Wcm

-2
 on metals, a pulsed laser beam will ablate 

the surface of the sample [4], removing material down to a depth of several microns over the irradiated 

area. In some applications this level of damage is tolerable, but in general it is desirable to have a 

completely non-destructive ultrasonic generation mechanism. This is achieved by reducing the energy 

density of the pulsed laser below the threshold of ablation, and such a source is described as 

thermoelastic.   

 
The laser pulse typically is between 5 ns to 100 ns long, although much faster pulses have been used to 

generate ultrasound [9]. The frequency content of the waves generated by the pulsed laser beam is 

dependent on a convolution of the spatial and temporal properties of the source. Laser pulses of 10 ns 

duration are capable of generating broadband ultrasonic waves with measurable frequency content up 

to 100MHz, although wave attenuation and the width of the source mean that measured waves will 

usually have lower frequency content. In this work a frequency doubled Nd:YAG laser with a 

wavelength of 532 nm, a pulse width of 10 ns, an energy of 800 mJ and a beam diameter of 

approximately 6 mm is used to generate the Lamb waves in the metal sheet. 

 
In the thermoelastic regime, the area of the sample illuminated by the laser beam is heated rapidly by 

the absorption of the laser energy. The heated region expands and generates stress as the surrounding 

cooler material constrains the expansion of the heated region. The exact distribution of this force is 

dependent upon the energy density profile of the incident laser beam, but the resultant force is 

predominantly in-plane as the surface of the heated region is free to expand into the air region above it 

[3,4]. The laser beam energy is absorbed within the electromagnetic skin depth, which for light of 532 

nm is approximately 4 nm in aluminium. Because metals have a relatively high thermal conductivity, 

the effective depth of the heated region of the source will extend slightly beyond the electromagnetic 

skindepth [4].  The effective depth of the source is many orders of magnitude smaller than the highest 

frequency ultrasonic waves that are detectable, with the result that one can treat the laser generated 

ultrasonic source as purely a surface force. 

 
The principle that the laser based source on metals is purely a surface acting source has certain 

implications for the properties of the Lamb waves that will be generated. Certain Lamb wave modes at 

particular frequencies have relatively small or even zero in-plane displacement at the surface. Such 



modes will not be efficiently generated by a pulsed laser beam source. In what follows, we assume that 

the sample is an isotropic plate or sheet and that the reader is familiar with the fact that a metal sheet 

will support guided Lamb wave modes that can be split up into two distinct types; symmetric and anti-

symmetric modes.  Any force acting on a one side of a plate or sheet is capable of generating both 

symmetric and anti-symmetric Lamb wave modes. The explanation for this is that one can represent 

any force, F, acting on one side of a plate, into the sum of a purely symmetric force and a purely anti-

symmetric force acting on each side of the plate [10], each of magnitude, F/2. The schematic diagram 

of figure 1 explains why this is the case. 

 

 

 

 
Figure 1 

The force acting on surface of the sample on the left (black arrow) is equivalent to the sum of the 

purely symmetric (white arrows) and purely anti-symmetric (grey arrows) acting at the same point on 

the surfaces of the sample on the right. 

 

 

 
The purely anti-symmetric force will generate only anti-symmetric mode Lamb waves, and the purely 

symmetric force will generate only symmetric mode Lamb waves. In determining how efficiently the 

in-plane force at the surface generates a particular mode at a particular frequency, one needs to 

consider the relative displacement amplitude of that particular mode. For example, the relative 

magnitudes of the in-plane and out-of-plane displacements are shown in figure 2 for the symmetric 

zero order S0 mode Lamb wave at frequency-thickness products of 0.5 MHz-mm and 2.21 MHz-mm; 

these are for nominally pure aluminium sheet with compression and shear wave velocities of 6320 ms
-1

 

and 3130 ms
-1

 respectively. From figure 2, one can see that that the S0 mode should be generated more 

efficiently by the laser source at the frequency thickness product of 0.5 MHz-mm when compared to 



2.21 MHz-mm, where there is almost zero in-plane displacement at the surface. These have been 

calculated using the standard technique of firstly solving the relevant Rayleigh-Lamb equations to find 

the phase velocity of a particular mode at a particular frequency thickness product, and then taking this 

result to calculate the displacement through the thickness of the plate [11]. 

 

 

 

Figure 2 

Relative displacement of the in-plane and out of plane components in a 1 mm thick aluminium sheet 

for the S0 mode Lamb wave at frequency-thickness products of 0.5 MHz-mm (left) and 2.21 MHz-mm 

(right). 

 

 
Electromagnetic acoustic transducers (EMATs) are capable of either generating or detecting ultrasonic 

waves at the surface of a sample that is either electrically conductive or has favourable magnetic 

properties. Favourable magnetic properties typically means that the sample will have a high 

magnetostrictive coefficient [12,13].  The EMAT is coupled to the sample by electromagnetic waves 

and thus their operation is non-contact, and they are generally wide bandwidth devices, capable of 

detecting signals of frequencies greater than 100MHz.   Here, the EMATs are used to detect ultrasonic 

Lamb waves that have propagated from the generation point to the detection point, on an aluminium 

plate. EMATs are velocity sensors [14,15] and as they are non-contact, they do not significantly 

mechanically load the sample that is being measured, so that their influence on the properties being 

measured is negligible. EMATs need to be within several millimetres of the sample surface as the 

detection efficiency falls off dramatically with increased stand-off of the transducer from the sample. 



 
There are several previous examples in the published literature [16-20] of researchers using a pulsed 

laser to generate ultrasound which is subsequently detected using an EMAT. The EMAT has 

favourable sensitivity when compared to laser based interferometric detection [21], particularly where 

in-plane displacement measurements are measured.  

 

 

 
2. Experimental Method 

 
The experimental set-up is shown below in the schematic diagram of figure 3. The sheet metal sample 

is held stationary and a number of EMATs are placed in close proximity to the sample surface such that 

the transducers almost touch the sample surface. The laser beam is incident on a computer controlled, 

two axis gimballed mirror that scans the pulsed laser beam impact point across the sample surface. In 

some samples, a small slot has been laser machined into the sample at an angle normal to the surface of 

the sample. 

 

 

 

Figure 3 

Schematic diagram of experimental set-up used for non-contact detection of cracks in sheet metal plate. 

 

 

 

 



When the simulated defect lies between the generation point and the detection point, there will clearly 

be a strong effect on the detected signal. One might reasonably expect that this effect is largest when 

the generation point is very close to the defect as this will minimise the amount of energy that can 

diffract around the defect. The effect of passing the source over the defect is examined by scanning the 

laser beam along a line towards the EMAT starting with the defect between the generation and 

detection point. 

The EMAT is a linear coil, constructed by wrapping a single layer of 0.08 mm diameter insulated 

copper wire around a 35 mm diameter NdFeB, cylindrical permanent magnet. The total width of the 

coil is 2 mm and the length of the coil is equal to the diameter of the cylindrical magnet.  A schematic 

diagram of the EMAT construction in shown in figure 4. The cylindrical magnet and surrounding coil 

are held in a brass case and the front of the EMAT coil is protected by a 0.5 mm thick polymer sheet. 

 

Figure 4 

Schematic diagram of EMAT construction. Note that the various features shown are not to scale and 

the number of turns of the coil is fifteen. 

 

The EMAT is connected to a wideband pre-amplifier with a gain of approximately 60dB for 

frequencies between 0.1 MHz – 5 MHz. The pre-amplifier is connected to either a digital oscilloscope 

or a PC based data acquisition card. In each case, the analogue bandwidth is 100 MHz, and the 

digitisation rate is 100 Msamples per second at 8-bits resolution. The data is stored on a computer for 

signal processing. Note that the 2 mm width of the EMAT coil limits the bandwidth of the sensor, due 

to the spatial impulse response effect [22]. The EMAT will not detect significant or representative 



signal amplitudes for signals of less than 2 mm wavelength, and for wavelengths around this value 

there will be resonant effects on the detected signal. 

Aluminium sheets of between 0.5 mm to 3 mm thick are used to study the behaviour of the laser 

generated Lamb waves as they propagate along a defect free plate. A 10 mm thick 304 stainless steel 

plate is also examined, containing a simulated stress-corrosion crack of estimated size 3+/- 0.6mm deep 

with an average gape of 24m wide. The size of the defect was established from destructive tests of 

control samples and verified by alternating current potential drop (ACPD) measurements [23]. 

The experiments are also modelled using a finite element software package, PZFlex, for the case where 

the defect lies roughly midway between the generation and detection points which are separated by 

8.5cm. This was performed for comparison with experimental observations and to illustrate that the 

wideband Lamb wave can readily diffract around a defect. 

 

3. Results 

There are a number of factors that one should consider when analysing ultrasonic waveforms detected 

by EMATs. This particular EMAT is sensitive to in-plane ultrasonic displacements and because it is a 

velocity sensor, the detected signal will have larger magnitudes at higher frequencies when compared 

to the true displacement waveform [14, 15, 24]. A single frequency component of the displacement, A, 

of a one dimensional wave can be written  
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where  is angular frequency, k is wavenumber, t is time and x is distance. Thus the velocity of a 

particle as the wave passes is obtained from differentiation of the term above giving 
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Thus, the EMAT detected signal is enhanced by a linear factor of frequency when compared to the true 

displacement. If the ultrasonic amplitude is required from the EMAT detected signal, a pre-amplifier 

with constant gain over the bandwidth of the signal must be used before the data is processed. 

The EMAT coil has a small but finite width, 2 mm in this case. The finite width of the coil will make 

the detected signal appear differently to the signal that would be detected by an infinitely narrow coil. 



When the width of the sensor becomes comparable to the wavelength of the wave passing underneath 

the coil, the signal detected by the EMAT will not be a true representation of the velocity of the 

particles in the sample associated with the propagation of the wave. This effect is sometimes referred to 

as the spatial impulse response, and can be crudely modelled by considering what happens when a sine 

wave passes under a finite width coil.  

For a single frequency wave, the velocity of the particles in the surface can be written as in equation 2 

above. For a coil with uniform sensitivity across a coil of width L, located close to the surface of the 

sample, one can write the total voltage signal induced in the coil, Vc, as the integral of equation 2 across 

the coil such that 
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One can consider either the time average or maximum value of this function. Considering the 

maximum value, Vcmax this function takes on with varying time one can write 
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Plotting the modulus of the function described by equation 5 for a coil width of 2mm yields figure 5; 

this shows the normalized maximum amplitude response for a sinusoidally varying wave as the 

wavelength is varied. 

In plotting figure 5, any amplitude enhancement due to the EMAT being a velocity sensor has been 

ignored as for Lamb waves there is a range of modes that can exist; within this range, modes of the 

same wavelength can have different frequencies, and phase and group velocities are very different in 

general. The purpose of this plot is mainly to demonstrate that sensitivity of the EMAT will in general 

reduce as wavelength shortens if all other factors remain the same. For wavelengths below one half of 

the coil width, the response falls to below 10% of the long wavelength limit. 



 

 

Figure 5 

The modulus of the response is plotted as a function of frequency, normalised to the long wavelength 

limit of 1. Note that the first minima occurs when the coil width is equal to the wavelength as expected 

and that the response drops to 50% of its maximum value when the wavelength is 50% larger than the 

coil width. 

 

 

 
3.1.1  Experimental results on defect free aluminium sheets 

 
Laser generated Lamb waves are generated and detected on a range of nominally pure, defect free 

aluminium sheets of different thickness in the range of 0.5 mm to 7 mm thick, using the laser-EMAT 

system. The EMAT detected signals are shown in figure 6a –g, where the distance between the EMAT 

and laser beam is approximately 8.5 cm in each case. In some of the thicker plates it is clear that 

features of a very similar frequency run throughout the waveform and these can be associated with 

particular Lamb wave modes. There are approaches that can attempt to time-reverse these types of 

signals [25] assuming particular dispersion properties of the plate, but in this case we are interested 

particularly in using these signals to identify the presence of a defect and if possible characterise the 

defect. 

 

 

 
 



 

Figure 6  

A-scan waveforms of laser generated ultrasound on aluminium sheets of different thickness. (a) 0.5mm  

(b) 1.0mm    (c) 1.5mm (d) 2.0mm (e) 2.5mm (f) 3.0mm (g) 7.0mm. Note that amplitude refers to the 

amplitude of the signal from the pre-amplifier and is not the amplitude of the ultrasonic displacement. 

 

 



 
The 0.5 mm thick sheet clearly shows the S0 and the A0 modes. In the long wavelength limit [16,17], 

these are the only two modes that can be observed, but as the laser generated ultrasound is very 

wideband, with a rise-time of 10 ns, a higher a higher order mode can be observed on the waveform of 

figure 6a, running through the A0 mode as a higher frequency oscillation. Even though the pulsed laser 

is a very wideband source, capable of generating wave-modes with frequencies in excess of 100 MHz, 

the spatial extent of the generation source and especially the spatial extent of the EMAT detection coil, 

limit the minimum wavelength of wave that can be detected. As expected, thicker plates support a 

larger number of modes that can be detected using the EMAT, and so the waveforms appear 

progressively more complex as plate thickness increases. The waveform that is recorded on the 7mm 

thick aluminium plate is shown in figure 6g, to illustrate this point and is shown over a longer 

timescale.  Investigating different methods of interpreting multimode Lamb wave signals has generated 

many different research publications, including methods using wavelet analysis [26-28]. 

 
The magnitude Fast Fourier Transforms (FFTs) for these waveforms of figure 6a-f are shown in figures 

7a-f. These FFTs show some common characteristics, notably the apparent appearance and decay of 

peaks over particular frequency ranges. The first peak is associated with the S0 and the A0 modes. 

Subsequent peaks are associated with the appearance of higher order modes. 

 
The first FFT of figure 7a shows a distinct peak at approximately 0.5 MHz and a small second peak at 

approximately 3.3 MHz.  As sheet thickness increases, it appears that these peaks shift to lower 

frequencies, the spacing between the peaks decreases, and more peaks appear in the FFT. The structure 

of each peak is itself complicated, particularly the first and largest peak occurring at the lowest 

frequency, which contains many minor peaks or oscillations. These sources of these various features 

are explained in more detail in the following. 

 
The group velocity for the symmetric and anti-symmetric modes has been calculated by the standard 

approach of solving numerically the Rayleigh-Lamb equation [11] for isotropic sheets. The group 

velocity plots for the modes for the 1 mm and 3 mm thick sheets with the corresponding FFTs of figure 

7 directly below them are shown in figure 8. Note that the horizontal axes have been changed to MHz-

mm to allow comparison. 

 
 



 

 

 

Figure 7  

The magnitude FFTs for the A-scan waveforms shown in figure 6. There are a distinctive number of 

peaks within each FFT, that correspond to different Lamb wave modes.  

 

 



 

 

Figure 8    

Magnitude FFT of 1 mm  and 3mm sheets together with the Lamb wave group velocity dispersion 

curves. Note that in this case the horizontal axes are in MHz-mm.  

 



The very first peak in the FFTs of figures 7 and 8 cannot have significant frequency content at very low 

frequencies, partly because the size of the window in which the data is initially captured is 100 s, but 

more importantly because the preamplifier used to amplify the EMAT signals has a low frequency cut 

off for frequencies below 50 kHz. The temporal size of the window also determines which modes can 

be observed, because certain modes or parts of modes with lower group velocities will fall outside the 

data capture window. In this case only data below 50 s is Fourier transformed, and with a laser beam 

– EMAT separation of approximately 8.5 cm, this corresponds to a velocity of approximately 1600 ms
-

1
. Thus, one should only consider modes with group velocities above this value and this is why the 

group velocity plot of figure 8 is cropped on the velocity axis.  

 
The complex structure of the first peak in the FFT arises because this peak consists of contributions 

from both the S0 and the A0 modes, and these interfere in the frequency domain. This effect is 

described in more detail in the discussion of figure 9. Other peaks will also show more complex 

structure because they too can consist of contributions from different modes. A further point to note for 

the peaks in the FFTs is that in each main peak observed in the FFTs of figure 7 and 8, the low 

frequency edge of the peak is relatively steep and this is then followed by a more gradual decay. The 

relatively steep leading edge arises because beyond a certain threshold, a higher order mode can exist. 

This gradual decay arises because at higher frequency-thickness products for a particular mode, there is 

a tendency for the wavelength of the mode to decrease, and as discussed earlier and as shown in figure 

5, the EMAT sensitivity decreases due to the spatial impulse response effect. 

 

It is clear that the second peak in figures 8 at approximately 1.75 MHz-mm, corresponds to the 

appearance of the A1 mode. Closer examination of the waveforms of figure 6 for the 0.5 mm and 1.0 

mm thick sheets, shows that there is an oscillating signal of an almost constant frequency running 

throughout the region after the arrival of the S0 mode. This is because the group velocity curve for this 

mode is very steep in this region, meaning that there is a large range of velocities for this mode over a 

relatively small frequency range, below a frequency – thickness product of 2 MHz-mm. The third peak 

or double peak in figures 8, at a frequency – thickness product of approximately 3.25 MHz-mm, 

corresponds to the appearance of the S1 and the S2 modes. The fourth peak, which is visible in the 

magnitude FFT for the 3 mm thick plate, at a frequency – thickness product of approximately 5.25 

MHz-mm, corresponds to the appearance of the A2 mode.  



 
We are thus able to explain and understand the appearance of the magnitude FFT of the waveform, 

although this becomes more complex as plate thickness increases. The reader should note that the 

authors do not advocate this method as a general approach for the signal processing of Lamb wave 

modes. The magnitude FFT does have some disadvantages in that on its own; it does not show where 

the magnitude associated with a particular frequency lies within the time domain waveform. One could 

consider Short Time Fourier Transforms STFT [28] or wavelet analysis [27] for this type of operation, 

but each of these has its own drawbacks, most principally being that some a-priori knowledge of the 

properties of the signal being detected is really required. The potential for using the FFT to analyse the 

data for crack detection is considered, because the FFT is a relatively simple mathematical operation 

and is easily implemented into both software and hardware signal processing approaches. The FFT also 

demonstrates that there is some enhancement of higher frequency components of the Lamb waves 

when the pulsed laser beam impinges on a crack as will be discussed later. 

 

 
The FFTs of figure 7 all show a characteristic behaviour in that there is a low frequency asymmetric 

peak extending out to approximately 1.75 MHz. This peak has some structure that is due to the 

periodicity of frequency components from the different modes. This can be demonstrated by applying 

an FFT to the waveform obtained on the 1mm sheet, where the S0 mode alone, the A0 and then the 

entire A-scan are windowed and FFT’d. The result of figure 9 shows that the magnitude FFT of the 

windowed S0 mode is relatively smooth, and that of the windowed A0 and A1 modes is also relatively 

smooth compared to the magnitude FFT of the entire waveform. The magnitude FFT of the entire 

waveform containing both the S0 and the A0 modes has a peak that is of similar overall shape to that of 

the S0 modes, but it also contains oscillations, that in this case correspond to the periodicity between 

frequency components in the S0, A0 and the A1 modes.  

 
Some readers will be very familiar with this effect, but it was thought worth mentioning here to ensure 

that the structures of the peaks in the FFT are understood. The first and largest peak in the FFT is 

followed by a number of small asymmetric peaks, the number and position in the frequency domain of 

which is dependent on the sheet thickness.  

 

 
 



 

Figure 9  

FFT of various parts of the waveform obtained on 1 mm thick aluminium sheet of figure 6b. Note that 

the purest mode windowed is that, shown in the topmost FFT.  

 

 

 

3.1.2  Experimental results on defective aluminium sheets 

 
An Oxford Lasers E-355H laser micro-machining system was used to manufacture a very narrow slot 

in a 2mm thick aluminium plate. The slot extended down to a depth of 1.2mm with a length of 25mm 

and gape of 40m. 

 
The simulated defect is orientated parallel to the direction of the EMAT coil and perpendicular to a line 

along which the laser beam is scanned and which bisects the defect as shown schematically in the plan 

view of figure 10. 

 
In order to visualise changes in the detected signal as the laser beam is scanned over the sample and the 

defect, the data is presented in the form of a B-scan. At each laser beam position, the detected time 

domain waveform, or A-scan, is measured and stored. These A-scans are then coded such that the 

amplitude is assigned a corresponding greyscale value. These strips are then stacked side by side to 

form a B-scan. B-scans are also formed by stacking together a number of magnitude Fourier 

transforms, again whose amplitudes are assigned a greyscale value. 

 



 

Figure 10  

Schematic diagram of plan view of a line scan experiment on a plate containing a simulated defect of 

length 25mm. 

 

The B-scans of the time and frequency domain data from two 2mm thick sheets, one of which contains 

a laser micro-machined slot, are shown in figure 11 a-d. 

The alignment of the laser and EMAT is slightly different between the scans taken on the defect free 

sheet and the sheet containing the slot. This gives rise to some of the differences observed in the B-

scans of figures 11a and 11b, most notably the different gradients of the linear features within the 

images, which are not of importance for the following discussion. Locations B and C as shown in 

figure 10 are approximately positioned at the arbitrary locations 10-12 in the B-scans of figure 11. The 

B-scans of figures 11c and 11d clearly show the oscillations that were shown in figure 9 and explained 

in the discussion of figure 9. 

 
It should be noted that there is a clear disruption in the time and frequency domain B-scans around the 

location of the slot. Equally importantly, there are clearly significant levels of measured signal when 

the slot lies between the laser beam and the EMAT, indicating that there is significant diffraction of the 

Lamb waves both around and under the slot. Thus one can only rely on detecting the presence of the 

defect when the laser beam is very close to, or over the slot. 

 
This result is partly intuitive as one might reasonably expect the laser generated Lamb waves to be 

blocked most effectively from travelling to the detector when the source is very close to the slot, and 

the slot is between the laser beam and the EMAT detector. What is perhaps more surprising is the clear 

frequency enhancement of higher frequencies when the laser beam impinges upon the slot. This is seen 

as a significant increase in amplitude of the higher frequency components of figure 11c around 



locations 12 and 13. Similar behaviour, in terms of an increase in the magnitude of higher frequency 

components has been reported previously when performing similar experiments on thicker samples 

where Rayleigh waves are generated [29-31].  

 

 

Figure 11  

The B-scan of the time domain (A-scan) waveforms for the sheet containing the slot and the defect free 

sheet are shown above as (a) and (b) respectively. The B-scan of the frequency domain (magnitude 

FFT) waveforms for the sheet containing the slot and the defect free sheet are shown above as (c) and 

(d) respectively.  

 

 
Some of the A-scan waveforms from the plot of figure 11a, together with their respective FFTs are 

shown in figure 12. The labels A-D correspond to the approximate positions of the pulsed laser beam 

as shown in figure 10. When the generation source is at position A, there is a significant amount of 

diffraction around or transmission under the defect. The general shape of the waveform at position A in 

figure 12a, is similar to that at position D, but has slightly lower amplitude. Of course, one needs to 

perform more sophisticated signal processing to determine which modes are present in this waveform 

and their relative amplitude, but even the simple magnitude FFT of figure 12b reveals that there is 



some significant difference between the waveforms measured for positions A and D.  When the pulsed 

laser beam generation source is located close to the defect, at position B, both the A-scan and the FFT 

of figures 12 a&b show that the slot has affected the detected waveform significantly, although the 

higher frequency mode at approximately 1.5 MHz appears enhanced when compared to the FFTs taken 

at either position A or D in figure 12b. This serves as a good illustration as why one cannot generalise 

which frequencies or modes of Lamb waves will be effectively “blocked” by the presence of a surface 

breaking crack: this will depend on several factors including properties of the generation source, the 

crack and the sample’s morphology and elastic properties. At position C, where the laser beam is 

incident on the slot, some amplitude enhancement is visible in the A-scan in figure 12a, and the lower 

plot of 12b clearly shows, relative enhancement of the higher frequencies in the FFT of the A-scan 

from position C.  

 

 
3.2.1  Experimental results on defective stainless steel plates 

 

A simulated stress corrosion crack was grown in a 10mm thick austenitic 316 stainless steel plate using 

controlled thermal fatigue loading to produce a crack 16.6mm long and 3+/-0.6mm deep, with an 

average crack opening of 23.8m, as shown in figure 13. The crack depth is known through destructive 

validation, and also verified by ACPD measurements.  

 

The EMAT coil is aligned parallel to the length of the defect for this particular test and the EMAT-

crack separation is fixed at 7.7 cm. The pulsed laser beam is scanned across the defect with a 

separation range of 9.5-4.2cm from the EMAT, along a line that passes through the centre of the crack 

and the EMAT.  A reduction in signal amplitude is observed when the defect lies between the laser 

beam impact point and the EMAT. This is shown in figures 14a&b, where the time domain and 

frequency domain data are both plotted as B-scans. The B-scans of figure 14 are more complex than 

those in figure 11, due to the increased number of modes present associated with the increased sample 

thickness. However, similar features can be observed to those reported in figure 11, including a high 

frequency enhancement in the frequency domain B-scan, and the minimum signal being detected when 

the laser beam impact point is close to the defect. 

 

 

 



 

Figure 12  

The upper plot (a) shows A-scan waveforms measured on the aluminium sheet taken at the positions 

shown on figure 10.  Note that when the generation source is at position A, there is clearly a significant 

amount of diffraction around or transmission under the defect. Some amplitude enhancement is visible 

with the generation source at position C. The lower plot (b) shows the FFT of the A-scans of the upper 

plot (a). The enhancement of the frequency content is evident only in the lower plot (b) of the FFT.  

 

 



 

Figure 13 

Photograph of simulated stress corrosion crack in austenitic steel plate. Defect is 16.6mm long and 3 

+/-0.6mm deep with an average gape of 24 m. The other marks visible around the large central cracks 

are polishing scratches. 

 

 

Figure 14 

The B-scan of the time domain (A-scan) waveforms for the stainless steel plate containing the crack is 

shown in plot (a), and the B-scan of the frequency domain (magnitude FFT) waveforms of these A-

scan waveforms is shown in plot (b). Note that there is a sharp drop in both the A-scan amplitude and 

the FFT magnitude between positions14- 16, which corresponds to the pulsed laser beam being close to 

the crack, with the crack positioned between the laser beam and the detection transducer. There is again 

a clear enhancement of the higher frequency components of the Lamb waves when the laser beam is 

incident on the crack at positions 17 and 18. 



4. Discussion and Conclusion 

 
The previously reported frequency enhancement of laser generated Rayleigh waves when the laser 

beam illuminates a crack [29-31] also occurs for thin samples where Lamb waves are generated. Laser 

generated Lamb waves can clearly propagate around cracks by diffraction and also under cracks. The 

extent to which this occurs is frequency and plate thickness dependent. The frequency of the Lamb 

wave clearly affects the extent to which the Lamb wave will diffract around a defect, and one must also 

consider the fact that the generation source is broadband. The frequency-plate thickness product also 

determines which modes can exist at that value of frequency-thickness and it determines also the 

specific properties of one particular mode and how the displacement associated with that mode is 

distributed through the plate thickness. One might reasonably expect the extent to which a crack 

impedes the propagation of Lamb wave energy to be maximum when the generation spot it closest to 

the defect, when the defect lies between generation and detection point, but the exact nature of this 

mechanism is complex and depends on many variables including the properties of the generation 

source, the crack and the sample’s morphology and elastic properties. An attempt to provide a detailed 

quantitative analysis of the effects observed when the pulsed laser beam impacts directly on a crack is 

beyond the scope of this paper. This will be an area of future work, that will be required if quantitative 

measurements of crack depth is to be obtained. The main purpose of this paper is to report the potential 

of this non-contact ultrasonic technique using simple signal analysis, the general effects that have been 

observed in the time and frequency domain waveforms, and to explain the appearance of the results 

that have been presented using an EMAT detector. Future work will also involve analysing the 

directivity of the Lamb waves when the pulsed laser beam is incident upon cracks of different depths 

and the effect of crack depth on the frequency enhancement. The angle of the planar surface of the 

crack relative to the surface of the sample will also have some effect on the detected signal and this will 

also be investigated.  
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