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Abstract

Live Cell Imaging and High Throughput Screening are rapidly evolving
techniques and have found many applications in recent years. Modern mi-
croscopy enables the visualisation of internal changes in the cell through the
use of fluorescently tagged proteins which can be targeted to specific cellular
components.

A system is presented here which is designed to track cells at low temporal
resolution within large populations, and to extract fluorescence data which
allows relative expression rates of tagged proteins to be monitored.

Cell detection and tracking are performed as separate steps, and several
methods are evaluated for suitability using timeseries images of Hoechst-stained
C2C12 mouse mesenchymal stem cells. The use of Hoechst staining ensures
cell nuclei are visible throughout a time-series. Dynamic features, including
a characteristic change in Hoechst fluorescence intensity during chromosome
condensation, are used to identify cell divisions and resulting daughter cells.

The ability to detect cell division is integrated into the tracking, aiding
lineage construction. To establish the efficiency of the method, synthetic cell
images have been produced and used to evaluate cell detection accuracy. A
validation framework is created which allows the accuracy of the automatic
segmentation and tracking systems to be measured and compared against
existing state of the art software, such as CellProfiler. Basic tracking methods,
including nearest-neighbour and cell-overlap, are provided as a baseline to
evaluate the performance of more sophisticated methods.

The software is demonstrated on a number of biological systems, starting
with a study of different control elements of the Msx1 gene, which regulates
differentiation of mesenchymal stem cells. Expression is followed through
multiple lineages to identify asymmetric divisions which may be due to cell
differentiation.

The lineage construction methods are applied to Schizosaccharomyces pombe
time-series image data, allowing the extraction of generation lengths for indi-
vidual cells. Finally a study is presented which examines correlations between
the circadian and cell cycles. This makes use of the recently developed FUCCI
cell cycle markers which, when used in conjunction with a circadian indicator
such as Rev-erbα-Venus, allow simultaneous measurements of both cycles.
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Chapter 1

Introduction

If we want to follow a biological process in real time at the cellular level, one way

of achieving this is by monitoring levels of gene expression or levels of protein

within a cell. This can be done by using a modified version of a gene which

consists of the regulatory region and promoter of the target gene which then

drives expression of a fluorescent protein such as GFP or YPF (Green/Yellow

Fluorescent Protein), which will be produced simultaneously with the gene of

interest. The cells are imaged using a process such as fluorescent microscopy

and the intensity of the image will be related to the levels of protein present.

Measuring the levels of a protein at a particular time will only give limited

information about cell activity. It is much more useful to observe the levels of

protein over time. This requires the cells to be observed multiple times and

any cell motion will complicate the measurements since cells will not be in the

same positions from image to image. If we are able to track the cells as they

move in culture we can then follow inner processes over time such as circadian

or cell cycles and gene expression. If we are able to follow gene expression in

any daughter cells we can then see if expression is consistent across daughter

cells or over multiple generations. The large numbers of cells involved means the

process will benefit from automation. When we have high densities or rapidly

moving cells then tracking can become a tricky problem.

The first part of the challenge is to actually detect the cells. Humans seem

to have a natural ability to pick out objects, even in low contrast scenes or when

objects are overlapping. This is less straightforward for computers and there

are many different ways of tackling the problem of locating and isolating objects
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within a scene. The next part is to take the detected objects and follow them

as they move. Different methods are investigated for detecting and tracking the

objects.

1.1 Aims and Objectives

The aim of project is to develop a set of tools which will be able to measure

changes in fluorescence intensity over time and thus obtain the temporal change

in expression of a fluorescently tagged gene. The tools were originally applied

to measuring expression of Msx1 in C2C12 mouse mesenchymal cells but

were subsequently adapted to track yeast cells and then to obtain frequency

signatures of circadian and cell-cycle oscillators.

In the Msx1 study, it will be important to compare the transcriptional

signature of daughter cells so there needs to be a method of constructing a

cell lineage to allow comparison across daughter cells.

The tracking algorithm must be able to handle the low frame rates which

are often a consequence of experimental setup, such as reducing the effect of

using ultra-violet light where it is required to excite fluorescent dyes.

1.2 Outline of Thesis

This thesis describes the work performed and results obtained during the course

of my PhD. It is divided into the following sections:

1. Introduction Overview of current state of single-cell analysis and the

techniques used.

2. Materials & Methods Experimental techniques, image analysis and data

analysis methods used.

3. Method Development Detailed description of the data analysis methods.

4. Msx1 Expression Applying the analysis methods to track gene expression

in C2C12 cells.

5. Performance and Validation Detailed description of the construction

and use of the data sets created to both validate and optimise the data

analysis.

2



6. Schizosaccharomyces pombe Constructing lineages for Sz.pombe.

7. Cell Cycle Analysis A case-study using the LineageTracker software to

perform analysis of circadian rhythms and cell cycle.

8. Discussion Overview of the results

Appendices Including detailed description of the data formats used in the

analysis.

1.3 Extracting time course data from live cells

The extraction of fluorescence time course data is a major bottleneck in high-

throughput live-cell microscopy. Under the control of different regulatory

promoters, live cell fluorescent reporter-based techniques reveal the dynamics of

gene expression [1–4], in individual cells and over periods of several days. This

allows relative quantification of protein levels within cells.

In a typical population, cells will be at different positions within the cell

cycle and accordingly individual genes will show different levels of expression.

Additionally, there may be instances where only a small proportion of cells

exhibit a particular transcriptional behaviour. Measurements must therefore be

made on single cells, rather than whole cell populations, to determine what is

actually happening and prevent interesting cell behaviours being ‘averaged out’.

In order to achieve this, a method is required which can locate cells within an

image and keep track of individual cells in subsequent frames should they move

from their initial positions. The cell tracking method may rely on measurements

such as cell position and intensity to aid identification of the cell in future frames.

Image acquisition using fluorescent microscopy often requires high intensity

light to sufficiently excite any fluorophores which may be present. In some

situations this may also require the use of ultra-violet light, which is potentially

damaging to cells. When measurements are required over long time periods, up

to several days, it often becomes necessary to increase the sampling interval to

reduce the damage caused to cells and to prevent photobleaching or phototoxic-

ity. Large time intervals can equate to large cell displacements which may prove

problematic when tracking cells.
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The project was conceived as part of a study into expression of Msx1 in

C2C12 mouse mesenchymal stem cells. Mesenchymal stem cells are multipotent

stem cells which are capable of differentiating into different types of cell including

muscle, cartilage, fat or bone cells, depending on their environment.

C2C12 cells are highly motile which presents a challenge to a tracking

algorithm, especially when confronted with high density cell populations. The

typical doubling time of C2C12 cells is around 20 hours [5] which allows many

fluorescence measurements to be obtained between divisions, while also allowing

a significant number of divisions to occur during overnight or 24 hour time-series

experiments. By measuring expression, tracking cells and following lineages, it

will be possible to determine whether the expression of Msx1 varies during a

lineage or between daughter cells. Any heterogeneity between cells or within

populations can thus be measured.

Automatic cell tracking requires cells to be visible at all times so a nuclear

marker, such as Hoechst, can be utilised as a permanent stain. Any changes in

nuclear shape or size will be measurable and can therefore be used to obtain

information which can aid in detecting cell divisions. Hoechst is a DNA binding

stain (which binds to the minor groove) so the chromosome condensation which

occurs prior to division will be visible as an increase in the emitted fluorescence.

Earlier work had detected two regulatory regions for the Msx1 gene [6].

Recent work at the University of Warwick by Sascha Ott and Keith Vance has

identified 4 such regions (see Figure 1.1a). The PhD began with the creation of

C2C12 cell lines expressing variants of the fluorescently tagged Msx1 promoters

(see Section 2.1.2). The methods developed during this time are described in

Chapters 3–5.

ABCD

Enhancer Domains             Promoter   Fluorescent Protein Gene

a) b)

Figure 1.1: a) The msx1-gfp promoter construct. b) GFP structure
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The second half of the PhD moved into imaging the fission yeast Schizosac-

charomyces pombe in the laboratory of Graham Ladds. The aim was to inves-

tigate ways of visualising the cells to enable tracking and lineage construction,

which will enable measurement of cell cycle times. The yeast cells are rod-

shaped, and the length can vary under different growth conditions so an ability

to measure the dimensions of the cells, not just the nuclei, will prove useful in

future work. These requirements led to modifications of the segmentation and

tracking software to deal with different appearance and motion of the cells. The

yeast imaging and analysis is discussed in Chapter 6.

The software found an additional application courtesy of David Rand

from the Systems Biology department. Time-course data was obtained from

the C5Sys project∗ where cells exhibited three different fluorescent reporters

associated with cell cycle and circadian rhythms. The aim was to extract

the oscillating signals and investigate any connections between the periods and

phases of the oscillators. Further details and data analysis are in Chapter 7.

1.4 Measuring Gene Expression in Single Cells
using Fluorescent Proteins

One of the standard ways of measuring gene expression in individual cells is

to take the regulatory region of a gene and replace the coding region with a

sequence which encodes a fluorescent protein (as illustrated in Figure 1.1a).

Measuring the fluorescence of the cells will then indicate whether the original

protein was being expressed or not.

Green Fluorescent Protein (GFP) was discovered in 1960s by Osamu Shi-

momura at Princeton University, in the jellyfish Aequorea victoria. In the mid

1990s Martin Chalfie, working at Columbia University, succeeded in creating

a transgenic C. elegans which produced GFP using a promoter from β-tubulin

to drive expression of the protein. This enabled the researchers to see where

the protein was being produced during development [7]. Different variants

of GFP have been produced, following work pioneered by Roger Tsien. The

original GFP required oxygen to fluoresce but newer versions are active under

different conditions and emit a wide variety of different wavelengths. This work

∗http://www.erasysbio.net/index.php?index=272
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eventually earned Osamu Shimomura, Martin Chalfie and Roger Tsien the Nobel

Prize for Chemistry in 2008 [8].

Cells expressing such fluorescent proteins, coupled with computerised cell

detection, allow measurement of gene expression in individual cells [9]. The long

half-life of these proteins (for example 14 hours for Yellow Fluorescent Protein,

YFP [10]) will prevent measurement of rapid changes in expression since the

continuing fluorescence of any existing protein will swamp small changes.

There are sequences of amino acids such as PEST, which contains high

proportions of Proline (P), Glutamic Acid (E), Serine (S) & Threonine (T). The

presence of such sequences acts as the signal for ubiquitin-tagged degradation

of the protein by a proteasome [11, 12]. These are commonly used to decrease

the half-life of the protein and thus improve temporal resolution.

Fluorescence microscopy provides relatively high contrast images with dark

backgrounds, compared to Bright-Field microscopy (including Phase-Contrast

or DIC) where the background intensity and the cells can exhibit overlapping

intensity ranges. Such images were less straightforward to analyse and methods

such as thresholding would only isolate part of the cell from the background.

Recently there have been advances in segmentation methods for bright-

field images. One approach is based on a z-stack obtained from confocal

microscopy [13] and takes advantage of the observation that the variation in

intensity across the stack is lower for a point in the image background than

for a point within a cell. Projections through the stack are constructed using

statistical methods including standard deviation, which are used to calculate

a segmented image. Another approach involves image deconvolution based on

computational modelling of the light path taken through the sample [14].

Tracking cells during in-vivo imaging is a non-trivial task for most organisms

due to the opaque nature of the tissue. Constructing lineages during devel-

opment is often only possible during early stages of embryogenesis up to the

formation of the blastoderm. The situation is improved, however, when the

embryo is transparent as in the case of Sea Urchin [15,16] or Zebrafish [17–19],

or even C.elegans where the entire organism remains transparent throughout

development [20,21].
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1.5 High Throughput Screening is a rapidly
evolving field

In recent years, live cell imaging and High Throughput/High Content Screening

(HTS/HCS) have become popular techniques used in research [22]. The com-

bination of fluorescent proteins and high quality imaging systems has allowed

rapid protein quantification in live cells [23], which allows the internal cellular

processes to be studied at a higher resolution than previously possible.

If all the cells being studied exhibit the same behaviour then a measurement

of the mean fluorescence of an image containing multiple frames will provide

sufficient information. All the cells in the culture will need to be synchronised

[24] to ensure they are at the same phase of their circadian or cell cycle,

depending on the feature being measured. Such fluorescence measurements also

require all the cells to behave in a coherent manner with equal cycle lengths

otherwise they will rapidly go out of phase (examples of this are given in

appendix B.1).

Many studies have been published by the Alon group detailing single cell

analysis [25], including cell cycle dependent nature of nuclear proteins [26]

which used a version of CellProfiler. The CellProfiler software performs cell

image analysis on fluorescent microscopy images and works by following a set of

instructions (called a ‘pipeline’) which perform the analysis and measurement

steps. One disadvantage with CellProfiler (which is shared by other cell

analysis software) is an inability to allow recovery from errors, such as cells

being incorrectly identified during measurement or tracking. Further details on

CellProfiler are given in Section 1.6.2.

Results of large-scale proteomics studies have followed [27], where nearly

1,000 proteins were tagged and followed in cells, but the image analysis for

this used custom-written software. The above techniques, in conjunction with

measurements of subcellular features [28], have been used in large-scale cell

phenotyping [29, 30] by using machine-learning to train classifiers to identify

proteins.

HTS developed from video microscopy and benefited greatly by advances in

computing power, enabling analysis to to keep up with the quantities of image

data being generated. Instruments can acquire many thousands of images per
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day, which requires suitable automatic data analysis. Manual image analysis

is a time consuming process which will often be the rate limiting step of the

acquisition-analysis pipeline.

a) C2C12 b) Sz.pombe

Figure 1.2: Examples of cells exhibiting different fluorescent markers: a) C2C12
cells with the Hoechst nuclear marker, b) Sz.pombe with a fluorescent-tagged nuclear
protein.

Systems can be based on confocal [31] or wide-field microscopy [32, 33] but

a common feature is a form of automatic sample-changer to allow different cells

to be imaged without constant user intervention. Fully automatic ‘off the shelf’

systems such as Cellomics KineticScan and GE IN Cell Analyzer incorporate

sample handling, microscopy, controlled environments and analysis software as a

complete package. These systems commonly use 96- or 384-well plates to enable

multiple cell lines or transfections to be imaged simultaneously. Many of the

automated systems can also perform sample preparation on a large scale [34,35]

which increases the scope of an experiment and the repeatability of results.

1.6 Cell Tracking using multiple features

Recently software has become available for high resolution cell tracking and

spatio-temporal analysis of protein dynamics in sub-cellular compartments (for

example, QuimP [36], CellTracker [37]). These methods are designed to track

cell boundaries and work best when the cells only move by small amounts. If

the cells do not overlap then the task of matching a section of boundary with

the equivalent section in the subsequent frame becomes much more complex.

Conventional tracking methods often require at least a minimum overlap
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to link cell positions between consecutive frames, measured either in absolute

pixel counts, or relative to object size. This is the approach used by CellID

[38], CellTracer [39], and Overlap-Based Cell Tracker [40]. Tracking algorithms

based on overlap alone will be unable to handle cells with high motion or those

captured with a low frame rate, where it is possible for cells to move by amounts

greater than their diameter leading to no measurable overlap. High density

populations, such as in Figure 3.13, can also be problematic since there can be

several potential cells in the vicinity to confuse identification. In the absence of

guaranteed cell overlaps, the cell positions may be used where the proximity to

the previous coordinates identifies the cell in subsequent frames. If cells exhibit

persistent motion and cell collisions are infrequent, keyhole tracking algorithms

can be applied which calculate the probability of finding matching cells in a

particular direction [41].

A number of single particle tracking methods have been developed recently

which are able to track multiple non-overlapping objects, and can in principle be

applied to tracking cells [42]. These approaches are related to tracking methods

for ‘point-like’ particles [43] such as in colloids [44] or subcellular features such

as protein localisation [29, 45]. The process is performed in separate detection

and linking steps to build up the trajectory for each individual particle.

Another approach is demonstrated in the particle filter methods which have

been developed for tracking objects [46, 47]. These are probabilistic methods

where future positions of objects are predicted using a motion model, and then

matched with objects at the real positions. This usually involves solving a

global linear assignment problem [48]. Both graph-based and hidden Markov

model approaches can easily be extended to include additional object features

such as shape, size, colour, or texture. However, for huge problems including

time-series with thousands of cell positions, global optimisation approaches are

computationally very costly. Furthermore, particle filters work best for small

frame to frame displacements where motion across frames is highly correlated.

As a result they have found application in microtubule analysis [47, 49] where

direction of motion is largely unchanged. In time-series with low temporal

resolution and considerable cell motion these approaches can perform poorly.

Where cell position and motion are insufficient to provide suitably accurate
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identification it becomes necessary to place emphasis on measured features of

the cell rather than simply relying on motion characteristics. The point-tracking

methods are built on the expectation that the object is below visible resolution

and appears as a blurred point-spread function which is often approximated

as a Gaussian to locate the position with sub-pixel resolution. A different

approach can be used for cells which exhibit measurable shape and size, where

the similarity in such features across different frames can be used to aid

identification. Fluorescence intensity and texture measurements may be used

in a similar manner [50,51].

1.6.1 Different approaches to constructing cell lineages

There have been some approaches to lineage construction based on appearance

or behaviour of cells during mitosis [52]. Debeir [53] computes tracking in reverse

from the final frame and divisions are detected by the merging of two daughter

cells. As the cells approach mitosis, the size decreases and the cells approach

closer to each other. When size and distance are below a given threshold, the

reverse mitosis event has completed. Wang [51] calculates texture based features

and uses feature reduction methods including PCA to reduce 145 features to

between 15 and 20. Divisions are detected by treating each stage of the mitosis

event as a hidden state in a Markov chain. A training set was used to calculate

the probabilities for the chains. Similarly, Markov trees were used in [54] to

map cell states to lineages.

Al-Kofahi et al. [50] construct lineages by calculating a significance score

based on the observation that daughter cells have a similar size. The Ellenberg

group has developed a powerful framework for automatic detection of cell

divisions and chromosome phenotypes [55, 56]. Their approach, which is based

on 3D time series with stacks captured at 5-7 minute intervals, makes use of

region adaptive thresholding and a feature point tracking method. Probabilities

for detecting mitosis events are based on size and distance of chromosome sets

for which weights are determined empirically. Li et al. [46] and a more advanced

version by Bise et al. [57] use phase contrast images for cell segmentation

and detection of mitosis events which appear brighter in phase contrast. Cell

trajectories are assembled into shorter fragments first, called tracklets, that
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are stitched together by using a global optimisation problem a posteriori.

Accuracies achieved are 87% for tracking (correctly identified cell-cell linkages

between frames) and 68% for detecting divisions correctly.

Padfield [58] make use of a Hoechst label to segment nuclei, although imaging

at higher frame rates of 6 or 15 minutes. They use a wavelet based method for

cell segmentation. Subsequently a graph flow method is used for tracking cells

and they report 99.2% of cells tracked with complete accuracy (with an average

track length of 13 frames) and 97.8% correctly identified divisions, validated

using 104,000 cell positions. The methods by Bise and Padfield are both

advanced methods, however they result in markedly different detection rates

and accuracies. It is difficult to pinpoint a single cause for this, most likely

reasons being experimental differences in cell density, movement and clustering.

For example, the net translocation of cells observed by Padfield is small (after

correction for stage drift) and thus makes validation of large numbers of cells

comparatively easy. Comparison of different methods is almost impossible since

many of them are only available as part of an integrated commercial platform or

not publicly available. Often, precision of different segmentation routines is not

validated based on objective ground truth using synthetic data, but by human

observers [58] and it is difficult to obtain a comprehensive list of all parameters

being used. Since there is currently no standard for exchanging track-data for

evaluating different methods, a new framework was developed, based around

ImageJ, which allows comparison between different segmentation and tracking

methods.

The method presented here incorporates the tracking of cell lineages in the

statistical scoring framework for cell tracking. It makes use of dynamic feature

changes, especially characteristic changes in Hoechst distribution and nucleus

area during and after cell division, which are described in Section 3.4.11.

1.6.2 Freely available High Throughput Screening Soft-
ware

In addition to the commercial systems mentioned in Section 1.5, there are two

main freely-available systems: CellProfiler and ImageJ. Both have the advantage

of being Open Source, which means the source code is made available for

developers and end-users which makes it possible to modify and extend the
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software.

CellProfiler is available for Windows, Linux and Apple. It supports the

most common image file formats produced by high-throughput imaging systems

including TIFF, PNG, AVI movies as well as some proprietary formats. The ap-

plication was designed for detecting cells and subcellular features and measuring

associated shape, size and intensity features and has been used to help identify

different phenotypes in tissue imaging [59]. It is highly flexible and supplies a

range of image processing and analysis methods. The analysis steps are built up

using a pipeline process where each stage produces output which may be used by

subsequent stages. A typical pipeline will consist of stages to load the image data

followed by initial image processing such as background correction or contrast

adjustment. The segmentation step is based on thresholding and provides a

number of different methods for separating cells from the background. There is

some support for coping with over or under-segmentation where larger objects

can be split or smaller objects can be combined.

ImageJ [60] is primarily an image processing and analysis tool with emphasis

on scientific imaging. It is an extensible platform with a plugin-based architec-

ture where modules can be installed to add additional functionality. It accepts

all common image formats and there are plugins such as BioFormats which give

access to many more, including a wide range of proprietary microscopy formats.

Image segmentation can be performed using thresholding methods or by

applying different image processing operations in sequence using the built-in

scripting language which provides the ability perform sequences of operations

(called ‘macros’) which can be repeated on multiple images. The Fiji Project∗

builds upon ImageJ and provides additional image analysis methods.

1.6.3 There is a need for new software

Existing systems were either fully automatic (such as CellProfiler) or fully

manual (such as ImageJ with MTrackJ) [61]. No fully automatic system is

capable of segmenting and tracking with complete accuracy. ImageJ was chosen

as the platform since it is widely used in scientific image analysis with an

extensive and active community which discusses ideas and applications. It is

∗Fiji Is Just ImageJ, http://pacific.mpi-cbg.de/wiki/index.php/Fiji

12



readily extended using plugins which can be written in Java.

Existing cell tracking methods for ImageJ are currently very limited, how-

ever. The Particle Tracker plugin is an implementation of Feature Point Track-

ing [43] and provides both segmentation and tracking based on the intensity

moment of the particle images. Mtrack2 performs tracking but requires the

segmentation to be performed beforehand. Trajectories are assigned by selecting

the nearest particle in the following frame. SpotTracker [62] is designed to

follow bright spots in fluorescent microscopy images. Unlike many methods

which perform segmentation and tracking as two separate steps, SpotTracker

combines both into a single step. The algorithm can only track single spots

which makes it unsuitable for tracking large cell populations.

None of the pre-existing systems described above provided a suitable balance

of automatic and manual segmentation and tracking to suit the imaging condi-

tions. The outputs of the fully automatic software all require a small amount

of manual correction to segmentation or tracking. As a result, software was

written to provide these facilities, which performed the initial image analysis

and tracking but then allowed user-intervention to correct any mistakes made

by the software.

A statistical scoring approach was formulated which is based on a similarity

matrix where scores are calculated for possible target cells within a maximum

distance that can be covered by a cell in a given time interval (see Section

3.3). Computational demand for this local optimisation problem simply scales

linearly with the number of cells to be tracked. Relevant similarity features are

selected from a larger list of possible features based on the temporal correlation

of each feature. Additionally the system was made compatible with existing

data formats (Cellomics KineticScan, CellProfiler, MTrackJ, Mtrack3) to allow

initial analysis to be performed elsewhere then imported into the software for

further analysis or reporting.
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Chapter 2

Materials & Methods

2.1 C2C12 cells transfected with msx1-gfp

C2C12 mouse myoblast cells (ECACC, Catalogue No 91031101) were grown in

DMEM (containing phenol red) supplemented with 10% Fœtal Bovine Serum

(FBS) at 37 ◦C in an atmosphere of 5% CO2. At each passage step the media was

removed and the cells were washed twice in Phosphate Buffered Saline (PBS).

Trypsin solution (0.5%) was added and incubated for 30–60s, then removed.

The cells were resuspended in fresh media, then transferred to a fresh culture

vessel.

2.1.1 Transient Transfection

Full details of the experimental procedure is given in [63].

For transient transfection the cells were transferred to a 96-well plate at

a density of 1.25× 104 cells per well. Cell densities were determined visually

using a Hæmocytometer. Media containing cells (30 µl) was applied to the

hæmocytometer slide. The marked area on the slide holds 10−4 ml of media.

Hoechst 33342 (Invitrogen) 400 ng/ml in DMEM was added and incubated

at 37 ◦C for 30 minutes. Cells were then washed twice with PBS and 200 µl

DMEM (without phenol red) was added. Cells in each well were subsequently

transiently transfected with 200 ng of reporter plasmid using lipofectamine 2000

(Invitrogen) according to the manufacturers instructions.

The endogenous Msx1 and the modified fluorescent-expressing genes are

expected to be expressed at the same time. Transfected cells may contain

multiple copies of the plasmid and during division each copy of the fluorescent
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reporter gene may only pass to one of the daughter cells, leading to a reduction in

copy number and therefore fluorescence intensity in successive generations. If all

daughter cells need to reliably express the new gene, then a ‘stable transfection’

is required, where the new gene is incorporated into the cell’s genome.

2.1.2 Stable Transfection

An improved version of the Venus Fluorescent Protein (VFP) is available which

is more suitable for time-dependent measurements. Original VFP [10] has a long

half-life of around 14 hours, which can mask rapid changes in gene expression.

The modified version of the reporter contained the PEST sequence from the Myc

protein [64] which increases proteolysis and reduces the half-life of the Venus to

around 30 minutes.

Cloning the Plasmid

The fluorescent reporter is created as plasmid consisting of the Msx1 regulatory

region expressing the modified version of the Venus-mycPEST. To increase the

brightness of the protein, two copies of Venus were separated by a 2A peptide

The plasmid was inserted into ‘Top 10’ competent E.coli cells (Invitrogen).

The cells were slowly defrosted on ice, 3 µl of plasmid were added to each tube

and gently mixed. The cells were returned to ice for a further 30 minutes before

being heated at 42 ◦C for 45 seconds. SOC medium (150 µl) was added and the

cells were placed in a shaking incubator for 1 hour. 150 µl of the culture was

pipetted onto LB-Amp plates and incubated overnight at 37 ◦C.

Colonies were picked from the LB plates and grown in 3ml LB-Amp media

overnight at 37 ◦C. The standard miniprep (QIAgen) procedure was followed

to extract plasmid DNA, using 1.5ml of cell culture, with the final elution using

40 µl of water.

A stable transfection was produced via the addition of a drug resistant gene

cassette (pTk-Hyg) in addition to the fluorescent Venus-Msx1. A small number

of cells will have incorporated the DNA into their genome in a suitable location,

where it can be readily expressed and not bound up within chromatin. After

several generations, only those cells which had suitably incorporated the DNA

would survive.

Two solutions were prepared for transfection:
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1. 1 µg msx1Venus

100ng pTK-Hyg cassette

200 µl Optimem.

2. 6.6 µl Lipofectamine

200 µl Optimem

Cells were cultured in DMEM media with 10% FBS and the addition of

hygromycin (400 µl/ml) to screen out cells which had not taken up the pTk-

Hyg vector.

Selection of clones

The transfected cells were cultured in duplicate, along with a control which

consisted of un-transfected cells.

Individual clones were isolated using cloning cylinders and cells were trans-

ferred to a 96-well plate by washing with PBS and treating with trypsin. Fresh

media was used to transfer each clone to a separate well (200 µl of each PBS,

Trypsin and Media used).

2.1.3 Image Acquisition using Cellomics KineticScan

Images were obtained using a Cellomics KineticScan KSR with a 10x 0.4NA

objective, using a 1024x1024 CCD. Signal to noise was reduced by pixel binning

(performed in hardware) where the intensities of 2x2 blocks of pixels were

combined, which reduced the resolution to 512x512. Two image channels

(Hoechst and vGFP) were obtained at intervals of between 30 & 60 minutes.

An infra-red diode laser based autofocus system was used to focus on the

inner surface of the bottom of the wells. Light is provided by a high-pressure

mercury gas discharge lamp which emits light in the ultra-violet region of the

spectrum. Filters were used to select the appropriate excitation wavelengths

(XF136 for Hoechst, which is excited at 352 nm and emits at 461 nm and

XF100 for Venus/GFP, which have an excitation peak around 500-510 nm and

emit between 500-530 nm) before being collected by a CCD camera. Data was

imported using custom software described in Section 2.4.2.
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2.2 Schizosaccharomyces pombe

2.2.1 Cell Culturing

Stocks of Sz.pombe were maintained on Yeast Extract (YE) plates made accord-

ing to Table 2.1 with the addition of 8% agar.

The minimum media (Table 2.2) was prepared by dissolving the chloride,

phosphate and phthalate salts in 3
4 of the final volume of water followed by

autoclaving. After allowing to cool to 60 ◦C, the remainder of the ingredients

are added. Stock solutions (Tables 2.3–2.5) are sterilised by filtration and stored

at 4 ◦C.

Cultures for imaging were prepared by transferring cells from a plate to

liquid media (10–25 ml) using a flame-sterilised loop. Cultures were grown for

24–48 hours in a shaking incubator at 30 ◦C.

Yeast Extract 2.5 g
Glucose 12.5 g
Adenine 250 mg
Leucine 250 mg
Uracil 250 mg

Table 2.1: Yeast Extract (YE) Growth Media (per 100ml)

Ammonium Chloride 5 g/l
Dibasic Sodium Phosphate 2.2 g/l
Potassium Hydrogen Phthalate 3 g/l
20% Glucose 100 ml
Stock Vitamins (Table 2.3) 1g
Stock Minerals (Table 2.4) 100 µl
Stock Salts (Table 2.5) 20 ml

Table 2.2: Sz.pombe Minimal Media (per litre)

Nicotinic acid 1 g
Inositol 1 g
Pantothenic acid 100 mg
Biotin 1 g

Table 2.3: 1000x Stock Vitamins (per 100ml)
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Citric acid 2 g
Boric acid 1 g
MnSO4·H2O 1 g
ZnSO4·7H2O 800 mg
FeCl3·6H2O 400 mg
Molybdic acid 610 mg
Potassium Iodide 200 mg
CuSO4·5H2O 80mg

Table 2.4: 10,000x Stock Minerals (per 100ml)

MgCl2·6H2O 26.25 g
CaCl2·2H2O 367 mg
KCl 25 g
Na2SO4 1 g

Table 2.5: 50x Stock Salts (per litre)

2.2.2 Image Acquisition

A 2–3 µl aliquot of cell culture was deposited on YE-agar plugs fixed to a

microscope slide and allowed to air-dry for 1–2 minutes. The slides were

incubated for 30 minutes to 1 hour at 30 ◦C.

All images were obtained using a Leica SP5 confocal microscope fitted with

a temperature controlled stage maintained at 30 ◦C. Image resolution was

1024x1024 using 8-bits per pixel. Oil immersion x63 or x100 objectives (both

1.4 NA) were used.

Time-series were obtained which comprised of a z-stack of 20 slices (total

thickness of 20–30 µm) with frame intervals between 5 and 15 minutes. A

maximum projection of this z-stack was subsequently used in image analysis.

2.3 Cell Cycle Analysis

Chapter 7 follows the cell cycle in Zebrafish PAC2 and NIH3T3 cells using the

FUCCI markers which indicate the phase of the cycle based on the activity of

two ubiquitin ligases, which degrade cell-cycle regulating proteins at appropriate

phases [65,66].
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2.3.1 Zebrafish PAC2 embryonic cells

A time-series image sequence of Zebrafish PAC2 cells was supplied by

Kathy Tamai and David Whitmore’s lab in UCL [67]. The images

were obtained from cells derived from 24-hour embryos which had been

transfected with FUCCI constructs mKO2-zCdt1(1/190)/pT2KXIG∆in (for

G1) and mAG-zGeminin(1/100)/pT2KXIG∆in (for S-G2-M), using plasmid

pcDNA3.1/myc-His A (Invitrogen). The FUCCI constructs were provided by

Professor Atsushi Miyawaki at the Riken Brain Science Institute [68].

Time-series images were obtained at 28 ◦C on an inverted Leica SPE confocal

microscope using a x10 0.3 NA objective. Images were acquired at 15 minute

intervals for a total of 65 hours.

2.3.2 NIH3T3 mouse fibroblasts

Images were provided by Filippo Tamanini which were obtained by Shoko

Saito at the Erasmus University Medical Center in Rotterdam. NIH3T3 mouse

embryonic fibroblasts were prepared which expressed Venus-NLS-PEST under

control of the mouse Rev-erbα promoter [69]. Cells were cultured in 1:1

DMEM:F10 (Lonza) with 10% FBS and penicillin-streptomycin. The FUCCI

cell cycle markers were slightly modified from the original versions, using CFP

to visualise the S-G2-M phase instead of the original mAG.

Images were obtained at 15 or 30 minute intervals using a ZEISS LSM510

with a Plan-Neofluar x20 0.75 NA or a x40 1.3 NA oil-immersion objective. The

CFP channel was visualised using a 458nm laser and a BP470-500 filter; Venus

using a 488nm laser and a BP505-550 filter; and mKO2 used a 561nm laser and

LP585 filter.

2.4 Computational Analysis

Image data were obtained in different formats depending on the data source.

The Cellomics images were stored in a ‘Device Independent Bitmap’ (DIB)

format which was incompatible with the Microsoft Windows ‘DIB’ files (see

Appendix A.3.2 for further details). Images from confocal microscopy were

converted into industry standard ‘Tagged Image Format Files’ (TIFF) within

ImageJ.
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2.4.1 Software Development Environment

The software was developed and tested on different computers, including: Java

version 1.6.0 23 (32 bit) on Windows XP Service Pack 3, Java 1.6.0 26 (64

bit) on Mac OSX 10.6.8 , and Java 1.6.0 17 (64 bit) on SUSE Linux (kernel

2.6.16.60).

Image analysis was provided by ImageJ∗ version 1.43o or higher. Multi-

channel visualisation required Image5D 1.2.0 or higher and image conversion

used Bio-Formats Importer 4.3 (both available in Fiji†)

Additional java libraries from the Apache Commons‡ project were used:

commons-lang 2.4 (general purpose additions to Java) commons-math 2.0

(mathematics and statistical functions). Some data plotting was performed

using JFreeChart§ 1.0.13. Database import was provided by Jackcess¶ version

1.1.21. Java software was developed using the NetBeans 6.9.1 Integrated

Development Environment.

Data analysis used Matlab; versions R2010a and R2011b on OSX, R2009b

on Windows XP, R2008b on Linux with additional data analysis using Perl

version 5.10.0. Curve fitting used Matlab libraries EzyFit Toolkit version 2.40∥,

and the Gaussian Mixture fitting function∗∗.

CellProfiler†† 2.0β build 10415 [59] and ParticleTracker‡‡ v1.5 were used in

the segmentation and cell tracking performance comparisons.

2.4.2 Data Import

A custom import module was written (based on software by S. Ott and

T. Bretschneider) to convert Cellomics data (version 1.35) from the proprietary

Microsoft AccessTM format into text files suitable for importing into other

applications. Jackcess, a library for reading and writing Microsoft Access

databases, was used for this purpose.

∗http://rsb.info.nih.gov/ij/
†http://fiji.sc/
‡http://commons.apache.org/
§http://www.jfree.org/jfreechart/
¶http://jackcess.sourceforge.net
∥http://www.fast.u-psud.fr/ezyfit/

∗∗http://www.mathworks.com/matlabcentral/fileexchange/
4222-a-collection-of-fitting-functions

††http://www.cellprofiler.org/
‡‡http://weeman.inf.ethz.ch/particletracker/
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Images were obtained from the imaging systems in proprietary formats which

required converting to the general purpose TIFF format for processing and

analysis. Cellomics images were converted from a proprietary DIB format to

TIFF using custom methods. Image files from the Leica SP5 microscope were

converted to TIFF using BioImaging plugin in ImageJ.

21



Chapter 3

Method Development

There are two requirements for reliable segmentation: the software must

accurately recognise that cells are in existence at a particular location and must

also accurately obtain the outline or extent of the cells in order to measure

the degree of fluorescence within the cell. The segmentation method is based

on Gaussian Maxima and Seeded Growth methods, where the cell seeds are

detected by applying a Gaussian kernel to the image followed by the growth

stage. The version presented here incorporates a novel extension to handle

multi-channel images.

The tracking algorithm needs to be able to handle low temporal resolution

where cells are likely to move by large amounts between frames. This is a

consequence of the experimental setup where exposure to ultra-violet light (used

to visualise the Hoechst stain) had to be reduced by increasing the intervals

between images. Since long total durations of at least 2 days were required to

increase the number of cell divisions observed, the sampling intervals were at

least 30 minutes, which reduced the damage due to UV cytotoxicity [70].

Development of the cell tracking method begins with a study of the cell

feature measurements, using correlation plots and principal component analysis

to identify the features which will then be used in the tracking. This section also

includes an analysis of the cell motion, comparing two ground truth datasets

with simulated motion. The tracking algorithm is designed to handle cells

imaged at low temporal resolution so one of the ground truth sets was created

based on an experiment with 30 minute frame intervals. This is a larger interval

than typically used elsewhere, which will provide a challenge to the tracking
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algorithms.

3.1 Segmentation Methods

Different cell segmentation methods were evaluated, using ImageJ or CellPro-

filer. These are described below.

3.1.1 Thresholding based segmentation

Segmentation by thresholding distinguishes between background and foreground

objects by partitioning the pixels into two or more categories according to the

pixel intensity. Global threshold methods calculate a single intensity value for a

whole frame where any pixels in the image with greater intensity are labelled as

foreground, with all other pixels labelled as background. The resulting images

typically use values of zero for background and maximum intensity (255 for 8-bit

images) for foreground.

Both ImageJ and CellProfiler provide a wide range of threshold-based

segmentation methods. The simplest of these are ‘global thresholds’ such as

Li [71] or Otsu [72] which calculate a single threshold for the entire image and

thus assign cells to foreground or background (see Figure B.2 in Appendix for

an example and [73] for a summary of segmentation methods).

The Otsu method (see Figure 3.1b) is a common threshold algorithm which

is a histogram-based method where the threshold is selected by maximising

the variance between the foreground and background regions (or minimising

the variance within each region). While this is commonly used to create a

binary threshold, there are variants of the method which calculate multiple

thresholds [74]. Similar results are obtained from clustering methods, such

as K-Means [75] which assigns pixels to one of several clusters based on the

difference between the pixel values and the mean intensities within each cluster

(Figure 3.1c).

Adaptive thresholding uses a more flexible method where thresholds are

calculated for sub-regions of the image instead of for the entire image. These

methods can outperform global thresholding under certain circumstances, such

as vignetting where image intensity decreases towards the edge of a frame, or

uneven illumination of the field. An example of this is the Niblack method
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[76] which calculates the threshold from a linear combination of the mean and

standard deviation of the pixels within a small window around the pixel of

interest (Figure 3.1d).

Histogram based methods attempt to choose the threshold based on the

distribution of intensities in the image. This could involve analysing the shape

and locating a dip between high and low intensities. A more complex example

of this is the Mixture of Gaussians thresholding where the thresholds are

determined by fitting gaussian components to the histogram (Figure 3.1e &

f).

Threshold methods cannot handle objects which are touching or clustered

together. Multiple touching objects will be detected as a single entity and a

second processing step is required to separate them. The Watershed Transform

[77] is used in these situations which can break the clusters into individual

objects.

3.1.2 Scaling Index measures structural features

The concept behind the Scaling Index filter [78, 79] is related to the idea

of ‘fractal dimension’. This arose from the study of objects displaying scale

invariant features (such as a coastline looking jagged at any scale) by Benoit

Mandelbrot in the 1970s [80]. In classical geometry, objects are limited to

integer dimensions such that a point has zero dimensions (no height, width

or depth), a line is 1-dimensional and a plane is 2-dimensional. In fractal

geometry, dimensions are not integers but are from the continuum of numbers.

For example, a coastline takes up more ‘surface area’ than a straight line so

has a higher dimension (> 1) but less area than a bounded plane (< 2). The

concept can similarly be extended to surfaces which take up more volume than

a flat surface but less than a solid cube. Point-like structures have a fractal

dimension close to zero.

The scaling index calculates a property of the image related to this dimen-

sion, which can be used to extract features of a particular size and shape.

Subsequent thresholding with upper and lower bounds will select objects within

a range of dimensions. This can be used to locate cell nuclei (which are

effectively large points) while ignoring linear features or large flat areas of
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a) Original b) Otsu c) K-means d) Niblack

e) Gaussian Mix-
ture

f) Histogram with gaussian mixtures

Figure 3.1: Comparison of threshold segmentation methods. a) The original image
used in the comparisons. b) Otsu global thresholding. c) K-means segmentation using
3 clusters. The image is compartmentalised into background, mid-level and bright
pixels. d) Niblack local thresholding. e) Gaussian Mixture segmentation. f) Histogram
with gaussian mixtures overlaid. The x-axis is pixel intensity and the y-axis is pixel
frequency.

a) The start of a seeded
growth segmentation.

b) Part way through seeded
growth segmentation.

c) Image thresholded with
the Niblack method for
comparison.

Figure 3.2: The early stages of Seeded Growth segmentation showing the individual
cells growing. A threshold based segmentation is included for comparison, showing
how the seeded growth segmentation is more successful at separating touching cells.
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illumination.

Scaling Index α is given by Equation 3.1:

α =
logN(xi, r2)− logN(xi, r1)

log r2 − log r1
(3.1)

Each point i in the image is represented by position xi. The number of

points which lie within a radius r is given by N(xi, r). Two radii, r = r1 and

r = r2, are selected which are related to the size of the features within the

image. Smaller values of r1 allow the method to resolve small tightly clustered

points whereas increasing values of r2 improves the detection of large objects,

at the expense of smaller objects.

The Scaling Index was originally devised for scanning probe microscopy

where each point xi is in 3-dimensional space so xi = (xi, yi, zi). For a 2-

dimensional image where each pixel has intensity Ii = I(xi, yi) the number of

points within a radius can be replaced by the sum of intensities of pixels within

a radius. The resulting image has similar properties to the 3-dimensional scaling

index.

When the Scaling Index is applied to a microscopy image containing cells, the

point-like cells will have a lower index than the image background. Additional

segmentation methods can then be applied to the image to detect the cells. The

Scaling Index method was written in Java following the above specification and

implemented as an ImageJ plugin.

3.1.3 Seeded Growth is a flexible and robust segmentation
method

The main segmentation method is a version of the seeded growth [81, 82]

algorithm and consists of two parts:

1. Identifying the seeds which will be used to grow the objects.

2. Growing the cells from these seeds. This involves adding neighbouring

pixels to a seed if they appear to belong to the cell rather than the

background.

Both the thresholding and scaling index methods have shortcomings which

are largely related to touching or overlapping cells. The seeded growth method
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is an attempt to overcome these problems by locating cells based on the intensity

profile, where the centre of each cell is a peak in intensity [83]. This ensures

that, provided a cell is not completely obscured by another, there is an improved

likelihood of detecting both cells.

The centres of the nuclei act as seeds and the intensity profile is used to

guide the growth. Pixels in the surrounding ares are added to the seed if the

intensity is above a threshold value.

If the image data consists of multiple image channels, the segmentation can

be performed on a selected channel or the sum of all image channels. The cell

seeds are obtained by convolving the image with a Gaussian kernel, where the

standard deviation, σ, is proportional to the expected cell radius [84]. The

cell centres are located by searching for local maxima based on the intensity

difference between individual pixels and surrounding pixels and background

(see below). Each seed pixel is then visited in turn and the neighbouring pixels

are examined. If the pixel has a lower intensity than the original seed pixel and

does not currently belong to another cell, then it is added to the current cell.

The process continues until all of the pixels have been assigned.

This approach has an advantage over threshold based segmentation: since

seeds are identified from maxima in the image, cells in close proximity will have

their own maxima even if they appear to touch in the image. Threshold methods

are unable to separate touching cells without additional processing steps. Unlike

the Scaling Index method, which is very sensitive to the dimension threshold, the

seeded growth method is more robust with a wider range of acceptable settings

so small changes to parameter value will not normally have a dramatic effect

on segmentation performance. It is possible to combine this approach with

a threshold-based method by performing an initial threshold step to identify

the image background. This step is most effective when there is good contrast

between foreground and background and foreground cells all are of a similar

intensity. The background is then disregarded during the seeded growth stage.

Locating maxima in an un-processed image will result in a large number of

spurious peaks caused by image noise or any uneven distribution of DNA in the

nuclei. The maxima detection must be preceded by a smoothing operation to

remove this detail but retain the nuclei of interest. The ImageJ maximum finder
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algorithm is used. This locates individual peaks or plateaux with intensity at

least N greater than neighbouring pixels where N is the ‘tolerance value’.

Two implementations of the growth algorithm were tested: the first was a

simple neighbouring pixel method which examined the 8 pixels surrounding each

seed, the second method was a radial growth method based on spokes emanating

from the seed point (see Figure 3.3). Both versions take a threshold value and

a maximum size limit for the growing cells and produce a cell mask image

which is produced has the same dimensions as the original image, and starts off

with every pixel set to zero apart from the seed positions which are plotted as

single pixels where the pixel value is the cell ID number, assigned consecutively.

The threshold is multiplied by the peak intensity for each maxima and growth

continues until the intensity falls below this value. The resulting image is a

mask where a pixel value of zero represents background and a non-zero number

represents the cell ID.

A Radial Growth variant was developed which creates the same type of ‘cell

mask’ image but prepares it in a different manner. Each seed is represented by

a centre position and a set of vectors (angle and length) which point away from

the centre. As the cells grow, the points on the outline will become separated by

increasing distances. If the distance between adjacent points exceeds a set value

(default = 5 pixels) a new interpolated point is inserted with angle and length

calculated as the arithmetic mean of the neighbouring vectors. The algorithm

is summarised in the steps below:

• Initialise the vectors with length R = [1, 1, 1, 1] and angles

Θ=[0◦,90◦,180◦,270◦]

• Initialise M = pixel mask & C = image of cells.

• Define function I(Img, x, y, r, θ) to return the pixel intensity of image Img

at pixel coordinates (x+ r cos(θ), y + r sin(θ)).

• Loop through each seed point (x,y):

– For each r = Ri & θ = Θi, Check the pixel value in the mask

I(M,x, y, r + 1, θ)

– If the pixel value I(M,x, y, r+1, θ) is non-zero and the pixel intensity

in the original image I(C, x, y, r + 1, θ) > I(C, x, y, r, θ)× threshold,

increase the length of the vector by 1.
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– If the distance between neighbouring vectors is greater than the limit,

interpolate a new vector by taking the mean of adjacent vectors.

– Redraw the new seed on the mask image.

• Repeat until maximum size limit.

All cells are segmented simultaneously, with the outlines growing until they

reach the threshold intensity or a neighbouring nucleus. This method is similar

to the one described in [85] but was developed independently.

Segmentation Parameters

The most important segmentation parameters are: peak threshold (Tp), growth

threshold (Tg) and number of iterations (Nmax). The peak threshold is used

in the maximum finder step and defines the difference in intensity between

background and peak, or the depth of the ‘valley’ required between adjacent

peaks. The growth threshold influences the rate of growth of the cells. This

threshold is multiplied by the peak intensity and growth continues until that

value is reached, so lower values lead to larger segmentation masks. The

maximum number of iterations of the growth step is set as the expected size of

the nuclei or cells (see Figure 3.4) and chosen such that it is greater than the

longest axis of the biggest cell in the population.

Typical values of these parameters are Tp = 17, Tg = 0.65, Nmax = 30.

These values were obtained by visual examination of the segmentation output

and were chosen to provide an acceptable balance between nucleus detection,

false positive detections and outline shape. The outlines in Figure 3.5b were

generated using the above parameters. The Seeded Growth is compared

quantitatively with other methods in Chapter 5.

3.1.4 Extending the method to handle Multi-Channel im-
ages

The original Seeded Growth segmentation only takes a single image channel into

consideration. An extension to the method is presented here where multiple

channels are considered during the growth stage.

The new version of the method contains an additional constraint based on

the ‘colour difference’ (Equation 3.3) between pixels which prevents two cells of
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Figure 3.3: Cells are grown by expanding spokes outwards until a threshold is
reached. a) Cell with outline and spokes. b) One of the spokes highlighted. c)
Intensity profile of the spoke with the intensity threshold highlighted in yellow.
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Figure 3.4: Distribution of nuclear sizes for C2C12 cells. The areas (measured in
pixels where 1 pixel = 1.36 µm) follow a gamma distribution. Over 62,500 cells were
measured. Adapted from Downey et al. PlosOne (2011)

a) Halfway through the seeded
growth.

b) Multichannel seeded growth
completed.

Figure 3.5: Segmentation of Zebrafish PAC2 cells using the ‘Multi-Channel Segmen-
tation’ method. The image consists of two channels (red and green) representing the
two FUCCI markers. a) Seeded growth in progress. The red cell near the centre stops
growing when it reaches the neighbouring green cell. b) After the final iteration of the
seeded growth.
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similar greyscale intensity but different colour from growing together. A pixel

is added to the seed if both the colour and intensity criteria are satisfied. The

intensity limit is dealt with as in Section 3.1.3.

Unit vectors holding the pixel intensities are calculated according to Equa-

tion 3.2, for the centre pixel and the pixel being considered. The colour

difference is calculated using Equation 3.3 and pixels are rejected if the difference

exceeds the threshold.

â = {p1, p2, . . . pi} ·
1√

Σ(p21 + p22 + . . .+ p2i )
(3.2)

where pi is the intensity of the pixel in channel i.

Colour Difference =

√∑
i

|âi − b̂i|2 (3.3)

i = channel number [1, 2, . . .] and â & b̂ are normalised intensity vectors for the

seed pixel and candidate pixels respectively.

Relationship between Seeded Growth and Watershed

The Watershed transform is a commonly used segmentation method which is

related to the Seeded Growth in that it attempts to locate local maxima or

minima. The method identifies catchment basins analogous to its namesake, the

geological watershed which describes where water flows through a landscape [86].

To visualise the action of the watershed transform on an image, it helps to

consider the image to be a ‘height map’ where the pixel intensities are related

to the altitude of a landscape. If a Watershed transform is applied to such an

image, the output will be the catchment basins which identify the locations of

lakes or seas.

If an image containing fluorescent cells is to be segmented, brighter cells will

appear as peaks rather than basins so the inverted image may be used. The

watershed transform simulates flooding the landscape by pouring water into

the deepest minima (which will form the catchment basins). As more ‘water’

is added, these basins will grow until two touch. At this point a dividing line

(or dam) is drawn where they meet and more water is added to identify the

remaining basins. A watershed implementation is available for ImageJ [87]
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3.2 Tracking Algorithms

Several pre-existing tracking algorithms were applied to the cell position data as

part of the method comparisons in Chapter 5. The methods are briefly described

here.

3.2.1 CellProfiler tracking methods

CellProfiler provides four different tracking algorithms: An overlap-based

tracker, ‘nearest object’ tracker, a feature-based tracker and a multi-object

tracker. The operation of an overlap-based tracker is described in Section 3.4.2

and in [40].

The feature-based tracking method can utilise any cell or nucleus measure-

ment such as object overlap, distance, intensity or morphology, and assigns the

cell which has the lowest difference in the chosen feature value. A maximum

range is considered so tracking will only select cells within that radius but

otherwise will not take distance into account.

The multi-object tracker is based on the method by Jaqaman [88] which

is based on finding a solution to the tracking by global optimisation of a cost

matrix. This method also accounts for splitting and merging of particles.

3.2.2 ImageJ tracking plugins

The main tracking systems for ImageJ include ParticleTracker, MTrackJ and

MTrack2. Particle Tracker is based on Feature Point Tracking [43] which

includes segmentation based on locating local maxima which has been optimised

for point-sized particles instead of extended cells. The segmentation and

tracking methods can be run independently which enables the tracking to be

performed on data obtained through other means, allowing the tracking to be

run on the output of other segmentation methods.

The MTrackJ plugin allows rapid manual tracking to be performed and stores

multiple tracks in a well-documented text format∗. This provides a portable

mechanism for storing and transferring individual cell trajectories.

The MTrack2 plugin (and the recent modification MTrack3) use ‘nearest

object’ tracking and require a thresholded or pre-segmented image. As a result,

∗http://www.imagescience.org/meijering/software/mtrackj/fileformat.html
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there is no intensity information available to discriminate between neighbouring

cells.

3.2.3 Matrix Minimisation by the Hungarian Algorithm

A common feature of many tracking algorithms is a matrix which holds cost val-

ues for potential cell-cell transitions. The optimum set of transitions is obtained

following a matrix minimisation process such as the Hungarian Algorithm [89].

This is a solution to the matrix assignment problem where a minimum overall

score is achieved by pairing each row with a column, analogous to assigning jobs

to people where each entry in the matrix is the cost of each person performing

each job [90–92].

The method assigns optimal matches by first ‘reducing’ the matrix by

subtracting the lowest values from each row to determine whether each person

has a unique best job to assign. If not, the matrix is further reduced by

subtracting the minimum values from each row. A further iterative procedure

modifies the table by taking the minimum value present in the matrix and

subtracting it from all cells then adding it to the rows and columns which

contain assigned elements.

An open-source implementation∗ of the Hungarian Algorithm was used in

the cell-tracking code, which was adapted to handle the cost matrix as detailed

in Section 3.4.1.

3.3 Development of the Detection and Tracking
Software

The software was designed to handle data from the Cellomics KineticScan. The

Cellomics data is stored as a database which holds the list of which wells were

imaged in the 96-well plate and how many image fields were obtained for each

well (described in Appendix A.3.1).

The Segmentation and Tracking viewer (see Figure A.2a) is used to import

and segment the Cellomics data. After selecting the experiment, the layout of

the 96-well plate is displayed where the desired wells can be imported. Data

∗http://sites.google.com/site/garybaker/hungarian-algorithm/assignment
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analysis routines were written to measure aspects of the data including cell

motility, tracking performance and segmentation performance.

The software allows different segmentation, tracking and data analysis

methods to be used and these are implemented using a ‘plug-in’ architecture

similar to the one in ImageJ itself, where new methods are written to follow

a particular specification and placed in the ImageJ directory. When several

methods are available, the user can select between them and also adjust any

settings or parameters (see Figure A.3c). Multiple image channels can be

handled (Figure A.3b).

The Experiment Viewer (Figure A.4) allows not only viewing of the cell

tracks but also editing the segmentation and tracking and exporting data and

analysis results. The image window (Figure A.4c) displays the overlaid channels

and cell outlines. The main part of the user interface (Figure A.4a) allows

interaction with the data such as adding and removing cells, editing tracking and

extracting fluorescent timecourse data. Segmentation and tracking information

can be imported from other sources, including CellProfiler.

3.4 Identifying Features to use in Cell Tracking

During the segmentation step, several numerical features of the cells or nuclei

are measured. These include shape and texture features similar to those utilised

in feature-based cell-type classification methods [28, 45, 93] and methods for

predicting cell fates of retinal progenitor cells [94].

The requirement for measuring features in addition to position becomes

apparent when considering a simple example such as Figure 3.6. The scores

are calculated using feature similarity taking a combination of position, size and

intensity values, where a higher value indicates less change in a feature. The cell

images show the original positions of the cells with the outlines indicating the

positions of the cells in the following frame. The arrows connect cell positions in

one frame with the positions of nearby cells in the following frame, where arrows

of the same colour all originate from the same cell, pointing towards potential

matches. Different colours of arrows, e.g. number 3 (red) and number 4 (blue)

point to the same target cell in the centre of the image. Although connection 4 is

the shortest, it turns out that connection 3 achieves the highest ‘red’ score and is
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preferred over 4. This indicates that positional information alone is insufficient

to discriminate which of the possible target cells is the correct one.

Texture-based features, such as standard deviation of pixel intensity, are

measured on the primary image channel which is typically the permanent stain

or Hoechst marker. The integrated intensity (sum of pixel intensities for a cell)

is measured individually for all image channels. The tracking algorithm requires

the most informative features to be identified, which are those where the values

do not change too much from frame to frame but the values for the cells in an

individual frame are distributed across a wide range. These values are used to

compute probabilities for cell-cell transitions, which are calculated for all cells

in consecutive frames, and are subsequently stored in a matrix (see Section 3.4.1

and Figure 3.15 for an example).

The tracking algorithm relies on features remaining similar from frame to

frame, where it is expected that the measured features for a particular cell do not

change greatly in the interval between frames. Correlation scatter plots were

produced which compared the values of the features across successive frames

(see Figure 3.9).

Figure 3.8 shows characteristic condensation of the Hoechst marker during

cell division (at the 60 min timepoint), followed by segregation into daughter

cells. This is an essential feature, which is used to identify cell divisions, as will

be shown later on. The change in area and intensity of dividing cells is illustrated

in Figure 3.9, where daughter cells immediately following division are plotted in

red. It can be seen that the integrated intensity drops to approximately half in

the daughter cells whereas, since the daughter cells are smaller than the parent

cell, the mean Hoechst intensity remains similar to that in the previous frame.

When calculating correlation scores, the dividing and non-dividing cells were

treated separately. Dynamic features were plotted where the change in feature

value was calculated. Good features to use in tracking are ones where the values

cover a wide range while the correlation between cells in adjacent frames is

good. The features are listed in Table 3.1 along with the correlation coefficients

in column 2. The third column holds the R2 value multiplied by the dynamic

range of the feature, calculated as the log to base 10 of the range of values.

The features were divided into 5 groups: features derived from Hoechst
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Figure 3.6: Potential ambiguity in linking cells in subsequent frames (white outlines).
Arrows represent potential trajectory assignments with numbers representing the
calculated score for each potential assignment. Adapted from Downey et al. c⃝IEEE
2011
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Figure 3.7: Change in fluorescence intensity during cell division. a) Drop in intensity
at division. b) Motion of the cell with the sections colour-coded to match the intensity
plot (a). Adapted from Downey et al. PlosOne (2011)
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Figure 3.8: Sequence of a dividing C2C12 cell showing Hoechst enrichment prior to
division. Time in minutes, scale bar: 50 micron. Adapted from Downey et al. PlosOne
(2011)

intensity (integrated, mean and difference in intensity), GFP intensity, Shape

(including area and major axis angle), Intensity Moment derived features and

statistical features (including standard deviation and median). The table was

sorted according to the third column and the highest scoring feature in each

group was selected to be used in the tracking. The feature selection was

confirmed by comparing tracking accuracies for different sets of features (see

Section 5.5).

3.4.1 Developing a Multi-feature Score Based Tracking
Scheme

Tracking is calculated by considering a pair of adjacent frames and attempting to

match a cell in the frame t with the corresponding cell in the frame t+1. Where

cells are present in high density, there will be a number of possible candidate

cells within a small region surrounding the original cell’s position in the second

frame. A similarity score is calculated for each cell, indicating the likelihood of

matching each nearby cell in the subsequent frame.

The similarity scores are assembled into a transition matrix, which holds

the scores for each cell in a particular frame against all candidate cells in the

following frame. The rows of the matrix represent cells in the current frame,
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Figure 3.9: Correlations of different features between consecutive frames. Tracked
cells are plotted in blue. Cells that divided between consecutive frames are plotted as
red circles. R2 values are given only for very highly correlated values. a) Integrated
Hoechst intensity. Non-dividing cells show a very high correlation in Hoechst between
frames (blue R2=0.97). Red cells show that Hoechst levels are halved during division
(red R2=0.90). b) Mean Hoechst intensity (blue R2=0.94). c) Change in Integrated

Hoechst. d) Nucleus area. (blue R2=0.84). e) Change in nucleus area. f) 2nd Order
Intensity Moment. Adapted from Downey et al. PlosOne (2011)
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Feature R2 R2 × log10(max-min)
Centre co-ordinates of nucleus 1.00 2.71
2nd Intensity Moment 0.85 1.89
Standard Deviation Hoechst int. 0.92 1.64
2nd Moment (Area*Int. normalised)† 0.80 1.60
Integrated Hoechst Intensity 0.97 1.51
Integrated GFP Intensity 0.91 1.49
2nd Moment (Area normalised)† 0.90 1.35
Mean Hoechst intensity† 0.94 1.06
2nd Moment (Intensity normalised)† 0.78 0.94
Median Hoechst Intensity 0.86 0.89
Nucleus Area 0.84 0.84
Major Axis Angle 0.20 0.71
Relative standard deviation† 0.50 0.50
∆ Integrated GFP Intensity 0.07 0.40
Axis Ratio 0.37 0.37
∆ 2nd Intensity Moment 0.04 0.30
∆ Circularity 0.18 0.18
Circularity 0.16 0.16
∆ Area 0.01 0.03
∆ Hoechst Standard Deviation < 0.01 0.02
∆ Hoechst < 0.01 < 0.01

Table 3.1: Measured and derived features, along with R2 Correlation Coefficient and
correlation multiplied by the order of magnitude change in the feature value. Features
in bold are used in the tracking system. †Derived from other features. R2 values are
calculated using non-dividing cells only.

with columns represent cells in the following frame. Each element in the matrix

holds a movement score representing the similarity in position and measured

feature values between the cells. A value of 1 indicates that the position and

feature values are unchanged between frames.

The individual cell-cell transition scores are calculated by measuring the

features described above and calculating score contributions for each feature.

Threshold values for each feature indicate how much change in feature value is

allowable before the match become less favourable.

There are two separate steps toward calculating the movement scores, where

individual similarity scores are calculated for each measured feature, followed

by a combining step where the overall movement score for a cell-cell transition

is calculated based on a weighted combination of each score.
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3.4.2 Calculating Feature-Similarity Scores

Each feature score is calculated based on the difference in measured feature

between candidate cells. The actual means of calculation varies depending on

the feature being considered.

The movement score for an individual feature, M(f), is given in Equation

3.4–3.5 where Tf is the threshold for feature f and ft is the value of the feature

for the candidate cell in frame t, α determines the steepness of the curve (the

value will be obtained through optimisation, see Section 5.5.7). The sigmoid

shape penalises large changes in feature value, greater than the threshold T (see

Figure 3.11).

M(f) = 1− (1 + es(f))−1 (3.4)

where

s(f) = α

(
Tf − [ft+1 − ft]

ft+1 − ft

)
(3.5)

Cell Distance and Direction

The Euclidean distance between candidate cells is obtained for each pair of

cells and the score contribution is calculated where the threshold value is the

expected maximum distance a cell will move between frames. Similarly, where

the change in angle is used as a feature, it is used directly to obtain the score

from Equation 3.4, using the expected maximum change in direction as the

threshold.

Area, Intensity and Texture Features

The difference in feature is calculated as a percentage change from the cell in

the feature, compared to the value from the cell in frame ‘t’. The threshold is

therefore the percentage change allowable before the score rapidly decreases.

Cell Overlap

Overlap-based tracking is used in many applications where it is not expected

for the cells to move beyond the previous outline, either due to low motility

or high temporal resolution [38, 40]. A version of overlap-based tracking
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was implemented to allow comparison with the feature-based tracking being

developed.

The movement score is based on the degree of overlap between cell or nuclei

images between frames. The overlap is calculated from the intersection of the

shapes describing the cell outlines (Figure 3.10).

The overlap score calculation does not take a threshold value: the score is

simply the overlap-fraction measured according to Equation 3.6 or 3.7,

overlap score =
|c1 ∩ c2|
|c1 ∪ c2|

(3.6)

overlap score = 2

(
|c1 ∩ c2|
|c1|+ |c2|

)
(3.7)

where c1 and c2 are the candidate cell outlines in successive frames. Equation

3.7 is the same formula as the Kappa Index (Equation 5.5), used in calculating

the degree of congruence between segmentation output and ground truth pixel

data.

The overlap score can be used as the overall movement score in the transition

matrix or can be taken as another dynamic feature property of moving cells and

considered when combining the individual scores below.

An overlap-based tracker is used, along with a simple ‘Nearest Cell’ tracker,

as a benchmark to compare the multi-feature tracking method.

3.4.3 Combining the individual Feature Scores to obtain
a single score for each cell

Each of the individual scores calculated above are combined into a single cell-

similarity score (referred to as the ‘Movement Score’) for a potential cell-cell

transition. Equation 3.8 takes the movement scores and weights for each feature

and calculates a weighted product where the score contribution is unity if the

weight is zero (i.e. the feature has no influence on the score), decreasing to the

score itself when the weight W (f) = 1.

Mij =
∏
f

(
1−W (f)(1−Mij(f))

)
(3.8)
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Figure 3.10: Calculating the movement score using cell overlap. Green: cell in frame
‘t’ Blue: cell in frame ‘t+1’ Red: Score is fraction overlap measured as the intersection
of the two shapes.
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Figure 3.11: Change in feature score according to a sigmoid curve. The higher the
α parameter, the sharper the decrease in score as the threshold is exceeded. At the
threshold (in this example, T=40%), the score contribution drops to 0.5
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3.4.4 Not all features have equal weighting in identifying
cells

Each of the cell features described in Section 3.4 and table 3.1 has an associated

weight and threshold which adjust the relative importance or influence of each

feature when calculating the movement score.

Threshold values are obtained by performing an initial tracking followed by

analysis of the change in features (see Figure 3.12 and Table 3.2). A threshold

can be selected by choosing a high percentile (95th-99th) as a cut-off, which

will give a value suitable for the majority of cells in the experiment. When the

feature difference D(f) = [ft+1 − ft] is zero, the movement score contribution

for the feature M(f) is equal to 1, and drop to 1
2 when the difference is equal

to the threshold value.

Each of the features has a weight, W (f), which is proportional to the

contribution towards the total movement score for the trajectory. These weights

are used when the individual features are combined to calculate the overall

movement score in Equation 3.8. This equation is formed such that a weight of

zero means the feature has no effect on the score while a weight of 1 can bring

the score close to zero for large differences.

Initial estimates of the weight values are obtained by determining the relative

importance of each feature according to the strength of the correlation (see

Figure 3.9, and R2 values in Table 3.1). The features with the highest correlation

values (coordinates and intensity) were assigned an initial weight of 0.9 with the

other features assigned weights of 0.5.

3.4.5 Movement Scores are used to identify cells between
frames

Figure 3.13 shows the Hoechst and GFP channels for a set of frames with a

mean cell density of 1300 cells/mm2 (densities typically reached 40 hours after

transfection). The circled cell is moving through a region of relatively high cell

density where tracking on the Hoechst channel alone would create ambiguities

in identifying the cells. The accompanying GFP frames indicate that taking

both channel intensities into account will aid cell identification.

The close up in Figure 3.6 gives an example of the scoring mechanism in
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Figure 3.12: Measuring changes in features for cell-cell transitions during tracking.
a) Change in nuclear areas (pixels) in adjacent frames. b) Distance moved by non-
dividing cells in one frame. c) Percent change in Hoechst fluorescence for non-dividing
cells. d) Distribution of daughter cell distances (in pixels) from parent cell in the frame
immediately following a division. Adapted from Downey et al. PlosOne (2011)

Percentile Change in area Displacement Parent-daughter distance

90 16.67 6.40 12.51
91 18.06 7.00 12.65
92 19.69 7.21 12.81
93 21.39 7.81 13.08
94 23.77 8.36 13.80
95 25.84 9.05 14.23
96 29.07 10.00 14.64
97 33.52 10.82 15.39
98 40.97 12.17 16.52
99 52.13 15.00 18.39

Table 3.2: 90–99th percentile values for change in area, frame to frame displacement
during tracking, and parent-daughter distance following cell division. These values
(measured in pixels) are used to select the threshold parameters used for tracking.
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a) High density cell population

b) Small fraction of cells expressing GFP

Figure 3.13: Example of cell motion. The highlighted cell has been tracked through
multiple frames. Scale bar is 50 microns. Numbers indicate time in minutes. a)
Hoechst Channel b) GFP Channel. Adapted from Downey et al. PlosOne (2011)
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practice. The nuclei are shown for the first frame with selected cell outlines for

the following frame superimposed.

For the two selected cells, three arrows point to possible target cells in

the subsequent frame, along with the calculated movement scores for each

transition (6 in total). A cell receiving two inbound arrows from different

cells (for example from Red 3 and Blue 4) indicate that distance alone is

insufficient to accurately assign a cell-cell transition. Connection 4 is shorter

than 3 but the associated movement scores are the other way round (0.549 and

0.742 respectively), indicating that Red 3 is the preferred transition from that

particular cell. Blue 6, with a score of 0.712, is the highest (and therefore

preferred) outbound transition from the 2nd cell.

3.4.6 Converting scores into tracking is a Global optimi-
sation problem

During tracking, the feature similarity scores are stored in a matrix where the

the columns represent cells in the current frame and the rows represent cells in

the following frame. Each entry in the matrix is the similarity score calculated

between the ‘row’ and ‘column’ cells (see Figure 3.15 for an example).

Different methods may be used to assign the individual trajectory steps

based on the constructed matrix. These methods either use the matrix rep-

resentation or a graph-based approach to obtain a solution (either locally or

globally optimum). The graph-based approaches rely on the representation of

the potential tracking connections as illustrated in Figure 3.14.

3.4.7 A basic approach assigning highest scores is used as
a baseline

A very simple approach, where the highest scoring transition for a cell is assigned

as the next link, may be used as a benchmark to test the feature-based tracking.

This method does not attempt to calculate an optimum solution to the tracking

but is a crude ‘greedy’ algorithm where each cell picks the highest transition

without consideration for whether the target cell would be more favourable if

assigned elsewhere. The first cell (in the first frame) to ‘choose’ a particular

target cell in the second frame will remove the target cell from consideration by

46



all other cells. If the target cell with the highest score has already been assigned

then the cell with the next highest transition is selected.
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Figure 3.14: Demonstration of three iterations of the assignment step. 1, 2 & 3
represent three cells at time t, a, b & c are three cells at time t+1. Numbers on arrows
indicate movement scores. a) The highest scoring link between 2→c is selected. b)
Links to and from cells 2 & c are removed. The highest scoring link 3→b is selected.
c) Links involving cells 3 & b are removed, leaving 1→a. Adapted from Downey et al.
PlosOne (2011)

3.4.8 A global solution using the Hungarian Matrix Min-
imisation Algorithm

The method of assigning trajectories may be replaced with the Hungarian

Algorithm [91,92], while retaining the initial matrix calculation. The Hungarian

Algorithm is based on minimising the summed scores of assigning each row to

a unique column (see Section 3.2.3). The scores are converted into the required

form simply by subtracting from 1.

The algorithm requires a square matrix, which is only the case if the cell

count is equal in consecutive frames; therefore an additional step is required to

pad the matrix where there are different numbers of cells in adjacent frames.

Any rows or columns required to square the matrix are filled with padding with

cost = 1 to avoid the padding entries being assigned to existing cells unless all

other lower values have already been assigned (see Figure 3.15 for an illustration

of the process).
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(Cell ID 1 2 3 4

5 0.6 0.7 0.65 0.3
6 0.65 0.75 0.7 0.4
7 0.6 0.8 0.75 0.6

) 
Cell ID 1 2 3 4

5 0.4 0.3 0.35 0.7
6 0.35 0.25 0.3 0.6
7 0.4 0.2 0.25 0.4
100 1 1 1 1


Figure 3.15: Construction of the matrix for the Hungarian Algorithm. The original
matrix is on the left, with 4 cells in the first frame and 3 cells in the 2nd. The modified
matrix is on the right, with scores replaced by (1-score) and the extra padding indicated
by shaded squares, where cell 100 is the extra ‘dummy’ cell added to ensure the matrix
is square.

3.4.9 Co-Operative Greedy Algorithm is a rapid approxi-
mation to a global solution

This method is an extension of the Simple Highest Score tracking. Assigning

movements is a four-stage process (see Figure 3.16a). The first step builds a

list of potential target cells in the adjacent frames according to the movement

scores in the transition matrix. Each cell holds a list of highest scoring cells

in both the forward and backward directions (t → t + 1, i.e. those cells in the

following frame which it may point to, and t → t − 1, i.e. those cells in the

previous frame which point to it, respectively).

The second stage assigns a trajectory if the highest scoring forward transition

agrees with the highest scoring inbound transition of the target cell at t+1 (see

Figure 3.14). Step 2 is performed repeatedly until all such transitions have been

assigned. The third step completes any remaining links by assigning the highest

forward pointing transition.

The final step optimises the tracking by calculating the sum of transition

scores for each frame. If two cells share potential targets (such as cells 1 & 2

each pointing to both a & b in Figure 3.14), a new pair of transition scores

is calculated based on exchanging the trajectories. The new trajectories are

retained if the exchange improves the total score.

While the Hungarian Algorithm is a well established solution for this prob-

lem, the new algorithm suggested here has a number of advantages, including

execution speed. The graph-based implementation of the Co-Operative Greedy

algorithm allows assignment of cell divisions to be performed by examining the

cell neighbourhood, as described in Sections 3.4.10–3.4.11.
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a) Tracking b) Detect Divisions

Figure 3.16: a) Tracking flow chart. The matrix is described in Section 3.4.6, the
favourable 2-way match is illustrated in Figure 3.14, and the optimization is described
in Section 3.4.9. b) Expanded flow chart for the Detect Divisions module. The
individual steps are described in Section 3.4.11 Adapted from Downey et al. c⃝IEEE
2011
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3.4.10 Constructing Lineages

So far the tracking has only considered simple links of cells. The next step is to

add branches to the tracks to add cell division information.

The large frame intervals used in the experiments can lead to difficulties

in identifying cell divisions. The M-phase (mitotic phase) of the cell cycle

is relatively brief and can occur between frames, therefore the change in

appearance of the nucleus during M-phase cannot be relied upon to detect

divisions. Additionally, direction of travel of the daughter cells following division

could not be used as there was a wide spread in angles, and regular changes in

cell direction meant cell trajectories could not be traced backwards to associate

daughter and parent cells.

3.4.11 Identifying Daughter Cells using a characteristic
change in Hoechst fluorescence

The first step in identifying cells which may have divided involves comparing

dynamic changes in measured features in particular characteristic changes in

intensity and nucleus area (Figures 3.9c & 3.9e) which both decrease by at

least 25% during cell division (Figure 3.7). In the frames immediately following

division, the daughter cells will be close to the last known position of the mother

cell (see Figure 3.12d).

After a suspected division event has been detected, it becomes necessary to

locate the daughter cells. In a sparse field of cells, daughter cells will be easy

to identify since there is a high likelihood of them being the only cells in the

region. However with high cell densities, separating new daughter cells from

existing cells becomes more problematic.

Most daughter cells are found within 10–15 pixels of the mother cell but

there is no correlation (R2=0.05) between the distances of the two daughters

(Figure 3.17a), so distance alone cannot be used to reliably identify daughter

cells.

The angle of the daughter cells is summarised in Figure 3.17b. The angle is

measured between the daughters and the last observed position of the mother

cell, such that 180◦ refers to cells moving in the opposite direction to each other.

A lot of the spread in angles is due to the movement of the cells both before
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and after division: the low temporal resolution is insufficient to capture the

immobile dividing cells.

While the bulk of the divisions lead to daughter cells moving roughly

diametrically apart (52% of divisions produce daughter cells within 45◦ of a

common axis, 74% are within 90◦), there is still sufficient variability to be wary

of using angles to locate cells, especially if there is a significant number of other

cells within the ‘search area’. The ‘division angle’ becomes more significant

when applied to non-motile cells which are in possession of a major axis, such

as Sz.pombe discussed later.
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Figure 3.17: Daughter cell position relative to mother cell, measured using Reference
Standard 2. a) Distance of the two daughter cells (in pixels) from the last measured
position of the mother cell. b) Angle of initial daughter cell motion, in relation to
mother cell.

There is a high correlation (R2 = 0.95) between the integrated intensity of

the parent cell and the sum of the daughter cell intensities (sum of daughter

intensities is 100±1.5% of parent intensity, where the error is the standard error

of the mean for n=100 cell divisions). There is also a high correlation between

the integrated intensities of the two daughter cells (R2 = 0.92) where the mean

difference between daughter cells is 6.0±0.5%.

Similarly, the areas of daughter cells are closely correlated (R2 = 0.95) where

the mean difference between daughter pairs is 12.6±1.0% and the mean cell area

is 45.8 pixels. The average total sum of daughter cell areas is 110±4.3% of the

parent cell area. There were some cases where a daughter cell was larger than

the final measured area of the parent cell due to the long frame interval and

chromatin condensation occurring during the previous frame.
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The ‘Locate Divisions’ step of the tracking module identifies potential

daughter cells by examining all cells within the distance threshold of the parent

cell position. These cells are considered a pair at a time and a similarity score is

calculated using Equation 3.4 based on intensity and size only. Since there was

a larger variation in the area size, the area was weighted less than the intensity

(weights=0.25 and 1 respectively).

The highest scoring daughter pair is then compared to the parent cell by re-

evaluating Equation 3.8 using a ‘composite cell’ where the area and integrated

intensities are the sums of the values for the potential daughter cells, again using

weights of 1 and 0.25 for intensity and area. If the movement score calculated

from this combined cell is greater than the movement score for the original

tracked cell, the new daughter cells are assigned to the parent.

This approach relies on the tracking being able to be maintained in the

interval leading up to the division. The increase in brightness due to chromatin

condensation (Figure 3.8) does not interfere with tracking since it is the

integrated intensity, not the mean intensity, which is used in the calculations.

The cell area feature weight needs to be lower than the intensity weight to

prevent the decrease in area from lowering the tracking score and causing the

tracking to fail.

3.5 Conclusions

Several segmentation and tracking methods were developed which will be

evaluated in Chapter 5. Cell motion was studied to determine features which

may be utilised by the tracking algorithm and it was discovered that the cells

within the two timecourse experiments could be divided into two populations:

one represented by persistent cells, the other by cells exhibiting a more random

motion.

In Chapter 5, the segmentation and tracking methods developed here are

compared to third-party methods, including state of the art implementations.

Several basic tracking methods are also proposed which use simplified methods

and are intended to provide a baseline against which the more sophisticated

methods are compared. Two different approaches are used in evaluating

the segmentation methods, with both manually annotated cell images and
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synthetically generated cell images being utilised.

The software has been adapted to work with Schizosaccharomyces pombe is

described in Chapter 6 and a further application, utilising FUCCI cell cycle

markers [95] and two additional cell types, is given in Chapter 7.
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Chapter 4

Measuring Msx1 expression

This chapter describes the data analysis performed on timecourse experiments

performed on cells expressing GFP driven by different versions of the Msx1

promoter. Five different constructs were prepared and transiently transfected

into C2C12 cells as described in Chapter 2.

4.1 MSX1 is a Transcription Factor involved in
stem cell differentiation

The MSX1 protein is a member of the homeobox family of transcription factors

involved in vertebrate craniofacial and muscle development. Homeobox genes

are important in positional control during development of the embryo [96].

There are several Msx and Dlx genes which are part of the same homeobox

family. These contain a highly conserved sequence of amino acids known as the

homeodomain, which has been demonstrated to bind to DNA [97,98].

MSX1 is involved in regulating pluripotency of mesenchymal stem cells [99].

Expression of Msx1 during embryogenesis maintains progenitor cells in their

undifferentiated state (Figure 4.1) by upregulating cyclin D1 [100] which is one

of several factors controlling progression through the cell cycle. For example

over-expression of MSX1 has been observed to slow the cell cycle in ovarian

cancer cell lines [101]. Mutations in the Msx1 gene lead to cranial and dental

defects [102] including cleft palate [103] and familial tooth agenesis [104].

In the absence of growth factors the cells will begin to differentiate. Normally

this process is irreversible but certain species, such as members of the Urodele

family which includes Salamanders, can reverse the process to regenerate lost
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limbs [105]. The dedifferentiation process has been replicated in-vitro in mouse

cells. Ectopic expression of MSX1 can result in muscle cells reverting to a form

which is then capable of re-differentiating into different types of cells [106].

Proliferating

C2C12 cell

Msx1

Differentiated

   progeny

Msx1

Msx1

Proliferating

C2C12 cell

Figure 4.1: Differentiation or proliferation of C2C12 cells. Expression of Msx1
maintains stem cells in the undifferentiated state.

4.2 MSX1 Fluorescent Imaging

The activity of reporters containing transcriptional control elements from the

Msx1 gene was measured. Several control elements have been identified [63], and

a key objective for the development of our analysis method was to quantify the

role these elements play upon transcription rates by using fluorescent reporters.

Expression levels are proportional to the amount of reporter protein, provided

the measured intensity is within the recommended range of the imaging system

and saturation of the signal is avoided. Fluorescent reporters were modified

by the addition of a Nuclear Localization Sequence (NLS) [107] which is a

short sequence of amino acids which, when part of a protein, is a signal to

a molecular chaperone and leads to post-translational relocation of the protein

into the nucleus. A GFP molecule which contains an NLS will therefore appear

colocalised with the nucleus and segmentation based on the Hoechst nuclear
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stain can thus be used to measure reporter intensities in the nucleus (Figure

4.2).

a) b) c) d)

Figure 4.2: Segmentation of C2C12 cells on Hoechst channel. a) Hoechst only. b)
Hoechst and GFP. c) as b with segmentation mask overlaid d) GFP with segmentation
mask obtained from Hoechst channel. Adapted from Downey et al. c⃝IEEE 2011

4.3 Analysing the MSX1 Fluorescence Measure-
ments

The software was used to study the expression of cis regulatory module (cRM)

promoter driven GFP and to measure the partitioning of protein between

daughter cells for dividing C2C12 cells. Transient transfections were performed

with reporters containing four different Msx1 transcriptional regulatory regions

(A-D) upstream of the Msx1 promoter and the promoter alone [63].

Since a transient transfection was used, not all of the cells will take up

the plasmid. Only the GFP-expressing cells need to be followed, so a method

is required to detect the onset of gene expression. While this could be done

visually an automatic method would be preferable when a large number of cells

are involved. Similarly an automated method would be preferable for locating

cell divisions and constructing cell lineages.

The cells were seeded at relatively high densities of 4× 105 cells per ml since

the C1C12 cells will naturally differentiate once they reach confluence levels.

4.3.1 Identifying Dividing Cells

Candidate cells for analysis were identified by following the changes in fluores-

cence intensity and selecting the cells where a division occurred while GFP was

actively being expressed.
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The onset of gene expression was detected by smoothing the fluorescence

intensity values using a moving average which removes small frame to frame

variations in the imaging and measurement steps. A suitable window size for the

moving average (20 timepoints) was determined empirically to give a smooth

appearance to the curve. The actual onset of expression was taken to have

occurred when there had been several consecutive increases in the smoothed

fluorescent value.

The list of GFP-expressing cells was filtered further by removing cells which

did not divide. Automatic division detection is described in more detail in

Section 3.4.10 and the data structure is described in the Appendix (A.3.4). The

cells are stored as a tree structure so the tree branches when divisions occur.

All of the cell divisions were manually checked to confirm that division

occurred while the GFP was being expressed and to ensure that the correct

daughter cells had been selected. Any deviations in the tracking or lineage

construction were corrected at this stage.

4.3.2 Obtaining Fluorescent Timecourse Data using the
LineageTracker Software

The software stores cells as individual objects with properties which include

measured features and links to the next and previous cells if a cell belongs to a

tracked lineage. The timecourse data for individual cells or lineages are exported

from the LineageTracker software as text files suitable for use in spreadsheets

or mathematical software such as Matlab. Each row in the text file holds the

fluorescence intensities of all measured image channels. Additional rows hold

the corresponding data for any daughter cells.

4.3.3 Comparing Protein Levels in Daughter Cells for
different Msx1 Promoter Constructs

The images to be analysed were obtained from 7 different Cellomics experiments

performed by Keith Vance during 2007. Five different constructs were tested

where different Msx1 regulatory modules were driven by the murine Msx1

promotor (see Sections 1.3 and Figure 1.1). Frame intervals were 30 or 60

minutes. A total of 96 divisions were identified and the fluorescence activity of

mother and daughter cells was measured in the frames either side of the division.
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Figure 4.3: Integrated fluorescence intensity. Parent cell was measured in the frame
immediately prior to division and daughter cells were measured in the following frame.
a) Daughter GFP fluorescence (R2=0.92) taken from the 5 Msx1 cRM constructs. b)
Mother cell fluorescence and total daughter fluorescence (R2=0.86). Adapted from
Downey et al. PlosOne (2011)
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Figure 4.4: GFP Fluorescence of daughter cells, calculated as percentage of the
mother cell intensity. Error bars are calculated at the 95% confidence level. a)
Breakdown of sum of intensities for the 5 different Msx1 cRM constructs. b) Mean
sum of daughter fluorescence and difference between daughter fluorescence for all cRM
constructs. Adapted from Downey et al. PlosOne (2011)
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The partitioning of protein between daughters and the total fluorescence

recovery are summarised in Figure 4.3. The correlation coefficients are R2=0.92

& 0.86 respectively. The high correlation in the partitioning means that for

all the different Msx1 reporter constructs driving GFP expression we find that

fluorescence is symmetrically distributed in the two daughter cells with a high

degree of accuracy, ensuring that in most cases MSX1 levels are maintained

during cell divisions to prevent differentiation.

4.3.4 Asymmetric Divisions are uncommon

In the sample of 96 divisions, there was only a single instance of asymmetric

division where one daughter cell contained significantly more fluorescent protein

that the other, shown in Figure 4.5.

An earlier study using E.coli [23] observed that the majority of divisions

(> 85%) produced daughter cells with a volume difference of less than 5%,

and that differences in daughter cell size was the primary cause of asymmetric

division. In the single case measured here the GFP was confined to the nucleus.

The segmented areas of the daughter nuclei were almost equal (52 & 53 pixels

respectively) as were the Hoechst intensities (4600 & 4400 as measured after

background subtraction).

Another indicator of asymmetric division could be cell cycle timings, where

differentiated cells might have different generation lengths. While the data

used here has insufficient cells with multiple divisions, other studies [108] have

failed to observe a significant difference in generation times, suggesting that

asymmetric divisions are infrequent in-vitro.

Figure 4.5: Example of an asymmetric division (arrowed). Top: GFP fluorescence,
Bottom: Nuclei stained using Hoechst. The fluorescence was divided between the
daughter cells in the ratio 28:72 for GFP and 51:49 for Hoechst.
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4.4 Conclusions

An interactive framework was developed to aid analysis of cell data and this

was used to extract fluorescence measurements for a number of cells which

were subsequently used to study the partitioning of fluorescent protein during

divisions. It was observed that in all but one instance, the protein was equally

distributed between daughters and the fluorescence recovery following division

was consistent.
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Chapter 5

Performance and Validation
of the LineageTracker
Software

This chapter describes the accuracy measurement and performance validation

on the segmentation and tracking methods. The tracking validation was per-

formed using two manually tracked C2C12 data sets whereas the segmentation

validation was based on a combination of manually annotated cell images and

a set of synthetic images generated using third-party software.

5.1 A Statistical Analysis of Cell Motility

The C2C12 mesenchymal cells are highly motile muscle precursor cells. Dur-

ing migration, cells release chemokines which in turn attract other cells and

encourage motion in a particular direction [109]. Cells exhibit a range of

behaviours ranging from random motion to migratory travel depending on their

local environment.

An analysis of cell motion was performed (similar to [110]) to investigate

whether any additional movement parameters could be used to improve the

tracking. The manually validated tracked sets (see Section 5.5.1) were analysed.

Taking cell motion in a single axis first, the speeds appear to follow a

Gaussian distribution (see Figure 5.1). The mean was close to zero (±0.45

for both x- and y-axes), suggesting there was little or no overall drift in any

particular direction. The quality of fit (R2 > 0.99) was good for all the speed
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distributions.
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Figure 5.1: a & b) Cell displacements from Reference Standard 1, with a Gaussian
Distribution superimposed. c & d) Cell displacements for Reference Standard 2.
Displacements are in pixels per frame, where 1 pixel = 1.36 µm.

The peak in Figure 5.1a is offset slightly from the mean value so the Skewness

values were calculated for the distributions, which measures the asymmetry

around the mean where a normal distribution has skewness of zero. Taking

Reference Standard 1, the skewness of the ‘y’ speeds is -0.20, which is of greater

magnitude than the skewness of the ‘x’ direction which is < 0.01. Since cell

motion is not truly random but is influenced by nearby cells, it is expected that

the distributions may occasionally deviate from normal.

When a particle moves in two or more axes and the speed in each axis follows

a Gaussian distribution, the particle velocities will be given by v =
√
∆x2 +∆y2

and will follow a Rayleigh distribution. This is shown in Figures 5.2a & c. The

speed distributions were fitted to the Rayleigh distribution formula (given in

Equation 5.1) and the quality of fit was calculated.
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2v (5.1)

Reference Set 1 exhibits a slightly better fit (R2 = 0.96) than Set 2 (R2 =

0.94). Since a true Rayleigh distribution will only be obtained when the x & y

components of the velocity are both normally distributed, any slight deviation

from normal will be reflected in the quality of fit.

The majority of the cells (> 95%) have velocities below 10 pixels per frame.

This result could be used to determine the optimum ‘Displacement Parameter’

for the tracking algorithm.
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Figure 5.2: Measurements from Reference Standard data sets. a) Cell speeds fitted
with a Rayleigh distribution. b) Change in cell direction. c) Speeds from Reference
Standard 2 fitted with a Rayleigh distribution. d) Change in cell direction for Reference
Standard 2.

Changes in direction were calculated from 0 to 180◦ so a 90◦ angle could be

either a left or right turn, as only the degree of turn was considered. The results

are displayed in Figure 5.2b & d. The two distributions are quite different,

with Set 1 having more cells with lower turn angles than Set 2. A visual
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inspection of the two timecourse experiments shows large numbers of cells in Set

1 moving in roughly straight lines. A Gaussian mixture model was applied to

the angle distributions and both datasets were found to be built from a mixture

of distributions with similar mean values: < 40◦, 50–54◦and a much smaller

component at ≥ 60◦, Set 1 had a greater contribution from the lower angle

range.

The two angle distributions present in Set 1 suggest that there are two

distinct subpopulations where half of the cells have persistent motion whereas

the other half are exhibiting a random walk. The cell displacement histograms

do not show a similar division, suggesting that cell speed is not dependent on

whether the cell is in migration or random motion.

A brief analysis of the cell motion was performed, comparing the motion with

random walks, summarised in Figure 5.3, where the mean total displacement

squared is plotted against the number of steps.

Motile cells in a uniform environment with no chemoattractants, when

viewed from above, will appear to be free to move in 2 dimensions. If the cell

could change speed or direction without constraint, the motion would resemble a

‘random walk’ where the cells move in a random direction, with no correlation

with previous motion. A traditional random walk with fixed step size and

random direction would appear as a straight line on a plot of steps taken (or total

distance covered) against distance squared (as shown in Figure 5.3a) whereas

straight line motion appears as a quadratic increase as the distance will increase

at a constant amount with each step.

The motion of the tracked sets is displayed in Figure 5.3b. The blue trace

represents the first Reference Standard and this closely resembles the straight

line trace in Figure 5.3a which is consistent with the low turn angles present in

that set. The second set, shown in red, starts to deviate from the ‘straight line’

motion and the curve flattens out as cell motion either becomes more random

or motion becomes constrained. Mean cell speed drops very slightly during the

course of the experiment, a maximum of 3.2 pixels per frame near the start to

2.6 pixels per frame at the end but this would not be sufficient to cause such a

drop in the curve. A simulation of a decreasing-step random walk is given in

Figure 5.4a where the step size drops from 3.5 to 2.5 pixels per step but this
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does not recreate the walk profile from the experiment.

A second simulation increases the angle throughout the run, and this

produces a result much closer to the experimental results. One theory for this is

that as density increases, persistence decreases since the cells are unable to move

in straight lines (supporting data for this is given in Appendix B.5). Reference

Standard 1 was of shorter total duration so may not have run for sufficient time

to exhibit the same behaviour. An alternative visualisation of the random walk

analysis is presented in Appendix B.6 using Distance-Pathlength heatmap plots.

5.2 Measuring Segmentation Performance

The segmentation step aims to separate images into different regions, which

in the case of cell detection can be referred to as Cells (or Foreground) and

Background. Each region has both position and area. A measure of accuracy

should ideally take both of these into consideration. Sections 5.3 & 5.4 describe

two different approaches which tackle the position and area measurements

separately.

Many segmentation methods can be fine-tuned to work at a particular cell

density but often struggle to work at different densities. Such conditions will be

commonly encountered in time-series experiments of proliferating cells.

The segmentation of the Seeded Growth segmentation method (described in

sections 3.1 and 3.1.3) is compared with a commercial solution, Cellomics, along

with CellProfiler, which is another open source cell image analysis package.

5.3 Quantifying Position Accuracy of different
methods

The segmentation was first evaluated against a Reference Standard based on 4

frames selected over a 48 hour period of a single experiment (Figure 5.5). The

frames were chosen to represent a range of cell densities, from 437–740 cells

per image (equivalent to 902–1507 cells/mm2). The upper limit is equivalent to

25–30% total area covered by nuclei, as measured using the Hoechst channel,

which approximately corresponds to 90–100% cell confluency.

The positions of the nuclei were marked using the CellCounter plugin in
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ImageJ, which allows the positions of cells to be marked and subsequently

exported as a spreadsheet file for use elsewhere. Each cell can also be marked

as being of a particular type and this was used to identify cells as belonging to

one of four categories: ‘genuine’ cells, edge of frame, touching another cell, and

noise or debris.

The marked cells belonging to the first two categories formed the ground

truth data and were compared to the cell positions as obtained from the

segmentation methods (full details of the algorithms are given in Appendix

B.2.

5.3.1 Results of the Position Comparisons

To determine positional accuracy, we define a cell detection as true positive

when the position is within 1 radius of a ground-truth cell. Cells which cannot

be matched are classified as false positive. Cells in the ground truth data set

which remain unassigned are classified as false negative.

Figure 5.5: Segmentation of cell nuclei. a) Original nuclei (scale bar 50 micron)
taken from the Reference Standard data set, cell density 1150 cells/mm2. b–h) Nuclei
with segmentation examples overlaid. Ellipses indicate segmentation errors. Lines
indicate unresolved clusters of cells. b) Manually marked cell position. c) Cellomics
segmentation. d) Seeded Growth. e) Global Threshold. f) Local Threshold. g) Scaling
Index. h) CellProfiler. Adapted from Downey et al. PlosOne (2011)

A selection of segmentation errors encountered during the evaluation, in-

cluding over- and under-segmentation, are shown in Figure 5.5. None of the

methods outperformed all others at all cell densities (see Figure 5.6, summarised

in Table 5.1). The Seeded Growth, Scaling Index algorithms and CellProfiler

perform slightly better regarding false negatives, which are consistently below
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the Cellomics and threshold-based methods. However, these threshold based

methods (Cellomics, Global and Auto Threshold) yield lower numbers of false

positives (consistently below 1%), compared to the Scaling Index and the

CellProfiler Background Adaptive method.

Cells %Found
% Not % False % Missing
Found Positive (Edge of frame)

Reference Standard 2365 n/a n/a n/a n/a

Seeded Growth 2179 92.14 7.45 0.71 0.41
Global threshold 1985 83.93 13.10 0.19 2.97
Scaling Index 2153 91.04 7.36 0.94 1.61
Auto Threshold 2009 84.95 12.46 0.26 2.60
CellProfiler 2161 91.37 6.65 2.19 1.98
Cellomics 1994 84.31 12.75 0.26 2.94

Table 5.1: Summary of Segmentation Results, listing percentage of cells detected,
missed or incorrectly detected. Cells at the edge of the frame are ignored in many
segmentation methods so weren’t counted as failures and have been listed separately.

The increasing numbers of missed cells at high cell densities indicate there is

currently no reliable method that can work in an accurate unsupervised manner

when cultures become confluent. The Seeded Growth method was chosen for use

as it provides a good balance between false positives and negatives for different

cell densities. The Scaling Index method provided similar detection rates but

required the radius and threshold parameter to be carefully chosen otherwise

accuracy would decrease.

5.4 Quantifying Pixel Partitioning Accuracy us-
ing artificial Ground Truth Images

An accurate quantification of fluorescence will require an accurate identification

of the outline or extent of the cell or nucleus, since the fluorescence intensity

will be spread over this area. The pixel-accuracy of segmentation was measured

using artificial ground truth images created by the Simcep software [111]. The

pixel accuracy measurement was calculated based on the Precision & Recall

values [112] which were combined into an F-Score to obtain a single value to

represent the accuracy.

Artificial ground truth images created using Simcep were used to test the

pixel-accuracy of the segmentation methods. The pixel ground truth images

obtained from Simcep were quantitatively compared with the segmentation
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Figure 5.6: Cell detection accuracy measurements: Total cell count, false negatives
and false positives comparing different segmentation methods to the Reference Stan-
dard (shown in red). Adapted from Downey et al. PlosOne (2011)

mask images. Five frames were created, at the same image size, simulating

cell nuclei at densities between 425 and 703 cells per frame (2885 cells in

total). The software parameters (given in Appendix B.4) were chosen to match

experimentally observed nuclei sizes and distributions.

The F-score, calculated using Equations 5.2–5.4, indicates the overall accu-

racy of the segmentation according to this foreground/background partitioning.

Unlike the position accuracy, this measurement does not detect situations where

methods fail to separate clustered or touching cells and does not penalise

methods under these circumstances. The precision value measures the pro-

portion of detected pixels which genuinely belong to the ground truth, whereas

the recall value is the proportion of ground truth pixels which were detected

by the segmentation method. Collectively, these values indicate whether a

segmentation method consistently over- or under-estimates the size of the

detected objects. The method requires the numbers of True Positive (TP),

False Positive (FP), True Negative (TN), and False Negative (FN) pixels.

Precision (P) =
TP

TP + FP
(5.2)
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Recall (R) =
TP

TP + FN
(5.3)

F-Score =
(1 + β2)P · R
β2(P + R)

(5.4)

A weighting factor β can be varied to give emphasis to either the precision or

recall but the default value β = 1 was selected to give an equal weight to either

metric since there is no reason to believe an alternative value would give better

discrimination between methods. Tests performed using randomly generated

images with different pixel coverage gave F-Score values which increased with

increasing β when coverage was greater than the ground truth, and decreased

when coverage was less. Changing β for the calculations using the output of the

different segmentation methods had a similar effect with no method standing

out for any single value of β.

The F-score performance of the different segmentation methods is illus-

trated in Figure 5.7. The Global Threshold (Li automatic threshold from

ImageJ) resulted in the highest F-values (≈0.95) for all cell densities, while the

more sophisticated regional adaptive methods (including Seeded Growth and

Scaling Index) performed comparatively poorly on the artificial data (0.85<F-

score<0.91). This was contrary to the results obtained from the Cell Position

results where the adaptive methods performed more successfully.

An alternative measurement, using the Kappa Index, measures the degree

of overlap between two sets according to Equation 5.5:

KI = 2

(
|A ∩ B|
|A|+ |B|

)
(5.5)

where A and B are ground truth and segmented pixel data, respectively.

Method Precision Recall F-Score Kappa Index

Seeded Growth 0.83 0.92 0.87 0.90
Scaling Index 0.93 0.89 0.91 0.88
CellProfiler 0.79 1.00 0.88 0.93
Global Threshold 0.96 0.95 0.95 0.95
Local Threshold 0.86 0.98 0.91 0.93

Table 5.2: F-Score and Kappa Index values comparing segmentation methods.
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Figure 5.7: Segmentation accuracy on artificial cell images: Precision, Recall &
F-Score for the SimCep images. Adapted from Downey et al. PlosOne (2011)

Using the Kappa Index to evaluate segmentation accuracy for the Simcep

data, values, summarised in Table 5.2, are in the range KI = 0.88–0.95 (0.90 for

the Seeded Growth algorithm) which compares well with the values of between

0.81 and 0.96 reported in [58].

5.5 Comparing Tracking Performance using
Manually Tracked Ground Truth data

Accurate tracking is essential for obtaining useful fluorescent timecourse or

lineage data from a set of measured cells. Where cells have been tracked, there

will be an association between a cell image in one frame and the corresponding

image in the following frame. Where these associations are available for many

successive frames, it is possible to build up a full trajectory for a cell over an

entire experiment.

Mistakes in the tracking can lead to a trajectory starting off following a

particular cell but partway through the cell could be incorrectly associated

with a different cell. Any successive correct trajectory assignments will only
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be correct for the ‘new’ cell and not for the original cell, leaving the entire track

to be considered suspect. Errors are thus cumulative and diverging and once an

error has occurred, there is little chance of the mistake being reversed.

The accuracy of the tracking algorithm was evaluated by comparing the

trajectories against two Reference Standard tracked sets, which were both based

on Hoechst-stained C2C12 time-series images. These time-series experiments

were provided by Keith Vance and Danuta Jeziorska.

5.5.1 Creation of the Reference Standard Tracked Sets

Both sets were created by allowing the LineageTracker software to perform

automatic tracking then manually correcting any tracking links to create as

many tracked cells or lineages as possible. Each cell had a ‘Validated’ true/false

flag which was set to true once a lineage had been manually checked. These

validated lineages were then exported to be used as the tracked sets.

Reference Standard 1

The first tracked set consisted of 24 frames with 10 minute frame intervals.

Segmentation was performed using the Seeded Growth algorithm; segmentation

and tracking were modified until over 50% of all cells belonged to a validated

track. This set contains 7017 individual cell to cell linkages between frames,

with 359 tracks ranging from 5 to 23 frames (average length = 19), but no cell

divisions.

The average cell movement between frames was 3.9 pixels, with a maximum

of 28 pixels (average nucleus diameter of 11 pixels). The cell density (1300

cells/mm2) was in the middle of the range of our 30 minute experiment described

below.

Reference Standard 2

This tracked set consisted of 110 frames with 30 minute frame intervals. This

was the same experiment used to create the Position Accuracy test set used in

Section 5.3. The segmentation was based on processing from the Cellomics HCS

Reader software. This enables the tracking performance to include the tracking

results from the Cellomics software. The tracking was manually adjusted and

lineages created until a total of 100 cell divisions had been marked as validated.
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This dataset contained 157 cell trajectories containing a total of 7221

individual steps and 100 divisions. Tracks range from 5 to 110 frames (average

length = 46). Average cell movement was 3.8 pixels per frame (maximum 29

pixels per frame, average cell diameter of 14 pixels)

5.5.2 Measuring the Tracking Accuracy based on Longest
and Total Tracked Lengths

The tracking accuracy is measured by a stepwise comparison of the Reference

Standard with the computer-generated tracking. All of the cells contain a flag

which indicates whether they have been visited during the tracking evaluation.

In this context, cell is taken to mean an instance of a cell in a particular frame,

not a physical cell which exists in many frames. A tracked cell which appears in

all 20 frames of an experiment will appear as 20 cells within the data structure,

with links between the cells describing the tracking.

The tracking score was calculated by counting the number of individual links

that were correctly identified using the automated methods and the longest

continuously tracked section. Each lineage has two counters: one to hold the

total number of correct links identified, the other holding the longest continuous

correctly tracked chain. Each of the Reference Standard cells is visited in turn

and a corresponding cell is located in the comparison set. The track length

counters are both initialised to zero. If both cells have been tracked, the next

cells in the tracks are obtained. If both of the tracked cells are the same (both

positions are within the mean cell radius of each other), the track length counter

is incremented. If the tracked cells do not match, the current track length is

stored and the counter is reset to zero.

For each measured track i in the Reference Standard, there is a set of track

lengths Li which hold the lengths of the tracked sections where the reference

standard and the method being evaluated are in agreement (illustrated in Figure

5.8). The longest of these lengths is designated Lmax
i . The length of the track

in the Reference Standard is given by Lref
i . Two scores are calculated: Total

track accounted for (Equation 5.6) and Longest continuous track (Equation 5.7),

where n is the number of tracks present in the reference standard.
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n
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∑
i=1...n

Lmax
i

Lref
i

(5.7)

Figure 5.8: Measuring tracking accuracy. Horizontal axis shows time with the
vertical axis representing cells in the frames. The red arrows indicate the manually
tracked ‘Reference Standard’ route marked through the cells, and the black arrows
show the calculated tracking. Tracking accuracy is measured by counting the total
number of steps which match the Reference Standard and the longest continuous
chain of correct steps. In the example here, 7 steps were correctly identified, with the
longest chain of length = 5. Adapted from Downey et al. PlosOne (2011)

5.5.3 Comparing LineageTracker Performance with
Third-Party Tracking Software

The custom tracking algorithm was compared to CellProfiler along with the

Particle Tracker∗ and MTrack3† tracking systems available with ImageJ [113].

Each tracking method was run using both gold standards.

CellProfiler Tracking

There are four tracking algorithms available within CellProfiler. These are:

1. Overlap Tracking – Selects the cell pairs with the greatest overlap in

adjacent frames.

2. Distance – Selects the cell in the following frame where distance, as

measured from the perimeter, is smallest.

3. Measurement – Compares the values of the user-selected measured

feature and selects cells where these values are closest.

∗https://weeman.inf.ethz.ch/ParticleTracker
†http://user.interface.org.nz/~gringer/hacking/mtrack3.html
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4. Linear Assignment Problem (LAP) – An implementation based on

[88] which aims to handle high cell density and the possibility of temporary

non-detection of cells.

The LAP tracking was chosen to represent CellProfiler in the tracking tests

since it is a more sophisticated algorithm which is considered state of the art.

Particle Tracker (ImageJ)

The Particle Tracker plugin is an implementation of Feature Point Tracking [43].

There are two main parameters to vary: Link Range, which specifies how far

ahead the algorithm looks, and Displacement, which is the search radius for

cells. A displacement of 15 and link range of 2 were found to provide the

highest tracking scores for the Reference Standard sets.

MTrack3 (ImageJ)

MTrack3 is based on the earlier MTrack2 plugin and was used in preference to

the earlier version since it writes the tracking results to disk in a more easily

managed format. The tracking is based on ‘nearest cells’ with optional velocity

prediction. The main parameters are maximum velocity and prediction on/off.

The algorithm does not make use of any intensity or feature values.

Different values of the parameters were investigated and a maximum veloc-

ity=10 was selected.

LineageTracker Algorithms

There are several different tracking algorithms available within LineageTracker.

These are described in Section 3.4.1, along with the Hungarian Matrix Minimi-

sation described in Section 3.4.8. Two additional methods were developed based

on the tracking framework. The ‘Simple Nearest Cell’ tracking calculates the

distance between cells in adjacent frames and assigns the nearest cell provided it

is not currently part of a lineage. This is an intentionally crude implementation

which is designed to provide a baseline to compare more sophisticated methods.

An Overlap-based tracker was developed to evaluate the utility of such a

method when used with rapidly moving cells where there is a high probability

of no overlap between successive cell images. The method calculates the overlap
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fraction as the movement score and uses the Hungarian algorithm to assign the

matches.

5.5.4 LineageTracker offers high quality tracking

All of the tracking methods manage to attain over 90% accuracy for individual

cell-cell linkages (Table 5.3). This value is important if manual tracking

adjustments are to be made prior to any fluorescence timecourse measurements

since a better score indicates fewer incorrect linkages which will require manual

correction.

The average successful tracked length (the second figure given in the table)

is more relevant in traditional HTS where accurate tracking is required as part

of an automatic analysis pipeline.

The custom methods developed here manage to achieve the highest cell-cell

linkage accuracy, reaching nearly 99% accuracy for Reference Standard 1. The

overlap-based tracking achieved a slightly lower score of just under 98% which

is consistent with the mean cell motion (3.9 pixels) being within the typical cell

radius (11 pixels). The mean overlap between successive cells in a trajectory

was 57.4% with 1.6% of cell-cell links having no overlap between cells.

CellProfiler achieved the highest score of any third-party tracking system

with a score of 95.9%

The accuracy levels were slightly lower for the second Reference Standard,

with the custom tracking methods scoring 97–98% accuracy. The overlap-based

tracking suffered a large decrease in accuracy score, dropping to 92%, although

the mean overlap between cells had increased to 74.2%. The number of cells

without overlap across frames increased slightly to 1.7%

CellProfiler was consistent in achieving the highest third-party accuracy,

with a much higher accuracy than MTrack3, Particle Tracker and the Cellomics

tracking methods.

5.5.5 The Effect of Velocity Prediction on Tracking Accu-
racy

The MTrack3 method features an optional velocity prediction component which

uses the motion in addition to position to calculate the best match. The

suitability of the velocity component should depend on the nature of the motion
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Reference Standard 1 Reference Standard 2

Experiment:
24 frames 110 frames

(10 minute interval) (30 minute interval)

Validated Positions 7321 7417
Validated Trajectories 359 157
Frame to Frame links 6886 7221
Mean track length 19 46

Tracking Scores for LineageTracker

Co-operative Greedy 98.3/94.2 98.0/93.1
Hungarian Algorithm 99.0/97.1 97.2/89.9
Simple Nearest Cell 92.7/76.2 95.0/76.0
Overlap Tracking 97.9/90.6 92.4/82.6

Tracking Scores for CellProfiler*

Linear Assignment 95.9/88.3 96.1/85.4
Nearest Cell 87.8/78.5 87.7/76.7
Intensity Measurement 39.1/35.7 34.2/28.9
Overlap Tracking 90.3/80.8 89.6/78.4

Tracking Scores for other Third-Party Algorithms

MTrack3 (ImageJ)† 93.1/84.5 85.4/76.3
Particle Tracker (ImageJ) 92.3/82.9 86.4/64.1

Cellomics KineticScan‡ n/a 85.9/55.9

Table 5.3: Results of Reference Standard tracked sets, excluding cell divisions. Two
numbers are given for each measurement: total number of correctly tracked steps and
longest continuously tracked section (as percentage of total steps). For the 10 minute
interval experiment the Seeded growth segmentation was used, and cells were manually
edited so that 50% of cells with positively validated segmentations were included in
the tracking Reference Standard. The 30 minute interval experiment is based on the
Cellomics segmentation as to allow comparison with the Cellomics tracking routines.
The first 4 tracking scores are part of the LineageTracker software developed as part
of this thesis. Overlap Tracking used Equation 3.7 to calculate the transition scores.
*LAP = Linear Assignment Problem tracking. CellProfiler Intensity Measurement
tracking uses the ‘Feature Tracking’ method and only considers a single feature, so
does not consider cell distance. All CellProfiler tracking used distance limit=15, where
applicable. †MTrack3 used velocity prediction with maximum velocity=10. ‡The
segmentation used for Reference Standard 1 contained manual corrections so could
not be used to evaluate the Cellomics KineticScan software.

of the cells, where more random motion would benefit less. In Sections 5.1

& Appendix B.6, the cell motion is characterised and compared to random

walk models. The motion of the Reference Standard 1 is more ‘linear’ than

in Reference Standard 2, with smaller changes in angle (more of the cells lie

along the diagonal of Figures B.6c & B.6d). The velocity prediction is a form

of Keyhole Tracking, as discussed in Section 1.6.1. This would be expected

to have a positive effect on the tracking where cell motion is more uniform or

predictable. Table 5.4 summarises the effect of this on the tracking accuracy for

MTrack3.
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Tracking Scores Reference Standard 1 Reference Standard 2

Velocity prediction On 93.1/84.5 85.4/76.3
Velocity prediction Off 92.6/83.0 85.8/77.0

Table 5.4: Effect of Velocity Prediction on the tracking accuracy for MTrack3.

For Reference Standard 1, there is an improvement when cell motion is

taken into account, in line with expectations. The tracking results decrease

for Reference Standard 2, where there is a greater change in cell direction (see

Figure 5.2d).

5.5.6 Effect of Distance Threshold on Tracking Accuracy

Table 5.5 contains the tracking scores for different values of the Distance

Threshold parameter. The highest scores are obtained for values close to 10,

where 95% of cell displacements are below this threshold (Table 3.2). The

time taken to perform tracking increases steadily as the displacement threshold

increases. This is due to the increased radius leading to a larger number of cells

being considered at each frame.

Displacement Score Score Time
Threshold (links) (track length) (Seconds)

5 91 72 5.1
10 97 89 5.5
15 97 88 6.1
20 96 85 6.7
25 95 79 7.6

Table 5.5: Changes in the tracking score as the displacement parameter is varied,
using the 7,500 cells from the Reference Standard data set. This parameter specifies
the expected maximum distance (in pixels) moved by a cell. The time required for
tracking increases with the distance threshold since fewer candidate cells are rejected
due to distance. The time column does not include the optimisation step.

5.5.7 Optimising Weights and Thresholds for Feature Cal-
culations

The tracking parameters (weights and thresholds for distance, intensity, area

and texture, along with the sigmoid shape parameter) may be optimised to

obtain more accurate tracking for a particular cell type or motion model. Each

parameter is taken in turn and the value is randomly perturbed by ±1% of the
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parameter range. The tracking is re-evaluated and the new parameter values

are retained if the scores improved.

Local minima may be encountered where the tracking score is sub-optimal

but small changes in parameters are unable to improve the tracking score. The

optimiser attempts to avoid these by increasing the scale of the perturbations

if repeated iterations fail to improve the score.

Varying Number of Features affects Tracking Results

The tracking scores for the custom tracking algorithms given in Table 5.3 were

based on all measured features (optimised feature values are given in Appendix

B.3).

Features Tracking Score

Distance Only 92.03/74.29
Distance+Intensity 97.52/91.57

Distance+Intensity+Area 98.24/94.23
All Features 98.25/94.23

Table 5.6: Effect of varying the features on the tracking score on Reference Standard
1.

Table 5.6 shows how the tracking score varies as more features are taken into

consideration. The distance, intensity and area features are sufficient to allow

accurate cell identifications and the addition of the texture features provides

only marginal increase at the expense of additional computational cost.

5.5.8 80% of Divisions were Detected Accurately

None of the third party tracking systems supported detection of cell divisions

so only the custom tracking method was considered.

The accuracy of cell divisions was determined using Reference Standard

2, which contained 100 manually annotated cell divisions, 80 of which were

correctly detected by the software. There were 16 false positive divisions

detected: two where a division was correctly identified, but the daughter cells

were assigned incorrectly, and the remaining 14 where a division was detected

and none occurred.
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5.6 There is no ‘One size fits all’ solution

No single segmentation method was found to have overall superiority regard-

ing cell detection and pixel accuracy. The Seeded Growth provided a good

compromise between cell detection, false positives and false negatives.

The tracking method developed in Chapter 3 compared favourably with

the third-party tracking systems which were available. The accurate matching

tracks obtained from the methods (using both the Co-operative and Hungarian

Assignments) were consistently longer than those obtained from the other

methods.
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Chapter 6

Constructing Lineages for
Schizosaccharomyces
pombe

Sz.pombe [114] is a fission yeast which is one of the main eukaryotic model

organisms. It was isolated in the 19th century from a millet beer brewed in east

Africa (‘pombe’ is the Swahili word for beer) and the genome was sequenced

in late 1990s. It is only distantly related to traditional bakers or brewers yeast

(Saccharomyces cerevisiae). Of late 2011, 38% of genes have had their function

experimentally confirmed with a further 43% having their function inferred from

similarities with other genes [115]. The remaining 19% of genes are of unknown

function and are divided between conserved genes which are also present in

other organisms (11%), genes which are only present in fission yeast (7%) and

entries which are not confirmed as protein encoding (1%).

Sz.pombe is used in the study of many cellular processes including cell

signalling and mitosis. The short generation time of Sz.pombe (typically 2-

4 hours) following gene expression over several hours will require following

daughter cells. Dr Graham Ladds at the University of Warwick Medical School

expressed an interest in adapting the methods developed in the previous chapters

and applying them to time-course images of Sz.pombe.

This chapter begins with a discussion of a brief investigation of different

staining protocols to visualise the cells in a manner suitable for the segmen-

tation and tracking algorithms developed in Section 3.3. The segmentation

and tracking methods were applied to images of Sz.pombe and the necessary
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modifications are described in sections 6.2 & 6.3, including a novel segmentation

method based on the image intensity gradient. Finally the results are presented

where a lineage is constructed from a timeseries of proliferating cells.

6.1 Visualising Sz.pombe using Fluorescent Mi-
croscopy

Culturing and imaging conditions used in this chapter are described in Section

2.2. The segmentation methods were originally developed for bright fluorescent

nuclei, based on Hoechst staining, so nuclear rather than full cell fluorescence

would be desirable to enable the existing methods to be reused with little change.

6.1.1 Hoechst Staining over long durations was unsuccess-
ful

A brief investigation into Hoechst staining was conducted. Cells were grown

overnight in minimum media (Table 2.2) at 30 ◦C before being centrifuged for 3

minutes at 2000 rpm then resuspended. Different resuspension media were tried:

water, PBS or minimal media (1 or 2 ml each). To each of these, 25 µl per ml

of a 1:2000 Hoechst stock was added. Resuspended cells were subsequently

incubated for between 4 and 14 hours.

The Hoechst-stained cells were imaged after initial incubation and again after

24 hours. None of the tests produced viable stained nuclei after 24 hours. There

had been proliferation of cells but any remaining live cells were not stained. The

only cells visible in the Hoechst channel were dead.

There are transport mechanisms present which can transport Hoechst out

of lipid bilayers [116] and some cells, including Dictyostelium [117] have been

reported to expel Hoechst so while they may use a completely different mecha-

nism, Sz.pombe may also have the ability to expel Hoechst from cells.

6.1.2 gar2-GFP expression in Sz.pombe allows nuclei and
cytoplasm to be detected simultaneously

Jonathan Millar, from the Medical School at the University of Warwick, kindly

donated a selection of GFP-expressing strains of Sz.pombe. These were imaged

to determine which displayed suitable nuclear fluorescence, which could then be
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used as the basis for further experiments. The most suitable was one which ex-

pressed GAR2-GFP, which displayed a bright compact nucleus surrounded by a

fainter cytoplasm, which would allow both nuclear and whole-cell measurements

to be made. The GAR2 protein operates within the nucleolus [118, 119] and is

involved in the production of ribosomal subunits. Since it is already largely

nucleus-based, there is no need to append a nuclear localisation sequence.

6.2 Adapting the segmentation methods for
Yeast

The bright nuclei of the GAR2-GFP Sz.pombe can be segmented using the

existing seeded growth method (Figure 6.2a) by selecting an intensity threshold

which allows separation of the nuclei from the cell bodies. There is a sufficiently

large intensity difference between nuclei and the rest of the image (Figure 6.3)

which enables such a threshold to be readily obtained, either interactively (using

the ‘Preview’ function of the software, see Appendix A.5), from visual inspection

of the plot profile (Figure 6.3b), or more rigorously using a method such as ‘K-

Means Clustering’ [73,120].

The GAR2-GFP Sz.pombe images can readily be separated into three

distinct regions as described above. Applying the K-Means clustering on the

pixel intensities using k=3 places each pixel into one of three ‘bins’ which is

effectively a multi-value global threshold. The mean intensity values of each

cluster can subsequently be used to calculate the segmentation thresholds:

Mean Intensity for cluster i = µi

Where i = 0 for background, i = 1 for cell body, i = 2 for nuclei.

Threshold for nuclei = 1− µ2 − µ0

µ2

Threshold for cell bodies =
µ1 − µ0

µ2

In Figure 6.3c, the yellow cell bodies are not completely separate and a

seeded growth may incorrectly segment the areas where cells touch. This

becomes more likely when part of the cell is closer to a neighbouring nucleus
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a) Hoechst-stained Sz.pombe b) After 24 hours of growth

Figure 6.1: Investigating the Hoechst staining of Sz.pombe. a) Stained for 4 hours
at 1:2000 dilution in minimal media. b) After growing for 24 hours, cells had either
died or ejected the Hoechst.

a) Nucleus segmentation b) Full cell segmentation

Figure 6.2: Segmentation of yeast cells expressing GAR2-GFP. a) Limiting segmen-
tation to the bright nucleus b) Lowering the brightness threshold to allow segmentation
to select the entire cell.
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Figure 6.3: Intensity profile across a gar2 -GFP expressing Sz.pombe cell which
is undergoing mitosis. There is sufficient difference in intensity between image
background, cell body and nucleus to allow them to be detected individually. a)
Location of the intensity profile measurement. b) Intensity profile, with different
regions coloured; black: image background, yellow: cell body, red: cell nucleus. c)
K-means clustering of pixel intensities, colour coded the same as (b)
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than the correct nucleus, so when the growth step occurs the pixel is visited

and claimed by the neighbour nucleus. Additional checks are required during

growth to prevent this from taking place.

The intensity gradient of the image may be used as a guide to which

nucleus is associated with a particular point. The Radial Growth algorithm was

extended to take advantage of this to investigate whether it would be useable

for segmentation. The magnitude and direction of the gradient is calculated as

given in Equations 6.1–6.2.

Magnitude =

√(
∂I

∂x

)2

+

(
∂I

∂y

)2

(6.1)

Direction = tan−1

(
∂I

∂x

)/(∂I

∂y

)
(6.2)

The gradient is calculated on a smoothed copy of the image (Gaussian kernel,

σ = 3). At each point p during the growth stage, a vector −→p is obtained pointing

back along the ‘spoke’ towards the nucleus. A vector −→g is obtained from the

gradient. The angle between the vectors is calculated using the dot product

(Equation 6.3).

θ = cos−1(−→p · −→g ) (6.3)

This angle is used to adjust the rate of growth of the cell in that direction,

where the spoke increases by

1− 0.5θ2 (6.4)

which favours growth in the direction of the image gradient and thus allows cells

to grow more rapidly along the major axis and decreases growth in areas where

cells are in contact, which reduces the ‘hijacking’ of pixels from neighbouring

cells.
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6.3 Adapting the existing Lineage Construction
methods

The cells of Sz.pombe are non-motile so any movement observed will be caused

by either growth or proliferation of cells which causes a cluster of cells to

expand outward, or movement of the microscope stage. The latter are often

due to vibrations or temperature fluctuations but these are minimised by using

a thermostatically controlled environment and a damped optical table.

The positions and intensities of the nuclei, rather than the whole cells,

are employed for tracking since they are smaller and brighter and therefore

the positions can be measured with greater accuracy. The tracking method

described in Section 3.4.1 is used to follow the nuclei. No changes are necessary

apart from a smaller distance threshold, due to the decreased motion.

A different division detection method is required since there is no observed

drop in intensity during mitosis. A suspected division event occurs when a cell

appears which does not have a precursor in the previous frame. If the cell is

within the distance-threshold of the edge of the frame, it is disregarded since

at such close proximity it will be difficult to unambiguously determine whether

the cell is the result of division of a cell just outside the frame and therefore not

part of an existing lineage.

The lineage construction method can be described as ‘Orphan-Adoption’

since it first identifies a cell which has no ‘parent’, then calculates which parent

is the best match. For the calculation described below, the first daughter cell

is the one assigned during the tracking step, since the tracking automatically

assigns the best-match cell. The second daughter will only be assigned if the

matching criteria are reached.

Additional position features are available for consideration in identifying

parent and daughter cells, in part due to the elongated cells providing a major

axis. During division the nucleus divides to produce the two daughter nuclei

which then move to opposite ends of the cell before the formation of a septum

which leads to the cell dividing in two [121].

There is low correlation for the distance between the nuclei before and after

division, when comparing the positions of the two daughter nuclei (Figure 6.5a,

R2=0.06). The cell axis orientation is better conserved during division, where
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the daughter nuclei lie along the axis of the mother cell, as measured in the

previous frame (Figure 6.5b).

The previous frame is examined for potential parents and each parent cell is

given a score which is calculated as follows:

• If potential daughter cells are on opposite sides of parent, increase the

score by 1 for both x & y axes.

• Measure the angle difference between the major axis of the parent cell and

parent-daughter positions. Increase the score using Equation 3.4, using 15

degrees as threshold.

The parent with the highest score is assigned to the orphan daughter and

the algorithm moves on to the next un-assigned cell.

6.3.1 Obtaining Sz.pombe Lineages

The lineages are stored as lists where each entry represents a cell at a particular

frame. Each entry in the lineage keeps a record of the cells in the next and

previous frames and also any daughter cells where divisions occur (see Appendix

A.2.1 for a visual representation). This allows traversal of the list or tree to

rapidly count the number of divisions or intervals between them. Data gathered

in this manner may be used to construct a lineage tree for a cell (see Figure 6.6

– the tree graphic was created using Graphvis∗, see Appendix B.8 for further

details).

The sample lineage presented here was selected from a larger population

which was allowed to grow and proliferate over a 12 hour period. The cell

count and cell cycle lengths are presented in Figure 6.7. The mean generation

time measured from the lineage was 4.6 hours with the mode = 3.8 hours. For

wild-type Sz.pombe, the typical generation time is 2–4 hours, with an observed

division every 3 hours [122] at 25 ◦C

no. of cells = 2(t−t0)/c (6.5)

The doubling time measured by fitting an exponential growth curve (Equa-

tion 6.5, where t is the time in minutes, c is the doubling time, and t0 is the

∗http://www.graphviz.org/
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Figure 6.4: Dividing yeast cells, time displayed in minutes. Circles highlight the
dividing nuclei.

0 5 10 15 20
0

5

10

15

20

Daughter 1 distance

D
au

gh
te

r 
2 

di
st

an
ce

a) Distance of daughter nuclei following divi-
sion

0 50 100 150
0

10

20

30

40

50

60

Angle from Mother Cell

N
o
. 
o
f 
c
e
lls

b) Angle of daughter nuclei.

Figure 6.5: Daughter cell position relative to mother cell for Sz.pombe. a) Distance of
the two daughter nuclei from the last measured position of the mother cell nucleus. b)
Angle of daughter cell positions, in relation to the parent cell nucleus in the previous
frame.
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Figure 6.6: Sample Sz.pombe lineage tree. Rectangles indicates start of tracking,
ovals represent divisions, dotted ovals are when tracking ended. Times are given in
minutes from the start of the experiment. Times written alongside arrows display
intervals between divisions.
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Figure 6.7: Sz.pombe proliferation and cell cycle lengths. a) Proliferation of cells
during the time-series. The blue dotted line is the number of live cells at any one
time, with the red line indicating live cells plus all cells which have died or left the
field of view. An exponential growth-curve is superimposed. b) Cell cycle lengths
obtained from the constructed lineage.
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extrapolated time when the population would have begun from a single cell) was

calculated as 5.5 hours, which is significantly longer than the observed doubling

time of 4.6 hours. One possible reason could be that the cell count is affected

by cells which were not observed to divide during the timecourse. Of the 74

cells present at the start, 32 did not divide. There were 50 cells in total which

were lost when they left the field of view but these were included in the count

of ‘dead’ cells.

6.4 The LineageTracker software is suitable for
Sz.pombe cells

The methods developed for C2C12 have been demonstrated to also work for

Sz.pombe. The lineage construction methods were adapted to accommodate

the presence of the major axis which aided detection of daughter cells. This

allowed accurate lineages to be constructed and individual generation times to

be obtained.
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Chapter 7

Cell Cycle Analysis

There have been many published studies involving the cell cycle and oscillating

proteins where cells are required to be observed over lengthy time periods or

over multiple generations [26, 85, 123]. In the absence of single-cell imaging,

many studies synchronise cells by, for example changing media [24], to facilitate

fluorescence measurement by measuring bulk intensity of a cell population.

This approach can be problematic when attempting to measure over multiple

generations since correlation of cycling proteins between daughter cells has been

observed to decrease rapidly [124].

7.1 The FUCCI Markers indicate phase of the
Cell Cycle

The tracking and segmentation methods were originally developed for cells

which exhibited a permanent nuclear marker (Chapters 2 and 3). There will

be cases where it is not possible to add such a marker or analysis is required

on images which have already been obtained. To demonstrate the feasibility

of using the software without a continuously visible fluorescent marker, it

is used here to obtain intensity profiles of zebrafish embryonic PAC2 cells

expressing FUCCI cell cycle markers (Fluorescent Ubiquitination-based Cell

Cycle Indicator) which are visible for the most of the duration of the cell cycle.

Later, this is applied to study the relationship between cell cycle and circadian

clock in NIH3T3 cells (Section 7.3 )

The FUCCI cell cycle markers were developed at the RIKEN Institute in

Japan [66,95] and uses two fluorescent dyes to visualise cells in different stages
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of the cell cycle. The markers consist of two ubiquitin ligase substrates, Cdt1

and geminin, which are expressed during different phases of the cell cycle and

have been fused with red- and green-emitting fluorescent proteins. Cdt1 is a

regulating factor in DNA replication [125] and is involved in the formation of

the pre-replication complex which is assembled during the early stages of the

G1 phase. Geminin is a negative regulator of Cdt1 so its appearance during

the S phase causes a reduction in Cdt1. Truncated versions of the proteins

were selected since they need to become targets for the ubiquitin mediated

proteolysis but should not be active as regulators themselves. The truncated

Cdt1 and geminin were fused to red-emitting and green-emitting fluorescent

proteins respectively.

Newly divided cells start in the G1 phase which appear red and change to

green during the S, G2 and M phases of the cell cycle. There is an overlap

during the G1 to S transition where both markers are visible, giving the nuclei

a yellow colour (Figures 7.1 and 7.2).

At mitosis, there is a rapid decrease in intensity in the green channel,

but there is a short delay before the cell becomes visible in the red channel.

Because of that delay, there is insufficient difference between daughter cells

and background for accurate automatic detection, so it is often necessary to

manually track a short section of each lineage (Figure 7.3 and Table 7.1).

7.2 Obtaining Cell Cycle in Zebrafish embryo
cells

Fluorescent timecourse images of Zebrafish PAC2 embryonic fibroblast cells,

which had been transfected with FUCCI markers as described in Section 2.3.1,

were obtained from Kathy Tamai. These images were used to demonstrate

the effectiveness of the LineageTracker software in following cells without a

permanent nuclear marker.

7.2.1 Cyclic markers pose challenges to segmentation

The PAC2 cells were segmented using a modified version of the Seeded Growth

algorithm (see Section 3.1.4) which features improved separation between cells

fluorescing in different channels.
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Figure 7.1: Colour changes during the cell cycle indicated by FUCCI markers in two
daughter cells labelled ‘a’ and ‘b’ (see also Figure 7.2). Time is in minutes following
division. The overlap in the red and green fluorescence (transition between G1 and S
phase) is shown for cell ‘b’ (bottom panel). White outlines are given for nuclei showing
weak fluorescence. Adapted from Downey et al. PlosOne (2011)
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Figure 7.2: Intensities of the FUCCI markers following cell division. Fluorescence
intensity following cell division for the two daughter cells in Figure 7.1. The two
FUCCI channels have been shown for an entire cell cycle. The G1 signal (red) increases
gradually following mitosis, then decreases following a rise in S-G2-M signal (green).
A magnified view of the first 3 hours is shown in Figures S11 and S12. Adapted from
Downey et al. PlosOne (2011)
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a) Dividing cell visualised using FUCCI markers. The green FUCCI S-G2-
M marker fades after mitosis followed by a slow increase in red G1 marker.
Time displayed in minutes same as 7.3b. Two daughter cells, labelled ‘a’
and ‘b’ have been tracked.

b) Intensity drop following division for zebrafish PAC2 cells, following
daughter cell ‘b’. The image background intensity and sum of image
channels for the measured cell are also plotted.

Figure 7.3: Dividing zebrafish PAC2 cells visualised using FUCCI cell cycle markers.
Adapted from Downey et al. PlosOne (2011)
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As mentioned in Section 7.1, there is a delay before the increase in fluores-

cence, as illustrated in Figure 7.3. Although the cell fluorescence intensity is

above the background, it is insufficient for the ‘maxima detection’ algorithm to

locate cells without there being excessive numbers of false positives detected.

Such cells may be segmented using the existing Seeded Growth method but the

seed position must be provided manually. This has been implemented as an

interactive plugin for the LineageTracker software (see Figure A.5) where the

cell outline is grown according to the procedure described in Section 3.1.3. The

parameters relating to the cell outline (such as intensity threshold and ‘colour

difference’) can be adjusted and a preview of the outline is displayed so that the

best fit can be selected.

7.2.2 Tracking Invisible Cells based on position

The cell tracking algorithm was originally developed to track fluorescent cells

where there will always be a measurable intensity to aid tracking. Where cells

consistently have low intensities it will be necessary to use lower weights for

the intensity features during tracking so that cell position and area become the

major features considered in the calculation.

Cell ID Lineage Length Segmentation Tracking Longest Cont.
(Frames) Adjustments Adjustments Sequence

1 203 18.2% 11.8% 15.8%
2 68 4.4% 5.9% 48.5%
3 408 6.6% 4.4% 20.8%
4 485 8.5% 7.2% 13.8%
5 586 9.4% 6.0% 18.6%
6 425 3.8% 2.8% 22.8%
7 758 19.4% 6.2% 11.9%
8 477 5.7% 3.4% 42.3%
9 91 0.0% 2.2% 69.2%

Table 7.1: Tracking precision for zebrafish PAC2 cells visualised using FUCCI
markers. The segmentation and tracking adjustments represent the percentage of
frames which required manual intervention to preserve accurate tracking. The longest
continuous sequence was observed with cell 8 at over 50 hours without corrections.
Following division, daughter cells fade to close to background intensity requiring cells
to be manually segmented. Adapted from Downey et al. PlosOne (2011)

In the absence of a permanent nuclear stain, the initial automatic seg-

mentation and tracking will not be able to detect all cells (see Table 7.1 for

examples). There are two possible routes to obtaining a corrected lineage:
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manually correcting segmentation then re-running automatic tracking, and

manually correcting both segmentation and tracking. Re-running tracking

on the re-segmented Zebrafish PAC2 images gave a cell-linkage accuracy of

98.5% with a mean length for longest trajectory of 75.1%, which is below the

values typically obtained for Hoechst-stained nuclei. This is likely to be due to

additional ambiguity caused by attempting to identify very faint cells.

7.3 The Cell Cycle and the Clock

In addition to the cell cycle, there is an additional periodic oscillator in cells: the

circadian clock [126–128]. This is familiar to most of us through the sleep cycle

and the body’s response to changing daylight patterns, especially when caused

by jet-lag due to travelling to a different time-zone. There is also considerable

evidence that the body exhibits different response to drugs at different times of

the day [129].

Most of the circadian control in mammals is regulated by the suprachiasmatic

nucleus part of the hypothalamus in the brain, which synchronises oscillators

elsewhere in the body [128]. In some unicellular organisms, such as algae and

cyanobacteria, cell divisions occur in synchronisation with the circadian cycle

[130, 131]. Similar linkages have been found in mammalian cells [69] where the

cell division timing appears to be gated by the circadian clock [132]. The time

of division occurs at regular intervals following peaks in expression of Rev-erbα,

a transcription factor controlling rhythmic expression of downstream targets in

mammals.

A subsequent study [24] has claimed that mitosis can be independent of

circadian clock in rat fibroblasts, which is counter to previous results which

show circadian gating of division [133–135].

The work in the following section attempts to confirm whether a correlation

is observed between the clock and circadian cycle in mouse fibroblasts [136].

7.3.1 The C5Sys Project

The C5Cys project∗ (Circadian and Cell Cycle Clock Systems in Cancer) is a

project within the ERASysBio+ initiative and involves researchers in the UK,

∗http://www.erasysbio.net/index.php?index=272
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France and The Netherlands. The aim of the project is to increase understanding

of the interactions between the cell cycle and circadian oscillators, especially how

disruptions in either can affect cell survival and proliferation within cancer cell

populations.

The work described here is a collaboration with David Rand and Peter

Krusche, of the Systems Biology Department at the University of Warwick,

and Filippo Tamanini of the Erasmus University Medical Centre, Rotterdam.

Images were provided by Filippo Tamanini and Shoko Saito of Erasmus

University Medical Center, Rotterdam, using the procedure described in Section

2.3.2.

Dividing cells were tracked based on the technique described in Sections

7.2.1–7.2.2. Lineages were collected for a total of 26 cells, which contained 39

cell divisions.

Figure 7.4: Fluorescence intensity for FUCCI and clock markers for a single cell.

The analysis steps required are:

• Fitting curves to obtain the frequency or period of oscillations.

• Obtaining times of division.

• Obtaining the individual phases of the clock or circadian oscillators at the

moment of division.
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7.3.2 Fitting Periodic Data to oscillating measurements

The three fluorescent channels corresponded to the clock signal and the G1

& S-G2-M FUCCI signals. The clock signal is a degraded nuclear localised

Venus Fluorescent Protein similar to the one described in Section 2.1.2. The

Nuclear Localisation Sequence (NLS) causes the Venus to appear colocalised

with the FUCCI markers which also contain a similar NLS. The PEST sequence

increases degradation of Venus, shortening the half-life and therefore improving

measurement of a rapidly changing signal, allowing direct measurement of the

changing signal without requiring temporal deconvolution.

The discrete sampling and limited duration of measurements place accuracy

constraints on the calculated period [137]. The upper limit is based on the

Nyquist frequency which states that the sampling frequency must be at least

twice that of the highest frequency to be captured, to prevent aliasing, where

higher frequencies will appear as a much lower frequency due to phase changes

greater than π between samples.

Ideally the oscillations should be observed for multiple cycles to obtain

an accurate measurement of period. The Fast Fourier Transform (FFT) is

unsuitable for measuring such low cycle numbers. For example, consider a

dateset containing 288 discrete measurements at 5 minute intervals. The FFT

requires input lengths as powers of two so only 28 = 256 consecutive values can

be used from the data. The output frequencies will be placed in 27 = 128 bins

with a maximum frequency of one oscillation every 10 minutes (given by the

Nyquist frequency). The bin width (resolution) is:

60/10

128
= 0.047 hour−1

which is therefore lowest measurable frequency, and is equivalent to

24× 0.047 = 1.125 cycles per day

The second lowest frequency is 2 × 1.125 = 2.25 cycles per day which is

insufficient resolution since it only allows periods of 21.3 and 10.7 hours to

be measured with no values between those ranges.

A similar constraint is present using the classic Fourier Transform, where

there is an ‘uncertainty principle’ where accuracy of frequency is inversely
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proportional to the window width. The measured frequency will therefore have

an associated width which will be related to this uncertainty. Since only a

single frequency was required from the oscillating signals, a sinusoidal curve

fitting method was used.

The fluorescent intensities of the tracked cells were obtained from the

LineageTracker software as described in Section 4.3.2. The raw fluorescence data

is quite noisy (see Figure 7.4), partly due to the stochastic nature of biological

processes in single cells [25] and partly due to the noise inherent in the imaging

and measurement processes.

The signal is first smoothed using LOESS fitting with a 2nd degree polyno-

mial. Each of the periodic signals can be approximated as a sine curve so the

smoothed curve is then fitted to an equation of the form:

Fitted Curve, c = offset + scale× sin(t× ω + ϕ) (7.1)

using the Matlab ‘ezfit’ toolbox which is based on the Nelder-Mead method

to minimise sum of squared residuals. The smoothing and fitting process is

illustrated in Figure 7.5. In addition to the frequency, ω and phase shift, ϕ, the

fitting also reports the R2 parameter as the quality of fit.

The frequency obtained from Equation 7.1, ω, is the angular frequency, which

is 2πf where f is the frequency in minutes−1. The period is then obtained using

Equation 7.2.

period =
2π

ω
minutes, or

2π

60ω
hours (7.2)

7.3.3 Comparing Cell Cycle and Circadian Oscillator

The periods obtained from the clock fitting are plotted in Figure 7.6. Each

data point is coloured according to the quality of the curve fitting, using the R2

values for each of the fitted curves. Red points indicate a poor fit, graduating

through to blue for closer fits. Since each point is the result of two data fittings,

the colour is based on the lowest fit value of the two.

The size of each point is based on the length of data used to obtain the

period, with larger points indicating longer sets of measurements.
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Figure 7.5: A smoothing filter is applied to the intensity data from Figure 7.4 before
fitting a sinusoid. Blue: LOWESS smoothed signal, Red: fitted periodic curve.
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The oscillations obtained from the G1 and S-G2-M signals should be the

same duration but shifted in phase, since they both measure components of the

same cell cycle mechanism. The cycle lengths obtained from this method are

plotted in Figure 7.6a as a ‘sanity check’ of the data fitting (the ‘reddest’ point

is from a fit with an R2 value of 0.52, whereas the ‘bluest’ point came from a

curve with a fit of 0.99). Any deviations from linear would indicate errors in

the data fitting. The resulting correlation (R2=0.91) suggests the data fitting

is reasonable.

There is no apparent correlation between either Clock/G1 (R2=0.04) and

Clock/S-G2-M (R2=0.01) periods which suggests that the clock and cell cycles

are independent of each other, and while both cycles oscillate with similar

periods (in the range 15–30 hours), the two are not synchronised in the cells.
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Figure 7.6: Fitted cycle lengths from measured intensities. Each point is measured
from the data-fitting on the Clock and FUCCI cycles. Size of each point is related
to the length of the signal used to calculate the cycle length. Colour of each point
is based on the minimum R2 values for the data fitting. a) R2=0.91 b) R2=0.04 c)
R2=0.01
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7.3.4 Does Cell Division occur at particular phases of the
Clock?

The phases of the clock and cell cycle signals were calculated using Equation

7.3.

θ = tan−1

(
c

dc/dt

)
(7.3)

where c is the fitted clock or FUCCI signal. Figure 7.7a illustrates the

relationship between the oscillating signal and the phase.

The division times were obtained from the LineageTracker software, taken

from the positions of branches in the lineage data structure (Appendix A.2.1).

The phases of each oscillator were obtained at these timepoints.

Given that the FUCCI markers indicate the phase of the cell cycle, it is

expected that the cell divisions occur at defined phases of the FUCCI signals

(at the end of the M-phase). This is illustrated in Figure 7.7b, where the division

time, as obtained from the lineage data, occurred during the steep drop in the

S-G2-M marker.

The phases were measured for all 39 divisions identified earlier. Figure 7.8a

displays the phases of the FUCCI cycle for all divisions. Since the cell divisions

occur during the drop in S-G2-M, it would be expected that the measured phases

would be between 4 and 2π. All of the divisions did occur within, or close to, this

range: below 0.5 radians (equivalent to 27◦) or above 4.2 (245◦). The divisions

occurred while the G1 signal was in the phase range 1.84–3.33 (equivalent to

105.5◦–190.6◦).

The phases of the clock at point of division are shown in Figure 7.8b.

Although divisions occur at all phases of the clock, most are concentrated in a

peak between 2–4 radians.

A Rayleigh Test was performed to test whether the phase distribution of the

divisions is randomly distributed. Lower p-values from this test indicate that

the data exhibits a unimodal deviation from uniformity [138]. The results from

the FUCCI measurements (Figure 7.8a) are 5.7 × 10−9 for the G1 signal and

2.0 × 10−12 for the S-G2-M signal. Low values such as these verify that the

measurements are reporting realistic or consistent phase angles since divisions

will only occur at the termination of the M-phase.
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The Rayleigh p-value obtained from the Circadian signal was 1.2 × 10−6.

This indicates that divisions do not occur uniformly throughout the circadian

cycle but since this is higher than the p-values for the FUCCI signals, the

distribution is not as narrow.

7.4 Circadian and Cell Cycles are not indepen-
dent of each other

Although the durations of the circadian and FUCCI oscillations were found to

be unrelated, the cell divisions predominantly occurred during a restricted range

of phases of the clock. This is in agreement to previous studies [139] which have

observed that divisions occur preferentially at particular times of day, and is

contrary to the observations of Yeom et.al [24].
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Chapter 8

Discussion

The cell segmentation and tracking methods described here are similar to

methods which have been published elsewhere [50, 81, 82, 84, 91, 92, 140] but

the implementation is unique in that it provides a flexibility to choose from

a range of methods (similar to CellProfiler [59]) but with the novel feature of

interactive modifications to the segmentation, tracking and lineages.

Since a automated system rarely reaches 100% accuracy compared to ground-

truth data, the ability to correct the automatic analysis will increase the

numbers of cells available for analysis and allow complete timecourses and

lineages to be obtained for cells which would be impossible to analyse otherwise,

such as the Zebrafish FUCCI cells described in Chapter 7 where the low

contrast between cells and background pose too great a challenge for automatic

segmentation.

The original analysis methods were developed for Hoechst-stained C2C12

cells but a change in circumstances during the PhD resulted in the necessity of

applying the software to other cell types. Few changes were required to allow the

segmentation and tracking to perform successfully on Sz.pombe cells, the major

modifications being to the lineage construction element of the tracking, since the

movement of the nuclei during mitosis were largely constrained along the cell

axis, different daughter cell identification methods were required. Ultimately the

software demonstrated its utility and flexibility in the analysis of 4 different cell

types, extracting fluorescence timecourse, lineage and oscillatory information

from the cells.

The segmentation and tracking systems are both built using a modular
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approach, where different parts of the task are handled as separate steps. This

allows different methods to be used as more sophisticated techniques become

available. The first step in segmentation is cell detection which uses two very

simple operations, a Gaussian convolution followed by maxima detection. This

provides a very rapid cell detection which, as shown in Chapter 5, also leads to

good accuracy. The high cell densities and rapid motion rule out methods which

rely on cell positions or shape within a previous frame, as often utilised in active-

contour segmentation and tracking systems. The cell detection can perform

poorly if a bright cell overlaps a faint cell, where the Gaussian convolution

can mask the maxima which would be present from the fainter companion.

Situations such as these remain challenging to any segmentation method.

The tracking system is also implemented as a two stage modular system

where the first stage builds the transition matrix while the second module

assigns the trajectories based on the matrix. A similar approach is used by

a number of other systems [46, 50, 57], where short tracks are often created

then linked together to create full lineages. The current system solves the

optimisation problem for each frame by creating single links connecting adjacent

frames. It may be possible to solve the global tracking for multiple frames but

this may be impractical for large populations where the computational cost will

rapidly rise to unmanageable levels.

8.1 LineageTracker is a unique solution to HTS

The LineageTracker software described here attempts to solve a problem which

is addressed by other software, such as CellProfiler. One disadvantage with

existing systems is the lack of ability to correct mistakes made by the computer.

There have been attempts at solving this problem by rejecting unreliable tracks

[108] but this increases overall accuracy at the expense of volume of data. The

interactive data viewer in LineageTracker allows any inevitable segmentation or

tracking errors to be corrected, increasing both quantity and quality of data,

the tradeoff being time required for analysis.

The analysis of circadian systems in single cells is reliant on the accurate

measurement of fluorescent oscillators in those cells. While LineageTracker was

in development, a dedicated circadian analysis package was released [85] which
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was also based around ImageJ. While the latter software would seem to offer

sufficient tools to enable it to be used in the C5Sys analysis, the handling of

cell division was incomplete, with only a single daughter being followed, which

would restrict its use where lineage construction is required.

New software has recently (September 2011) been made available which

provides a similar solution. Cell Evaluator [141] utilises seed based or threshold

based segmentation and tracking is provided by minimising a cost matrix in a

similar manner as described in Section 3.4.8. This software works in a similar

manner to LineageTracker: it is installed as an ImageJ plugin but largely

operates as a self-contained application. Additionally it provides rudimentary

cell editing to correct for errors made by the segmentation algorithms.

8.2 Performance and Accuracy

Chapter 5 describes the performance and accuracy of the methods developed

and compares them to existing implementations. The tracking accuracy was

found to be equivalent or better than the available alternatives, and when the

option of manual intervention is considered, this increases the total possible

accuracy of any results in favour of LineageTracker.

The LineageTracker software features the ability to use segmentation and

tracking information from a range of sources, including CellProfiler and several

ImageJ plugins, which will increase the functionality of both LineageTracker

and the third party applications. Currently the design of the software requires

that the tracking and division detection are part of the same module. Future

versions of the software may allow different tracking and division modules to be

selected independently. The matrix or graph holding the assigned trajectories

will be made available to the division module which may then assign lineages

a-posteriori.

Cell Motion

The cell motion analysis revealed two distinct motion types within one of the

experiments, where half of the measured cells were moving in a persistent

migratory style with smaller direction changes with the remaining cells revealing

an untargeted random-walk motion.
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There are some possible modifications which may be made to the tracking

which could prove useful in certain situations. Currently when searching for

a matching cell, no attempt is made to account specifically for cells dying,

entering or leaving the frame, or re-connecting trajectories where gaps appear.

The trajectory construction simply ceases if there is no suitable matching cell

available. The reason for this was due to the high cell densities which led

to multiple cell overlaps. It became difficult to determine whether a cell had

disappeared or simply became temporarily obscured, and the large random

component of the motion made re-linking trajectories problematic.

Different subpopulations were identified in Section 5.1 where cell motion was

either migratory or seemingly random or untargeted. Additional experiments

were analysed to determine whether this behaviour was widespread or particular

to the original experiments. These results are presented in Appendix B.7, where

3 of the 4 extra experiments show a similar mixture of migratory and random

motion.

This effect could be investigated further by preparing a line of knockout

cells where aspects of the chemotaxis signalling pathway have been disabled

and analyzing the motion of these cells using the same methods.

MSX1-GFP partitioning during division

The analysis of the Msx1 expression in C2C12 cells revealed that asymmetric

divisions were uncommon in vitro [142], with only a single such division

observed. Fluorescent protein was very evenly distributed between daughter

cells and the fluorescence recovery (measured as sum of daughter cell intensity

compared to intensity of mother cell) was high, indicating that the fluorescence

measurements were not affected by experimental or instrumental factors such

as detector saturation during imaging.

Schizosaccharomyces pombe Lineage Construction

The LineageTracker software was used to track yeast cells expressing GAR2-

GFP, a fluorescently tagged nuclear protein. The generation time was extracted

from the constructed lineage and found to be 4.6 hours. The doubling time, as

measured from the cell proliferation data, was slightly longer at 5.5 hours. A
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significant fraction of the cells (32 from the initial population of 74) did not

divide during the timecourse, which may account for the discrepancy.

Cell Cycle and the Clock

The cell cycle analysis in Chapter 7 investigated the connection between the cell

cycle and circadian oscillators in mouse fibroblasts in vitro. The two oscillators

were found to have different, and uncorrelated, periods, but there was evidence

of divisions being gated since the majority of divisions occurred at a specific

phase of the circadian system. If there was no connection the divisions would

be more evenly distributed. This is in agreement with previous observations

[136,139] and does not support a contradictory study [24] which concluded that

mitosis occurs completely independently of the circadian clock.

Currently the experimental data used to draw these conclusions is limited

to only a small number of time-series, where only a subset of cells divided

during the course of the recording and also gave a full measurable cycle in all

three oscillating components. The images were provided to determine whether

the LineageTracker software would be suitable for extracting and analyzing the

data. Future data may expand the study beyond the current pilot-scale.

8.3 Future Applications

Additional applications may be identified outside of the original goal of cell

tracking. Tracking systems are often used in the study of microtubules in the

cell cytoskeleton. Fluorescently modified tip-tracking proteins (such as ‘End

Binding Proteins’ which bind to growing mictotubules [143]) allow growth to

be monitored. Software such as PlusTipTracker [144] provides detection and

tracking which has been tailored to the particular requirements of microtubule

analysis. This software provides automatic identification and tracking but lacks

an easy to use way of interacting with the results. The user is also unable

to correct mistakes apart from rerunning analysis under different settings or

excluding particular cells or regions of cells. It would be possible to provide

support for microtubule analysis in Lineage tracker either by providing segmen-

tation and tracking methods optimised for the task, or adding the ability to

import tracking results from PlusTipTracker to allow better interactivity with
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the results.

The software which developed during the project has been released as Open

Source and can be downloaded from the University of Warwick website∗, and is

compatible ImageJ version 1.44 or newer.

The modular nature of the design and the plugin architecture allow other

data analysis, segmentation and tracking methods to be added by following the

specifications given in Appendix A.

∗http://go.warwick.ac.uk/lineagetracker
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Appendix A

LineageTracker Software

A.1 Overview of the Software

The LineageTracker software is written in Java and performs segmentation and

tracking of cells, constructing lineages and extracting fluorescent timecourse

data. It is run from within ImageJ and uses the functionality of the parent

program to provide image loading, saving, a basic image processing library and

visual display.

A.1.1 LineageTracker installs three ImageJ Plugins

The software is run by selecting one of three options in the ImageJ Plugins

menu:

Segmentation: This allows creation of new experiments or editing of exist-

ing experiments by adding or removing image channels. Segmentation

methods and parameters can be selected.

Create from Open: If the images have already been loaded into ImageJ

(for example using the BioFormats importer), this plugin creates a new

experiment then passes control to the ‘Segmentation’ plugin.

Experiment Viewer: This is the main viewing and editing window where lin-

eages can be traced and fluorescence data can be exported. Segmentation

and lineage editing takes place here.
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A.2 Software Components

All cell information is stored in two data types: The Cell object, described

below, stores measured features as recorded during the segmentation step. The

cell/nuclear outlines are stored using the ImageJ Roi (Region of interest) object.

There are three public Interfaces which the software uses to perform task

(Segmentation, Tracking and Analysis/Editing). Java classes which follow this

specification will be loaded by LineageTracker and can be used to extend the

functionality of the software by adding additional features. These interfaces

(which are all implemented as abstract classes) describe the methods which

must be present within the class – these methods will be called by the software

as required to perform the functions.

A.2.1 Data is stored in a Cell object

These hold the position and size of cell (frame, x,y, width, height, area, major

and minor axis and angle), the intensity of each channel as well as texture

features on first channel.

Cell ID: 01

Previous Cell

Next Cell

2nd Daughter Cell

Frame: 01
Cell ID: 20

Previous Cell

Next Cell

2nd Daughter Cell

Frame: 02
Cell ID: 40

Previous Cell

Next Cell

2nd Daughter Cell

Frame: 03

Cell ID: 60

Previous Cell

Next Cell

2nd Daughter Cell

Frame: 04

Cell ID: 61

Previous Cell

Next Cell

2nd Daughter Cell

Frame: 04
Cell ID: 91

Previous Cell

Next Cell

2nd Daughter Cell

Frame: 05

Cell ID: 90

Previous Cell

Next Cell

2nd Daughter Cell

Frame: 05

Figure A.1: Storing tracking and lineage information in the Cell objects

The Cells store lineage information as pointers to other cells: cell in previous

frame, next cell in tracking, 2nd daughter cell (if any). The first daughter is

stored as the continuation of tracking (see Figure A.1). During tracking the

cell trajectory is stored as a Doubly-Linked List [145] where each node holds

pointers to both the next and previous nodes. Branches are populated when a

cell division is stored, giving the form of a ‘Sparse Tree’, unlike a traditional

binary tree where every node is connected to two branches.
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A.2.2 Writing Segmentation Plugins

The ProcessingPlugin abstract class provides the following public methods

and fields:

protected transient ImagePlus segmentFrame;

Holds the sum of all image channels for the particular frame.

protected List<ImageProcessor> allChannels;

Implemented as an ArrayList, which holds each image channel (for meth-

ods which handle channels separately)

protected int channels;

Counter holding how many channels were loaded.

public float[] getPixelVector(int x, int y, int radius)

Returns an array holding the average pixel intensities in a (2r+1) sized

box for each image channel.

public float[] getPixelVector(int x, int y)

Returns the intensities at a single pixel location.

public static[] float normVect(float[] v)

Calculates a unit vector in the same direction as v[]

public static double vectorDistance(float[] p1, float[] p2)

Calculates the distance between two points

public static double colourDistance(float[] fg, float[] fg2)

Calculates the colour difference between two pixels, whose channel inten-

sities are stored in the two arrays.

public static double sumColours(float[] v)

Returns the sum of the intensity components in v[]

The following methods must be written by the user, to implement the desired

functionality of the plugin:

public abstract String getName();

Returns the name of the plugin, as appears in the list of available

segmentation methods, or null if the method is unavailable.
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public abstract void runSegmentation(int frameNo);

Perform the actual segmentation and create a cell mask of cell or nucleus

shapes.

public abstract ImagePlus cellMask();

Return the segmentation mask prepared during runSegmentation()

public abstract boolean colourCoded();

Returns true if the segmentation mask uses pixel values to identify

different cells. If false, individual cells cannot be touching. If true, pixel

number is used to separate touching masks.

public abstract boolean editSettings(Frame parentWindow);

Display a dialog box to edit the segmentation parameters. Return true if

‘OK’ was selected.

A.2.3 Writing Tracking Plugins

All tracking methods must extend the AbstractTracker class. This provides the

following fields and methods:

protected static String dir;

The root directory where the experiment data is stored.

protected static String exptName;

The name of the experiment.

protected static String trackingFile;

The filename to save the tracking data (or null or empty string if not

saved).

protected List<Cell> cellsToTrack;

The full list of cells within the experiment.

protected ExptData expLoader;

All of the experiment details, including image scale and number of frames.

protected TrackingParameters tp;

Tracking parameters, such as thresholds and weights, if required.

The user must implement the following methods:
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public TrackingParameters getTrackingParameters()

Optional: returns the tracking parameters used. Override this (to return

null) in methods which do not use parameters.

public boolean trackable(File[] filesinDir)

Optional: For trackers which load tracking data instead of implementing

a tracker themselves, this method returns true if there is tracked data in

the correct format, otherwise return false.

public abstract String getName();

As above, return name or null.

public abstract List<Cell> run() throws IOException;

Run the tracking and return the new list of cells, where the cell linkages

have been connected to provide the tracking and lineages.

A.2.4 Writing Data Analysis & Manipulation Plugins

Plugins which extend the AnalysisPlugin class are called from the experiment

viewer. They have full access to the data and display and can perform any data

analysis or manipulation. The following fields and methods are provided:

protected ExptData exp;

All of the experiment details, including image scale and number of frames.

protected List<Cell> cellsToTrack;

The full list of cells within the experiment.

protected Image5DWithOverlay screen;

Holds the Image5D representation of the cell images and provides methods

for plotting and annotating the display.

public Point lastClickedPosition;

The last-clicked position within the image window.

public boolean acceptsDummyCells = false;

The plugin needs to set this flag to true if the analysis methods can be

run using arbitrary positions in the window. Otherwise the methods will

only be run if the user clicks within a cell.

protected Map<Integer, List<Roi>> roiLists;

Holds the ROIs for all cells in the experiment.
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public abstract String getName();

As above, return name or null.

public abstract void setup();

Called when the ‘Setup Plugin’ button is clicked, allowing any plugin

parameters to be adjusted. Often used to display a help screen for plugins

which do not have editable parameters.

public abstract void analyze(Cell currentCell);

Called when the ‘Analyse’ button is clicked in the control panel. Holds

the last clicked cell, or null if no cells have been clicked on yet.

public abstract void cellClicked(Cell currentCell);

Called every time a cell is clicked on in the window.

A.2.5 Global methods available to all Plugins

The methods described here are a selection of method calls which are available

to all plugins.

static boolean LineageTracker.newerThan(java.lang.String version)

Checks whether the current version is newer than the given one.

static Roi RoiTools.findRoi(int x, int y, java.util.List<Roi> roiList)

Returns the Roi from the list which contains the point (x,y)

static double TrackedCell.findDistance(Cell c1, Cell c2)

Calculates the distance between two cells.

static Cell TrackedCell.findNearestCell(frame, x, y, List cellList)

Find the cell nearest to the given co-ordinates.

A.2.6 Example of a Threshold based Segmentation
Method

The threshold segmentation method below demonstrates the implementation of

segmentation plugins.

package segmentat ion ;

import i j . ∗ ;
import i j . p roc e s s . ImageProcessor ;
import java . awt . Frame ;
/∗∗
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∗ Simple example o f w r i t i n g a Process ing Plugin .
∗ @version 14−Jan−2011
∗ @author Mike Downey
∗/

public class ThresholdSegmentation extends Proces s ingPlug in {

ImageProcessor toSegment ;
ImagePlus mask ;

@Override
public void imageToSegment ( ImageProcessor img ) {

toSegment = img ;
}

@Override
public ImagePlus ce l lMask ( ) {

return mask ;
}

@Override
public boolean colourCoded ( ) {

return fa lse ;
}

@Override
public void runSegmentation ( int frameNo ) {

// Take the ImageProcessor and conver t i n t o a b inary image .
ImagePlus imp = new ImagePlus ( ”temp” , toSegment ) ;
IJ . setAutoThreshold ( imp , ”Li dark” ) ;
IJ . run ( imp , ”Convert to Mask” , ”” ) ;
mask = imp ;

}

@Override
public St r ing getName ( ) {

return ”Simple Auto Threshold ” ;
}

@Override
public boolean e d i t S e t t i n g s (Frame parentWindow ) {

IJ . showMessage ( ”No s e t t i n g s to ed i t . ” ) ;
return fa lse ;

}
}

A.2.7 Example of a Simple Tracking Method

The Simple nearest tracking method is a very crude implementation designed

to demonstrate writing a tracking plugin.

package t r a ck ing ;

import u t i l . Ce l l ;
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import u t i l . GenericDataLoader ;
import java . i o . IOException ;
import java . u t i l . L i s t ;

/∗∗
∗ Locates the neare s t c e l l in the next frame and i f i t hasn ’ t a l r eady
∗ been as s i gned in t o a t r a j e c t o r y , add i t to the curren t c e l l .
∗ Simply presen ted as a demonstrat ion and not in tended f o r a c t ua l use .
∗ This p l u g in i s very s low when used wi th l a r g e c e l l popu l a t i on s .
∗ @author Mike Downey
∗ @version 16 Feb 2011
∗/

public class SimpleNearest extends AbstractTracker {

@Override
public List<Cel l> run ( ) throws IOException {

// Load in the segmented c e l l data
ce l l sToTrack = GenericDataLoader . loadData ( expLoader ) ;

int s toreOld = TrackedCel l . maximumCellSeparation ;
TrackedCel l . maximumCellSeparation=50;

for ( Ce l l c : ce l l sToTrack ){
int f = c . getFrame ( ) ;
i f ( f<expLoader . getFrames ( ) ){

Ce l l n ea r e s t = TrackedCel l . f i ndNea r e s tCe l l (
f +1, c . getX ( ) , c . getY ( ) , ce l l sToTrack ) ;

i f ( nea r e s t !=null && neare s t . g e tPrev i ou sCe l l ()==null )
c . s e tNextCe l l ( nea r e s t ) ;

}
}
TrackedCel l . maximumCellSeparation = storeOld ;
return ce l l sToTrack ;

}

@Override
// Method does not use t r a c k i n g parameters so re turn nu l l .
public TrackingParameters getTrackingParameters ( ) {

return null ;
}

@Override
public St r ing getName ( ) {

return ”Simple Nearest Ce l l ” ;
}

}

A.2.8 Examples of a Data Analysis Plugin

This plugin demonstrates the AnalysisPlugin interface and interaction with the

image window.

package ana l y s i s ;
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import ana l y s e r s . Ana lys i sP lug in ;
import i j . IJ ;
import i j . gu i . Gener icDia log ;
import java . awt . Color ;
import u t i l . Ce l l ;

/∗∗
∗ Plo t the c e l l number a l ong s i d e each c e l l
∗ @version 04−May−2011
∗ @author Mike Downey
∗/

public class NumberCells extends Analys i sP lug in {

double f o n tS i z e =12;
int [ ] c e l l s InFrame ;

@Override
public void setup ( ) {

Gener icDia log gd = new Gener icDia log ( ” S e l e c t Text S i z e ” ) ;
gd . addNumericField ( ” S i z e in P i x e l s ” , f on tS i z e , 0 ) ;
gd . showDialog ( ) ;
i f ( gd . wasCanceled ( ) )

return ;
i f ( gd .wasOKed ( ) ){

f o n tS i z e = gd . getNextNumber ( ) ;
}

}

@Override
public void analyze ( Ce l l c u r r en tCe l l ) {

countCe l l s ( ) ;
for ( Ce l l c : c e l l s )
c e l l C l i c k e d ( c ) ;
for ( int i = 0 ; i < ce l l s InFrame . l ength ; i++) {

IJ . l og ( In t eg e r . t oS t r i ng ( i + 1) + ” , ” + ce l l s InFrame [ i ] ) ;
}

}

/∗∗
∗ Plo t s the c e l l number .
∗ @param cur r en tCe l l
∗/

@Override
public void c e l l C l i c k e d ( Ce l l c u r r en tCe l l ) {

i f ( s c r e en !=null ){
s c r e en . plotNumber ( cu r r en tCe l l . getFrame ( ) , cu r r en tCe l l . getX ( ) ,

cu r r en tCe l l . getY ( ) , cu r r en tCe l l . ge tCe l l ID ( ) ,
f o n tS i z e /10 , Color . white , fa l se ) ;

}
}

@Override
public St r ing getName ( ) {
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return ( ”Draw Ce l l Numbers” ) ;
}

private void countCe l l s ( ) {
ce l l s InFrame = new int [ exp . getFrames ( ) ] ;
for ( Ce l l c : c e l l s ) {

ce l l s InFrame [ c . getFrame ( ) − 1]++;
}

}
}

A.3 Data Structure and Data Storage

Cellomics datasets are based around 96-well plates with wells labelled from A1–

H12 and a variable number of fields per well. All wells have a unique WellID

which identify them within the experiment. Each image is assigned a FieldID

which increases for each time-point in the experiment so, for example, Field 01

in Well C04 at timepoint 1 will have a different FieldID to the same well and

field at a subsequent time-point.

A.3.1 The Cellomics Database

The Cellomics database is stored as a Microsoft Access file. There are two

versions, depending on whether the level of processing which has been performed

on the experimental data. The first version of the database contains the

experiment conditions and references to all of the image data. The second

version is an extension of the first with additional cell segmentation and intensity

information. A list of main database tables is given in Table A.1.

A.3.2 The Cellomics Image Format

Cellomics ‘DIB’ files were stored as uncompressed 16-bit data with a 52 byte

header which holds the image details as 2 or 4 byte words (see Table A.2).

Individual pixels were stored as two bytes. All numbers are stored as ‘little-

endian’, i.e. least significant byte followed by most significant byte.

A.3.3 Accessing LineageTracker Experiment Data

The experiment data (as stored in the ExptData object) is saved as an xml file.

This data is available to plugins using the methods described in Table A.3. Any
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Table Contents

asnProtocol Number of image channels and objective lens used.
asnPlate Experiment start time, number of wells in experiment

and number of fields per well.
FImage Filenames, Well ID and Field number for all images.
wField WellIDs for each well used in the experiment.
Cell For every segmented cell, holds the FieldID, CellID, cell

position and size within the frame.
CellFeature Holds multiple rows for each cell holding the cell intensity

with one row per cell per image channel.
AsnFeatureType Holds the ‘key’ values which identify which rows of the

CellFeature and asnWellFeature tables holds the cell
number and WellID number.

asnWellFeature Holds the WellID numbers which for each image channel.

Table A.1: Major tables within the Cellomics database

Offset Size (bytes) Data

4 4 Image Width (pixels)
8 4 Image Height
14 2 Bits per pixel
24 4 Scale (pixels per meter)

Table A.2: Header structure for the Cellomics DIB format. Missing values are either
unpopulated or ignored by the software.

methods in italics are used internally during loading and saving data and should

not be called from plugins.

A.3.4 Positions and intensity values are stored in text files

The cell and tracking information is stored in a series files as described in Tables

A.4 and A.5 where the names begin with the experiment name followed by an

underscore then one of: celldata.txt, intens.txt, tracked.txt.

There are two versions of the tracking data file: the original version which

identifies tracked cells using Cell ID, the second version uses cell positions and

is used when segmentation has changed.
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Parameter Getter Setter

Storage for any additional
data generated by plugins.
The must be Serializable

retrieve(String) store(String,Object)

Height of pixel getPixelWidth setPixelHeight(double)
Width of pixel getPixelHeight setPixelWidth(double)
Measurement units for
height and width

getScaleUnits() setScaleUnits(String)

Width of frame (pixels) getWidth() setWidth(int)
Height of frame (pixels) getHeight() setHidth(int)

Number frames in experi-
ment

getFrames() setFrames(int)

Frame interval getFrameInterval() setFrameInterval(double)
Interval Description getIntervalUnits() setIntervalUnits(String)

Channel names (start at 0) getChannel(int)
Number of Channels getNChannels() setNChannels(int)

Table A.3: Accessing the experiment data

cellintens.txt celldata.txt

Column Data Column Data

1 Cell ID 1 Cell Area
2 Frame number 2 ‘Validated’ flag
3–9 First 8 intensity channels 3 Major axis length
10 Y 4 Minor axis length
11 X 5 Major axis angle
12 Height 6 Circularity

13 Width 7 2nd Intensity moment
14 unused (holds 0) 8 Median Intensity
15 unused (Cell ID) 9 Standard Deviation

10 Kurtosis of Intensity

Table A.4: Cell feature data file formats

tracked.txt modified.txt

Column Data Column Data

1 Frame number 1 Frame number
2 Cell ID 2–3 X,Y Position
3-4 X,Y position 4 Frame no. of ‘Next’
5 ‘Next’ Cell ID 5–6 Daughter X,Y
6 Daughter Cell ID 7 Frame no. of Daughter
7 Movement Score 8 Movement Score

Table A.5: Tracking data file formats. ‘NA’ is used in any columns where there is
no tracking information.
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A.4 The Cellomics Experiment Viewer Software

a) Select Wells for Segmentation

b) Image Loader c) Tracking Viewer

Figure A.2: The user-interface for Segmentation, Tracking and Viewing the Cel-
lomics experiment data.

A.5 An Example of using LineageTracker

After obtaining the images, there are several steps required before any fluores-

cent timecourse data can be extracted.

This section describes a worked example from image data through to obtain-

ing a spreadsheet holding timecourse data, including several steps describing

manual corrections which may be required if under challenging circumstances.

The first step is to create the ‘LineageTracker’ project on disk.

There are two ways of doing this, depending on whether the images are

already loaded into ImageJ:

1. If the images are not loaded, select ‘Segmentation’. When the ‘Select

Experiment’ dialog box appears (Figure A.3a), choose the directory where

you wish to store the data, along with a name for the experiment. After

clicking on OK, the ‘Edit Channels’ dialog box will appear where you can

add the image channels to the experiment (Figure A.3b).
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2. If the images are already in ImageJ, select ‘Create From Open’ from the

menu, in ImageJ→Plugins→LineageTracker. If any of the images contain

multiple image channels or z-stacks, you will be prompted to split the

channels or run a maximum projection.

a) Select an Experiment

b) Edit Channel dialog box

c) Choose segmentation method

Figure A.3: The LineageTracker user-interface for segmentation and editing image
channels

The ‘Edit Channels’ dialog box is used to add, remove or rename image

channels. To add a channel. click on the ‘Add’ button, which will add a blank

line to the window. Then click on the button in the ‘Image Stack’ column and

select the images. If the ‘Store’ tick-box is selected, the intensities of this channel

will be recorded during the ‘Segmentation’ step. If the ‘Segment’ box is ticked,

this image channel will be passed to the segmentation module: segmentation
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based on a single channel will sum together all ticked channels, methods which

are aware of multi-channel data will receive all image channels.

When the ‘Segmentation’ window appears (Figure A.3c), the first thing to

do is select the segmentation method.

Clicking on ‘Edit Segmentation’ opens up a dialog box to change any

parameters used by the chosen segmentation method, for example the ’Seeded

Growth’ method has the following settings:

• Segmentation Settings Noise Tolerance: Intensity of a peak before it is

detected by the ImageJ ’Find Maxima’ method.

• Growth Threshold: Smaller values allow lower intensity pixels during the

’growth’ of the cell. Values are between 0–1.0

• Growth Iterations: The number of passes of the ’grow’ method. Sets the

maximum size which will be created by the method.

• Blur Radius: The size of the Gaussian kernel applied to the image before

the ’Find Maxima’ is called. Larger values will suppress noise but may

prevent small cells from being detected.

• Sharpening Factor: An Unsharp Mask may be applied to separate touch-

ing cells. This value is the ’weight’ of the mask. Recommended values are

between 0-0.7

• Smooth before growth: If selected the seeded growth is performed on

the Gaussian-smoothed image, otherwise the growth is performed on the

original image.

Before clicking on ‘Preview’, click on ‘Edit Preview Settings’ and choose

the speed (or number of frames to skip), otherwise the preview will take the

same amount of time as a full segmentation. Use the ‘Preview’ and ‘Edit

Segmentation’ buttons to obtain acceptable cell outlines.

To run the tracking, make sure the ‘Run Tracking’ tick-box is selected, then

click on ‘Edit Tracking’ to choose the tracking method:

Run Tracking is the method optimised for the C2C12 Hoechst-stained cells.

Tracking (No Divisions) is a general-purpose tracking method based on

‘Run Tracking’ but with cell divisions removed.

Minimum Cost Tracking is a general-purpose tracking without automatic

cell division detection, based on the Hungarian Algorithm.
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The ‘Edit Settings’ dialog box will then appear to allow the tracking parameters

to be modified. These include the threshold and weight values which control

how cells are identified during tracking. The most important parameters are:

Distance Threshold – controls how far away the tracking will look to locate

cells. Use higher values if cells are moving rapidly.

Intensity Weights – If one image channel contains a permanent stain (such

as Hoechst), give this channel a higher weight.

Clicking on ‘Run Segmentation’ will perform the cell detection and tracking.

When that has finished, click on ‘Display’ to open the experiment viewer (Figure

A.4).

The initial segmentation and tracking may have missed some cells so before

exporting any fluorescence timecourse data, it is recommended to check any cells

of interest first. Click on a cell to select it, then move through the time-series

to check that the tracking is correct and that the cell outline is accurate. If the

tracking needs fixing, click on the cells which need linking together and then

click on ‘Modify Link’ or ‘Modify Daughter’.

If the cell outlines has been either missed or drawn incorrectly, this can be

corrected by deleting the old outline (by clicking on the cell or drawing an ROI

outline around one or more cells, and pressing ‘Delete’). The new outline can

be added in one of two ways:

• Drawing an outline ROI such as oval or freehand, then clicking on ‘Add

Cell’

• Selecting the ‘AutoSegment’ plugin then clicking on the cell (see Figure

A.5). Adjust the sliders to get an accurate outline.

Fluorescence timecourse information for individual cells is exported by

selecting ‘Add to Results Table’, then clicking on the cell of interest. The

results table can then be saved to disk. Remember to close or clear the results

table before clicking on the next cell.

If any changes have been made to the cells or tracking, don’t forget to click

on ‘Save Changes’ before closing.
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a) Main control panel b) Plugins c) Experiment Viewer Window

Figure A.4: The user-interface for the LineageTracker Interactive Experiment
Viewer, including the data analysis and editing plugins.

a) Add a cell b) Cell Outline

Figure A.5: Adding individual cells using the ‘Auto Segment’ plugin to determine
the cell outline. This method can outline cells which are too faint to be detected using
the fully automatic Seeded Growth method. Selecting ‘Next Frame’ will move to the
next frame and automatically add a tracking link between cells if ‘OK’ is selected.
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Control Function

Control Panel Window:
Clear Overlay Remove any overlaid highlighting from the window.
Reset Zoom Reset to 100% magnification.
Make Video Create a time-series image complete with high-

lighted cells and tracks.
Load MTJ Track Load and overlay an MTrackJ trajectory.
Overlay Tracking When a tracked cell is selected, draw the full trajec-

tory from current timepoint onwards.
Rerun Tracking Allows tracking to be run with a different method

or parameters.
Select Analysis Plu-
gin

If any additional analysis plugins have been in-
stalled, they can be selected from here. When a
cell is clicked in the viewer window, the plugin will
be called for that cell.

Do Analysis Call the selected analysis plugin for all cells in the
experiment.

Setup Analysis Edit any settings (if any) for the analysis plugin.
Also used to display a brief description of the plugin.

Add to Results Ta-
ble

When a cell is selected, add fluorescence intensity
data to an ImageJ Results Table

Clear Results Clear any currently open Results Tables.
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Control Function
Overlay Types: the next 3 buttons control the information displayed or
added to a results table when a cell is highlighted in the window.
1) Nearest Matches Overlay the Movement Scores for trajectories leav-

ing the highlighted cell.
2) Lineages Display tracking, including daughter cells.
3) Cell Info Display fluorescence information for current time-

point.
Export Total/Mean
Int

Selects between exporting the integrated or mean
cell intensity to the results table.

Interpolate Gaps Interpolates the intensity if tracking skips a frame.
Export Full Intensi-
ties

ON: Exports the full lineage intensity for daughter
cells
OFF: Only export intensities from division onwards
for daughter cells.

The next three buttons modify tracking based on the previous two
highlighted cells. To alter the link between two cells (in adjacent
frames), click on one cell then move to the next frame and click on
the second cell. Finally select one of the following buttons.
Modify Link Add the two selected cells as a trajectory
Modify Daughter Add a trajectory, marking it as a cell division. If

the parent cell already has a tracked next cell, that
is marked as the other daughter cell.

Break Link Remove the tracking between the two selected cells.
Go To CellID Select a cell based on its ID number
Save Changes Save any segmentation or tracking changes.
Add Cell Expects a closed ROI (such as oval or polygon).

Calculates the cell features and adds a new cell.
Delete Cell Deletes the currently selected cell.
Validate Cell Marks the currently selected trajectory as validated.

The validated cells are drawn with filled-in masks
for easy identification.

Confirm Changes Prompts the user before any actions which change
the cell data.
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Control Function

Cell Image Window
The tick-boxes show or hide the following image channels.
Time t The primary fluorescence channel
Mask Segmentation outlines
GFP Any additional fluorescence channels.
Plugins Window
This window lists all available Analysis Plugins and allows easy selection
between them. Two plugins come built-in to the software.
AutoSegment After selecting this and clicking on a cell in the

image window, the plugin will attempt to calculate
the outline of the cell and add it to the experiment
data. A dialog box appears allowing the segmenta-
tion parameters to be adjusted.

Merge Cells Requires an ROI to be drawn in the image window.
When Run Selected Plugin is clicked, any cells
within the ROI will be merged together.

Reset Un-selects the current selected plugin.
Keep Active If un-selected, the current plugin will be used for

the next click in the cell image window. Selecting
this will allow the plugin to be run several times on
different cells.
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Appendix B

Additional Material

B.1 Whole Frame Intensities require good cell
synchronization
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b) Varying λ
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c) Phase and λ varying

Figure B.1: Comparison of single cell fluorescence measurements with whole frame
intensities. 20 individual cell intensities are plotted using dashed lines with the mean
intensity plotted in a solid red line. a) All cells oscillate with the same frequency but
different phase (±π

4
). b) Different frequencies (varying by ±7.5% of base frequency,

normally distributed). Cells start off in phase. Amplitude of oscillations appears to
decay. c) Phase and frequency both changing.

B.2 Description of Segmentation Methods used
in the Performance Testing

The Seeded Growth and Scaling Index methods were developed as described in

Materials & Methods chapter. The threshold methods were part of the standard

distribution of ImageJ or Fiji.

Threshold Segmentation

The image was de-noised by convolving with a Gaussian kernel (σ = 0.9)

followed by background subtraction (rolling ball background from ImageJ,
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Figure B.2: Using thresholding to separate cells from the background. a) The original
black & white cell images. a) The histogram of this image (standard histogram in
black, log histogram in grey), segmented image. Pixels above the threshold are shown
in blue on both the histogram and the segmented image. The histogram shows a dip
between the background pixels (peak on left) and the cell pixels. This intensity value
is used as the threshold. c) Thresholded image.

radius = 50 pixels). For the global threshold, a different threshold value was

used for each frame. A binary image was produced where pixel intensities lower

than the threshold were set to zero. Finally the ImageJ watershed transform

was applied to separate touching or clumped cells. The binary images were then

size-filtered to remove particles or debris smaller than 10 pixels in area.

Local threshold segmentation followed the same procedure with Niblack

adaptive thresholding (available with the Fiji distribution of ImageJ) applied to

each frame.

Seeded Growth

A Gaussian blur (σ = 2) was applied to the image then centres of the nuclei were

detected by locating local maxima using the ImageJ maxima finder, which takes

a ‘tolerance value’ N , and locates individual peaks or plateaux with intensity

at least N greater than neighbouring minima.

Scaling Index

After background subtraction the scaling index method was run with radii r1 = 3

& r2 = 9. The nuclei appeared as low dimension objects. Each frame was

thresholded, followed by the Watershed transform to separate touching cells.

The resulting segmentation mask was filtered according to size using the same

method employed in the threshold segmentation.
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CellProfiler

The images were convolved with a Gaussian kernel (σ = 1 pixel) followed by

background subtraction (block size=50 pixels, polynomial smoothing). Cells

were identified using the Background Adaptive threshold method. Clustered

cells were split apart using the ‘Shape’ method which uses a distance-transform

of the binary image to detect touching objects.

B.3 Tracking Parameters used in performance
tests

Tracking Parameter Threshold Weight

Distance 9.94 pixels 0.70
Area 45% 0.19
Intensity 51% 0.45
Intensity Moment 46% 0.50
Standard Deviation 48.5% 0.30

Table B.1: Tracking Parameters (Thresholds and Weights)

B.4 Generating Artificial Cell Images using
SIMCEP

The SIMCEP∗ software is controlled by a script file containing the parameters

which specify the number, size and shape of the cells or nuclei. The imgLevel

parameter in the following script is the frame number of the 5 image Gold

Standard set. The population size was chosen to closely match the manually

annotated Gold Standard.

population.template = ones(500);

% Set window size to 500, then increase to 512 in ImageJ - to avoid

% having cells at the edge of the screen which will be handled

% differently in different segmentation methods.

% Number of cells simulated in the image

population.N = 200+225*sqrt(imgLevel);

% Amount of clusters

population.clust = 0;

% Probability for assigning simulated cell into a cluster. Otherwise

∗http://www.cs.tut.fi/sgn/csb/simcep/tool.html
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a) Artificial Cell Image b) Ground Truth Image

Figure B.3: Images generated using SIMCEP to test segmentation methods. The
Ground Truth is simply a binary image with no delineation between cells so there is no
way of accurately assigning boundary pixels at the overlap of touching cells. Adapted
from Downey et al. PlosOne (2011)

% cells are uniformly distributed on the image.

population.clustprob = 0;

% Variance for clustered cells

population.spatvar = 0;

% Amount of allowed overlap for cells [0,1]. For example,

% 0 = no overlap allowed and 1 = overlap allowed.

population.overlap = 0;

% Is the overlap measured on nuclei (=1), or cytoplasm (=2)

population.overlap_obj = 1;

% Parameters for the measurement system

% Energy of illumination compared to the energy of cells

measurement.illumscale = 0.25;

% Misalignment of illumination source in x and y direction

measurement.misalign_x = 0;

measurement.misalign_y = 0;

% Energy of autofluorescence compared to the energy of cells

measurement.autofluorscale = 0.25;

% Variance of noise for ccd detector

measurement.ccd = 0.001;

% Amount of compression artefacts

measurement.comp = 0.0;

% Change the first lines in generate_measurement.m to read:
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% O_S = measurement.kernel;

% O_V = measurement.variance;

% These parameters control the position in the focal plane.

measurement.kernel = 5;

measurement.variance = 0.1;

% Is cytoplasm included in the simulation ( 0 = no, 1 = yes)

cell_obj.cytoplasm.include = 0;

% Is nucleus included in the simulation ( 0 = no, 1 = yes)

cell_obj.nucleus.include = 1;

% Nucleus radius

cell_obj.nucleus.radius = 8;

% Parameters for random shape

cell_obj.nucleus.shape = [0.1 0.5];

% Parameters for texture: persistence, 1st octave, last octave,

% and intensity bias

cell_obj.nucleus.texture = [0.5 2 5 0.2];
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B.5 Angle distributions change during the ex-
periment

The turn angles of the cells were measured during the experiment used to create

the Gold Standard 2 test set. The distribution of the angles changes during the

experiment is shown in Figure B.4. The cell density increases (Figure B.5) which

will restrict the available space for the cells to move into.
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Figure B.4: The distribution of turn angles changes during the Gold Standard 2
experiment.
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Figure B.5: Cell counts for the experiment used to construct the Gold Standard 2 test
set. The population increases rapidly until confluence is reached and cells eventually
start to die off.

B.6 Distance-Pathlength Heatmaps as an alter-
native view of cell motility

An alternative method of visualising the cell motion was developed, using a

scatter plot where total distance travelled was plotted against the straight-line
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distance moved since the start of measurement. A cell which moved in a straight

line would lie on the diagonal of such a plot, where walk length = distance from

origin.

A random walk with where both step size and direction are chosen from

a uniform random distribution is shown in Figure B.6a, with a heatmap

representation in Figure B.6b to show the plot density more easily. In this

plot, the cells ‘diffuse’ out from the origin where the mean distance from the

origin is proportional to the square root of the time. In the simulation presented

here, the cell step size was randomly chosen in the range 0–10 and measured

over 50 frames. The angle change was randomly selected from the full range

0–360◦. The mean total distance covered by the cells will therefore be

50× (10− 0)

2
= 250

while the distance moved away from the origin will be given by√
50×

(
10− 0

2

)2

= 35.4

The mean distance travelled for the simulated cells in Figure B.6a–b is 244.9

while the mean straight line distance is 35.2, which agree closely with the values

calculated above.

The Distance-Pathlength plots for the two Gold Standard data-sets are

presented in Figures B.6c–d. These show noticeably different behaviour, where

Set 1 lies closer to the diagonal, indicating that the cells moved in straighter

paths than Set 2, which had more of a ‘horizontal’ component, suggesting more

direction changes.

An attempt was made to simulate this behaviour by modelling different

types of random walk where the step and direction changes were limited. In

Figure B.6e, the cells were initialised with a random direction and with a speed

randomly selected from a Gaussian distribution (µ = 4, σ = 4). For each step,

the angle was varied by adding a random amount of ±0.5 radians. The speed

was chosen from a Gaussian distribution with µ =original speed and σ = 0.5×

original speed. The Distance-Pathlength plot followed a similar pattern to the

Gold Standard 1, with most cells closely following the diagonal.

A second motion-constrained random walk is shown in Figure B.6f. The

step size was kept constant, with the initial values selected from a uniform
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distribution. The angles were changed by ±0.5 radian (± 29◦), again from a

uniform distribution. These later simulated walks show similar properties to

the measured cell motion.
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Figure B.6: Distance-Pathlength plots for different classes of random walks and the
two Gold Standard tracked sets. Points on the diagonal line indicate particles which
have moved in a straight line throughout the simulation. a) & b: Classic random walk
with unit length displacement in a random direction. c) Results from Gold Standard
1. d) Results from Gold Standard 2. e) Random walk where the change in angle and
speed are randomly selected from a Gaussian distribution. f) Random walk where the
step size was kept constant but angle changes by a random amount up to ±0.5 radians.
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B.7 Angle Distributions from additional exper-
iments

Section 5.1 presented two experiments and measured different distributions of

turn angle, where one set of cells had predominantly large turn angles whereas

the second set had a subpopulation with smaller turns, suggesting that some

cells were moving in straighter lines.

Four additional experiments were measured and the angle distributions are

presented below in Figure B.7. Three of the experiments displayed similar

‘straight line’ subpopulations while the experiment shown in Figure B.7b was

predominantly composed of turning cells.
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Figure B.7: Four additional cell experiments were tracked and analysed. A 3-
component Gaussian fit is superimposed on each. Frame interval was 10 minutes
in all cases.
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B.8 Graphical representation of Sz.pombe Lin-
eage Trees

The lineage trees are drawn using the open source Graphvis software, which

creates graphs and trees based on a script which describes the nodes and

connections.

The lineage tree in Section 6.3.1 was created from the following script:

digraph lineage {

cell2 [label="0.0 minutes" ,shape=box]

cell3418 [label="170.0 minutes"]

cell2 -> cell3418

cell14527 [label="480.0 minutes"]

cell3418 -> cell14527 [label="310.0"]

cell27306 [label="715.0 minutes" ,style=dotted]

cell14527 -> cell27306

cell17545 [label="540.0 minutes" ,style=dotted]

cell14527 -> cell17545

cell12037 [label="425.0 minutes"]

cell3418 -> cell12037 [label="255.0"]

cell24626 [label="670.0 minutes"]

cell12037 -> cell24626 [label="245.0"]

cell27311 [label="715.0 minutes" ,style=dotted]

cell24626 -> cell27311

cell27310 [label="715.0 minutes" ,style=dotted]

cell24626 -> cell27310

cell27002 [label="710.0 minutes"]

cell12037 -> cell27002 [label="285.0"]

cell27309 [label="715.0 minutes" ,style=dotted]

cell27002 -> cell27309

cell27307 [label="715.0 minutes" ,style=dotted]

cell27002 -> cell27307

}

This script is build up recursively by following the links in the Cell objects

until a division is reached. The time since the last division is calculated. The

two daughter cells are then followed until the tracking ends (the ‘leaves’ of the

tree are reached, where the cells do not point to any ‘next’ cells).
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Appendix C

Publications

• Mike Downey, Keith W. Vance, and Till Bretschneider. Lineagetracker:

A statistical scoring method for tracking cell lineages in large cell popu-

lations with low temporal resolution. Biomedical Imaging: From Nano to

Macro, 2011 IEEE International Symposium on, pages 1913 –1916 (2011).

doi:10.1109/ISBI.2011.5872783. [146]

• Mike J. Downey, Danuta M. Jeziorska, et al. Extracting fluores-

cent reporter time courses of cell lineages from high-throughput mi-

croscopy at low temporal resolution. PLoS ONE 6(12): e27886.

doi:10.1371/journal.pone.0027886. [147]
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ABSTRACT 
 
Automated high-throughput analysis of single-cell 
timecourse data presents a major bottleneck in live cell 
imaging.  We present LineageTracker, an ImageJ 
framework to track expression of fluorescent gene reporters 
over multiple cell divisions. It is able to perform automatic 
segmentation and tracking, and allows viewing and editing 
of tracks. The main feature of the tracking algorithm is a 
statistical scoring method which takes into account 
characteristic intensity and size changes to classify dividing 
and non-dividing cells. By including such dynamic features, 
the method can identify dividing cells in time series with 30 
min frame intervals, and handle large cell displacements 
between frames. We created a manually validated data set of 
mouse C2C12 cells expressing a fluorescent protein targeted 
to the cell nucleus which we will make available for 
benchmarking different segmentation and tracking methods.  
 
Index Terms�— High-throughput live cell imaging, cell 
tracking, cell lineage profiling 
 

1. INTRODUCTION 
 
Computerized microscopy in combination with live cell 
fluorescence imaging has become a valuable technique for 
measuring the regulation of gene expression in single cells. 
Single cell studies allow measuring the characteristics and 
effects of noise in transcriptional control. For further 
computational analyses temporal profiles of different cells 
can be synchronized in silico using curve-fitting techniques 
[1]. One example we present here is Msx1 expression in 
C2C12 mouse cells (Figure 1). Msx1 is a transcription factor 
that plays a role controlling pluripotency in mesenchymal 
stem cells [2]. Here we are specifically interested in how 
Msx1 expression is regulated in daughter cells.  
Segmentation of nuclei to determine intensities of nuclear 
localized fluorescent proteins is a critical step, but since 
nuclei have a consistent shape (convex and roughly circular) 
standard methods such as seeded growth work reasonably 
well. Touching objects can be separated using conventional 
watershed methods. The main difficulty is to track cells over 
time, which has been addressed by some authors [3, 4], and 
construct mother-daughter cell lineages, a much less well 
studied problem [5, 6].  

 
Figure 1: C2C12 cells labelled with Hoechst and expressing vGFP 
under the control of a Msx1 regulatory promoter sequence. A: 
Hoechst stained nuclei. B) Overlaid with segmentation mask. C) 
vGFP fluorescence channel overlaid. D) Segmentation mask 
showing area of measurement for fluorescence intensity. Scale bar: 
50 micron. 

Although some algorithms do handle divisions, they are 
usually optimized for short frame intervals making use of 
nearest distance information. The nuclear stain (Hoechst) is 
used here to track cells which do not express the fluorescent 
protein marker, and to identify cell divisions. Hoechst is 
excited by UV light, however, which is toxic to cells. 
Increased time intervals (10-30 min) to reduce long-term 
exposure (over 2.5 days) impose severe constraints on 
tracking and lineage construction as cells exhibit 
considerable motion between frames.  
 

2. IMAGE ACQUISITION AND SEGMENTATION 
 
Dual color image time series (currently Hoechst and GFP) 
were acquired using a Cellomics KineticScan KSR machine 
with a 10x 0.4NA objective at 512x512 resolution every 30 
minutes. A custom import module was written to import 
Cellomics data into ImageJ. 
A seeded growth algorithm [7] is used after correcting for 
non-uniform illumination using ImageJ�’s rolling ball 
background subtraction (radius = 25 pixels). Following 
Gaussian convolution of the Hoechst channel (sigma = 2.5 
pixels) the centers of nuclei are located as local maxima in 
the image [8]. Outlines of nuclei are grown radially 
outwards from the seeds identified above, until either a 
dynamic threshold is reached, which is ½ of the peak 
intensity, or they touch a neighbor cell. 
 

3. TRACKING 
 
After segmentation we compute for each cell a number of 
features which include position, area, multi-channel 



intensities, standard deviation, intensity moments, shape 
parameters (circularity, minor & major axes). 
 
Our scoring based tracking algorithm follows mainly ideas 
on multi-feature based cell-type classification as used by 
Murphy et al. and Loo et al. for static images [9, 10]. Here 
we extend this approach to include dynamic features in 
order to identify dividing cells in time series. Tracking is 
based on combining the most informative features to 
compute a cell transition matrix which holds probabilities 
for cell-cell linkages between frames (Figure 2) [5]. 
 

 
Figure 2: Computing statistical transition scores for linking cells 
between frames. Shown in white are outlines of possible target 
cells in the subsequent frame. Numbered red and blue arrows 
indicate the three most likely moves for each of two cells. See 
Table 1 below for associated movement scores. In accordance with 
the manually validated sequence, arrows 3 & 6 are the correct 
linkages. Scale bar: 50 micron.  

Transition 1 2 3 4 5 6 

Score 0.579 0.484 0.742 0.619 0.549 0.712 

Table 1: Examples of transition scores. Higher numbers indicate a 
better match. 

In brief, feature selection is based on principal component 
analysis. In the next step weighting of parameters is based 
on a brute-force optimization algorithm. In our example the 
first three components account for 76% of the data variance. 
The most significant features are Hoechst mean intensity, 
standard deviation of Hoechst intensity, 2nd order intensity 
moment and nucleus area. 
The steps involved in tracking are illustrated in  
Figure 3A. 
 
3.1 Construction of a Transition Matrix 
 
We compute a movement score M for each cell in a given 
frame, and its potential target in the subsequent frame. M is 
based on differences in the measured features between 

frames. A threshold and weight are associated with each 
feature to determine the contribution to the overall score.  
For each individual feature, f, the movement score is: 
 

 

where T(f) is a statistically determined threshold level for 
the feature in question, D(f) is the difference in feature 
values for the two cells, and   controls the rate of decrease 
in M. The sigmoid shape of the function penalizes only 
large enough changes in feature values. 
The overall movement score for a cell is then: 
 

 

where W(f) is the weight, , associated with each 
feature. 
All movement scores are assembled in form of a matrix 
consisting of transition scores for each cell and its potential 
target. 

 
Figure 3: A) Flow diagram for tracking algorithm (details see 
text). B) Expanded view of the �“Detect Divisions�” module. 

3.2 Construction of Trajectories 
 
Trajectories are constructed as follows and stored as a 
doubly-linked tree to enable traversal forwards and 
backwards through cell lineages. 



The first step builds up a list of most likely target cells for 
each cell according to the transition matrix together with the 
movement scores, in both the forward (t t+1) and 
backward (t+1 t) directions.  
Initial trajectories are assigned using a �‘co-operative best 
match�’, which selects the transition where the highest 
scoring transition in the forward direction is also the highest 
scoring backward pointing transition. 
The third step completes any remaining unassigned 
trajectories by assigning the highest scoring transitions. The 
final step performs an optimization by maximizing the 
summed movement scores of all linked cells. A new total 
score is calculated based on a pair-wise exchange of 
trajectories. The new trajectories are retained if the new 
score is greater than the existing score.  
 
A 

          

B 

 

C 

 

Figure 4: A) sequence of a dividing cell showing Hoechst 
enrichment prior to division. Time in minutes, scale bar: 50 
micron. B) Total Hoechst intensity showing equal distribution over 
the two daughter cells. C) Mean Hoechst intensity over time for 
the cell given in (A). Chromatin condensation causes the mean 
intensity to peak during cell division. 

 
3.3 Detection of Divisions 
 
Potential cell divisions are detected by identifying cells 
newly appearing during tracking. During cell division the 
Hoechst is partitioned between the two daughter nuclei. This 
leads to a reduction in the integrated Hoechst intensity 
(Figure 4B). 
Statistical testing shows a close relationship between 
integrated intensity of the mother cell and the sum of 
intensities of the two daughter cells (R2=0.92), and between 
integrated intensities of the two daughter cells (R2=0.95). 
The Detect Divisions module is summarized in  
Figure 3B. Potential daughter cells are identified by a 

characteristic change in Hoechst intensity or area (Figure 
4C), or when tracking is lost due to size or intensity of the 
daughter cells being too dissimilar to be recognized for 
continued tracking. 
All cells within a specified radius of the last known position 
are examined and similarity scores are calculated between 
each pair of potential daughter cells. The combined 
intensities are compared to the potential mother cells and a 
new movement score is calculated. If the tracking has been 
lost or the new score is more favorable than the existing 
tracking score, the two daughter cells are linked to the 
mother cell. 
 
 

 
Figure 5: Result of tracking and lineage construction. Progenitor 
cell trajectory is displayed in blue. Following division, daughter 
cells are displayed in green. Filled circles on green lines indicate 
the actual cell positions of the displayed frame. One daughter (dark 
green) further divides and daughter cell trajectories are shown in 
red. The displayed trajectory is a manually corrected lineage tree. 
The longest automatically tracked section was 82 frames, including 
one division. Total duration of tracking was 110 frames. Scale bar: 
50 micron. 

4. RESULTS 
 
The segmentation accuracy has been measured using a 
manually annotated gold standard where centers of nuclei 
were recorded and a synthetic data gold standard [11] for 
which nuclei positions and ground-truth pixel data are 
available. The manual gold standard consists of five frames 
with a total of 2932 cells at increasing densities. A cell is 
considered to be detected correctly if it is found within less 
than 1 cell radius of the manually marked position. Any 
cells detected at a greater distance from a known cell are 
recorded as false positives. 
Our segmentation method yields a 95% detection rate with a 
TP:FP (true positive : false positive) ratio of 18.3:1 . This 
compares to a 93% detection rate and a ratio of 9:1 found if 
the same set of images are analyzed using CellProfiler, an 



established open standard for high-throughput cell profiling 
[3]. CellProfiler�’s lower ratio is due to a higher number of 
false positive detections with the low contrast/high cell 
density images. 
The synthetic images contain a total of 1837 non-
overlapping nuclei. These were used to measure the pixel-
accuracy of the segmentation to determine whether the 
method successfully reproduced the outlines of detected 
nuclei. The F-score using a weighting of  = 1 was 
calculated as follows (FN=false negative): 

 

CellProfiler�’s F-score was computed as 0.88 for 
comparison.  
 
The tracking accuracy was measured by manually 
constructing cell lineages for a time-series consisting of 110 
frames taken at 30-minute intervals. The standard contained 
7317 cell-cell transitions and 100 divisions (Figure 5). The 
individual transitions were detected with 97% accuracy. The 
longest successfully tracked section of each lineage was 
measured. In the manually tracked data set trajectories 
contain between 5 and 111 transitions. On average each 
lineage was tracked along 88% of its total length before 
tracking was lost or interrupted. By comparison CellProfiler 
detected 96% of all transitions, tracking an average of 85% 
of each trajectory. The large frame intervals made detecting 
divisions challenging. 65 of the 100 marked divisions were 
correctly identified.  

 
5. CONCLUSIONS 

 
Lineage tracking in an emerging field and there is no 
commercial software available. Cell detection rates and 
segmentation accuracies of our software are comparable to 
CellProfiler software. CellProfiler�’s F-score (accuracy of 
segmentation) was slightly higher for the artificial data 
whereas our seeded growth performed better on actual cell 
images for which the detection rate has been optimized. 
LineageTracker offers an ImageJ based framework that is 
easily extendible and has the capability to track cell lineages 
while being specifically designed to handle large cell 
displacements between frames. 
Because of cell trajectories crossing over, an average 
tracked length of 88% can be considered as acceptable given 
that we aim at tracking hundreds or thousands of cells. The 
same applies to the seemingly low success rate of 65% for 
detecting divisions. 
 Although fully automated reconstructions of cell lineages in 
experiments with low temporal resolution are currently not 
within reach, our framework enables experimentalists to 

track lineages much more easily and efficiently compared to 
manual tracking. 
 
The software is still under development and will be released  
from http://go.warwick.ac.uk/lineagetracker as open source. 
 
Its implementation in ImageJ will allow different 
segmentation and lineage construction algorithms to be 
substituted and evaluated. The viewer/editor allows the 
segmentation or tracking to be manually edited or corrected 
where required. All data are stored in text files which 
enables further analysis by software such as R or Matlab�™. 
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Abstract

The extraction of fluorescence time course data is a major bottleneck in high-throughput live-cell microscopy. Here we
present an extendible framework based on the open-source image analysis software ImageJ, which aims in particular at
analyzing the expression of fluorescent reporters through cell divisions. The ability to track individual cell lineages is
essential for the analysis of gene regulatory factors involved in the control of cell fate and identity decisions. In our
approach, cell nuclei are identified using Hoechst, and a characteristic drop in Hoechst fluorescence helps to detect dividing
cells. We first compare the efficiency and accuracy of different segmentation methods and then present a statistical scoring
algorithm for cell tracking, which draws on the combination of various features, such as nuclear intensity, area or shape, and
importantly, dynamic changes thereof. Principal component analysis is used to determine the most significant features, and
a global parameter search is performed to determine the weighting of individual features. Our algorithm has been
optimized to cope with large cell movements, and we were able to semi-automatically extract cell trajectories across three
cell generations. Based on the MTrackJ plugin for ImageJ, we have developed tools to efficiently validate tracks and
manually correct them by connecting broken trajectories and reassigning falsely connected cell positions. A gold standard
consisting of two time-series with 15,000 validated positions will be released as a valuable resource for benchmarking. We
demonstrate how our method can be applied to analyze fluorescence distributions generated from mouse stem cells
transfected with reporter constructs containing transcriptional control elements of the Msx1 gene, a regulator of
pluripotency, in mother and daughter cells. Furthermore, we show by tracking zebrafish PAC2 cells expressing FUCCI cell
cycle markers, our framework can be easily adapted to different cell types and fluorescent markers.
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Introduction

Live cell fluorescent reporter-based techniques reveal the

dynamics of gene expression under the control of different

regulatory promoters, in individual cells and over periods of several

days. Destabilized reporters with short half-lives of ,30 minutes not

only show when genes are turned on, but also how long expression

lasts and possible periodic or random repetitions, either self-

stimulated or induced. Single cell studies uncover the characteristics

and effects of noise in transcriptional control by making it possible to

synchronize temporal expression profiles in silico [1–3], contrary to

population assays where individual responses are averaged out

[4,5]. Much progress has been made in high-throughput micros-

copy of tissue culture systems to study cells through several rounds of

division [6,7], with great potential to investigate differential gene

expression in self-renewing and differentiating stem cells.

Commercial platforms are available that offer integrated setups

containing a fluorescence microscope connected to a high

resolution CCD camera with autofocus, a humidified incubator,

liquid handling robots and computer systems allowing the

automated imaging of thousands of cells [8–11]. A major

limitation of current single cell approaches is, however, the

identification and tracking of cells in time-series, both through cell

divisions and in confluent cultures.

Identifying cells using nuclear markers
The requirement to generate multiple clonal cell lines

containing targeted insertion of reporter plasmids limits the use

of stable transfections in large scale synthetic biology promoter

studies. Transient transfection of fluorescent reporters represents a

rapid alternative and is therefore the method of choice for

analysing multiple promoters and regulatory elements. Transient
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transfections are also advantageous as onset rates of transcription

can be measured by introducing a naked DNA template into live

cells on which transcriptional complexes can assemble [12]. The

latter is particularly important in cells that continuously express

genes under the control of endogenous promoters. To capture the

onset of expression, we must ensure all cells are labelled using an

independent marker, so that cells can be tracked before expression

of any fluorescent marker sets in. Identifying cells with nuclear

markers, such as Hoechst, abolishes the need for co-transfection (of

a second constitutively active fluorescent colour for tracking

purposes), thus facilitating experiments with primary cells and

comparative expression analyses of different promoter constructs.

Another important aspect for our analyses is that during cell

divisions the chromatin marker segregates into the two daughter

cells, which aids in identifying cell divisions and assigning mother

and daughter cells. Since Hoechst is excited with UV light,

photodamage has to be kept to a minimum. To image over long

periods of time (days) with minimal cell death, we tested UV

exposure times empirically and determined 30 minute intervals to

be optimal for transfected C2C12 mouse mesenchymal stem cells.

During that time interval, cells exhibit significant motion, thereby

greatly challenging the reliability of any tracking method.

Segmentation of nuclei is discussed in Text S1 (see also Figure

S1).

Cell tracking
Recently, software has become available for high resolution cell

tracking and spatiotemporal analysis of protein dynamics in sub-

cellular compartments (QuimP [13], CellTracker [14]). However,

as these methods are designed to track cell boundaries in great

detail, they require cells to only move by small amounts.

Conventional tracking methods still require at least a minimum

overlap to link cell positions between consecutive frames,

measured either in absolute pixel counts, or relative to object

size. This is the approach used by CellID [15], CellTracer [16],

and Overlap-Based Cell Tracker [17]. If cells exhibit persistent

motion and cell collisions are infrequent, ‘keyhole’ tracking

algorithms can be applied, which calculate the probability of

finding matching cells in a particular direction [18].

A number of single particle tracking methods have also been

developed recently, which are able to track multiple non-overlapping

objects and can, in principle, be applied to tracking cells [19]. Altinok

et al. [20] have used spatiotemporal graph matching for tracking

microtubule tips. Similarly, particle filter methods have been

developed for tracking objects [6,21,22]. Future positions of objects

are predicted using a motion model, and then matched with objects

at the real positions. This usually involves solving a global linear

assignment problem [23]. Both graph-based and hidden Markov

model approaches can easily be extended to include additional

object features, such as shape, size, colour, or texture. However, for

large-scale problems, including time-series with thousands of cell

positions, global optimization approaches are computationally very

costly. Furthermore, particle filters only work for small displacements

where motion between frames is highly correlated. In time-series

with low temporal resolution and considerable cell motion, these

approaches generally perform poorly.

Instead of solving a global optimization problem, we formulate

here a statistical scoring approach in a less rigorous and formal

way, which was briefly introduced in [24]. It is based on a

similarity matrix, where scores are calculated for possible target

cells within a maximum distance that can be covered by a cell in a

given time interval. Relevant similarity features are selected from a

larger list of possible features based on principal component

analysis (PCA), similar to methods used in multi-feature cell-

profiling [25,26]. Computational demand for this local optimiza-

tion problem simply scales linearly with the number of cells to be

tracked.

Constructing cell lineages
There have been some approaches to lineage construction

based on the appearance or behaviour of cells during mitosis [7].

Debeir [27] computes tracking in reverse from the final frame.

Divisions are detected by the merging of two daughter cells. As the

cells approach mitosis, their size decreases and the two daughter

cells come closer. When size and distance are below a threshold,

the ‘reverse mitosis’ event has completed. Wang [28] calculates

texture based features and uses feature reduction methods,

including PCA to reduce 145 features to 15–20. Divisions are

detected by treating each stage of the mitosis event as a hidden

state in a Markov chain. A training set was used to calculate the

probabilities for the chains. Similarly, Markov trees were used in

[29] to map cell states to lineages.

Al-Kofahi et al. [30] construct lineages by calculating a

significance score based on the observation that daughter cells

have a similar size. The Ellenberg group has developed a powerful

framework for automatic detection of cell divisions and chromo-

some phenotypes [31,32]. Their approach, which is based on 3D

time-series with stacks captured at 5–7 minute intervals, makes use

of region adaptive thresholding and a feature point tracking

method. Probabilities for detecting mitosis events are based on size

and distance of chromosome sets for which weights are determined

empirically. Li et al. [6] and a more advanced version by Bise et al.

[33] use phase contrast images for cell segmentation and detection

of mitosis events, which appear brighter in phase contrast. Cell

trajectories are assembled into shorter fragments first, so called

tracklets, which are stitched together by using a global optimisa-

tion problem a posteriori. Accuracies achieved are 87% for

tracking (correctly identified cell-cell linkages between frames) and

68% for detecting divisions correctly.

Padfield et al. [34] also make use of a Hoechst label to segment

nuclei, although imaging at a higher frame-rates of 6 or 15 minutes.

They use a wavelet based method for cell segmentation.

Subsequently, a graph flow method is used for tracking cells, and

they report 99.2% of cells tracked with complete accuracy (with an

average track length of 13 frames) and 97.8% correctly identified

divisions, validated using 104,000 cell positions. Although the

methods by Bise and Padfield are both considered state of the art,

they result in markedly different detection rates and accuracies. It is

difficult to pinpoint a single cause for this, but most likely it is due to

experimental differences in cell density, movement and clustering.

For example, the net translocation of cells observed by Padfield is

small (after correction for stage drift) and thus, makes validation of

large numbers of cells comparatively easy.

Comparison of different methods is almost impossible, since

many of them are only available as part of an integrated commercial

platform or publicly not available. Often, precision of different

segmentation routines is not validated based on objective ground-

truth using synthetic data, but by human observers [34], and it is

difficult to obtain a comprehensive list of all parameters being used.

Since there is currently no standard for exchanging track-data for

evaluating different methods, we set out here to develop a new

software framework using ImageJ which allows comparisons of

different segmentation and tracking routines. Furthermore, we will

make available validated tracked data sets at different temporal

resolutions (10 and 30 min), which can be used as a benchmark test

for others. The method we present here incorporates the tracking of

cell lineages in our statistical scoring framework for cell tracking. It

makes use of dynamic feature changes, such as characteristic
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changes in Hoechst distribution and nuclear size. The experimental

data we make available are challenging as they are subject to

considerable noise, and there is a huge variation in nuclear size and

shape when compared to the examples given in Padfield [34]. Also,

large cell displacements between frames make tracking by eye and

validation of large numbers of cells more difficult. The clustering of

cell nuclei found in our experiments poses a particular challenge

when reconstructing cell lineages, as it obscures mother-daughter

cell relationships.

Current software toolkits
A software framework specifically tailored for high-throughput

single cell studies is the open source image analysis platform

CellProfiler [35]. CellProfiler is highly flexible and supplies all of

the above mentioned segmentation methods, as well as several

tracking methods including a multi-object tracker based on the

method by Jaqaman [21], which accounts for splitting and

merging of objects. Other tracking methods within CellProfiler

utilize features such as object overlap, distance or any other

measurements (intensity, morphology). A version of CellProfiler

has been used for single-cell tracking by Alon et al. [3].

Here we use an alternative platform, ImageJ, which is widely

used and easily extendible by Java plugins. Existing cell tracking

methods for ImageJ are currently very limited, however. The

Particle Tracker plugin is an implementation of Feature Point

Tracking [36] and provides both segmentation and tracking based

on the intensity moment of the particle images. Mtrack2 performs

tracking and requires the segmentation to be performed

beforehand. Trajectories are assigned by selecting the nearest

particle in the following frame.

Msx1 expression profiling
The software we developed was initially designed to measure

the activity of fluorescent reporters driven by transcriptional

control elements from the Msx1 gene in C2C12 mouse

mesenchymal stem cells. The Msx1 protein is involved in

regulating pluripotency of mesenchymal stem cells [37]. It is a

member of the homeobox family of transcription factors involved

in vertebrate craniofacial and muscle development. Expression of

Msx1 during embryogenesis maintains progenitor cells in their

undifferentiated state and mutations in the Msx1 gene lead to

cranial and dental defects [38], including cleft palate. Several

control elements of Msx1 have been identified by others and

ourselves (Vance et al., submitted), and a key objective for the

development of our analysis method was to quantify the role these

elements play upon transcription rates by using fluorescent

reporters. Expression levels are proportional to the amount of

reporter protein provided the measured intensity is within the

linear range of the imaging system. Fluorescent reporters were

modified by the addition of a nuclear localization sequence (nls),

which led to post-translational targeting to the nucleus. Segmen-

tation based on Hoechst can therefore be used to measure reporter

intensities in the nucleus. Ideally, we want to determine reporter

levels during the lifetime of individual cells in order to avoid

transgenerational inaccuracies or differences in reporter activity

due to asymmetric fate choices. For this reason, methods are

needed to determine reporter fluorescence between two automat-

ically recognized cell division events in entire clonal populations.

Materials and Methods

Imaging of mouse C2C12 cells
C2C12 mouse myoblast cells (ECACC, Catalogue No. 91031101)

were grown in DMEM supplemented with 10% foetal bovine serum

at 37uC in an atmosphere of 5% CO2. For transient transfections,

the cells were transferred to a 96-well plate at a density of 1.256104

cells per well. Hoechst 33342 (Invitrogen) 400 ng/ml in DMEM was

added and incubated at 37uC for 30 minutes. Cells were then

washed twice with PBS, and DMEM (without phenol red) was

added. Cells in each well were subsequently transiently transfected

with 200 ng of reporter plasmid using Lipofectamine 2000

(Invitrogen) according to the manufacturer’s instructions.

Images were obtained using a Cellomics KineticScan KSR

machine with a 106NA 0.4 objective at a resolution of 5126512

pixels. Two colour channels (Hoechst and vGFP) were obtained

every 30 minutes using the XF100 filter set. A custom import

module was written to import Cellomics data (version 1.35) into

ImageJ using Jackcess (version 1.1.21, http://jackcess.sourceforge.

net), a library for reading and writing Microsoft Access databases.

Imaging of zebrafish PAC2 cells
Zebrafish PAC2 cells derived from 24-hour embryos were

transfected with FUCCI constructs mKO2-zCdt1(1/190)/

pT2KXIGDin and mAG-zGeminin(1/100)/pT2KXIGDin [39,40]

and plasmid pcDNA3.1/myc-His A (Invitrogen), as previously

described [41]. After neomycin selection, single cells were sorted

sequentially for orange fluorescence (mKO2) and then green

fluorescence (mAG) by fluorescence-activated cell sorting. A clonal

FUCCI cell line was established and cultured as previously described

[41]. For time-lapse analysis, FUCCI cells were plated at a density of

100,000–150,000 cells/ml onto a 35 mm glass-bottomed dish

(Wilco), maintained at 28uC and imaged with a 106 NA 0.3

objective lens on an inverted Leica SPE confocal microscope. Images

were captured every 15 minutes for a total of 65 hours using

sequential fast scanning.

Software design and implementation
The software was written in Java as a set of ImageJ plugins and

uses the image manipulation routines available within ImageJ. The

Image Viewer requires the Image5D plugin to be installed, which

is available separately or bundled with the ‘Fiji’ version of ImageJ

(available from http://rsb.info.nih.gov/ij/and http://pacific.mpi-

cbg.de/wiki/index.php/Fiji). There are separate plugins for

segmentation/tracking and viewing/editing the data.

The segmentation software can handle any image format which

can be imported into ImageJ. The user selects the location to store

the data and loads the image sequence into ImageJ. The

segmentation parameters can be adjusted with a preview available.

The viewer allows the user to visually interact with the

segmentation and tracking, and perform minor edits to the data.

The application is compatible with tracking information from

CellProfiler and the ImageJ plugins MTrackJ and ParticleTracker.

Fluorescence time course data and cell division data can be

exported as spreadsheet files. Tracking videos can be exported

with highlighted cells overlaid.

Results

Figure 1 and Figure S2 summarise the problem of tracking

individual cells moving in crowded environments, and show

segregation of the nuclear marker during cell divisions. Figure 1A,B

show the Hoechst and GFP channels for an image with a cell

density of 1300 cells/mm2 typically reached at t = 40 hours after

transfection. The close up in Figure 1C illustrates the basic idea

behind statistical scoring mechanisms for identifying matching

cells in subsequent frames. For each of two example cells, three

arrows point to possible target cells (white outlines) in the

subsequent frame. Differently coloured arrows (e.g. red 3 and

Tracking Cell Lineages

PLoS ONE | www.plosone.org 3 December 2011 | Volume 6 | Issue 12 | e27886



blue 4) pointing to the same target cell in the centre of the image

make it obvious that positional information alone is not sufficient

to discriminate which of the possible target cells is the correct one.

Although connection 4 is the shortest, it turns out that connection

3 achieves the highest red score and is preferred over 4, while the

highest blue score is 6. Figure 1D,E show characteristic

condensation of the Hoechst marker during cell division (90 and

60 min frames), followed by segregation into daughter cells. This is

an essential feature, which is used to identify cell divisions, as will

be shown later on.

In the following section, we compare the efficiency and

accuracy of a commercial solution, Cellomics, with different

segmentation methods (for details of segmentation see Text S2).

We then describe the development of the statistical scoring method

for cell lineage tracking, which will be validated using a manually

tracked gold standard.

Segmentation accuracy
Two different methods were used to evaluate segmentation

results, each using a different gold standard set of artificial and real

cells.

Firstly, we measured the pixel-accuracy of segmentation using

artificial ground truth images created by Simcep software [42].

Five frames with 2885 cell nuclei in total (at densities between 425

and 703 cells per frame to match experimentally observed cell

densities) were created along with binary images, which partition

the image into foreground or background. There is no additional

information regarding which cell a pixel belongs to (Figure S3A,

B). The F-score indicates the overall accuracy of the segmentation

according to this foreground/background partitioning, but does

not penalize methods which fail to separate clustered or touching

cells. The precision and recall values indicate whether a

segmentation method consistently over- or under-estimates the

size of the detected objects. The method counts the True Positive

(TP), False Positive (FP), True Negative (TN), and False Negative

(FN) pixels.

Precision (P)~
TP

TPzFP

Recall (R)~
TP

TPzFN

F-score~
(1zb2)PR

b2(PzR)

A weighting factor of b = 1 was chosen to give an equal weight to

precision and recall, as a combined F-score usually was found to be

a good indicator of overall segmentation accuracy. The F-score

performance of the different segmentation methods that have been

tested is illustrated in Figure S3C. Surprisingly, the Global

Threshold (Li automatic threshold from ImageJ) resulted in the

highest F-values (,0.95) for all cell densities, while the more

sophisticated regional adaptive Seeded Growth and Scaling Index

methods performed poorly on the artificial data (0.85,F-

score,0.91).

Using the kappa index to evaluate segmentation accuracy for

the Simcep data, we obtain values of KI = 0.90 (for the Seeded

Growth algorithm) compared to values between 0.81 and 0.96

reported in [34]. The kappa index measures the degree of overlap

Figure 1. Magnified section of an image obtained from the Cellomics automated microscope. A) C2C12 cells labelled with Hoechst stain.
B) Same view showing expression of GFP driven by a Msx1 promoter. GFP expressing cells have been highlighted in yellow in A and B. C) Potential
ambiguity in linking cells in subsequent frames (white outlines). Arrows represent potential trajectory assignments with numbers representing the
calculated score for each potential assignment. D and E) Cell divisions exhibiting chromatin condensation close to the point of division. Time is
displayed in minutes. Scale bar in all images is 50 microns. (C and D have been adapted from [24], � 2011 IEEE).
doi:10.1371/journal.pone.0027886.g001
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between two sets:

KI~2
A\Bj j

Aj jz Bj j

� �

A and B are ground truth and segmented pixel data, respectively.

To demonstrate that segmentation results at higher spatial

resolution are comparable to the 106NA 0.4 images used in the

rest of the paper, Figure S4 shows an image of segmented cells

using a 206NA 0.75 objective.

The second method measured positional accuracy and used

images of Hoechst stained nuclei. A set of 4 frames was selected

from a 48-hour period of a single experiment (frame interval

30 minutes, 110 frames in total). The images exhibited a range of

cell densities from 437–730 cells per image (902–1507 cells/mm2);

1500 cells/mm2 yield 25–30% total area covered by nuclei

measured using the Hoechst channel, which approximately

corresponds to 90–100% cell confluency.

The nuclei were manually located using the CellCounter plugin

in ImageJ. The locations as determined by regional adaptive and

non-adaptive segmentation methods were then compared with

these ground-truth locations. For the Seeded Growth and Scaling

Index segmentation methods, we developed custom-written

ImageJ plug-ins. Threshold segmentation used existing methods

available in ImageJ or Fiji.

To determine positional accuracy, we define a cell as true

positive when being within 1 radius of a ground-truth cell. Cells

which cannot be matched are classified as false positive. Cells in

the ground truth data set which remain unassigned are classified as

false negative. Figures 2A–H show common problems with over-

and undersegmentation encountered with different methods.

Generally, it turns out that there is not a single method which

outperforms all others for all cell densities (Figure 2I, and

Figure 2. Segmentation of cell nuclei. A) Original nuclei (scale bar 50 microns) taken from the gold standard data set, cell density 1150 cells/mm2.
B–H) Nuclei with segmentation examples overlaid. Ellipses indicate segmentation errors. Lines indicate unresolved clusters of cells. B) Manually
marked cell position. C) Cellomics segmentation. D) Seeded Growth. E) Global Threshold. F) Local Threshold. G) Scaling Index. H) CellProfiler. I) Cell
detection accuracy measurements: Total cell count, false negatives and false positives comparing different segmentation methods to the gold
standard.
doi:10.1371/journal.pone.0027886.g002
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additional methods in Figure S3D), and above 1400 cells/mm2,

detection rates decline. The Seeded Growth and Scaling Index

algorithms and CellProfiler perform slightly better regarding false

negatives, which are consistently below 13%. However, the

simpler threshold based methods (Cellomics, Global and Auto

Threshold) yield numbers of false positives (below 1%), which are

well below the Scaling Index and the CellProfiler Background

Adaptive method.

The large number of missed cells at high cell densities means

there is currently no reliable method that can work in an

unsupervised manner when cultures become confluent (in Text

S3 we describe a graphical user interface for validating cell

positions and eliminating falsely classified cells). We here

decided to use the Seeded Growth method as it provides a

good balance between false positives and negatives for different

cell densities.

Identifying features for cell tracking
During segmentation, several numerical features of nuclei are

measured, similar to feature-based cell-type classification methods

developed by Murphy et al. and Loo et al. [25,26,43], or recent

methods for predicting cell fates of retinal progenitor cells using

measurements of cell motion and phenotype [44].

All of the features are measured on the Hoechst nuclear

channel. Additionally, the integrated intensity values are measured

on the GFP channel. Our tracking algorithm combines the most

informative features to compute probabilities for cell-cell transi-

tions, which are stored in a matrix.

For the 7221 tracked positions, the measured features from

Table 1 were examined using Principal Component Analysis. The

first 5 principal components accounted for 74% of the variance in

the Hoechst channel with the major contributions coming from

mean intensity, 2nd intensity moment (divided by area), nuclear

area and standard deviation.

The tracking algorithm relies on features remaining similar

from frame to frame. Therefore, correlation scatter plots were

produced, which compared the values of the features across

successive frames (see Figure 3 and Figure S5). Daughter cells

following division are plotted in red. For calculating correlation

scores, dividing and non-dividing cells were treated separately.

Dynamic features were plotted where the difference in feature

value was calculated. Good features to use in tracking are ones

where the values cover a wide range, while the correlation between

cells in adjacent frames is good (see Table 1 for R2 values).

According to the outcomes of principal component and correla-

tion analysis, the following 5 features were selected for tracking:

distance moved, nuclear area, mean intensity, standard deviation

of intensity, 2nd intensity moment (normalized to area). The

feature selection was confirmed by comparing tracking accuracies

for different sets of features.

Constructing the transition matrix
Tracking is calculated on a per-frame basis with individual

trajectories linking a cell in one frame with a matching cell in the

next frame. For each frame, a matrix is created where the rows

represent cells in the current frame and columns represent cells in

Table 1. Measured and derived features used in tracking.

Feature Cumulative components Correlation (R2)

1 2 3

Mean Hoechst intensity{ 46.95 97.97 97.97 0.94

Integrated Hoechst Intensity 84.29 97.25 97.26 0.97

Median Hoechst Intensity 45.63 78.05 78.05 0.86

Standard Deviation Hoechst intensity 40.64 91.41 91.42 0.92

Relative standard deviation{ 5.70 58.04 58.08 0.50

2nd Intensity Moment 94.76 95.06 95.09 0.85

2nd Moment (Intensity Normalized){ 40.86 95.82 95.91 0.78

2nd Moment (Area*Intensity Normalized){ 47.55 91.95 92.05 0.80

2nd Moment (Area Normalized){ 95.33 97.44 97.46 0.90

Nucleus Area 57.43 92.49 92.60 0.84

Integrated GFP Intensity 16.89 30.11 30.26 0.91

Major Axis Angle 0.04 0.09 0.09 0.20

Axis Ratio 0.24 1.04 1.08 0.37

Circularity 46.95 97.97 97.97 0.16

Centre co-ordinates of nucleus N/A N/A N/A 1.00

D Hoechst 6.54 9.56 9.57 0.00

D Area 0.22 0.23 68.22 0.01

D 2nd Intensity Moment 0.11 0.17 80.40 0.04

D Hoechst Standard Deviation 0.16 0.30 83.68 0.00

D Integrated GFP Intensity 0.00 0.23 0.43 0.07

D Circularity 0.05 0.15 43.87 0.18

Principal Component Analysis was used to determine which features contributed most to the tracking accuracy. The cumulative components columns specify how
much variance of each feature is described by the first 3 principal components. Features in bold are used in the tracking system.
{Derived from other features. R2 values are given for non-dividing cells only.
doi:10.1371/journal.pone.0027886.t001
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the subsequent frame. Each element in the matrix holds a movement

score representing the similarity in position and measured feature

values between the cells. A value of 1 indicates that the position

and feature values are unchanged between frames.

Each cell in the current frame ‘t’ is compared to the cells in the

following frame ‘t+1’ and a potential trajectory is computed for

each pair. Individual movement score contributions are calculated

for each feature by computing the differences between the

features. A threshold value determines the range over which the

feature is active.

M(f )~1{ 1zes(f )
� �{1 ð1Þ

where

s(f )~a
T(f ){D(f )

D(f )

� �

The movement score for an individual feature is given in equation

(1), where T(f) is the threshold, D(f) is the difference between the

values of a particular feature f as found in Table 1, and a
determines the steepness of the curve (value to be obtained

through optimization). The sigmoidal shape penalizes large

changes in feature value, greater than the threshold T.

Threshold values are obtained by performing an initial tracking

followed by analysis of the change in features (see Figure S6 and

Table S1). A threshold can be selected by choosing a high

percentile (95th–99th) as a cut-off, which will give a value suitable

for the majority of cells in the experiment.

Each of the features has a weight which is proportional to the

contribution towards the total movement score for the trajectory.

Initial estimates of the weight values are obtained by determining

the relative importance of each feature according to the strength of

the correlation (see Figure 3, and R2 values in Table 1). The

features with the highest correlation values (coordinates and

intensity) were assigned an initial weight of 0.9 with the other

features assigned weights of 0.5.

Weights and thresholds are subsequently optimized by locally

varying them in an iterative manner, while maximizing the

tracking performance. Each parameter is perturbed in turn by a

small amount (61% of the parameter range) with the new values

retained if the tracking score is improved. The optimizer attempts

to avoid local minima by gradually increasing the scale of the

perturbations if repeated iterations fail to improve the score.

The individual scores are combined using equation (2) as the

product of all feature weights and movement scores.

M~Pf 1{W (f ) 1{M(f )ð Þð Þ ð2Þ

Figure 3. Correlations of different features between consecutive frames. Tracked cells are plotted in blue. Cells that divided between
consecutive frames are plotted as red circles. R2 values are given only for very highly correlated values. A) Integrated Hoechst intensity. Non-dividing
cells show a very high correlation in Hoechst between frames (blue R2 = 0.97). Red cells show that Hoechst levels are halved during division (red
R2 = 0.90). B) Mean Hoechst intensity (blue R2 = 0.94). C) Change in Integrated Hoechst. D) Nucleus area. (blue R2 = 0.84). E) Change in nucleus area. F)
2nd Intensity moment (measured on Hoechst channel, blue R2 = 0.85).
doi:10.1371/journal.pone.0027886.g003
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Assigning trajectories
Assigning movements is a four-stage process (see Figure S7).

The first step builds a list of potential target cells in the adjacent

frames according to the movement scores in the transition matrix.

Each cell holds a list of highest scoring cells in both the forward

(tRt+1) and backward (tRt21) directions.

The second stage assigns a trajectory if the highest scoring

forward transition agrees with the highest scoring inbound

transition of the target cell at t+1 (see Figure S8). Step 2 is

performed repeatedly until all such transitions have been assigned.

The third step completes any remaining links by assigning the

highest forward pointing transition.

The final step optimizes the tracking by calculating the sum of

transition scores for each frame. If two cells share potential targets,

a new transition score is calculated based on exchanging the

trajectories. The new trajectories are retained if the exchange

improves the total score.

The method of assigning trajectories may be replaced with the

Hungarian Algorithm [45,46], while retaining the initial matrix

calculation. The Hungarian method requires a square matrix;

therefore an additional step is required to pad the matrix where

there are different numbers of cells in adjacent frames. Although

the tracking accuracies with the Hungarian method are very

similar, the main advantage of our custom assignment is that it is

capable to account for the detection of cell divisions.

Detection of divisions
The large frame intervals used in the C2C12 experiments lead

to difficulties in identifying cell divisions. The M-phase of the cell

cycle is relatively brief and can occur between frames; therefore,

the change in appearance of the nucleus during M-phase cannot

be relied upon to detect divisions. Also, directional information

about daughter cells moving in opposite directions during division

could not be used, as there was no significant correlation observed

between frames.

The first step in locating divisions is to identify cells which may

have divided by making use of dynamic features obtained during

tracking, in particular, characteristic changes in intensity and

nuclear area (Figure 3 C,E), which both decrease by at least 25%

during cell division (Figures S9 and S10).

The integrated intensity of the parent cell is very closely retained

in the daughter cells (R2 = 0.95, sum of daughter intensities is

10061.5% of parent cells, errors indicate standard error of the

mean, n = 100 cell divisions), and there is a close correlation

between the two daughter cells (R2 = 0.92, mean difference

between daughter cells 6.060.5%). The daughter cells in the

frame immediately following a division were of a similar size to

each other (average difference 12.661.0%), and for the sum of

daughter cell areas we obtain an average total 11064.3% of

parent cell area. There were some cases where a daughter cell was

larger than the final measured area of the parent cell due to the

long frame interval and chromatin condensation occurring during

the previous frame. Because of this and the larger variation

obtained for the area, cell size (weight 0.25) is weighted lower than

intensity (weight 1).

Potential daughter cells are selected by examining cells within a

certain distance of the parent cell. These cells are examined one

pair at a time, and a similarity score is calculated using equation (2)

based on intensity and size only. The most favourable daughter

pairs are compared to the parent cell by re-evaluating equation (2)

using a ‘composite cell’ where the area and intensities are the sums

of the daughter values, again using weights of 1 and 0.25 for

intensity and area, respectively. Finally, daughter cells with the

highest score are selected.

Tracking accuracy
To compare tracking accuracies of our method with CellProfiler

and ImageJ’s Particle Tracker (https://weeman.inf.ethz.ch/Particle

Tracker), we used an experiment with 24 frames in total (frame

intervals of 10 minutes). The average cell movement between frames

was 3.9 pixels, with a maximum of 28 pixels (average nucleus

diameter was 11 pixels). The cell density (1300 cells/mm2) was in the

middle of the range of our 30 minute experiment described earlier.

We created a gold standard, whereby the segmentation and tracking

were manually adjusted until at least 50% of the visible cell nuclei had

been tracked. The gold standard contains 7017 individual cell to cell

linkages between frames, with 359 tracks ranging from 5 to 23 frames

(average 19). The tracking accuracy was measured by counting the

number of individual links that were correctly identified using the

automated methods and the longest continuously tracked section

(Table 2, Figure 4).

Table 2. Results of gold standard tracked sets.

Experiment: 24 frames (10 minute interval), gold standard. 110 frames (30 minute interval), gold standard.

Validated Positions 7321 7417

Validated Trajectories 359 157

Frame to Frame links 6886 7221

Average track length 19 46

Tracking Scores:

LineageTracker (Custom assignment) 97.7/91.8 97.2/85.3

LineageTracker, (Hungarian Assignment) 98.1/94.2 96.9/89.1

CellProfiler* 95.9/88.3 96.1/85.4

Particle Tracker (ImageJ) 92.3/82.9 86.4/64.1

Cellomics n/a 85.9/55.9

Two numbers are given for each measurement: total number of correctly tracked steps and longest continuously tracked section (as percentage of total steps). For the
10 minute interval experiment, the seeded growth algorithm was used, and segmentations were manually edited, so that 50% of cells with positively validated
segmentations were included in the tracking gold standard. The 30 minute interval experiment is based on the Cellomics segmentation, as to allow comparison of the
Cellomics tracking routines with other ones.
*CellProfiler tracking using LAP (Linear Assignment Problem) tracking.
doi:10.1371/journal.pone.0027886.t002
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While our custom method with 97.7% correctly identified

linkages compares similarly to CellProfiler (95.9%), ImageJ’s

Particle Tracker more generic feature point tracking, which like

our method also includes intensity and higher order intensity

moments as features, has a slightly lower detection rate of 92.3%.

Next, a tracking ‘gold standard’ was created using the longer 48

hour time-series data with 30 minute frame intervals from the

same experiment used for the segmentation standard. 157 cell

trajectories were created in our tracking viewer/editor containing

a total of 7221 individual steps. Track lengths range from 5 to 110

frames (average 46). Average cell movement was 3.8 pixels per

frame (maximum 29 pixels per frame, average cell diameter of 14

pixels). Additionally, this experiment includes 100 cell divisions.

Results for our method and CellProfiler are very similar to the

previous experiment, whereas the Particle Tracker plugin shows a

markedly decreased rate of accuracy for the longest continuously

tracked section (Table 2), possibly because of higher cell densities

encountered in the 30 min interval experiment.

Execution times are comparable for all methods, taking

approximately 1–2K minutes on a 2.4GHz Intel Core i5 running

OSX 10.6.7. These times decrease for the custom tracking when

an optimized value for the Distance Threshold is used, to below 10

seconds for the custom assignment and approximately 1 minute

for the Hungarian assignment.

Division accuracy and daughter cell fluorescence
The main purpose of our software development was to create a

framework that allowed tracking of cells through cell divisions. To

determine the accuracy of detecting cell divisions, we considered

the 110-frame experiment. Out of the 100 manually annotated cell

divisions, 80 were correctly identified by the software. There were

16 false positive divisions detected: two where a division was

correctly identified, but the daughter cells were assigned

incorrectly, and the remaining 14 where a division was detected

and none occurred. In a series of additional experiments, our

software was used to study the partitioning of a cis-regulatory

module promoter driven GFP between daughter cells for dividing

C2C12 cells. Transient transfections were performed with

reporters containing four different Msx1 transcriptional regulatory

regions (A–D) upstream of the Msx1 promoter and the promoter

alone (Vance et al., submitted). The fluorescence activity of

mother and daughter cells was measured for a total 96 divisions.

These cells were manually validated. The partitioning between

daughters is summarized in figure 5A (R2 = 0.92). The high

correlation in the partitioning means that for all the different Msx1

promoter constructs driving GFP expression, we find that

fluorescence is symmetrically distributed in the two daughter cells

with a high degree of accuracy, ensuring that in most cases Msx1

levels are maintained during cell divisions to prevent differentia-

tion. The total fluorescence recovery (measured as the percentage

of fluorescence in the daughter cells compared to the mother cell)

is summarized in figure 5B, C. A correlation between mother

fluorescence and total daughter fluorescence yields an R2 value of

0.86. This lower value most likely reflects degradation of GFP

during cell division, when transcription of GFP under the control

of the Msx1 promoter ceases.

Tracking cells without a permanent nuclear marker
The software was originally designed to track cells which

contained a continuously visible fluorescent marker. To show that

this is not an absolute requirement, we use it here to obtain

intensity profiles of zebrafish embryonic PAC2 cells, expressing

FUCCI cell cycle markers visible for the most of the duration of

the cell cycle. The markers consist of two ubiquitin ligase

substrates, which are expressed during different phases of the cell

cycle [39] and have been fused with red- and green-emitting

fluorescent proteins [40]. The nuclei of cells in the G1 phase

appear red and change to green during the S, G2 and M phases of

the cell cycle (Figures 6 and 7). There is an overlap during the G1

to S transition where both markers are visible, giving the nuclei a

yellow colour (Figure 6, bottom panel). At mitosis, there is a rapid

decrease in intensity in the green channel, but there is a short

delay before the cell becomes visible in the red channel. Because of

that delay, there is insufficient difference between daughter cells

and background for accurate automatic detection, so manual

intervention is required for a short section of each lineage (Figures

S11 and S12 and Table S2). As described in Text S2, differences

in the colour channels inform the seeded growth algorithm, as well

as the tracking module in order to facilitate discrimination

Figure 5. GFP Fluorescence measurements across cell divisions.
A) Correlation plots of daughter fluorescence (R2 = 0.92) taken from the
5 Msx1 ReMo constructs. B) Sum of daughter fluorescence and
difference between daughter fluorescence, as a percentage of parent
fluorescence. C) Breakdown of sum and difference of intensities for the
5 different Msx1 ReMo constructs.
doi:10.1371/journal.pone.0027886.g005

Figure 4. Measuring tracking accuracy. Horizontal axis shows time
with the vertical axis representing cells in the frames. The red line is the
manually tracked ‘gold standard’ route marked through the cells, and
the black line is the calculated tracking. Tracking accuracy is measured
by counting the total number of steps which match the gold standard
and the longest continuous chain of correct steps.
doi:10.1371/journal.pone.0027886.g004
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between nearby cells at different phases of cell cycle (see also

Figure S13).

Conclusions
Currently, there are few alternatives for automated cell tracking

that are freely available, such as CellTracker, CellID, CellProfiler,

CellTracer, and Overlap-Based Cell Tracker. All of them have

shortcomings with large cell displacements between frames, and do

not allow for automated cell lineage construction. Our method,

which is based on the ImageJ plugin architecture, has demon-

strated a similar performance to CellProfiler when it comes to cell

segmentation, but has the added feature of cell lineage

construction capabilities, and the advantage to interactively

correct segmentation or tracking mistakes.

It can read data files produced from CellProfiler to allow

visualization and editing of segmentation and tracking output, in

order to compare between different tracking solutions implemented

in CellProfiler and ImageJ. The Seeded Growth segmentation we

used detected cells with 92% accuracy with ,1% false positives.

Cell tracking followed entire trajectories (of mean length 45 cell-cell

transitions) with 85% accuracy. This is similar to results in [33], but

does not reach the higher accuracies reported in [34], in which cells

exhibit less motion between frames and are less clustered. The gold

standard we release (15,000 validated cell positions) has a longer

average of 19 and 46 tracked frames for the 10 min and 30 min

interval experiments with 359 and 157 tracks for each of the

experiments when compared to an average track length of 13

frames in [34]. We found for different Msx1 promoter constructs

that there is a high level of accuracy when distributing GFP

fluorescence to daughter cells during cell divisions. Additionally, as

shown in the example of FUCCI cell cycle markers, our software

can be easily adapted to different cell types and fluorescent markers.

Availability and future directions
The software and source code can be downloaded from http://

go.warwick.ac.uk/lineagetracker. Additional segmentation or track-

ing methods are possible by adding modules for tracking or lineage

construction within the software. Current segmentation methods

have been optimized for circular nuclei. Different methods could be

substituted for segmenting different shapes, such as rod-shaped yeast

or bacterial cells, or when using different fluorescent stains, such as

GFP-histone for labelling cell nuclei [47].

The tracking comparison and benchmarking software will be

made available from the lineagetracker website.

Our statistical scoring framework can, in principle, be translated

into a more formal framework of a graph based problem, as used

by Padfield [34] or others. Here we have chosen it for the

simplicity with which it can be implemented and the ease in which

dynamic features can be incorporated.

Supporting Information

Figure S1 Distribution of nuclei sizes follows a gamma
distribution. A) 110 frames (30 min intervals) experiment of

C2C12 cells (n = 62586 , c= 7.4 , b= 20.2). B) Analysis of the first

three frames of the sequence showing the distribution of all nuclei

that have been automatically identified using the built-in

Cellomics segmentation (1235 cells, blue and red), Blue is a subset

of nuclei that have been manually validated to be non-overlapping

Figure 6. Colour changes during the cell cycle indicated by FUCCI markers in two daughter cells labelled a and b (see also Figure 7).
Time is in minutes following division. The overlap in the red and green fluorescence (transition between G1 and S phase) is shown for cell b (bottom
panel). White outlines are given for nuclei showing weak fluorescence.
doi:10.1371/journal.pone.0027886.g006

Figure 7. Intensities of the FUCCI markers following cell
division. Fluorescence intensity following cell division for the two
daughter cells in figure 6. The two FUCCI channels have been shown for
an entire cell cycle. The G1 signal (red) increases gradually following
mitosis, then decreases following a rise in S-G2-M signal (green). A
magnified view of the first 3 hours is shown in Figures S11 and S12.
doi:10.1371/journal.pone.0027886.g007
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(n = 1198). The corresponding gamma curve has parameters

c= 11.1 and b= 12.0. Red contains nuclei that have been

confirmed to be overlapping by visual inspection (35 nuclei,

2.8% of total), i.e. where two nuclei were reported as one. 1

nucleus was oversegmented, i.e. falsely reported as two.

(TIF)

Figure S2 Example of C2C12 cell motion. The highlighted

cell has been tracked through multiple frames. Scale bar is 50

microns. Time is displayed in minutes. A) Hoechst channel B) GFP

Channel.

(TIF)

Figure S3 Segmentation score plots. A) Artificial cell

images from Simcep [42]. B) Ground Truth image. C) Precision,

Recall & F-Score for the SimCep images. D) Comparison of cell

detection accuracies for various segmentation methods.

(TIF)

Figure S4 Segmentation of C2C12 cells at a higher
resolution, obtained using a 206NA 0.75 objective.
(TIFF)

Figure S5 Correlation plots with dividing cells coloured
in red. Top: Change in Hoechst intensity, Change in 2nd order

intensity moment, Correlation in standard deviation. Bottom:

intensity correlations for daughter cells, parent fluorescence

against sum of daughter fluorescence, parent cell area against

sum of daughter areas.

(TIF)

Figure S6 Measuring changes in features for cell-cell
transitions during tracking. A) Change in cell areas (pixels) in

adjacent frames. B) Distance moved by non-dividing cells in one

frame. C) Percent change in Hoechst fluorescence for non-dividing

cells. D) Distribution of daughter cell distances (in pixels) from

parent cell in the frame immediately following a division.

(TIF)

Figure S7 A) Tracking flow chart. B) Expanded flow chart for

the Detect Divisions module. (Adapted from [24] � 2011 IEEE).

(TIF)

Figure S8 Demonstration of three iterations of the
assignment step. 1, 2 & 3 represent three cells in time t, a, b &

c are three cells at time t+1. Numbers on arrows indicate movement

scores. A) The highest scoring link between 2-c is selected. B) Links

to and from cells 2 & c are removed. The highest scoring link 3-b is

selected. C) Links involving cells 3 & b are removed, leaving 1-a.

(TIF)

Figure S9 The cell divisions from figure 1B, showing
changes in Hoechst intensity. For each row, the left plot

displays the integrated Hoechst intensity; the right plot displays

mean Hoechst intensity. (S9A adapted from [24] � 2011 IEEE).

(TIF)

Figure S10 Cell tracked across 3 generations. A) Intensity

profile of the lineage showing GFP fluorescence. B&C) Highlight-

ed sections of the cell trajectory. Tracks are colour coded to match

the intensity plot. Inset shows the cell highlighted.

(TIF)

Figure S11 Intensity drop following division for zebra-
fish PAC2 cells. The image background intensity and sum of

image channels for the measured cell are also plotted.

(TIF)

Figure S12 Dividing cell visualised using FUCCI mark-
ers. The green FUCCI S-G2-M marker fades after mitosis

followed by a slow increase in red G1 marker. Time displayed in

minutes same as Figure S11 above.

(TIF)

Figure S13 Segmentation of zebrafish PAC2 cells using
the ‘Multi-Channel Segmentation’ method.

(TIF)

Table S1 90–99th percentile values for change in area, frame to

frame displacement during tracking, and parent-daughter distance

following cell division. These values (measured in pixels) are used

to select the initial threshold parameters used for tracking.

(PDF)

Table S2 Tracking precision for zebrafish PAC2 cells visualised

using FUCCI markers [39–41]. The segmentation and tracking

adjustments represent the percentage of frames which required

manual intervention to preserve accurate tracking. The longest

continuous sequence was observed with cell 8 at over 50 hours

without corrections. Following division, daughter cells fade to close

to background intensity requiring cells to be manually segmented.

(PDF)

Text S1 Segmentation of cell nuclei.

(PDF)

Text S2 Description of algorithms and parameters used
for segmentation.

(PDF)

Text S3 Description of LineageTracker software user
interface.

(PDF)
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C.1 Supporting tables and figures for Downey
et al. PLoS ONE (2011)

Figures not reproduced as part of the thesis are included below:

Figure S1: Distribution of nuclei sizes follows a gamma distribution.(Figure S1A
reproduced as Figure 3.4)

Figure S2: Example of C2C12 cell motion (reproduced as Figure 3.13).

Figure S3: Segmentation score plots. (A+B reproduced as Figure B.3, C as Figure
5.7, D reproduced above.)
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Figure S4: Segmentation of C2C12 cells at a higher resolution, obtained using a 20x
NA 0.75 objective.

Figure S5: Correlation plots with dividing cells coloured in red. (A-B reproduced as
part of Figure 3.9, D-E as Figure 4.3, C & F reproduced above.)

Figure S6: Measuring changes in features for cell-cell transitions during tracking.
(Reproduced as Figure 3.12)

Figure S7: A) Tracking flow chart. B) Expanded flow chart for the Detect Divisions
module. (Reproduced as Figure 3.16b)

Figure S8: Demonstration of three iterations of the assignment step. (Reproduced
as Figure 3.14)
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Figure S9: The cell divisions from figure 1B, showing changes in Hoechst intensity.

Figure S10: Cell tracked across 3 generations.(Reproduced as Figure 3.8)

Figure S11: Intensity drop following division for zebrafish PAC2 cells. (Reproduced
as Figure 7.3b)

Figure S12: Dividing cell visualised using FUCCI markers. (Reproduced as Figure
7.3a)

Figure S13: Segmentation of zebrafish PAC2 cells using the Multi-Channel Segmen-
tation method. (Reproduced as Figure 3.5)

Table S1: 90-99th percentile values for change in area. (Reproduced as Table 3.2)

Table S2: Tracking precision for zebrafish PAC2 cells visualised using FUCCI
markers.(Reproduced as Table 7.1)

Text S1: Segmentation of cell nuclei (See Section 3.1)

Text S2: Description of algorithms and parameters used for segmentation (See
Appendix B.2)

Text S3: Description of LineageTracker software user interface (See Appendix A.5)
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