
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/50060

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap

Computing Automorphism Groups and

Isomorphism Testing in Finite Groups

by

David J A Howden

Thesis

Submitted to The University of Warwick

for the degree of

Doctor of Philosophy

Mathematics Institute

April, 2012

Table of contents

List of algorithms iv

Acknowledgments v

Declaration vi

Abstract vii

Notation and displayed procedures viii

1 Introduction 1

2 Background material 6
2.1 Sylow subgroups and Hall subgroups 8

2.1.1 Useful π-subgroups . 10
2.1.2 Automorphisms acting on Sylp(G) and Hallπ(G) 11

2.2 Polycyclic groups . 11
2.2.1 Polycyclic sequences . 12
2.2.2 Polycyclic presentations . 13

2.3 Computing orbits and stabilisers . 14
2.3.1 Polycyclic orbit stabiliser . 15

2.4 Computations in permutation groups 17
2.5 Computations in matrix groups . 18
2.6 Computing automorphism groups . 19

2.6.1 Constructing permutation representations of automorphism
groups . 20

2.7 Other useful algorithms . 21

3 Preliminary results and algorithms 23
3.1 Computing with automorphism groups of p-groups 25

3.1.1 Determining solubility and computing PC presentations 26
3.2 Fix subgroup calculations . 34

3.2.1 Orbit stabiliser . 34
3.2.2 Handling large orbits . 35
3.2.3 Elementary abelian p-groups 36

3.3 Find conjugating element . 37
3.4 Find mapping automorphism . 37

ii

TABLE OF CONTENTS iii

4 General methods 40
4.1 Automorphism group . 40

4.1.1 Direct product . 41
4.1.2 Subdirect product . 42
4.1.3 Conjugation action . 45

4.2 Isomorphism testing . 52
4.2.1 Direct product . 53
4.2.2 Subdirect product . 53
4.2.3 Conjugation action . 55

5 Computing automorphism groups of soluble groups 61
5.1 Direct product . 64
5.2 Subdirect product . 65
5.3 Conjugation action . 67

5.3.1 Semidirect product . 67
5.3.2 Conjugation search . 69

5.4 Full algorithm and summary . 72
5.4.1 Selection of appropriate p values 73

5.5 Determining solubility and PC presentations 74
5.5.1 Direct and subdirect products 74
5.5.2 Conjugation action . 76

6 Isomorphism testing for soluble groups 84
6.1 Direct product . 86
6.2 Subdirect product . 87
6.3 Conjugation action . 87

6.3.1 Semidirect product . 89
6.3.2 Conjugate search . 89

6.4 Full algorithm . 92

7 Extending methods to non-soluble examples 93
7.1 Identifying direct and subdirect products 94
7.2 Soluble radical complement . 96
7.3 Extend from soluble radical . 99

8 Benchmarks 105
8.1 Some Large Examples . 106
8.2 Small Groups . 107
8.3 Transitive Groups . 107

Bibliography 111

List of Algorithms

2.1 OrbitStabiliser . 15
2.2 PolycyclicOrbitStabiliser . 16

3.1 FixSubgroup . 34
3.2 FindConjugatingElement . 38
3.3 FindMappingAutomorphism . 39

5.1 AutomorphismGroupDirectProduct . 65
5.2 AutomorphismGroupSubdirectProduct 66
5.3 AutomorphismGroupSemidirectProduct 68
5.4 AutomorphismGroupConjugationSearch 71
5.5 AutomorphismGroupSolubleGroup . 72
5.6 PCGroupDirectProduct . 76
5.7 ConstructPCRelations . 81
5.8 PCGroupSemidirectProductMap . 82
5.9 PCGroupConjugationSearchMap . 83

6.1 IsIsomorphicDirectProduct . 87
6.2 IsIsomorphicSubdirectProduct . 88
6.3 IsIsomorphicSolubleGroupSemidirectProduct 90
6.4 IsIsomorphicConjugateSearch . 91
6.5 IsIsomorphicSolubleGroups . 92

iv

Acknowledgments

First and foremost I would like to thank my supervisor, Derek Holt, for a great deal

of help and encouragement throughout my time at Warwick. He has been incredibly

generous with his time and a constant source of enthusiasm and sound advice.

I would also like to thank John Cannon and the MAGMA group in Sydney for

inviting me to work with them for 5 weeks in April-May 2011. In particular, I would

like to mention Dan Roozemond who assisted me in improving the automorphism

group algorithm for p-groups, and Bill Unger who helped me make changes to the

internal MAGMA system which allowed for better integration with implementations

of various algorithms in this thesis. I thank them all for their hospitality which made

for a productive and greatly enjoyable trip.

I am also grateful to numerous fellow students, in particular Janosch Ortmann,

Miko laj Sierżega, Paul Cadman, Ben Sharp, Barinder Banwait and Rupert Swar-

brick for many inspiring and interesting conversations over the years. Special thanks

to Rupert for proof reading sections of this thesis.

Thank you to my family for their constant love and support. And to all those

who have made it a fun few years, especially Damon, Matt, David and Martha, and

most of all Anna.

This work was supported by EPSRC.

v

Declaration

The author declares that the material contained in this thesis is entirely his own

work. As is standard practice, the subject matter developed builds on existing

theory, and clear citations and references are provided where necessary.

Although material contained herein may be submitted for publication at a later

date, the author has not published any work which forms part of this thesis.

No part of this thesis has been submitted, for the purposes of a degree or other-

wise, to any other university or educational institution.

vi

Abstract

We outline a new method for computing automorphism groups and performing isomor-

phism testing for soluble groups. We derive procedures for computing polycyclic presen-

tations for soluble automorphism groups, allowing for much more efficient calculations.

Finally, we demonstrate how these methods can be extended to tackle some non-soluble

groups. Performance statistics are included for an implementation of these algorithms in

the MAGMA [BCP97] language.

vii

Notation and displayed procedures

For a group G the action of an automorphism α ∈ Aut(G) on some element g ∈ G
will be denoted gα, though we may revert to writing α(g) where expressions become

complicated. Note that gαβ = β(α(g)). An automorphism α ∈ Aut(G) is said to fix

some subgroup H ≤ G if Hα = H and we say that α centralises H if hα = h for

all h ∈ H. If Hα = H for every α ∈ Aut(G) then H is said to be a characteristic

subgroup of G, which will be denoted H charG. Given a group G, a subgroup

H ≤ G, and group of automorphisms A of G, we define AH = {α ∈ A : Hα = H}.
We define g : G→ G by g : x 7→ g−1xg, the inner automorphism of G induced by

g ∈ G, and H ≤ Aut(G) for some subgroup H ≤ G is defined as H = {h : h ∈ H}.
For two elements g, h ∈ G, gh = h−1gh, the conjugation of g by h. The identity

automorphism of G will be denoted by IdG : G→ G where IdG : g 7→ g for all g ∈ G.

Finally, we will use 1G to denote the identity element of G and 1 = {1G} ≤ G, the

trivial subgroup. Finally, we define natural numbers as N = {1, 2, 3, . . . }.
In pseudocode, algorithms or function names will be written in small caps; for

example AutomorphismGroupPGroup. Constants are written as true, false,

null. If a variable is passed to a function and is prefixed with a ∼, then this means

that any operations made to the argument in the scope of the function are actually

performed on the variable which is passed. In other words, the function can change

the value of the argument.

Aside from group theoretic functions which will be detailed later, we will also

refer to the following functions and algorithmic constructs as standard:

• [] an empty list

• [1, 2, 3] an ordered list

• [1..5] shorthand for the ordered list [1,2,3,4,5]

• [10..1 by -3] shorthand for the ordered list [10,7,4,1]

The function Append(∼ l, x) will append the element x to the list l, and for

two lists, L1 and L2, L1 cat L2 is their concatenation.

viii

Chapter 1

Introduction

Computing automorphism groups for general finite groups is a hard problem. Over

the last 40 years or so there has been a lot of effort to develop algorithms which will

construct Aut(G) for specific types of group G.

The earliest successful work on this problem was carried out by Felsch and

Neubüser in 1970 [FN67]. Their approach was based on constructing a lattice of

subgroups and then choosing a particular generating set for the group as well as a

list of maps defined on this generating set. A brute-force search of this list produced

all the automorphisms of the group. Later, in 1976, another approach was developed

by Robertz [Rob76], which constructed the automorphism group as a permutation

representation acting on a union of conjugacy classes of the group. The performance

of this algorithm relied heavily on the structure of the conjugacy classes of the group,

which meant that its effectiveness diminished and became extremely unpredictable

with increasing order.

With the more recent development of efficient algorithms for computing detailed

structural information of groups, a new generation of automorphism group algo-

rithms has evolved. A general approach to calculations with finite groups which has

proved particularly useful for finite soluble groups G defined by power-conjugate pre-

sentations, is to lift computations through a normal series with elementary abelian

1

1. Introduction 2

layers.

For finite soluble groups G, Smith introduced an algorithm in [Smi94], since im-

proved by Slattery, which computes the automorphism group of G. The strategy is

to first construct a characteristic series for G with elementary abelian factors. The

automorphism group of the top quotient is then calculated, and lifted through suc-

cessive quotients of the series with G. This approach has been adapted by Holt and

Cannon in [CH03] for use on general finite groups. They begin by computing the

largest normal soluble subgroup L of the finite group G, and then construct a charac-

teristic series for L with elementary abelian factor groups. The automorphism group

Aut(G/L) is determined using a combination of pre-computed group databases, and

other elementary methods; then, as in the soluble algorithm, a lifting process runs

through quotients of G with successive terms of the computed characteristic series

of L.

For finite p-groups, there is a separate algorithm which was first introduced

by O’Brien in [O’B92] and has since been further improved by O’Brien, Leedham-

Green and Eick in [ELGO02]. Again, it follows a similar lifting process, but using

quotients of the lower central exponent-p series of the given p-group. Having been

tailored to the p-group structure, it considerably outperforms the more general lifting

algorithms in most cases as the lifting process can be reduced to a simpler problem.

There are various advantages and disadvantages to using any of these three

approaches. Each generally performs better on its designated group type, and is

therefore preferred, though it is not very hard to find examples where the more gen-

eral routines finish in a shorter time. This makes absolute performance statements

unreliable, so we try to avoid making generalisations of this type. When considering

the performance of each algorithm, we also need to take note of the representation

type which is required of the input group. The more general algorithm for finite

groups relies on the input group being given as a permutation or matrix group, and

this places immediate limitations on its usefulness for very large examples where a

1. Introduction 3

low-degree permutation representation or small matrix group representation can not

be easily constructed. The soluble and p-group algorithms require that the input

group be represented by a power-conjugate presentation, which allow more easily

for the construction and computation with large groups. It is relatively routine to

convert permutation or matrix groups to power-conjugate presentations if they are

known to be soluble.

All three algorithms have been implemented in MAGMA [BCP97]; the soluble

group procedure is written in ‘C’, and the general and p-group algorithms in the

MAGMA language. The soluble group and p-group algorithms are also available as

GAP [GAP08] packages (autag in GAP3, now integrated into GAP4, and AutPGrp

[EO09] respectively). Given a finite group G as input, expressed in an appropriate

representation, they each return a group of automorphisms A. In both systems, A

is represented by a list of automorphism maps which generate the automorphism

group. Elements of A can be composed, inverted and their orders can be evaluated.

The order of A, which is determined during its construction, is stored as an attribute

of A.

To carry out structural calculations on a group of automorphisms A, it is nec-

essary to find an appropriate representation. In general, this means attempting to

construct a permutation representation of A, which is impractical when G is large. If

A is soluble, it would be ideal to directly construct a power-conjugate presentation,

without having to first find a permutation representation.

The recent development of databases of finite groups allows for more effective

benchmarking of existing algorithms, and in particular leads to readily available col-

lections of large groups for which the algorithms perform poorly. We will concentrate

on the following databases:

• Small Groups of order up to 2000, described in [BEO02]. In general, both

the soluble and finite group algorithms work well on examples taken from the

1. Introduction 4

small groups database of orders up to 2000. However, there are a large number

of notable “hard cases” where computing the automorphism group of soluble

groups can take up to 10000 times longer than other groups of the same order,

particularly when using the soluble algorithm.

• Transitive Groups up to degree 32 (degrees up to 11 are given in [BM83],

degree 12 in [Roy87], degrees 14 and 15 in [But93], all degrees up to 30 in

[Hul05], and degree 32 in [CH08]). This database gives rise to a great many

examples, particularly groups of degree 24, for which the current algorithms

can take up to 20 hours to complete.

• Primitive Groups, recently updated to include primitive groups up to degree

4095 [CQRD11]. This database provides several soluble examples where the

finite group automorphism algorithm struggles (particularly those groups with

degree above 2000).

There are other notable hard examples which can be easily constructed. For

instance, direct products such as ×ni=1 Sym(3) and ×ni=1D6 can take hours to finish

when n > 5 (where Dm is the dihedral group of order 2m for some m ∈ N).

In this thesis we describe new methods for computing automorphism groups

and performing isomorphism testing in finite groups, which can be applied to both

soluble, and some non-soluble finite groups. For finite soluble groups, we also provide

a new approach to finding power-conjugate representations of soluble automorphism

groups, which avoids creating a permutation representation of the whole group as

an intermediary step.

The motivation behind much of this work stems from the many examples of

soluble groups in the catalogue of small groups of orders up to 2000, for which the

standard soluble group automorphism group algorithm performs very badly. In gen-

eral, the approach given here relies on the computation of an automorphism group

of some large p-group P ∈ Sylp(G) of the soluble group G. When the computation

1. Introduction 5

of Aut(P) is fast relative to the normal time required to construct Aut(G), our al-

gorithm performs better than the soluble and finite group algorithms. In practice,

we have found that almost all examples which are hard cases for the existing soluble

group algorithm are computed very quickly using our method. Indeed, our approach

works consistently on almost all small groups in the database, completing in under

1 second for almost every entry.

We have implemented both the automorphism group computation and isomor-

phism testing algorithms for soluble groups in the MAGMA language, and this is

available on request.

In Chapters 2 and 3, we give background material and preliminary theory and

algorithms, which will be necessary for later results. The theory behind our approach

is outlined in Chapter 4, and Chapters 5 and 6 adapt this to construct algorithms

for computing automorphism groups and performing isomorphism testing for finite

soluble groups, respectively. We devote Chapter 7 to exploring different ways of

extending our general approach to some finite non-soluble groups, making use of

algorithms for soluble groups developed earlier, and many of the ideas behind them.

Finally, in Chapter 8 we give some benchmarks of our implementation in MAGMA,

and compare it to both the general algorithm for finite groups and the current soluble

group algorithm.

Chapter 2

Background material

In this chapter we give a summary of the background material required for the

results that follow in later chapters.

Definition 2.1. A group G is said to be soluble (or solvable) if it has a finite

subnormal series G = G0 ≥ G1 ≥ . . . ≥ Gn = 1 such that each factor group Gi/Gi+1

for 1 ≤ i < n is abelian.

Definition 2.2. Let G be a finite group. Then the soluble radical of G, denoted

O∞(G), is defined to be the largest normal soluble subgroup of G.

It is clear that such a subgroup exists, since if A,B ≤ G are any two soluble

normal subgroups of a groupG, then AB is soluble and AB E G. From the definition

it is also clear that O∞(G) is a characteristic subgroup of G.

The next few results give various structural details which will be used later. The

following two results are used to detect direct products.

Proposition 2.3. Let X be a group with subgroups U, V ≤ X such that X = UV ,

U ∩ V = 1 and [U, V] = 1. Then X ∼= U × V .

Proof. Define a mapping φ : U ×V → X by φ : (u, v) 7→ uv for u ∈ U , v ∈ V . Then

6

2. Background material 7

for u1, u2 ∈ U and v1, v2 ∈ V we have

((u1, v1)(u2, v2))φ = (u1u2, v2v2)φ

= u1u2v1v2

= u1v1u2v2

= (u1, v1)φ(u2, v2)φ

since u2 ∈ CU(V) and hence φ is a homomorphism. For u ∈ U, v ∈ V with (u, v)φ =

1X gives uv = 1X and hence u, v ∈ U ∩V = 1, and so φ is injective. For any x ∈ X,

we have x = uv for some u ∈ U , v ∈ V . Then (u, v)φ = x and φ is surjective.

Proposition 2.4. Let X be a group with subgroups U, V ≤ X such that V C X,

X = UV and U ∩ V = 1. Then [U, V] = 1 if and only if U CX.

Proof. Suppose that CU(V) = U and hence CV (U) = V . Then V ≤ NX(U) and

X = UV = NX(U), so U CX. Now suppose that U CX and consider the element

u−1v−1uv ∈ X for u ∈ U and v ∈ V . Clearly, (u−1v−1u)v ∈ V and u−1(v−1uv) ∈ U ,

hence u−1v−1uv ∈ U ∩ V . So u−1v−1u = v−1, and CU(V) = U .

Lemma 2.5. Let G be a cyclic group. Then Aut(G) is abelian.

Proof. Let |G| = n. Every automorphism of G is of the form αk : G → G where

αk : g 7→ gk for some k with (k, n) = 1. Thus the product of any two automorphisms

is αkαl = αlαk : g 7→ gk+l.

Proposition 2.6. Let G be a group and H ≤ G. Then NG(H)/CG(H) ∼= I for

some subgroup I ≤ Aut(H).

Proof. Define a homomorphism φ : G→ Aut(G) by φ : g 7→ g. For each g ∈ NG(H)

note that gϕ|H is an automorphism of H, and so we can define ϕ : NG(H)→ Aut(H)

as ϕ = (φ|NG(H))|H . Given g ∈ NG(H), g ∈ Kerϕ if and only if g|H = IdH and

2. Background material 8

hence g−1hg = h for all h ∈ H. Thus g ∈ Kerϕ if and only if g ∈ CG(H). By the

second isomorphism theorem

NG(H)

CG(H)
∼= Imϕ,

and, as noted earlier, Imϕ ≤ Aut(H). Hence Imϕ ∼= I for some subgroup I ≤

Aut(H).

2.1 Sylow subgroups and Hall subgroups

In this section we outline the well-known results of Sylow and Hall regarding the

existence of prime power or composite prime order subgroups in finite and finite

soluble groups respectively. For a more detailed exposition of this theory, consult

[Rot95].

Definition 2.7. Let G be a finite group with |G| = pαt where hcf(pα, t) = 1. Then

a subgroup P ≤ G is a Sylow p-subgroup of G if |P | = pα. We denote the set of all

Sylow p-subgroups of G by Sylp(G).

Theorem 2.8 (Sylow, 1872). Let G be a finite group with |G| = pαt for some prime

p and t with hcf(t, p) = 1. Then

1. For each 0 < γ ≤ α there exists a subgroup Pγ such that |Pγ| = pγ and any

such subgroup is contained in a Sylow p-subgroup;

2. | Sylp(G)| ≡ 1 (mod p), and

3. Any two Sylow p-subgroups of G are conjugate in G.

Definition 2.9. Let π be a function defined as

π(n) = {p ∈ N : p is prime, p|n} .

For a finite group G, we set π(G) = π(|G|). Note that in this context we define p′

(or the p complement) to be the set p′ = {q ∈ π(G) : q 6= p}, where p ∈ π(G) for

2. Background material 9

a finite group G. For a given set of primes π, a group G is a π-group if π(G) ⊆ π.

Similarly, H ≤ G is called a π-subgroup of a given finite group G if π(H) ⊆ π for

some π ⊆ π(G).

We now state the result of Hall detailing the existence of π-subgroups for soluble

groups.

Theorem 2.10 (Hall, 1928). If G is a soluble group of order ab, where hcf(a, b) = 1,

then G contains a subgroup of order a. Moreover, any two subgroups of order a are

conjugate.

Definition 2.11. Let G be a finite group, then a Hall subgroup H of G is a subgroup

whose order and index are relatively prime; that is hcf(|H|, |G : H|) = 1. We use

Halln(G) to denote the set of Hall subgroups of order n in G.

Observe that if G is a finite group and n is a prime dividing |G|, then Halln(G) =

Syln(G). For a given subset π ⊆ π(G) define Hallπ(G) to be the set of Hall π-

subgroups of G. Note that, by definition, each H ∈ Hallπ(G) has order |H| =

pn1
1 p

n2
2 ...p

nr
r such that pni+1

i - |G| for each pi ∈ π. In addition, if G is soluble then

Hallπ(G) is non-empty by Theorem 2.10 and all Hall π-subgroups are conjugate in

G.

The conjugation property of Sylow gives rise to the well know “Frattini Argu-

ment” given here with proof. We also include a corollary stating the equivalent

result reformulated for Hall subgroups of finite soluble groups.

Theorem 2.12 (Frattini Argument). Let G be a group, K C G and P ∈ Sylp(K).

Then G = NG(P)K.

Proof. For any g ∈ G, g−1Pg ≤ g−1Kg = K since KCG, and so there exists k ∈ K

such that g−1Pg = k−1Pk since all Sylow p-subgroups of K are conjugate in K.

Hence gk−1 ∈ NG(P), and g = (gk−1)k.

2. Background material 10

Corollary 2.13 (Extended Frattini). Let G be a group and let K CG be a soluble

subgroup. If H ∈ Hallπ(K) for some subset π ⊆ π(G) then G = NG(H)K.

2.1.1 Useful π-subgroups

Observe that for a finite group G and a given prime p ∈ π(G), we can construct a

normal p-subgroup of G by taking the intersection of all the Sylow p-subgroups. In

fact this formulation gives rise to the p-core of G, denoted Op, which is the largest

normal p-subgroup of G. This principle can also be applied to Hall π-subgroups in

soluble groups, and generalised further for π-subgroups of finite groups.

Definition 2.14. Let G be a finite group and π ⊆ π(G). Then we define Oπ(G) to

be the subgroup of G generated by all normal π-subgroups of G.

Lemma 2.15. Let G be a finite group, and π ⊆ π(G). Then Oπ(G) is the largest

normal π-subgroup of G; and Oπ(G) is characteristic in G.

Proof. Firstly we note that Oπ(G) is a π-group as it is a product of π-subgroups

of G. Now suppose that H C G and H is a π-subgroup of G. Then |H| ≤

|HOπ(G)| = |Oπ(G)| and hence |H| ≤ |Oπ(G)|. Therefore Oπ(G) is the largest

normal π-subgroup. For any α ∈ Aut(G), Oπ(G)α is a normal π-subgroup of G thus

Oπ(G)α ≤ Oπ(G), and further |Oπ(G)α| = |Oπ(G)|. Therefore Oπ(G)α = Oπ(G),

and Oπ is characteristic in G.

Lemma 2.16. Let G be a finite group and H ∈ Hallπ(G) for some subset π ⊆ π(G).

Then H CG if and only if |Hallπ(G)| = 1. Furthermore, if H CG then H charG.

Proof. Suppose that H C G. Then H = Oπ(G) and hence H = K for any K ∈

Hallπ(G), since otherwise |HK| > |H|. Conversely, suppose that |Hallπ(G)| = 1.

Then for H ∈ Hallπ(G) we have |Hα| = |H| for any α ∈ Aut(G), and thus H is

characteristic, and hence normal. Now note that for any α ∈ Aut(G), |Hα| = |H|,

and so Hα ∈ Hallπ(G). Hence, if H C G, we have that |Hallπ(G)| = 1, and Hα =

H.

2. Background material 11

We note that given a finite group G and a Sylow p-subgroup P ∈ Sylp(G) for

some p ∈ π(G), then | Sylp(G)| = 1 if and only if P charG (an important special

case of Lemma 2.16).

2.1.2 Automorphisms acting on Sylp(G) and Hallπ(G)

In this section we give two results which describe the action of automorphisms

α ∈ Aut(G) on Sylp(G) for finite groups G with p ∈ π(G), and analogous actions

on Hallπ(G) for finite soluble groups G with π ⊆ π(G).

Lemma 2.17. Let G be a finite group, P ∈ Sylp(G) for some p ∈ π(G) and α ∈

Aut(G). Then α permutes Sylp(G) and Pα = g−1Pg for some g ∈ G.

Proof. Clearly |Pα| = |P |, and so by definition Pα ∈ Sylp(G). Furthermore, all

Sylow p-subgroups are conjugate in G hence there exists some g ∈ G such that

Pα = g−1Pg.

Lemma 2.18. Let G be a finite group, H ∈ Hallπ(G) for some subset π ⊆ π(G),

and α ∈ Aut(G). Then α permutes Hallπ(G) and if G is soluble then Hα = g−1Hg

for some g ∈ G.

Proof. Clearly |Hα| = |H|, and so by definition Hα ∈ Hallπ(G). Furthermore if G is

soluble, then all Hall π-subgroups are conjugate in G hence there exists some g ∈ G

such that Hα = g−1Hg.

2.2 Polycyclic groups

A group G is said to be polycyclic if it has a descending chain of subgroups

G = G1 ≥ G2 ≥ · · · ≥ Gn+1 = 1

2. Background material 12

in which each Gi+1 is normal in Gi and each quotient subgroup Gi/Gi+1 is cyclic.

Any finite soluble group is a polycyclic group, and any polycyclic group is soluble.

Polycyclic presentations are a form of finite presentation used to express polycyclic

groups which allow for practical, and often efficient, computations with their un-

derlying groups. For a broader background on the theory of polycyclic groups, we

refer the reader to Segal’s book [Seg83]. Here we will define polycyclic sequences

and polycyclic presentations, and explore some of their elementary properties and

uses (we are basing this brief introduction on [HEO05, 8.1]).

2.2.1 Polycyclic sequences

Let G be a polycyclic group with a polycyclic series G = G1 ≥ G2 ≥ · · · ≥ Gn+1 = 1.

As Gi/Gi+1 is cyclic, there exist elements xi ∈ G with 〈xiGi+1〉 = Gi/Gi+1 for every

i.

Definition 2.19. A sequence of elements X = [x1, . . . , xn] such that 〈xiGi+1〉 =

Gi/Gi+1 for 1 ≤ i ≤ n is a polycyclic sequence for G.

Definition 2.20. Let X be a polycyclic sequence for G. The sequence R(X) :=

(r1, . . . , rn) defined by ri := |Gi : Gi+1| ∈ N ∪ ∞ is called the sequence of relative

orders for X. The set {i ∈ {1..n} | ri finite} is denoted by I(X).

The sequence R(X) and the set I(X) depend on the underlying polycyclic series

G = G1 ≥ G2 ≥ · · · ≥ Gn+1 = 1 and X only. Also note that G is finite if and only

if I(X) = {1, . . . , n}, and when this is the case |G| = r1 . . . rn. We now derive a

structure for defining a normal form to elements of G.

Lemma 2.21. Let X = [x1, . . . , xn] be a polycyclic sequence for G with the relative

orders R(X) = (r1, . . . , rn). Then for every g ∈ G there exists a unique sequence

(e1, . . . , en), with ei ∈ Z for 1 ≤ i ≤ n and 0 ≤ ei < ri if i ∈ I(X), such that

g = xe11 · · ·xenn .

2. Background material 13

Definition 2.22. The expression g = xe11 · · ·xenn of Lemma 2.21 is called the normal

form of G with respect to X. The sequence (e1, . . . , en) is the exponent vector of g

with respect to X. We shall write expX(g) = (e1, . . . , en).

We remark that it is possible to refine any polycyclic sequence to one in which

each ri of R(X) = (r1, . . . , rn) is prime.

2.2.2 Polycyclic presentations

Definition 2.23. A presentation 〈x1, . . . , xn |R 〉 is called a polycyclic presentation

if there exists a sequence S = (s1, . . . , sn) with si ∈ N∪{∞} and integers ai,k, bi,j,k,

ci,j,k such that R consists of the following relations:

xsii = Ri,i with Ri,i := x
ai,i+1

i+1 . . . xai,nn for 1 ≤ i ≤ n with si <∞,

x−1
j xixj = Ri,j with Ri,j := x

bi,j,j+1

j+1 . . . xbi,j,nn for 1 ≤ j < i ≤ n,

xjxix
−1
j = Rj,i with Rj,i := x

ci,j,j+1

j+1 . . . xci,j,nn for 1 ≤ j < i ≤ n where j /∈ I(X).

These relations are called polycyclic relations. The first type are the power relations

and the second and third types are the conjugate relations. S is called the sequence

of power exponents of the presentation.

Conjugation relations of the form x−1
j xixj = xi or xjxix

−1
j = xi are called triv-

ial polycyclic relations. They are often omitted from a polycyclic presentation to

simplify the notation, and this means that polycyclic presentations have to be dis-

tinguished from arbitrary finite presentations. For this purpose we denote them

with

Pc〈x1, . . . , xn|R 〉.

A group that is defined as and represented by a polycyclic presentation is known as

a PC-group.

Theorem 2.24. Every polycyclic sequence is the generating set of a unique poly-

2. Background material 14

cyclic presentation. Thus every polycyclic group can be defined by a polycyclic pre-

sentation.

2.3 Computing orbits and stabilisers

Let G be a finite group acting on some finite set Ω. A common process in compu-

tational group theory, which will be used in later algorithms, is to determine the

orbit of some point α ∈ Ω under the action of G, denoted OrbitG(α). Let us assume

that G = 〈X〉 for some finite sequence of generators X = [x1, x2, . . . , xn] such that

xi ∈ Sym(Ω) for each i. Further, we shall assume that αg, the image of the action of

an element g ∈ G on a point α ∈ Ω, can be determined, and that it is possible to test

if two elements α, β ∈ Ω are equal. Computing the orbit is then straightforward.

Beginning with ∆ = {α} for some α ∈ Ω, we apply each of the generators xi ∈ G

to the elements of ∆. If αxi 6∈ ∆, then αxi is added to ∆. We repeat this process

until the images of all orbit points are contained in ∆.

Often, we need to retain a list of elements of G which correspond to each orbit

element, so for every δ ∈ ∆ we have an element g ∈ G such that αg = δ. In

practice, this proves to be very useful when constructing the stabiliser of α in G,

denoted StabG(α). For example, suppose that δx ∈ ∆ for some δ ∈ ∆, x ∈ G. Then

there exists g, h ∈ G such that αg = δ and αh = δx, and hence gxh−1 ∈ StabG(α).

Therefore it is usual for the orbit and stabiliser to be computed together.

We give a formal outline of the full orbit stabiliser procedure in Algorithm 2.1,

and define ∆∗ ⊆ Ω × G, a set which stores orbit elements as pairs: (β, uβ) where

αuβ = β.

As an alternative to keeping the explicit group element g ∈ G which maps αg = β,

one can store a list of indices instead, which allow the element to be constructed

when needed and greatly reduces the amount of memory needed to complete the

computation. This data structure is called a Schreier vector, and is defined as

2. Background material 15

Algorithm 2.1: OrbitStabiliser

Input: (α,X) : α ∈ Ω, X = [x1, . . . , xn], xi ∈ Sym(Ω) with 〈X〉 = G

Output: (∆∗, Y) : The orbit ∆∗ of α under G, and 〈Y 〉 = StabG(α)

1 ∆∗ := [(α, 1G)];

2 Y := [];

3 for (β, uβ) ∈ ∆∗, xi ∈ X do

4 if βxi /∈ ∆∗ then

5 Append(∼ ∆∗, (βxi , uβxi));

6 else

7 Append(∼ Y, uβxi(uβxi)
−1);

8 return ∆∗, Y ;

follows.

Definition 2.25 (Schreier Vector). A Schreier vector for α ∈ Ω is a sequence v,

indexed by Ω, which adheres to the following rules:

• v[α] = −1.

• For γ ∈ OrbitG(α), v[γ] = i where γ is appended to ∆ as βxi , see Line 5 of

OrbitStabiliser (Algorithm 2.1).

• v[β] = 0 for β /∈ OrbitG(α).

It is straightforward to now modify OrbitStabiliser to use a Schreier vector

instead of storing each of the group elements with their respective orbit element.

The group element required to map α 7→ β for β ∈ ∆, can then be computed, if

needed, by following the orbit construction described by the Schreier vector.

2.3.1 Polycyclic orbit stabiliser

When computing orbits and stabilisers for the action of a finite polycyclic group G

on a set Ω, the algorithm can be altered slightly from the one described above, to

2. Background material 16

take advantage of the extra structure afforded by the presentation.

This is best demonstrated in pseudocode, which can be found in PolycyclicOr-

bitStabiliser (Algorithm 2.2). This is taken from [HEO05, page 304], and we refer

the reader here for a more detailed explanation of how the the polycyclic structure

of G is used to construct the orbit and stabiliser.

Algorithm 2.2: PolycyclicOrbitStabiliser

Input: (X,α) : X = [x1, . . . , xn] is a polycyclic sequence for G with

R(X) = (r1, . . . , rn) the corresponding relative orders

Output: (Y,∆) : An induced polycyclic sequence Y for StabG(α) and ∆

the orbit of α under G

1 ∆ := [α];

2 Y := [];

3 for i ∈ [n..1 by −1] do

4 β := αxi ;

5 if β ∈ ∆ then

6 Find g ∈ G2 with β = αg;

7 Y := [xig
−1] ∪ Y ;

8 else

9 Γ := [];

10 for j ∈ [1..rj − 1] do Γ := Γ cat [δxi
j

: δ ∈ ∆];

11 ∆ := ∆ cat Γ;

12 return ∆, Y ;

It remains to show how to find the element g which maps αg = β (Line 6). Since

the orbit ∆ increases by a known amount, i.e. ri|∆|, when αxi 6= α for some i, we

only need to record those i for which xi acts non-trivially on α. The element g can

then be computed from its position in ∆ using modular arithmetic.

2. Background material 17

2.4 Computations in permutation groups

Machinery for handling computations in permutation groups is very well developed.

Introduced by Charles C. Sims in [Sim71] and [Sim70], the so-called “Base and

Strong Generating Set” construction allows for detailed calculations to be carried

out in permutation groups of degrees up to about 107. We will give a very brief

overview of the basic setup here, and refer the reader to [CH03] for a more detailed

introduction.

Let G be a finite permutation group acting on some finite set Ω = {1, . . . , n},

and suppose that S is a finite set of elements of Sym(n) which generate G. A base is

some sequence of elements X = x1, x2, . . . , xk with each xi ∈ Ω, such that the only

element of G fixing every xi is the identity. Define G(i) := StabG(x1, x2, . . . , xi−1)

for 1 ≤ i ≤ k + 1, then G = G(1), G(k+1) = 1 and G(i+1) ≤ G(i) for each i. Thus we

have a chain of subgroups

G = G(1) ≥ G(2) ≥ · · · ≥ G(k) ≥ G(k+1) = 1.

The set S is called a strong generating set relative to a baseX if it includes generators

for each stabiliser G(i), that is G(i) = 〈S(i)〉 where S(i) = S ∩ G(i). It is common to

refer to the pair (X,S) as a BSGS for G if X is a base and S is a strong generating

set relative to X.

Assume that we have some base X and a strong generating set S as outlined

above. Define ∆i := OrbitG(i)(xi) and compute a right transversal of G(i+1) in G(i).

By the Orbit Stabiliser Theorem, we have U (i) = {u(i)
x : x ∈ ∆i} where u

(i)
x maps xi

to x. Now we have a convenient normal form for elements of G since every g ∈ G

can be expressed as a unique product g = ukuk−1 . . . u2u1 where each ui ∈ U (i).

Immediately this yields useful information: membership testing is possible via the

normal form, and the order of the group is easily determined from the transversals

2. Background material 18

since

|G| = |U (1)||U (2)| . . . |U (k−1)||U (k)|.

The Schreier-Sims algorithm constructs a base and strong generating set for a

given permutation group, and we refer the reader to [CH03] for a full discussion

of the procedure. There are some computational issues to be considered in this

construction. When computing the U (i), it may be advantageous to avoid storing

the transversal representatives explicitly, instead using a more compact form like

Schreier vectors (recall Definition 2.25). In practice this will slow down the con-

struction of the base and strong generating set, but crucially it greatly lowers the

space requirement for the algorithm to complete successfully. For instance, it is

generally impractical to explicitly store the transversals when the underlying per-

mutation group has degree more than 1000.

2.5 Computations in matrix groups

There are several different models which are used for computing with matrix groups

over finite fields. The most established approach is to construct a BSGS using the

action of the given matrix group on its underlying vector space. Let G ≤ GL(d, p)

and suppose that V is a d-dimensional vector space over the field Fp. The Schreier-

Sims algorithm can then be applied to G and constructs a BSGS for the action of

G on the vectors and subspaces of V . In practice this can be very unwieldy as very

large orbits are typical in many standard matrix groups, making routine calculations

impractical in general.

An alternative approach for computing with large matrix groups, is to use the

Composition Tree (C-T), or “Large Matrix Group” (LMG), method which is sum-

marised in [HLGO11]. This strategy spawned from the matrix group recognition

project, which uses understanding of different subgroups of G ≤ GL(n, p) to exploit

their structure for calculations. The process begins by computing a composition

2. Background material 19

tree of the matrix group and writing of elements of G as words from some specified

set Y with 〈Y 〉 = G.

2.6 Computing automorphism groups

Here we give a brief summary of the current methods used to compute automorphism

groups of finite groups.

The soluble group algorithm, developed by Smith [Smi94] and further improved

by Slattery, begins by constructing a series of characteristic subgroups

G = N1 > N2 > · · · > Nr−1 > Nr = 1

such that Ni/Ni+1 is elementary abelian for each i. The automorphism group

Aut(G/N2) ∼= GL(d, p) for some d ∈ N and prime p ∈ N is computed, and then

lifted through each of the elementary abelian layers G/N3, . . . , G/Nr−1, finally giv-

ing Aut(G/Nr) = Aut(G).

A more general approach, outlined in [CH03], constructs the automorphism

group of a finite group G by constructing a similar characteristic series to the soluble

case,

G ≥ L = N1 > N2 > · · · > Nr−1 > Nr = 1

but here L = O∞(G), the soluble radical of G (recall Definition 2.2). The auto-

morphism group of Aut(G/L) is then computed using databases of precomputed

automorphism groups or elementary methods. Once Aut(G/L) has been found, this

is then lifted through each elementary abelian layer, just as in the soluble case,

successively computing Aut(G/Ni) for i = 2, . . . r, until Aut(G/Nr) = Aut(G) is

constructed.

Definition 2.26. The lower central exponent-p series for a finite p-group P , is a

2. Background material 20

descending sequence of subgroups

P = γ1(P) ≥ γ2(P) ≥ · · · ≥ γc−1(P) ≥ γc(P) = 1,

defined by γ1(P) = P and γi+1(P) = [γi(P), P]γi(P)p for i ≥ 1. If γc(P) = 1, and c

is the smallest such integer, then P is said to be of exponent-p class c, or just class

c.

In the construction of Aut(P) for a finite p-group P , the algorithm described in

[O’B92] and [EO09], constructs Aut(P/γ2(P)) ∼= GL(d, p) where |P/γ2(P)| = pd,

and then proceeds by induction down the lower exponent-p central series; that is,

successively computes Aut(Pi) for the quotients Pi = P/γi(P).

In all three algorithms the lifting procedure accounts for most of the computa-

tional work done in the majority of cases. The lifting problem in the more specialised

p-group algorithm can be reduced to finding a subspace stabiliser in a matrix group,

which is a much simpler calculation than is required for the more general lifting prob-

lem used in the soluble and finite group algorithms. Thus, the p-group algorithm is

almost always considerably faster than the more general approaches.

2.6.1 Constructing permutation representations of automor-

phism groups

In later chapters we will need to construct permutation representations for automor-

phism groups of finite groups. Given a finite group G and a group of automorphisms

A ≤ Aut(G), the general approach is to construct a union of conjugacy classes U

that are closed under the action of A such that the normal closure of U in G, i.e.

the largest normal subgroup of G containing U , is G. Then the permutation action

of A on U is faithful.

2. Background material 21

2.7 Other useful algorithms

Throughout this thesis, we will assume that the following algorithms are available.

We give a brief listing here only detailing the input/output of each procedure. For

more details, please refer to [HEO05].

• SylowSubgroup(G, p) : A finite group G and a prime p ∈ π(G).

Returns a Sylow p-subgroup of G.

• HallSubgroup(G, π) : A finite soluble group G and a subset π ⊆ π(G).

Returns a Hall π-subgroup of G.

• pCore(G, p) : A finite group G and a prime p ∈ π(G).

Returns Op(G), the p-core of G.

• Core(G, π) : A finite group G and a subset π ⊆ π(G).

Returns Oπ(G), the largest normal π-subgroup of G.

• Normaliser(G,H) : A finite group G, and a subgroup H ≤ G.

Returns NG(H).

• Centraliser(G,H) : A finite group G, and a subgroup H ≤ G.

Returns CG(H).

• IsConjugate(Z, x, y) : A finite group X with Z ≤ X and elements x, y ∈ X.

Returns (true, z) if there exists an element z ∈ Z such that xz = y, or (false,

null) otherwise.

• IsHomomorphism(G,H, α) : Finite groups G,H and a mapping α : G→ H.

Returns true if α is a homomorphism, or false if not.

• InnerAutomorphism(G, g) : A finite group G and g ∈ G.

Returns the inner automorphism, so g : x 7→ g−1xg for x ∈ G.

2. Background material 22

We assume that all of these algorithms are available for use with each group

structure that we pass them.

Chapter 3

Preliminary results and algorithms

In this chapter we outline results and algorithms which will prove useful when con-

structing practical implementations of the algorithms in later chapters. In particu-

lar, we will give details of how to exploit the structure of automorphism groups of

p-groups to allow for more efficient computations.

Aside from the problem of constructing an automorphism group of a finite group

G, it is often impossible to calculate a good representation for Aut(G) thus hugely

limiting its use in further calculations. Typically, an automorphism group is defined

by a generating set of automorphism maps. Although this is sufficient for carrying

out simple operations (i.e. those which only rely on the evaluation of elements under

the generators), more complicated structural computations such as testing member-

ship of random elements and determining normalisers of subgroups, often prove to

be impractical. Hence before any complicated computations can be attempted, it is

necessary to first construct a more useful representation of the automorphism group.

Constructing manageable representations of groups is a frequent limiting fac-

tor throughout computational group theory. Therefore we devote some time here

to discussing the various forms of group representation used for computation, and

how they are selected based on the calculations that need to be performed. We

refer the interested reader to [HEO05] for a more detailed discussion of the different

23

3. Preliminary results and algorithms 24

data structures used to represent groups and their suitability to different algorithms.

For the purposes of this thesis, we consider several different types of group repre-

sentations commonly used for computations, and outline our preferences in a brief

summary here.

• Polycyclic Group We prefer to use polycyclic presentations when the group

can be determined to be soluble. In general, polycyclic groups allow for efficient

calculations and are not as limiting (in terms of both space and computation

time) as other group types.

• Matrix Group In cases where a p-group is known to be elementary abelian

and calculations are to be evaluated in Aut(P), we construct Aut(P) as a

matrix group and perform operations in the matrix group where appropriate.

In particular, we make use of GLNormaliser described in [Cou11], to com-

pute normalisers in subgroups of GL(n, p), and recent work by Holt, O’Brien

and Leedham-Green on the “Large Matrix Group” summarised in [HLGO11],

which is implemented in MAGMA, and provides a wide range of fast algo-

rithms for computing in large matrix groups.

• Permutation Group Where no better representation can be found, we con-

struct a permutation representation. Unfortunately, this is sometimes imprac-

tical and often acts as the main stumbling block to most of the procedures

which follow. Despite the fact that computation in permutation groups is a

very well developed area, calculations are commonly limited by the degree

of the permutation groups involved. Finding low degree permutation repre-

sentations is a hard problem and, in practice, continuing with larger degree

representations is often best.

We begin by presenting algorithms for handling automorphism groups of p-

groups.

3. Preliminary results and algorithms 25

3.1 Computing with automorphism groups of p-

groups

In this section we give a brief analysis of the data output of the automorphism group

algorithm for p-groups introduced by O’Brien in [O’B92], and further improved by

O’Brien, Eick and Leedham-Green in [ELGO02]. In particular, we describe the

typical output of the algorithm, and show how this can be manipulated to construct

efficient representations of the resulting automorphism group.

There are several approaches which can be used to construct practical represen-

tations of automorphism groups of p-groups. Following our preferences for group

representations outlined at the beginning of this chapter, we will describe how to

construct polycyclic presentations for soluble automorphism groups of p-groups and

how to use matrix groups GL(n, p) to construct Aut(P) for elementary abelian p-

groups P . As discussed earlier, where no better alternative can be found, we revert

to using permutation representations.

Recall Definition 2.26, and for a finite p-group P define Pi = P/γi(P) for 1 ≤

i ≤ c where P has exponent-p class c for some c ∈ N. Hence we have the following

series of epimorphisms:

P = Pc → Pc−1 → . . . P2 → P1 = 1.

For an automorphism α ∈ Aut(P), we will use α|Pi to denote the induced action of

α on Pi, where 1 ≤ i ≤ c.

The output of the p-group automorphism group algorithm for a p-group P returns

a set of generators A, such that 〈A〉 = Aut(P). This set has a so-called “hybrid”

structure, with each generator being one of two distinct types:

• Type 1 act non-trivially on P2 and generate a subgroup M with M |P2 iso-

morphic to a subgroup of GL(d, p) where |P2| = pd; or

3. Preliminary results and algorithms 26

• Type 2 act trivially on P2 and generate Ap = 〈α ∈ A : α|P2 = IdP2〉, a normal

p-subgroup of Aut(P).

We note that there may be a normal p-subgroup of Aut(P) larger than Ap, so

we don’t always have Ap = Op(Aut(P)).

We may now consider the output of AutomorphismGroupPGroup(P) to be

of the form (M,Ap) where M is the group generated by Type 1 automorphism

generators and Ap is generated by Type 2 automorphism generators of Aut(P).

Given this construction, it is natural to define a homomorphism φ : Aut(P) →

M |P2 which is defined by the induced action on P2: thus φ : α 7→ α|P2 for α ∈

Aut(P). Then Kerφ ∼= Ap, and Aut(P) is the extension ofM |P2 by Ap. In particular,

if |Ap| = 1, then Aut(P) ∼= M |P2 and we can use the matrix group as a representation

for Aut(P).

For further details, we refer the reader to notes for the AutPGrp package [EO09]

from the GAP computer algebra system [GAP08]. The Magma version of the algo-

rithm produces an equivalent structure as output.

3.1.1 Determining solubility and computing PC presenta-

tions

In this section we briefly outline how to construct PC presentations of Aut(P) for

a finite p-group P of exponent-p class c where c ∈ N. The strategy is to use the

“hybrid” structure of the automorphism group algorithm output detailed in the

previous section, and we begin by determining the solubility of Aut(P). Define

(M,Ap) := Aut(P) as in the previous section. Then Aut(P) is soluble if and only if

M |P2 is soluble, since it is an extension of M |P2 by Ap.

To construct a PC representation of Aut(P), we first build a PC presentation of

Ap. Using existing methods, we then obtain a PC presentation for the matrix group

M |P2 , and extend this by the PC presentation of Ap to get a PC representation

3. Preliminary results and algorithms 27

of Aut(P). We make several assumptions about the structure of the output of the

algorithm and generators of P , which are specific to the implementation we are

using.

Firstly, we assume that we can readily compute a PC presentation of P for which

consecutive subsequences of generators in the polycyclic sequence of P generate the

consecutive quotient groups P2, P3, . . . Pc. In other words, if we define φi : P → Pi to

be the natural maps for 2 ≤ i ≤ c, and assume that X = [x1, . . . , xn] is a polycyclic

sequence for P with this property, then:

P2 = 〈x1, . . . , xr2〉φ2

P3 = 〈x1, . . . , xr2 , xr2+1, . . . , xr3〉φ3

...

Pc−1 = 〈x1, . . . , xr2 , xr2+1, . . . , xr3 , xr3+1, . . . , xrc−1〉φc−1

Pc = 〈x1, . . . , xr2 , xr2+1, . . . , xr3 , xr3+1, . . . , xrc−1 , xrc−1+1, . . . , xrc〉φc = P,

where each ri is the smallest possible value, and rc = n. We can therefore split the

polycyclic generating sequence of P into generators of specific layers; thus we define

Xi := {x1, . . . , xri} , (3.1)

where 〈Xi〉φi = Pi for 2 ≤ i ≤ c. Note that X1 is undefined.

If the p-group automorphism group algorithm is given a p-group with such a

presentation, then the resulting automorphism group generators can similarly be

classified into layers which correspond to their action on the generators of P . So we

define L(i), which denotes the set of all i-th layer automorphisms of P , as follows:

L(i) =
{
α ∈ Aut(P) : α|Pj = IdPj for 0 ≤ j < i and α|Pi 6= IdPi

}
,

3. Preliminary results and algorithms 28

for 1 ≤ i ≤ c. Note that 〈L(k) 〉/〈L(k+1) 〉 is elementary abelian for 3 ≤ k ≤ c− 1.

If A is the generating set returned by the algorithm, then we can define A(i),

which denotes the i-th layer generators, as A(i) = A ∩ L(i). In particular, note that

A(1) is empty, A(2) is the set of generators of A corresponding to the group M |P2

which act non-trivially on the elementary abelian p-group P2; and

Ap =

〈
c⋃
i=3

A(i)

〉
.

Unfortunately, it is not always true that 〈L(i)〉 = 〈A(i)〉 for each i.

Given an arbitrary automorphism α ∈ Aut(P) where α 6= Id(P), we can now

find k ∈ N such that α ∈ L(k). If we assume that α|Pk can be expressed as a product

of automorphisms from A(k), then we have

α|Pk = (βk,1 · · · βk,nk)|Pk

where each βk,i ∈ A(k) for 1 ≤ i ≤ nk (we will address the problem of constructing

this product later). Following a similar process for α(βk,1 . . . βk,nk)
−1 ∈ L(l) for some

l > k, we can construct a product of generators from the sets A(k), A(k+1), . . . , A(c)

which is equivalent to the action of α on P . Thus we have

α = (βk,1 · · · βk,nk)(βk+1,1 · · · βk+1,nk+1
) · · · (βc,1 · · · βc,nc) (3.2)

where each βj,i ∈ A(j) for 1 ≤ i ≤ nj, and k ≤ j ≤ c.

We can now construct a PC presentation for Ap as follows:

1. Compute power relations for each α ∈ A(i) for 3 ≤ i ≤ c:

(a) Find k such that αp ∈ L(k), where k > i.

(b) Find a product of automorphisms from A(k), A(k+1), . . . , A(c) whose action

on P is equivalent to that of αp, as in (3.2). This is the right hand side

3. Preliminary results and algorithms 29

of the relation.

2. Compute conjugation relations α
αj
i where αi ∈ A(i), αj ∈ A(j) and αi 6= αj for

3 < i ≤ j < c.

(a) Find k where α
αj
i ∈ L(k) for k ≥ j.

(b) Find a product of automorphisms from A(k), A(k+1), . . . , A(c) whose action

on P is equivalent to that of α
αj
i , as in (3.2). This is the right hand side

of the relation.

If we find an automorphism α ∈ L(k) which cannot be represented by the au-

tomorphism generators in A(k) for some 3 ≤ k ≤ c, then we append α to A(k) and

continue, ensuring that new power and conjugation relations are added accordingly.

Recall that 〈A(2)〉 ∼= M |P2 . Since we can construct the matrix group M |P2 , we use

existing methods to compute a PC presentation for it. Then we begin to combine

this with the PC presentation for Ap that has already been determined. First, we

extend each PC relation R(α1, α2, . . . , αn)|P2 = IdP2 of the PC representation of

M |P2 , where α1, . . . , αn ∈ A(2), so that they are made to be consistent on the whole

of P . Hence:

1. Compute ρ := R(α1, . . . αn).

2. Find k such that ρ−1 ∈ L(k).

3. Find a product of automorphisms from A(k), A(k+1), . . . , A(c) whose action on

P is equivalent to that of ρ−1, as in (3.2)

4. Then append this product to R(α1, . . . αn), and the relation is now consistent

on P .

Similarly, we compute the conjugation relations between A(2) and A(i) for 3 ≤

i ≤ c by following the same method.

3. Preliminary results and algorithms 30

One of the more complex computational challenges in this calculation is to con-

struct a product of automorphisms, as in (3.2), for a given α ∈ L(k). In general, this

is a very hard problem but the groups involved here enjoy special properties which

allow us to reduce the calculation into simple linear algebra.

When considering the action of a given automorphism α ∈ Aut(P) on some Pk

for 3 ≤ k ≤ c, it is sufficient to consider the image of X2 under α, since P2 = P/Φ(P)

and so P = 〈X2〉. Further, as both P2 and Pk−1/Pk are elementary abelian p-groups,

they can be regarded as vector spaces over Fp, and hence any α|Pk can be thought

of as an element of the vector space Hom(P2, Pk−1/Pk).

So for each generating set A(k) construct a vector space Vk = Hom(P2, Pk−1/Pk)

over Fp where dimVk = |X2| · (|Xk| − |Xk−1|) = dk. Temporarily relabelling genera-

tors for simplicity, suppose that X2 = {a1, . . . , ar}, and Xk \Xk−1 = {b1, . . . bs}. We

can now define a basis {ei,j}, where 1 ≤ i ≤ r and 1 ≤ j ≤ s, for Vk in the obvious

way, so

ei,j :

ai 7→ bj

al 7→ 0 l 6= i

and ei,j corresponds to an automorphism of Pk which maps ai 7→ aibj and al 7→ al

for l 6= i.

Each mapping α ∈ A(k) now has a corresponding vector vα ∈ Vk and so we can

define a subspace Sk = 〈vα : α ∈ A(k)〉. Given an arbitrary automorphism α ∈ L(k)

we compute vα ∈ Vk, and if vα ∈ Sk then we can easily find an expression for vα

as a linear combination of the basis vectors of Sk. Thus we have now constructed a

product of elements of A(k) which give the equivalent action of α on Pk.

We now give a brief worked example to demonstrate some of these ideas in

action. We begin by constructing a suitable 2-group P of order 64, from the small

groups database [BEO02], and use the pRanks function to determine the layers

of the generators of P. Note that in general we can use the MAGMA function

SpecialPresentation to construct a presentation for P which has the properties

3. Preliminary results and algorithms 31

that we assume. However, every p-group constructed directly from the small groups

database already has such a presentation, so we don’t include it in this calculation.

> SetSeed(1);

> P := SmallGroup(64, 10);

> pRanks(P);

[2, 4, 6]

The i-th generator of the group P is denoted by P.i in Magma. So this output

implies that P.1 and P.2 are layer 2; P.3 and P.4 are layer 3; and P.5 and P.6 are

layer 4 generators. We now compute the automorphism group of P, and output the

automorphism generators that are returned as a result.

> A := AutomorphismGroupPGroup(P);

> [< i, A.i > : i in [1..Ngens(A)]];

[

<1, Automorphism of GrpPC : P which maps:

P.1 |--> P.1 * P.2

P.2 |--> P.2

P.3 |--> P.3 * P.6

P.4 |--> P.3 * P.4 * P.6

P.5 |--> P.5 * P.6

P.6 |--> P.6>,

<2, Automorphism of GrpPC : P which maps:

P.1 |--> P.1 * P.4

P.2 |--> P.2

P.3 |--> P.3 * P.5 * P.6

P.4 |--> P.4 * P.5

P.5 |--> P.5

P.6 |--> P.6>,

<3, Automorphism of GrpPC : P which maps:

P.1 |--> P.1

3. Preliminary results and algorithms 32

P.2 |--> P.2 * P.6

P.3 |--> P.3

P.4 |--> P.4

P.5 |--> P.5

P.6 |--> P.6>,

<4, Automorphism of GrpPC : P which maps:

P.1 |--> P.1 * P.6

P.2 |--> P.2

P.3 |--> P.3

P.4 |--> P.4

P.5 |--> P.5

P.6 |--> P.6>,

<5, Automorphism of GrpPC : P which maps:

P.1 |--> P.1

P.2 |--> P.2 * P.3

P.3 |--> P.3 * P.5

P.4 |--> P.4

P.5 |--> P.5

P.6 |--> P.6>,

<6, Automorphism of GrpPC : P which maps:

P.1 |--> P.1 * P.3 * P.6

P.2 |--> P.2

P.3 |--> P.3 * P.6

P.4 |--> P.4 * P.5 * P.6

P.5 |--> P.5

P.6 |--> P.6>

]

By inspection, we see that A.1 ∈ A(2); A.2, A.5, A.6 ∈ A(3); and A.3, A.4 ∈ A(4).

We now start to construct power relations. It is easy to check that A.2^2 and A.6^2

3. Preliminary results and algorithms 33

are both the identity. Now,

> A.5^2;

Automorphism of GrpPC : P which maps:

P.1 |--> P.1

P.2 |--> P.2 * P.5 * P.6

P.3 |--> P.3

P.4 |--> P.4

P.5 |--> P.5

P.6 |--> P.6

and A.5^2 ∈ L(4) but can’t be represented as a product of A.3 and A.4, thus we

add A.5^2 to A(4). Continuing in this manner we determine the remaining power

relations and conjugation relations.

We note that construction of the vector spaces Vk and Sk ⊆ Vk is straightforward

using the action of the generators A.i on P.1 and P.2. For instance, V3 is a 2 · 2

dimensional space over F2, and a mapping of automorphisms in A(3) to a basis for

S3 ⊆ V3 would be:

A.2 7→ (0 1 0 0)

A.5 7→ (0 0 1 0)

A.6 7→ (1 0 0 0)

Given some arbitrary automorphism, a ∈ L(3), defined as:

> a;

Automorphism of GrpPC : P which maps:

P.1 |--> P.1 * P.3 * P.4 * P.5

P.2 |--> P.2 * P.3 * P.6

P.3 |--> P.3

P.4 |--> P.4 * P.6

3. Preliminary results and algorithms 34

P.5 |--> P.5

P.6 |--> P.6

we can compute the associated vector: (1 1 1 0), and thus deduce that a =

A.2 * A.5 * A.6.

3.2 Fix subgroup calculations

Let G be a finite group and suppose that H is a subgroup of G. Define Aut(G)H =

{α ∈ Aut(G) : Hα = H} and assume that Aut(G) has been computed and we want

to find Aut(G)H . In this section we outline several different approaches, beginning

with the most general and adding refinements or giving alternative algorithms where

some known structure of Aut(G) allows for more efficient computation of the result.

We include a pseudocode prototype for the full resulting algorithm FixSub-

group (Algorithm 3.1) below, for ease of reference later.

Algorithm 3.1: FixSubgroup

Input: (A,H) : A group of automorphisms A of a group G, and H a

subgroup of G

Output: AH : The subgroup of A fixing H

3.2.1 Orbit stabiliser

The most basic approach to this problem involves computing the orbit of the given

subgroup H under the action of Aut(G). We follow the standard OrbitStabiliser

procedure as given in Algorithm 2.1. Due to the processing time and memory

needed to maintain the list of orbit elements, this approach is only viable when the

orbit of H under Aut(G) is small. However, situations where large orbits arise can

be predicted - for instance if |G : H| is large - and there are a few tricks which

3. Preliminary results and algorithms 35

can be applied to reduce the size of the orbit before it is computed (we refer the

reader to Section 3.2.2). We use Schreier vectors to avoid storing accompanying

automorphisms with orbit elements.

In cases where Aut(G) is soluble and we have a polycyclic presentation for

Aut(G), we can use PolycyclicOrbitStabiliser (as shown earlier in Algo-

rithm 2.2) to take advantage of the PC structure of Aut(G). Again, we need to

avoid computing large orbits if possible, so apply the same orbit reduction tech-

niques for the standard orbit stabiliser algorithm where appropriate.

3.2.2 Handling large orbits

There are cases where the orbits produced in orbit-stabiliser calculations are very

large - for instance if |G : H| is large. In practice this can be extremely problematic

due to the amount of time and memory required to identify and store each orbit

element. In this situation, it is desirable to reduce the orbit as much as possible

before performing the orbit-stabiliser algorithm. Recall the definition of H for a

subgroup H ≤ G of a group G.

Lemma 3.1. Let G be a finite group, H ≤ G. Then Aut(G)H ≤ NAut(G)(H).

Furthermore, if Z(G) = 1 then Aut(G)H = NAut(G)(H).

Proof. Firstly note that for α ∈ Aut(G), g ∈ G and h ∈ H we have

gh
α

= gα
−1hα = (h−1)α(gα

−1

)αhα = gh
α
. (3.3)

Now take α ∈ Aut(G)H . Since α fixes H, hα ∈ H, and thus α ∈ NAut(G)(H). Now

suppose that Z(G) = 1, and hence H ∼= H. Take α ∈ NAut(G)(H), and for h ∈ H

we have h
α ∈ H, and so h

α
= hα ∈ H. Since Z(G) = 1, α fixes H.

In cases where G has trivial centre performing a full orbit stabiliser calculation

is equivalent to evaluating a normaliser in Aut(G). Of course, this whole procedure

3. Preliminary results and algorithms 36

relies on having constructed a manageable representation for Aut(G), and we refer

to earlier comments about this at the beginning of the chapter. As we will mostly

be performing this calculation on Aut(P) for some p-group P , this result can only

be used to reduce the size of the orbit (since Z(P) > 1 for any p-group P). However,

practice has shown that this trick does increase the scope of the algorithms in this

thesis.

3.2.3 Elementary abelian p-groups

Suppose now that G is an elementary abelian p-group. Then Aut(G) = GL(n, p)

and constructing a manageable (degree < 10000) permutation representation for

Aut(G) becomes difficult even for relatively straightforward automorphism groups

(recall that |GL(n, p)| = (pn − 1)(pn − p)(pn − p2) . . . (pn − pn−1)). However, if we

construct Aut(G) directly as GL(n, p), we can represent G as a vector space V over

the field Fp which is acted on by GL(n, p). Given any subgroup H ≤ G, we can

find the equivalent subspace, say W ⊆ V , and our problem is reduced to finding the

stabiliser of W in GL(n, p).

In the next result, we assume that GL(n, p) is generated by two matrices An,p

and Bn,p, and we use Ei,j to denote the matrix with 1Fp in the ith row and jth

column.

Lemma 3.2. Let V be an n-dimensional vector space over a finite field K, and

suppose that W ⊂ V is a subspace of V of dimension r. Then the subgroup of

GL(n,K) fixing W , after basis change, is generated by

 Ar,p 0

0 Is

 ,

 Br,p 0

0 Is

 ,

 Ir 0

0 As,p

 ,

 Ir 0

0 Bs,p

 , and

 Ir 0

Er+s,1 Is

 .

3. Preliminary results and algorithms 37

Proof. Choose a basis w1, . . . , wr of W and extend this to a basis of V , say

w1, . . . , wr, vr+1, . . . , vr+s.

Now in the new basis we can write down generators for the subgroup of GL(n, p)

fixing W , namely those which act on W as GL(r, p) and fix the rest of V , those

which fix W and act on the rest of V as GL(s, p).

Applying change of basis matrices to revert back to the original basis of V gives

the result.

3.3 Find conjugating element

Given a group G with subgroups X, Y ≤ G and an automorphism α ∈ Aut(Y) we

need to test if α is an inner automorphism of Y induced by an element x ∈ X, and

if so determine x. The full procedure, FindConjugatingElement, is outlined

in Algorithm 3.2, and is taken from [CH03, 2.4]. We may refer to this function in

later pseudocode as returning only one value, the element x, when we know that

the action of α is conjugation.

3.4 Find mapping automorphism

Given two subgroups H,K ≤ G with |H| = |K|, is there an automorphism α ∈

Aut(G) such that Hα = K? We follow the same approach as in the OrbitSta-

biliser algorithm: compute the orbit of H under the action of Aut(G), stopping

if we find K in the orbit. If K is not in the orbit of H under Aut(G) then there

is no such α. Again, we use Schreier vectors to minimise the storage requirement

of the algorithm in the normal case, and if Aut(G) is polycyclic then we can use

the more efficient PolycyclicOrbitStabiliser in place of the standard orbit

stabiliser procedure.

3. Preliminary results and algorithms 38

Algorithm 3.2: FindConjugatingElement

Input: (X, Y, α) : X, Y are groups such that X acts on Y by conjugation,

and α ∈ Aut(Y)

Output: (b, x) : A boolean b, true if a conjugate is found, false otherwise,

and an element x ∈ X such that yα = yx for all y ∈ Y , or null if

no such element exists

1 Z := X;

2 x := 1X ;

3 // Iterate over the generators of Y

4 for y ∈ Generators(Y) do

5 b, c := IsConjugate(Z, yx, yα);

6 if b 6= true then

7 return false, null;

8 x := xc;

9 Z := CZ(yα);

10 return true, x ;

3. Preliminary results and algorithms 39

We include the pseudocode prototype for FindMappingAutomorphism (Al-

gorithm 3.3) here, for ease of reference later.

Algorithm 3.3: FindMappingAutomorphism

Input: (A,H,K) : A is a group of automorphisms of G and H,K ≤ G

Output: (b, α) : b a boolean value, true if a map is found, false otherwise,

and an automorphism α ∈ Aut(G) such that Hα = K if such a

map exists, null otherwise

Chapter 4

General methods

In this chapter we outline general methods which form the basis of our algorithms for

constructing automorphism groups and performing isomorphism testing for soluble

groups (see Chapter 5 and Chapter 6) and further to some non-soluble examples

(see Chapter 7).

We use two general strategies for both computing automorphism groups and

performing isomorphism testing:

• Construct an embedding into a product of smaller groups and combine the

result of the calculation on each factor.

• Solve the problem for a subgroup, or a corresponding pair of subgroups in the

isomorphism case, and then extend the result to the whole group.

We begin by outlining the results for automorphism groups and then adapt these

ideas to perform isomorphism testing.

4.1 Automorphism group

In this section we derive results which will be used later to construct automorphism

groups. We begin by stating the result that forms the basis of our general approach.

40

4. General methods 41

Theorem 4.1. Let G be a group and P ∈ Sylp(G) for some prime p ∈ π(G). Define

Γ = {α ∈ Aut(G) : Pα = P} and let I = Inn(G). Then Aut(G) = ΓI.

Proof. Take any α ∈ Aut(G). Then using the result of Lemma 2.17, Pα = g−1Pg

for some g ∈ G and thus αg−1 ∈ Γ. Hence we express α as a product α = αg−1 g,

and the result follows.

Definition 4.2. Let G be a finite group and suppose that H,K ≤ G. Define

Γ = {α ∈ Aut(G) : Hα = H,Kα = K}. Then we say that Aut(G) is determined by

restriction to the action on H and K if

Aut(G) = 〈Γ, Inn(G)〉.

In each of the following sections we give specific structural criteria for a finite

group G and show how to compute the automorphism group Aut(G).

4.1.1 Direct product

In situations where a group X is known to be a direct product of characteristic

subgroups U, V ≤ G, computing Aut(X) can be reduced to two sub-problems: com-

puting Aut(U) and Aut(V), as demonstrated in the following theorem.

Remark. For groups X, Y we will regard Aut(X) × Aut(Y) as a subgroup of

Aut(X × Y). Given automorphisms χ ∈ Aut(X) and υ ∈ Aut(Y) we construct

the combined mapping denoted (χ, υ) : X×Y → X×Y defined by (χ, υ) : (x, y) 7→

(xχ, yυ) ∈ Aut(X × Y) for x ∈ X, y ∈ Y .

Theorem 4.3. Let X be a group with characteristic subgroups U and V such that

X = UV and U ∩ V = 1. Then X ∼= U × V and Aut(X) ∼= Aut(U)× Aut(V).

Proof. Firstly, U, V charX and hence U, V C X, so by Proposition 2.4 and Propo-

sition 2.3, X ∼= U × V . For each x ∈ X there are elements u ∈ U and v ∈ V

4. General methods 42

such that x = uv, and this expression is unique. Consider the action of an auto-

morphism α ∈ Aut(X) on an element x ∈ X. We have xα = (uv)α = uαvα, and

as both U and V are characteristic subgroups of X, uα ∈ U and vα ∈ V . In ad-

dition we have α|U ∈ Aut(U), α|V ∈ Aut(V), and {α|U : α ∈ Aut(X)} ≤ Aut(U)

and similarly {α|V : α ∈ Aut(X)} ≤ Aut(V). Hence we can define a mapping

Φ : Aut(X)→ Aut(U)× Aut(V) by

Φ : α 7→ (α|U , α|V),

which is clearly a homomorphism. Now suppose that αΦ = 1Aut(U)×Aut(V) for some

α ∈ Aut(X). Then α|U = IdU and α|V = IdV , and hence α = IdX since X = U ×V .

Therefore Φ is injective.

Now take any α ∈ Aut(U) × Aut(V), and note that by the previous remark

α induces an automorphism α = (µ, ν) ∈ Aut(U × V) for some µ ∈ Aut(U) and

ν ∈ Aut(V). Hence the mapping α : uv 7→ uµvν is an automorphism of X and Φ is

surjective, and therefore an isomorphism.

4.1.2 Subdirect product

We begin by introducing the notion of a subdirect product, which is defined as an

embedding of a group G into a direct product of two quotient groups of G. We

outline the construction in the following lemma.

Lemma 4.4. Let X be a group with normal subgroups U, V ≤ X such that U∩V = 1.

Then the mapping ψ : X → X/U ×X/V defined by ψ : x 7→ (xU, xV) for x ∈ X is

a monomorphism.

Proof. Clearly ψ is a homomorphism, so suppose that xψ = 1X/U×X/V for some x ∈

X. Then (xU, xV) = (U, V), and hence x ∈ U ∩ V = 1. Therefore Kerψ = 1X .

Now we can consider the situation where we need to compute Aut(X) for some

4. General methods 43

group X which is known to be a subdirect product of some characteristic subgroups

U, V ≤ X. Again, we follow the same basic approach as in the direct product case,

and split into two sub-problems: computing Aut(X/U) and Aut(X/V), though we

then need to apply a search to isolate the automorphisms in Aut(X/U)×Aut(X/V)

which induce automorphisms of X, as detailed in the following theorem.

Theorem 4.5. Let X be a group with characteristic subgroups U, V ≤ X such that

U ∩ V = 1. Define a subdirect product ψ : X → X/U ×X/V by ψ : x 7→ (xU, xV)

for x ∈ X, and let A′ = {α ∈ Aut(X/U) × Aut(X/V) : Xψα = Xψ}. Then

Aut(X) ∼= A′.

Proof. Let α ∈ Aut(X) and for x ∈ X we define αU ∈ Aut(X/U) and αV ∈

Aut(X/V) to be αU : xU 7→ (xU)α = xαU and αV : xV 7→ (xV)α = xαV re-

spectively. Define Ψ : Aut(X) → Aut(X/U) × Aut(X/V) by Ψ : α 7→ (αU , αV)

for α ∈ Aut(X). Clearly this mapping is a homomorphism. Now suppose that

αΨ = 1Aut(X/U)×Aut(X/V) for some α ∈ Aut(X) and thus αU = IdX/U and αV = IdX/V .

Hence (xU)α = xαU = xU and (xV)α = xαV = xV so x−1xα ∈ U ∩ V and x = xα.

Therefore Ψ is a monomorphism. Now given any α ∈ Aut(X), let α = αΨ. Then

for x ∈ X, (xU, xV)α = ((xU)α, (xV)α) = (xαU, xαV) ∈ Xψ. Hence α fixes Xψ so

α ∈ A′ and Im Ψ ≤ A′.

Now take α ∈ A′. As α fixes Xψ and ψ is a monomorphism, given x ∈ X we

have (xU, xV)α = (x′U, x′V) for some x′ ∈ X, which is uniquely determined by x.

Thus α induces a mapping α : X → X defined by α : x 7→ x′. For x, y ∈ X

(xU, xV)α(yU, yV)α = (xαU, xαV)(yαU, yαV)

= (xαyαU, xαyαV),

((xU, xV)(yU, yV))α = (xyU, xyV)α

= ((xy)αU, (xy)αV),

4. General methods 44

and since (xU, xV)α(yU, yV)α = ((xU, xV)(yU, yV))α we have ψ((xy)α) = ψ(xαyα).

Therefore (xy)α = xαyα for all x, y ∈ X and so α is a homomorphism. Since α

is an automorphism, α−1 induces a homomorphism α−1 which is both a right and

left inverse for α. Thus α is an automorphism, Ψ(α) = α and Im Ψ = A′, giving

A′ ∼= Aut(X).

Unfortunately, using this result to construct an algorithm for computing Aut(X)

for large groups X can be very impractical. Having computed Aut(X/U) and

Aut(X/V) we need to then construct the subgroup of Aut(X/U)×Aut(X/V) fixing

XΨ, hence the whole calculation would rely on FixSubgroup routines. We note

that orbit elements will be large (i.e. |X|), and the size of the orbit can potentially be

huge, particularly when |Aut(X/U)×Aut(X/V)| >> |Aut(X)|. Thus this process

could become an inhibiting factor for large examples.

In the next result we introduce a refinement to this process, avoiding this poten-

tially large FixSubgroup computation.

Theorem 4.6. Let X be a group with characteristic subgroups U, V ≤ X such that

U ∩ V = 1. Define ψU : X → X/U and ψV : X → X/V to be the natural maps, and

let

AU =
{
αU ∈ Aut(X/U) : V ψUαU = V ψU

}
,

AV =
{
αV ∈ Aut(X/V) : UψV αV = UψV

}
, and

A{U,V } =
{

(ΛU ,ΛV) ∈ AU × AV :
(
(xUV/U)ΛU

)ψ−1
U =

(
(xUV/V)ΛV

)ψ−1
V for all x ∈ X

}
.

Then A{U,V } ∼= Aut(X).

Proof. We claim that A{U,V } ∼= A′ from Theorem 4.5, and thus A{U,V } ∼= Aut(X).

We begin by checking that A′ ≤ A{U,V }. Let α ∈ A′ and recall that we write

4. General methods 45

α = (αU , αV) ∈ Aut(X/U)× Aut(X/V). For x ∈ X

(xU, xV)α = ((xU)αU , (xV)αV)

= (xαU, xαV)

= (yU, yV),

where α = Ψ−1(α) and y ∈ X such that xα = y. Now,

((xUV)U, (xUV)V)α = ((xV U)αU , (xUV)αV) =⇒

= ((xV)αU, (xU)αV) U, V charX =⇒

= (yUV, yUV).

So (xUV, xUV)α = (yUV, yUV) and observe that since U, V charX we have αU ∈

AU and αV ∈ AV . Therefore α ∈ A{U,V }.

Now suppose that α ∈ A{U,V }, and α = (ΛU ,ΛV) ∈ AU × AV . Let (xU)ΛU =

aU and (xV)ΛV = bV for some a, b ∈ X. Since V ΛU = V and UΛV = U , we

get (xUV)ΛU = aUV and (xUV)ΛV = bUV . By definition, aUV = bUV and so

a ∈ bUV . Therefore there exists u ∈ U and v ∈ V such that a = buv, and

α : (xU, xV) 7→ (bvU, bV) = (bvU, bvV). So α ∈ A′.

4.1.3 Conjugation action

In the previous two sections we compute the automorphism group of a group X

by defining an embedding of X into some product of smaller groups, and then

recursing. In this section we consider a different approach which relies on computing

the automorphism group of a given subgroup U ≤ X, and extending automorphisms

from some subgroup ∆ ≤ Aut(U) to automorphisms of X.

We begin by introducing the notion of associating automorphisms of two sub-

4. General methods 46

groups U, V ≤ X for a group X, such that they are candidates for forming auto-

morphisms of X which lie in a given subgroup Λ ≤ Aut(X).

Definition 4.7. Let X be a group and suppose that U, V are subgroups of X. Then

a given µ ∈ Aut(U) is associated to ν ∈ Aut(V) if there exists an automorphism

χ ∈ Λ ≤ Aut(X) such that χ|U = µ and χ|V = ν, and we write µ ∼Λ ν. Further,

we say that µ extends, or can be extended, to an automorphism of X fixing V .

In particular, we note the following consequence of this definition.

Lemma 4.8. Let X be a group with subgroups U, V such that X = UV and suppose

that µ ∈ Aut(U). Then µ extends to an automorphism of X fixing V if and only if

there exists ν ∈ Aut(V) such that uv 7→ uµvν for u ∈ U, v ∈ V is an automorphism

of X.

Proof. Every element x ∈ X can be expressed as a product x = uv for u ∈ U ,

v ∈ V . By definition, there exists χ ∈ Aut(X) with χ|U = µ and χ|V = ν if and

only if χ : x 7→ uχvχ = uµvν is an automorphism.

We now state a hypothesis which will be assumed throughout the rest of this

section.

Hypothesis 4.9. Let X be a group with subgroups U, V,W ≤ X such that X =

UV , U ∩ V = 1, W ≤ U , W charX and CV (W) = 1. Define Γ = {α ∈ Aut(X) :

Uα = U, V α = V }.

Using Definition 4.7 we can derive conditions for an automorphism µ ∈ Aut(U)

to be associated with some ν ∈ Aut(V), and further, how to construct such a ν

given µ. Recall the definition of H for a subgroup H ≤ G of a group G.

Lemma 4.10. The mapping γ : V → V |W defined by γ : v 7→ v|W for v ∈ V is a

monomorphism.

4. General methods 47

Proof. As W charX it is easy to see that vγ ∈ Aut(W) for each v ∈ V . Furthermore

γ is clearly a homomorphism, and so assume that vγ = IdW for some v ∈ V . Then

v−1wv = w for all w ∈ W and as CV (W) = 1, v = 1, so γ is a monomorphism.

Lemma 4.11. Let µ ∈ Aut(U) be such that µ fixes W and µ|W ∈ NAut(W)(V |W).

Then the mapping ν : V → V given by ν : v 7→ v′ where (v|W)µ|W = v′|W , defines

an automorphism of V .

Proof. Assume that all maps are restricted to W . From assumption, given v ∈ V ,

v µ = v′ for some v′ ∈ V , and by Lemma 4.10 v′ is uniquely determined by v. So ν

is well defined and it is straightforward to check that ν is a homomorphism:

(v1v2)ν = µ−1v1v2µ = µ−1v1 v2µ = µ−1v1µµ
−1v2µ = vν1 v

ν
2 = vν1v

ν
2 .

Further we note that since µ induces ν and µ is an automorphism, µ−1 exists,

and induces a mapping ν−1 : V → V which is both a right and left inverse for ν.

Thus ν is an automorphism.

Lemma 4.12. Let µ ∈ Aut(U) be such that µ fixes W and suppose that µ ∼Γ ν for

some ν ∈ Aut(V). Then (v|W)µ|W = vν |W for all v ∈ V .

Proof. Recall that µ ∼Γ ν implies that there exists α ∈ Γ with α|U = µ and

α|V = ν. So for all w ∈ W and v ∈ V we have (wv)α = (v−1)αwαvα and hence

(wv)µ = (v−1)νwµvν . Thus if we apply the mapping w 7→ wµ
−1

then (v−1wµ
−1
v)µ =

(v−1)νwvν and so wµ
−1vµ = wv

ν
for all w ∈ W and v ∈ V , and the result follows.

Lemma 4.13. Let α ∈ Γ. If α|W = IdW and V α = V then α|V = IdV .

Proof. For any v ∈ V , w ∈ W we have

v−1wv = (v−1wv)α

= (v−1)αwαvα

= (v−1)αwvα

4. General methods 48

and therefore vαv−1 ∈ CV (W) = 1, which gives vα = v.

Lemma 4.14. Let φ : Γ → Aut(U) be the mapping defined by φ : α 7→ α|U for

α ∈ Γ. Then φ is a monomorphism.

Proof. Firstly note that Uα = U for α ∈ Γ by definition, and hence αφ ∈ Aut(U)

and φ is clearly a homomorphism. Let α ∈ Γ and suppose that αφ = IdU . Then α

centralises U and fixes V , hence by Lemma 4.13, α = IdX and so φ is injective.

Semidirect product

Assume Hypothesis 4.9 with U = W . Then X is a semidirect product X = U o V

and every x ∈ X can be expressed uniquely as x = uv for some u ∈ U and v ∈ V ,

such that

u1v1u2v2 = u1u
v−1
1

2 v1v2, (4.1)

for u1, u2 ∈ U and v1, v2 ∈ V . We can construct Aut(X) directly from Aut(U) as

follows.

Theorem 4.15. Assume Hypothesis 4.9 with U = W and define ∆ = {µ ∈ Aut(U) :

µ ∈ NAut(U)(V |U)}. Then each δ ∈ ∆ can be extended to a unique automorphism of

X that fixes V .

Proof. Uniqueness follows from Lemma 4.12. By Lemma 4.11, δ defines an auto-

morphism ν : V → V such that v µ|W = vν |W for v ∈ V . Thus µvν |W = vµ|W and

for v−1
1 ∈ V and u2 ∈ U we have

(uµ2)v
−1
1

ν

= (u
v−1
1

2)µ

and therefore vν1u
µ
2 = (u

v−1
1

2)µvν1 . So for u1 ∈ U and v2 ∈ V

(uµ1v
ν
1)(uµ2v

ν
2) = uµ1(u

v−1
1

2)µvν1v
ν
2

= (u1u
v−1
1

2)µ(v1v2)ν

4. General methods 49

and hence using (4.1), uv 7→ uµvν is an endomorphism, and therefore an automor-

phism, of X.

So, recall that Γ = {α ∈ Aut(X) : Uα = U, V α = V }, and define

∆ =
{
µ ∈ Aut(U) : µ ∈ NAut(U)(V |U)

}
. (4.2)

Proposition 4.16. There exists an isomorphism φ : Γ→ ∆.

Proof. Take any α ∈ Γ and consider the action of v α on X for some v ∈ V . For

x ∈ X, we have

xv
α

= (v−1xα
−1

v)α

= (v−1)αxvα

= xv
α
,

and since α fixes V , vα ∈ V , and thus α|U ∈ NAut(U)(V |U). So define φ : α 7→ α|U and

we have αφ ∈ ∆. Further, φ is monomorphism by Lemma 4.14 and by Theorem 4.15

each δ ∈ ∆ can be extended to a unique automorphism of X that fixes V . So there

exists a unique α ∈ Aut(X) such that α|U = δ, Uα = U and V α = V . Hence α ∈ Γ,

and φ is an isomorphism.

Conjugation search

If we now relax the condition of U charX, then we can still construct Aut(X) using

the same approach, with a few alterations. Firstly, we define ∆′ as follows:

∆′ =
{
δ ∈ Aut(U) : W δ = W, NU(V)δ = NU(V), δ|W ∈ NAut(W)(V |W)

}
,

and let ∆ ≤ ∆′ be the subgroup of ∆′ whose elements extend to automorphisms of X

that fix V (compare with (4.2)). Recall that Γ = {α ∈ Aut(X) : V α = V, Uα = U}.

4. General methods 50

Proposition 4.17. There exists an injective homomorphism φ : Γ → ∆′, and

Imφ = ∆.

Proof. Define φ : α 7→ α|U for α ∈ Γ. We begin by checking that αφ ∈ ∆. Firstly

Wα = W for all α ∈ Γ as W charX and hence α|U fixes W . Also, V = V α =

(n−1V n)α = (n−1)αV nα for any n ∈ NU(V) so α, and therefore α|U , fixes NU(V).

Finally for w ∈ W , wα
−1vα = wv

α
and vα ∈ V , hence the last condition holds. Now

by Lemma 4.14, φ is injective, and since each α ∈ Γ fixes U and V , α|U ∈ ∆. Thus

Imφ ≤ ∆. So suppose that δ ∈ ∆, and hence δ extends to an automorphism of

X fixing V . Therefore, there exists α ∈ Γ such that α|U = δ, and δ ∈ Imφ. So

Imφ = ∆.

We now use Lemmas 4.11 and 4.12 and attempt to extend each δ ∈ ∆′ to an

automorphism of X. Therefore in practice we determine ∆ by performing a search

for automorphisms which extend correctly.

However if X = WNX(V) and therefore X = WNU(V)V , we can prove that

∆ = ∆′ and no searching is required. Observe that in these cases we write the

product of two elements x1 = w1n1v1 and x2 = w2n2v2 in X as

(w1n1v1)(w2n2v2) = w1w
v−1
1 n−1

1
2 n1n2v

n2
1 v2, (4.3)

where w1, w2 ∈ W , n1, n2 ∈ NU(V) and v1, v2 ∈ V .

Theorem 4.18. Assume Hypothesis 4.9 and suppose that X = WNU(V)V . Define

∆′ = {δ ∈ Aut(U) : W δ = W, NU(V)δ = NU(V), δ|W ∈ NAut(W)(V |W)}. Then

each δ ∈ ∆′ can be extended to a unique automorphism of X fixing V .

Proof. We follow a similar argument to the proof of Theorem 4.15. Uniqueness

follows from Lemma 4.12. By Lemma 4.11, δ defines an automorphism ν ∈ Aut(V)

such that v δ|W = vν |W and thus δ|Wvν |W = v|W δ|W for v ∈ V . So for any w2 ∈ W ,

4. General methods 51

v1 ∈ V we have

(wδ2)(v−1
1)ν = (w

v−1
1

2)δ

and hence for n2 ∈ NU(V) we obtain

(wδ2)(v−1
1)ν = (w

v−1
1

2)δ =⇒

vν1w
δ
2(vν1)−1 = (w

v−1
1

2)δ =⇒

vν1w
δ
2 = (w

v−1
1

2)δvν1 =⇒

vν1w
δ
2n

δ
2 = (w

v−1
1

2)δnδ2(vν1)n
δ
2 .

Now we claim that

(vν)n
δ

= (vn)ν (4.4)

holds for all n ∈ NU(V), v ∈ V . It is sufficient to show that the action of the RHS

and LHS on W are the same since CV (W) = 1. Note that vn = v n in our notation.

(vν)nδ = vν
nδ

= nδ
−1
δ−1vδnδ

= n−1δδ−1vδnδ

= δ−1n−1vnδ

= v nδ

(vn)ν = vn
δ

= δ−1v nδ

= v nδ

= (vν)nδ ,

4. General methods 52

which proves the claim.

Hence, continuing our earlier calculation, we have

vν1w
δ
2n

δ
2 = (w

v−1
1

2)δnδ2(vν1)n
δ
2

= (w
v−1
1

2)δnδ2(vn2
1)ν . (by (4.4))

Furthermore, for w1 ∈ W , n1 ∈ NU(V) and v2 ∈ V we deduce

nδ1v
ν
1 (w2n2)δ = nδ1(w

v−1
1

2)δnδ2(vn2
1)ν

= (n1w
v−1
1

2 n2)δ(vn2
1)ν

= (w
v−1
1 n−1

1
2 n1n2)δ(vn2

1)ν

and hence

((w1n1)δvν1)((w2n2)δvν2) = (w1w
v−1
1 n−1

1
2 n1n2)δ(vn2

1 v2)ν .

Using (4.3), uv 7→ uδvν defines an endomorphism, and hence an automorphism of

X.

4.2 Isomorphism testing

We now outline results for isomorphism testing, which mirror those for automor-

phism computation given in the previous section. Again, these results are written

in very general terms and will be referred to later in the thesis.

Let X1 and X2 be two groups, and suppose that we want to determine if X1
∼=

X2. Our general strategy is to assume that some basic structural compatibility has

already been determined between X1 and X2 and we then use this to attempt to

construct an isomorphism.

4. General methods 53

4.2.1 Direct product

Given two groups which are direct products of characteristic subgroups, we show that

an isomorphism between the two can be constructed from isomorphisms between the

corresponding factors of the direct products.

Theorem 4.19. Let X1, X2 be groups with characteristic subgroups Ui, Vi ≤ Xi with

Xi = UiVi and Ui ∩ Vi = 1 for i = 1, 2. Then Xi
∼= Ui × Vi for i = 1, 2. Further

suppose that |U1| = |U2| and |V1| = |V2|. Then X1
∼= X2 if and only if there exist

isomorphisms µ : U1 → U2 and ν : V1 → V2, and moreover Φ : X1 → X2 is an

isomorphism defined by Φ(uv) = uµvν where u ∈ U and v ∈ V .

Proof. Let φi : Xi → Ui × Vi for i = 1, 2, be defined as φi : xi 7→ (ui, vi) where

xi = uivi for xi ∈ Xi, ui ∈ Ui and vi ∈ Vi. Suppose we have isomorphisms µ and ν,

then define Φµ : U1×V1 → U2×V1 and Φν : U1×V1 → U1×V2 by Φµ : (u, v) 7→ (uµ, v)

and Φν : (u, v) 7→ (u, vν) for u ∈ U1, v ∈ V1. Clearly both Φµ,Φν are isomorphisms,

as is ΦµΦν : (u, v) 7→ (uµ, vν) and so φ1 ◦ ΦµΦν ◦ φ−1
2 : X1 → X2 is an isomorphism.

Now suppose that X1
∼= X2 and Φ : X1 → X2 is an isomorphism. By Lemma 6.1,

U1
∼= U2 and V1

∼= V2, and hence there exists isomorphisms µ : U1 → U2 and

ν : V1 → V2. Since U2, V2 charX2, UΦ
1 = U2 and V Φ

1 = V2, thus µ = Φ|U1 and

ν = Φ|V1 .

4.2.2 Subdirect product

In this section we assume that we have two groups X1 and X2 which can be written

as subdirect products, and show that isomorphisms between the subdirect factors

can be used to construct an isomorphism X1 → X2.

Theorem 4.20. Let X1, X2 be groups with subdirect products defined by ψi : Xi →

Xi/Ui × Xi/Vi where Ui, Vi charXi and Vi ∩ Ui = 1 for i = 1, 2. Then there exists

an isomorphism Ψ : X1 → X2 such that UΨ
1 = U2 and V Ψ

1 = V2 if and only if

4. General methods 54

there exist isomorphisms ΨU : X1/U1 → X2/U2 and ΨV : X1/V1 → X2/V2 such that

X
ψ1(ΨU ,ΨV)
1 = Xψ2

2 .

Proof. Assume that there exists an isomorphism Ψ : X1 → X2, then we can define

isomorphisms ΨU : X1/U1 → X2/U2, ΨV : X1/V1 → X2/V2 by ΨU : xU1 7→ xΨU2

and ΨV : xV1 7→ xΨV2 for x ∈ X1.

It now remains to check that X
ψ1(ΨU ,ΨV)
1 = Xψ2

2 . Take x ∈ X1, then we have

xψ1(ΨU ,ΨV) = (xU1, xV1)(ΨU ,ΨV)

= ((xU1)ΨU , (xV1)ΨV)

= (xΨU2, x
ΨV2)

= (xΨ)ψ2 ,

and since Ψ is an isomorphism, we are done.

Now we prove the converse. We claim that the mapping Ψ : X1 → X2 defined

by Ψ = ψ1(ΨU ,ΨV)ψ−1
2 is an isomorphism. First, given x ∈ X1, xψ1(ΨU ,ΨV) =

(xU1, xV1)(ΨU ,ΨV) = (x2U2, x2V2) for some x2 ∈ X2 since X
ψ1(ΨU ,ΨV)
1 = Xψ2

2 . Thus

as ψ2 is a monomorphism, Ψ is a well defined mapping, and since ψ1, ψ2,ΨU and

ΨV are homomorphisms, Ψ is a homomorphism.

Now suppose that xΨ = 1X2 for some x ∈ X1. Then as ψ1, ψ2 are monomor-

phisms and ΨU , ΨV are isomorphisms, we observe that (1X2)ψ2 = 1X2/U2×X2/V2 =

1X1/U1×X1/V1

(ΨU ,ΨV), and 1ψ1 = 1X1/U1×X1/V1 . Hence x = 1X1 and Ψ is a monomor-

phism. Finally, Ψ is surjective since X
ψ1(ΨU ,ΨV)
1 = Xψ2

2 , and hence Ψ is an iso-

morphism, which proves the claim. Thus we have constructed an isomorphism

Ψ : X1 → X2.

Theorem 4.21. Let X1, X2 be groups with characteristic subgroups Ui, Vi ≤ Xi with

Ui ∩ Vi = 1 for i = 1, 2. Define φi,U : Xi → Xi/Ui and φi,V : Xi → Xi/Vi to be the

natural maps. Then there exists an isomorphism Ψ : X1 → X2 such that UΨ
1 = U2

4. General methods 55

and V Ψ
1 = V2 if and only if there exist isomorphisms ΨU : X1/U1 → X2/U2 and

ΨV : X1/V1 → X2/V2 such that

(
(x1U1V1/U1)ΨU

)φ−1
2,U =

(
(x1U1V1/V1)ΨV

)φ−1
2,V (4.5)

for every x1 ∈ X1.

Proof. Suppose that Ψ : X1 → X2 is an isomorphism such that UΨ
1 = U2 and

V Ψ
1 = V2. Then by Theorem 4.20, there exist isomorphisms ΨU : X1/U1 → X2/U2

and ΨV : X1/V1 → X2/V2 defined by ΨU : xU1 7→ xΨU2 and ΨV : xV1 7→ xΨV2

respectively, such that X
ψ1(ΨU ,ΨV)
1 = Xψ2

2 where ψi : Xi → Xi/Ui × Xi/Vi for

i = 1, 2. In particular, if x ∈ X1 and (xU1)ΨU = yU2 for some y ∈ X2, then

(xV1)ΨV = yV2. Observe that (V1U1)ΨU = V Ψ
1 U2 = V2U2 since V Ψ

1 = V2 and

similarly (U1V1)ΨV = UΨ
1 V2 = U2V2 due to UΨ

1 = U2. Now, given x ∈ X1 suppose

that (xU1V1)ΨU = yU2V2 with y ∈ X2. Then (xU1V1)ΨV = yU2V2, and so ΨU and

ΨV satisfy (4.5).

Conversely, suppose that ΨU : X1/U1 → X2/U2 and ΨV : X1/V1 → X2/V2 are

isomorphisms such that (4.5) holds. Let x ∈ X1 and suppose that (xU1)ΨU = aU2

and (xV1)ΨV = bV2 where a, b ∈ X2. Since V ΨU
1 = V2 and UΨV

1 = U2, we get

(xU1V1)ΨU = aU2V2 and (xU1V1)ΨV = bU2V2. By (4.5), we must have aU2V2 = bU2V2

and hence a ∈ bU2V2. Therefore there exist u2 ∈ U2 and v2 ∈ V2 such that a = bu2v2,

and (xU1, xV2)(ΨU ,ΨV) = (bv2U2, bV2) = (bv2U2, bv2V2). Therefore X
ψ1(ΨU ,ΨV)
1 = Xψ2

2 ,

and by Theorem 4.20 X1
∼= X2.

4.2.3 Conjugation action

In this section we outline results for isomorphism testing which are analogous to

those for constructing automorphism groups found in Section 5.3.

Definition 4.22. Let X1 and X2 be groups and suppose that Ui, Vi ≤ Xi for i = 1, 2.

4. General methods 56

Then isomorphisms µ : U1 → U2 and ν : V1 → V2 are said to be associated if there

exists an isomorphism Φ : X1 → X2 such that Φ|U1 = µ and Φ|V1 = ν, and we write

µ ∼X1,X2 ν. Further, we say that µ extends, or can be extended to an isomorphism

X1 → X2.

In particular, we note the following consequence of this definition.

Lemma 4.23. Let X1 and X2 be groups with subgroups Ui, Vi ≤ Xi such that Xi =

UiVi for i = 1, 2. Suppose that µ : U1 → U2 and ν : V1 → V2 are isomorphisms. Then

µ ∼ ν if and only if uv 7→ uµvν is an isomorphism X1 → X2 for u ∈ U1, v ∈ V1.

Proof. Every element xi ∈ Xi can be expressed as a product xi = uivi for ui ∈ Ui,

vi ∈ Vi, where i = 1, 2. Hence by definition, there exists an isomorphism Φ :

X1 → X2 with Φ|U1 = µ and Φ|V2 = ν if and only if Φ : x1 7→ uΦ
1 v

Φ
1 = uµ1v

ν
1 for

u1 ∈ U1, u2 ∈ U2, is an isomorphism.

We now introduce a hypothesis which will be assumed throughout this section.

Hypothesis 4.24. Let X1 and X2 be finite groups with subgroups Ui, Vi,Wi ≤ Xi

such that Xi = UiVi, Ui ∩ Vi = 1, Wi ≤ Ui, Wi charXi and CVi(Wi) = 1 for i = 1, 2.

Using Definition 4.22 we can derive conditions for an isomorphism µ : U1 → U2

to be associated with an isomorphism ν : V1 → V2, and further, how to construct

such a ν given µ.

Lemma 4.25. Let µ : U1 → U2 be an isomorphism such that W µ
1 = W2 and

(v1|W1)µ|W1 ∈ V2|W2 for every v1 ∈ V1. Then the mapping ν : V1 → V2, given by

ν : v1 7→ v2 where (v1|W1)µ|W1 = v2|W2 for some v2 ∈ V2, is a monomorphism.

Proof. Assume that all maps are restricted to W1 or W2 where appropriate. We

have v1
µ = v2 where v1 ∈ V1, v2 ∈ V2 and this v2 is unique since CV2(W2) = 1 (recall

that by Lemma 4.10, the mapping v1 7→ v1|W1 is a monomorphism). Hence ν is well

4. General methods 57

defined. It is straightforward to check that the mapping is a homomorphism. For

v1, v2 ∈ V1 we have:

(v1v2)ν = µ−1v1v2µ = µ−1v1 v2µ = µ−1v1µµ
−1v2µ = vν1 v

ν
2 = vν1v

ν
2 .

Further suppose that vν1 = 1V2 for some v1 ∈ V1. Then v1
µ = IdW2 and thus

((wµ
−1

2)v1)µ = w2 for every w2 ∈ W2. Hence (wµ
−1

2)v1 = wµ
−1

2 for all w2 ∈ W2 and

since W µ
1 = W2, wv1

1 = w1 for all w1 ∈ W1, so v1 = 1 as CV1(W1) = 1. Therefore ν

is a monomorphism.

Lemma 4.26. Let µ : U1 → U2 be an isomorphism such that W µ
1 = W2 and let

ν : V1 → V2 be an isomorphism. If µ ∼X1,X2 ν then (v1|W1)µ|W1 = vν1 |W2 for every

v1 ∈ V1.

Proof. Recall that µ ∼X1,X2 ν implies that there exists an isomorphism Φ : X1 → X2

with Φ|U1 = µ and Φ|V1 = ν. So, for all w1 ∈ W1 and v1 ∈ V1, (wv1
1)Φ = (v−1

1)ΦkΦvΦ
1 .

Therefore (wv1
1)µ = (v−1

1)νwµ1v
ν
1 , and hence wv1

1 = w
µvν1µ

−1

1 . Let w2 = wµ1 ∈ W2, then

wµ
−1v1µ

2 = wv1
µ

2 = w
vν1
2 .

Semidirect product

In this section assume Hypothesis 4.24 and further suppose that Ui = Wi for i = 1, 2.

Thus, as in the equivalent case for automorphism groups, we have Xi = Uio Vi and

every xi ∈ Xi can be expressed uniquely as xi = uivi for some ui ∈ Ui and vi ∈ Vi

for i = 1, 2. Furthermore we have

u1v1u2v2 = u1u
v−1
1

2 v1v2, (4.6)

for u1, u2 ∈ U1 and v1, v2 ∈ V1 (and the same holds for u1, u2 ∈ U2 and v1, v2 ∈ V2).

Theorem 4.27. Assume Hypothesis 4.24 with Ui = Wi for i = 1, 2. Let µ : U1 →

U2 be an isomorphism such that (V1|U1)µ = V2|U2. Then µ can be extended to an

4. General methods 58

isomorphism X1 → X2.

Proof. Define ν : V1 → V2 by v1 7→ v2 for v1 ∈ V1 and v2 ∈ V2 where v1
µ = v2. By

Lemma 4.25, ν is a monomorphism, and hence an isomorphism (since (V1|U1)µ =

V2|U2). We claim that µ and ν combine to form an isomorphism; i.e. that uv 7→ uµvν

is an isomorphism X1 → X2 (Lemma 4.23). By the definition of ν, for u′2 ∈ U2 and

v1 ∈ V1 we have

(u′2)µ
−1v−1

1 µ = (u′2)v
−1
1

ν

,

and if we now define u2 ∈ U1 such that uµ2 = u′2 then we obtain

u
v−1
1 µ

2 = u
µv−1

1

ν

2 .

Hence u
v−1
1 µ

2 vν1 = vν1u
µ
2 and for u1 ∈ U1, v2 ∈ V1 we have

uµ1(u
v−1
1

2)µvν1v
ν
2 = (uµ1v

ν
1)(uµ2v

ν
2).

Therefore using (4.6) in Section 5.3.1, uv 7→ uµvν is an isomorphism X1 → X2.

General method

Again if we assume Hypothesis 4.24 but now relax the condition of Ui charXi for

i = 1, 2 given in the previous section, we can still use a similar approach to the

semidirect case, with several refinements.

As in the automorphism group case, if Xi = WiNUi(Vi)Vi for i = 1, 2, then we

can give specific criteria necessary for an isomorphism µ : U1 → U2 to extend to an

isomorphism Φ : X1 → X2, as demonstrated in the following theorem.

Theorem 4.28. Assume Hypothesis 4.24 and suppose that Xi = WiNUi(Vi)Vi for

i = 1, 2. Let µ : U1 → U2 be an isomorphism such that W µ
1 = W2, NU1(V1)µ =

NU2(V2) and (V1|W1)µ|W1 = V2|W2. Then µ extends to an isomorphism X1 → X2.

4. General methods 59

Proof. Using Lemma 4.25 and Lemma 4.26, µ defines an isomorphism ν : V1 → V2

such that (v|W1)µ|W1 = vν |W2 , and hence

v|W1µ|W1 = µ|W1v
ν |W2 (4.7)

for v ∈ V1.

Now we claim that

(vν)n
µ

= (vn)ν (4.8)

holds for all n ∈ NU1(V1), v ∈ V1. It is sufficient to show that the action of the RHS

and LHS on W2 are the same since CV2(W2) = 1. As in the proof of Theorem 4.18,

note that vn = v n, and to further simplify notation we write v|W1 as v.

(vν)nµ = vν
nµ

= nµ
−1
µ−1vµnµ

= n−1µµ−1vµnµ

= µ−1n−1vnµ

= v nµ

(vn)ν = vn
µ

= µ−1v nµ

= v nµ

= (vν)nµ ,

which proves the claim.

We note that, for any w2 ∈ W1, v1 ∈ V1 we have

(wµ2)(v−1
1)ν = (w

v−1
1

2)µ

4. General methods 60

by (4.7) and hence we obtain

(wµ2)(v−1
1)ν = (w

v−1
1

2)µ =⇒

vν1w
µ
2 (vν1)−1 = (w

v−1
1

2)µ =⇒

vν1w
µ
2 = (w

v−1
1

2)µvν1 =⇒

vν1w
µ
2n

µ
2 = (w

v−1
1

2)µnµ2(vν1)n
µ
2

= (w
v−1
1

2)µnµ2(vn2
1)ν (by (4.8))

for n2 ∈ NU1(V1). Furthermore, for w1 ∈ W1, n1 ∈ NU1(V1) and v2 ∈ V1 we deduce

nµ1v
ν
1 (w2n2)µ = nµ1(w

v−1
1

2)µnµ2(vn2
1)ν

= (n1w
v−1
1

2 n2)µ(vn2
1)ν

= (w
v−1
1 n−1

1
2 n1n2)µ(vn2

1)ν

and hence

((w1n1)µvν1)((w2n2)µvν2) = (w1w
v−1
1 n−1

1
2 n1n2)µ(vn2

1 v2)ν .

Using (4.3) in Section 5.3.2, uv 7→ uµvν defines an isomorphism X1 → X2.

Chapter 5

Computing automorphism groups

of soluble groups

In this chapter we derive a procedure to construct the automorphism group of a

general soluble group G, and further, an algorithm which constructs a polycyclic

presentation for Aut(G) when soluble. Most of the results refer directly to those

given in Section 4.1.

We will often avoid stating explicit complexity evaluations of the algorithms in

this chapter, as most computations rely on the automorphism group for p-group

algorithm, which is known to be at least exponential. The goal is to find algorithms

which perform well in practice, and to this end we include timing results for many

examples in Chapter 8.

We begin by defining some notation which will be assumed as standard for the

rest of the chapter.

61

5. Computing automorphism groups of soluble groups 62

Notation (†)

Let G be a finite soluble group with |G| = pnq where p ∈ π(G) and

q, n ∈ N such that hcf(p, q) = 1. Then by the results of Sylow and

Hall detailed in Chapter 2, there exist subgroups K,S, T ≤ G such that

K = Op(G), S ∈ Sylp(G) and T ∈ Hallq(G). We assume that p has

been chosen such that K 6= 1.

This construction gives rise to a product structure for G which will be used for

the rest of the chapter, thus:

Lemma 5.1. G = ST .

Proof. We have S ∩ T = 1 and |S||T | = |G|.

Lemma 5.2. Let g ∈ G. Then there exists some sg ∈ S such that g−1Tg = s−1
g Tsg.

Similarly there exists some tg ∈ T such that g−1Sg = t−1
g Stg.

Proof. Since G = ST (by Lemma 5.1) we can find s ∈ S and t ∈ T such that

g−1 = st. So if we take sg = s−1, then sgg
−1 = sg(st) = t ∈ NG(T), and hence

g−1Tg = s−1
g Tsg. We repeat the argument exchanging S and T giving the equivalent

result for conjugates of S.

We now outline several results which allow us to split the algorithm into different

cases.

Definition 5.3. Given a group G we define the Fitting subgroup to be the largest

normal nilpotent subgroup of G, denoted F (G).

Proposition 5.4. Let G be a soluble group. Then CG(F (G)) ≤ F (G).

Proof. See [KS04, 6.1.4].

Proposition 5.5. Suppose that CT (K) C G. Then CT (K) = Op′(G) and hence

CT (K) charG.

5. Computing automorphism groups of soluble groups 63

Proof. We have CT (K) ≤ Op′(G) since CT (K) is normal in G, and Op′(G) ≤ T

(recall that Op′(G) =
⋂
g∈G g

−1Tg). Then for all t ∈ Op′(G) and k ∈ K

k−1t−1kt = (k−1t−1k)t = k−1(t−1kt) ∈ Op′(G) ∩K = 1,

which gives kt = k and so t ∈ CT (K). Therefore Op′(G) ≤ CT (K).

Proposition 5.6. Suppose that CT (K) 6= 1. Then Op′(G) 6= 1.

Proof. Firstly, CT (K) 6= 1 and so K � KCG(K)CG. Define N/K to be a minimal

normal subgroup of G/K contained in KCG(K)/K. Since G is soluble, this is an

elementary abelian r-group for some prime r 6= p (recall K = Op(G)). By definition

K ≤ N ≤ KCG(K), so N = KCN(K) and hence N = KL for L ∈ Sylr(CN(K)).

By Proposition 2.3, N = K ×L and L charN CG. Therefore L is normal in G and

1 6= L ≤ Op′(G).

We are now in a position to give a full outline of the automorphism group algo-

rithm, which proceeds by splitting into the following four cases:

1. Direct Product

S, T C G.

2. Subdirect Product

L = Op′(G) 6= 1. Here we construct a subdirect product ψ : G→ G/K ×G/L

and recurse.

3. Semidirect Product

S C G and T 6C G, giving G ∼= S o T (assume that CT (S) = 1, otherwise in

case 2).

4. General Method (Conjugation Search) S 6C G.

5. Computing automorphism groups of soluble groups 64

The next few sections will address each case in detail. As we will sometimes

need to recurse back to the main algorithm, we define a prototype [for the naming

and parameters here], and then give a full description later in the chapter. The

algorithm AutomorphismGroupSolubleGroup takes a parameter G which is

a finite soluble group, and constructs the automorphism group of G.

We begin by recalling the idea of extending automorphisms given in Defini-

tion 4.7. In particular, we recall the result of Lemma 4.8: an automorphism

σ ∈ Aut(S) extends to an automorphism of G fixing T if and only if there exists an

automorphism τ ∈ Aut(T) such that st 7→ sσtτ is an automorphism of G.

5.1 Direct product

Assume that both S and T are normal (and therefore characteristic) subgroups of G.

Then G is a direct product, G ∼= S × T , and we construct the automorphism group

of G using Theorem 4.3. All automorphisms of S can be extended to automorphisms

of G fixing T (as we would expect since T charG). A presentation for G can be con-

structed from presentations of S and T : for more details see [Joh97, 4.3, Proposition

4]. So, given polycyclic presentations Pc〈s1, s2, . . . , sn|RS〉 and Pc〈t1, t2, . . . , tm|RT 〉

for S and T respectively, we can construct a polycyclic presentation

Pc 〈s1, s2, . . . , sn, t1, t2, . . . , tm|RS, RT , [S, T]〉

for G. To define an automorphism α : G→ G, we only need to specify the action of

α on this generating set of G. The full algorithm AutomorphismGroupDirect-

Product is given in Algorithm 5.1.

5. Computing automorphism groups of soluble groups 65

Algorithm 5.1: AutomorphismGroupDirectProduct

Input: (G,S, T) : A finite soluble group G with subgroups S ∈ Sylp(G) and

T ∈ Hallp′(G) such that S, T C G

Output: A : The automorphism group of G

1 AS := AutomorphismGroupPGroup(S);

2 AT := AutomorphismGroupSolubleGroup(T);

3 AG := [];

4 for αS ∈ Generators(AS) do

5 Append(∼ AG, [s 7→ sαS : s ∈ PCGenerators(S)] ∪ [t 7→ t : t ∈
PCGenerators(T)]);

6 for αT ∈ Generators(AT) do

7 Append(∼ AG, [s 7→ s : s ∈ PCGenerators(S)] ∪ [t 7→ tαT : t ∈
PCGenerators(T)]));

8 return 〈α : α ∈ AG〉;

5.2 Subdirect product

In this section we define L = Op′(G) and assume that L 6= 1. Since both K and L

are characteristic subgroups of G and L ∩K = 1, we construct a subdirect product

ψ : G→ G/K×G/L given by ψ : g 7→ (gK, gL) and apply Theorems 4.5 and 4.6 to

compute Aut(G). Determining Aut(G) is now reduced to two sub-problems: com-

puting Aut(G/K) and Aut(G/L), and FixSubgroup calculations. Note that if

L = T then G/L is a p-group and so again we are relying on the p-group automor-

phism algorithm.

We now give an outline of the formal procedure to compute Aut(G) in this case,

AutomorphismGroupSubdirectProduct (see Algorithm 5.2).

5. Computing automorphism groups of soluble groups 66

Algorithm 5.2: AutomorphismGroupSubdirectProduct

Input: (G,K,L) - G soluble group, K = Op(G), L = Op′(G)

Output: A : The automorphism group of G

1 Let φK : G→ G/K and φL : G→ G/L be the natural maps;

2 /* Construct Aut(G/K) and Aut(G/L) */

3 AL := AutomorphismGroupSolubleGroup(GφL);

4 AK := AutomorphismGroupSolubleGroup(GφK);

5 AL,K := FixSubgroup(AL, K
φL);

6 AK,L := FixSubgroup(AK , L
φK);

7 RL, ϕL := Representation(AL,K);

8 RK , ϕK := Representation(AK,L);

9 Let φK,LK : G/K → G/LK and φL,LK : G/L→ G/LK be the natural

maps;

10 ALK := AutomorphismGroup((GφK)φK,LK);

11 RLK , ϕLK := Representation(ALK);

12 Construct maps ϕL,LK : RL → RLK and ϕK,LK : RK → RLK ;

13 A′gens := [(k, 1RL) : k ∈ Generators(KerϕL,LK)] cat

[(1RK , k) : k ∈ Generators(KerϕK,LK)] cat[(
(rKL)ϕ

−1
K,LK , (rKL)ϕ

−1
L,LK

)
: rLK ∈ Generators(ImϕK,LK ∩ ImϕL,LK)

]
;

14 A′ := 〈 (kϕ−1
K , lϕ

−1
L) : (k, l) ∈ A′gens 〉;

15 AG := [];

16 Define ψ : G→ G/K ×G/L to be the natural mapping;

17 for (ΨK ,ΨL) ∈ Generators(A′) do

18 Append(∼ AG, [g 7→ gψ(ΨK ,ΨL)ψ−1
: g ∈ PCGenerators(G)]);

19 return 〈α : α ∈ AG〉;

5. Computing automorphism groups of soluble groups 67

5.3 Conjugation action

In this section we handle the two remaining cases for the soluble group automorphism

group algorithm: where T is not normal in G. Note that we assume that CT (K) = 1

otherwise we use the subdirect case (Proposition 5.6).

Theorem 5.7. Define Γ = {α ∈ Aut(G) : Tα = T, Sα = S} and let I = Inn(G).

Then Aut(G) = ΓI, and thus Aut(G) is determined by restriction to the action on

S and T .

Proof. Given any automorphism α ∈ Aut(G) we know that Sα = g−1Sg for some

g ∈ G (by Lemma 2.17). Using Lemma 5.2 we can find s ∈ S such that Tαg
−1

=

s−1Ts, so αg−1s−1 ∈ Γ.

The strategy to compute the automorphism group in these cases is based on the

results outlined in Section 4.1.3.

5.3.1 Semidirect product

Assume that S CG and CT (K) = 1. Then S is a characteristic subgroup of G and

by Theorem 5.7 we can use the results from the subsection “Semidirect Product” in

Section 4.1.3. Thus to construct Aut(G) we need to compute

Σ = {σ ∈ Aut(S) : σ ∈ NAut(S)(T |S)}, (5.1)

(as defined in (4.2)), and define a mapping φ : Γ → Σ as φ : α 7→ α|S. By

Proposition 4.16, φ is an isomorphism and we have Σ ∼= Γ. So we construct Γ by

extending the generators of Σ to automorphisms of G (note that given any σ ∈ Σ,

we can construct an automorphism T → T using Lemma 4.11).

The formal procedure to compute Aut(G) for the semidirect product case is given

in AutomorphismGroupSemidirectProduct (see Algorithm 5.3).

5. Computing automorphism groups of soluble groups 68

Algorithm 5.3: AutomorphismGroupSemidirectProduct

Input: (G,S, T) : A soluble group G with S = Op(G), T ∈ Hallp′(G) and

CT (S) = 1

Output: A : The automorphism group of G

1 AS := AutomorphismGroupPGroup(S);

2 φ,R := Representation(AS); /* See Section 3.1 */

3 T := HallSubgroup(G, p′);

4 Σ := Normaliser(R, 〈 (t|S)φ : t ∈ PCGenerators(T) 〉);
5 AG := [];

6 /* Construct Γ by extending generators of Σ */

7 for σ ∈ Generators(Σ) do

8 αS := [s 7→ sσ
φ−1

: s ∈ PCGenerators(S)];

9 /* Find an element t ∈ T such that St = Sσ */

10 αT := [t 7→ FindConjugatingElement(T, S, t
σ
) : t ∈

PCGenerators(T)];

11 Append(∼ AG, αS ∪ αT);

12 /* Construct Inn(G) */

13 for g ∈ Generators(G) do

14 Append(∼ AG, InnerAutomorphism(G, g));

15 return 〈α : α ∈ AG〉;

5. Computing automorphism groups of soluble groups 69

5.3.2 Conjugation search

Now we consider the case where S 6= K and Op′(G) = 1. Again using Theorem 5.7

and the results of Section 4.1.3, we want to find some subgroup of Aut(S) which

can be extended to the automorphism group of G. Let Σ′ ≤ Aut(S) be defined as

follows:

Σ′ = {σ ∈ Aut(S) : Kσ = K, NS(T)σ = NS(T), σ|K ∈ NAut(K)(T |K)}.

Define Σ ≤ Σ′ to be the subgroup of Σ′ whose elements extend to automorphisms

of G (again compare with (4.2) and (5.1)).

We now use Lemmas 4.11 and 4.12 from Section 4.1.3 and attempt to extend

each σ ∈ Σ′ to an automorphism of G. In practice, this involves a search for

automorphisms which extend correctly. We begin by testing the generators of Σ′,

holding those which do extend in a subgroup Σ0 ≤ Σ′. We then construct double

cosets {Σ0αΣ0 : α ∈ Σ′}, and test each double coset representative. Those that

extend are adjoined to Σ0, and we recompute the double coset representatives. This

continues until all representatives have been tested.

However, if G = KNG(T) and therefore G = KNS(T)T , then Σ = Σ′ (by

Theorem 4.18) and no searching is required. There are several examples where this

construction occurs, so we devote the next few results to demonstrating this.

Proposition 5.8. Let G be a finite soluble group such that Op(G) = 1 for some

p ∈ π(G), and suppose that G has a cyclic Sylow q-subgroup for all primes q ∈

π(G) \ {p}. Then G has a normal Hall p′-subgroup.

Proof. Consider F (G), the Fitting group of G. Since F (G) is a nilpotent normal

subgroup of G, it is the direct product of its Sylow subgroups, which in turn are all

normal in F (G). Thus F (G) is a direct product of Oq(F (G)) (actually Oq(F (G)) =

Oq(G)) for all primes q ∈ π(F (G)) ⊆ π(G), and since each Oq(F (G)) is characteristic

5. Computing automorphism groups of soluble groups 70

in F (G) and F (G) C G we have Oq(F (G)) C G. Therefore F (G) is a p′-subgroup

of G (recall that Op(G) = 1). As each Oq(F (G)) is cyclic, F (G) is cyclic and hence

Aut(F (G)) is abelian. Furthermore, by Proposition 5.4 we have that CG(F (G)) =

F (G), and using Proposition 2.6 we obtain

I ∼=
NG(F (G))

CG(F (G))
=

G

F (G)

for some subgroup I ≤ Aut(F (G)). Hence G/F (G) is abelian. Thus any H ∈

Hallp′(G/F (G)) is normal in G/F (G) and therefore HF (G) C G and HF (G) ∈

Hallp′(G).

Theorem 5.9. Let G be a finite soluble group and let p ∈ π(G) be such that G

has a cyclic Sylow q-subgroup for each q ∈ π(G) \ {p}. Further, let S ∈ Sylp(G),

T ∈ Hallp′(G) and K = Op(G). Then G = KNS(T)T .

Proof. Apply Proposition 5.8 to G/K, noting that TK/K ∈ Hallp′(G/K). We

have TK C G and by the Frattini argument for Hall subgroups (Corollory 2.13),

G = NG(T)KT = KNS(T)T since G = ST (Lemma 5.1).

Corollary 5.10. Let G be a soluble group such that |G| = pnΠi∈Ipi where p, pi

for i ∈ I are distinct primes, and suppose that S ∈ Sylp(G), K = Op(G) and

T ∈ Hallp′(G). Then G = KNS(T)T .

Proof. Let Pi ∈ Sylpi(G), then |Pi| = pi and therefore Pi is cyclic for each i ∈ I.

Hence the result follows from Theorem 5.9.

We now give an outline of the formal procedure in AutomorphismGroupCon-

jugationSearch (see Algorithm 5.4). We note that our implementation doesn’t

check if G = KNS(T)T ; in this case the search detailed in Lines 19 to 25 does not

run since 〈DRK 〉 = N .

5. Computing automorphism groups of soluble groups 71

Algorithm 5.4: AutomorphismGroupConjugationSearch

Input: (G,S,K, T) : A soluble group G with S ∈ Sylp(G), K = Op(G),

T ∈ Hallp′(G) and CT (K) = 1

Output: A : The automorphism group of G

1 AS := AutomorphismGroupPGroup(S);

2 φS, RS := Representation(AS); /* See Section 3.1 */

3 AS,K := FixSubgroup(AS, K);

4 NS(T) := Normaliser(S, T);

5 AS,K,N := FixSubgroup(AS,K , NS(T));

6 AK := AutomorphismGroupPGroup(K);

7 φK , RK := Representation(AK); /* See Section 3.1 */

8 N := Normaliser(RK , 〈 (t|K)φK : t ∈ PCGenerators(T) 〉);
9 /* Subgroup of RK which has been extended */

10 AG := []; DRK := [];

11 /* Loop through the generators before performing full search */

12 for n ∈ Generators(N) do

13 αG := [s 7→ sn
φ−1

: s ∈ PCGenerators(S)] ∪ [t 7→
FindConjugatingElement(T, S, t

n
) : t ∈ PCGenerators(T)];

14 if IsHomomorphism(G,G, αG) then

15 Append(∼ AG, αG); Append(∼ DRK , n);

16 /* Construct a list of double coset representatives */

17 R := DoubleCosetRepresentatives(N, 〈DRK 〉, 〈DRK 〉);
18 i := 1; /* Start at 1 since the 0 entry is the identity */

19 while i < Length(R) do

20 n := R[i];

21 αG := [s 7→ sn
φ−1

: s ∈ PCGenerators(S)] ∪ [t 7→
FindConjugatingElement(T, S, t

n
) : t ∈ PCGenerators(T)];

22 if IsHomomorphism(G,G, αG) then

23 Append(∼ AG, αG); Append(∼ DRK , n); i := 0;

24 R := DoubleCosetRepresentatives(N, 〈DRK 〉, 〈DRK 〉);

25 i := i+ 1;

26 /* Construct Inn(G) */

27 for g ∈ Generators(G) do

28 Append(∼ AG, InnerAutomorphism(G, g));

29 return 〈α : α ∈ AG〉;

5. Computing automorphism groups of soluble groups 72

5.4 Full algorithm and summary

For completeness, we now include the full procedure, AutomorphismGroupSol-

ubleGroup, given in Algorithm 5.5.

Algorithm 5.5: AutomorphismGroupSolubleGroup

Input: G : A finite soluble group

Output: A : The automorphism group of G

1 Determine a sensible value of p, so Op(G) 6= 1; /* See Section 5.4.1 */

2 K := pCore(G, p);

3 L := Core(G, p′);

4 if |K||L| = |G| then

5 return AutomorphismGroupDirectProduct(G,K,L);

6 if L 6= 1 then

7 return AutomorphismGroupSubdirectProduct(G,K,L);

8 S := SylowSubgroup(G, p);

9 T := HallSubgroup(G, p′);

10 if |K| = |S| then

11 return AutomorphismGroupSemidirectProduct(G,S, T);

12 return AutomorphismGroupConjugateSearch(G,S,K, T);

In summary of the results of the last few sections, we make several remarks which

will be referred to later. Continuing the use of Notation (†), given a soluble group

G and an appropriate Sylow p-subgroup S, we can compute Aut(G) by construct-

ing subgroups A,B ≤ Aut(G) such that Aut(G) = AB, where A is computed by

extending automorphisms from a specific subgroup Σ ≤ Aut(S), and B is either 1

or Inn(G). In order to construct a simplified view of the whole algorithm for later

use, we define A and B for each of the sub-cases of the algorithm:

• Direct Product Every automorphism σ ∈ Aut(S) extends to an automor-

phism of G. Thus Σ = Aut(S) and each σ ∈ Σ gives rise to the set of

5. Computing automorphism groups of soluble groups 73

automorphisms Tσ = {st 7→ sσtτ : τ ∈ Aut(T)} ⊂ Aut(G). Setting A = {Tσ :

σ ∈ Aut(S)} gives Aut(G) = AB with B = 1.

• Subdirect Product L = Op′(G) > 1; i.e. T C G or CT (K) 6= 1. Each

α ∈ Aut(G) is induced by some α ∈ A′ ≤ Aut(G/K) × Aut(G/L). Thus we

have a similar situation to the direct product case. Each α fixes the image of

ψ : G→ G/K×G/T where ψ : g 7→ (gK, gT) for g ∈ G. Let καT = {(αK , αT) :

(αK , αT) ∈ A′} and A = {ψκαTψ−1 : αT ∈ AT}. Thus Aut(G) = AB with

B = 1.

• Semidirect Product CT (K) = 1. Each automorphism σ ∈ Σ = NAut(S)(T |S)

can be extended to an automorphism of G fixing T . These induced automor-

phisms of G give rise to the subgroup A ≤ Aut(G). Then Aut(G) = AB where

B = Inn(G).

• Conjugate Search CT (K) = 1. We construct Σ′ = {σ ∈ Aut(S) : Kσ =

K, NS(T)σ = NS(T), σ|K ∈ NAut(K)(T |K)}, and perform a search to find

Σ ≤ Σ′: the automorphisms of S which extend to automorphisms of G fixing

T . Again, these induced automorphisms of G generate the subgroup A and

we have Aut(G) = AB where B = Inn(G).

This information will be particularly useful in the next section and in Chap-

ter 7, where given an automorphism σ ∈ Σ we will need to determine the induced

automorphism(s) of G.

5.4.1 Selection of appropriate p values

As part of the algorithm, we also need to determine a sensible value of p from the

given finite soluble group G. In terms of performance, it is generally preferred that

p is taken to be the prime which creates the largest Sylow p-subgroup of G with

5. Computing automorphism groups of soluble groups 74

non-trivial p-Core; i.e.

p = arg max
p∈π(G)

{
|P | : P ∈ Sylp(G), Op(G) 6= 1

}
.

5.5 Determining solubility and PC presentations

In this section we tackle the problem of constructing polycyclic presentations for

soluble automorphism groups of soluble groups. Given an automorphism group

Aut(G) for some soluble group G, the task is to construct a polycyclic presentation

Aut(G)PC and an isomorphism ϕG : Aut(G)→ Aut(G)PC . We will use this notation

throughout.

In general, this is not a straightforward calculation. Starting with the generating

set of an automorphism group, the current strategy is to construct a permutation

representation and test for solubility. A PC presentation is then computed if the

group is soluble. This approach relies on being able to quickly construct a practi-

cal (low-degree) permutation representation, greatly limiting effectiveness for large

examples.

In the method described here, we attempt to determine the solubility of the re-

sulting automorphism group by testing the solubility of groups used in intermediary

steps during its construction. This does not hinder the calculation, as we already

use PC presentations over other group types whenever possible. If it is found to be

soluble, we the can construct a PC presentation for the whole automorphism group

by extending the PC presentation of an intermediary group.

5.5.1 Direct and subdirect products

Suppose that Aut(G) has been constructed using either the direct or subdirect prod-

uct methods outlined in the previous section. In both cases we rely on recursion to

construct the PC presentation: i.e. if polycyclic presentations for the two compo-

5. Computing automorphism groups of soluble groups 75

nent parts have been constructed, then we glue them together to form a polycyclic

presentation for the whole group. Note the following well known result.

Theorem 5.11. Let X be a group and U, V ≤ X such that X ∼= U ×V . Then X is

soluble if and only if U and V are soluble.

Proof. See [Rot95, Thm 5.15 and Cor 5.18].

Direct product

For the direct product construction we proceed as follows. Given polycyclic presen-

tations for Aut(S) and Aut(T), say Aut(S)PC and Aut(T)PC with corresponding

mappings ϕS : Aut(S)→ Aut(S)PC and ϕT : Aut(T)→ Aut(T)PC , we compute the

direct product Aut(S)PC × Aut(T)PC from the diagram below.

Aut(G)
Φ−−−→ Aut(S)× Aut(T)yϕG yϕS×ϕT

Aut(G)PC
Ψ−−−→ Aut(S)PC × Aut(T)PC

(5.2)

Thus we have Aut(G)PC and ϕG : Aut(G) → Aut(G)PC . Given an automor-

phism α ∈ Aut(G) we construct αS = α|S : S → S and αT = α|T : T → T .

Then α 7→Φ (αS, αT) 7→ (αϕSS , αϕTT). Similarly given an element αPC ∈ Aut(G)PC ,

compute α
Ψ(ϕS ,ϕT)Φ−1

PC to obtain the corresponding automorphism of G. The formal

listing of this procedure, PCGroupDirectProduct, is given in Algorithm 5.6.

Subdirect product

In our calculation of Aut(G) for subdirect cases, we construct a subgroup A′ ≤

Aut(G/K) × Aut(G/L) where L = Op′(G), and we recall that in doing so we need

to have obtained manageable representations of both Aut(G/K) and Aut(G/L).

Thus, if Aut(G/K) and Aut(G/L) are soluble and have PC representations, we

can construct a direct product of their PC representations, and then derive the PC

5. Computing automorphism groups of soluble groups 76

Algorithm 5.6: PCGroupDirectProduct

Input: (A,ϕS, ϕT) : A = Aut(G) for a soluble group G, with Aut(S),

Aut(T) soluble, and ϕS, ϕT the corresponding PC representation

mappings

Output: (APC , ϕG) : APC = Aut(G)PC a polycyclic representation of

Aut(G), and a mapping ϕG : Aut(G)→ Aut(G)PC

1 APC , ϕ := DirectProduct(Aut(S)PC ,Aut(T)PC);

2 ϕG := ϕ−1 ◦ (ϕS × ϕT);

3 return Aut(G)PC , ϕG

representation for A′. The process is conceptually equivalent to the direct product

case, interchanging S with G/K and T with G/L, thus we omit the pseudocode.

In situations where Aut(G/L) and Aut(G/K) are not both soluble, then we can

construct a direct product of their representations and test if the image of Aut(G)

in Aut(G/L)×Aut(G/K) is soluble. If this is soluble, then we can construct a PC

presentation using existing machinery.

5.5.2 Conjugation action

Recall that in Section 5.3 we determine the automorphism group of a soluble group

G by finding a subgroup Σ ≤ Aut(S), where each σ ∈ Σ extends to an automorphism

of G fixing S and T . By extending these automorphisms of S, we construct Γ =

{α ∈ Aut(G) : Sα = S, Tα = T} and then Aut(G) = ΓI, where I = Inn(G), by

Theorem 5.7. Since G is soluble, I is soluble, and given this construction of Aut(G)

we now prove that it is possible to determine its solubility from the solubility of

Σ. Note that we handle the two cases K = S and K 6= S simultaneously, as the

calculation is the same for both.

Theorem 5.12. Assume the hypothesis given in Notation (†). Define Γ = {α ∈

Aut(G) : Sα = S, Tα = T}, and let Σ = {σ ∈ Aut(S) : σ = α|S for some α ∈ Γ}.

5. Computing automorphism groups of soluble groups 77

Suppose that Op′(G) = 1. Then Aut(G) is soluble if Σ is soluble.

Proof. Firstly we note that the condition Op′(G) = 1 guarantees that CT (K) = 1 (by

Proposition 5.6). So, using the structure of Aut(G) as described in Theorem 5.7,

we have Aut(G) = ΓI where I = Inn(G). From Proposition 4.17 we have Γ ∼=

Σ, and therefore Γ is soluble if and only if Σ is soluble. Noting that Out(G) =

Aut(G)/ Inn(G), we have

Out(G) =
ΓI

I
∼=

Γ

Γ ∩ I

by the second isomorphism theorem, and so now assume that Σ is soluble. Clearly I

is soluble since I ∼= G/Z(G), and so Γ∩ I is soluble. Hence Γ/(Γ∩ I) and therefore

Out(G) is soluble.

Briefly moving away from the context of Notation (†), we note that we have

proved the following result for general soluble groups.

Corollary 5.13. Let G be a soluble group and let S ∈ Sylp(G) for some prime

p ∈ π(G) such that Op′(G) = 1. Then Aut(G) is soluble if Aut(S) is soluble.

Proof. If Aut(S) is soluble then Σ is soluble and the result follows from Theo-

rem 5.12.

So given a polycyclic presentation for Σ, or equivalently Γ, we want to be able

to construct a polycyclic representation for Aut(G) = ΓI. Define Γ′ = Γ/(Γ ∩ I)

and suppose that Σ, and hence Γ′, is soluble. Further, let

Γ′ = X1 > X2 > · · · > Xn+1 = 1

be a polycyclic series for Γ′ and define X = Pc〈x1, x2, . . . , xn | RX〉 to be the corre-

sponding polycyclic presentation. As G is soluble, we also have a polycyclic series

I = Y1 > Y2 > · · · > Ym+1 = 1

5. Computing automorphism groups of soluble groups 78

and a corresponding polycyclic presentation Y = Pc〈y1, y2, . . . , ym | RY 〉, for I ∼=

G/Z(G).

We can now construct a polycyclic series

Aut(G) = X1Y1 > X2Y1 > · · · > XnY1 > Xn+1Y1 = Y1 > Y2 > · · · > Ym+1 = 1

and a corresponding polycyclic presentation

Z = Pc〈x1, x2, . . . , xn, y1, y2, . . . , ym | RX
′, RY , RX,Y 〉,

which is the presentation of the extension of I by ΓI/I. Here RX
′ contains relations

corresponding to the series X1Y1 > X2Y1 > · · · > XnY1 > Xn+1Y1, taken from

RX and adapted by multiplying by appropriate elements of Y1. RX,Y contains the

“cross” relations between generators of X and Y , so relations of the form xi
−1yjxi

for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Since each xi fixes both S and T we have

xi
−1yjxi ∈ Y , thus normal forms for these relations are easily computed.

Theorem 5.14. Let Γ′ have a polycyclic presentation X = Pc〈x1, x2, . . . , xn | RX〉

and let I have a polycyclic presentation Y = Pc〈y1, y2, . . . , ym | RY 〉. Then

Pc〈x1, x2, . . . , xn, y1, y2, . . . , ym | RX
′, RY , RX,Y 〉

is a polycyclic presentation for Aut(G).

Proof. Follows from [Joh97, Chapter 10: Presentations of Group Extensions], ap-

plied to the extension of I by ΓI/I.

Constructing the presentations is now straightforward. Let us assume that ΣPC is

a polycyclic presentation for Σ and ϕΣ : Σ→ ΣPC is the corresponding isomorphism.

From Proposition 4.17 we have an isomorphism φ : Γ → Σ, and so set ΓPC =

(ΣPC)φ
−1

with ϕΓ : Γ→ ΓPC defined to be ϕΓ = φ−1ϕΣ. Therefore we can compute

5. Computing automorphism groups of soluble groups 79

ΓPC and ϕΓ for Γ from ΣPC and ϕΣ. Now we have

Γ
ϕΓ−−−→ ΓPC

Φ−−−→ ΓPC
(Γ ∩ I)ϕΓ

= QPC (5.3)

where Φ is defined to be the natural mapping. Defining Ω : G→ Inn(G) as Ω : g 7→

ωg where ωg : G→ G such that ωg : x 7→ xg, we have

G
Ω−−−→ I

ϕI−−−→ IPC . (5.4)

which is the natural polycyclic presentation of I.

Let q1, . . . , qn and g1, . . . , gm be generators for QPC and IPC respectively, and let

q1, . . . , qn and g1, . . . , gm be the corresponding automorphisms in Aut(G). Define

Aut(G)PC to be the PC representation of Aut(G), and construct the presentation

relations of Aut(G)PC as follows:

1. Set q̃1, . . . , q̃n, g̃1, . . . , g̃m to be the generators of Aut(G)PC , where q̃i corre-

sponds to the generator qi of QPC for 1 ≤ i ≤ n, and g̃j corresponds to the

generator gj of IPC for 1 ≤ j ≤ m. Note that for any element g ∈ G, we write

g̃ to represent the element of Aut(G)PC corresponding to the map g ∈ I which

has PC representative gΩϕI ∈ IPC .

2. Construct the relations of Aut(G)PC derived from relations of QPC , by evaluat-

ing the relations of QPC in Aut(G). These will be the same up to multiplication

of g for some g ∈ I.

So for each relation R(q1, . . . , qn) = 1QPC in QPC :

(a) Compute x := FindConjugatingElement(G,G,R(q1, . . . , qn)).

(b) So R(q1, . . . , qn)x−1 = 1Aut(G) is the corresponding relation in Aut(G).

Add relation R(q̃1, . . . , q̃n) · x̃−1 = 1Aut(G)PC to Aut(G)PC .

3. Construct relations of Aut(G)PC derived from relations of IPC .

5. Computing automorphism groups of soluble groups 80

For each relation R(g1, . . . , gm) = 1IPC in IPC , add relation R(g̃1, . . . , g̃m) =

1Aut(G)PC to Aut(G)PC .

4. Construct conjugation relations between generators from QPC and generators

from IPC . Noting that gj
qi = (qi)

−1gjqi, we can write the action of this map

on an element x ∈ G as x 7→ [(qi)
−1gj(qi)](x) = (gqij)(x).

For each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}:

(a) Compute x := FindConjugatingElement(G,G, gqij).

(b) Add relation g̃j
q̃i = x̃ to Aut(G)PC .

The pseudocode for this procedure, ConstructPCRelations, is given in Al-

gorithm 5.7.

Now we need to construct an isomorphism ϕG : Aut(G) → Aut(G)PC ; i.e.

for any automorphism α ∈ Aut(G) construct a product of the PC generators

q̃1, . . . , q̃n, g̃1, . . . , g̃m of Aut(G)PC which represents α, and vice versa.

Given a PC element in Aut(G)PC is it easy to construct the corresponding map:

simply evaluate the word using the PC automorphism generators of Aut(G) deter-

mined earlier. However, constructing a PC representation of an arbitrary element

α ∈ Aut(G) is not straightforward, as determining a word in the PC automorphism

generators is not immediately possible. In this situation, we can build the corre-

sponding PC element using the underlying structure of Aut(G), as described in the

following sections.

Semidirect product

Using Notation (†) and recalling the results from Section 5.3, suppose that we are

given an arbitrary automorphism α ∈ Aut(G) where S C G and T 6 G. Then α

acts on T by conjugation and so we can find an element s ∈ S such that Tα = T s.

Following our notation, the PC representation of s in g̃1, . . . , g̃m is given by s̃. We

5. Computing automorphism groups of soluble groups 81

Algorithm 5.7: ConstructPCRelations

Input: (I,QPC) : I = Inn(G) and QPC is a polycyclic representation of

ΓPC/(Γ ∩ I)ϕΓ

Output: R : A sequence of relations of a PC presentation

Aut(G)PC = Pc〈 q̃1, . . . , q̃n, g̃1, . . . , g̃m |R 〉 for Aut(G)

1 /* Sequence for relations of Aut(G)PC */

2 R := [];

3 /* Iterate through the relations of QPC */

4 for R(X1, . . . , Xn) ∈ Relations(QPC) do

5 x := FindConjugatingElement(G,G,R(q1, . . . , qn));

6 Append(∼ R,R(q̃1, . . . , q̃n) · x̃−1);

7 /* Iterate through the relations of IPC */

8 for R(X1, . . . , Xm) ∈ Relations(IPC) do

9 Append(∼ R,R(g̃1, . . . , g̃m));

10 /* Construct the cross relations between QPC and I */

11 for i ∈ [1 . . . n] do

12 for j ∈ [1 . . .m] do

13 x := FindConjugatingElement(G,G, gqij);

14 Append(∼ R, g̃j
q̃i = x̃);

15 return R;

5. Computing automorphism groups of soluble groups 82

now construct αT = αs−1 which fixes T , and thus αT ∈ Γ. Therefore we can compute

(αT)ϕΓΦ to obtain the remaining product in q̃1, . . . , q̃n, and ϕG(α) = (αT)ϕΓΦs̃. The

full procedure, PCGroupSemidirectProductMap, is outlined in Algorithm 5.8.

Algorithm 5.8: PCGroupSemidirectProductMap

Input: (A∗, α) : A∗ contains Aut(G) and PC representation information,

α ∈ Aut(G)

Output: The element of Aut(G)PC which represents the action of α on G

1 /* Find an element s ∈ S such that Tα = T s */

2 s := FindConjugatingElement(S, T, α);

3 /* Construct the automorphism fixing S and T */

4 αΓ := α ◦ s−1;

5 /* Compute the corresponding element in QPC */

6 qΓ := (αΓ)ϕΓΦ;

7 g := FindConjugatingElement(G,G, α ◦ (αΓ)−1);

8 return q̃Γ · g̃;

Conjugate search

Adapting the ideas from the semidirect product case, we start by finding an element

s ∈ S such that Tα = T s, and then construct αT as before. So αT = αs−1.

Further, we can now find an element t ∈ T such that SαT = St, and we can

compute αS,T = αT t−1, an automorphism fixing both S and T . Hence αS,T ∈ Γ and

ϕG(α) = (αS,T)ϕΓΦs̃t. The full procedure, PCGroupConjugateSearchMap is

given in Algorithm 5.9.

5. Computing automorphism groups of soluble groups 83

Algorithm 5.9: PCGroupConjugationSearchMap

Input: (A∗, α) : A∗ contains Aut(G) and PC representation information,

α ∈ Aut(G)

Output: The element of Aut(G)PC which represents the action of α on G

1 /* Find an element s ∈ S such that Tα = T s */

2 s := FindConjugatingElement(S, T, α);

3 /* Construct the automorphism fixing T */

4 αT := α ◦ s−1;

5 /* Find an element of T such that SαT = St */

6 t := FindConjugatingElement(T, S, αT);

7 /* Construct the automorphism fixing S and T */

8 αΓ := αT ◦ t−1;

9 /* Compute the corresponding element in QPC */

10 qΓ := αϕΓΦ
Γ ;

11 g := FindConjugatingElement(G,G, α ◦ (αΓ)−1);

12 return q̃Γ · g̃;

Chapter 6

Isomorphism testing for soluble

groups

In this chapter we adapt the methods outlined in Section 4.2 to perform isomorphism

testing between finite soluble groups. Many features of the resulting procedure

mirror those of the automorphism group algorithm given in Chapter 5.

We begin by defining some notation for this purpose, modifying the notation

given as Notation (†) in the previous chapter. We add an index subscript i ∈ 1, 2

to distinguish between the two finite soluble groups G1, G2 and their subgroup

components required for the algorithms. Note that if |G1| 6= |G2| then it is trivial

to deduce that G1 � G2, therefore we assume that the orders of the two groups are

equal.

Notation (‡)

Let G1 and G2 be finite soluble groups where |G1| = |G2| = pnq for

some prime p ∈ N and q ∈ N with hcf(p, q) = 1. Define Si ∈ Sylp(Gi),

Ti ∈ Hallq(Gi) and Ki = Op(Gi) and assume that p has been chosen

such that Ki 6= 1 for i = 1, 2.

84

6. Isomorphism testing for soluble groups 85

We now recall the notion of extending isomorphisms between subgroups to cover

their parent groups (from Section 4.2.3), and in particular the result of Lemma 4.23:

an isomorphism σ : S1 → S2 extends to an isomorphism G1 → G2 if there exists an

isomorphism τ : T1 → T2 such that st 7→ sσtτ is an isomorphism G1 → G2.

Following the algorithms in Chapter 5, we will be attempting to construct an

isomorphism G1 → G2 using isomorphisms S1 → S2 and T1 → T2. We begin by

outlining three lemmas which provide starting points for all of the proceeding results.

Lemma 6.1. Let X1, X2 be finite soluble groups and let Φ : X1 → X2 be an

isomorphism. For a given set of primes π ⊆ π(X1), take H1 ∈ Hallπ(X1) and

H2 ∈ Hallπ(X2). Then there exists x ∈ X2 such that HΦx
1 = H2, and in particular,

H1
∼= H2.

Proof. Note that |(H1)Φ| = |H1| for anyH1 ∈ Hallπ(X1), and henceHΦ
1 ∈ Hallπ(X2).

Now take H2 ∈ Hallπ(X2) and since all Hall π-subgroups are conjugate there exists

x ∈ X2 such that x−1HΦ
1 x = H2. Hence Φx|H1 : H1 → H2 is an isomorphism.

Lemma 6.2. Let X1, X2 be finite soluble groups and let Φ : X1 → X2 be an isomor-

phism. Then for a given set of primes π ⊆ π(X1), |Hallπ(X1)| = |Hallπ(X2)|.

Proof. Let ki = |Hallπ(Xi)| andHi ∈ Hallπ(Xi) for i = 1, 2. Then ki = |Xi|/|NXi(Hi)|

for i = 1, 2, and since Φ is an isomorphism, NX1(H1)Φ = NX2(H2).

Lemma 6.3. Let X1, X2 be finite groups, let Φ : X1 → X2 be an isomorphism and

for i = 1, 2 define Wi = Op(Xi) for a given prime p ∈ π(X1). Then WΦ
1 = W2.

Proof. By Lemma 2.15, W1 is the largest normal p-subgroup in X1, and as |WΦ
1 | =

|W1|, WΦ
1 is the largest normal p-subgroup of X2 and this is unique. Thus WΦ

1 =

W2.

Thus, now we need to prove that given isomorphisms σ : S1 → S2 and τ : T1 →

T2, we can construct an isomorphism Φ : G1 → G2. We assume that S1
∼= S2,

6. Isomorphism testing for soluble groups 86

T1
∼= T2 and K1

∼= K2 otherwise G1 and G2 are not isomorphic by Lemmas 6.1

and 6.3. Similarly assume that S1 C G1 ⇐⇒ S2 C G2, T1 C G1 ⇐⇒ T2 C G2

otherwise G1 and G2 are not isomorphic since |Hallπ(G1)| = |Hallπ(G2)| for all

subsets π ⊆ π(G) (Lemma 6.2).

Now, as in the automorphism group algorithm from Chapter 5, we can split into

the following four sub-cases:

1. Direct Product

Si, Ti C Gi for i = 1, 2.

2. Subdirect Product

Li = Op′(Gi) 6= 1 for i = 1, 2. Here we construct subdirect products ψi : Gi →

Gi/Ki ×Gi/Li for i = 1, 2 and recurse.

3. Semidirect Product

Si C Gi and Ti 6C Gi, giving Gi
∼= Si o Ti for i = 1, 2.

4. General Method (Conjugation Search) Si 6C Gi for i = 1, 2.

6.1 Direct product

In this section we assume that Si, Ti C Gi and hence Si, Ti charGi for i = 1, 2. Using

Proposition 2.3 and Proposition 2.4 we have G1
∼= S1 × T1 and G2

∼= S2 × T2 and

Theorem 4.19 implies that G1
∼= G2 if and only if S1

∼= S2 and T1
∼= T2. Thus, where

we have isomorphisms σ : S1 → S2 and τ : T1 → T2 we construct an isomorphism

Φ : G1 → G2 defined by Φ : st→ sσtτ .

The algorithm IsIsomorphicDirectProduct is given in Algorithm 6.1.

6. Isomorphism testing for soluble groups 87

Algorithm 6.1: IsIsomorphicDirectProduct

Input: (Gi, Si, Ti) : Gi are finite soluble groups, Si ∈ Sylp(Gi) and

Ti ∈ Hallp′(Gi) for i = 1, 2

Output: (b,Φ) : Boolean value b: true if G1
∼= G2, false otherwise; map

Φ : G1 → G2 if groups are isomorphic, null otherwise

1 bS, φS := IsIsomorphicPGroup(S1, S2);

2 if bS 6= true then

3 return false, null;

4 bT , φT := IsIsomorphicSolubleGroup(T1, T2);

5 if bT 6= true then

6 return false, null;

7 Define φG : G→ G by φG : st→ sφS tφT ;

8 return true, φG;

6.2 Subdirect product

Now suppose that we have Li = Op′(G) > 1 for i = 1, 2. Then, as in Section 5.2,

we can define subdirect products ψi : Gi → Gi/Ki × Gi/Li for i = 1, 2. We then

use the results of Section 4.2.2, and so by Theorems 4.20 and 4.21 we attempt to

construct isomorphisms ΨK : G1/K1 → G2/K2 and ΨL : G1/L1 → G2/L2 such that

G
ψ1(ΨK ,ΨL)
1 = Gψ2

2 .

The full procedure, IsIsomorphicSubdirectProduct, is given in Algorithm 6.2.

6.3 Conjugation action

Now we consider the cases where Op′(Gi) = 1 for i = 1, 2, and recall that this implies

that CTi(Ki) = 1 for i = 1, 2. Therefore G1, G1 and their associated subgroups

defined in (‡) satisfy Hypothesis 4.24. We now tackle the remaining two cases.

6. Isomorphism testing for soluble groups 88

Algorithm 6.2: IsIsomorphicSubdirectProduct

Input: (Gi, Ki, Li) : Gi are finite soluble groups, Ki = Op(Gi) and

Li = Op′(Gi) for i = 1, 2

Output: (b,Φ) : Boolean value b: true if G1
∼= G2, false otherwise; map

Φ : G1 → G2 if groups are isomorphic, null otherwise

1 Define ϕKi : Gi → Gi/Ki and ϕLi : Gi → Gi/Li for i = 1, 2;

2 bK ,ΨK := IsIsomorphicSolubleGroup(G1/K1, G2/K2);

3 if bK 6= true then return false, null;

4 bL,ΨL := IsIsomorphicSolubleGroup(G1/L1, G2/L2);

5 if bL 6= true then return false, null;

6 AK := AutomorphismGroup(G2/K2);

7 AL := AutomorphismGroup(G2/L2);

8 /* Verify that ΨK : L1/K1 7→ L2/K2 */

9 bK , αK := FindMappingAutomorphism((L
ϕK1
1)ΨK , L

ϕK2
2 , AK);

10 if bK 6= true then return false, null;

11 ΨK := ΨK ◦ αK ;

12 /* Verify that ΨL : K1/L1 7→ K2/L2 */

13 bL, αL := FindMappingAutomorphism((K
ϕL1
1)ΨL , K

ϕL2
2 , AL);

14 if bL 6= true then return false, null;

15 ΨL := ΨL ◦ αL;

16 Let φi,K,LK : Gi/Ki → Gi/LiKi and φi,L,LK : Gi/Li → Gi/LiKi be the

natural maps for i = 1, 2;

17 /* Construct induced isomorphisms ΨK,LK : G1/L1K1 → G2/L2K2 and

ΨL,LK : G1/L1K1 → G2/L2K2 from ΨK and ΨL respectively */

18 ΨK,LK := φ−1
1,K,LK ◦ΨK ◦ φ2,K,LK ;

19 ΨL,LK := φ−1
1,L,LK ◦ΨL ◦ φ2,L,LK ;

20 /* Check that ΨK,LK and ΨL,LK can be made consistent on

G1/L1K1 */

21 α := [x 7→ xΨ−1
K,LKΨL,LK : x ∈ Generators(G2/K2L2)];

22 if α /∈ Aut(G2/K2L2) then return false, null;

23 Let αK be the lift of α to AK ;

24 Define ψi : Gi → Gi/Ki ×Gi/Li to be the subdirect product maps for

i = 1, 2;

25 return true, ψ1 ◦ (ΨK ◦ α,ΨL) ◦ ψ−1
2 ;

6. Isomorphism testing for soluble groups 89

6.3.1 Semidirect product

In this section we assume that Si C Gi (and hence Si charGi) for i = 1, 2, and

that there exists an isomorphism σ : S1 → S2, otherwise G1 and G2 are trivially

non-isomorphic. If σ satisfies (T1|S1)σ = T2|S2 (up to composition with an element

of Aut(S2)), then σ extends to an isomorphism Φ : G1 → G2 by Theorem 4.27, and

we use Lemma 4.25 and Lemma 4.26 to construct Φ. If this relation does not hold,

then G1 6∼= G2.

The algorithm, IsIsomorphicSolubleGroupSemidirectProduct, is given

in Algorithm 6.3. The following result guarantees that this is sufficient to ensure

that G1
∼= G2.

Theorem 6.4. Assume the hypothesis given in Notation (‡) with Si = Ki for i = 1, 2

and suppose that G1
∼= G2. Then there exists an isomorphism σ : S1 → S2 such that

(T1|S1)σ = T2|S2.

Proof. Let Φ : G1 → G2 be an isomorphism. By Lemma 6.1 and Lemma 5.2 there

exists s2 ∈ S2 such that Φs2 is an isomorphism and Φs2 : T1 → T2. In particular,

we can now define σ = Φs2|S1 : S1 → S2 and an isomorphism τ = Φs2|T1 : T1 →

T2. Clearly Kσ
1 = K2, and furthermore σ and τ combine to form an isomorphism

G1 → G2. So by Lemma 4.26 we have that (t1|S1)σ = tτ1|S2 for all t1 ∈ T1. Thus

(T1|S1)σ = T2|S2 .

6.3.2 Conjugate search

We now assume that Si 6C Gi and Op′(Gi) for i = 1, 2.

Theorem 6.5. Assume the hypothesis given in Notation (‡) and suppose that G1
∼=

G2. Then there exists an isomorphism σ : S1 → S2 such that Kσ
1 = K2, NS1(T1)σ =

NS2(T2) and (T1|K1)σ|K1 = T2|K2.

6. Isomorphism testing for soluble groups 90

Algorithm 6.3: IsIsomorphicSolubleGroupSemidirectProduct

Input: (Gi, Si, Ti, σ) : Soluble groups Gi with Si ∈ Op(Gi), Ti ∈ Hallp′(Gi)

such that CTi(Si) = 1 for i = 1, 2 and σ : S1 → S2 is an isomorphism

Output: (b,Φ) : Boolean b which is either true in which case Φ is an

isomorphism G1 → G2, or false and Φ is null

1 AS1 := AutomorphismGroupPGroup(S1);

2 φ1, R1 := Representation(AS1); /* See Section 3.1. */

3 AS2 := AutomorphismGroupPGroup(S2);

4 φ2, R2 := Representation(AS2); /* See Section 3.1. */

5 Construct Aσ : AS1 → AS2 ;

6 b, x := FindConjugatingElement(R2, (T1|S1)Aσ , T2|S2);

7 if b 6= true then return false, null;

8 Φ := [s1 7→ sσ1 : s1 ∈ PCGenerators(S1)] ∪ [t1 7→
FindConjugatingElement(T2, S2, (t1|S1)Aσx)];

9 return true, Φ;

Proof. Let Φ : G1 → G2 be an isomorphism. By Lemma 6.1 there exists g ∈ G2

such that (Φg)|S1 : S1 → S2 is an isomorphism and further, we can find some s ∈ S2

(by Lemma 5.2) such that TΦg s
1 = T2. So relabel Φ = Φgs : G1 → G2 and define

isomorphisms σ = Φ|S1 : S1 → S2 and τ = Φ|T1 : T1 → T2.

Clearly KΦ
1 = K2 and TΦ

1 = (n−1T1n)Φ = (n−1)ΦTΦ
1 n

Φ = (n−1)ΦT2n
Φ = T2 for

all n ∈ NS1(T1). Hence Kσ
1 = K2, NS1(T1)σ = NS2(T2) and as σ and τ combine

to form an isomorphism G1 → G2, we have (t1|K1)σ|K1 = tτ1|K2 for all t1 ∈ T1 by

Lemma 4.26. Thus (T1|K1)σ|K1 = T2|K2 .

So to construct an isomorphism G1 → G2, we begin by assuming that we have an

isomorphism σ : S1 → S2. We check each of the conditions given in the statement

of Theorem 6.5; i.e. Kσ
1 = K2, NS1(T1)σ = NS2(T2) and (T1|K1)σ|K1 = T2|K2 (up to

composition with some element of Aut(S2)). If any of these conditions do not hold,

then G1 and G2 are not isomorphic. We then use Lemma 4.25 and Lemma 4.26

6. Isomorphism testing for soluble groups 91

to attempt to construct an isomorphism τ : T1 → T2 such that st 7→ sσtτ , for

s ∈ S1, t ∈ T1, is an isomorphism G1 → G2. Again, if this fails, then G1 and G2 are

not isomorphic.

We note that if Gi = KiNSi(Ti)Ti for i = 1, 2 then an isomorphism σ : S1 → S2,

which satisfies the conditions given in the hypothesis of Theorem 6.5, will extend to

an isomorphism G1 → G2 (by Theorem 4.28).

The algorithm, IsIsomorphicConjugateSearch, is given in Algorithm 6.4.

Algorithm 6.4: IsIsomorphicConjugateSearch

Input: (Gi, Si, Ki, Ti, σ) : Soluble groups Gi with Si ∈ Op(Gi),

Ki = Op(Gi), Ti ∈ Hallp′(Gi) such that CTi(Ki) = 1 for i = 1, 2 and

σ : S1 → S2 is an isomorphism

Output: (b,Φ) : Boolean b which is either true in which case Φ is an

isomorphism G1 → G2, or false and Φ is null

1 AS2 := AutomorphismGroupPGroup(S2);

2 b,m := FindMappingAutomorphism(Kσ
1 , K2, AS2);

3 if b 6= true then return false, null;

4 σ := σ ◦m;

5 b,m := FindMappingAutomorphism(NS1(T1)σ, NS2(T2), AS2);

6 if b 6= true then return false, null;

7 σ := σ ◦m;

8 AK1 := AutomorphismGroupPGroup(K1);

9 φK1 , RK1 := Representation(AK1); /* See Section 3.1. */

10 AK2 := AutomorphismGroupPGroup(K2);

11 φK2 , RK2 := Representation(AK2); /* See Section 3.1. */

12 Construct Aσ : AK1 → AK2 ;

13 b, x := FindConjugatingElement(AK2 , (T1|K1)Aσ , T2|K2);

14 if b 6= true then return false, null;

15 Φ := [s1 7→ sσ1 : s1 ∈ PCGenerators(S1)] ∪ [t1 7→
FindConjugatingElement(T2, S2, (t1|K1)Aσx)];

16 if IsHomomorphism(G1, G2,Φ) 6= true then

17 return false, null;

18 return true, Φ;

6. Isomorphism testing for soluble groups 92

6.4 Full algorithm

Again, as in Section 5.4, we provide the full algorithm, IsIsomorphicSoluble-

Groups (see Algorithm 6.5), which tests two finite soluble groups G1, G2 for iso-

morphism.

Algorithm 6.5: IsIsomorphicSolubleGroups

Input: (G1, G2) : Soluble groups G1 and G2

Output: (b,Φ) : Boolean b which is either true in which case Φ is an

isomorphism G1 → G2, or false and Φ is null

1 if |G1| 6= |G2| then return false, null;

2 Determine a sensible value of p for G1, in particular Op(G1) 6= 1;

3 Ki := pCore(Gi, p) for i = 1, 2;

4 if |K1| 6= |K2| then return false, null;

5 Li := Core(Gi, p
′) for i = 1, 2;

6 if |L1| 6= |L2| then return false, null;

7 if |K1||L1| = |G1| then

8 return IsIsomorphicGroupDirectProduct(Gi, Ki, Li);

9 if L 6= 1 then

10 return IsIsomorphicSubdirectProduct(Gi, Ki, Li);

11 Si := SylowSubgroup(Gi, p) for i = 1, 2;

12 Ti := HallSubgroup(Gi, p
′) for i = 1, 2;

13 bS, σ := IsIsomorphicPGroups(S1, S2);

14 if bS 6= true then return false, null;

15 if |K1| = |S1| then

16 return IsIsomorphicSemidirectProduct(Gi, Si, Ti, σ);

17 return IsIsomorphicConjugateSearch(Gi, Si, Ki, Ti, σ);

Chapter 7

Extending methods to non-soluble

examples

The soluble group structure defined at the beginning of Chapter 5 (in Notation (†))

lends itself well to the result of Theorem 5.7, which forms the basis of our algorithms

for constructing automorphism groups and performing isomorphism testing. In this

chapter, we adapt the same ideas to develop similar algorithms for some non-soluble

finite groups.

The results that follow are speculative in the sense that they do not form a

complete strategy which can be applied to any finite group. Our aim is to introduce

alternative approaches to current methods which fit nicely with the rest of the

material in this thesis, and therefore the procedures described here will only be

suitable for finite groups which match some specific criteria. The general strategy is

to construct the automorphism group of a finite group G using the automorphism

group of the soluble radical R = O∞(G) (recall Definition 2.2). In particular,

we rely on the soluble group automorphism algorithm detailed in Chapter 5 to

compute Aut(R). Further calculations with Aut(R) can then be simplified by using

our knowledge of the output structure of our algorithm. For this reason, we will

assume, and in some cases explicitly refer back to, details of the algorithm which

93

7. Extending methods to non-soluble examples 94

are given in the summary found in Section 5.4.

We split our study of non-soluble groups into three main categories of finite

groups which either:

• can be easily determined to be a direct or subdirect product of R and some

other characteristic subgroup,

• have a complement H of R in G, such that G = RH and R ∩H = 1, or

• have a “crossover prime”, i.e. there exists some p ∈ π(R) ∩ π(G/R).

7.1 Identifying direct and subdirect products

In this section we explore several methods for determining if a given finite group

G is a direct or subdirect product of R = O∞(G) and some other characteristic

subgroup C ≤ G.

Definition 7.1. Let G be a finite group. Then the soluble residual of G, denoted

G∞, is the last term in the derived series for G.

We note that G∞ charG for every finite group G, since [G,G] charG.

Lemma 7.2. Let G be a finite group. Then

• G/G∞ is soluble, and

• if N is a normal subgroup of G such that G/N is soluble, G∞ ≤ N .

Proof. Observe that any finite group G has a corresponding derived series

G = G(1) ≥ G(2) ≥ . . . G(k−1) ≥ G(k) ≥ G(k+1) . . .

If G(n) = 1 for some n, then G is soluble (and G∞ = G(n) = 1). So let us assume

that G is not soluble, and hence [G(m), G(m)] = G(m) for some m ∈ N. Noting that

7. Extending methods to non-soluble examples 95

[G,G] charG, now we have a normal series with abelian factors:

G(1)

G(m)
≥ G(2)

G(m)
≥ . . .

G(m−1)

G(m)
≥ G(m)

G(m)
= 1,

and hence G/G(m) is soluble.

Suppose now that N is a normal subgroup of G such that G/N is soluble. Then

since G is not soluble, N is not soluble. Note that [G/N,G/N] = [G,G]N/N and so

by induction we have (G/N)(i) = G(i)N/N for each i. In particular, for some m ∈ N

we have (G/N)(m) = 1, and hence G(m) ≤ N . Therefore G∞ ≤ N .

So we have shown that the soluble residual G∞ of a finite group G is the smallest

normal subgroup of G which produces a soluble quotient. In other words, G/G∞ is

the largest soluble quotient group of G.

Lemma 7.3. Let G be a finite group and define R = O∞(G). Suppose that G/R is

perfect (in particular, simple). Then G is a direct product R × C where C ≤ G if

and only if G/R ∼= G∞.

Proof. Suppose that G/R is perfect, and we have G ∼= R × C for some C ≤ G.

Then G/C ∼= R, and hence G∞ ≤ C. Since C is perfect, C = C∞ ≤ G∞, and hence

C = G∞. Conversely, if G/R ∼= G∞ then we have R,G∞ charG and R ∩ G∞ = 1.

Hence G ∼= R×G∞.

Therefore we can determine if a group G is a direct product of its soluble radical

and G∞ by testing if G/R ∼= G∞. In this situation we compute Aut(G) as Aut(R)×

Aut(G∞) using the result of Theorem 4.3.

So now suppose that G is a finite group and G/R is not perfect. If G∞ 6= 1, then

we can construct a subdirect product as follows.

Lemma 7.4. Let G be a finite group, define R = O∞(G) and assume that R∩G∞ =

1. Then ψ : G→ G/R×G/G∞ where ψ : g 7→ (gR, gG∞) is a subdirect product.

7. Extending methods to non-soluble examples 96

Proof. We note that R,G∞ charG and R ∩ G∞ = 1. Thus by Lemma 4.4, we can

construct a subdirect product ψ : G→ G/R×G/G∞.

Hence following the hypothesis of Lemma 7.4, we can compute Aut(G) by con-

structing Aut(G/R) and Aut(G/G∞) which is soluble, and then applying Theo-

rem 4.6.

Isomorphism testing

As in previous chapters, methods for computing automorphism groups naturally

give rise to algorithms for testing two groups for isomorphism.

Lemma 7.5. Let G1, G2 be finite groups. Define Ri = O∞(Gi) and suppose that

Gi/Ri
∼= G∞i for i = 1, 2. Then G1

∼= G2 if and only if R1
∼= R2 and G∞1

∼= G∞2 .

Proof. Clearly we have Gi
∼= Ri × G∞i with Ri, G

∞
i charGi for i = 1, 2, and so the

result follows from Theorem 4.19.

Lemma 7.6. Let G1, G2 be finite groups. Define Ri = O∞(Gi) and suppose that

G∞i 6= 1 and Ri ∩G∞i = 1 for i = 1, 2. Let ψi : Gi → Gi/Ri×Gi/G
∞
i be the natural

maps for i = 1, 2. Then G1
∼= G2 if and only if there exist isomorphisms ΨR :

G1/R1 → G2/R2 and ΨG∞ : G1/G
∞
1 → G2/G

∞
2 such that G

ψ1(ΨR,ΨG∞)ψ−1
2

1 = G2.

Proof. By Lemma 7.4, we have subdirect products for each Gi, and we can now

apply Theorem 4.20.

7.2 Soluble radical complement

We now state a well know result of Schur and Zassenhaus.

Theorem 7.7 (Schur-Zassenhaus). Let G be a group and suppose that K C G such

that (|K|, |G/K|) = 1. Then K has a complement in G. If in addition K or G/K

is soluble, then all such complements are conjugate in G.

7. Extending methods to non-soluble examples 97

Proof. See [KS04, Theorem 6.2.1]

We note that the well-known theorem of Feit and Thompson, which states that

every finite group of odd order is soluble, guarantees that at least one of K or G/K

is soluble in the statement of Theorem 7.7.

Now suppose that G is a finite group and R = O∞(G), a soluble characteristic

subgroup of G, with π(R) ∩ π(G/R) = ∅. Then by Theorem 7.7 there exists a

subgroup H ≤ G which is a complement of R in G, i.e. where H ∩ R = 1 and

G = RH. Further, all such complements are conjugate in G, and so given α ∈

Aut(G), Hα = Hg for some g ∈ G. Thus automorphisms of G act on the set of all

complements of R by conjugation, and Aut(G) is determined by restriction to the

action on R and H (recall Definition 4.2).

Lemma 7.8. Let G be a finite group and suppose that R = O∞(G) such that

π(R) ∩ π(G/R) = ∅. Then there exists a complement H to R in G, and Aut(G) is

determined by restriction to the action on R and H.

In this construction, we have a semidirect product G = R o H. Assuming

CH(R) = 1 and that we have an algorithm to compute H from G and R, we can use

the results of Section 4.1.3 to compute Aut(G). Define Γ = {α ∈ Aut(G) : Rα =

R,Hα = H}, then Aut(G) = ΓI where I = Inn(G). Use the automorphism group

algorithm from Chapter 5 to construct Aut(R). To find automorphisms of R fixing

H we find the normaliser

∆ = NAut(R)(H|R) (7.1)

and can then extend each of the automorphisms δ ∈ ∆ to automorphisms of G

fixing H using Lemma 4.11. We have now constructed Γ, and after adding inner

automorphisms, Aut(G).

We note that if CH(R) > 1, then CH(R)∞ 6= 1, and we then construct a subdirect

product ψ : G → G/R × G/CH(R)∞, and use Theorems 4.5 and 4.6 to compute

Aut(G).

7. Extending methods to non-soluble examples 98

Computing ∆

To determine ∆ (7.1) in practice, we will need to construct a manageable representa-

tion of Aut(R). As discussed in earlier chapters, computing representations of large

automorphism groups is often impractical, particularly if the underlying group, in

this case R, is large. Assuming that we don’t already have a PC representation of

Aut(R) (see Section 5.5), we can avoid still constructing a permutation represen-

tation of the full automorphism group. Since we know the structure of Aut(R) for

each particular sub-case of the algorithm (recall the summary given in Section 5.4),

we can use this information to construct ∆. Define S, T and K as in Notation (†)

from Chapter 5, taking G in this context to be R. We can now give a brief outline

of how to compute ∆ from Aut(R) using either the the direct or semidirect product

sub-cases.

If R = S × T , then we have S, T charR, and hence S, T charG. Thus we can

write

NAut(G)

(
H|R

)
= NAut(S)

(
H|S

)
×NAut(T)

(
H|T

)
, (7.2)

and we have reduced the problem of finding a representation of Aut(R) into com-

puting one for Aut(S) and Aut(T).

Alternatively, assume that R is a semidirect product R ∼= S o T with CT (S) =

1. If S ≤ NR(H), then we can reduce the problem to NAut(S)(H|S) and now we

only need a representation of Aut(S), which has already been computed in the

construction of Aut(R). We note that CH(R) = 1 implies that CH(S) = 1 (Suppose

that CH(S) 6= 1 and let M be a minimal normal subgroup of G contained in CH(S).

Then [M,R] ≤M ∩R = 1 and CH(R) 6= 1).

Isomorphism testing

Again, we note that it is straightforward to adapt these ideas for performing iso-

morphism testing between two groups with isomorphic soluble radicals and radical

7. Extending methods to non-soluble examples 99

complements.

Lemma 7.9. Let G1 and G2 be finite groups and define Ri = O∞(Gi) for i = 1, 2.

Suppose that π(Ri) ∩ π(Gi/Ri) = ∅ and therefore there exist complements Hi ≤ Gi

of Ri for i = 1, 2. Further assume that CHi(Ri) = 1 for i = 1, 2. If G1
∼= G2 then

there exists an isomorphism ρ : R1 → R2 such that (H1|R1)ρ = H2|R2.

Proof. This result is an analogy of Theorem 6.4. Assume that Φ : G1 → G2 is

an isomorphism. Following a similar argument to Lemma 6.3, it is clear that Φ :

R1 7→ R2, and so HΦ
1 is a complement of R2 in G2. Since all complements of R2

in G2 are conjugate, there exists g ∈ G2 such that Φg|H1 : H1 → H2. Now define

isomorphisms ρ = Φg|R1 : R1 → R2 and ι : Φg|H1 : H1 → H2, and we have ρ ∼G1,G2 ι

(recall Definition 4.22). Hence, by Lemma 4.26, (h1|R1)ρ = hι1|R2 for all h1 ∈ H1,

and the result follows.

So to test if G1 and G2 are isomorphic, begin by assuming that ρ : R1 → R2 is

an isomorphism. Verify that (H1|R1)ρ = H2|R2 (up to multiplying ρ by an element of

Aut(R2)). If this relation holds then G1
∼= G2 by Theorem 4.27 and use Lemma 4.25

and Lemma 4.26 to extend ρ to an isomorphism G1 → G2. If not, then G1 6∼= G2.

We note that in cases where CHi(Ri) 6= 1 for i = 1, 2 we can construct subdirect

products as in the automorphism case, and then use Theorems 4.20 and 4.21 to test

for isomorphism.

7.3 Extend from soluble radical

In this section we explore methods which involve computing the automorphism group

of a finite group G using the automorphism group of its soluble radical R = O∞(G),

but we assume that hcf(|R|, |G/R|) 6= 1 and G/R is almost simple.

The almost simple groups used in this section are assumed to have a specific

structure which has been pre-computed and stored in some accessible database of

7. Extending methods to non-soluble examples 100

groups. In particular, for each almost simple group A, we will store a list of pairs of

Sylow subgroups (P,Q) where P ∈ Sylp(G) and Q ∈ Sylq(G) for p 6= q ∈ π(A) such

that A = 〈P,Q〉, and Aut(A) is determined by restriction to the action on P and

Q (recall Definition 4.2). A sample dataset is given in Table 7.1 below. In practice,

each small almost simple group that has been examined has been found to have this

structure.

Group Order Primes Sylow Subgroups

A5 60
{2, 3} P2 = 〈 (1, 2)(3, 4), (1, 3)(2, 4) 〉, P3 = 〈 (1, 4, 5) 〉

{2, 5} P2 = 〈 (1, 2)(3, 4), (1, 3)(2, 4) 〉
P5 = 〈 (1, 5, 3, 4, 2) 〉

S5 120
{2, 3} P2 = 〈 (1, 3)(2, 4), (1, 2) 〉, P3 = 〈 (1, 5, 2) 〉

{2, 5} P2 = 〈 (1, 3)(2, 4), (1, 2) 〉, P5 = 〈 (1, 4, 5, 3, 2) 〉

L2(7) 168

{2, 3} P2 = 〈 (1, 2)(3, 8)(4, 7)(5, 6), (1, 4)(2, 3)(5, 8)(6, 7),
(1, 5)(2, 6)(3, 7)(4, 8)〉
P3 = 〈 (1, 8, 7)(3, 4, 5) 〉

{2, 7} P2 = 〈 (1, 2)(3, 8)(4, 7)(5, 6), (1, 4)(2, 3)(5, 8)(6, 7),
(1, 5)(2, 6)(3, 7)(4, 8)〉
P7 = 〈 (1, 8, 4, 2, 6, 5, 7) 〉

{3, 7} P3 = 〈 (1, 8, 7)(3, 4, 5) 〉
P7 = 〈 (1, 8, 4, 2, 6, 5, 7) 〉

A6 360
{2, 3} P2 = 〈 (1, 2)(3, 4), (3, 5)(4, 6) 〉

P3 = 〈 (1, 3, 4), (2, 5, 6) 〉

{2, 5} P2 = 〈 (1, 2)(3, 4), (3, 5)(4, 6) 〉
P5 = 〈 (1, 6, 3, 4, 5) 〉

Table 7.1: Catalogue of some small almost simple groups with appropriate (p, q)
values and Sylow p, q-subgroups.

We now describe the general setup in the following hypothesis which will as-

sumed, unless otherwise stated, for the remainder of this section.

Hypothesis 7.10. Let G be a finite group with R = O∞(G), define φ : G→ G/R

to be the natural mapping, and suppose that Gφ is almost simple. Let P ∈ Sylp(G),

L = Op(G), Q ∈ Sylq(G) where p ∈ π(R) ∩ π(Gφ), q ∈ π(Gφ) such that Gφ =

〈P φ, Qφ〉 and assume that Aut(Gφ) is determined by restriction to the action on P φ

7. Extending methods to non-soluble examples 101

and Qφ. In addition, we require that R < NG(P) and CQ(L) = 1.

We note that P ∩R ∈ Sylp(R), and since R normalises P we have P ∩R = Op(R).

Further, since Op(G) ≤ R, we must have Op(R) = Op(G), and hence P ∩R = L.

Lemma 7.11. Assume Hypothesis 7.10. Then Aut(G) is determined by restriction

to the action on P and Q.

Proof. Take α ∈ Aut(G). Then there exists an element g ∈ G such that αP = αg−1

fixes P (Lemma 2.17). Note that every automorphism γ ∈ Aut(G) induces some

automorphism γ̃ ∈ Aut(Gφ), where γ̃ = φ−1γφ. In particular, α̃P fixes P φ, and

since Gφ is determined by restriction to the action on P φ and Qφ, there exists some

x ∈ G such that xφ fixes P φ and α̃P (xφ)−1 fixes Qφ. Thus αPx−1 : Q 7→ r−1Qr for

some r ∈ R. Then αPx−1r−1 fixes both P and Q.

We begin by defining some notation which will provide a useful shorthand in the

calculations that follow.

Definition 7.12. Let G be and group and suppose that C ≤ G is a characteristic

subgroup of G. Define Aut(C)|Aut(G) = {α|C : α ∈ Aut(G)}, i.e. the subgroup of

Aut(C) which is induced by elements of Aut(G).

Lemma 7.13. Let G be a finite group with C charG and let φ : G → G/C be the

natural mapping. Suppose that Gφ = 〈Aφ, Bφ〉 for some subgroups A,B ≤ G. Then

G = 〈A,B,C〉.

We will now outline a procedure to construct the automorphism group for a finite

group G which satisfies Hypothesis 7.10, and one further requirement: Aut(R) can

be computed from Aut(L) using the methods of Chapter 5.

Since Aut(G) is determined by the action restricted to P and Q, it is sufficient

to construct Γ = {α ∈ Aut(G) : Pα = P,Qα = Q}; and by Lemma 7.13 above, to

construct automorphisms of G it is sufficient to define the action of automorphism

generators on R, P and Q. Thus we proceed as follows:

7. Extending methods to non-soluble examples 102

1. Compute Aut(P).

2. Compute the mapping Φ : Aut(P)L → Aut(L), where Φ : α 7→ α|L.

3. Find the subgroup of Aut(P)L whose elements extend to automorphisms of

〈P,Q〉. Conceptually, we want to find the set of pairs

A〈P,Q〉 = {(αP , αQ) ∈ Aut(P)L × Aut(Q) : αP ∼Γ αQ} .

4. Using Aut(L), compute Aut(R), and maintain the correspondence between

automorphisms of L and the automorphisms of R which they extend to. Thus

we have:

A〈P,R〉 = {(αP , αR) ∈ Aut(P)L × Aut(R) : αP ∼Γ αR} .

5. Construct the tuples

A〈R,P,Q〉 = {(αP , αQ, αR) ∈ Aut(P)L × Aut(Q)× Aut(R) : αP ∼Γ αQ, αP ∼Γ αR} ,

and perform a search to find those tuples which define automorphisms of G.

We note that our assumptions at this point give the following important con-

sequences for Aut(G), and in particular Γ: any α ∈ Γ fixes R and L, since they

are both characteristic subgroups of G, and by definition, α fixes P and Q. Thus

any α ∈ Γ has the property that α|〈P,Q〉 ∈ Aut(〈P,Q〉). Clearly, Aut(〈P,Q〉) is

determined by restriction of the action on P and Q, so define

Γ〈P,Q〉 := {α ∈ Aut(〈P,Q〉) : Pα = P,Qα = Q} .

Further, we now claim that L = Op(〈P,Q〉). Observe that since Gφ = 〈P φ, Qφ〉 and

Gφ is almost simple, we have Op(〈P φ, Qφ〉) = 1. Hence Op(〈P,Q〉) ≤ R and the

7. Extending methods to non-soluble examples 103

result follows since L = P ∩R = Op(R).

Therefore we begin by computing Aut(P) and constructing the mapping

Φ : Aut(P)L → Aut(L),

which is defined to be restriction to L. Using the results of Section 4.1.3, there exists

a monomorphism φ : Γ〈P,Q〉 → ∆′〈P,Q〉, where φ : α 7→ α|L and

∆′〈P,Q〉 =
{
α ∈ Aut(P)L : α|L ∈ NAut(L)(Q|L), NP (Q)α = NP (Q)

}
,

and so for each αP ∈ ∆′〈P,Q〉 we can attempt to construct αQ ∈ Aut(Q) using

Lemma 4.12, such that αP ∼Γ〈P,Q〉 αQ. Hence we have constructed Γ〈P,Q〉, and thus

A〈P,Q〉.

Now, sinceR charG, any automorphism α ∈ Aut(R) induces some α|R ∈ Aut(R).

In addition, if we define ΓP = {α ∈ Aut(G) : Pα = P}, then a first step in construct-

ing A〈R,P 〉 is to find Aut(R)|ΓP . Any automorphism of P which extends to an auto-

morphism of G, must fix L. Since we can compute Aut(R) from Aut(L), Im Φ will

extend to Aut(R)|ΓP , i.e. automorphisms of R which are induced by automorphisms

of G which fix P . In particular, there exists a subgroup

∆〈R,P 〉 ≤ Im Φ

such that if δ ∈ ∆〈R,P 〉 then there exists a set

AR(δ) =
{
ρ ∈ Aut(R)|ΓP : ρ|L = δ

}
,

and given such δ, we can determine AR(δ) ⊆ Aut(R) (as described in the summary

7. Extending methods to non-soluble examples 104

in Section 5.4). Now we have

A〈R,P 〉 =
{

(αP , αR) : αP ∈ Φ−1(∆〈R,P 〉), αR ∈ AR(αΦ
P)
}
.

Following step 5 is just a question of performing a search to match the automor-

phisms of P . Finally, another search is done on A〈R,P,Q〉 to determine which tuples

construct automorphisms of G. Thus we have constructed Γ, and hence Aut(G).

Chapter 8

Benchmarks

In this chapter we present a collection of benchmarks for our implementation of

AutomorphismGroupSolubleGroup (see Algorithm 5.5) in the MAGMA lan-

guage. To give an indication of the relative performance of our algorithm, we

have also included timings of the other algorithms currently available in MAGMA

[BCP97].

We use AP to refer to the MAGMA language implementation of the general

finite group automorphism algorithm (used here just for permutation groups) de-

scribed in [CH03], ASol refers to the MAGMA ‘C’ implementation of the soluble

group automorphism group algorithm [Smi94], and AN is the MAGMA language

implementation of the algorithm described in this thesis. Thus, when referring to

AN applied to a finite soluble group G, the Sylow p-group P ∈ Sylp(G) will be

group whose automorphism group has been computed as part of the computation

of Aut(G). If more than one such automorphism group has been constructed, we

give the largest. Given an algorithm A, we use t(A) to denote the time, in sec-

onds, taken for it to complete the calculation. Finally we define our notation for

groups: Gi refers to the groups that are found in the solgps package of MAGMA,

(S3)n = ×ni=1S3 where S3 = Sym(3), Dm is the dihedral group of order 2m, Tm,n de-

notes the nth transitive group of degree m (TransitiveGroup(m, n) in MAGMA)

105

8. Benchmarks 106

and Pm,n denotes the nth primitive group of degree m(PrimitiveGroup(m, n) in

MAGMA).

8.1 Some Large Examples

In Table 8.1 we give a collection of miscellaneous finite soluble groups together with

timings for the construction of their respective automorphism groups using AP , ASol

and AN .

We have deliberately included timings for (S3)n for increasing values of n as they

were previously highlighted in [CH03] as being soluble groups which are particularly

hard examples for both the soluble group and permutation group automorphism

algorithms. We also include timings for D5
6 and D125, which are particularly tricky

for AP and ASol, but finish in reasonable time on AN .

It should be noted that there are two large examples in the Magma solgps

package for which the APC algorithm vastly outperforms AN , and these are G1 and

B(2, 6). In the case of G1 the p-group P chosen is a 13-group and has a very large

Frattini quotient (|P/Φ(P)| = 1314). Hence the search through Aut(P/Φ(P)) ∼=

GL(14, 13) for automorphisms which lift to the next layer is very hard, and the

process stalls here. The Burnside group |B(2, 6)| = 228325 can be tackled with

p = 2 or 3, but both hit stumbling blocks. For p = 3 the automorphism group

computation of the 3-group is quick, but not soluble, and constructing a permutation

representation stalls (|Aut(P)| = 21031105 · 11213). With p = 2, the calculation

reduces to finding a normaliser in GL(28, 2), which is equally hard!

When an algorithm has been set running with a time limit of n seconds, and did

not finish, we use n+. There are quite a number of examples with n = 3600, so we

use - instead of 3600+.

8. Benchmarks 107

8.2 Small Groups

The small groups database of order up to 2000 [BEO02] provides a huge range of

convenient test examples. We have chosen some (relatively) large orders from the

database and timed our algorithm on 10,000 randomly selected examples for each

order (except orders 1458 and 1701 which have 1798 and 309 groups respectively,

so we run through each in turn). Our timings are given in Table 8.2. Completing

a similar benchmark using the soluble group automorphism group algorithm (ASol)

in MAGMA was attempted but could not be completed, due to the huge number

of groups which take longer than 5 minutes to finish. In a brief test using the same

groups timed on our algorithm, we found that: 1112 out of the first 1293 groups of

order 1280; 1031 out of the first 1679 groups of order 1920; and 1138 out of the first

1151 groups of order 1536, each took longer than 5 minutes to complete.

8.3 Transitive Groups

We also include a table of timings for some groups from the transitive group database

(see Table 8.3). Having performed runs over different degrees, we have found several

hundred large groups which are hard examples for the current algorithms. We

include a varied selection here, with timings for both AP and AN . In particular,

there are over are over 150 such groups of degree 24, most of which have order 212 ·3

or 211 · 3, with timings for AP ranging from 5 minutes to 30 hours. These large

examples demonstrate the advantages of using AN over AP for groups with large

Sylow subgroups that have relatively easy p-group automorphism calculations.

It should be noted that our profiling also picked up several groups where both

the AP and AN perform poorly. Examples from the database of degree 30 tend to

produce p-groups with large Frattini quotients, and so the first lifting step of the

p-group automorphism algorithm is very hard.

8. Benchmarks 108

We make further comments about some individual examples:

• We note that the timing of T28,1583 was split into 49s for computing the p-group

automorphism group, and then 120.0s computing a permutation group for the

p-Core automorphism group.

• We have deliberately included timings for T20,846 even though AN doesn’t show

much speed improvement over AP . In fact, Aut(T20,846) is soluble and AN

automatically constructs a PC presentation for it. Computing a similar pre-

sentation from the output of AP requires the construction of a permutation

representation, which adds a further 40s to the calculation in this case.

8. Benchmarks 109

G
|G
|

p
|A

u
t(
P

)|
|A

u
t(
G

)|
t(
A
P

)
t(
A
S
o
l)

t(
A
N

)

(S
3
)5

25
35

3
21

0
31

0
5
·1

12
13

28
36

5
11

.5
4

76
51

.3
2

0.
03

(S
3
)6

26
36

3
21

3
31

5
5
·7
·1

12
13

2
21

0
38

5
33

15
.9

6
-

0.
04

(S
3
)7

27
37

3
21

4
32

1
5
·7
·1

12
13

2
10

93
21

1
39

5
·7

-
-

0.
07

(S
3
)8

28
38

3
21

9
32

8
52

7
·1

12
13

2
41
·1

09
3

21
5
31

0
5
·7

-
-

0.
10

(S
3
)9

29
39

3
22

0
33

6
52

7
·1

12
13

3
41
·7

57
·1

09
3

21
6
31

3
5
·7

-
-

0.
16

(S
3
)1

0
21

0
31

0
3

22
3
34

5
52

7
·1

14
13

3
41
·6

1
·7

57
·1

09
3

21
8
31

4
52

7
-

-
0.

22

(S
3
)2

0
22

0
32

0
3

24
8
31

9
0
56

73
11

8
13

6
..
.7

97
16

1
23

8
32

8
54

72
11
·1

3
·1

7
·1

9
-

-
3.

45

(D
6
)5

21
0
35

2
21

0
31

0
5
·1

12
13

24
3
38

52
7
·3

1
16

97
.8

6
-

1.
94

(D
1
2
)5

21
5
35

2
21

0
31

0
5
·1

12
13

26
3
36

5
18

00
+

-
21

.4
20

P
6
2
5
,8

4
26

54
5

21
1
32

56
13
·3

1
21

0
32

55
28

.5
1

18
00

+
0.

44

P
6
2
5
,3

7
5

29
54

5
21

1
32

56
13
·3

1
21

1
3
·5

4
24

7.
48

18
00

+
0.

36

G
7

21
1
·1

1
·2

3
·8

9
2

25
5
36

52
73

11
·1

7
·2

3
·3

12
73
·8

9
·1

27
21

1
11
·2

3
·8

9
N

/A
0.

50
0.

12

G
8

31
0
24

5
·1

12
61

3
22

3
34

5
52

7
·1

14
13

3
41
·6

1
·7

57
·1

09
3

24
31

0
5
·1

12
61

N
/A

65
.9

8
10

.9
9

G
9

31
0
25

3
25

31
0

(l
ar

ge
st

)
29

31
0

N
/A

78
6.

50
0.

56

G
1
0

21
8
74

2
23

7
3
·7

3
(l

ar
ge

st
)

22
0
32

76
N

/A
18

00
0+

18
.4

80

G
1
1

21
3
13
·8

19
1

2
27

8
38

53
74

11
·1

3
·1

7
·2

3
·3

12
73
·8

9
·1

27
·8

19
1

21
3
13
·8

19
1

N
/A

7.
99

0.
72

T
ab

le
8.

1:
M

is
ce

ll
an

eo
u
s

co
ll
ec

ti
on

of
fi
n
it

e
so

lu
b
le

gr
ou

p
s

w
it

h
ti

m
in

gs
fo

r
A
P

,
A
S
o
l

an
d
A
N

8. Benchmarks 110

|G| No. Tested Σt(AN) Avg t(AN) Med t(AN) Max t(AN) Over 1s

384 10000 1016.97 0.1017 0.1 0.48 0

768 10000 1752.39 0.1752 0.16 2.37 3

1458 1798 173.13 0.0962 0.09 0.60 0

1536 10000 4422.41 0.4422 0.35 3.95 495

1701 309 19.89 0.064 0.06 0.19 0

1792 10000 1816.03 0.182 0.16 2.54 6

1920 10000 1562.82 0.157 0.15 0.97 0

Table 8.2: Timings for random collections of small groups

G |G| p |Aut(P)| |Aut(G)| t(AP) t(AN)

T20,893 2954 5 211325613 · 31 2113 · 54 206.54 0.38

T20,846 2155 2 2583 · 5 2255 51.02 21.89

T24,10398 2123 2 2313 2233 28269.24 8.57

T24,12814 2133 2 2403 2223 9722.93 12.31

T24,18679 2163 2 23334 22333 28016.08 6.87

T24,21854 2193 2 2523 2303 301.28 8.49

Aut(T24,15000) 2193 2 248 2393 43200+ 9.85

T24,22800 2203 2 2403 2283 305.52 13.32

T24,23435 2213 2 2463 2303 2121.17 13.26

T24,22267 2838 3 219328527 · 11213241 · 1093 21439 65108.53 0.08

T24,23531 21038 3 219328527 · 11213241 · 1093 21539 75460.35 11.74

T24,23532 21038 3 219328527 · 11213241 · 1093 214397 31081.23 6.25

T24,23995 21138 3 219328527 · 11213241 · 1093 21338 302.59 1.02

T24,24304 21238 3 219328527 · 11213241 · 1093 21639 12500.03 17.9

T27,894 2 · 38 3 25313 25314 83556.90 1.19

T28,1583 2227 2 2683 2293 · 7 15136.84 187.51

T30,4436 2123 · 56 5 216345157 · 11 · 13 · 31271 2143256 1114.23 3.25

Table 8.3: Timings for some transitive groups

Bibliography

[BCP97] W. Bosma, J. J. Cannon, and C. Playoust. The Magma algebra system I.
the user language. Journal of Symbolic Computation, 24:235–265, 1997.

[BEO02] H. U. Besche, B. Eick, and E. A. O’Brien. A millennium project: Con-
structing small groups. Intern. J. Alg. and Comput, 12:623–644, 2002.

[BM83] G. Butler and J. McKay. The transitive groups of degree up to 11.
Communications in Algebra, 11:863–911, 1983.

[But93] G. Butler. The transitive groups of degree fouteen and fifteen. Journal
of Symbolic Computation, 16:413–422, 1993.

[CH03] J. J. Cannon and D. F. Holt. Automorphism group computation and
isomorphism testing in finite groups. Journal of Symbolic Computation,
35:241–267, 2003.

[CH08] J. J. Cannon and D. F. Holt. The transitive permutation groups of
degree 32. Experiment. Math., 17:307–317, 2008.

[Cou11] H. Coutts. Topics in Computational Group Theory: Primitive permu-
tation groups and matrix group normalisers. PhD thesis, St. Andrews,
2011.

[CQRD11] H. Coutts, M. Quick, and C. M. Roney-Dougal. The primitive permu-
tation groups of degree less than 4096. Communications in Algebra,
39(10):3526–3546, 2011.

[ELGO02] B. Eick, C. R. Leedham-Green, and E. A. O’Brien. Constructing auto-
morphism groups of p-groups. Communications in Algebra, 30(5):2271–
2295, 2002.

[EO09] B. Eick and E. A. O’Brien. GAP package AutPGrp: Computing the
automorphism group of a p-group, 2009.

[FN67] V. Felsch and J. Neubüser. On a programme for the determination
the automorphism group of a finite group. Computation Problems in
Abstract Algebra, pages 59–60, 1967.

[GAP08] The GAP Group. GAP – Groups, Algorithms, and Programming, Ver-
sion 4.4.12, 2008.

111

BIBLIOGRAPHY 112

[HEO05] D. F. Holt, B. Eick, and E. A. O’Brien. Handbook of Computational
Group Theory. Chapman Hall/CRC, 2005.

[HLGO11] D. F. Holt, C. R. Leedham-Green, and E. A. O’Brien. A new model for
computation with matrix groups. preprint, 2011.

[Hul05] A. Hulpke. Constructing transitive permutation groups. Journal of
Symbolic Computation, 39(1):1–30, 2005.

[Joh97] D. Johnson. Presentations of Groups, volume 15 of London Mathematical
Society Student Texts. Cambridge University Press, second edition, 1997.

[KS04] H. Kurzweil and B. Stellmacher. The Theory of Finite Groups: An
Introduction. Springer, 2004.

[O’B92] E. A. O’Brien. Computing automorphisms groups of p-groups. Compu-
tational Algebra Number and Number Theory, Sydney, 1992.

[Rob76] H. Robertz. Eini Methode zur Berechnung der Automorphismen-gruppe
einer endlichen Gruppe. PhD thesis, Aachen, 1976.

[Rot95] J. J. Rotman. An Introduction to the Theory of Groups, volume 148 of
Graduate Texts in Mathematics. Springer, 4th edition, 1995.

[Roy87] G. F. Royle. The transitive groups of degree twelve. Journal of Symbolic
Computation, 4:255–268, 1987.

[Seg83] D. Segal. Polycyclic Groups. Cambridge University Press, 1983.

[Sim70] C. C. Sims. Computational methods in the study of permutation groups.
In Computational Problems in Abstract Algebra (Proc. Conf., Oxford,
1967), pages 169–183. Pergamon, Oxford, 1970.

[Sim71] C. C. Sims. Computation with permutation groups. In Proceedings of
the second ACM symposium on Symbolic and algebraic manipulation,
SYMSAC ’71, pages 23–28, New York, NY, USA, 1971. ACM.

[Smi94] M. J. Smith. Computing Automorphisms of Finite Soluble Groups. PhD
thesis, Australian National University, 1994.

	WRAP_THESIS_coversheet.pdf
	thesis_howden.pdf
	List of algorithms
	Acknowledgments
	Declaration
	Abstract
	Notation and displayed procedures
	Introduction
	Background material
	Sylow subgroups and Hall subgroups
	Useful -subgroups
	Automorphisms acting on `39`42`"613A``45`47`"603ASylp(G) and `39`42`"613A``45`47`"603AHall(G)

	Polycyclic groups
	Polycyclic sequences
	Polycyclic presentations

	Computing orbits and stabilisers
	Polycyclic orbit stabiliser

	Computations in permutation groups
	Computations in matrix groups
	Computing automorphism groups
	Constructing permutation representations of automorphism groups

	Other useful algorithms

	Preliminary results and algorithms
	Computing with automorphism groups of p-groups
	Determining solubility and computing PC presentations

	Fix subgroup calculations
	Orbit stabiliser
	Handling large orbits
	Elementary abelian p-groups

	Find conjugating element
	Find mapping automorphism

	General methods
	Automorphism group
	Direct product
	Subdirect product
	Conjugation action

	Isomorphism testing
	Direct product
	Subdirect product
	Conjugation action

	Computing automorphism groups of soluble groups
	Direct product
	Subdirect product
	Conjugation action
	Semidirect product
	Conjugation search

	Full algorithm and summary
	Selection of appropriate p values

	Determining solubility and PC presentations
	Direct and subdirect products
	Conjugation action

	Isomorphism testing for soluble groups
	Direct product
	Subdirect product
	Conjugation action
	Semidirect product
	Conjugate search

	Full algorithm

	Extending methods to non-soluble examples
	Identifying direct and subdirect products
	Soluble radical complement
	Extend from soluble radical

	Benchmarks
	Some Large Examples
	Small Groups
	Transitive Groups

	Bibliography

