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Introduction

Arithmetic and algebra are central parts of the National Curriculum
throughout the British Isles. In both of these there is a known and
disconcerting level of failure, in algebra even more than in arithmetic.
Why does this failure occur? Or, to look at the more positive side of the
coin, why are some fortunate souls able to do these parts of mathematics
almost without effort. By the conservation of energy, if there is no
effort, there can be no work done. So, by implication, there must be
some other source of energy within the more able that drives their
success. Research performed recently at Warwick (Thomas 1988, Gray
1991a, Gray 1991b, Tall & Thomas 1991, Gray & Tall, 1991) reveals
that there is indeed a qualitative difference between the thinking
processes of those who succeed and those who fail, a difference that
makes the mathematics easier for the more able and harder for the less
able, exacerbating the chasm between them. The more able develop a
way of thinking that fires an inner engine with a feed-back loop creating
new knowledge from old, the less able seek solace in being able to carry
out procedures that may be successful in the short term but are likely to
lead to long-term failure.

Examples of success and failure in arithmetic

Let us begin by looking at how children succeed or fail in simple
arithmetic. The examples are taken from Gray (1991a).

Stuart (aged 10) responded to the problem 8+6 by saying “I know 8
and 2 is 10, but I have a lot of trouble taking 2 from 6. Now 8 is 4 and
4; 6 and 4 makes 10; 10 and another 4 makes 14”.

Stuart is successful, but knows few number bonds, and has to search
through his small repertoire to try to solve the problem. He is
extremely creative in the mathematics that he is doing, but his methods
are arduous and likely to come under considerable strain when he tries
more complicated tasks.

Michelle (aged 10), faced with “18–7”, said “ten from eighteen
leaves eight, seven from ten leaves three, eight and three makes eleven”.
Michelle, like Stuart, seeks to find familiar number bonds to solve the
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problem. She sees 18 as 8 and 10, but takes the 7 from the 10 rather
than from the 8.

Michael (aged 9) Michael chose to write 18–9 as

18 _
          9   

and, as is usual in the decomposition process, put a ‘little one’ by the
eight. “This is the easy way of working it out. I can’t take nine from
eight but if I put a little one it makes it easier because now its nine from
eighteen”.

He didn’t seem to realise that this was just the same problem all over
again. After some considerable time he resorted to his more usual
procedure for subtraction from teens. Eighteen marks were placed from
left to right on his paper and then starting from the left hand side he
crossed out nine marks, counting from one to nine as he crossed out.
Recounting from the left those original marks not crossed out, he was
able to provide the correct solution.

All these three children were considered “less able” by their teacher, yet
were successful at carrying out the arithmetic tasks in their own way.
Two progressed by deriving facts from known facts, the third reverted
to counting. Amongst less able children, use of known facts to derive
facts is rather rare. A more likely tactic is to count. But, as children
grow older, counting on fingers becomes de rigeur so they must invent
new methods to extend their earlier counting procedures.

Jay (aged 10) rejected standard concrete materials, “I’m too old for
counters”, but neither did he like using his fingers, “my class don’t use
counters or fingers”. For numbers up to twenty he casually splayed his
ten fingers on the edge of his desk and imagined another ten fingers to
extend his counting techniques.

Gavin (aged 9) “liked counting with his fingers – that is what they are
made for”, but for problems up to twenty he assigned numbers in the
teens to various parts of his body in a clockwise fashion from left
shoulder, to waist, to thigh, to calf and ankle, then up his right side.
“I’ve only got ten fingers; I count as if I had a never-ending load”.

Philip (aged 8) solved his physical counting another way, using toes
to supplement his fingers, though this proved problematic when
attempting to move his middle toes.

It can be seen that these creative methods of counting, which extend the
physical counting processes of early childhood to larger numbers, are
fraught with difficulties and may be leading down a cul-de-sac of
failure. To find the source of these difficulties it is useful to go back and



3

consider the ways in which the number concepts arise in the child’s
development.

Procedures and concepts

Initial success in mathematics comes about through being able to do
things. One of the first of these is counting. The young child is given
experiences that lead to the routine of counting “one, two, three, ...” and
the more subtle idea that when these words are spoken while pointing
successively at each object in a collection, then the last word spoken is
the number of items in the collection. The concept of a number such as
“five” is therefore associated with an underlying procedure. Yet the
symbolism “five” or “5” takes on a life of its own because it can be
spoken, it can be written, it can be seen, it can be heard. It takes on a
concrete existence which embodies within it both the procedure of
counting and the concept of number.

Addition is initially an extension of counting. The sum “3+2” is first
attacked by counting three objects, then two more, then putting the two
collections into a single collection and counting them all to get “1, 2, 3,
4, 5”. This first manifestation of counting is called count-all. It is a
succession of three counting procedures.

With experience the child comes to realise that a sum such as “3+2” does
not require the first three objects to be counted a second time. Indeed, it
is only necessary to count-on two more from 3 as “4, 5”. This,
however, involves a double-counting process. As the next two numbers
in the continuing number sequence “4,5” are spoken, it is also necessary
to maintain a count of how many of these are counted. Often this is done
using physical objects – fingers, unifix cubes, numbers on a ruler – so
that one of these counting processes is done mentally, whilst the
concrete objects are used to keep track of the other. Calculating 3+2 on
a number line is done by pointing at 3, then counting on 2 more, which
ends up pointing at the result, 5.

Notice here that “count-on” treats the first number 3 as a mental or
physical entity, then uses the second number to evoke a counting
procedure. Numbers are used once more on the one hand as concept and
the other as procedure.

Experience usually leads on to the encapsulation of the addition 3+2 as a
“known fact”: “three plus two is five”. Such known facts can be learned
in two distinct ways: by rote, or in a meaningful way. Our earlier
examples show that less able children may be hampered by knowing
fewer facts, so learning number facts would seem to be of great value.
However, it is also clear (as in the case of Michelle) that, even when
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they have the facts available to them, they may lack the flexibility to use
them in the most economical and productive way. Thus, although rote-
learning of facts may increase the foundation on which to build, the
meaningful learning of facts is essential for flexible thinking.

Flexibility of mathematical notation

The more able work in a much more flexible way. The fact “3+2 is 5”
is seen to be the same as a whole cluster of related facts “2+3 is 5”, “5–3
is 2”, “5–2 is 3”. Such facts can lead easily to new facts, for instance “I
know 4 and 4 is 8, so 4 and 5 is 9”. This flexibility is well-known. What
is less known is that it depends on a dual use of the symbolism which is
ambiguous. The symbol 3+2 stands both for a procedure, the procedure
of addition through counting, and also for the result of that procedure.
The symbolism evokes both process and product. This dual usage of
symbolism for both procedure and concept is found throughout
mathematics. Yet, because of the mathematician’s desire for precision
and rejection of ambiguity, we have failed to fully understand this
duality and ambiguity of symbolism, which gives it such flexibility.

Here are a few instances:

• 3+2 represents both the procedure of addition and the
concept of sum,

• 3x2 represents both the procedure of multiplication
(through repeated addition) and the concept of product,

• +2 represents both the procedure of “add two” (or shift
two units to the right on the number line) and also the
concept of a positive signed number,

• –2 represents both the procedure of “subtract two” (or
shift two units to the left) and also the concept of negative
number,

• 3
4
  represents both the procedure of division and the

concept of fraction,

• sin A = 
opposite

hypotenuse  represents both the procedure of

calculating the trigonometric ratio and also the concept of
sine,

A B

C

opposite

adjacent

hypotenuse
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• π = 3.14159… represents the procedure of calculating π
as a succession of more accurate decimals and also the
value of π, indeed, the left-hand side of this equation
seems to be concept and the right hand side a procedure
of approximation,

• In the calculus the notation lim
x→1

 
x2–1
x–1 , represents both the

procedure of tending to a limit and the value of that limit,

• so does the notation lim
n→∞ 

1–xn

1–x  

• and ∑
n=1

∞
 an 

• and lim
δx→0

 ∑
x=a

b
 f(x) δx .

Given this widespread phenomenon of the duality and ambiguity of
mathematical notation as procedure and concept, it is quite amazing that
it has not been named. I suspect this is because we first observe the
specific and evident and much later focus on the subtle and generative
deeper concepts. But once these deeper concepts are named, it is
amazing how much power they give us in terms of explanation and
prediction.

Procept

The amalgam of procedure and concept which is represented by the
same notation is defined to be a procept. Once the term has been
verbalized it assists in explaining what is going on in the learning of
mathematics, or rather the learning of mathematical procepts. For
instance, number is a procept, evoking both the procedure of counting
and the concept of number. Addition is a procept, which operates on
the procept of number. The various levels of the encapsulation of the
procedure of counting to the concept of sum can be seen to be
successively sophisticated growth of the procept of sum.

From procedure to procept in arithmetic

Count-all consists of three procedures : count one set, count the other,
then count the combination. However, it is something that happens in
time. The numbers to be added are input several seconds before the sum
is output, so the child performing the procedure successfully may not
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develop the linkage between input and output that is crystallised as a
“known fact”.

Count-on views the first number as concept and the second as
procedure, using a double-count procedure to give the output. The
count-on procedure is more complex, but it does reduce the number of
steps in the procedure to give a greater possibility of linking the two
input numbers with the output as a known fact.

If input and output become linked and remembered, then the resulting
known fact has a proceptual quality. It is both procedure and concept.

The divergence between procedure and procept

The difference between procedure and procept leads to the qualitative
difference between the less successful and the more successful:

The more successful see addition as a flexible procept,
others see it as a procedure that occurs in time, either as
count-on or count-all.

The more able develop a proceptual system of deriving new facts from
old and have an inbuilt feed-back loop that creates new number facts.
The less able are locked into a procedural system in which they are
faced with harder and harder procedures of counting.

Figures 1 and 2 give empirical support for this hypothesis. Seventy two
children were selected by their teachers in two “typical” schools to
represent the chronological ages 7+ to 12+, with each school providing
three pairs of children in each year to represent the below average,
average, and above average attainers (Gray 1991a). These children were
interviewed individually for half an hour on at least two separate
occasions a week apart, and in each session were asked to solve between
eighteen and twenty arithmetic problems at various levels of difficulty.
Figure 1 (Gray 1991b) illustrates the different strategies used by
children of differing abilities in solving single-digit addition and
subtraction problems.

Note the almost complete absence of derived facts in the less able
(particularly in addition), whereas the average and above average start
with a high proportion of known facts and use derived facts to generate
other facts. As the ages of the children increase, the proportion of
known facts increase, but to a lesser extent in the less able.

Figure 2 (taken from Gray & Tall, 1991) shows the total range of
strategies used by more able and less able children in the ages 8+ to 12+
for specific subtraction problems whose answer is not a known fact.
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The left hand side of figure 2 shows the above average children using
almost all derived facts and a few examples of counting, whilst the right
hand side shows the below average children using few derived facts and
a large percentage of counting, take away, and errors. This graphically
illustrates the qualitative divergence in thinking processes.
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Figure 1 : Strategies for solving addition and subtraction involving numbers up to ten
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Figure 2: Strategies for solving problems whose answer is not immediately known

Problems in the initial encounter with algebra

Children meeting algebra for the first time often have great problems in
understanding the meaning of the notation. They may write x and y next
to each other as x y and think of it as “x and y”. But they are told that
xy is “x times y”. They may be confused by the meaning of a symbol
such as 2+3x. If it means the procedure “add 2 to 3 times x” then there
is a problem that it cannot be calculated until x is known. On the other
hand, if x is known, why use algebra anyway? The algebraic expression
is difficult to interpret. Read from left to right in the usual way it says
“two plus three times x”. Because 2+3 is 5, children may think that
2+3x is 5x. But it isn’t. It is all mumbo-jumbo. Algebra soon becomes a
meaningless manipulation of meaningless symbols, each week of study
bringing a new procedure to carry out “collect together like terms”, “do
operations inside brackets first”, “do multiplication before addition”,
“do the same thing to both sides”, “change sides, change signs”, …

There are many problems here. But a major difficulty is the underlying
meaning of the notation. The expression 2+3x means two different
things, it is the process of adding together 2 and 3 times x, and the
product of that process. In other words, it is a procept. Children who
see 2+3x only as process find it difficult to understand because it is a
process that they cannot carry out until they know the value of x. They
try desperately to swallow their difficulties and to cope by carrying out
the procedures they practice each week in manipulating algebra.

Having seen the difficulties in arithmetic with coordinating different
procedures, even greater difficulties occur in algebra. If 2+3x is a
procedure, how does a child cope with factorising an expression like

3(2+3x)+2x(2+3x).
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A child who can see the expression 2+3x as an entity can collect
together terms to get (3+2x)(2+3x). A child who cannot do this may
seek security by following the rules: multiply out brackets, collect
together like terms, look for a factorisation of the resultant quadratic
6+11x+6x2. Once more we see the divergence between procept and
procedure. The mathematics involving procept, using the notation to
represent either procedure or concept, is flexible and powerful. The
mathematics involving only procedures is more complicated and lacks
insight.

The procedural conspiracy

As educators we want to help our student do mathematics. Yet herein
lies a dangerous implicit conspiracy between pupils and teachers. When
a child cannot cope with mathematics the cry is “show me how to do it”.
When the chips are down, in a large class with pressures all around, it is
natural to do just that. And, for a time, everyone is happy. The child has
instant gratification, the teacher is pleased that the child can do
something, parents and politicians are satisfied that progress is being
made. Yet, if we simply show children the procedures of mathematics,
we may end up by confining them to a cul-de-sac of mathematical short-
sightedness which ends up in terminal failure.

Are there solutions?

We should not assume that all problems have solutions. If a child is
more capable of holding several things in the mind at once and more
able to compress this knowledge to treat it as a single piece of
information to be mentally manipulated, then we should not assume that
all other children either have, or can be educated to have, this capacity.
The difficulties of Stuart and Michelle mentioned earlier showed that
they had the idea of deriving new facts from old, but they didn’t do it in
the most economical way, so they made rods for their own backs. By
helping them become more aware of this problem, and showing them
new strategies, we may be giving them too much detailed information
which only serves to obscure the conceptual simplicity seen by the more
able.

However, there are possible ways ahead using the new technology. If a
procedure can be formulated mechanically then it can be carried out on
a computer. All  the procepts discussed in this article are of this type.
Therefore it becomes an educational possibility to get the computer to
carry out the procedures to allow the individual to concentrate on the
higher level relationships involving the objects produced by the
procedures.
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Arithmetic and the calculator

With arithmetic, this means allowing the child to use a calculator, and
helping the child focus on meaningful relationships. For instance, using
the facility on modern graphic calculators, several successive
calculations remain onscreen at a time. Thus it is possible to use a
display such as figure 3 to allow the child to be able to focus on the
nature of the relationship rather than becoming embroiled in the details
of the creative procedures some of them use to carry out the given
calculations.

8–5
3

18–5
13

28–5
23

Figure 3 : representing numerical relationships on a suitable calculator

It is a pity that the calculators usually employed in the classroom only
allow a single number to be input at a time, forcing the child to see the
arithmetic as a process between distinct numbers in time rather than
seeing the relationships represented together in a single display. Even
given the inadequacies of current calculators, the CAN project has
shown that children who use calculators get a better appreciation of
number concepts and fare as well, or better, in knowing standard
number facts.

Introducing algebra with a computer

The difficulty of seeing 2+3x as a single expression, rather than as a
process to be carried out can be greatly assisted using a computer.

It is a simple task to program the computer in BASIC, to type in the
command X=3, and then ask a child what happens when we type in the
command PRINT X+1. When the computer prints 4, and the
phenomenon is repeated with other expressions, it becomes easy to
predict what will happen with PRINT X+3 or PRINT 2*X.

We may now investigate what happens with 2+3*X. Here there may be
different opinions, for instance, when X is 3 then “2+3 is 5, so the result
is 5*X, which is 15”. Testing this on the computer shows a different
result, 11. How can this be obtained? A discussion is naturally initiated
on how the computer carries out the computation, and it occurs in a
sensible context where the computer is using rules that can be
articulated, predicted and tested. Algebra in this context makes sense
because it is part of the language of communication with a computer.
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The Mathematical Association (1989) publishes notes for an approach to
algebra using this method. The approach uses a single computer for
initial discussion between teacher and class. It needs access to one or two
more computers to give the class a chance to explore the ideas
themselves. But it also uses “cardboard computers” which are designed
to enable the child to play the game of internally storing the numbers in
boxes labelled with the names of variables.

The cardboard computer consists of two pieces of card. One represents
the screen, on which a sequence of instructions is placed; the other
represents the internal storage of the computer with boxes which can be
labelled with a letter and a number placed inside (figure 4). For
instance, the assignment A=1 is carried out by labelling a box with the
letter A and placing 1 inside. B=A+3 requires the operators to find the
value of A (which is 1), label a box B and place the value of the sum
A+3 (which is 4) inside. PRINT B+2 then requires the operators to find
the value of B (which is 4) and print the value of 4+2 (which is 6).
Experience shows that the children enjoy the fun of playing with the
cardboard computer every bit as much as the real ones!

A=1

B=A+3

PRINT B+2

B

1 4

A Y X

773
56

Figure 4 : Using the Cardboard Computer

Notice that the cardboard computer requires the pupils to carry out the
specified procedures and actually calculate the value of A+3. On the
other hand, the BASIC program carries out the internal procedures of
numerical computation and allows the user to consider the outputs of
these procedures.

For instance, the program:

10 INPUT X
30 PRINT 2+3*X
40 PRINT 5*X

requires a number to be input, but then performs the required
calculations and prints two numbers. Here the child can see that the two
outputs need not be the same and that the value given to 2+3*X is
consistent with adding 2 to 3*X , not adding 2 and 3 and then
multiplying by X.
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But
10 INPUT X
20 INPUT Y
30 PRINT 2*(X+Y)
40 PRINT 2*X+2*Y

always prints the same value. The expressions 2*(X+Y) and 2*X+2*Y
are seen to have the same effect, even though they involve a different
sequence of calculations.

Of course it would be useful to print the symbols in normal algebraic
notation. The Algebraic Calculator, published in the Mathematical
Association Pack, allows just this. So it is possible to input a value for x
and to print 2+3x and 5x to see that they are different. The version
published by the M.A. is currently for BBC computer only. A more
powerful program, the Function Calculator is available from
Cambridge University Press for BBC, Master, Nimbus and Archimedes
computers as part of the Real Functions and Graphs package. Figure 5
shows a display of the Function Calculator which encourages a
discussion of the meaning of the expression 2+3a and the fact that it is
not calculated in the same way as 5a.

Figure 5 : What does 2+3a mean?

Thus we see programming as an interactive exercise to give meaning to
the conventions of algebraic symbolism using computer notation, with
the Function Calculator focusing on standard algebraic notation. Whilst
both of these systems carry out the procedure of calculation and allow
the user to focus on the meaning of the expressions, the cardboard
calculator focuses on the internal procedures themselves. So the
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different activities can focus on different aspects at different times and
considerably reduce the cognitive strain.

Evidence from Tall & Thomas (1991) shows the benefits of this
approach. Pupils using this approach for three weeks may initially not
be as good at conventional manipulation as those who have had an equal
amount of time devoted to standard practice of algebraic techniques. But
long-term they make up the deficiency in technique and show a far
higher understanding of the flexible nature of algebraic symbolism.

From the many pieces of evidence quoted in this paper, let me report
just one. Pupils in interviews were asked to solve the equation 3p–1=5.
Both experimental pupils (who had used the computer) and control
pupils (who had concentrated on techniques) were able to solve this. But
the control pupils used procedures “add one to both sides, divide both
sides by 2” to get the answer. The experimental pupils were more likely
to say “if 3p–1=5, then 3p has got to be 6, and so p must be 2.” Faced
subsequently with the equation 3s–1=5, the control pupils may have
realised that the equation was similar, but they still needed to go
through the procedure to get the result s=2. The experimental pupils
were more likely to say “it’s the same equation”.

A little later in the interview the children were asked to solve

3(p+1)–1=5.

Several experimental students said something like “it’s the same
equation; p+1 is 2, so p is 1”. But none of the control students said this.
Instead, those who tried to solve the equation “multiplied out brackets,
collected together like terms, subtracted 2 from both sides, divided both
sides by 3 and found that p is 1”.

The difference between the flexible, proceptual approach of the
experimental students who saw the equation as being essentially the same
each time, and the procedural approach of the control students who
attempted to solve the equation is clear.

A way ahead

The experiences using a calculator in arithmetic and a computer
environment in algebra suggest a general principle. The computer (and
its more primitive relative, the calculator) can carry out routine
procedures, allowing the student to focus attention on the objects
produced. In this way students, who might otherwise become focused on
the procedural aspects, can be refocused on the concepts without the
strain of carrying out the procedures (in a possibly idiosycratic way).
Sometimes one can concentrate on the procedures, and on others, using
the computer, one may concentrate on the concepts produced by the
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procedures, without needing to carry out the procedure at the same
time.

In this way one might be able to lessen the gap that occurs between the
procedural thinking that gives short term results and the proceptual
thinking that gives the flexible thought processes characteristic of the
successful mathematician.
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