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ABSTRACT 

Inter-trial repetitions of a target’s features in a visual search task reduce the time needed to find 

the target. Here I examine these sequential dependencies in the Priming of Pop Out task (PoP) by 

means of system identification techniques. The results are as follows. Response time facilitation 

due to repetition of the target’s features increases linearly with difficulty in segmenting the target 

from the distracters. However, z-scoring the reaction times normalizes responses by equating 

facilitation across levels of difficulty. Memory kernels, representing the influence of the current 

trial on any future trial, can then be calculated from data normalized and averaged across 

conditions and observers. The average target-defining feature kernel and the target position 

kernel are well fit by a sum-of-two-exponentials model, comprised of a high-gain, fast-decay 

component and a low-gain, slow-decay component. In contrast, the average response-defining 

feature kernel is well fit by a single exponential model with very low gain and decay similar to 

the slow component of the target-defining feature kernel. Analysis of single participant’s data 

reveals that a fast-decay component is often also present for the response-defining feature, but 

can be either facilitatory or inhibitory and thus tends to cancel out in pooled data. Overall, the 

results are similar to integration functions of reward history recently observed in primates during 

frequency-matching experiments. I speculate that sequential dependencies in PoP result from 

learning mechanisms that bias the attentional weighting of certain aspects of the stimulus in an 

effort to minimize a prediction error signal. 
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INTRODUCTION 

Inter-trial repetitions of a target’s features in a visual search task reduce the time needed 

to find the target relative to the series’ average, whereas alternations tend to increase it 

(Maljkovic & Nakayama, 1994). By adopting a form of reverse correlation analysis of reaction 

times and stimulus sequences, Maljkovic and Nakayama computed kernel functions for such 

sequential effects in the Priming of Pop-out task (PoP), documenting the influence that a current 

trial exerts on future trials. Subsequent studies (Kristjansson, 2008, Maljkovic & Martini, 2005, 

Maljkovic & Nakayama, 1996, Maljkovic & Nakayama, 2000) have mapped a variety of 

conditions that alter the characteristics of such kernels in varying degrees. However, a 

quantitative modeling of such dependencies has yet to be attempted and there appears to be no 

general consensus on the interpretation of the nature and the functional significance of the 

sequential dependencies observed in PoP. Proceeding from these observations, the goal of the 

present study is two-fold: firstly, to provide a quantitative characterization of PoP kernels and 

secondly to propose a new theoretical account of their nature and functional significance.  To 

such effect, I chose to study the effect of stimulus contrast on PoP. Varying stimulus contrast is a 

means to manipulate difficulty in segmenting the target from the distracters and here I show that 

the magnitude of sequential dependencies depends on difficulty. As such, manipulations of 

contrast provide a way of exploring the dynamic range of the sequential effects.  

The plan of the paper is as follows. I start by demonstrating a way to normalize responses 

across conditions and across observers, showing that z-scoring the reaction times removes the 

effect of task difficulty on the magnitude of response facilitation. I then identify the system in 

two steps: firstly, I compute kernels non-parametrically from normalized data by cross-
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correlation; secondly, I fit a parametric model to the recovered kernels averaged across 

observers. I then conduct similar analyses on data from single observers and discuss individual 

differences. Finally, I discuss functional implications of the modeling.      

 

METHODS 

 

Participants. 47 undergraduate students participated in the experiment for course credit. Three 

additional experienced observers were also tested: observers PM (the Author) and VM have 

several years of practice in the task and were aware of the purpose of the experiment, whereas 

LB is an experienced psychophysical observer, but was unaware of the scope of the experiment 

she was running. 

 

Figure 1. Example of stimuli used in the experiment. Participants responded by pressing a key with the 

hand corresponding to the side of the cut in the odd-colored diamond. 

 

Stimuli. Three diamonds (1.0˚ x 1.0˚), each with a cutoff (.14˚) on the left or right side, were 

presented on an imaginary ellipse (10˚ x 8˚) and spaced equidistantly, such that they fell on three 

of 12 possible clock positions (see figure 1). All spatial configurations were covered uniformly 

across trials by random choice. The color of each diamond was either a grayscale increment or a 

decrement over a 47cd/m
2 

mid-gray background. Increments or decrements of 5, 10 and 40% 
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were used for naïve participants and two additional steps of 20 and 80% for the experienced 

observers. The target diamond was a different color than the two remaining distracters. Each 

display always had a left and a right side cut distracter, while the target cut was chosen randomly 

on each trial. The displays were presented on a CRT monitor at a refresh rate of 120 Hz, with a 

fixation point always present at the center. 

 

Procedure.  

On each trial, participants selected the odd-colored diamond and pressed as quickly as possible a 

key on the computer’s keyboard (USB interface) with the hand corresponding to the side of the 

target’s cut. Stimuli stayed on-screen until a response was entered. An inter-trial interval 

followed, with duration chosen randomly from a uniform distribution between 600 and 1100 ms. 

Response times were collected during uninterrupted series of 500 trials. Each naïve participant 

completed 3 series of responses separated by brief interruptions, one for each contrast level in 

randomized order. The three experienced observers completed several sessions of testing across 

different days. Target color (bright or dark), side of cut (left or right) and position (one of twelve 

clock locations) alternated randomly, independently and with equal probabilities across trials. As 

such, each sequence is a sample of uncorrelated noise. 

 

Data Analysis.  

The aim of this study is to recover the best linear predictor of the response times to a sequence of 

stimulus features in the search task. When the input time series is uncorrelated noise this can be 

achieved conveniently by cross-correlation (Marmarelis & Marmarelis, 1978). The recovered 

predictor is a first-order kernel that when convolved with the input sequence reproduces the 
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response time series up to an error. The residual error may still contain dynamics of higher order 

that are ignored in the present analysis. First order kernels for the target-selecting feature (color), 

for the target’s position and for the response-selecting feature (cut-off side) were computed from 

the reaction time series. For each participant, each individual reaction time series was first de-

trended up to second order. Separate sub-series were then formed, two comprising only reaction 

times to bright or dark targets, two for left or right responses and twelve for the target’s 

positions. Each reaction time was then z-scored (mean subtracted and divided by the standard 

deviation) and empty cells were assigned the value zero. Corresponding [0,1] binary stimulus 

sub-series were also formed, assigning the value 1 to trials containing the feature, response or 

position of interest. Kernels were then recovered by cross-correlating the reaction time sub-series 

with the corresponding stimulus sub-series and by scaling the result by the inverse of the 

stimulus series’ power. Justification and a model for such computation was given in (Maljkovic 

& Martini, 2005). Further computational details may be found in (Marmarelis & Berger, 2005). 

For each individual observer, the pairs of kernels for colour (bright and dark) and response (left 

and right) and the twelve position kernels were averaged, and finally the resulting average 

kernels were averaged again across observers. Following this initial nonparametric analysis, a 

parametric model was fitted by non-linear regression to each recovered kernel, obtaining 

estimates of model parameters of interest. 

 



 

page 8 

RESULTS 

Contrast dependence and kernel normalization 

 Finding the pop-out target is more difficult at low than at high contrast, as evidenced by 

the fact that responses are slower on average and more variable the lower the contrast (mean and 

SD, figure 2).  

 

Figure 2. Summary statistics for reaction times at different contrasts. Mean and standard deviation of 

reaction times and lag-1 facilitation for repetition of the selection-defining feature decrease with 

increasing contrast. Data are averages across all observers.  

 

Kernels for the target-defining feature are also affected by contrast. The facilitatory effect 

of repeating the target-defining feature depends on difficulty, lag-1 facilitation being larger at 

low than at high contrast (lag 1, figure 2). Shown in figure 3 are target-defining feature kernels 

averaged across participants, for the three levels of contrast tested in the experiment. The 

diagrams represent the amount of facilitation (speeding up) of a response to a bright or dark 

target encountered in a future trial, elicited by a bright or dark target encountered in the current 

trial. A similar pattern is observed across contrast levels: facilitation is maximal in the 

immediately following trial (lag-1) and decays to average response time in about 10-15 trials. 

However, facilitation tends to decrease with increasing contrast, following a similar trend as the 

mean response time and the standard deviation.  
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 The effect of contrast on all three statistics (mean, SD and sequential dependencies) is 

systematic, with regression slopes on the log-log-transformed data of figure 2 of -0.086, but only 

marginally significant (p<0.1).  

 

Figure 3. Average selection-defining feature kernels for the 3 contrast levels used in the study. All kernels 

are heavy-tailed facilitation functions, with an initial fast decay followed by a slow decay to average 

response time in about 10-15 trials. Notice the progressive attenuation with increasing contrast, evident 

particularly a lag 1. Errors are 95% C.I. 

 

The relationships between sequential effects, mean and standard deviation of response 

times are further examined in the scatterplots of figure 4. Individual dots in each graph represent 

a summary statistic calculated on a block of responses at a single contrast level from a single 

participant. Replicating a well-known finding (Wagenmakers & Brown, 2007), the standard 

deviation of the response times (figure 4, left panel) is linearly and very highly correlated with 

mean reaction time (r=0.88, p<.0001). As expected from its dependence on contrast, also lag-1 

facilitation (figure 4, middle panel) correlates significantly with mean reaction time (r=0.5, 

p<0.0001). However, Z-scoring each reaction time series normalizes responses (figure 4, right 

panel), such that facilitation no longer correlates with the mean (r=-.09, p>0.1).  
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In summary, facilitation appears to increase with difficulty in segmenting the target from 

the distracters, but such effect is canceled by taking into account corresponding increases in 

variance. This may be an uninteresting result from a theoretical perspective, suggesting that 

whatever mechanism is responsible for increasing the variance of reaction times proportionally 

to the mean also increases proportionally the magnitude of sequential dependencies. However, it 

is of practical value inasmuch as it suggests a useful method of normalization. 

 

Figure 4. Scatterplots of data pooled across participants and contrast levels. Solid lines through the data 

are LOWESS splines. On the left, the standard deviation of the response times for each contrast level and 

each participant is plotted as a function of the mean response time; the correlation between standard 

deviation and mean RT is very high (r=0.88, p<.0001). Middle, lag-1 facilitation is correlated with the 

mean (r=0.5, p<0.0001). Right, lag-1 facilitation calculated on z-scored data does not correlate with the 

mean (r=-.09, p>0.10).  

 

Average kernels 

The effectiveness of z-scoring as a normalization procedure justifies pooling the data 

across all contrast levels and participants, thus allowing for the computation of the average 

kernels shown in figure 5. The recovered kernels were modeled as the sum of two exponential 

functions: 

y w1 exp
x

1

w2 exp
x

2

        (1) 
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Equation 1 was fitted to the data by non-linear regression.  

For the target-defining feature (figure 5, left) and the target position (figure 5, right), the 

obtained best fitting parameters indicate a fast-decay component with a time constant less than 

one trial (selection feature: w1=1.33 0.14, 1=0.79 0.1; target position: w1=0.52 0.4, 

1=0.65 0.37) and a slow-decay component with a time constant of about 5 trials and a much 

smaller gain (selection feature: w2=0.14 0.14, 2=4.2 1.0; target position: w2=0.09 0.03, 

2=6.3 2.0). The best fitting model for the response-defining feature kernel is instead a single 

exponential function, with decay constant similar to the slow-decay component of the selection-

defining feature kernel, but even lower gain (w2=0.05 0.01, 2=4.6 1.15). 

 

Figure 5. Kernels for the selection-defining feature (left), the response-defining feature (middle) and 

target position (right) computed on z-scored data and averaged across contrast levels and participants. 

Errors are 95% C.I. The solid line through the data is a sum of two exponentials model for the selection 

feature and target position and single exponential for the response feature. 

 

Single participant kernels 

Kernel analyses for colour and response were also carried out on the data obtained from 

three experienced observers, shown in figure 6. Individual kernels for the selection-defining 

feature are broadly similar to the pooled data. However, the kernels for the response-defining 
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feature are very heterogeneous and well modeled by a sum of two exponential functions, unlike 

the pooled data. Model’s parameters are reported in Table 1. Characteristically, the fast-decay 

component of the model has positive or negative gain in different observers. In addition, the slow 

component appears to extend to longer lags in practiced versus naïve observers.  

 

Figure 6. Kernels for the selection-defining feature and the response-defining feature computed from the 

z-scored data of 3 individual observers. Solid lines are sum of exponentials models and errors are 95% 

C.I. 

 

Table 1. Model’s parameters for single observers. 

Observer Feature W1 T1 w2 T2 

PM Colour 1.2±0.25 0.9±0.2 0.17±0.06 6.9±1.9 

  Response -0.48±0.08 1.42±0.4 0.1±0.04 10.7±3.8 

VM Colour 0.43±0.31 0.78±0.5 0.14±0.03 8.4±1.9 

  Response -1.0±0.6 0.64±0.4 0.5±0.4 1.9±0.7 

LB Colour 0.24±0.05 1.7±0.77 0.07±0.05 9.5±4.4 

  Response 0.66±1.4 0.47±0.5 0.09±0.02 8.1±2.2 
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Discussion 

Relation to previous studies of PoP 

 The original study of (Maljkovic & Nakayama, 1994) reported kernels for selection-

defining features computed on data from a small number of individual observers, including VM, 

the first Author of that study. There is remarkable agreement between the selection-defining 

kernels of observer VM computed in the original and the present study after a 15 years period 

(see figure 7). This is just one example of a general observation that selection-defining feature 

kernels appear stable and homogenous across different display conditions, temporal delays and 

observers, particularly when normalization measures, such as z-scoring, are applied. 

 

 

Figure 7. Selection-defining feature kernels for participant VM. Empty symbols are data from this study, 

solid symbols reproduce data from figure 9 of (Maljkovic & Nakayama, 1994). 

 

In contrast, (Maljkovic & Nakayama, 1994) reported no convincing evidence for the 

existence of a response-defining feature kernel, an observation later reproduced by (Maljkovic & 
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Martini, 2005). This issue was reexamined by (Goolsby & Suzuki, 2001): they documented a 

small, but reliable response-defining feature kernel in pooled data and the present study agrees 

with their finding. Reliable quantification of response-defining feature kernels is complicated by 

the small effect size and low signal/noise ratios, by the presence of stimulus-response 

compatibility effects (note that responses in (Maljkovic & Nakayama, 1994) were unimanual and 

therefore partially S-R incompatible, whereas in the present study and in (Goolsby & Suzuki, 

2001) they were bimanual and S-R compatible) and by large heterogeneities found across 

observers, particularly at lags shorter than three. These complications have affected past, and will 

continue to affect future investigations of the response-defining feature kernel. 

  

Parametric modeling of kernels 

 Extant studies of PoP have not attempted to quantify the recovered kernels by explicit 

modeling. The only possible exception is the study of (Maljkovic & Martini, 2005), limited to a 

single observer, where the selection-defining feature kernel was modeled as a single exponential 

function. Except in the case of the response-defining feature kernel for the average data, a single 

exponential function is not an adequate model for the present data: the best-fit solution of such 

model tends to under-fit data at short and long lags and to over-fit them at intermediate lags. The 

pattern observed in the data, i.e. an initial fast decay followed by a fat tail, is more consistent 

with a power type relationship. The model proposed here, i.e. the sum of two exponentials, 

approximates a power type function, but retains the advantage of having a finite memory. 

Whether the two exponential components of the model reflect two real, independent mechanisms 

can at present only be a matter of speculation. It is possible that the initial fast-decay component 

is, at least in part, contaminated by consciously explicit adjustments on the part of the observer. 
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For example, (Maljkovic & Nakayama, 2000) reported explicit memory for the features of up to 

two trials in the past. Consistent with the idea of a separable fast-decay component is the 

observation that the kernel for the response-defining feature is maximally heterogeneous across 

observers in the initial ~3 lags, varying between inhibition and facilitation, whereas later lags 

tend to uniformity by showing always a consistent, albeit small, facilitatory tail. Note also that 

the time constant of the slow component is significantly longer in practiced than naïve observers, 

suggesting some plasticity due to training. It remains for future studies to explore the possibility 

of selectively manipulating performance in different lags’ ranges, thereby establishing whether 

the proposed kernel’s fractionation reflects true separate influences or is simply a convenient 

modeling exercise.  

 

Similarities beetween PoP and other sequential dependencies 

The study of sequential dependencies in behavioral data has a long history. Looking 

beyond the PoP task, sequentially dependent behaviour has been observed in virtually every 

choice task studied, including production of random data (Goodfellow, 1938, Hagelbarger, 1956, 

Skinner, 1942), detection of liminal signals (Senders & Sowards, 1952, Verplanck, Collier & 

Cotton, 1952), speeded choice among alternatives (Bertelson, 1965, Laming, 1969), magnitude 

estimation (DeCarlo & Cross, 1990), categorization (Stewart, Brown & Chater, 2002), sensori-

motor adaptation (Baddeley, Ingram & Miall, 2003) and reward-contingent choice (Corrado, 

Sugrue, Seung & Newsome, 2005, Hunter & Davison, 1985, Lau & Glimcher, 2005). The list is 

certainly not exhaustive, but in all these instances the observed pattern of sequential 

dependencies can be reduced to two common types, classically known as “contrast” and 

“assimilation” (Treisman & Faulkner, 1984). Contrast is a repulsive influence and reflects a 
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tendency to alternate, whereas assimilation indicates positive correlation and reflects a tendency 

to persist. PoP kernels are mostly of the assimilation type, but the inhibitory component 

sometimes present in the response-defining feature kernel is clearly an example of a contrastive 

influence.  

Two recent investigations of the mechanisms for integration of rewards (Corrado et al., 

2005, Lau & Glimcher, 2005) come the closest, in terms of task demands and analytical 

methods, to the study of kernels in PoP. The similarity between the kernels retrieved in those 

studies and the present study is intriguing: both reward studies reported heavy-tailed kernels for 

reward and heterogenous kernels for response. Is this simply a fortuitous similarity?  

 

Prediction and learning in PoP 

Ideas from behavior, neuroscience and machine learning have been brought together into 

a coherent explanatory framework for kernels observed in reward-contingent behavior, 

understood as the result of reinforcement learning (Sugrue, Corrado & Newsome, 2005, Sutton 

& Barto, 1998). Central to this type of theories is the concept of temporal difference learning, 

where choices are driven by a value function that is iteratively updated on every trial. Learning 

proceeds by minimizing a prediction error, adding to the value function at every trial a weighted 

difference between the reward received and the previously expected value. The prediction error 

acts as a teaching signal, such that learning can proceed unsupervised. 

In contrast, sequential dependencies in visual search have been interpreted as a form of 

implicit short-term memory that biases attentional weights for certain aspects of the stimulus 

(Maljkovic & Nakayama, 2000). Note, however, that the characterization of the kernel as a 

memory is simply a restatement of the phenomenon. Furthermore, the notion that repetition of a 
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stimulus’ feature increases attention toward that feature leaves unanswered the question as to 

why it should be so: why isn’t attention reduced, rather than increased by repetition?  

I suggest that a coherent framework to explain kernels in PoP can be articulated by 

considering task goals and ecological contingencies. Finding a target among distractors may 

benefit from learning about the regularities in the distribution of the items. By exploiting such 

regularities the observer can anticipate the most likely stimulus configuration in the upcoming 

trial, thus speeding up responses. The assumption here is that such regularities do exist, but this 

is not often the case in laboratory tasks: in the classic PoP task, for example, all stimulus features 

are equiprobable and alternate randomly. Yet, in nature completely random time series are the 

exception rather than the norm, as attested by the observation of widespread 1/f-type spectra 

(Hurst, Black & Simaika, 1965). Not only are most natural time series temporally correlated, but 

also the spatial distribution of resources is often patchy (Taylor, Woiwod & Perry, 1978), such 

that exploration of the environment also results in sequences of correlated encounters. As such, 

prediction is clearly attainable in ecological settings and predictive tendencies are likely to be the 

evolved operational default of behaving organisms. 

These considerations suggest that kernels in PoP may reflect a similar prediction 

algorithm as that postulated to exist for reward. The suggestion here is that value functions, 

computed by means of unsupervised learning through a prediction error signal, may drive the 

attentional weight given to stimulus features and thus affect the speed of response. In classic 

temporal difference learning algorithms (Sutton & Barto, 1998), iterative value updating by a 

prediction error signal leads to exponentially discounted kernels. The observation that PoP 

kernels may have two exponential components suggests that the values of alternatives are 

computed by at least two mechanisms with different learning rates, one greedy and one slow. 
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Similar suggestions have been made in the reward and decision-making literature (McClure, 

Ericson, Laibson, Loewenstein & Cohen, 2007, Rustichini, 2008). Bringing the sequential effects 

observed in PoP under the general umbrella of reinforcement learning and decision-making 

highlights the commonalities between fluctuations of attentional weights and of motivational 

salience (Maunsell, 2004) and suggests testable predictions about mechanisms and neural 

structures. 
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