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(iv) 

SUMMARY 

We consider the relationship between fractals and 
dynamical systems. In particular we look at how the 
construction of fractals in (D1) can be interpreted-in a 
dynamical setting and additionally used as a simple method 
of describing the construction of invariant sets of 
dynamical systems. There is often a confusion between 
Hausdorff dimension and capacity -which is much easier to 
compute- and we show that simple examples of fractals , 
arising in dynamical systems, exist for which the two 
quantities differ. 

In Chapter One we outline the mathematical background 
required in the rest of the thesis. 

Chapter Two reviews the work of F. M. Dekking on generating 
'recurrent sets', which are types of fractals. We show how 
to interpret this construction dynamically. This approach 
enables us to calculate Hausdorff dimension and describe 
Hausdorff measure for certain recurrent sets. We also 
prove a conjecture of Dekking about conditions under which 
the best general estimate of dimension actually equals 
dimension. 

In Section One of Chapter Three recurrent sets are used 
to construct special Markou partitions for expanding 
endomorphisms of T2 and hyperbolic automorphisms of T3. 
These partitions have transition matrices closely related 
to the covering maps. It is also shown that Markov 
partitions can be constructed for the same map whose 
boundaries have different capacities. Section Two looks 
at the problem of coding between two Markov partitions 
for the same expanding endomorphism of T2. It is shown 
that there is a relationship between mean coding time and 
the capacities of the boundaries. Section Three uses 
recurrent sets to construct fractal subsets of tori 
which have non-dense orbits under the above mappings. 

Finally, Chapter Four calculates capacity and Hausdorff 
dimension for a class of fractals (which are also recurrent 
sets) whose scaling maps are-not similitudes. Examples 
are given for which capacity and Hausdorff dimension give, 
different answers. 
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INTRODUCTION. 

Each chapter has an introduction, so we shall not say 

too much about individual results here. 

Since the publication of Mandelbrot's book (Mal) 

there has been wide interest in fractals. The beauty 

of, (Mal) is that it provides a general language in which 

a wide range of complicated physical and mathematical 

phenomena can begin to be described. The appearence of 

(Mal) stimulated several mathematical papers including 

(Hut) which analysed strictly self similar sets using 

constructions that we would call full shift spaces and 

Markov partitions. We feel that fractals can be used 

constructively as well as descriptively. For this a 

more general formalism for generating fractals than 

that provided by (Hut) is required. Such a formalism is 

provided by (D1). because it gives a large degree of control 

over the geometric properties of the fractal to be 

constructed. 

We analyse the 'recurrent sets' of (Dl) using 

subshifts of finite type (showing in Thrm. 2.16 how to 

link the different constructions of (Hut) and (Dl)) and 

see that the scaling structure of recurrent sets is closely 

related to a dynamical structure. This approach enables 

us to use the ideas from (Fu) and (Bo6) which link 

ergodic and fractal properties. 

Fractals arise naturally in dynamical systems as 
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invariant subsets, for instance in hyperbolic toral 

automorphisms (Ub). Current constructions of such sets 

often give little indication of any geometric structure. 

We show here that it is possible to use Dekking's 

formalism to produce more examples. In particular we 

construct special Markov partitions for some hyperbolic 

automorphisms of T3. Markov partitions are used to give 

a description of the dynamics of a map. One would like 

to have Markov partitions for which the transition matrix 

could be written down from knowledge of the map. Manning 

(Mn2) does exactly this for hyperbolic automorphisms of T2 

and Bowen (Bo7) shows that for An Axiom A diffeomorphism 

with a zero (topological) dimensional basic set, there 

is a relationship between the induced map on homology and 

the transition matrix of a Markov partition. Our result 

is an extension of Manning's to T3. We also use the 

recurrent set structure to make statements about expected 

code time between different partitions for expanding 

endomorphisms of T2. and about invariant subsets. 

a 

A key element to understanding fractals is calculation 

of Hausdorff dimension. The dynamical structure of recurrent 

sets was introduced to enable us to perform this calculation 

under certain kinds of scaling maps. However, when the 

scaling map is not of the correct form: the dynamical 

techniques break down. Our final chapter is devoted to 

calculating Hausdorff dimension in some simple cases of this 

category. 



CHAPTER ONE 

MATHEMATICAL BACKGROUND. 

1 

Endomorphisms of the torus. 

Let A be an nxn matrix with entries in 2Z. A induces 

a linear map A: 1R n. IRn in the usual way, in particular 

A( ? Ln) c ZZn. We define the n-dimensional torus' 

Tn _ ]n /Zn. The covering map p: ß2n Tn is defined 

by X14 x+2Zn, and there is an induced map AsTn - Tn such 

that the following diagram commutes, 

Ilan --- 
A> I2n 

PNjP 

Tn A 
"Tn 

-"Since A is linear, A is an endomorphism, 'i. e. 

A(x+y) = Ä(x) + A(y) 

where addition is the group operation on Tn. We say that 

A is a hyperbolic toral automorphism if Idet Al =1 'and 

no eigenvalues of A have unit modulus. Ä is an expanding 

toral endomorphism if A has Idet Al- ->1 and no eigenvalues 

with-modulus less than or equal to one. 

If A is hyperbolic, ]Rn splits into the direct sum of 

contracting (stable) and expanding (unstable) A-invariant 

subspaces, 1Rn = ES'BEu. We define the stable and unstable 

manifolds of p(x) E Tn as 

WS(P(x)) = PAX + ES) , WL(P(X)) = P(X + EU) 

respectively. Then Ws(y) =[ zE Tn : d(Äry, Ärz) a0 as 

and Wu(y) _zE Tn : d(Xy, Aýz) 0 as r-: >, I-l. Write 

Ws(Y: &) = tz E Tn : d(ArytArz) < F. dr>, 01 etc. If y, z are 
"t 
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close and £>0 is small, WS(yE)nWU(z£) is a single 

point which we denote [y, z] . We note that periodic 

points of A are dense in T and that Wh(y) =T for any 
nn 

ye Tn. Hyperbolic toral automorphisms are well known 

examples of Anosov diffeomorphisms and of Axiom A 

diffeomorphisms. 

Symbolic dynamics 

The full shift on n symbols ( 
n, 

a-) is the shift map 
0.0 

on En =ý0,1, ", n-1} _ (xi)iE? 
L: x. 

defined by '(xi) t (yi) where xj+l = yj ,VjE ZL. ' ' We 

metrize ; ý: 
n 

by defining d((xi) , (yi)) = 2-m where m is 

the largest integer such that xj = yj for ýjj< m. The 

topology induced by this metric is the same as the product 

topology coming from the discrete topology on ý0,1,.., n-1j. 

By Tychonoff's Theorem : 5-7 
n 

is compact. A basis for the 

topology is given by cylinders, an r-cylinder being 

Cr(x) = {y. E £n :x= (xi) ,Y= (yi) , xj=yj J=Ot; ', tr} . 

Let B be an nxn matrix with entries in [0,11 
. We define 

the subshift of finite type ': ý(B) by 

-ý-(B) n: 
bx. 

xi 
=1 Vi 

1 +l 
One also defines in a similar way one sided shift spaces - 

00 n, ý(B) where n=Öý0,.., n-1ý 

We can consider 
n as the set of bi-infinite paths 

around the directed graph Gn with n vertices and a 
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directed edge (vi, vi) for each ordered pair of vertices. 

If one labels the paths by? L, a-(x) is the same path as x 

but with the labelling moved on by one place. More 

generally, if B is an nxn matrix with entries in ? Z+ 

we can associate a directed graph GB to B. % has n 

vertices labelled 0,.., n-1, and there are bij directed 

edges from vertex i to vertex j. We can now define 2(B) 

as the set of bi-infinite paths around GB labelled by ? L. 

In fact, any where B is a matrix over 7Z+ is 

topologically conjugate to a (: ý(A), (7) where A is a matrix 

over 1.0,1}, in other words there is a homeomorphism 

0: : ý(B) - : ý(A) so that OaB = croc. The symbols of : E(A) are 

the edges of GB , and aij =1 if and only if edge i ends 

at vertex v and edge j begins at vertex v. (Ad2) gives 

more details about this kind of construction. 

The fractals we study have a scaling structure and 

will be modelled using subshifts of finite type. In 

particular, certain kinds of shift invariant measures 

will be used in Hausdorff, dimension calculations. Write 

= 'J-(B), and let M( , a-) be the set of shift invariant 

Borel probability measures on. - Let ýn = ¬Cn(x) sx Eý . 

With the convention that Olog O=0, we define the 

entropy of ý-n with respect top. as 

H (fin) _- ZAEýn 
/k, 

(A) log p(A) 

the entropy of c- with respect tola- is 

hý(o-) = h), cr, ý) =n wo (1/n) H1.. (r'n) 
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Given a Lipschitz function f:. > ]R, the pressure 

of f is 

P(f) = sup 
{ 

hr(cr) + 
Jfdp 

:E M(Z, o') 
I. 

The assumption that f is lipschitz implies that there is 

a unique ergodic member p. of M(ß, ß-) maximizing 

h (c-) + 
ffd/A.. We call f the equilibrium state for f. 

The measure pf is a Gibbs measure i. e. there are constants 

a, b>O such that 
' -1 

a %"f(Cn+l(xO.. xn)) exp( -nP(f )+ in0f(r1x)) 
<, b 

where x= (xO.. xn... ) . In particular if f=- Optlf is the 

measure of maximal entropy. Gbod references for the 

ergodic theory of shift spaces are (Bo3), (Wal, Wa2). 

Markov partitions. 

The principle technique by which subshifts of finite 

type are used to study Axiom A diffeomorphisms'is by the use 

of Markov partitions. We show how the construction works 

for a hyperbolic automorphism, Ä: Tn-' Tn. 

For RC Tn put WS(x, R) = WS(x F. )r-R : Wu(x, R) = Wu(x,, ), R 

A Markov partition R= {R0,.., Rmljis a finite collection 

of subsets covering Tn, with-diameters small compared to E and 

i) Ri = int Ri, and Ri 95 

ii) (int R(int Rj) 4 i=j 

iii) x, yE Ri 4 Cx, y] E Ri 

and satisfying the Markov conditions,. 

.` 
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If xEint Ri, and 

iv) ÄW'(x, Ri) 

v) AkWS(x, Ri) 

(Adl) , (Sil, Sit) 

I Ax E int R. then 

Wu(Ax9Ri ) 

c WS(Ax, Rj) 

and (Bol, Bo2) demonstrate the 

existence of Markov partitions in various settings 

including hyperbolic toral automorphisms. 

The transition matrix for V, is the mxm matrix B 

defined by 

bid =1 if A(int Ri) n 
int Ri 00 

= Or otherwise. 

The Markov properties imply that if x= (xi)iC 

n 
ik0 A1RX converges as k -goo to a line segment 

-i 
that is a piece of unstable manifold in Rx (fig I ). 

0 

1\X 0 
FIG, 1 

+ COO 

Similarly ni0 A+1RX, is a piece of stable manifold 
i 

in Rx . Thus, since these two submanifolds intersect 
O n 

in a single point of RX we may define a map r: 
_ý($) 

T 

by 013 

-1R (Xi)i6? 
L) 

nA 
xi. 

% is continuous, onto, boundedly finite to one, one to 

one on a residual set, and Aik = 70-., Thus one can 



6 

follow orbits of points on Tn by considering a 

corresponding symbol sequence in Z(B). 

The map o is used to push measures on down onto 

Tn, and to describe the dynamics of A (for instance 

Tr xE Tn is periodic if and only if x 6;! 5(B) is). The 

constructions of Markov partitions referred to above 

give little indication of what form the matrix B can take. 

We shall return to this question in a later chapter. 

In the simpler case of A being an expanding endomorphism 

a similar construction works (deleting (iii) and (v) from 

the definition of a Markov partition) to give a 

semiconjugacy from a one sided shift space. If 

R=ý Rl ,"" , Rmj is a Markov partition we shall write 

vn1O 1ý nöZ =ý RjOPARjlý .. nÄOz : 
(j0.. ji... )E (B) 

Fractals 

Suppose (X, d) is a metric space. Let IUt denote the 

diameter of a set U. If 1c X, we define the r-dimensional 

Hausdorff measure of Y as 

7 00 

0.0 HMr(Y) = Iim inf' 2. jUil r: U Ui y, 1 U1V z `di } 
0 i-1 i=1 

J 

Clearly HMr(Y)E[0,0QJ. The Hausdorff dimension of Y is 

dim(Y) = in+ : HMr (Y) =0. 

() HMr is an outer measure i. e. HMr(U 1 An)ý 1r 
An 
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and HM (0) = 0. The set of HMr-measurable sets forms 

a 6-algebra on which HMr is s-additive, and which 

includes the Borel sets. In particular when rE]N, HMr 

is equivalent to the usual outer Lebe. sgue measure. 

We shall always denote Lebesgue measure of the ambient 

space by m. Some useful facts about Hausdorff dimension 

are given below (their proofs are straightforward and 

can-be found in (Ca) and (Ro)) 

i) YCW dim Y-, < dim W 

ii) dim Y= sup [r : HMr(Y) _ co3 

iii) If Y= Ui Yn , dim Y= supra dim Yn 

iv) If f: t, +stn is- defined by f(x) =--t. x (te]R) 

then trHMr(W) = HMr(f(W) ). 

v) If f: IlZn -, ]n is Hölder continuous with 

exponent at i. e. (fx - fy (< C. Ix-YJa 

and WC]Zn, a. dim f(W) < dim W. 

Two of the more useful results for obtaining lower bounds 

on dimension are 

Frostmarts Lemma Let K be a compact set-in iZn. Then 

HMr(K)> 0 if and only if there is a probability measure 

jL with support on K such that for all balls B 

p_ (B) < c. l BIr 

where c is a positive constant. 

  

A proof of Frostrnan's lemma is given in (Ca, p7). 

Marstrand's Theorem (Mr) Suppose E is'a plane set and 

that p is a positive number such that for every point 
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x of a given set A, writing Ex =¬ (x, y)EE : y¬)Rc , we have 

HMt(EX) > p. Then MNs+t(E) >, k. p. HMs(A) where k is a 

positive absolute constant. 

  

A corollary of this result is that dim(AxB) >, dimA + dim B. 

Dimension intuitively gives a measure of the 'rarity' 

of a set, but is often difficult to compute. Another 

measurement is that of capacity. Let N(E) be the 

minimum number of balls of diameter c required to cover 

a compact set W in ]Rn. Define the upper and lower 

capacities of W by 

cap W=l im sup log N(E) /. 109 (1 /c ) and 

cap W= liminf log N(E) / log (1/E) respectively. 
Z-O 

When cap W= cap Wo we call the common value the capacit 

of W. (Note that some authors use the terms limit capacity 

or logarithmic density in order to distinguish our 

capacity from potential theoretic capacity). 

It is easy to see that if Wc3RnI 

n cap W >, cap W >, dim W. 

There are examples of sets W for which cap(W)> dim(W), 

for instance Q. This particular example works because 

cap(W) = cap(W) for any W. We shall see, in chapter four, 

an example of an invariant set in a dynamical system 

for which cap 0 dim. 
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Mandelbrot (Mal) defines a fractal as a set whose 

topological dimension differs from its Hausdorff 

dimension. (Hur) give a definition of topological 

dimension and prove that 

dim W >, top. dim. (W) 

always holds. We shall be rather liberal in the use of 

the word 'fractal' owing to the difficulty of calculating 

dim in general. The term 'fractal dimension' will be 

taken by us to refer both to Hausdorff dimension and 

capacity. 

Main definitions and results are numbered n. m where 

n is the chapter they occur in, and m numbers them 

consecutively within the chapter. 

a 
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CHAPTER TWO 

RECURRENT SETS. 

In this Chapter we consider Michel Dekking's 

construction of fractals, and see how to view them as 

dynamical systems. Subshifts of finite type are used 

to calculate dimension and describe Hausdorff measures. 

1: Constructing Recurrent Sets. 

Dekking's construction of fractals (Dl) is based 

upon the idea of "polygonal line substitution" (described 

by Mandelbrot in Ma 1, Ma 2). It is consequently a more 

flexible technique than that used by, for example, 

Hutchinson (Hut). It is more difficult to analyse from 

-the point of view of calculating dimension and was 

developed prior to both (Ma 1) and (Hut). 

A simple example is provided by the scheme in 

which straight (directed) line segments are transformed 

as follows (fig 2 ). 

' FIG. 2 

J 1------ 
}, 

We begin with a line segment and proceed inductively 

to transform the smaller sized-line segments generated. 

In order to draw the pictures on a computer we use symbols 

to represent the various directed line segments occuring 

(fig 3). 

T: IG 
abcd 
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[: I K[o 0. j 

L3K[ a] 

C4 KCe'0.7 

FiG. S 
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Then the given transformation is given symbolically 

by 

a ý-> acada 

b bdbcb 

c '-> cbcac 

d r> dadbd. 

In order to obtain the picture of fig. 2 one has also 

to normalize. (fig 4). 
FIG. If 

rý r> j-j 

Further stages of the induction give pictures as shown 

in fig. 6 

I 

We now formalize the above approach. Let S be a 

finite alphabet of symbols. S* will be the free semigroup 

generated by Sp and 6: S* -ý S* a semigroup endomorphism. 

G(S) is the free group generated by S. We denote by 

f: S* -. - JZn a homomorphism i. e. f satisfies 

" f(VW) = f(V) + f(W) 

for all words V ,WE S*. The map f is used to describe 

relative position. We also require a map to associate 

compact subsets of 3Rn with words in Ste. Denote by 

( ]Rn) the space of compact subsets of 3Rn. We 

require a map K[. ]: S* + (]pn) to have the property that 
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KCVW] = K[V] 
v 

(K [W]+ f(V)) V V, W 6 S*. 

The natural choice for K ¶. ] when drawing fractals on 

a computer is 

K[s] = [O, f(s)] dsE S 

where [a, b] = [at +- (1-t )b :tECO, 1]} . This makes 

K [sl.. sr] the polygonal line with vertices at O, f(sl), 

f(sl)+f(s2),..., f(s1)+.. +f(sr). Other important choices 

for K[. ] from a pure mathematical point of view are 

K[s] = Ice(s) (see below) and K[s] = {f(s)j 
. In 

fact, the choice of K[. ] does not affect the recurrent 

set generated (2.16). 

Suppose now that Ls IlRn ]2n is a linear map 

so that f6(s) = Lf(s) for all se S. (This condition 

ensures that when we substitute a polygonal line for 

a line interval our two arcs have the same beginning and 

end points - in other words L is the'normalizincj map 

referred to above). Then our approximations to a 

particular fractal, denoted K9(W), are given by 

L K[e aI . 
In order for these approximations to converge in the 

Hausdorff metric, we require that L should have all 

its eigenvalues of modulus larger than one i. e. that 

L should be expan dins (Dekking uses the word 'expansive' 

which we shall avoid due to its use in dynamical 

systems). 
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So far we have only seen how to produce fractal 

curves. In order to generate more complicated figures 

such as Cantor sets we need to use symbols that 

can give us 'gaps'. 

Def. 2.1 A-symbol sES is virtual if K [s] = 0. 

It would now be possible for our approximating sets 

to eventually become empty if for some N, eNW contained 

only virtual symbols. We need to find some extra 

conditions that will ensure convergence to a non-empty 

set. 

Def. 2.2 Let QcS (so Q* S*). Then O: S* S* is 

Q-stable if there exists m >0 such that for all s¬S 

either 

i) 0ks r= Q*'/km or, ii) eks 4 Q* k >, m. 

From now on Q will denote the set'of virtual symbols. 

Any symbol that satisfies. (ii) is called essential. The 

set of essential symbols is denoted E. The following 

Theorem asserts the existence of recurrent sets. 

Thrm 2.3 (D1,3.3) Let 6, S*, f, KC. 7 
, and L be as above 

with L expanding. Suppose that 0 is Q-stable. Then 

there exists a non-empty compact set K0(W) such that 

LL 1°K [emw] 
--- Ke (W) as m -a oO 
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in the Hausdorff metric, for any word W which contains 

at least one essential symbol. 

  

Remarks i) Since f6 = Lf, we have that if 6(s)=sl.. sr, 

LKe(s) = Uirl K9(si) + f(sl.. si-1)). 

ii) For any m>O, fO1 = Lmf, and so IC 
m(W) =K (W). 

A0 

It is possible to have a virtual symbol that is 

also essential. However, by (D3,2.1) we can generate any 

recurrent set in such a way that E= S\Q and eQ* c Qmm. 

From now on we shall assume this is the case. Furthermore, 

we can now remove the conditions on Q-stability, 

Prop. 2.4 (Dl, 3.2i) 6Q* c Q* implies that 0 is Q-stable. 

  

Different Scaling Maps 

The 'consistency' condition that allowed use 

above, to perform the polygonal line substitution was 

fe = Lf. We now wish to define a recurrent set in which 

more than one scaling ('normalizincf )' map is used (c. f. 

Hut). For each seS let (Ls) $ gtn.,,, Il2n be an expanding 

linear map. Suppose that 8(s) = s1.. sr . The consistency 

condition required to ensure that our polygonal line 

substitute fits where it should go is 

Jrl (Ls l(fsj) 
= f(s) 

. 
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Dekking (D3, p7) shows that one can define approximations 

to a recurrent set using this idea. He calculates 

dimension in the limited case that there are two 

similitudes Li, L2 and for all si, (Ls)- = L1 or L2. 

The current formalism is not very effective in this 

piecewise linear case. We shall see later that by 

supplementing this formalism we can deal with recurrent 

sets for some piecewise linear and non-linear scalings. 

Dimension Estimates 

Let O: S* -* S* be an endomorphism, then we can 
ISl Sl ? Lý. abelianize 9 to obtain a map eab: ?L -> 

Corresponding to the essential symbols E is a space 

ZZ 
I EI 

C ZZ 
iS1 

* Since OQ* c Q* q6 induces a map on E* 

(or, more properly, on S*/Q*) and hence on ? LIEI. The 

induced map on is given by a non-negative matrix 

with integer entries. We denote the eigenvalue with 

greatest modulus by XE. Let L: II2n -ý ]tn have eigenvalues 

.., with I aiI >. ... >/. I an > 1. Then 

log >E - in2 log IAil 
dim Xq(W) n-1 + (*) 

log ý 
I\l 

I 

(We shall often refer to this inequality as the dimension 

estimate (*)). The, estimate comes from a simple "box 

counting" process as follows. 
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Choose M>0 so that for each s6E, I(e(s) is 

contained in an n-cube of side length M (we assume that 

the edges of these n-cubes lie parallel to the eigenspaces 

of L). Notice that by the remark(i) ' after 2.3, if 

we choose K[s3 = Ke(s) for all scS then 

L lKLems] = K0(s) for all m. 

Thus there is a covering of 1(e(s) by tOmsIE boxes (where 

(W 1E is the number of symbols of W in E), Each box is 

the image under Cm of an n-cube of side Mp and has sides 

of lengths 

'-MI...... , MI ý nI 
M. 

Such a box can itself be covered by 
mmm ý1 Al 

.... 
A 

ý'2 A3 Xn 

n-cubes of side length MIX11-m. Since clearly there 

exists N >0 such that IGmsIE 
N ýE, we can make an 

estimate of the capacity of Ke(s), 
-1)m { -m m 

cap( K8(s)) < lim. log(N. XmE (ý, 
1ýn Iý 

ýnl ) 

m-WO 
- log(M 

= n-1 + log XE - 
ýin2 log I %i 

log X11 

The dimension estimate now follows because 

dim Ke(s) < cap K, (s) 
, 

The estimate (*) is the best possible in general. 

Dekking (D1) gives several examples where 

'k1J = J\ 21 _ ... = %I 
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and equality holds in (*). He also gives an example of 

a plane filling curve for which I X1) # 1>s2) and equality 

holds in (*). In Chapter 4 we give an example of a 

non-plane-filling curve where IX11 ý "21 and equality holds 

in (*). As is pointed out in (D3) there are several 

possible obstructions to equality in (*). 

Def. 2.5 0 is essentially mixing if there exists n 

such that for all s, tEE, s r: Ent. 

If e is not essentially mixing there may be some 

essential s with 

E 
1. E. lim (1/n) log I ens I< 

nV- 
This would make (*) too big for K0(s). 

Even if 0 is essentially mixing, )E may give an 

incorrect estimate of the number of boxes required to 

cover KR(s). This is because the economy of our covering 

depends upon the different copies of L 1° K0(s) in 

" Cm K[6mW] not overlapping too much. If L is a similitude 

and f(s)E 2Zn for all sES then the only thing that can 

go wrong is for us to draw two copies of Lm K0(s) in 

the same place. 

Def. 2.6 A symbol seS duplicates if the word sUs occurs 

in some Ant, and f(sU) = O. 
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Thrm. 2.7 (D3,6.1) Let e: s* . S* be essentially mixing 

and L an expanding similitude with eigenvalues of modulus 

X. Suppose that f(s) e 2Zn for all symbols s. Then 

dim KB = (log >)/(log X) if and only if no essential 

symbol duplicates. 

  

This Theorem works in fact if f takes values in any 

lattice. In order to deal with the more general situation 

Dekking makes the following definition and conjecture. 

Def. 2.8 A recurrent set 

lim m ((K [ON] 

114100 1AnW`E 

K9(W) is resolvable if 

0 for some E> 0. 

where m is Lebesgue measure of the ambient space and 

A£xe II2n 2 1x -y)<E, y. Al for AC ]Rn. 

Conjecture 2.9 (D3,6.3) Let 6: S* - S* be essentially 

mixing with L an expanding similitude. Then 

dim K8 = 
log 

_ (*) <=O Ke is resolvable. 
log ,ý 

Dekking proves this conjecture when f(s) E 2Zn for 

all s. 'We will prove it completely in the next section. 

If the scaling map L is not a similitude the 
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ý 

311 

ý1 

(0) 9 (6) 
FIG. G 

dimension estimate (*) may not even be the capacity. As 

an example we give a set defined by polygonal substitution 

(this is a technique fully explained in Chapter 4. It 

works in a similar fashion to polygonal line substitution 

but with smaller sized polygons replacing the larger ones). 

The first two approximations to our set are shown in 

fig. 6 (a), (b), (the set is also a recurrent set, (D3, p15)). 

The covering argument. used to obtain (*) would have 

made us cover each of the shaded regions of fig 6(a) 

with three squares of side length 1/9. At the next stage 

of approximation (fig 6 (b)), however, we see that only 

two squares of side 1/9 were needed. Obviously the over- 

estimation becomes far worse as the size of our cover 

o 12 lg decreases. The capacity of the above example is loog 9 

(and equals the dimension) compared with the estimate (*) 

of l°o°g 90 We shall consider the problem of L not 

being a similitude more fully in Chapter 4. 
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§ 2: Symbolic Dynamics for Recurrent Sets. 

Our basic idea is to set up a correspondence 

between a semigroup endomorphisi 0 and a subshift. 

Let S= {0,1,.., n-11 be our alphabet of symbols. 

We draw a directed graph G corresponding to e. The 

graph has n vertices labelled O,.., n-1. There are k 

paths from vertex s to vertex t if and only if t appears 

in the word e(s) k times. Label the edges of the graph 

by triples (s ,t, j) where tE 6(s) ,1j<k. We define 

the (one-sided) shift space 2e as the set of infinite 

paths around G, i. e. : Ee = 2--(9b) where Gab is thought 

of as the nxn matrix that acts on ZýSI 

It is not true, in general, that e contains 

transitive points. In fact, since GQ*c Q*, the set of 

states corresponding to edges ending at 'virtual' 

vertices is absorbing. 

Def. 2.10 : EOC7LEg is the subshift consisting of all 

paths that only visit vertices representing essential 

symbols. 

Clearly ; ýe is represented by a subgraph G of G 

and so is of finite type. In fact, if A is the matrix 
1E1 lEI 

such that At a4 2Z is the map on ZLl. EtC ISI 

induced by Gab, then .e=5, (A). Thus the topological 

entropy of (ce, ýe) equals log ýE. 
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Example 2.11 Let S= {a, b, c, 
3 

,E_ 
{a, b} Q= ýcý 

6: S* 4 S* is defined by aH cabc, b bbca, c ºý cccc. 

Then Q* _ <C> and eQ*C Qf. The matrix A -(1 
1t 

1Z 

GOý ®ý 
G 

GG) O2) 

Prop. 2.12 If 0 is essentially mixing then (tee, fie) is 

aperiodic. 

Proof-. - There is an n>0 such that for all s, tEE 

SE Ent. Hence (An)S, 
t >0 for all s, tE E, 

  

We now wish to project onto our recurrent set. 

From now on we take 1K9 to be the disjoint union of 

K, (s) ,sE. In order ito_ define 

ks ýe 4 K8 = -L -I Ke (s) c! !_ ]Rr 
sE E sE E 

we need only define the image of an n-cylinder of <e 

in Ke (since each xE E0 is a countable intersection 

of n-cylinders). An n-cylinder of e corresponds to a 

path of length n around G and hence to a sequence 

so (s0, s1, hl),... q(sn-2'sn-1'hn-1) 

of labelled edges of G (together with a starting vertex). 

where-bor each i, siE e(si_1) and si is the hi th 
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occurence of the symbol s=si in e(si_1). We can now 

inductively define si 6 01E by s* = s0 EE and si is the 

h. th occurence of s. in Ost CAs. We define 
11 1-1 0 

Tt( Cn(s0; "(sn-2'sn-I 'hn-1))) 

L n(Ke(sn-1) +f (W1)/ C. IR 
s 0 

where 0ns0 = Wls*_1W2, some words W19 W2. Since for all 

s ES, if es = sl..... sr then 

xe(s) =Ui L1 (xe(si) + f(sl.... si-i)\ 

we see that 
J 

'r( Cn(sO;.., (sn-2'Sn-1'hn-1))) 

D( Cn+l(s0;... '(sn-1, snphn))) 

as required. 

Remark i) r is clearly continuous and surjective. 

ii) For each triple (sot 
k, h)(where A(s) = tl... tr) 

used to label an edge of G define the right shift 

(sot k, h): CO(tk) 4 ýe by 

(tk; (tk, sl, hl),... ) i-i (s; (s, tk, h), (tk, sl, hl),... ) . 
8 

Then the following diagram commutes 

( 

Co(tk) 
s, tk , h) 

CO(s) 

L1 
KG(tk) Ke(s ) 

where L1 is defined by mapping Ko(tk) onto the copy 
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of Ke(tk) in KO(S) = L; -'( Uir, ( K0(ti) + f(tý)))" 

Unfortunately, in general, there is no mapping of Ke to 

itself corresponding with the left shift on :: ýF-e (Hutchinson 

(Hut) uses right shifts on 
I ý1,.., 

n} to describe 

self-similar sets for this reason). Such a map, L, 

would have to be multivalued at very many points. We 

ti 
are interested in the circumstances under which L would 

be defined on a residual subset of Ke. 

Def. 2.13 A recurrent set 1(e is well matched (to e) 

and the collection Re= []%(s): 
sE EE is the A-Markov 

partition if the following property holds. When 

A(s) = t1... tr, sEE, writing R(s, ti) = K0(ti) + f(tl'. ti-1) 

for each tie E we have 

int(R(s, t1. )n R(s, t )) _ if i 
j 

in the induced topology as a subset of L Ke(s). 

Remarks i) When defining Markov partitions in dynamical 

systems one usually requires further conditions which would 

correspond to a) K0(s) = int Ke(s) in the induced 

topology and b) L l(Uirl R(s, ti)} = Ke(s). Here 

these conditions hold because of the continuity of Tand 

the structure of a recurrent set respectively. The 

difference in definition occurs because one is usually, 

trying to set up the map -r' which we already have here. 

ii) Even if a recurrent set Ke is not well matched, it 

may be possible to construct the same set using a different 
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endomorphism ö to which the set is well matched. When 

we say "% is well matched" we shall always mean "well 

matched to 011* 

We shall now assume that L is a similitude with 

eigenvalue The dimension estimate (*) can be 

written 
log XE 

_ 
h(ae) 

log X log > 

Thrin 2.14 The following are equivalent, 

i) Ke is resolvable, 

ii) K8 is well matched, 

iii) r is bounded to one. 

If these conditions hold, iv is 1-1 and L is defined on a 

residual set in Ke. 

Proofs ii) iii) This is just (Bo4, p23). 

iii) ii) Suppose not. Then there are essential symbols 

s, a, b such that 

int (1v(cj(s; (s, a, j))) Tv(Cl(s; (s, b, k)))) 0 

for some j, k. Any point in this intersection can be 

represented-by a sequence in 2e beginning with 

(s; (s, a, j)... ) or (s; (s, b, k)... ). Since 0 is 

essentially mixing there is an M >0 such that 

CM (S 
; (s 

lb v 
k) 

f ... , 
(" 

PIS , ") ) 

is mapped into the above intersection. Hence for any 
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point x in 

int 
(rc(cM+l(s; (s, b, k),.. �(s, a, j))) 

n int T-t(CM+1(s; (Spbtk) p*, * t(stbpk))) 

we have now found three sequences of length M+1 that, 

begin infinite sequences of : 2: 
e mapping to x under We 

Applying this construction inductively, by 

considering cylinders upto length NM+1, we have found 

N different sequences in e that map to a point x in 

Ke Thus n cannot be bounded to one. 

i) ii) Suppose not. From the proof of iii 4 ii), 

and without loss of generality replacing eM by 9 we 

may assume that there are essential symbols ts si with 

e(t) = s1... sr and jý j R(t, s R(t, si). 

We now 'virtualize' si (cf. D3 6.1). Define a new 

alphabet S".. by S'= S, ¬s : se Sj . 6': S'* --ý S'* is 

defined by 

e' (s) = e(s) for sES, s#t, 

6'(s) = e(s) and , 

8'(t) = s1.. si-lsisi+l.. sr 

Then 1% = YCe but \E, < and so 

m ((KLo EI )E. ) 
< const. SEI jo 

I e' EIE 

as j4. Thus Ke is not resolvable. 
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ii) 4 i) We may take K[s] = IC0(s) for all essential. s. 

No copy of K0(s) intersects a copy of KQ(t) in its 

interior in Ke(9iv), any essential v. Thus given a 

small ¬. >0 there is c, 1'>c >0 such that 

m('>, c" 
f 

m. 
(( Ke(s))E l 

s6 Ov 

Thus m ; (( Ke(9Jv))t) > const. >E ,o 

t93vIE 

and Ke is therefore resolvable. 

We now assume that Ke is resolvable. Define 

ti a2ý0 E Ke :xE L1(_,. R(t, si) 
f"\ 

)), si, si e O(t. ), t C. EI 

Then ME) is nowhere dense, and the set 

Y KO \n 
=O 

Lna9 

on which n is 1-1 is thus residual. Since Ti-lY is 

o'e-invariant we can define L so that 

IT-1 Yy 

Tý TK_ 

YY 

commutes. (This also ensures that L, L1 are mutual inverses). 

  

Remarks (ii)' (iii) works without assuming that L is 

a similitude. 

Ke also satisfies Hutchinson's open 'Set condition 

if there is a Markov partition. 
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Thrm. 2.15 If X0 is not well matched there exists a 

countable sequence of recurrent sets 3K0 such that 
n 

i) Ke 
nc 

Ke 
n+l 

ii )i Ke 
n= 

Ke 

iii) Ke has ae Markov partition 
ns 

iv) dim I< = sup dim 1< E) n en 

'plim (1/p) 19 
>m 

((KCOPE7)Ej 
some small E>O, 

aoo lo' 

h(c8) = log \E 

log X log 

Proof: Since there is not a 6-Markov partition, we must 

have symbols s, s' , st' such that 

O(S) = s1.. s'.. sks'I.. sr and 

int (]C0(s') ( Ke(s't) + f(s'+" "+sk) )) 

We virtualize this occurence of s' as in the proof of 2.14. 

-However, -note that this time our new endomorphism may 

give us a (strict) subset of I(. Repeating the above for 

each symbol seE (i. e. for each seE check to see of an 

'interior' intersection occurs as above - if it does, 

virtualize a symbol to remove the intersection). 

After a finite number of steps we have arrived at 

an endomorphism 00 and a recurrent set K0 . Clearly 
0 

KQ 
0c 

KO and X0 has a 00 -Markov partition (because 
p 

we have removed all 'interior' intersections' from the 

essential symbols). We now gradually put back all the 

parts of Ke that we removed. Inductively choose 0n by 
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comparing 6n_1 with 62 : If there is a symbol tc e2�(s) 

which has been virtualized in enl1(s) but for which 

int (K0(t) + f(wl)ý n 
int (K 

8(t') + f(Wý)) _O 

in the induced topology for all VC 02r' (s ), where 

92" (s)=W1tw2=wit, w2, unvirtualize t in defining en. Then 

Ke c Ke and as n4 o' , Ke Ke. Hence Un Ke = Ke i On nth n 
on 

dim Ke = supn Ke and each Ke is well matched to 0 

The condition for resolvability says that 

m ((K[9jS] )E) ^' const. XE 

Taking K[s] = K0(s) we have KCOjS] = 1j( I( )F-. 

, 
Applying this to each of the sets Ke gives 

n 

log m ((L) K 
a= en 

-ý dim K j'n en 
log 1j 

n for j=1.2n as 1 -*ý (L2 is the scaling map for Ke ). 
n 

Since m ((Li Ke )) is increasing in j we have 
n 

aj 
in4 

dim Ke as 
n 

Now Ke Ke so Li Ke ý L3 K(,. Thus as n -*oo 
nn 

0 L' Ken)6 I (L) Re ý 
and in 

((Li Ken )ý) / in(( Li ICe )£ 

Hence aj 
on 

{ log m((LL Ke)£) as n -, * °o 

log ý 

log m ((1-3 xe )E) 
and dim Ke = sup dim KO < lim --'- 

n j. --0 
log >? 
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To see that lim log m 
((LL K )) log 

ý. A= estimate(*) 

log >3 log > 

apply the construction in the proof of i) 4 ii) of the 

last theorem. This gives a new Al such that Ke, = IKE) 

and XE 
,< 

XE Hence 

dim IKE) = dim Ke ,\ 
log 

log A 

dim Ke < lim log m 
((L K 

74°O log Xi 

(cf D3 6.1) 

log 

log A 

log AE' 
< 

log XE 

log x log > 

  

The above result proves half of the conjecture (2.9) 

about resolvability. We shall calculate the dimension 

of a recurrent set with a class of non-linear scaling 

maps replacing L. Dekking (D3) indicates how to go 

about the construction of such sets when L is replaced 

by a piecewise linear map. The general construction is 

not much more difficult. 

Thrm. 2.16 Let 6: S* } S* be an endomorphism of a 

s emigroup and f or each sES, let is dR -. IR be 

Lipschitz with constant less than one and fixed point 

the origin. Suppose that f: S* JRn satisfies 

f(s) _r (lsý)-l(fsi) where e(s)=sl.. sr =1 
for all sES. Then the transformation of IT (IR ) 

. 
SE 

given by 

ps 1> 
u 

,_ 

((is 
(A 

s)+ i< 
(iss.. )-1(fs. )/ ASS `mss ý-1 ,". ji 

sjEE ý 
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is a contraction map (using the Hausdorff metric on 
ý (,, n)). 

The unique fixed set is a compact non-empty set (if E#O) 

denoted Ke, and there is a continuous surjective map 

r: e -> IK0 

Proofs We shall ease our notation, by showing how we 

may assume that the subshift 9 is defined by a matrix 

of zeros and ones. Suppose that e(s) = W1tW2tW3 for 

some words W1, W2, W3 where s and t are essential. Then 

define S' =S vit'l , E' = Eßt'} and e' : SW. S' ' by 

e' (u) = e(u), uES, u ýs 
A'(s) = W1tW2t'W3 and 

9' (t') = 91. (t). 

Letting lt'=1t and f(t')=f(t), we have that 3(, (E) and 

K,, (E') differ only in that KA, (E') contains two copies 

of Ke(t), namely K6, (t') and K0, (t). Proceeding 

in this fashion we can ensure that for each s , t6E, t 

appears only once in 6(s). Now we can see. that if A is 

the matrix so that A: ZZ IEI ? LIEI is the map induced by 

gab then A is a zero-one matrix. Since :%= L(A), 

we can represent a point of ýEe by a sequence 

(s 0, sl, s2,..., si,.... ) where sE and si 6(si-1). 
3 
C- 

During the rest of this proof, unless otherwise stated, 

(s0,.., sm-) will be taken to be the point in Le 

where for r >, O, s 
m+r+l 

is the first symbol. of the word 

e(sm+r) Let 

Dm = ý(s0,.. 
fsaý. )Eýe ffi 0 Dm D. 
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D is clearly dense in and we define 7r :D -). SEE 
1Rs 

inductively as follows, 

DO : Tc (s O... 1) =0E IRso 

Di : -rr(sogti,... ) _i (it '1(ftj) E 'Rs 
0 

where e(so) = t1... tr. 

Dm : Tr(SO,.., Sm-1, LLj,.. ) = 11(SO,.., Sm-1,... ) 

± (lsl)'ý. (lSý-1)-1(r j (lur)'1(fur)) E 3zs I 0 
where e(sm-l)-ul " uk' 

(Notice that if sm-ls'm-1 is a subword. of 6(sm-2) then 

7r (SO' .' 'sm-1 .. ) 

=-R(s0,.. ºSm-1p.. ) + (isl)_!. (lsm-1)-1(r k(lur)'1(fur)) 

« so,. "'Sm-i'.. ) + (isl)-ý. (ism-1)-i(fsm-i) 
This is easy to check using the definition of nlm_2 .) 

Claim: T is uniformly continuous on D.. This is because 

"there is an M >0 so that 

1 
(lud)-1(fu; ) 11 <M 

for all i, s, where e(s)=ul.. uk. Let a <1 satisfy 

a> Lip (1s)-1 for all sES. Then if x, YE5'o nn are in 

the same_m-cylinder, 

II -a x-ry, (I <2Ma "ý +r < const. am 

This proves the claim. Extend TV continuously to a map 

IT: :E8, s6EKn 
s 

and define Ke = In order to show that Ke is 
8 

fixed under the stated transformation we need the 

following lemma. 
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Lemma 2.17 Let sEE and s be the right shift 

6-s : Utlr. 
E, ti¬ e(s) co(ti. ) --)- co(s). 

Then if x= (t i, sl, s2,.., sffi,.. ) E Dm+l , and 

y. _ GS (S, ti, s1,..., sm'". ) EDm+2 

we have (lti)-1'(nx) + (ltd)+1'(ft 

Proof: By induction on m. 

M=ID : Tc =1 (ltd)-1(fti) = (lti)-1o 

since Trx = 0. 

m=r t Let z= (t., S1'""*Sr-lp"") 

x= (ti, sl,...., sr.. ) 

z'= (S , ti, sl,.. S 1,... 
) 

where 9(t)=tl.. tr 

%x) + iei(it 

Y= (s, ti, s1,.. .., S 
r,. 

.. 
) 

Suppose that e(sr_1) = ul.. uk' with uk = Sr- Then 

'ý Y= nZ' + (lti)'1(isl)-1'(isr-1)-1(' (luý)'1(fuý)) 

=( ltl)'1( r, Z)+ j'zi' ZtJ 

+ i(ý (iu(fuj)) 
(by our induction hypothesis) 

+ý 
1(ltý)-1(fti 

  

The lemma tells us that under the transformation of 

subets of IRn given in the statement of 2.16, 

lcDm yT DM+1. 
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Since DmC Dm+1 we have -rcD fixed. Hence X8 is also fixed. 

In order to prove the claim that any collection 

of non-empty compact sets JA 
S: se E} -converges under 

iterations of the transformation to 3K9 we consider the 

space X=sEf (]Rs) . Giving ( IRn) the Hausdorff 

metric d, we define a metric on X by 

d( (As)sEE' (Bs)SEE )= max d(As'Bs). 

Then X is a complete metric space. If 6(s) = tl.. tr9 then 

a ((ti S(iti) -lat1+ 1(itý)'1(ftA) S, 

(ti d(1ti)"1Btl+. 
lc (its)"1(ftý)))5) 

max max 
{d( (lti)"'At , (lti)-'Bt. ) : ti E, tIEe(s)} 

sE Ei 

max max a. d(At.,, Bt, ) 
SCE ti E11 

a. d((AS) , (BS)) " 

since Lip (lti)-1< a, < 1 

Thus our transformation is a contraction mapping with 

KA (KA(s) )sEE as the unique fixed point. 

t 

Remark: If 9 is essentially mixing then any collection of 

compact sets ¬(A5) 
: sEE} where at least one A5 5 will 

converge to Ke. 
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We now define the property of being well matched 

for the non-linear scaling case. 

Def. 2.18 A recurrent set Ke with scaling maps is, seS, 

is well matched and has the 6-Markov partition 

ýe =¬ K0(s) : s6 Ej if whenever 9(s)=t1.. tr, writing 

R(s, ti) = (lti)-1 K9(ti) +j i(1ti)-1(ft}) if ti E 

we have 

int( R(s, ti) 
n 

R(s, tý) 

in the induced topology, as a subset of I: e(s). 

The following theorem is based on (Bo 6) and also 

uses ideas from (Mo), (Hut). The author has recently 

become aware of a similar result of Ruelle(Ru) . In the 

following, for a matrix A with IAxi = rixl , dx, we shall 

let (AI = r. 

Thrm 2.19 Let Ke be a well matched recurrent set for 

which A is essentially mixing. Suppose that for each 

seE there is an open convex set U(s) C IR 
S 

with 

Ke(s) c U(s) . Suppose also that 

i) There is ab >I independent of s and 
,x 

such that 

D(1s )X is a similitude and { D(ls )XI > b) 1 for xE is-1U(s) . 

ii) is-1 is Cl on U(s) and JD(ls+')XI is Lipschitz on U(s). 

iii) is is d' 
and I D(ls) 

xI 
is Lipschitz on is-1U(s) . 

iv) If A(s) = t1.. tm then 

1ti-1U(ti) 1tß'(ft. ) U(s) V tic E 
j<i 
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Then if we define T: 'ýe -. o- ]R by 

(x) = log I D(1s 1I 
when x=(", s,... ) 

there is a unique a> 0 so that P(ac? ) = 0. We have 

a= dim 1K,, and HM, (Ke) is equivalent to -rcýN, where 

pu. is the equilibrium state for ach . 

Proof: Let (s0,..., sm) be a sequence of symbols with 

n: e(si-1) = sand si-1 Si 

We define maps ll,..., lm for sl,..., sm by letting 

1-1(x) - 1s 1(x) 
+j<n 

-1)ýlsi-1)-lýfsi-1) 
' (ts) -'- 

------------ 
, 0. 

ký kg (s; 
_, 
) 

We thus have maps so that 

C1(si-11s 
,.. ) 

W 

% Cl(si-ZIS1too) 

o 
CC (s i,.... 

) 

TV 

'' ]ce(si) 

19(S; ) 

4. 

commutes (li is only defined on a residual set). 

Define U( s D,.. psm) 111... 1m1(U(sm)) 

and T1: U(s0 , .., SM) -ý IR by 

(fig 7) " 

FIG. 7. 
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f1(x) = log , D(, j 1) 
1- xI 

=-logjD(11 )Xl since D11 is a similitude. 

In particular note that 9 (1rx) = rf (x) 9 where lTx=x. As I D(1 
i)x is 

Lipschitz, so is c'. Hence a? has a unique equilibrium 

state that is. a Gibbs measure. The variational formula 

for pressure (Wa 1) implies that, as a function of a, 

P(aT) is continuous and strictly decreases as a increases. 

Since P(O) = P(O<p) >0 and for large enough a, P(aT) < O, 

there is a unique a such that P(aT) = O. 

We prove the theorem in a series of steps. 

if There is a constant c1> 0 so that if x, y 6 U(s0,.. , sm) , 
Ip1(x) 

- T1(Y)I clbm . 

Proof: Let x' = 1m1.11(x) o y' = lm.. 11(y). We can find 

z'E U(sm) by the Mean Value Theorem such that 

Ix- YA <J D(111.. 1-1)z, ) 
. 

IxI 
- y'I 

mc 
<C IT sup j ID(1si); ' Is z6 U(si)j " ix' - Y11 

1`1 

y'ý 
Since c4i is Lipschitz and x' , y' E U(sm) , we can find cl> 0 

such that "fix - (plyý clb 

ii) There is a d> O independent of sO,.., sm and m such 

that for any (s0,.. , sm,.. ) E : ýe, U(sp,.. , sm) is 

contained in a ball of radius 

M-1 
d. exP (ar(so,.. tsmt"")) 

r-O 
v 
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Proofs Choosing x, y etc as in step (i), 

-m XY{I r=1 
D(lr) (1=+1... lýlz' )) "ý XY 

ýrml 
D(lr) (1r1.. 1m1z' )I 

_i 'XI 
- y') 

Ir=1 
ID 

(lr) (Lr-i Iz )I 
_1 "ý - y' 19 

where 1m.. 11z = z' 

e(ll 1r-l .. llz )ý .' x' - Y' 
r =l 

Now, if w, z E U(s0,.., sm) then 

1r, 10.11(w) # 'r-1.. 11(z) e U(s=,.., sm). 

Hence, 

IH rn I 
ý1(Ir-l.. liw) - ý1 ý1(lr-1.. 11x)1 

cl b(°-r) < cl tip < dl say, by step (i) . 
r=1=0 

Therefore 
m-i 1X- Yj < d. exp(ý cP(ýrz)) xrY E U(S0r""PSm) J 
r=O ' 

for any & with rcz E U(s0,..; sm). 

iii) There is d'> 0 independent of sot.., sm, mp such that 

for any (o'"" 
info-) 6 <e, U(s0, .. , sm). contains a ball 

of radius 
f m-i 

d'. expl ý(crr(s0,.., sm, ""))J 
r-O 

Proof: Choosing x, y etc as in (ii), 

Ix' - Yll < JD(Im.. j 1)Zl "IX - Y) 
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m 
\D(lr)(1 

.. 1 z)ý "xY r=1 r-1 1 

As in step (ii) there is d2 >0 such that 

Ixt y' d2 exp 
(-- 

r=0 ý (r (Soto qsm, .. ))). jX 
-yl 

Thus we can find d3 0 with 

M-1 r Ix, 
- yj% d3 exp(: r =0 T (c (s0' " 'sm' "))). 1X' -yli 

Let r' be such that every U(s) contains a ball of radius r'. 

Let B' be such a ball in U(sm), centre x', and let 

1x' 
- y11 = r. Then 

xYI >ý rd3 exp(: ý? 
-r_0 

(a- { sot** , sm, .. ) )) 

Taking d'< r'd3 implies that there is a ball of radius 

dI exp 
(: ý; 

z=0 ý (C- (sp , .. sm, .. )) I 
with centre x in U(s0,.., sm) 

iv) dim KO <a 

Proofs The equilibrium state, , for ac is unique 

and is a Gibbs measure and hence there is c>0 such that 

fa( m(sp,.., sm)) E [c l, c] . exp(=_ö aT(r-r(sp, "", sm'"')) 

For each m, ý. 
m =¬ U(sp,. " , sm) s (sp,.. , sm, " .)c0 

: EO i 

covers Ke and , U(sp,.., sm)' < 2clbm, so we can use U to 

give an estimate of Hausdorff measure, 

IU(sor.., 
sm) 

a 

(s0,.., sm) 

(2d)a 
m=1 

LC exp( aT(ý (sop". , sm.. )/ 
(s0,.., sIR ) r=o 

c. (2d)a (n 
-%'')(nCm(SOý... 

sm) 
(s0,.. 's12) 
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c. (2d)a < 00 . 

This argument shows that dim 
. K0 < a, and (if we 

consider only sequences (sO,.., sm. "") beginning with 

(sp,.., s. )) that 

'iMa(T'Cj (sor""rsj : cons t. Ttrýk(nCj (so,.., s3 )) " 

V) dim Ke ), a 

Proof: Given t 01, we estimate the rp measure of a ball 

of radius t. For each x 6: 5-: 
e choose m such that 

I U(SO, 
"", sý)J t: IU(SOt""fSM-l)I X=(SO9 ""-ISmý"")" 

Let I be the set of (finite) admissible sequences 

satisfying both' these inequalities " From steps (ii) 

and, (iii) we have 

d' exp(2m01c? c rx )t 

d exp(":: ý>m02pcrrx )t 

Hence each U(s0,.., sm) with (soteetsm).. Z is contained 

in a ball of radius 

d exp( m_] rx )< (d/d') t=C. t 

and contains a ball of radius 

'd' exP( E m- 1 
.r `F 2) >f '/(d'/d) e0 

-lX 
dexp(L m-2 r X) 

'(d'/d) e 
n`fil 

.t= c'. t 

By lemma 5.3.1(a) of (Hut), at most 

ý1_±2c\n 
_ c1i Ce 

of the U(s0,.. , sm) with (s0,.. , sm) EI can meet a ball 

of radius t. 

TT#/a. (r C$s0,.., SM)) : (c/dý u(Sot.. 9 SM-1') Ia 

so letting B be a ball of radius t we have 
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Tr ýu(B) < 7" fý(nc(sc) "" sm) 
(s 

o,.. , sm )EI 

<G (c/d'a) IU(s0,.., sm) la 
(s0,.. , sm)EI 

(c lIc` /d') ý to 

Hence by Frostman's lemma, dim( Ke)> a. We have also 

shown in steps (iv) and (v) that HMaI K is equivalent 
0 

to rº', ý. 

  

Corollary 2.20 If 1K K E) is as above, with is =L for all s, 

where L is a linear map with eigenvalue of modulus X4 

dim 3K0 = h(re)/log >\ = estimate (*) 

and HMa is equivalent to Trau where p- is the measure of 

maximal entropy. 

Proofs Use the Variational principle (Wa. 1). 

  

This completes our proof of the conjecture of 

Dekking on resolvability. His proof of dimension when 

f(s) E 2Zn was by finding a measure to use with Frostman's 

lemma. This measure was constructed as a weak limit by 

averaging Dirac measures spread evenly across K. - 

Thus it is really the same as the measure of maximal 

entropy. 
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Corollary 2.21 Suppose I( is as in 2.19 and each is 

is a similitude with 'I isl _ Xs. Write 

ýa 0 
Aa = A. S1.. 

sx 

where S= f 
sl .. sr} , f9 Z). Then dim 3Ce is the unique real t a, 

such that the maximal eigenvalue of 
Aa is one. 

Proof: Extend Z'e to 'the two-sided shift space 

Suppose x= (xi) e _57 e. Then ý(x) _ -log 
X. Define 

1 
ý(x) = cQoa- (x). Since the equilibrium state, j, for 

is shift invariant, 

fpcip. = 
f4dj. 

In-particular P(a? ) =0* P(aq)) = 0. Applying Lemma 4.7 

of (Wa 1) gives the required answer. 

11 

,ý 
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CONSTRUCTING rtARKOV PARTITIONS AND INVARIANT SETS. 

In this Chapter we use recurrent sets to construct 

special Markov partitions for certain maps of tori. We 

study the coding time between different partitions for 

the same map in simple cases, and see how the mean coding 

time depends upon the semigroup endomorphism used to 

generate the Markov boundary. We also generate fractal 

invariant subsets for these maps. 

§1: Special Markov partitions. 

Hyperbolic automorphisms of the torus have long been 

studied as examples of maps showing chaotic behaviour. 

A description of their dynamics was obtained when Markov 

partitions were constructed for them (Adl, Silo Si2)e 

We know then that one can carry out the construction 

given-in Chapter one to give a subshift of finite type 

?; (B) and a map i% such that the following diagram commutes. 

CYB 

"N 

Tn ý 
Tn 

Unfortunately it is not known what matrices B can occur 

for a given A (although there are restrictions, for 

instance h(A) = h(a )). This question has been the 

motivation for much work on subshifts. Here we approach 

the problem from a different angle and show that for 

certain hyperbolic automorphisms of T3 (and expanding 
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endomorphisms of T2) one can find Markov partitions so 

that B is obtained directly from A. The construction 

of such partitions involves the use of fractals. Bowen 

(B5) showed that the boundaries of a Markov partition R 

for a hyperbolic automorphism Ä of T cannot be smooth 
3 

submanifolds with boundary. Furthermore, if A has 

eigenvalues IX 
II> 

1ý 
21 

>1>I a31 then 

cap( asb2 uät) )2_ log 1 

log11 

where for R O. O , 
ASR = ¬x ER:. x intWu(x, R) j 

PR = ýx cR: x intW5(x, R)l , and 

asp, =U asR, a'R = REU R. This is because 

the Markov conditions imply that A( au6Z) c Z)utR and 

A-1 (ö Sö2) asöZ . Hence 

O( äste 
n 

auf c ýsQ 
v 

ýub2 T3. 

But a result of Urbanski (Ub) says that if a curve C 

in T3 has cap(C) <2- (log 1, \2I) / (log f )1I) then C has 

dense orbit. Urbanski's result applies also to expanding 

endomorphisms of T2 when the eigenvalues of the covering 

map are irrational. " 

More motivation for using fractals to generate Markov 

partitions is the idea of replicating 'fractiles' from 

(Mal, p47) and (D2), both of which give tilings of the 

plane, 'r, for which there is an expanding, linear map 

L.,: 322 ßt2 so that each tile of L�ýr(j) is exactly a union 

of tiles from 1. R. Mane has told me that the following 
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result is folklore. 

Thrm. 3.1 Let A be a 2x2 matrix of integers inducing 

an expanding endomorphism on T2. Then there is a 

Markov partition for AsT2 -ý T2 so that there is a 

semiconjugacy to A from ; 
Iet At 1 the full shift on 

Idet Al symbols. 

Proof: Let e1 = (1,0), e2 = (0,1) in X22. We make our 

construction in the covering plane using the recurrent 

set formalism. Let S= sl, s2, sll, s21 
1 

and set f(si) = ei 

f(s) = -ei, and K[s] _ [0, f (s )] . We write W= s1s2s11s21 

so K[W] is the boundary of the unit square. The next 

step is to choose an appropriate endomorphism e of S* 

(note that slsll do not cancel in S* because we are 

working in a semigroup). Given a line 1= [a, b] with 

endpoints a, bc a2 we define the anticlockwise perturbation 

of 1 at a as follows. Starting at a= x0, choose 

inductively lattice points x1E ? L2 such that xi = xi`1± ej 

(j=1,2) and [x0, xi7 makes the smallest anticlockwise 

angle with 1 (in particular we might have xiG 1, and 

we finish with xr bE 1). The sequence a=x0, xl.. xr=b 

are the vertices of a polygonal line that we call the 

anticlockwise perturbation of 1 at a. Choose 0 so that 

K[e(si)] is the anticlockwise perturbation of [O, A(ei)] 

at 0, and define e(si1) = trl.... tllif 0(si) = tl. ""tr. 

Clearly the relation Af=fe holds. Our choice of 9 
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means that the 'sides' of K[OW] do not cross over and thus 

that the region bounded by K[9W1 has area Idet At. In 

fact this property is all we require for the rest of 

the proof, and it is clear that there may be many different 

choices of 8 with, the required property (fig 8) . 

( 
QN 

correct 

t 
Different 

r-a_ 

correct 
" 

choices 
of 8 for 

(12 

o incorrect 

There is a natural orientation of line segments in 

K[6nW] given by symbol order in AnW. This enables us to 

define the 'inside' of KCAnWaas all the points to the 

left of line segments having a single orientation defined. 

(We use this definition because K(AnWJ may have multiple 

self intersections). Define Vn as the closure of the set 

of points inside K[enW] . We now define a transformation 

of certain subsets of the plane. Suppose R is the 

closure of the inside of K[Y] (where f(Y)=0), then define 

OR to be the closure of the inside of KCeYJ . Extend 

the definition in the obvious way to finite unions of sets 
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of the above form. In particular we have AVn = Vn+l. 

We will show that Vn+l is tiled by Idet Alcopies of Vn. 

Our choice of 6 implies that V1 can be tiled by D= Idet Al 

copies of Vý, 

V1 =U iD 1(ri + V0 )p r. r- ZZ2 , int (ri+VD) 
n int (r+V°) _O 

if i#j , and that 

int(V1) int(ei+Vl) =0 i=1,2 9 

We prove by induction that 

(An-1ri + Vn-1) Vn =UD 1 

int(An-1r1+Vn-1) 
n 

int(An-1rJ+Vn-1) 0 4, i=j 

and int Vn . int (Aasei+Vn )=0 i=1 ,2. (fig. 9)" 

o FEII--* 
G) (ii ) (h ) 

KýBýYJJ, ýi0i2' d1" 
ý$ý-S1$1$5, 

'BSi=51SZý, 

vt*1 
lS wILA 

byýICC[ß1QS Vom. 

Suppose the statement holds for m5 n. 

FIG. 9 

Claim: Let U be a finite union of tesselating Vn-l s, 

U=U (pi+Vn-1) , pie An-1 a2. Then 6U = U(qi+Vn) 

qi=Api, is a union of tesselating Vns. 

Proof of claim: A(pi+Vn-1) = ql+Vn, and the Vn tesselate 

since int(Anei+Vn) 
n int Vn =0 by hypothesis. This proves 

the claim. 
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Set U=Vn, then 8U=Vn+1 so the claim proves the first 

part of the induction. Setting U=(Anei+Vn) we see that 

if int Vnfln int(An+1e1+Vn+1)C ýS then the intersection 

contains int(qj +Vn) for some qj. But this came from 

an ri +Vn-1 which implies that 

int Vn int(Anei+Vn")" -D int(rj +Vn-l) # O, 

a contradiction. This proves the induction. 

Let Vn = A-nw1Vn. Then put n=[ q+Vn s qE A-' 7221. 

As n. oo ,A' 
1K[6nW] 

4A1 ]Ke(W) and so the tilings n 

converge toa tiling ü'. By-construction A(q+Vn) is a 

union U 
iD1(ri+Vn"1), q, ri EA 1222, 

of sets with disjoint 

interiors for all n. Hence in the tiling ZP, 

A(q+V) =UiDl(ri+V) q, riE Ä1 ZZ2. 
"ý 

is clearly invariant under integer translation and 

projects onto T2 via the covering map, p, to give 

r< ={ a+p(V) sa CA-' (0) 1 

By construction, R, R'Eö2 and int(RR') #O 
. 
implies R=R'. 

Furthermore each AR is exactly the union R ER 
R'. Hence 

iR is a Markov partition . The standard construction now 

gives a. semiconjugacy to A from the full shift' on Idet Al 

symbols. 

a 

Remarks i) Define B= (b 
iý .. )2x2 by letting 

bid =31 {k : O(si) = tltl, tk = si or sal Then clearly 

B>, JA I, i. e. bid >, I ai7I 'Vi, j. We shall prove in the final 

section of this Chapter that with the assumption that there 

is no essential symbol duplication, 
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cap( Ke(W)) =1f 
log XB - log 

log I. 

where X. is the maximal eigenvalue of B. In particular 

we note that by putting extra 'kinks' in our choice of 6 

we can construct Markov partitions for the same map with 

different boundary capacities. By Wielandt's Theorem 

(Ga p57) XB >, Iý(. In the case of A being a non-negative 

matrix the choice of 0 above defines a Markov partition 

with capacity equal to the minimum possible given by 

Urbanski's Theorem. 

ii) It is clear that there are often many choices for 6 

that will do. Thus we have a canonical class of Markov' 

partitions rather than a single partition. 

iii) Each of the approximating partition elements may 

be homeomorphic to discs, but the limiting boundary can 

still have multiple intersections. Thus the Markov 

partition elements are only homotopy equivalent to discs. 

iv) If A has rational eigenvaluesý the eigenspaces have 

rational slope. One can then obtain 'a Markov partition 

by using segments of the eigenspaces as the Markov 

boundary. Thus such a map could have Markov partitions 

with smooth or fractal boundaries. 

In the next section we shall consider the question 

of which of the different Markov partitions one can 

construct as above is the best. 

Expanding endomorphisms of T2 are, geometrically, 
1 
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rather similar to hyperbolic automorphisms of T3 with 

two-dimensional unstable manifolds. Thus the kind of 

construction used above to generate Markov partitions 

for expanding maps of T2 can be used in the T3 hyperbolic 

setting. We shall prove a generalization of the following 

unpublished result of Manning (Mn2). 

Thrm. 3.2 Let A be a hyperbolic matrix of positive 

integers and determinant +1. Then there is a semiconjugacy 

ti from (, (A t ), -) to the hyperbolic automorphism (T2, A) 

(where t denotes transposition). 

  

Thrm. 3.3 Let A be a hyperbolic 3x3 matrix of integers 

such that 

i) det A=1, 

ii) A-1 is a non-negative matrix, 

iii) top. dim. (ES) = 1, top. dim. (E') = 2, 

iv) the contracting eigenvalue of A. is positive, 

v) condition (1) (defined below) is satisfied. 

Then the induced map A: T3.. T3 has a Markov partition 

with transition matrix (A l)t" 

Proof: We proceed by stages. 

a) First we establish the positions of the linear spaces 

ES and Eu relative to the co-ordinate axes. Since A-1 is 

non-negative and A has no non-trivial invariant subtori 
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(by para. 1, p72), ES lies in the interior of the 

positive cone, { (xi, x2, x3): xi >, O, all iý, and Eu 

intersects the positive cone only at the origin. 

b) We know that the Markov partition boundaries are not 

smooth (Bo5), so we shall show how to approximate the 

claimed partition arbitrarily well. In this first step 

we show how to define the first approximation. When 

XE Es and ye Eu we shall move freely between writing 

(x , y) E EsxEu c IR, xc Es 3 
9 and xE IR . 

3 

Define projection down stable manifolds Pss IR 
3 

Eu 

by ý ps (x )J = (x+Es) 
n Eu. Let e1 le 2, e3 be the standard 

basis vectors. We define faces Fi i=1,2,3 by letting Fi 

be the square in it3 with vertices O, ej, ek, ej+ek (i#j, k). 

Projecting onto Eu gives us ti=ps(ei), Hi=ps(Fi) for 

i=1,2,3. Writing F=U Fi and H =UH i notice that ps 

maps F bijectively onto H. Hence we have a picture 

like fig 10. 

0 

Condition (; ) is that AH H. 

Our first approximation to the Markov partition is 

given by three prisms Pi for i=1,2,3. Each Pi is the 

product of an interval of Es with H. and it lies in It3 

so that its upper face is Hi.. More precisely, let aiE]R3 

be such that ýaij = Es 
ný 

(-e. +Eu) and define ' 

I 
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Pi = [a. 
, OlxHI c ESXE" = IR 

(fig II). 

lj 

K, 

FIG. '0 

-tk ) ELk. 

H H. 

- FIG. It 

ES ai 

Define P=U i31Pi' It is clear that int(Pi) does 

not intersect int(P. ) if i#j. We claim that 

V= ¬q+P :qE. ? L3 S 

gives a tiling of it3 i. e. int(q+P) n 
int(r+P) implies 

r=q, and each xE ]t3 is a member 'of some q+P. The 

corresponding two dimensional picture is shown in fig 12. 

FIG. 12 

iýe cinoý2d vest. ýcas 

ý, c o Cc)o) o, ý 

is 
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We call a face of q+P an s-face if it is a union of 

line segments parallel to Es, or a u-face if it is 

parallel to Eu. All the faces of P are either s or u-faces. 

In order to show that 2P gives a tiling we have to show that 

P tesselates with its neighbours i. e. that each face of 

P contains or is contained in a face of a neighbour to P. 

We deal first with the u-faces of P. 

The bottom face of Pi p ai+Hi p (which is a u-face of P) 

satisfies ai+Hi c -e +H (-ei+H is the upper face of -ei+P 

a u-face of -ei+P). For [ til = (ei+Es) n9 so -ei+ti = ai 

and -ei+(ti+ti )= ai+tj. But ai+t-1 is a vertex of ai+Hi 

and so three of the vertices of a. +H. are vertices of 
ii 

-e. +H. Hence ai+Hi = (-ei+ti)+Hi C. -ei+H, and we have the 

situation shown in figs i3 and 1r . 

-e, 

``` 
ýi 

eýýE` ý tk+Es 

FIG. 3 

-e; +H 
Al : 21NNTr 

"ý t \\ 

FIG. I4- 

Thus the bottom u-faces of P are subsets of (upper) 

u-faces of neighbours of P. The above argument also 

shows that the upper u-face of P, H, meets neighbours 

of P correctly g for 

H° ui31(ei 
f (ai +Hi)) (fig ý5). 

/ H' a, +Lj 

.1 
Eu 
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E41A- 

aßa , KrL. 

-I G. IT 

We now have to deal with the s-faces of P. Since 

p(Eu) is dense in T3 it is enough to show that the 

intersection of Eu with jq+Pi: qf-2Z3, i=1,2,31 is made up 

of non-overlapping copies of Hi, i=1,2,3. However, using 

only the definition of Pi given above, the argument on 

pages 61-63 show this. 

ßt3 

{ý+H --r ekrýh 

rl ß 4\A 

2 
i 

ß. tµ Q, tQý u 
ei 
FIG IGa FIG k(. b 

co E 
I' 
I 

+c i 

This shows that P gives a tiling of IZ3. Figures 

16a and 16b show how the various translates of P fit 

together in iR. s 

c) Closer approximations to the Markov partition. The 

boundaries of the P. have to be altered to satisfy the 
i 

Markov conditions. We intröduce recurrent sets and choose 

an appropriate 0 that will enable us to define closer 

approximations to the Markov partition. 
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p0] xýHI Let V be a region of x+Eu. Write Qi = (a. 

and "Q, = q 
2Z3 Ui31 (q+Qi) " Define the patterning 

of V as aQnV. The patterning of V is a tiling by copies 

of Hi. (In the final section of proof we shall see the 

geometrical significance of the patterning). We define 

the anticlockwise perturbation of a line in a similar 

fashion to the definition given in 3.1, replacing points 

of ZL2 by vertices of the pattern in V. With vectors 

ti we associate symbols si. Let S=ý si, sil s i=1,2,3 
}, 

define f(si) = ti, f(sil) _ -ti and choose 0 so that 

K [Osi] is the anticlockwise perturbation at 0 of [O, At1J 

(if Os = r1.. r1 let 6(s-1) = r11.. r, 11)" 

We now have to check two things. Firstly that 

Ate+KCOsi] lies in the pattern, and secondly that 

it is the anticlockwise perturbation at Atj of At+[O, Ati] 

It is clear that these properties hold if the pattern 

around Ate+[O, Ati is locally the same as that around 

[O, Atl]. Recall that the pattern is defined by 

intersecting Eu with aQ. Note that up to integer 

translation [O, t. ], ti+[O, t. T and tk+[O, ti] all lie in 

the same s-face of either PJ. or Pk (which one depends 

on whether [aß, 0] D [ak, 0] or vice versa), fig tiGb. 

We shall investigate the pattern near At1+[O, Atil etc. 

by seeing how P intersects APk for each k. 

Notice that we cannot have q EM 
3 

such that 
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ýS 

E° 

Nom) 

ýj 

ý. ý P 

qtr 1-7 

(q+Hn int(AP k) 
00 (fig 1 ). 

For since A ZL3= ZZ ,A 
lq 

=rE ? L3. By assumption A 1H 
O H, 

so A 1(q+Hi )c r+H. In particular there is 
,a 

Pl such that 

int A(r+Pl) n int APk # 0. 

But this implies int (r+Pl) 
n 

int" Pk # 
.0 which is a 

contradiction. 

The above argument shows that if the lower u-faces 

of ei+Pi for i=1,2,3 are included in the pattern, 

Ate+KC9si] etc lie in the pattern (we have to add to our 

original pattern because we have not excluded the 

possibility shown in fig t2). 

o 
ý1 

PIG. k's 

However, our assumption that Hc AH implies that At+CO, Ati1 

does not intersect int H, and hence that the anticlockwise 

perturbation of At . +[O, At ] at At . does not intersect 
J1J 

int H. Thus Ati + K[esi] is in the pattern and is the 
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anticlockwise perturbation of Ate+[O, Atl] at At j* 

Write WI = sjsksý-lskl. Define Vi as the set of points 

'inside' K CeWi7 
, as we did in the proof of 3.1 . Our 

choice of 0 is such that the sides of V1 do not overlap, 

in particular if we write 

P! = [ai, O] x(Ä 
1Vi) 

C ESxEt, 

the different Pi do not intersect in their interiors. 

S3 Define W(x, N) ý (x+Es) 
nN for NcJg, Since (as shown 

above) we cannot have (q+Hi )n int (APi) #0 (fig 17), 

W (Ax, APi) C WS(Ax, p+Pi ) if xE Pi, AxE P. 
7 -*p, 

Hence 

ws(Ax, AP1) c ws(Ax, p+P if xE Pi, AxE P-r. 

Similarly define Wu(x, N) = (x+Eu)n N. We must have 

Wu(Ax, APi) =a+ Vi some aE Es. 

Thus 

u(Ax, Api W) WU(Ax, p+P )" 

d) We now show how to define a sequence of partitions 

converging to the Markov partition which more and more 

nearly satisfy the Markov conditions. 

Given K& W1.3 define Vi and 9 analogously to the 

definitions in 3.1 . As before we have AVi = Vi +1 
. We 

must first prove that X [9nWi] is in the pattern. 

Because the pattern is, a tiling, the slope of Eu and 
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Es. imply that if r+H i is in the tiling, adjoining r+H 

along the edge r+CO, tkj is either r-tj+Hi or r+Hj (j#k). 

By choice of A, 

int(Vh)n int(-t+Vil) _0 
int (Vi) . int (Vý) 0 

Also by choice of A and since (q+Hj)n int(APi) _0 for all 

q¬2Z 
3'j 

rig 

[Aai, O]x(KUs]+f(Y)) C (Cak, 0]xKCs. ]) +q or 

C[ak90]xKýsq + f(sl) 

where OWi=Ys. Y' for some words* Y , Y' E S* q k, j, l distinct, 

for some gEa3. We prove by induction that 

CAnai, O]x(KCsj]+f(Z)) C (Cak, O]xKCsJ1) +q or 

([ak, OlxK [sj])+ q+ f(sl) 

when AnWi = ZsjZ'. Suppose it holds for m<n, Then 

applying A gives 

CAn+lai, 0]x(AKCsj]+Af(Z)) c ([Aak, o]xAK[sJJ) + Aq or 

([Aak, O]x[sj]) + Aq + A£(sl) 

which implies (using Af=fe), 

CAn+lai 
90] x(KCes .3 +f (OZ)) C (CAak, O] xK[es j]) +r or 

(CAak, O]xKCAsj]) +r+ f(0sl) 

Suppose esj=rl.. rm, , then since 

KCrl.. rm, ] = Um (KCrm]+f(rl.. rm_1)) 9 we have 

CAn+lai, O)x(K[rml+f((OZ)rl.. rm-1) ) 

C( [ak, O]xKCr] )+ r' or 

( [aO]xK[r] )+ r'+ f(sl, )" 

This proves the induction. Hence for all n, K[AnW is a 

subset of the pattern. 
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The choice of 0 is such that each V is tiled in 

the pattern by bid copies (say) of each V0 (=H 

Vi = Uj31 U 
kb 1( r(i, J, k) + Vý) 

where b= bid. We prove by induction that 

int(V1)n int(-An-1tß+Vi) _ ýb (1) 
int(Vi) 

n 
int(Vý) _O (2), and 

vi _ UjUk (An-1(r(i, j, k))+VJ-1) (3). 

We have already checked (1), (2), (3) for n=1. Assume that 

they hold for m5 n. Since V1 is tiled using the pattern, 

the intersections between different tiles of Vi are as 

in (1) and (2) for n=1. Thus (1) and (2) for n-1 imply 

that (3) gives a tiling of V. 

Recall that 6(An-Ix+Vý-Z) = Anx + Vý . The inductive 

step for (3) works simply by applying 6. The inductive 

step for (1) is as follows. By (1) and (3), 

int( Uj, 
k(An-1r(igi, k)+Vý-1)) 

n int(Uj, 
k(An-1(r(i, 

jjk)-tý)+V3-1)) _ 16. 

Applying 9 and using (1)9(2) gives 

int(Uj 
, k(An=(i, J, k)fVý)) 

n 
int(Uj 

, k(An(r(i, 
i rk)-ti)+Vý ) 

= A. 
By (3) we have 

int(Vi+l) 
n 

int(-Ant+V+l) _ 0. 

A similar argument gives the inductive step for (2). Thus 

we have proved (1), (2), (3). 

Define Pi = £ai, 0]x (A v). We wish to show that as 
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n tends to infinity the Pi more nearly satisfy the 

Markov conditions. We show 

Ui( [Anai 90]xKC9nWl1 )c Uj UqC 
TL 

(q '- [An-la' 

It O xK 9n-lw, ]) . 
This certainly holds for n=1. Suppose it holds for m<, n. 

Applying At 

U. CAn+lai 
, O]x AK[AnWi] CU (q +[Ana , O]xAKCen-'W1. ] ) 

i j, q J 

which implies that 

U. CAn+lai 
to xKCAn+1WII c. q (q + Ana . OJxAK[OnWil ) 

Thus if Pi = Cai, O]xA-n(Vi), 

A(Wu(x, AfPi+1)) Wu(Ax, A 'ý+q) 

where x6 int An Pi , Ax E int AnPý+q 

Therefore, 

(4) 

A(Wu(y, Pi+l)) wu(AY"Pý+r) y=A -n X0 

Writing Vn= Ui V1 , since V1 =)H an easy induction using A 

implies that Vn+l n Vn. Hence 

A(W (x, A'Pi+l)) C WS(Ax, AfPý+9) and so 

A(WS(Y, P +1)) c WS(AY, Pý+r). 

We now need to check that each 

Zpn ={ q+Pn t Pn = Uip 
I q6 ZZ 3 

is a tiling of ßt3. It is clear by induction that An-1pn-2 

a tiling implies that ern is a tiling. For under the 

transformation (AIE$)x(9) on EsxEu, adjoining s-faces of 

tiles in An-1pn-1 are sent to adjoining s-faces of tiles 

in Ane. Also, adjoining u-faces are sent. to adjoining 

u-faces because H= Ui(ei+(ai+Hi)) inductively implies 

that Vn = U. (Aasei+(Anai+V')). Hence for each n AntO 
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is a tiling, and so ?' is a tiling of IR3. 

As n -ado ,A 
-n K[6nWiJ converges in the Hausdorff 

i 

metric. Hence Pi Ri , say. By the above arguments 

URi : i=1,2,3 satisfies the Markov conditions and 

1110 1 ¬q+Ri : i=1,2,3, g6ZZ3 is a tiling of 3Z3 By (3) 

and (4) ARi intersects some translate of Rj bij times. 

Projecting via the covering map onto T3 gives a tiling 

2R = p(ät) of T which satisfies the Markov conditions. 
3 

Clearly the transition matrix forö2 is (bid). 

Remark The particular choice of A that we made above 

was rather arbitrary - as when constructing a Markov 

partition for an expanding endomorphism of T2 there are 

several possible choices for 9 and hence a 'canonical' 

class of Markov partitions. 

e) We now calculate B= (bid). This is done by 

considering what happens to the faces Fi, instead of the 

H. Intuitively A(F') and A(Hi) pass through approximately 

the same number of each q+P J, 
(q E a3) because Hi is the 

unstable component of Fi. They may go through the Pis 

in a different order. 

Define a stepped surface Uc ßt3 to be a surface such 

that (x10X2; x3)E U implies some x. E 3. In other words 
s 

3 U is a union of q+Fj, j=192g3t qE a. We say that 
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Ü is non-degenerate if whenever r+Fk, s+FjcU and 

int ps(r+Fk) n 
int ps(s+Fj) 0, we have r+Fk s+Fj. 

If Ü is non-degenerate and has connected interior, then 
N 

when U is projected onto the (eiej) plane no two copies 

of Fk (k#i, j) in U project to the same square. This is 

because if r+Fk, s+FkcU we can find a sequence of faces 
N 

in U with adjoining edges going from r+Fk to s+Fk. But 

non-degeneracy implies that if m+Flc U then m+ej+Fj 9U 

(l j). Thus if an Fj (j#k) appears in the sequence, 

r+Fk and s+Fk do not project to the same square. If 

the sequence is only of copies of Fk then clearly r+Fk 

and s+Fk do not project to the same square. 

We construct a stepped surface U corresponding to Eu 

in the following way. Remove from the half space of IR 3 

containing the positive cone and with boundary Eu the 

interior of any cube p+I3 (I3 = C091330 p'2l3) which 

has int(p+I3) Eu # ý. This gives a set X whose boundary 

is the stepped surface Ü. Because EU intersects the 

positive cone only at the origin, if we write 

IJ = (-ej, O] +I 
i= (O, +ej], 

U (q+-Ij. ) implies E^ (q+"Ik) for any k. then En 

This implies that Ü has the following special propertys 

E n(q+ Iý) O <_> q+F c U. u 

(fig. 19 shows the corresponding structure in two dimensions). 

This is because if En (q+'I .)# Q5 then q+I3 CX and 

q-ei+I3 9ýX. The reverse implication works by seeing 
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how Eu can intersect the edges of q-ej+I3 (fig.? -0). With 

the notation of fig. 20 , if E n(r+-Iý 
)#O then EU (t+-Ik)=ý 

and E U(r+-Ik)=0 so E ̂ (q+ei+-Iand similarly 

Eu n(q+-Ii 
)ý 0. Similar arguments show 'that whichever edge 

of q-e3 +13 is intersected by Eut EU must also intersect 

q+-Ij. This proves the special property. 

Recall now that P. was defined with upper face in H 

and lower face in -ej+H. Hence E ̂ (q+-Ij) if and only 

if Er, (q+( (aj, O]xH. )) 0. Thus projecting the faces of U 

onto Eu using the map ps gives a tiling which equals the 

patterning of e, We can therefore think of Ü as a 
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non-degenerate lift of the patterning of Eu to a stepped 

surface. The lines K[6sj] C Eu lift to give polygonal 

lines cÜ joining 0 to A(ej). Now, Vi lifts to the 

subset of U bounded by ý, GK, +A(ek), Lk+A(ej), which 
N 

we call Ui. 

In order to calculate the number of copies of Fl in Üi 

we project Ui onto the(emyen)plane (1#m, n and i#j, k). 
v 

Since U is non-degenerate, 

bit = )Z(F1 in Ui) _ c(squares in'the projection of 

Ui onto the (em, en) plane). 

But the projection of UI onto the (em, en)plane is a figure 

Vie l bounded by L 
It 

EL, +(amk, ank) , Lk+(amj , anj ) 

(recall that A(ek) 'r31 arker )" where L. is the 

projection of LJ onto the (em, en) plane, etc. The different 

lines bounding Viel do not overl2p because of the 

non-degeneracy of U. Thus bil = area of Vi, l 

amk amj 
_ = det 

ank anj 
cli 

if C= adj A= (cli) where 1#m, n and i#j, k. Hence 

B= (adj A)t = (A-1)t since det A=1 
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2 Coding between Markov Partitions. 

Theorem 3.1 showed how to construct Markov partitions 

with different boundary capacities for the same map of T2. 

It is natural to ask if there is any sense in which one 

partition is a 'better' choice than another. One 

possible answer is as follows. Below we shall always 

work only with the measure of maximal entropy, denoting 

it p-. Let D=I det Al, and suppose At öZ are two Markov 

partitions for A constructed as in 3.1. There is an 

induced isomorphism (Ps2D 4L`D defined a. e. so that the 

following diagram commutes. 

(ýD 9a-) (fD fs) 

(T A) 

The map 4) is a finitary isomorphism a. e., in other words 

if we define the anticipating function 

aoz2D 4 IN�¬°O1 

by letting a1ý (x) be the smallest integer such, that if 

zE-5D and yi ="xi for i5 a(P(x) then ((P (y))O = (ý(X))O' 

we have a(, (x) < co for a. a. x. One says that 4 has 

finite expected code length if Saj* 
< oo. An argument 

of Adler and Marcus (Ad2) shows that our map does indeed 

have finite expected code length. However, we shall 

see that the code length can be bounded in terms of 

the matrices B(A) , B(IR) (defined in Remark(i) after 3.1). 

Hence the expected code length depends on. how crinkly 

the Markov partition boundaries are. 
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The Adler and Marcus (Ad2) argument formally works 

by using their Proposition 2.14 together with the 

argument on their page 78. It can be interpreted 

geometrically as follows. We denote an element of the 

partition A -11-1y by I (x0,.. , xm-1) if there is an 

(x0,.. "xm with with % (x0,.. , xm-1,.. ) E intT(x0 

1 They show that there are blocks x.. xr and y such that 

for each x0.. xmx1.. x there exists a block y0.. y y with 

with 

S(x .. x x .. x ) (y .. y y). 0m1rc. int R0m 

Thus if xc -2D has E S(x0.. xmx1.. xr) we know that 

ý(x) = y0.. ymy, so in particular a, (x) <, (m+1+r). 

Let Nk = ýxE 2D :x= (x0.. xk.. ) with x1.. xr ,4 x0.. xk 

so a0(x) >k implies that xE Nk. Hence 

x ap(x) =mI 

xsa, ý (x) > m-1 15 (Nm 

Finite expectation follows since, "(Nm-1) converges 

exponentially to zero as m. 4,, o. We shall make a more 

exact estimation below. 

0 

n. 
Prop. 3.4 f 

aýd. a. ==< pO 
i=1 Idet A1where 

ni+1 = (elements of V0 A-% required to cover aý). 

Proofs Denote Ci(x) 
Ds 

(x0.. Xi-1)-(y0" yi-1)i 

We have to estimate 
, 
ý, 

ýx 
E 

Now, i=a, (x) means that 
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Tt (Ci(x)) C Týý(CD(Y) ) for some Y, 

and 7CA(Ci-1(x)) St Tt(C0(? )) for any z. 

, %(Ci(x)) does not intersect two distinct elements i. e. % 

of ýR in sets of positive measure, but that 1c$(Ci_1(x) ) 

does. Since the measure we are considering is the 

measure of maximal entropy, Haar measure on T2, this 

is the same as saying that TcA(Ci(x)) does not contain 

in its interior any part of the boundaries between 

elements of Ry but that Tc(Ci_1(x)) does. 

E Unlp Ä ný :S= rA (pi (X)) Wý(pp (Y)) for some 

ýS E\nlp A ný 
- #C {S E \%nlp A n, $ : (int S näöZ 

= Di+1 - ni+l 

Certain elements S of Vni0 Ä n)ý do not cover part of 

W, because they are subsets Sc SIE n_0 Ä nZ which 

did not cover part of äff. 

Now, 

{Se vn10 Ä ng : SCSI vn_1 Ä ng and (int S')A _ ýS 

= D( K¬S' E Vi 1Ä ný : (int S' )naýSZ 

=D( Dl - ni ) 

Thus, {S: (int S) ̂  aä2 = 0, Sc S' , (int S'), aä2 ý01 

i+l i 
=D- ni+l- DD- nib = Dni - ni+l 

and hence 



68 

Dni- ni+l ni ni+l 

Di+l Di Di+' 

Notice that we cannot have a, ý(x) = 0, for this 

would imply that ?R Thus if b. #$, ap(x) >0 for 

all x and so n1=D. 

00 Jaq(x) 
dom. _ 

i=1 
N 

= lim -i 
N i=1 

_ 
oo (ni/D ý1 l 

E ZI 

n. i 
Di 

if 

s dý(x) 1 

-ni+1 

Di+l 

the series converges. 

__ -- a 

  

We shall use the following lemma to obtain bounds 

on ni. 

Lemma 3.5 There is a constant rzR) 0 depending only 

on A and B(R) such that an element R of 'R is contained 

in a square of side r., where R and 
öZ are lifts of 

R and VR to ]R2 

Proof: We only have to prove that if JKIj is the length 

of the X. component of a set K, there is a bound rý(i) >0 

so that I Ke(W) ti< 
rý(i) , where W= s1s2 or s2s1 . 

We show by induction that, 
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E1 nKC &W] Ii< 8bw 2 
rnl 

I >i lr (# ) 

where b >, bi j, (bii) =B (b) , and 

w= max 
ýlujj :u. is the component of ej 

j =1,2 
in the -Ai-eigenspace 

}. 

Since the length of 9(sl)v 6(s2) is less than 4b, 

JK[ewlIi < 2.4bw = 8bw. 

Therefore IA 'K[OW]j 
i5 8bw I? -1 

Suppose that (1) holds for n. Then since 

K[6n+1W] = KC6(9nW)] = ml (tl.. tj-1)+K[6tj3 ) 

when 6nW = tl.. tm 

I A. -1K[9n+1W] Ii<IK [6nW] Ii+ (A 1K[AW] Ii 

<ýýiln(8bw-iýI-r) + 8bwl iI-1 

and so 

IA n-1K CBn+1W] Ii= 
8bw 5; 7i+l -r 

This proves the induction. Letting n 4° shows 

ýKe(W)fl < 8bw. 1 

Prop. 3.6 There are constants cl, c2> 0 depending only 

on A, B(YN), and B(A) such that 

B(R) < 
`aý 

dp.. c2 XB(S) 

D- 'B 
J D- XBtý) 

A 
Proof: We write $ for p 1, $ c IIZ2, and let 0 be the 

  

endomorphism generating äZ. We slightly change the formalism 

used before, the object being to obtain öY, immediately as 
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a recurrent set. Let f(si) = A-1(ei) and introduce 

virtual symbols i, 
s11 corresponding to si, sil defining 

9 for these symbols by O(si) = 0(si) etc.. Then we 

can find a word V in our new S* so that Ke(V) is a 

lift of NR (fig 23) . 

KC v7 

v 

il 1) 

FIG. 23 

0,,,? 

Recalling the definition of and fie, and that 

log e) is the entropy of it is clear that there 

are constants gl, q2 so that 

ai oV= tl.. tr and t-Eýs1, s11, s2, s2'3 

E [ql 
, q2] " B(R) 

Put mi+1 =% SEs (int S) 
n 

(Al X( )(V)) 
O! 

Recall ni+l = C¬ SV 10 Än, $ (int S ), *W 

Then mi+l %>, ni+1 but 

SE$IK 
i 

cover )IRP but since 

gives the latter we 

required). 

also r4ni+1 >, mi+1 (we may require more 

D(V) than we needed SEVO Ä rA to 

applying p0 1 to the former picture 

can bound the number of extra S 

We easily obtain an upper bound on ni. Let 

k= max ýk¬S E$ covering Ke(si)j 
i=1,2 
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Then ni < mi < kai_1. Now 

k< *¬ E- covering a lift of an RE ö2 j 

<Sý, $ covering a square of side rý3 by 3.5 

But by 3.5 all such ý'S would be contained in a square of 

+ 2r, a, and since each S has area 1/D, side r. 

k< 
(rte + 2r. 4) 

2 

D 

Letting c2 = (rZR + 2ra)2g2/D gives the claimed upper 

bound. 

A similar argument to the above tells us that a 
A 

collection of t elements of intersects at least 

t 
(r$+ 2rß)2 

D 

elements of ,$. Thus at least aiD/(rg + 2r,, )2 elements 

of 
2 

cover A'( KeV) , i. e. 

/(r+2r 2 
mi+l >, ai , a ýt 

D 

Setting C2 = q1D/4(rß + 2rß)2 gives the claimed 

lower bound. 

  

Notice that finite expectation occurs if and only if 

AB(V, 
) < D. Since log D= log j X11 + log I x2 1, Remark(i) of 

Theorem 3.1 implies xB 
(V, ) <D<) cap( . 

)< 2", The above 

proposition gives a formal way of saying that Markov 

partitions whose boundaries have high capacity are bad 

because it takes a long time to encode particular points. 
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§3 Invariant subsets for hyperbolic automorphisms of 

T3 and expandinv endomorphisms of T2. 

A series of papers (Hilt Bo2, Bo5, Fr, Hal, Ha2, 

Mel, Met, Pr, Ir, Ob) have considered what kinds of 

invariant subsets can exist for hyperbolic automorphisms 

of T. The original motivations were the search for new 

types of Anosov diffeomorphisms and a question of Smale 

(in Hil) who asked if there could exist a compact 

invariant set with topological dimension one. Figure 24 

shows some of the results obtained. Some of the later 

results indicate,. as various authors have commented, 

that invariant subsets (other than Mane's invariant Cl 

subtori) will have a complicated structure. A hyperbolic 

automorphism of T3 in fact has no invariant Cý subtori, 

for S1 does not admit expansive homeomorphisms and 

there is no invariant 2-manifold by a result of Hirsch 

(Hil). 

The results of Mane, Urbanski and Irwin on the nature 

of paths with non-dense orbit also apply to expanding 

endomorphisms of T2 when the eigenvalues of the covering 

map are not rational. In that case, as we remarked before, 

when the matrix A inducing the map is positive we can 

construct Markov partitions whose boundary has the 

minimal capacity p2- (log I A2I) / (l(>g I ALI) , allowed by 

Urbanski's result. In the hyperbolic case on T3 we 

cannot say if the same is true. Urbanski. constructs 

paths with non-dense orbit and capacity less than 

2_ log1Xj +C 

log 1'11 
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. 
PIG. 24 

Invariant Submanifolds 

Hirsch An invariant subset of Ä cannot be homeomorphic 
(Hil) to a sphere of dimension 'Ii 19a Klein bottle 

or a projective space. If the topological 
dimension of Es=1, the only proper compact 
invariant submanifolds are periodic points. 

Mane If f: 1i -r T"is Anosov and V c-M is compact p 
(Mel) invariant, öV=O, and is a C1 manifold, then 

fIV is Anosov and each connected component is 
homeomorphic to a torus. 

Invariant Sets 

Bowen Minimal sets have zero topological dimension. 
(Bo2) 
Hirsch No compact invariant set has topological 
(Hil) dimension equal to n-1. 

Hancock £c': I''. TAI O(a-I"`)=T^) is residual in the uniform 
(Hal , H&2) topology on C( I"' , T^) . 

Przytycki For any k, O<, k, n, k#n-1, there is a compact 
(Pr) invariant set N" of topological dimension k. 

Mane The orbit closure of a non constant rectifiable 
(Me2) arc contains a coset of a toral subgroup 

invariant under some power of Ä. 

Irwin There exists a Holder continuous path in T3 
(Ir) with a non-dense orbit. 

Urbanski There is a lower bound on cap of compact 
(Ub) 

L-- 

invariant sets. 

1011 

Unless otherwise stated the above results refer 

to a hyperbolic automorphism of Tn, ÄsTn-+ Tn. Most 

of the results are not stated in their full generality 

and many results have been left out completely. The 

techniques used in (Pr), (Ir), and (Ub) largely stem 

from (Ha2). 
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and he asks if the & can be removed. An easy covering 

argument (c. f. Be) shows that Irwin's Hölder continuous 

path with non-dense orbit has the required property. 

Urbanski's result shows the fractal nature of paths 

with non-dense orbits. However, capacity is not a good 

measure of the "infinitesimal wigglyness" of a curve. 

If a curve does not vary very much near one point it 

may have dense orbit even if its capacity is larger 

than 2- (log1aý)/(loglXli)" 

Def_3.7 A path C: CO, 1] --t i22 satisfies a variation 

condition f at t0E CO , 11 (where f: ]R1-ß 3Z+ is monotonic) 

if given a small hE3t we let t0+s be the smallest parameter 

value with s>0 for which C1(t0+s) = C1(t0)+h and then 

IC2(t0+s) - C2(t0)I < f(IhI) 

where C1, C2 are the coordinate functions of C. 

The following result (which was proven independently 

of Urbanski's) applies equally well to the maps of T2 

(if the eigenvalues are irrational) and T3 we have been 

studying, although we prove it in the more complicated T3 

setting. 

We shall work in the covering plane using coordinates 

given by taking the coordinate axes along the eigenspaces 

and coordinates defined by distance. 
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Thrm 3.8 Let A be a 3x3 hyperbolic matrix of integers with 

Idet Al =1 and eigenvalues with 
IX 

11 >I \Z 1>1>I >\31 " 

Let C: [0,11 IR3 be a path such that (C1, C2) satisfies a 

variation condition f (h) = cha with a> (1og l X2l) /(log IIX) 

at t0. Then the orbit of p(C) under A is dense in T 3 

where p: IIR3 -ý T3 is the covering map. 

Proof: By taking a power of Ä, if necessary, we may assume 

that a1 > X2 >1. (this does not affect 1091)\21/ log I >1I ). 

We shall show that p(C) has dense forward orbit. Hence 

we may, by considering only the unstable components of C, 

assume that C3 = 0. 

Suppose z=C(t0). For the moment we define t=C-z in 

order to assume that 0=C(t0). We first show that for all 

M and £/3 '>O there exists m' '>O such that for all m) m' 

d rf- (O, M) 3s0 with \2C1(t0+s)=r and I)ýZCZ(t0+s)i < a/3. 

Write C=CO and define a path C1 as the image of CO under A, 

C1(s) _ X1C°(s), C1(s) _ X2C2(s). 

01 Since C satisfies a variation condition, so does C. For 

take t0, s, h as in the definition of a variation condition. 

Let ht= ýlh, then t0+s is the smallest parameter value 

larger than to for which 

C (to) + h' = ci(to+s). 



76 

Thus 

1ßä(t0+S) 
' Cä(t0)1 _ >2 1 

Cä(t0+s) ' ýä(t0 
X cha = 2X-a c(X1h)a =t c(h' )a 

where _ ý12ýº1a. Note that 04)-<I. If we inductively 

define paths Cn satisfies a-variation condition fn at t0 

where fn(h) =c ha. Choose a small h>O and a k> O so 

that Xih >M. There exists n >0 such that 

cn(to+t) =h and ICn(to+t)l< ý2k(E/3) 

from the variation condition- for C. Then if m'=n+r 

and mm', A"C has the property that for all r ((0, M) 

there exists s '>O with 
ýiC1(t0+s)=r 

and' C2(t0+s)I< £/3. 

Write EM = (09M),, 101# Since the eigenspace for ýi 

is dense in T3, given (£/3)) 0 there exists M>O such that 

for all xE T3 there exists *y' E F, M with d(x, y') < £/3. 

Hence for all p and xE T3 there exists yE p+EM with 

d(x, y)< 2£/3. For there is a y"EEM with d(y'-p, y" )< £/3 

so d(y', y''+p)< Z/3 and putting y=y '' +p, 

d(x, Y) < 2E/3. 

We can now show that given x CT3 and 00 there 

is m' : >'O such that for all m> m' there exists s>0 with 
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d(AmC(t0+s) , x) < C. For take 2. , M, m as above, then with the 

notation of the previous two paragraphs there exists s> 0 

with 

Am( C1(tO). C2(t0+s)) =Y 

and p=C(t0). So 

d(x, AmC(tO+s)) 

d(X. Y) +'d(Y. AmC(t0+s)) = 2£/3 + £/3 = L. 

Thus the forward orbit of C is dense. 
v 

This proves the theorem. 

  

It is easy to give an example of a path C with 

cap (C) ). 2- loges 

logIl1I 
but satisfying a variation condition h i-ý hb where 

b4 (log j)2j) /( log jAl)) . We work in Eu using coordinates 

as in the above proof. Let g be the graph of h+ hb. 

Let Gn be the closed region bounded by g, -g, x=2 n, and 

x-2 n-1. For each n choose a'curve Cn with 

cap(Cn) 2- lo= 

logy 

Cnc Gn and Cn j(x, y): x=2 rl_ (2-r, 0) for r=n, n+1. 

Let C=nC. Then clearly 

Ea-P(C) >2- 
log 1A21 

log X1 f 
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b log I ý2I 
but C satisfies a variation condition hwh, bZ lo " 

It is easy to use the recurrent set formalism to 

construct lots of invariant sets for-expanding endomorphisms 

Ä of T. Any finite alphabet with f: 5 -»a and 8: ý* aS 22 

such that f6 = Af will generate a set on T2 invariant 

sS e(s)). = sl.. sr under A. Let Y= p( C Suppose e(s) 

then 

A Ke(s) = Uir1( Ke(si) +2. f (s )) j<i 

Hence Ap(Ke(s)) = Uir1 p( 1e (si) ) and AY = Y. 

Clearly the fractal dimensions (i. e. Hausdorff 

dimension and capacity) of Y are the same as for K,,. 

Whilst estimating capacity we shall use the notation of 

the previous chapter, in particular L=A, but t is the 

map defined on page 23 and not the induced map on T2. 

We need to know if Ke is well matched, and we claim 

that Ke is well matched if and only if no essential 

symbol duplicates (c. f. D3 5.3,6.1). By the remark 

after 2.14 we only need tö show that -rt is bounded 

to one if and only if no essential symbol duplicates. 

If we assume there is no essential duplication, 

since f: S -o- 2Z 2 

1J< l(s "m) : Ems = sl.. sl(s, m) t s3 CEP 

f(sl.. sj-1) = (p, q)j 
C ýE) for all (p, q) E ? L2 and all se E. 
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Suppose diam Ke(s) <r for all s. Then if ye Lx" Ke(s), 

£1' j% l(s, m) : 9ms = sl.. sl(s, m) sjeE, 

yE K9(sj) + f(sl.. sj-1) 

4r2IEI. 

Hence 14{xE 2e: Tiex = y1 < 4r21E1 , and TV () 
is bounded to 

one. If an essential symbol duplicates, the argument 

of 2.14 (iii) -> (ii) shows that -fr8 is not bounded to one. 

If we have chosen e so that the topological dimension 

of Ke is one and Ke is well matched, the dimension 

estimate (*) equals the capacity of Ke . To see this 

notice that if Vn is any n-cylinder of K8, the 

projection of Vn onto the X2-eigenspace has non-empty 

interior. By the Markov property of Ke we can find an 

£>0 and squares Qs with the following properties, 

i) Qs 
n 

Ke(s) projected onto the X2-eigenspace is an 

interval. 

ii) (Qsl + f(s1.. si-1))n(Qsj + f(sl.. sj-1)) =0 

when dk s)=sl.. sr 

iii) Qs has sides parallel to the eigenspaces, with side 

length E. 

Any- cover of A% by squares with sides parallel to the 

eigenspaces and side length 1, E , ln-1 <1 &Xlnr must 

have at least (\)1)1 squares covering 
n L (QsI + f(sl.. si-1)) n 

K9(s). 
nh(c-e) 

Since the number of n-cylinders is asymptotic to e 

we have at least const. (X 
lj: 

l)n 
exp(nh(ß, )) squares 
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of side 1 covering K,,. This implies that 

h(c )- log ý21 

cap Ke >, 1+ 
log I \1I 

and hence that (*) equals cap IKE) in this case. 

Application of the recurrent set formalism to 

the case of hyperbolic automorphisms of T3 is more 

technical. 

Prop. 3.9 With the notation and conditions of 3.3, 

suppose that O: S*. S* is chosen so that 

(int ( EAai9O3xK[Wi] )) 
(jq+H : gE2Z3 

3_0 ($) 

for each i, in the induced topology. Then p( i Ke(si)) 

has non-dense orbit under Ä: T->T 
33 

Proof: Let Ui, 
m 

(rjm+ Cp, tj]) be the set of line intervals 

in the pattern. By ($) we can use the argument of 3,13 

(p58) to see that 

K[OnWi] C U. 
sM(rJm+[O, 

ti]) 

for all n. Hence ICe(0%. ) c 
gm 

(r j+ Ke(ss)) 'an, 
' jOm 

and so 

Ke(e'Wi) C (q + Cak, O1x K8(Wk) ), qE a3, k=1,2,3 
qpk 

Thus the forward orbit of p( Ke(si)) is not dense 

because K(()nWi) = An Ke(W, ). Since p( Ke(si))c Wu(O) 

the backwards orbit is not dense either. 
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The above construction differs from constructions 

given in (Ha1, Ha2, Pr, Ir) because we have a single 

condition to check that ensures a non-dense orbit. 

Previous constructions were based on Hancock's idea 

of taking a curve C in T3 and a region UC T3, and 

inductively. perturbing C if inC entered U so that 

AnC 
r%U =O for all n. 
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FIGURE 25 

AK[OW] for n=1,., 4 where W=sls2slls2l, and 

0s1=s2slsls1 es2=s2s2sl A= 
(i 2 ). This choice of 0 

satisfies the conditions for 3.1. cap Ke = 1.7484. 
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FIGURE 26 

AK[OW] for n=1,. 4 where W=s1s2s11S21 , and 

esl=sisis2s1 es2=s1s2s2 A= 
(3 1) 

. This choice of 6 

satisfies the conditions for 3.1 . cap Ke = 1.7484 
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FIGURE 27 

J 

_{ 

A nKC6nW] for n=1,., 4 where W=sls2s11s21 and 

6s1=s2s1s2s1s2-1s1 0s2= s2s2s1 A= `1 2) This 

choice of 0 satisfies the conditions for 3.1 

cap K0 < 1.8832, and this example has essential duplication. 

,ý 
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FIGURE 28 

0 

Ä nK[OnW] for n=1,., 4 where W=s1s2s1-1s21 , and 

es1=s2sls2sls41s3-lsls1 and es2=s2s2s1 A= 
(l 1). This 

choice of 0 gives an invariant subset for A. 

In this example-.. there is essential symbol- duplication. 
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FIGURE 29 

A, nK[AnW] for n=1,., 4 where W=s1aý1s2 ., and 

es1=s 1s 2s 1s31s41sIs1s2 as2=52s2s1 A=( 
2)" Here we 

have sl1 and s21 as virtual symbols. cap KQ iC- 1.9572. 
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CHAPTER FOUR 

DIMENSION OF SELF AFFINE SETS 

This chapter goes back to the question of calculating 

dimension for fractals (e. g. recurrent sets) having a 

subshift of finite type structure when the scaling map is 

not a similitude. In this situation, as we saw in Chapter 2t 

even if a recurrent set Ke is well matched the dimension 

estimate (*) may not equal cap( Ke). Thus it is impossible 

to make fractal dimension calculations without geometric 

information in addition to knowledge of the subshift of 

finite type structure. 

Many physicists (e. g. Br, Fa, Grl, Gr2, Wi) have been 

interested in making fractal dimension calculations in 

numerical studies of fractal (strange) attractors. Takens 

(Ta) raised the question of whether in this context 

Hausdorff dimension equals capacity - an important question 

because of the relative ease of estimating capacity. 

Grassberger (Gri) recently wrote, refering to (Fa), 

"It is generally accepted (Fa) that for almost 

all attractors Di capacity) is equal to the 

Hausdorff-Besicovitch dimension. " 

Here we shall give some simple examples demonstrating that 

this assumption is not correct in general. These examples 
are not themselves attractors, but could clearly be used 
to construct examples which are. 

For most of this chapter we deal only with certain 

self affine sets in JR We construct these sets as follows. 

Choose integers r>s>1, and in the unit square [0,1] 2 
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draw a grid of lines [O, 1] xE 1/sý for i=0,.. ,s and 
ýj/rj 

x [0,1] for j=0, .. , r. Shade some of the rectangles 

(fig 30) - the shaded set gives us our first approximation 

Ml to the fractal. Let L= (r S) 
. Replacing each 

shaded rectangle with a copy of L 1(M1) 
gives the second 

approximation M2. Proceeding inductively we define Mn by 

replacing the shaded rectangles of Mn-1 by copies of 

L (n-I)(M1). Then Mn->E a compact non-empty subset of ]R2 

(covergence being in the Hausdorff metric). One can easily 

construct E as a recurrent set (by liberal use of virtual 

symbols). There is also a projection to E from a full 

shift, where an n-cylinder of E is the intersection of E 

with a shaded rectangle of Mn. Label the rows of the 

original grid 0,1,.., s-1. We write ki for the number of 

shaded rectangles in row i of M1 (fig 3O). 

S 

s-I 

0 

.-k shaved -a r+s 

Fl( -21 (1) 

A --r 
-r 

The following proposition shows how insensitive 

capacity is to the geometry of E. 
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Prop. 4.1 Let tI ki # Oý . Then 

cap(E) =1-1 log t+ log( 
1=0 

ki ) 

(log s log r log r 

Proof: Let Gr(n) be the grid of squares in [0,1] 2 
with 

side length rn whose corners have coordinates of the 

form (1/rn 3/rn) 
,0i, j 5 rn. We only have to estimate 

capacity using coverings by squares from n Gr(n), for 

define N'(, -n ) to be the minimum number of squares in Gr(n) 

required to cover E. We claim that 

n 
im log N'(-n = lim log N(E) and 

n. iog r E-'o -logs 

Iim- loa N'(r -n )= Jim lo N F-)- 
n---,, o n. log r ý-'o -log C 

For given C) O choose n such that rn<r (n-1). Then 

each E-ball is contained in 9 squares of Gr(n-1) and 

therefore 9r2 squares of Gr(n). Each square of Gr(n) is 

contained in a ball of radius £. 

Thus N(E)<, N' (r n) <, 9r 2 N(s) . This , together with the fact 

that loo F- 
_-1/ 

1 as or, (orr ) -, 0, proves the claim. 
-n. log r 

Our set is self affine and so for any n-cylinder of E, 

CC, Ln(Cn) is just a copy of Be Thus a covering of Cn by 

squares of Gr(n) corresponds exactly to a covering of E by 

horizontal strips (fig 31). 

Therefore we can count the number of " squares fron 

Gr(n) required to cover Cn by counting the number of 

horizontal strips of height (s/r)n = >\n intersecting E. 
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i 
FtG. 3( 

r: 01 ý 

L. " 

/n 
lsýr 

We already know that'exactly tJ horizontal strips of 

height s-j intersect E. Choose n so that ýn <s -j ýn-1 

Taking logs gives 

n (log r- li , ,j> 
(n-1) r loa r 

log sl\ logs 

The horizontal strips intersect the y-axis in intervals 

of lengths Tn and s-j. Each s-- interval intersects at 

most 
[s-j. X7n3 +1 \n-intervals, and each \n-1-interval 

intersects at most 
L\n-i. 

sjý +1 s-i-intervals. Hence 

Xn-strips required to cover E) S tj( [. s-j > n] + 1) and 

( ýn-istrips required Ito cover E) >, t 
j( Can-lsj ]+ 1) 

Now, log(s-j A-n) is bounded above and below by constants 

(from (1)). Thus there are constants cl, c2 >0 such that 

(squares in Cr(n) required to cover Cn) 

P 
-strips required to cover E) 

6 [c1, cý . tj 

There are (ýS_1 k)' distinct n-cylinders of E, so 
i-0 i 
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cap(E) lim log (c2tj(ý ki)n) 

log(r-n) 

= lim log (clt3('ý; ki)n) cap(E) " 
n-*° 

log(r n) 

Therefore 

cap(. E) _ (log r-1\ log t+ logg ki) 
`log s 

log r 

(using (1)) as claimed. 

w 

We now go on to calculate the dimension of E, but 

first establish some notation: 

L= (Pot "" tps_1) has : S-1pi=1 pi, 0 and pi=0 if ki=0 

We write H(Q) _ .ý 
0-1 

p flog Pi. 

BS(pi) (x - pi( < if pi 0 

BS(O) _ ¬O3 and Bg(2) _ 01 BS(pi) " 

We shall write y=O. yly2.... base s, put 

p(y, n, i) = 
{ljn Iyj 

"=i} and P(y) 
(P(ynnýi) 

- s-1 1 
i=0 J 

We use the sup metric when working in its. 

The following lemma is a slight generalization of a 

calculation due to Eggleston (Eg) 

Lemma 4.2 dim ys (pn(y))ri his a limit point in B, (Q)l 

= sup {_u()/ log s :gC. BS(p) 
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Proof: Call this set A s. Firstly note that if yd Ar 

then PP (y) '- BS(Q) infinitely often (1) 

for otherwise there is an N such that for all n>N, 

I Pn(y) -LI>9 
which implies that IS - g1 >, 9 for any limit point 

of P(y) " 

Let X(n, d') be the set of intervals of length s-n 
whose left hand end point x is of the form x= k/sn for 

some k'? l, and also satisfies Pn(x) E BS, (a) . 

Then if d' >d' for all N we have by (1) ý 

X(n, dý) Ag (2) U 
n=N 

Wehall show that the dimension estimate coming from (2) 

almost gives the required answer. 

We can bound G X(n, d') combinatorially, 

ns -" (3) 
tos..... ts-ls 

where the 

such that 

Write °< 

equals 

By Stirlir 

summation isa 

ti/n 6 Bg(pi) 

-H(r)/Iog s 

g s9. E ý, (Q) 

igs formula, if 

ver s-tuples of integers (t,,., ts_1) 

and 
1p ti = n* 

and suppose that sup (rxE 
Bp(p) 

tine- B9, (pi) 

_ nt (2½(s1) . nn+ 
t0 t... is-1Z t ý'AI t 

(t0) 9.... (ts-1) S-1 

i 
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_ (2) (5-1). 
n . (to.. ts-i). ý((to/n)t°.. (tS-i/n)ts-i) -1 

/(s-1) (1-s)/ ro rs-1 -n 
+. ýZZ) 

" n- "(r0""rs_l) "(r0"""""rs-1 
) 

where ri = ti/n 

< (2ýc) n" (I 10 (Pi- d')) s- since rE Bs, (L) 

. 
/(s-i) (1-s)/ 

-Tý s-, (Pi 
ý oc n 

ý1O -d')) "sg < (27C) n .( 

by definition of g 

The summation (3) has less than (2d'n)s-1 terms, and so 

(1-S)14 s-1 c( n some constant K> O Z X(n, SO) < Kn n "s 
g 

(s-1)/ oC n 
= Kn sg (4) 

An interval of X(n, d') is of length s n. Thus the 

d-measure estimate for Ad arising from (2) is 

00 00 
(s-1) !5ý c< n 

'WX n d' < K. n 

fs 
3 

n=N 
sad 

n=N 
sd 

00 if d> g 

The above estimates hold for all large N, so we have 

shown that for all (1 >S, 

dim Ag sup 
¬ 

-H(L)/log sI gE Bý, (Q)} 
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Letting g' -->g gives the required upper bound. Egglestons 

result (Eg) is that 

dim IY : pn(Y) 9. ý 
-H(9. )"/ log s 

This gives the lower bound. 

Lemma 4.3 Given £>0 and N>0 there is a cover cU of AS, 

using intervals u of the following form, 

i) u has length rn for some n(u) >N 

ii) uc [ks-n, (k+1)S-n] some ke ? L. 

iii) u, a<1 where a= dim As +£ 
MCIL 

  

Proofs Since dim Ad < a, we can find a cover of A, !', so that 

v E1. ß' Ivy < r-(N}l) (1) 

vEZ 
I vla < 2-lr a (2) 

For vfM there is an n E3N such that 

r«1)< IvI < r-n 

Thus we can enclose v in an interval v' of length r<r -N 

by (1). The interval v' may not satisfy (ii). Suppose 

k F- 7L and ks nc v' . Define 

u1 
sn - ýU 

Sn 
' 

L 

Clearly jul(a + Iu2la 

[Ic 
,k+1 u2 = 

sn sn rn 

=2 Iv'la < 2ra (vla (3). 

Transforming every interval v of 11' into intervals 

ul(v), u2(v) as above gives a new cover of Al, 

IL _ {u1(v), 
u2(v) : ve`U'1 

which by construction satisfies (i), (ii). Furthermore 
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`- 
f ula <v 

u57 , 
2ralvIa <1 by (2) and (3) 

u¬U 

Notation: Given Q and s> 0, choose the largest ä>0 

so that 
S-1 (P )" z C$ si lo=J 

C. Bh(p) 
i=O log r 

S-i log ki 
where p= pi( " Then write 

i=O log rJ 

  

Qýý 1im P(Y, n, i) log kil 
E BE(P) 

n>0o i=O n log r/ 

and En(y) has a limit point in BS(c) 

Lemma 4.4 dim EgY£ sup 
ý(-H(a)/log 

s) +. p+EI gý B(Q) 

= dl 

Proof: Choose F-I > E. Suppose y is such that 

n C- 
i=O 

P(Y-n ) 

log 

kl 

riý 
E$ (P)" 

og 
Then there exists an N such that 

s-1 
n >N 2 P(Y, n, i) log ki 

<p+ 
J=O n log r 

Let AN = ¬y : (x, y)eE and dn >N (1) holdsl 
P_ F- 

EN ¬ (x, Y)E _tF : yEAly loche x, 

C0 
We have nl EN EP-pc , and show that for all N 

dim fiN is less than d1, for then dim E 
POE* 

<d10 

Since AN C AS , the set from lemna4.2 dim AN, dim As 
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Lemma 4.3 guarantees the existence of a cover U of AN 

with the properties stated there. Given an interval ucU 

'we define a collection of squares O(u) in the following way. 

Consider S= [0,1]x u. S intersects E, and in particular 

intersects some n-cylinders C. SA Cn is covered by a 

square of side r n. Let 

U(u) = {v :v is a square of side rn covering Sn Cn 

some n-cylinder Cn } 

n-cylinders intersecting Sj 

=k 
P(y, n, O)k P(y, nti). k P(y, n, s-1) 

01.. s-1 

if yE u (2). 

Since u covers part of AN, we may assume ycun AN in (2). 

Take a> dim AS ,bp+E, ' . The collection 

u 0u(U) 
covers EN and we estimate (a+b)- 

dimensional Hausdorff measure using'U* , 

I 
via+b = v Eft ueu 

Now 
v 

u(u) 
Iv'a+b 

But 

L -n- log 
(r' 

TT 
i=0 

if and only if 

Since yE unAN 

via+b 

ýE1 (u) 
r n(a+b)2 s-1 

i=0 

kiP(Y, n, i) 

S-1 
b> 

0 

<0 

(3). 

k1P(Y: nri) 
9 Y6urýN 

P(y, nri) log ki (4)" 

n log r 

S-1 
L 

P(y, n, i) logg kýi 
<p+E! from (1) and n>N, 

0n log r 
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b by choice of b. 

Thus (4) holds f so 

al 
r nb sý 

kiF'(Y, nri) 
i=o 

which implies that 
y F-, u( u) 

Iy)a+b <r na2? ýuýa 2 t: rl 

and 
Iýth 

lvla+b 22 lula from (3) 
vE u* u(u 

, 

. 
< 13,1 by choice of U 

This holds for all £'> C, which proves the lemma. 

  

We are now able to calculate dim E. F. Ledrappier 

showed me how to obtain the lower bound using Marstrands 

theorem (Mr). 

S-1 
. Thron 4.5 dim E= sup 

(_2ol pilog pi + pi log ki 
157 

a log s0 log r 

=d 

Proof: We first obtain the upper bound dim Ed 

Consider the subspace of Ills+1 = ý(Q, p) E 3Rsx IR defined 

by letting Ac ]s+l be the set of (g, p) such that 

O= -p + Zs0l (pi log ki) / log r 

Let B= An ({ (Pp, "" 9Ps-i) :: sot Pi = 1, pi>, o"} x Co, 13 

For any point (x, y)E E there is a (Q, p)c B such that 

lim ( s-1 P(y, n, i) log ki 
lp nay 

lýn 
llog r 
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and Pn(y) has E as a limit point. 

We estimate dim E by partitioning B into a finite 

number of subsets. Given Z >0 and (1, p)dthere exists ä>O 

so that Bd(pi)(log ki)/log raB, (p). Thus given E> O 
i 

we can cover B by (2, P) 
Bf (Q) xBE (p) . Since B is compact 

we require only a finite number of such balls, 

B 
k(BS(L(k)) 

x BE(p(k))) k=1,.., m some m. 

By lemma 4.49 

dim E sup 
( 

sup{(-H(g) / log s) + p(k) + F- sgC Bd(g(k) )3 
} 

k 
We now let C-O taking finer and finer covers of B. This 

proves dim E: d. 

We now have to show dim E3d. Given ycC0,1] define 

Ey = En{ (x, y) : xE3tI. Suppose that En(y) +Q= (P0'''Ps-1)' 

We first show that 

dim Ey >, pi log ki = d2 . 
i=O Zog r 

Each n-cylinder Cn of E intersects Ey in a set contained 

in an interval In of length r n. Define in, a measure with 

support on V In, as Lebesgue measure on U In multiplied by 

r n. qInI 
. The space of probability measures on CO, 1]X f yj 

in the weak* topology is compact and so we can find a 

subsequence / converging to a probability measure I. n; 
with support on E. 

y 
Since for each In , I' we have 

Iý - E=x+ýn) E for some x, 

(In) In) In _ 1/-ITs0-1 kiP(grnri) " 
Given > O, for all n' N 

p(Yrn. i) log ki 
Pi log k. 

nii1 
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Take S_E. log r. We claim there is a constant c70 so 
d -ý 

that for n >N , ý. ý. (In) c In 2 Then Frostman's 

lemma shows that dim Ey d2. 

C In) <cI IAA 2--cr n(d2 

if log'(In) / log (r 
n(d2 - ý)) 

>1. But 

log Jain) _ ; ýi F(Yrnji) log ki 

-n(d2 -E )log r! f'1 pi (log ki) 
- log r 

log r. 

(1/ n) . P(y, n, i) log ki 

_ 
>1 1 

2 pi(iog k1\ 
-g 

1 log r 

Thus dim Ey d2. Eggleston 's result (Eg) says that 

Aa _y: Pa(y) QI has dim AP- = -H(Q) 
/ log s. Each 

yEQ has dim Ey >, d2 . By Marstrands theorem (Mr) 

dim ýUE1ý, -H(Q) 

y CA 
Q 

y/ log s 

+ 
s-I p1 log ki 

i=o log r 

Since for all , 
(y'AE)c E, we have proved dim & >d 

  

We now give some examples, 

i) Products of Cantor sets. In the example given in fig. 32 

it is easy to see that E is the product of a Cantor set of 
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A 
ý!.. _. 5 

.. 
/1___ I7\ II1__ 

-1 ... 
21L 

S 

M, 

airnenszon kivg e jf I lvg I) Wj. LI 

another Cantor set of dimension 

log 2/log s. It is well known 

that the dimension of the product 

log2 
+ 

loo 2- is is log s log r 

ki =2 or 0 for each i, the sup 
FIG 32 --' 

" in our formula occurs when 

p0 = ps, = /. Thus our formula gives the dimension as 

locJ 2+ 'log 
-2 . Proposition 4.1 gives cap E= dim E. 

log s log r 

2) 

12 

M, 

G. 33 

3) 

4 

F (G. 34 --ý' 
4 

We may have cap = dim when E is 

not a 'product, of Cantor sets. 

Here we have 

cap E= dim E= 3/2 

Capacity may not equal dimension. 

Here cap E= 3/2p but dim E lt: 1.45 

It might be possible to calculate dimension for 

some recurrent sets not of the form assumed above by 

1ý 
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finding a lippeomorphism (a dimension preserving map) 

to a recurrent set with the right structure. In the 

case of Kiesswetter`s curve, K, (fig 35; defined in (Ke)) 

no such obvious map exists because sets of the above form 

are not graphs of continuous functions. However we can 

still calculate dim K by a variant of 4.1. The same 

technique works for at least countably many Kiesswetter- 

type curves although we only give it here for K. Dekking 

(Dl) showed how to construct K as a recurrent set and 

raised the question of calculating dim K as K was the only 

curve defined in (Dl) for which he could not prove the 

dimension estimate to be correct. 

The Kiesswetter curve can be defined as follows (Ke). 

Given a point xe[O, 1] , write x= O"x1x2... base 4. 

Define i=0 if xi =0 or Xi = xi -2 otherwise. Let 

Ni =i1ji$x 01 . Then write 

00 
k(x) _ (-1) 1 Xi/2 

N 

1 

K is the graph of k(x). Alternatively let S= Ea, b , 

define f(a) = (1,1), f(b) = (1, -1) and 6(a) = baaa, 

6(b) = abbb. If L= (4 
2) ,K= Ke(a). 

Our previous treatment of recurrent sets gives a 

subsbift of finite type projecting onto K. However, 

because of the symmetry between e(a) and A(b), 



ý: GG '36, 
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3%(b) = A( ]%(a) ) 

where A=Ö 
_ý 

and we can ignore the difference 

between a and b. There is thus a projection 7C to Ke(a) 

from :f4 

Tr((xl, x2,... )) = o"x1x2.... . 
N 

If we define L: KKK by identifying K0(b) f f(b) + Ke(a) 

f(ba) + Ke(a), and f(baa) + Ke(a) C. L(K) in the 
t 

obvious way, ?ý= LAY 

Prop. 4.6 dim K= cap K= 3/2 

Proof: For K the dimension estimate (*) is 3/2 so 

dim K4 cap K\< 3/2. We show dim K13/2 by Frostman's 

lemma using Tt. v where V is the Bernoulli measure on 

,f4 giving each n-cylinder measure 4n (the same measure 

is obtained by pushing Lebesgue measure onto K using the 

map xH (x, k(x))).. 

rrom the formula for 

and that the sup is reached 

(when x= 09111 ). Let D_1 

back via t 7l (extending the 

c(x) it is clear that sp k(x) =1 

for x=1. Similarly if k(x)=- 1 

_ [0,1]x[-1,1] . Pulling D_1 
N 

domain of L in the obvious way) 

gives rectangles DO (fig 36). Continuing this process 

gives a sequence of covers Dn of K. Each Dne ZDn has sides 

of length 4 (n+l) 
and 2 n. We divide each, Dn into 2n+2 

squares of side 4 tt+l) ( 
Such a square we call an Fn. In 

order to apply Frostmarts lemma we must calculate iv (Fa). 
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Define Gn 
vi= 

[O, 1] x [i/2°+1 
, (i+1)/2 n}1] 

, 
i=-2n, .. v2 

n_1 

Then for any Fn' Ln+1Fn Gnri ' some iq sub-cylinders of 

Fn map onto sub-cylinders of Gnti and Dm c Fn map onto 

Dm, c Gnti. In particular if m= 2(n+l), m' = n+1 (fig 37). 

Lntý 

F� 

We must now count the number of sub-cylinders of Gn, i' 

This number is greatest for i=-1,0 because each D. has 

two Dm+1 in the middle of Dm and one Dm+l at either end 

(fig 36). Let an denote the number of complete Dn+1's in 

GngO, bn denote the number of Dn+l's whose lower half 

intersects Gn9O, and cn denote the number of Dn+l's whose 

upper half intersects GnsO.. Then 

1) an+1 = an + cn (since a complete Dn+l in Gns0 contains 

one Dn+2 lying in Gn+1, O, sand each Dn+1 with. upper half 

lying in GnjQ has one Dn+2 in Gn+ls0)' 

2) bn+1 = Zan (since a complete Dn+1 in C., 
njO contains two 

Dn+2's lying about the line y=2-(n+2) 

3) cn+l = 2cn (since each Dn+l with upper half in Gn, O 

contains two Dn+2's with upper half in Gn+1). 

We have ao = 3, b0=2, c0 =4 and it is easy to check that 

cn = 2n+1I, bn =6+ 8(2n-2-1), an =3+ 4(2n-1-1) 
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From the way we defined V and the symmetric 

distribution of Dm in a Dn (m> n) it is easy to see that 

the tv measure of the upper or lower half'of a Dn is 

half that of the Dn. Hence, 

7r V (Fn )< (an 
+ 

bn +" cn \ r*v(Dm m=2 (n+l ) 
.2j 

<a+ 
bn __n\. 1 

n 2n3 
24 

= const. 2-3n 

Thus T«v(Fn) $ const. tFn1 

Now if U is an open ball of diameter t choose n with 

tE C4n+1,4n] 
. Then t >, const. 4-n * Also since t: 4 +n we 

need at most four Fn-1's to cover U. We therefore have 

IUC3/2 = t3/2 = const. 4.4 n3J2 = const. ý ( Fn-1) 

i const. 'v(U). 

Frostman's lemma now gives HM3/2(K)> 0 which proves 

the proposition. 

m 
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