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SUMMARY

We consider the relationship between fractals and
dynamical systems. In particular we look at how the
construction of fractals in (D1) can be interpreteéed in a
dynamical setting and additionally used as a simple method
of describing the construction of invariant sets of
dynamical systems. There is often a confusion between
Hausdorff dimension and capacity -which is much easier to
compute- and we show that simple examples of fractals ,

arising in dynamical systems, exist for which the two
quantities differ.

In Chapter One we outline the mathematical background
required in the rest of the thesis.

Chapter Two reviews the work of F.M. Dekking on generating
'recurrent sets', which are types of fractals. We show how
to interpret this construction dynamically. This approach
enables us to calculate Hausdorff dimension and describe
Hausdorff measure for certain recurrent sets. We also
prove a conjecture of Dekking about conditions under which

the best general estimate of dimension actually equals
dimension.

In Section One of Chapter Three recurrent sets are used
to construct special Markou partitions for expanding
endomorphisms of T2 and hyperbolic automorphisms of T3.
These partitions have transition matrices closely related
to the covering maps. It is also shown that Markov
partitions can be constructed for the same map whose
boundaries have different capacities. Section Two looks
at the problem of coding between two Markov partitions
for the same expanding endomorphism of T2, It is shown
that there is a relationship between mean coding time and
the capacities of the boundaries. Section Three uses
recurrent sets to construct fractal subsets of tori
which have non-dense orbits under the above mappingse.

Finally, Chapter Four calculates capacity and Hausdorff
dimension for a class of fractals (which are also recurrent
sets) whose scaling maps are not similitudes. Examples

are given for which capacity and Hausdorff dimension give-
different answers.
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(vi)
INTRODUCTION.

Each chapter has an introduction, so we shall not say

to00 much about individual results here.

Since the publication of Mandelbrot's book (Mal)
there has been wide interest in fractals. The beauty
of- (Mal) is that it provides a general language in which
a wide range of complicated physical and mathematical
phenomena can begin to be described. The appearence of
(Mal) stimulated several mathematical papers including
(Hut) which analysed strictly self similar sets using
constructions that we would call full shift spaces an&
Markov partitions. We feel that fractals can be used
constructively as well as descriptively. For this a
more general formalism for generating fractals than
that provided by (Hut) is required. Such a formalism is

provided by (Dl).because it gives a large degree of control
over the geometric properties of the fractal to be

constructed.

We analyse the 'recurrent sets' of (D1) using
subshifts of finite type (showing in Thrm. 2.16 how to

link the different constructions of (Hut) and (D1)) and
see that the scaling structure of recurrent sets is closely

related to a dynamical structure. This approach enables
us to use the ideas from (Fu) and (Bo6) which link

ergodic and fractal properties.

Fractals arise naturally in dynamical systems as



(vii)

invariant subsets, for instance in hyperbolic toral

automorphisms (Ub). Current constructions of such sets
often give little indication of any geometric structure.
We show here that it is possible to use Dekking's
formalism to produce more examples. In particular we
construct special Markov partitions for some hyperbolic
automorphisms of T3. Markov partitions are used to giﬁe

a description of the dynamics of a map. One would like

to have Markov partitions for which the transition matrix
could be written down from knowledge of the map. Manning
(Mn2) does exactly this for hyperbolic automorphisms of'r2
and Bowen (Bo7) shows that for an Axiom A diffeomorphism
with a zero (topological) dimensional basic set, there

is a relationship between the induced map on homology and

the transition matrix of a Markov partition. Our result

is an extension of Manning's to T3. We also use the

recurrent set structure to make statements about expected

code time between different partitions for expanding

endomorphisms of Tz-and about invariant subsets.

A key element to understanding fractals is calculation
of Hausdorff dimension. The dynamical structure of recurrent
sets was introduced to enable us to perform this calculation
under certain kinds of scaling maps. However, when the
scaling map is not of the correct form. thg dynamical
techniques break down. Our final chapter is devoted to
calculating Hausdorff dimension in some simple cases of this

categorye.



CHAPTER ONE

MATHEMATICAL BACKGROUND. -
Endomorphisms of the torus.

Let A be an nxn matrix with entries in Z. A induces
a linear map A:s R" -+ R"™ in the usual way, in particular
A( ZZn) < Z". We define the n-dimepsional torus '
TW = R'/Z". The covering _map ps R" > :In 1s defined
by x = x+2Z'", and there is an induced map A:T" - T" such
that the following diagram commutes,

]Rn A ]Rn

p l | | | b

Tn __._A_>_ .Tn

~'Since A is linear, A is an endomorphism, i.e.
A(xty) = A(x) + A(y)
where addition is the group operation on 7. We say that

a4

A 1s a hyperbolic toral automorphism if ]det A] = 1 and

N

no eigenvalues of A have unit modulus. A is an expanding

toral endomorphism if A has |det AI > 1 and no eigenvalues

with.modulus less than or equal to one.

If A is hyperbolic, R splits into the direct sum of

contracting (stable) and expanding (unstable) A~invariant

n

subspacesy, IR = Esesu. We define the stable and unstable

manifolds of p(x)e T" as
S Pl
W (p(x)) = p(x + E°) , Wi (p(x)) = p(x +E)
respectively. Then Ws(y) = {ze T d('ﬁry ,ATz) > O as r->0°}
and W(y) = $z¢ 1" : q(R%y,ATz) » 0 as row=3. Write

WS()’rE) = Eze’l‘n : d(ﬁ -y,ﬁrz) $€ Vr?> O} etce If y,z are



close and € >0 1is small,ws(xgxwwu(qgj | i1s a single
point which we denote[y,z] . We note that periodic

points of A are dense in T" and that w3(y) = T" for any

yeT", Hyperbolic toral automorphisms are well known

examples of Anosov diffeomorphisms and of Axiom A

diffeomorphisms.

Symbolic dynamics

The full shift on n symbols (g%)dj is the shift map .

on 5= T0,1,.,n-1} = {(x,); 1 %;€50,1,. 0113

. . - , ] . .
defined by (xi) = (yi) where X541 = Vg 0 VjezzZz, We

metrize gn by defining d((x;) (V5)) = 2 ™ where m is

the largest integer such that X; =y for | jl <m. The

topology induced by this metric is the same as the product
topology coming from the discrete topology on*{o,l,..,n-l}.
By Tychonoff's Theorem 2 is compact. A basis for the
topology is given by cylinders, an r=cylinder being

Cplx) = {xe §n P X = (x5)y ¥ = (¥;)9 X5V j=qz.|:_?ir} ‘

J " J.
Let B be an nxn matrix with entries in {0,1} « We define
the subshift of finite type S(B) by
Z(B) ‘= $(x;)e5 1 b =1 Vi }
177=n" Tx, X. 4

One also defines in a similar way one sided shift spaces

Zn’ Z(B) where in = 78{0,..,!1-1} 3

We can consider-gh as the set of bi-infinite paths

around the directed graph G_ with n vertices and a



directed edge (vi,vj) for each ordered pair of vertices.
If one labels the paths by Z, ¢c(x) is the same path as X
but with the labelling moved on by one place. More
generally, if B 1s an nxn matrix with.entries in z"

we can associate a directed graph G to B. G, has n
vertices labelled O,..yn=1, and there are bij directed
edges from vertex i to vertex j. We can now define Z(B)
B labelled by ZZ.
In fact, any (2(B),o) where B is a matrix over Z" is

as the set of bi-infinite paths around G

topologically conjugate to a (S(A),o) where A is a matrix
over {{0,1}, in other words there is a homeomorphism

P: 2(B) - Z(A) so that Do, = GAQS. The symbols of S(A) are
the edges of Gp » and aij = 1 if and only if edge 1 ends
at vertex v and edge j begins at vertex v. (Ad2) gives

more details about this kind of constructione.

The fractals we study have a scaling structure and

will be modelled using subshifts of finite type. In
particular, certain kinds ;f shift invariant measures
will be used in Hausdorff, dimension calculations. Write
2 = Z(B), and let M(Z,5) be the set of shift invariant

Borel probability measures on g.‘ Let Cn = {Cn(;_-c_):_)_:_ 62} .

With the convention that Oiog()= O, we define the

entropy of (':n with respect to )& as

H — .

/a.( ¢n) iAec’n/\,\(A) log )»(A)!
the entropy_of ¢ with respect to jx 1s

h#(cr) = hr(a,c) = lim (1/n) H/“(Cn) .



Given a lipschitz function f: 2 - IR, the pressure

of £ 1is

P(f) sup { h/“(cr) + de/k t (e M(Z_,cr)} .

The assumption that f is lipschitz implies that there is
a unique ergodic membex A of M(2,0) maximizing

h(s) + [ ° .11 . tat for f.

I*( ) fd We call Mg the equilibrium state

The measure M is a Gibbs measure i.e. there are constants

a,b >0 such that
1 -1 n 1 <
a < }xf(Cn_l_l(xo..xn)) exp( ~nP(f)+ Z_i=of(cr x)) & b

where x = (x *eX_eee) o In particular if £:= 0, M. 1s the

— O

measure of maximal entropy. Good references for the

ergodic theory of shift spaces are (Bo3),(Wal,Wa2).

r
H
—"—

Markov partitions,

The principle technique by which subshifts of finite
type are used to study Axiom A diffeomorphisms is by the use
of Markov partitions. We show how the construction works

foxr a hyperbolic automorphism,'z:Tn¢>Tn{

For RET" put W'(x,R) = WS(x e) R s+ W(xR) = W (x,e) R

A Markov partition R = {RO,..,Rm_£§is a finite collection
of subsets covering ", with diameters small compared to § and
i) R{ = int Ry, and R, # ¢
ii) (:mt Rj)n(lnt RJ) % ') = 1i=j3

and satisfying the Markov conditions,.

e —— e R L R T R



If x€int Ri’ and Ax ¢ int RJ. then

iv) AW (x,R;) ° Wu(Ax,Rj)

v) E{ws(x,Ri) - ws(Ax,Rj.)
(Ad1), (Si1, Si2), and (Bol, Bo2) demonstrate the .
existence of Markov partitions in various settings

including hyperbolic toral automorphisms.,

The transition matrix for R is the mxm matrix B
defined by

b;; =1 if A(int R;) . int R, #F P

= 0, otherwise,

ﬂi};o Kle converges as Kk =20 to a line segment

that is a piece of unstable manifold in Rx (fig | ).
O

The Markov properties imply that if x =

=—
- Ae,, AR,
Fia. |

+ 00 ‘
Similarly ()i=0 A-le is a piece of stable manifold

1
in Rx_' Thus, since these two submanifolds intersect
O n
in a single point of Rx we may define a map ﬁ:;(B) > 1
O
by .
T((x )1€Z) = -ooA ini'

7 is continuous, onto, boundedly finite to one, one to

~S
one on a residual set, and A" = 70 . Thus one can



follow orbits of points on Tn*by considering a

corresponding symbol sequence in 2(B).

L

The map W is used to push measures on 2. down onto

Tn

, and to describe the dynamics of A (for instance
T X € T" is periodic if and only if x¢Z (B) is)e The
constructions of Markov partitions referred to above

give little indication of what form the matrix B can take.

We shall return to this question in a later chapter.

In the simpler case of A being an expanding endomorphism

a similar construction works (deleting (iii) and (v) from
the definition of a Markov partition) to give a
semiconjugacy from a one sided shift space. If

& _'iRl""R'K is a Markov partition we shall write

nio M_ {R "nA.Rji’ (jo"Ji"')GZ_(B)—; ’

Fractals

Suppose (X,d) is a metric space. Let |U| denote the
diameter of a set U. If YC X, we define the r-dimensional

Hausdorff measure of Y as

lim meZ [Ul U U, > v, |[U, l<5V1}

HM_(Y)

€+ 0 i=1 i=1

Clearly HMr(Y)e[O,mﬂ. The Hausdorff dimension of Y is
dim(Y) = inf{r : HM_(Y) = 0.

oD
» . <
HM_ is an outer measure i.e. HM (U, A ) S 21 HM_(A_ )



and HMr(m = O. The set of HM_-measurable sets forms
a G-algebra on which HM_ is ¢-additive, and which
includes the Borel sets. In particular when r €N, HMr
is equivalent to the usual outer Lebesgue measure.
We shall always denote Lebesgue measure of the ambient
space by m. Some useful facts about Hausdorff dimension
are given below (their proofs are straightforward and
can' be found in (Ca) and (Ro))

i) YW = dim Y.< dim W

ii) dim Y = sup {r : HMr(Y) = M}

iii) £ Y= U’ Y , dim Y = sup_ dim Y_

iv) If f: I’ 5> R™ is defined by f(x) =-t«x (teIR)

then tTHM_(W)
r

HMr(f(W)).
v) If £: R® 5 R" is Holder continuous with

exponent a, icee |fX - fyl € ce. | x - Y‘ 2 '

and WCR"', a.dim (W) € dim W.
Two of the more useful results for obtaining lower bounds
on dimension are
Frostmarls Lemma Let K be ; compact set-in ]Rn. Then
HMr(K)3’0 if and only if there is a probability measure
Ph*with support on K such that for all balls B

M(B) < c.!BIT

where ¢ is a positive constant.
A proof of Frostman's lemma is given in (Ca, p7).

Marstrand's Theorem (Mr) Suppose E is a plane set and

that p is a positive number such that for every point



x of a givenset A, writing Ex = {(x,y)eE : ye]R} sy We have
HMt(Ex) >pl Then }MS'.‘t(E) >/ k.p.HMS(A) where kK 1s a
positive absolute constant.

A corollary of this result is that dim(AxB) 2 dimA + dim B.

Dimension intuitively gives a measure of the 'rarity’
of a set, but is often difficult to compute. Another

measurement is that of capacity. Let N(£) be the
minimum number of balls of diameter ¢ required to cover
a compact set W 1in ]Rn. Define the upper and lower

capacities of W by

cap W = limsup 1log N(¢£) / log (1/¢) and

£-20
cap W = I;Ei?f log N(¢) / log (1/c) respectively.
When cap W = cap W, we call the common value the capacity
of W. (Note that some authors use the terms limit capacity
or logarithmic density in order to distinguish our

capacity from potential theoretic capacity).

It is easy to see that if Wc R,
n > cap w > cap W > dim W,
There are examples of sets W for which EEB(W)Erdim(W),
for instance . This particular example works because
cap(W) = cap(W) for any W, We shall see, in chapter four,
an example of an invariant set in a dynamical system

for which cap # dim.



Mandelbrot (Mal) defines a fractal as a set whose
topological dimension differs from its Hausdorff
dimension. (Hur) give a definition of £0pological
dimension and prove that

dim W 7, top. dim. (W)
always holds. We shall be rather liberal in the use of
the word 'fractal owing to the difficulty of calculating
dim in general. The term 'fractal dimension' will be

taken by us to refer both to Hausdorff dimension and

capacity.

Main definitions and results are numbered n.m where
n is the chapter they occur in, and m numbers them

consecutively within the chapter.
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CHAPTER TWO

RECURRENT SETS.

In this Chapter we consider Michel Dekking's
construction of fractals, and see how to view them as
dynamical systems. Subshifts of finite type are used

to calculate dimension and describe Hausdorff measuresS.

8 1: Constructing Recurrent Sets.

Dekking's construction of fractals (Dl) is based

upon the idea of "polygonal line substitution" (described
by Mandelbrot in Ma 1, Ma 2). It is consequently a more
flexible technique than that used by, for example,
. Hutchinson (Hut). It is more difficult to analyse from
—~the point of view of calculating dimension and was
developed prior to both (Ma 1) and (Hut).
A simple eiample is provided by the scheme in
‘which straight (directed) line segments are transformed

as follows (fig 2 ).

i FI1G . 2

[ o

-—>—

We begin with a line segment and proceed inductively
to transform the smaller sized ‘line segments generated.
In order to draw the pictures on a computer we use symbols
to represent the various directed line segments occuring

(£ig 3 ).

FlG. 3



FlG

11

|I7- K
(]
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Then the given transformation is given symbolically
by
a => acada

b =~ bdbchb

c «=>» cbcac
d » dadbd.

In order to obtain the picture of fig. 2 one has also

to noxrmalize.(fig 4).
FlG, 4

> ) > I l

Further stages of the induction give pictures as shown
in fig. 5 .

We now formalize the above approach. Let S be a
finite alphabet of symbols. S* will be the free semigroup
generated by S, and ©:15* #ﬁS* a semigroup endomorphism.
G(S) is the free group gemerated by S. We denote by
£i15* > R® a homomorphism i.e. f satisfies

£(VW) = £(V) + £(W)
for all words V,We S*, The map f is used to describe
relative position. We also require a map to associate

compact subsets of IRn'withwords in S*, Denote by

n
K (R") the space of compact subsets of R . We

require a map K[.]:S* » ﬂ ( IRn) to have the property that
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klvw] = x[v] (KW] + £(V)) v V,WeS*,
The natural choice for K{.] when drawing fractals on

a computer 1is

K(s] = o, £f(s)] Vses
where [a,b] = [at + (1=-t)b : te;EO,iI} o This makes
K[él..sg] the polygonal line with vertices at O, f(sl):
f(sl)+f(82),...,f(sl)+..+f(sr). Other important choices
for K{.] from a pure mathematical point of view are
K[s] = l(e(s) (see below) and K[s] = {f(s)} o In
fact, the choice of K[.] doeé not affect the recurrent

set generated (2.16).

Suppose now that L: R" » R" is a linear map
so that £f6{s) = Lf(s) for all se¢ S, (This condition
ensures that when we substitute a polygonal line for
a line interval our two arcs have the same beginning and
end points -~ in other words L is the ‘normalizindg map
referred to above). Then our approximations to a
particular fractal, denoted KG(W) y are *given by

L™ [e™w] .

In order for these approximations to converge in the
Hausdorff metric, we require that L should have all

its eigenvalues of modulus larger than one i.e. that

L. should be expanding (Dekking uses the word 'expansive®

which we shall avoid due to its use in dynamical

systenms).



So far we have only seen how to produce fractal
curves. In arder to generate more complicated figures

such as Cantor sets we need to use symbols that

can give us 'gaps'.
Def. 2,1 A:symbol s€S is virtual if K(s] = ¢.

It would now be possible for our approximating sets

to eventually become empty if for some N, GNW contained
only virtual symbols. We need to find some extra

conditions that will ensure convergence to a non-empty

set.

Def. 2.2 Let QC S (so Q%< S*), Then O:S* -» S* is
Q-stable if there exists m Y0 such that for all s€ S

either

i) GkSGQ* Vk3m or, ii) eks £ Q* 9Yk%»m.

From now on Q will denote the set of virtual symbols.
Any symbol that satisfies.(ii) is called essential. The
set of essential symbols is denoted E. The following

Theorem asserts the existence of recurrent sets.

Thrm 2.3 (D1,3.3) Let 0,S*,rf,K(.],and L be as above
with L expanding. Suppose that © is Q-stable. Then
there exists a non-empty compact set KG(W) such that

L™k[0™W] —s Ky (W) as m —»o0



in the Hausdorff metric, for any word W which contains

at least one essential symbol.

Remarks i) Since f0 = Lf, we have that if ©(s)=s,..S_,
— r
LKg(s) = sl (Kq(sy) + f(sl”si-l))'
m

ii) For any m>0, £6 = L'f, and so K _(W) = K (W).
0 o

It is possible to have a virtual symbol that is
also essential. However, by (D3,2.1) we can generate any
recurrent set in such a way that E = S\Q and eQ*c Q¥,
From now on we shall assﬁme this is the caée. Furthermore,

we can now remove the conditions on Q=stability,

Prop. 2.4 (D1, 3.2i) 6©6Q*c Q* implies that © is Q-stable.

Different Scaling Maps _
The 'consistency'! condition that ;llowed us

above, to perform the polygonal line substitution was

f6 = Lf., We now wish to define a recurrent set in which

more than one scaling (‘normalizing) map is used (c.f.

Hut). For each se S, let (Ls): RS R"” be an expanding

o0 ® nsisten
1 sr The co Ccy

condition required to ensure that our polygonal line

linear map. Suppose that 6(s) = s

substitute fits where it should go is

25:1 (sz)"l(fsj) = f(S)
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Dekking (D3, p7) shows that one can define approximations
to a recurrent set using this idea. He calculates
dimension in the limited case that there are two

similitudes L1’L2 and for all s, (Ls) = L.l or L2.

The current formalism is not very effective in this

piecewise linear case. We shall see later that by

supplementing this formalism we can deal with recurrent

sets for some piecewise linear and non-linear scalingse.

Dimension Estimates

Let ©6:S* - S* be an endomorphism, then we can

IS

abelianize © to obtain a map © JZ'Z‘Sl > Z l.

3
ab
Corresponding to the essential symbols E is a space

Z‘Elc E‘S‘. Since Q* < Q*, 6 induces a map on E¥*

(or, more properly, on S*/Q*) and hence on Z?.\El. The

tEl, . : ;
induced map on ZEl:LS given by a non-negative matrix

with integer entries. We denote the eigenvalue with
greatest modulus by XE' Let L: IR" » IR" have eigenvalues

)\1!"’>hwj'th |A1I>foo. >/i|>\n|\"10 Then

n
log XE - =2 logl.kil

log | A, |

dim K, (W) <€ n-1 + (*)
(We shall often refer to this inequality as the dimension

estimate (*)). The estimate comes from a simple "box

counting" process as follows.
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Choose M >0 so that for each s¢€ E, Ke(s) is
contained in an n-cube of side length M (we assume that
the edges of these n-cubes lie parallel to the eigenspaces
of L). Notice that by the remark (i) after 2.3, if

we choose K(s] = I(e(s) for all se€ S then

LTK[6"s] =

l(e(s) for all m.

Thus there is a covering of Ke(s) by l6™s | _. boxes (where

E
| W IE is the number of symbols of W in E). Each box is

the image under L™™ of an n-cube of side M, and has sides

of lengths
MlAll-m’iQOOti’ Ml\nl-m ®

Such a box can itself be covered by

MUl M
’\2 ’\3 >‘n

n-cubes of side length M Ikll'm. Since clearly there
exists N >0 such that Iems lE < N Xg, we can make an

estimate of the capacity of Re(s) N

-1 )jm - -
cap( Kg(s)) ¢ lim log(N'kg I)‘1Fn ) l)\zl e |>‘nl ")

.

n
= ne1 e o9 Xg = ZD, log [ A
' log |A,]

The dimension estimate now follows because

dim KG(S) < cap Ke(s) .

The estimate (*) is the best possible in general.

Dekking (D1) gives several examples where

I = Dl o= = Iy
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and equality holds in (*). He also gives an example of

a plane filling curve for which lkll # |)2| and equality
holds in (*). In Chapter 4 we give an examplwe of a
non-plane-filling curve where lkll # \\2| and equality holds
in (*¥). As is pointed out in (D3) there are several

possible obstructions to equality in (*).

Defs 25 O is essehtially nixing if there exists n

such that for all s ,t€E, sc¢ 0 t.

If © is not essentially mixing there may be some .
essential s with

L
-

-’ ® n .
| lim (1/n) log |o le < XE'

This would make (*) too big for X (s)e.

Even if © is essentially mixing, XE'may give an
incorrect estimate of the number of boxes required to
cover Ke(s). This is 'because the economy of our covering
depe.nds upon the different copies 6f Lo }(9(5) in
L™ K[6"W] not overlapping too much. If L is a similitude
and f(s) € Z" for all seS then the only thing that can
go wrong is for us to draw two copies of L™ Kg(s) in

the same place.

Def. 2.6 A symbol s &S duplicates if the word sUs occurs

in some 6™t, and £f(sU) = 0.
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Thrm. 2.7 (D3, 6.1) Let 6:5S*% » S* be essentially mixing
and L an expanding similitude with eigenvalues of modulus
Ao Suppose that f(s) € Z" for all symbols s. Then

dim XK., = (log )t)/(log A) if and only if no essential

3
symbol duplicates.

This Theorem works 1in fact if f takes values in any

lattice. In order to deal with the more general situation

Dekking makes the following definition and conjecture.

Def. 2.8 A recurrent set Ky(W) is resolvable if

lim H_IL(_K___Eenwl_)i) S O for some €70.
100 lenw,E

where m 1s Lebesgue measure of the ambient space and

AF ={erRn t |x - yl<ce, yEA} fofAC-IRn.

Conjecture 2.9 (D3, 6.3) Let 6:5S* > S* be essentially
mixing with L an expanding similitude. Then

= 109 XE = (¥ & I(e is resolvable.
log A\

dim 6

. | n
Dekking proves this conjecture when f(s) € Z for

all s, We will prove it completely in the next section.

If the scaling map L is not a similitude the
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(©-)

FIG., &

dimension estimate (*) may not even be the capacity. As
an example we give a set defined by polygonal substitution
(this is a technique fully explained in Chapter 4. It
works in a similar fashion to polygonal line substitution
but with smaller sized polygons replacing the larger ones).

The first two approximations to our set are shown in

fig. © (a)s(b)y(the set is also a recurrent set,(D3, pl5)).
The covering argument used to obtain (*) would have

made us cover each of the éhaded regions of fig 6(a)

with three squares of side length 1/9. At the next stage
of approximation (fig © (b)),however, we see that only

two squares of side 1/9 were needed. Obviously the over-

estimation becomes far worse as the size of our cover

. . log 12
decreases. The capacity of the above example 1s log S

(and equals the dimension) compared with the estimate (*)

log 18
of -fo£5-9—' We shall consider the problem of L not

being a similitude more fully in Chapter 4.
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8 2: Symbolic Dynamics for Recurrent Sets.

Our basic idea is to set up a correspondence

between a semigroup endomorphism © and a subshift.

et S = {O,l,.. ,n-l} be our alphabet of symbols.
We draw a directed graph G corresponding to 6. The
graph has n vertices labelled O,..,n-1. There are Kk
paths from vertex s to vertex t if and only if t appears
in the word ©(s) k times. Label the edges of the graph
by triples (s,t,j) where te ©6(s), 1< 3jske We define

the (one-sided) shift space Z, as the set of infinite

paths around Gy, i.e. Zie = Zi(e where eab is thought

S|

ab)
of as the nxpmatrix that acts on

e

It is not true, in general, that 2, contains
* *
transitive points. In fact, since ©6Q < Q , the set of

states corresponding to edges ending at 'virtual'

vertices is absorbing.

Def. 2.10 Zechie is the subshift consisting of all
paths that only visit vertices representing essential
symbols.

Clearly 29 is represented by a subgraph G of G
and so is of finite type. In fact, if A is the matrix
-such that A: E‘EI') ZIE' is the map on z'El ZZ'S'

induced by ©_,, then Ze = 2 (A). Thus the topological

entropy of (o,, 2 ) equals log Mg
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Example 2.11 Let S = {a’btc!} y E = {arb} Q = {C} .
0:S* 9 S¥% is defined by a » cabc, b » bbca, ¢ » cccc.

Then Q% = <C> and GQ*C th The matrix A =(}. 1) e

C® = © GO = D)
e )/ e

&

Prop. 2.12 If © is essentially mixing then (o, Ze) is

aperiodic.

Proof: There is an n> O such that for* all s, t¢E,

s€ ©'t. Hence (An) > 0O for all s,t¢ E,

S,t

We now wish to project 59 onto our recurrent set.

From now on we take Ke to be the disjoint union of

Kg(s)» s€E. In order to define

T 24 9 Ky = _LJ... Kq(s) e Al IR::_.n
s< E s¢E

we need only define the image of an n-cylinder of = o

in Kg (since each x¢Z . is a countable intersection

2
of n-cylinders). An n-cylinder of 2 o corresponds to a
path of length n around G and hence to a sequence

So (50351 thl),oto ’(Sn-Z’sn-l’hn-l) |
of labelled edges of G (together with a starting vertex).

where for each i ' . th
Ch 1,5;€6(s;_,) and s, 1is the h,
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occurence of the symbol S=S. in e(si We can now

-1)’

inductively define s* ¢ o'E by s* = s, € E and s;!r. 1s the

i G O

h. th occurence of s. in Os* _C 913 e We define
1 1 1i=-1 Q

T ( Cn(SO; ¢coeo ’(Sn-Z’Sn-l’hn-l) ))

— -n m
- L (Ke(sﬁ-l) N f(wl)) ~ IRsc

where O's,. = W s* ‘wz,some words Wi, W Since for all

O 1 n-l
. = 1 ) o
S €S, 1f S = S seeeseS then

2.

Kq(s) =U7 L™t (I{e(si) + f(sl....si-1)>,
we see that
W( Cn( 503 ®eo !(sn_z ’sn-l !hn_l) ))

3 ( Cn...:'l(so; ® 60 ’(sn-l’sn’hn)))

as required.

Remark i) ™ is clearly continuous and surjective.

ii) For each triple (s,tk,h) (Wwhere O(s) = tl...tr)

used to label an edge of G define the right shift

(tk; (tk’slghl)qtnt) | (S; (S,ti(,h)’(tkyslyhl)’ooi) .

Then the following diagram commutes

—
(syt, »h)
Colty) ————=——>  cy(s)

T -
L-l

where L-l 1s defined by mapping l(e(tk) onto the copy
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of Ke(tk) in ](e(S) (U -1( Ke(ti) +32<'i f(tj)))'

Unfortunately, in general, there is no mapping of Ky to
itself corresponding with the left shift on 29 (Hutchinson
(Hut) uses right shifts on ﬁ? <7:1,...«. ,n} to describe
self-similar sets for this reason). Such a map, L,

would have to be multivalued at very many points. We

are interested in the circumstances under which t would

be defined on a residual subset of Ke.

Def. 2,13 A recurrent set X_ is well matched (to ©)

e
and the collection ?R = {Ke(s): S ¢ E.g is the 6-Markov
partition if the followlng property holds. When

9(3) = t tootr, sS<€E, Writing R(S’ti) = Kg(ti) + f(tl"ti_l)

1
for each tie E we have

int(ﬁ(s ’ti)r\ﬁ(s’tj)) = @9 if i # 3

in the induced topology as a subset of L Kg(s).

Remarks i) When defining Markov partitions in dynamical

systems one usually requires further conditions which would

correspond to a) K (s) = int Ky(s) 1in the induced
topology and b) L'l(\_)iil 'ﬁ(s,ti)> = Ke(s). Here
these conditions hold because of the cdéntinuity of T
and the structure of a recurrent set respectively. The
difference in definition occurs because one is usually.
trying to set up the map ™ which we already have here.
ii) Even if a recurrent set XK, is not well matched,it

o
may be possible to construct the same set using a different
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endomorphism ¥ to which the set is well matched. When
we say " 1% is well matched" we shall always mean “well

matched to O,

We shall now assume that L is a similitude with

eigenvalue A, ’ INl>1, The dimension estimate (*) can be

written
log A _ h(cp)
log A log \

Thrm 2.14 The following are equivalent,
i) K, is resolvable,
ii) Ke is well matched,
iii) T is bounded to one.
If these conditions hold, ™ is 1-1 and L is defined on a
residual set in K

e.

Proof: ii) = iii) This is just (Bo4, p23).

iii) = ii) Suppose not. Then there are essential symbols

S,a,b such that

int (10(C, (s§(syas5))) ~ T(C, (s1(s,Dsk)))) # B
for some j,k. Any point in this intersection can be
represented. by a sequence in Ze beginning with
(si(srasd)ess) or (s;(sybyk)ese)s Since O is
essentially mixing there is an M >0 such that

qM(Si(S!bvk)’*'#’('rst'))

is mapped into the above inférsection. Hence for any
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point X in
int (T0(Cypyq (S5(Ssbsk)sans(s1a,3)))
A int 1T(CM+1(S;(S,b,k),.a,(S;b{k)))).
we have now found three sequences of length M+l that

begin infinite sequences of Zfe mapping to x under TV

Applying this construction inductively, by
considering cylinders upto length NM+1l, we have found
N different sequences in 259 that map to a point X 1in

]Ke.

Thus ™ cannot be bounded to one.
i) # ii) Suppose not. From the proof of iii} = ii),
and without loss of generality replacing GM'by O we

may assume that there are essential symbols t, S with

9(1:) — 51...51_ and j%gi E(t,sj) - ﬁ(t,si)o

We now 'virtualize! s; (cf. D3 6.1). Define a new
alphabet S'. by S'= SL{E : seiS}-. O!1:S'* =5 S'* 3
defined by

O'(s) = 8(s) for s e-S,s#t,

0'(s) = O(s) and -

O'(t) = *eS

=3 i=1i%i+1°°S¢ :

Then Kg, = XK, but A , < A\, and so

= (kto¥E])E) const.( \e )3‘ —5 o

GjE
le’E | -

as j >co . Thus Kg 1s not resolvable.
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ii) 2 i) We may take Kfs] = :Ke(s) for all essential s.
No copy of I(e(s) intersects a copy of I{e(t) in its
interior in Ke(ejv) » any essential ve. Thus given a

small € O there i1is ¢, 1 >¢ >0 such that

m ((Ke(ejv))i) > Ce sézejv m_(( l(e(s))i)

and I(e 1is therefore resolvable.

We now assume that Ke is resolvable. Define

aRG = ixe Ke : XGL_l(Aé(t’si)mT{(t’sj))’ Si’sje e(t)’te E}

Then az:ee is nowhere dense, and the set
o0 o~
— -n
Y = K, \ LT OR,

on which i is 1-=1 is thus residual. Since 'ﬁ-lY is

g

C.=-invariant we can define L so that

o
mlty —< o wly

WJ/ » \L‘R
L

Y —mm——> Y

commutese. (This also ensu}es that t, L-l are mutual inverses).

Remarks (ii) <= (iii) works without assuming that L is

a similitude.

Kq also satisfies Hutchinson's open set condition

if there is a Markov partition.
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Thrm. 2.15 If X. is not well matched there exists a

e
countable sequence of recurrent sets l(e such that
‘ . S n
i) XK. < X ii) K, = KX
en en +1 1 en o

iii) Ky has a © -Markov partition

n ;
iv) dim Kg = syup dim I{en
< dim | .(_Lel___q_l log m LK [9__)_953 23 some small €20,

h(sg) = log )\

< - "E .
log A\ log A .

Proofs Since there is not a 6-Markov partition, we must

have symbols s,s!,s! such that

- ' "
9(5) Sloos ..Sks ..Sr and

int (Ko(s')  (Kg(s") + £(s'+uets,))) # 8

We virtualize this occurence of s' as in the proof of 2.14.
-Ho{;eve;‘, -note that this time our‘new endomorphism may

give us a (strict) subset of Ky+ Repeating the above for
each symbol s € E (i.e. for eacﬁ s ¢ E check td see of an

‘interior' intersection occurs as above - if it does,

virtualize a symbol to remove the intersection).

After a finite number of steps we have arrived at

an endomorphism 90 and a recurrent set l{e e Clearly
O

K"QOC K, and I{eo has a 6,-Markov partition (because
we have removed all 'interior' intersections' from the

essential symbolé). We now gradually put back all the

parts of 1(9 that we removed. Inductively choose en by
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"

comparing 6121_1 with 82 ¢ If there is a symbol t 662 (s)

which has been virtualized in eﬁ_l(s) but for which

int (Kg(t) + £(W,)) ~ int (K (t*) * £(wy)) = 8
in the induced topology for all tt'c 92 (s),wherxe

)
0% (S)=W1tW2=Wit'w‘!z, unvirtualize t in defining en. Then

l(en <. K9n+| and as n oo , :Kenﬂ Kye Hence U l(en '_1](6 3
dim ]{e = sup_ ]{e and each I(en is well matched to en.

The condition for resolvability says that
m((K[GJS] )E') ~ conste. )\%
Taking K(sl= I(e(s) we have KLGJS]S' = LJ( Ke)&'

.Applying this to each of the sets XK, gives

en

—_— dim Ke

N *
for j = 1.2" as 1 ->00(L2 is the scaling map for l(e ) o
n
Since m(( L Kq )i) is increasing in j we have
n

: . 1 o0 o
aJ’n - dim ](en as Jj =

ijK

e Thus as Il <»oo

J

O
n

(Lj Ken)e X (Lj l(e Ya and m((Lj Kq )f') f m((Lj Ke)i)
n

Hence a5 A oo m(PKf) as o

and dim Kg = sup dim Xg < lim —————F3
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— 3 3
.ing log m((L Ke)) log)\E -

To see that <

log ¥ log A
apply the construction in the proof of i) © ii) of the

last theorem. This gives a new 6' such that Ky, = Ky

and A, < )\E. Hence

dim Kg = dim Kg, 1og >‘1:‘," 1og >‘E .
log \ log A
dim K, < Tim  1©9 m(( L’ ](e)i-) ‘ log \E, ¢ log >\E
I= log ¥ log A log A

The above result proves half of the conjecture (2.9)
about resolvability. We shall calculate the dimension
of a recurrent set with a class of non-linear scaling
maps replacing L. Dekking (D3) indicates how to go
about the construction of such sets when L is replaced

by a piecewise linear map. The general construction is

not much more difficult.

Thrm, 2.16 Let ©:S* 4 S* be an endomorphism of a
semigroup and for each s€ S, let lsq.' dR” > R" be

Lipschitz with constant less than one and {fixe.d point

the origin. Suppose that f:S* > R
f(s) = T )1
(s) 255= (1531_ (fsj

for all s€S. Then the transformation of - ZGTE K ( IRE)

) where 9(5)=Slo.$r

given by

A 1> j=1k;). x ( (lsj)"l(As ) +i2<'j.(lsi)'1(fsi)) ' Aseﬁ(mg)

S .¢E
J

= estimate(*)
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is a contraction map (using the Hausdorff metric on ‘F{( IRn)).
The unique fixed set is a compact non-empty set (if E#P)

denoted XK, , and there is a continuous surjective map

Ty ¢ 26""'3’ Re ®

Proof: We shall ease our notation, by showing how we

may assume that the subshift 29 is defined by a matrix

of zeros and ones. Suppose that 6(s) = wlthtw3 for

some words Wl ,W2 ,W3 where s and t are essentiale Then

define S' = S $t'}, E' = E_{t'} and ©':S'*> S'* by

e(U)’ HGS’U# S

8'(u)
l(s) = wltht'ws  and
Ot(t') = 6'(t).
Letting 1t'=1lt and £(t')=f(t), we have that XK (E) and
Kg, (E') differ only in that Kg,(E') contains two copies
of ](e(t) y Ramely Kg,(t') and XK,,(t). Proceeding
in this fashion we can ensure that for each s,téE, t
appears only once in &(s). _ Now we can see. that if A is
E > Z‘El is fthe‘ map induced by

Z(A),

the matrix so that A ZZ'

© ,, then A is a zero-one matrix. Since Ze

we can represent a point of S S by a sequence
(50351;52:”-,35_,....) where siéE and siee(si_l).

During the rest of this proof, unless otherwise stated,

(Sonnsm“) will be taken to be the point in 29

where for r 20, s is the first symbol. of the word

m+r+l
9(5m+r)o Let

= v -
Dm = {(So’totsmOt)éie} ’ m?ODm-D‘
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D is clearly dense in 29, and we define T(tD = sTerE R:

induct;vely as follows,

DO “(Soo.tq) -~ OG.IR

D, t T(Sgstssess) = £< (ltj) (ftj) € mgo
where e(so) = tieeet
Dt W(so,..,sm_l,uj,..) = T(sgresrs _1,...)
+ (lsl)'}.(ls me1 )-1(r<3(lu )~ (fur)) € ]R:Ot
. where e(sm_1)=u1..uk.
(Notice thgt if sm_lsl;l_1 is a subword .of e(sm_z) then

W(SO’Q . ’Sl:l-l tt)

)T E (e )T (fu )

i1 C

=-n-(so-,..,sm_1,..) + (131) ee(1ls

- T\'(SO,Q;,S -00(13 -l(fs

B m=1 m-1)
This is easy to check using the definition of “IDm..z o)

Ml

—

~Claim: T is uniformly continuous on D. This is because

there :i:s an M >0 so that
a

i< (1uj)"1(fuj.)ll < M

for all i,s, where 6(s)=u ..y . Let a <1 satisfy
a >Lip (18)""'l for all s€S. Then if 5,162'9(.@ are in
the same m~cylinder,

| x =Tyl ¢ 2 Mrg‘o am-1+r < const.am

This proves the claim. Extend T continuously to a map

v n
s Ze - scE Rs

and define Re = Tt Ee). In order to show that Re is

fixed under the stated transformation we need the

following lemma,
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Lemma 2.17 Let s € E and S be the right shift
s 'Ye ok, ten(s) Sl® = Sols):

Then 1if X = (ti,sl,sz,..,sm,.-) &Dm+1 9 and

Y = S X = (S’t-,slyttoysm’.o)eDm-_l_z

(lt )" (ftj) = Ty

where 6(t)=t, ..t

we have (1t.) (fo) + jq.

Proof: By induction on m.

me0 s Ty = Zy (1t)7H(er) = (1) me) + 5 (1)) 7HEL)

3<1
Since Tr& = 0.

m=xr ¢ Let z = (ti,sl,..,sr_l,..)
X = (ti,sl,....,sr,..)
z'= (S’ti’sl“"sr-l"“)
Y = (S’t"sl"”"sr"”)
Suppose that e(sr_l) = Uy eeny with u_ = s_. Then

my = Tz' o+ (1t,)7H(1s,) v.(1s__ )7 2 (1uj)"1(fuj))

r-l) Jj<k

(11:5_)-1( TZ) +

(lt )™ (ftj?

J<i

+ (1ti)‘1(1$1)'}.(1sr_1)'1(J<k(1uj)"1(fuj))

(by our induction hypothesis)

(1¢)7 () +2 (1e) 7 (et y)

The lemma tells us that under the transformation of
subets of R" given in the statement of 2.10,

D
"on = TD_ ...



Since Dmc Dm+1 we have TtD fixed. Hence ]Ke 1s also fixed.
In order to prove the claim that any collection
of non-empty compact sets {As $ S € E} ‘converges under

iterations of the transformation to Ke we consider the

space = seE f(( ]R )e Giving -R( IRn) the Hausdorff

metric d, we define a metric on X by

d( (A dgepr (Bgleeg ) = max d(A_sB_)

Then X 1s a complete metric space. If O(s) = tieet s then

A F1e)7A 3 (e e,

tl IJ<1i
U -

et CLI e EF-CLI N CLR)

-1 -
< max max fd( (1t,) Ag v (18g) s, ) s t€E, t€o(s)]

i
{ max max a.d(A_ ,.B_ ) since Lip (1lt. )'1< a<l
seE  t.cE t; t. 1

S 3'9.((AS) ’ (Bs)) .

Thus our transformation is.a contraction mapping with

Ke = Ke(s)) as the unique fixed point.

s¢E

Remark: If © is essentially mixing then any collection of
compact sets i(AS) 3 S¢ E} where at least one As # P will

converge to ](9.
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We now define the property of being well matched

for the non-linear scaling case.

Def, 2.18 A recurrent set K, with scaling maps ls, se S,
is well matched and has the 6-Markov partition

Re = { K (s) 1 S € E} if whenever 6(s)=t eot writing

1
R(syty) = (1t,)7" Kg(t,) + J%i(ltj)'l(ftj) if t,E

we have
int( ﬁ(s’ti)ﬂ'ﬁ(s’tj)) = ¢ i # J

in the induced topology. as a subset of Rg(s).

The following theorem is based on (Bo 6) and also

uses ideas from (Mo),(Hut). The author has recently

become aware of a similar result of Ruelle(Ru). In the

following, for a matrix A with lAx| = rix!, ¥Yx, we shall

let |A|

Thrm 2,19 Let Kg be a well matched recurrent set for

which © is essentially mixing. Suppose that for each

S € E there is an open convex set U(s) < IRISl with

Kg(s) €U(s). Suppose also that

i) There is a b>1 independent of s and x such that

. -1
D(ls.)x 1s a similitude and lD(ls) | > b7 1 for x€1ls “U(s)e.

. ii) 13-1 is C1 on U(s) and |[D(1ls~ ) | is Lipschitz on U(s).

iii)ls 1is <:1 and |D(ls) l is L:Lpschrtz on Is U(s)
iv) If O(s) = 1“tm then

-1 -
1t7 U, ) +J§ 1t 1(f1: ) < U(s), VYtieE
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Then 1f we define ?zge - JR Dby

-y (

@ (x) = log ‘ D(1s o when xX=(*ySjyees)

there is a unique a >0 so that P(ag) = O. We have
a = dim K, and HMa( Ke) is equivalent to 1, where

] is the equilibrium state for a¢y .

Proof: Let (so,...,sm) be a sequence of symbols with

— 1 ri:—l -, n:-l‘ - — by
e(si_l) Sy _qeeeSiy and s, si~V .

We define maps 11"”’]‘m £Or S,yeeerS by letting

(X) = lSTl(X) + . 2 )(152_1)-1(‘652-1)

o

We thus have maps so that

=
Cl(si-l’si’.') .__é Co(si".'.)

v JW
1.

o p X

commutes (li is only defined on a residual set).

Define U(Sopto ,Sm) - l;lto .l;l(U(Sm))

and (PI:U(SO".’SE) -> IR by

(£ig 7).
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‘f?l(x) = log ’ D(l{l )11 x}

=-log‘D( 11 )x\ since Dll is a similitude.

In particular note that cpl(n'g_) = tP(x) sy where Tix=x. As [D(li)xl is
Lipschitz, so is ®. Hence ao has a unique equilibrium

state that is.a Gibbs measure. The‘varitational formula

for pressure (Wa 1) implies that, as a fun;:tion of a,

P(a?) is continuous and strictly decreases as a increases.

Since P(0) = P(Op)> O and for large enough a, P(ae) <O,

there is a unique a such that P(acP) = 0.

We prove the theorem in a series of steps.

i) There is a constant c1> O so that if x,ye U(so,.. sSm) '
~m
,(P]_(x) - CP1(Y)\ S clb e
Proof: Let x' = lmooll(X)’ Y' — lm! 111()')0 We can find
zl ¢ U(sm) by the Mean Value Theorem such that

Ix =yl ¢ [p(aTeeerzh) ). Ixr =yl -
. ‘m -
S(Tlr sup g ‘D(lsi);i‘ 2 Z:€ U(si)})-\X' - v

S Bm‘X' - Y'l @
Since ©y is Lipschitz and x',y'c U(sm), we can find cl> 0O

h that - BT
suc a lCPIx Pyl < ;b

ii) There is a d> 0 independent of So?** Sy and m such

that for any (50!00 ’Smgoo) = Se’ U(SO’..’SM) is

contained in a ball of radius

dneXp(mél (C}"r(S oo 9S ,--)))
=0 T\ O’ m .
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Proof: Choosing x,y etc as in step (i),

-1 ' '
‘x- Yl ﬁﬁ;:l \D(lr) (l;-}-l”'l;lz'))'\x - Y!

where 1 ..l z = 2!
m 1

Now, if w,z € U(syseess_) then

11'-1' oll(W) ’ 1 lill(Z) € U(Srgoogsm)t

r=-1
Hence,
m gt
I r%;. c?l(lr-l”llw) - El cPl(lr-l”llz)
m - (m=1) o .
< < Z b - < c1 2 b < d1 say, by step (i).
r=1 j.':o
Therefore
11 | r
lx - Yf < doe}cp( r%._o (?(G— E_))’ \d X,Y&U(Soyol ’Sm)

for any < With TT_Z_G U(SO’.. ;Sm)t

iii) There is d'> O independent of Sgre e 1Sy Wy such that

for any (SO’”'Sm’”') € Ze, U(so,..,sm).contains a ball

of radius

Re]
d? .exp( Eo ce(o_r(so’.. ’smgoo))>

Proof: Choosing x,y etc as in (ii),

|x! -y < ID(1 .e1), | olx - y]
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I

< -
I_‘; \D(l ) 1'.112)\.\){ }’\

As in step (ii) there is d,> O such that

%' = y'] ¢ dy exp (= 5223 00T (sgeeesyeea)))lx - ]
Thus we can find d 7 O with

%= y| % dg exp 2""‘1 (¥ (sgreersyres)))Ixt = v
O
Let r' be such that every U(s) contains a ball of radius r'.

Let B' be such a ball in U(sm) y centre x', and let

|x' = yt| = . Then

\x - y\)rﬁdB QXP(E‘_m:?)' ({)(O‘ (30’0- »S !0')))

Taking d'< xd implies that there is a ball of radius

3
d' exp (im;g.) (Q(O—r(so"‘sm'..))>

with centre x in U(so,.. ,sm)

iv) dim Ky< a

Proof: The equilibrium state, Mo for ag is unique

and is a Gibbs measure and hence there is ¢ » O such that

Me]

},L(Cm(sopto ,Sm)) < EC-].,C] .exp( r=0 a‘?(ﬂ"r(so'“”sm”ﬂ))

For each m, Um — EU(SO,;:,Sm) (SO,..,S ’..)C Ze’g

covers XK, and }U(so,..,sm)\ < 2¢c.b”, so we can use'\L to

<4

give an estimate of Hausdorff measure,

O(sgrees
(sgr sy |0 05

-1
< (29)* = exp( =

(SO’..’SM) r=0

a?(d_r(so’.o ’Smco ))

g c.(Zd)a 2 (nrf‘k)(ncm(so,.. lsm))
(SO’. ¢ ,Sm)
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=§ C¢(2d)a < OO
This argument shows that dim K, Sa, and (if we
consider only sequences (so,.. ,sm...) beginning with

(SO,..’Sj)) that

HMA‘”CS(SO,to’Sj)) S COnStfnﬁPbWCj(sogcogsj)) °

v) dim JKe'} a
Proof: Given t> O, we estimate the T M measure of a ball
of radius t. For each x€¢ =, choose m such that

] U(SO,..,sm)l < t £ IU(SO,..,sm_l)l ’ _x_=(so,.. ;sm,..).
Let I be the set of (finite) admissible sequences
satisfying both' these i:nequalit'ies* » From steps (ii)

g_,nd: (iii) we have
d' exp(S"TlocTx ) <t
d exp(Sg°ec'x) » t
Hence each U(so,.‘.,sm) with (syy.. ,sm) e I is contained

in a ball of radius

d exp( = "TlooTx ) <@/d') ¢ cet

and contains a ball of radius
1.3t me«] r cpc:‘m-]'x N=2 r
2d' exp( = "Jpotx )y (d'/d) e = dexp(Z "o %)
- { 0o
y B(a'/d) et = o't

By lemma 5.3.1(a) of (Hut), at most

- o't

(1+2c)n
cl

of the U(so,.. ,sm) with (so,.. ’Sm) ¢ I can meet a ball

of radius t.

Tr‘/\.L(ITCﬂ(SO,..,Sm)) < (c/d' a)l U(Soo-- ’Smﬁ-l')l a

so letting B be a ball of radius t we have

"
b
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B 7( ( C g0e0 95 ))
T < (So:?:sm)él Gl m

< =3 (C/d'a) | U(sgseers )] 2
(So’ll 'Sm)el
S (c''c /d'a). £
Hence by Frostman's lemma, dim( Ke) > a. We have also

shown in steps (iv) and (v) that HMa\ x_1s equivalent

o
tO TT* ¢

Corollary 2.20 If ](e is as above, with 1ls = L for all s,

where L is a linear map with eigenvalue of modulus s
dim K, = h(cy)/logh = estimate (*)
and HMa is equivalent to T, where u is the measure of

maximal entropy.

Proof: Use the Variational principle (Wa.l).

This completes our proof of the conjecture of
Dekking on resolvability. His proof of dimension when
f(s) e zZ" was by finding a measure to use with Frostman's
lemma. This measure was constructed as a weak limit by
averaging Dirac measures spread evenly across XKge.

Thus it is really the same as the measure of maximal

entxopye
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L )

Corollary 2.21 Suppose K, is as in 2.19 and each 1s

is a similitude with l1s|= s Write

2 O
A = A, 1 .
a .0)\"3
O S
where S= {51”81:} ,Zg=i(f\).‘1‘hen dim Ke is the unique real, a,

such that the maximal eigenvalue of /_\a 1S one.

Proof: Extend SB to the two-sided shift space é-@'

Suppose X = (X,)e = ., Then cf(x) = -log A, . Define
- - - O - Xl
. =1 ‘
¢(x) = o "(X). Since the equilibrium state, P for
is shift invariant, |
Jean = [pan
In-particular P(a?) =0 & P(a®) = O. Applying Lemma 4.7

of (Wa 1) gives the required answer.

.
7
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CHAPTER THREE

CONSTRUCTING MARKOV PARTITIONS AND INVARIANT SETS.

In this Chapter we use recurrent sets to construct
special Markov partitions for certain maps of tori. We
study the coding time between different partitions for
the same map in simple cases, and see how the mean coding
time depends upon the semigroup endomorphism used to

generate the Markov boundary. We also generate fractal

invariant subsets for these maps.

81: Special Markov partitions.

Hyperbolic automorphisms of the toius have long been
studied as examples of maps showing chaotic behaviour.
A description of their dynamics was obtained when Markov
partitions were constructed for them (Adl, Sil, S$i2).
We know then that one can carry out the construction
given. in Chapter oné to give a subshift of finite type

2(B) and a map ™ such that the following diagram commutes.

Z(B) ———— =(B)

B
T j, 1;?

Unfortunately it is not known what matrices B can occur
for a given.x (although there are restrictions, for
instance h(K) = h(cﬁ)). This question has been the
motivation for much work on subshifts. Here we approach
the problem from a different angle and shéw that for

certain hyperbolic automorphisms of T2 (and expanding
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endomorphisms of T2) one can find Markov partitions so

that B is obtained directly from A. The construction
of such partitions involves the use of fractals. Bowen

(B5) showed that the boundaries of a Markov partition R

ot

for a hyperbolic automorphism A of T3 cannot be smooth

submanifolds with boundary. Furthermore, if A has

eigenvalues U\l\ > |>~2| > 1 > |A\,] then

3

Gap(°® k) 3 2 - 199 I |
log P1|
where for ReR, ¥R = {xe Rt x¢ intwu(x,R)}
YR = {xe R: x ¢ intws(x,R)} y and
bsp\ = ), BS u == \_/ | u 1 y
ReR Ry, a3 R RER 2 Re This is because
the Markov conditions imply that A(» R) C >R and

A"1(2SR) < 3°%R . Hence
T S u S u - 3
O > K{ﬁ dR) ¢ K . o R £ T .

But a result of Urbanski (Ub) says that if a curve C
: 3 —_—
in T° has cap(C) <« 2 - (log|A2|) / (log I)\ll) then C_ has

dense orbit. Urbanski's result applies also to expanding

2

endomorphisms of T when the eigenvalueé of the covering

map are irrational., '

More motivation for using fractals to generate Markov
partitions is the idea of replicatingq'fractiles' from
{Mal, p47) and (D2), both of which give tilings of the
plane, ], for which there is an expanding linear map
L,),: 1122 > ]R2 so that each tile of L_ﬁ,('j"') is exactly a union

of tiles from J. R. Mafié has told me that the following
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result is folklore.

Thrm. 3.1 Let A be a 2x2 matrix of integers inducing

an expanding endomorphism on Tz. Then there 1is a

Markov partition for K:Tz 9*T2 so that there is a

semiconjugacy toix from EidetiAl' the full shift on

| det A] symbols.

Proof: Let e, = (1,0), e, = (0,1) in IR2. We make our

2
construction in the covering plane using the recurrent

set formalism. Let S = {sl,sz,szl,sgli'and set f(si) = e,

b 8
-1 : -1 -1
f(si ) = =€ and K{s] = [O,f(s)]. We write W = $,8,S, S,

soZKEWJ is the boundary of the unit square. The next
step is to choose an appropriate endomorphism & of S¥*

(note that sls'l'1 do not cancel in S¥ because we are
working in a semigroup). Given a line 1 = Ca,b] with
endpoints a;beizz'we define the anticlockwise perturbation

of 1 at a as follows. Starting at a = Xg» choose

: ; : . +
inductively lattice points xieizz such that x, = x,; .= e,

1-1 J
(3=1,2) and CXO,Xi} makes the smallest anticlockwise
angle with 1 (in particular we might have xierl, and
we finish with Xr=b‘51). The sequence a=x0,x1..xr=b

are the vertices of a polygonal line that we call the

anticlockwise perturbation of 1 at a. Choose 6 so that

K[e(six] is the anticlockwise perturbation of foyﬂ(eii]

1
Clearly the relation =f6 holds. Our choice of 6

. -1 - -1, ' -
at O, and deflne e(si ) o trliiltt lf e(si) - tlol-tro
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means that the 'sides! of K[6W] do not cross over and thus
that the region bounded by K[eW] has area ldet Al. In

fact this property is all we require for the rest of

the proof, and it is clear that there may be many different

choices of © with'the required property (fig & ).

L {— —-
D"" correct

__;9‘ ~
Different

[ choices
> of © for
D = correct 3 1
3 3
—_— l

l - _, DH - incorrect Fla.g
e | -

There is a natural orientation of line segments in

KﬁenW] given by symbol or@gr in o'w. This enables us to
define the 'inside'! of KCGHWJas all the*points to the

left of line segments having a single orientation defined.
(We use this definition because K(enwj may have multiple
self intersections). Define Vn as the closure of the set
of points inside K{e"™W] . We now define a transformation
of certain subsets of the plane. Suppose R is the
closure of the inside of K[Y] (where f(Y)=0), then define
OR to be the closure of the inside of K[6Y] . Extend

the definition in the obvious way to finite unions of sets
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o
of the above forme. In particular we have gy“ = v*i,

We will show that vl s tiled by |det A| copies of v,

Our choice of 8 implies that V' can be tiled by D = |det Al

O
copies of V ,

1 _1)D O 2 : O : O,.
\'/ _Ui=1(ri + V7)), riG zZ" 1nt(ri+V )nlnt(rj-i-v )=9
if i#j, and that
: 1 . 1, _ .
int(V") Aint(e ,+V7) = ® i=1,2 .
We prove by induction that
vt = \MJE(An'lri + VO
int(An-lri+Vn'1)(q int(An_lr.+Vn'1) # @ >  i=j

J
and int Vn(\int(Anei+Vn) =@ i=1,2. (fig. 9 ).

i
' ' '
--utitntlr-- 'L-
L ] ' »

—_r - 1-- -!llli:ll !1*

i'l"-l:lll-l L

mr ap i

L1

(i) (i ) Gir)

FIG. 9

KEQ&"‘D,MC’,‘Q, & 9'5.=sls,s,s," 05,2555, . Y™ ¢t by %,‘«. copies g‘]V“_

Suppose the statement holds for m ¢ n.

. n-1
Claim: Let U be a finite union of tesselating V S

_ _ n
U = U(pi+Vn 1), P, € AR 1262. Then ©OU '-"-U(qi"‘V )
qi=Api, is a union of tesselating vis.

Proof of claim: Qﬁpi+vn'1) = qi+vn, and the V" tesselate

since int(Ane.+Vn

i ),\int vt = ® by hypothesis. This proves

the Claim °
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s

n+l

Set U=V", then 8U=V ' — so the claim proves the first

part of the induction. Setting U=(Anei+vn)we see that

n+l n+1

n+1l
A )

if int V int(A # @ then the intersection

4

. +V
€i
contains int(qj+V ) for some qje But this came from
an rj+Vn-1, which implies that

int Vn(\ int(Anei+Vn) D int(rj+Vn-1) # 9,

a contradiction. This proves the induction.

Let V" = A" 1y®,  Then put Pn = {q+!n $ Q€ At 222}.
AS n=> <9, A-n-lKLGnW] 5> A™1 K,(W) and so the tilings ?F:‘

converge to a tiling ¥. By construction A(q+!é) is a

union LJ)

interiors for all n. Hence in the tiling s

n-1)’ q,x, € Al ZZ?, of sets with disjoint

- 2
A(q+y_) =Uil=)1(ri+y') q,rie A 1 Z .

¥ is clearly invariant under integer translation and

projects onto T via the covering map,p,to give

= fad-p(y_) $ aQK-I(O)'} .
By constructlon, R,R'€¢R and int(R R') # ¢ implies R=R'.
Furthermore_each AR is exactly the union Rhiﬁ R'e Hence
R is a Markov partition . The standard construction now

gives a semiconjugacy to A from the full shift on |det A]

vl

symbols.
|
Remarks 1 Def3 =
Remarks 1) efln? B (bij)2x2by letting
s =XI1K ) = ¢l 1 .k _ =17, h 1 1
i3 b’!{ 2 6(51) t et , t "sj or SJ Then clearly
B 2 \A|, leCos bij>’ laj_jl s Vi,j«. We shall prove in the final

section of this Chapter that with the assumption that there

is no essential symbol duplication,
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cap( Ky(W)) = 1+ .1_‘..’.?___>‘B__:_i‘_’i_.___.9“2'
log | A\l

where %B is the maximal eigenvalue of B. In particular
we note that by putting extra 'kinks' in our choice of ©
we can construct Markov partitions for the same map with
different boundary capacities. By Wielandt's Theorem

- (Ga p57) A33Pj|' In the case of A being a non-negative
matrix the choice of 6 above defines a Markov.partition .
with capacity equal to the minimum possible given by
Urbanski's Theoren.
ii) It is clear that there are often many choices for ©
that will do. Thus we have a canonical class of Markov-
partitions rather than a single partition.
iiij1Each of the approximating partition elements may
be homeomorphic to discs, bﬁtithe limiting boundary can
stil% have multiple intersections. Thus the Markov
pértition elements are only homotopy equivalent to discs.
iv) 1If A has rational eigenvalues. the eigenspaces have
rational slope. One can then obtain a Markov partition
by using Ssegments of the éigéhSpaces as the Markov

. boundarye. Thﬁs such a map could havé Marko§ partitibns

with smooth or fractal boundaries.

. In the next section we shall consider the question

of which of the different Markov partitions one can

construct as above is the beste.

2

"Expanding eﬂdomorphiéﬁs of T“ are, geometrically,
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rather similar to hyperbolic automorphisms ofT3 with
two-dimensional unstable manifolds. Thus the kind of
construction used above to generate Markov partitions
for expanding maps of"l‘2 can be used in the T3 hyperbolic

setting. We shall prove a generalization of the following

unpublished result of Manning (Mn2),

Thrm., 3.2 Let A be a hyperbolic matrix of positive
integers and determinant +1. Then there is a semiconjugacy
t oy

from (E(A"),s) to the hyperbolic automorphism.(szA)

(where t denotes transposition).

Thrm, 3.3 Let A be a hyperbolic 3x3 matrix of integers
such that
i) det A = 1,
ii) A1 1S a non-negative matrix,
iii) top. dim.(E®) = 1, top. dim.(E") = 2,
iv) the contracting eigenvalue of A .is positive,
v) condition (%) (defined below) is satisfied.

Then the induced map'ZrTséhTB

-l)t.

has a Markov partition

with transition matrix (A

Proof: We proceed by stages.

a) First we establish the positions of the linear spaces
u . - . "'"'1 .

E° and E relative to the co-ordinate axes. Since A 1s

LY

non-negative and A has no non-trivial invariant subtori
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S . . . .
(by para. 1, p72), E lies in the interior of the
. s s ) : u
positive cone, {(xl,xz ,x3)= X, >0, all 1?, and E

intersects the positive cone only at the origin.

b) We know that the Markov partition boundaries are not
smooth (Bo5), so we shall show how to approximate the
claimed partition arbitrarily well., In this first step
we show how to define the first approximation. When

x € E° and y € EY we shall move freely between writing
(x,y) € E°xE" < IR3, X G ES, and x€]R3.

3

Define projection down stable manifolds ps:]R > E°

by{ps(XI} = (x+ES),\Eu. Let e;18,1€, be the standard

basis vectors. We define faces Fi i=1,2,3 by letting Fi
be the square in ]R3'with vertices O’ej’ek,ej+ek (i#j,k)-
Projecti % qi = L= .

jecting onto E~ gives us t.=p_(e,), H, p.(F;) for
1=1,243. Writing F =UF‘i and H =UHi notice that p_

maps F bijectively onto H. Hence we have a picture

Condition (%) is that AH>H.

Our first approximation to the Markov partition 1is
given by three prisms P, for i=1,2,3. Each P; is the
product of an interval of E- with Hi and it lies in IR

so that its upper face is H.. More precisely, let aie]R3
1

h th = E° (- u 1
be suc at {ai% E® (-e;+E") and define
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FiG. \O

FlG. 11

3

Define P = kJi=1

P.. It is clear that int(Pi) does
not intersect int(Pj) if i#j. We claim that

® = {q+P 1 qez> §
gives a tiling of R° i.e. int(g+P) ,int(r+P) # § implies
r=qy and each xEJR3 is a member of some q+P. The

corresponding two dimensional picture is shown in fig 172,
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We call a face of q+P an s-=face if it is a union of
line segments parallel to ES, or a u=face 1i1f 1t 1is
parallel to E'. All the faces of P are either s or u-faces.
In order to show that ¥ gives a tiling we have to show that

P tesselates with its neighbours i.e. that each face of

P contains or is contained in a face of a neighbour to P.

We deal first with the u-~faces of P.

The bottom face of P:y a,+H,, (which is a u-face of P)

satisfies ai+HiCL-ei+H (-ei+H is the upper face of -e.+P

a u-face of -ei+P). For {tiE = (ei+E )r\élso‘ ei+ti A,

- -+ -+ . -— . + @ . * : -+ *
and e, (tl tJ) al+tJ But al-l-tJ is a vertex of a; H1

and so three of the vertices of ai+Hi are vertices of

~e.+tH, Hence a,+H, = (-e.+t,)+H, < «~e.+H, and we have the
i 1 1 i 17 1 1

situation shown in figs 13 and 14 ,

'"'"e.I -€.~+H

’

FlE, 13 FlG., 14

Thus the bottom u-~faces of P are subsets of (upper)
u-faces of neighbours of P, The above argument also

shows that the upper u~face of P, H, meets neighbours

of P correctly, for

H = Uigl(ei + (a; +H;)) (fig 15).
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Tha Adtd Qaas
Bw €1+Q1*H:

ICTEY

We now have to deal with the s-~faces of P. Since

p(Eu) is dense in T- it is enough to show that the

3

intersection of E= with iq+Pi= qtZ™, i=1,2,3} is made up

of non-overlapping copies of H., i=1,2,3. However, using

only the definition of P, given above, the argument on

pages 61-63 show this,

G b

- : 3 ..
This shows that ¥ gives a tiling of RN . Figures
16a and 16b show how the various translates of P fit

together in IR3 o

c) Closer approximations to the Markov partition. The
boundaries of the P, have to be altered to satisfy the
Markov conditions. We introduce recurrent sets and choose
an appropriate © that will enable us to define closer

approximations to the Markov partition.
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Let V be a region of x+E%. Write Qi = (ai,lebHi

and @, = q\é)223 Uigl (q-l-Qi) . Define the patterning

geometrical significance of the patterning). We define

the anticlockwise perturbation of a line in a similar
fashion to the definition given in 3.1, replacing points

of 222 by vertices of the pattern in V. With vectors

: -1 .
ti we associliate symbols S;e Let S5 = isi S, 3 1=1 r2,3} ’
define f(si) = ti’ f(szl) = -1:i and choose © so that

K[ﬁsi] is the anticlockwise perturbation at O of [O,Atij

1 -1 -1
) o

(1f ©s = rieexr; let 6(s ) = ry eery,

We now have to check two things. Firstly that
JAtj+Kces£] lies in the pattern, and secondly that

it is the anticlockwise perturbation at At of,Atj+[0’Ati]

J
It is clear that these properties hold if the pattern
around Atj+[0,At£] is locally the same as that around
[D,Ati]. Recall that the éattern is defined by
intersecting E" with Q. ,Note that up to integer
translation EO,ti], tj+f0,ti] and tk+[o’t£] all lie in

the same s-face of either Pj or P, (which one depends

on whether faj.,oj - fak,o] or vice versa), fig i6b.
We shall investigate the pattern neardAtj+[0,Atil etc.

by seeing how & intersects AP, for each ke

3

Notice that we cannot have q € Z~ such that
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<
F\G.\T
(a+H;) nint(APL) # P (fig V7).
For since AZ>= Z>, A"™'q = r ¢ z3. By assumption A"THcH,

SO A-l(q+Hj)c.r+H. In particular there is a P; such that
int A(x+P)) ~ int AP, # @
But this implies int(r+P,) int' P # @ which is a

contradiction.

The above argument shows that if the lower u-faces
of ei+Pi for 1i=1,2,3 are included in the pattern,
Atj+KEGS£] etc lie in the pattern (we have to add to our
original pattern because we have not excluded the

possibility shown in fig 12).

NAE\\M

| :"A" --"'Fj

FlG.\S

However, our assumption that H< AH implies that Atj+[0’AI£]
does not intersect int H, and hence that the anticlockwise

perturbation of Atj+[O,At£] atiAtj does not intersect

int H. 'Thus.Atj+ K[esi] is in the pattern and is the
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anticlockwise perturbation ofAtj+[0,At£]at .Atj.

-1_~1
sjsksj Sk o
'inside! K[ewi] » as we did in the proof of 3.1 . Our

Writewi = Define Vi as the set of points
choice of © is such that the sides of V; do not overlap,
in particular if we write

1 -1..1

S u
P; = [a;,0] x(A™"v;) c E°xE",

the different P; do not intersect in their interiors.
Define‘ws(x,N) = (x+ES)r\N for NCJRB. Since (as shown
above) we cannot have (q+Hj)r\int(APi) #F @ (£fig V'7),
S :

wS(Ax,APi) C W (Ax,p+P;)  if x€P;, Ax¢ Pitp,

Hence
S 1 S . 1

W (Ax,APi) — W (Ax,p+Pj) 1f xX¢ Pi’ Ax € Pj""Pa
Similarly define w“(x,N) = (x+Eu)r\N; We must have

wu(AX’AP}_) = a + V?i.'- some a € E°.
Thus

W(Ax,AP) o W (Ax,p+P ).

d) We now show how to define a sequence of partitions
converging to the Markov partition which more and more

nearly satisfy the Markov conditions.

Given Kfé]Wi] define V? and © analogously to the
.« s : +1
definitions in 3.1 . As before we have Qvg = V? . We

must first prove thatixfenwij is in the pattern.

u
Because the pattern is a tiling, the slope of E~ and



Bs_imply that if r+Hi is 1i
along the edge r+EO,t£] is

By choice of O,

. 1 . 1
lnt(vi)rxlnt('t'+vi)

J
: 1 : 1
1nt(Vi)r\1nt(Vj)
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n the tiling, adjoining r+H.

either r-tj+H. or r+H (j#k).

P
= ¢,

Also by choice of © and since (q+Hj)r\int(APi) = @ for all

3 . .
QEZL™ 4] 41,

[Aa, ,o]x(K[sj.] +£(Y)) C

(Cay0lxk(s 1)+ q or
([aktolx}‘:fsj-])"' q + f(sl)

where GWi=YsjY' for some words Y,Y'€ S*, k j,1 distinct,

for some qEZB. We proi.re

EAna.i ,O]x(K[sj] +£(2Z2)) C

by induction that
(Ea-k;O]XKCSjD + q or
([ak,OIXK[SjD"‘ q f(Sl)

when 0'W, = ZsZ'. Suppose it holds for m<n. Then

applying A gives

n+l

LA ai,d]x(AKEsﬁ]+Af(Z)

) < ([Aak,o]xAK[sj.’_l) + AqQ or

(EAak30]XAKE55]) + Aq +Af(51)

which implies (using Af=f9),

(A™ 1, ,0] x(KL®s 1 +£(62)

5 < (CAa-ksolxKEGSj]) + r or
(CAa.k,O]xKCGSJ.] ) + x + f(Os,)

Suppose 955=r1-.r , » then since
— m?
Kffl..;m;]- m=1(Kcrﬁ]+f(r coX 1)), we have

EAnﬂai ,ij(K[rm] +£((6Z)

This proves the induction.

subset of the pattern,

r10¢rm_1))
c ( [a s0]xK{r] ) + x' or
( [a ’O]X_K[rj ) + r'+ f(sl')

Hence for all n,K[Gan] is a
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The choice of 8 1s such that each V% 1S tiled 1in

the pattern by b, i3 coples (say) of each V (=H.),

J
1 O
Vi = U _1 Uk""l( r(J-!J !k) + VJ)
where b = bij' We prove by induction' that
: n : n-1 n
int(Vy) ~ int(-A tj+Vi) = @ (1)
: n : n, _
lnt(Vi)f\lnt(Vj) = @ (2), and
n _ n-=1 . e n-1
vi = WU (A7 (x(4,3,k))+V50) (3).

We have already checked (1),(2),(3) for n=1. Assume that
they hold for m<n. Since Vi is tiled using the pattern,
the intersections between different tiles of Vi are as

in (1) and (2) for n=1. Thus (1) and (2) for n-1 imply

that (3) gives a tiling of V?.

Recall that giAp"1x+V?'l) = Alx + V? . The inductive
step for (3) works simply by applying 8. The inductive
step for (1) is as follows. By (1) and (3),

. n-1 n--1
int( UJ ,k(A 3 ))
A 1nt(L) k(An-l(r(l,J,k) t )+V
Applying 8 and using (1),(2) gives
: N_,. = n : n . n
1nt(LJj;k(A r(1,J,k)+Vj))()1nt(k)j,k(A (r(l:Jvk)“tj)*Vj)

= @

r(i,j,k)+V.

1)

b P

By (3) we have

n+l

J.nt(V int( -Antj'i-v;r‘.l ) = ¢o

)f\
A similar argument gives the inductive step for (2). Thus

we have proved (1),(2),(3).

. ) g | — - .
Define P/ = [ai,ojx (A "v’i‘). We wish to show that as
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n tends to infinity the P? more nearly satisfy the

Markov conditions. We show

U; ([a%a; ,0]xx(e™w;1) e Ui Uz (a + € An-laj ,o]xxﬁ',e“'le] ) o

This certainly holds for n=l1l. Suppose it holds for m € n.

n+1 (J n n-1
U, (4™ 2, ,0) x akle™] < 37g (a +[A%y,0)xkle™ W ])
which implies that
n+l n+1l (J n
U, (A" a, ,0] sk [6™" w,] < (a+ (a aj,o]xAKEe“wi]) (4)
: n -
Thus 1f Pi = [ai,O]xA n(V?),

A(Wu(x,AnP2+l)) - wu(Ax.AnPg*'Q)

where x € int AnP;_Hl, Ax € int AnPg-i-q .
Therefore,
A(WHy,PTTY)) D w(ay ,P§+r) vy = A" k.

Writing Vn=lJi V? y Since ViS5 H an easy induction using ©
implies that Vn+1:3Vn. Hence
A(WS(XrAnP?+1)) C:’WS(Ax,AnP?+q) and so

A(ws(y,P‘;ﬂ)) < ws(Ay,Pg-l-r).

We now need to check that each

n _ n n _ n 3
5 -{q-i-P. s P o= UiP. y Q€ Z }

: : n-1_n-1
is a tiling of ]R3. It is clear by induction that A" ¥

a tiling implies that A"¢" is a tiling. For under the
transformation (AlEs)x(Q) on E°xEY, adjoining s~faces of

tiles in‘Ap-%pn'l

are sent to adjoining s-faces of tiles

in-AnPn- Also, adjoining u-faces are sent to adjoining

u-faces because H =1{). (e. .+H. ' tively implies
\Jl(el+(al+Hl)) induc y imp

that Ve o= . (Ane.+(Ana,+v?)). Hence for each n ATe
1 1 i 1



is a tiling, and so P’ is a tiling of JRB.

As n =0, A™" K[BnW£] converges in the Hausdorff

N

metricCe Hence P?- -> Ri sSaye. By the above arguments
iﬁi : i=1,2,3} satisfies the Markov conditions and

R = gq+ﬁi s 1=1,2,3, q€223§ 1s a tiling of R>. By (3)

~J

and (4)Aﬁi intersects some translate of Rj Jbij times.
Projecting via the covering map onto‘T3 gives a tiling
R = p(gi) of ‘I‘3 which satisfies the Markov conditions.

Clearly the transition matrix for R is (bij).

¢

Remark The particular choice of © that we made above

was rather arbitrary - as when constructing a Markov

. a s . : 2
partition for an expanding endomorphism of T there are
several possible choices for © and hence a 'canonical’

class of Markov partitions.,

e) We now calculate B = (bij). This is done by

considering what happens to the faces Fs instead of the
H, . Intuitively A(Fi) and A(Hi) pass through approximately
the same number of each q+Pj (qejz3) because Hi is the

unstable component of Fi. They may go through the Pjs

in a different order.

Define a stepped surface 'Efsm3 to be a surface such

. > . 3
that (xl ' X, ,XB)G U i1implies some X.€ ZZ . In othexr woxds

b 3

a is a union of q'I"F_’ j=1’2’3’ qG 23. We say that

J
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A

U is non-degenerate i1f whenever r+Fk,s+Fj¢ﬁ and

int ps(r+Fk)r\ K

If U is non-degenerate and has connected interior, then

intpS(S+Fj) # @ , we have r+F =s+Fj.

L W

when U is projected onto the (ei,ej) plane no two copies

o

of F_ (k#i,j) in U project to the same square. This is

Rcﬁ' we can find a sequence of faces
in U with adjoining edges going from r+F‘k to s+Fk. But

C:G'th +e +F . G'
1 en m+e +F &+

(1#3). Thus if an Fj (j#k) appears in the sequence,

because 1f r+Fk,s+F

non-degeneracy implies that if m+F

r+F, and s+F, do not project to the same square. If
the sequence is only of c0pies1of F. then clearly r+F,
and s+Fk do not project to the same square.

S

We construct a stepped surface U corresponding to E™
in the following way. Remove from the half space of ]R3
containing the positive cone and with boundary EY the
interior of any cube p+1‘3 (13 = [0,1]3, p€23) which
has int(p'*'IB),.\Eu 7 @P. This gives a set X whose boundary
is the stepped surface U. -Because EY intersects the
positive cone only at the ,origin, if we write

'Ij = (-ej,0] '*Ij = (0,+ej],
then Eun(q+'IJ.) 75 ¢ implies Eum (q+“'Ik) = 525 for any K.
This implies that U has the following special propertys:

u - ~
E r\(q+ Ij’) # ¢ <=7 q+Fj. c U,
(£ig, 19 shows the' corresponding structure in two dimensions).
. . . u _ 3
This is because if E ~(q+ IJ') # ¢ then q+I" <X and

3 &
q-ej-i-I % X. The reverse implication works Dy sSeeing
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how E' can intersect the edges of q-ej+I3 (£fig.20). With
the notation of fig.10 , if Eﬁq(r+'1j) # @ then E%W(t+-1k)=¢
u - u - s
+ = 1
and E°,(r+71, )=p so Er\(q+?i+ Ij)#ﬂ and similarly
Eun(q+"'I )F D Similar arguments show that whichever edge

of g-e.+ I~ is intersected by E“, E" must also intersect

q+ Ij' This proves the special property.

Recall now that Pj was defined with upper face in H

and lower face in -ej+H. Hence Eﬁw(q+-lj) # @ if and only

ot

[ J u »

if E, (g+( (aj,O]xHj)) # P Thus projecting the faces of U
u \

onto E using the map Pe gives a tiling which equals the

patterning of EY, We can therefore think of U as a
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non-degenerate lift of the patterning of E” to a stepped

surface. The lines Kfesj]c:Eplift to give polygonal

Ao

lines L5C:ﬁ joining O toA(ej). Now, Vi lifts to the
subset of U bounded by Lj’ ;k’ L3+A(ek), Lk+A(ej2' which

7

we call Ui o

1 in Ui

we project U. onto the (em,en) plane (1#m,n and i#j,k).

In order to calculate the number of copies of F

.

Since U is non-degenerate,

b,, = %(Fl in U.) = X(squares in ‘the projection of

F o

U, onto the (em,en) plane).
But the projection of ffi onto the (em,en) plane is a figure

V.

i1 bounded by Lj’ Ey s Lj*(amk’ank)’ Lk+(amj,an.)

J

— 3
(recall that A(ek) = Zir=1 a e,

projection of Lj‘ onto the (e ,e ) plane, etc. The different

) where Lj is the

lines bounding V, 1 do not overlzp because of the
’

non-degeneracy of U . Thus bil = area of Vi,l

. (amk* amj)
det |
Ank “n 3J

(cy;) where l1#m,n and i#j,k. Hence

if C = ad)j A

-l)t since det A = 1

B = (adj A)® = (A
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& 2 Coding between Markov Partitions.

Theorem 3.1 showed how to construct Markov partitions
with different boundary capacities for the same map of‘Tz.
It is natural to ask if there is any sense in which one
partition is a 'better' choice than another. One
possible answer is as follows. Below we shall always
work only with the measure of maximal entropy, denoting
it o Let D = 'det A| y and suppose >3, R are two Markov
partitions for'ﬁ.constructedhas in 3.1, There is an

induced isomorphism CPzZD -)ZD defined m a.e. so that the

following diagram commutes.

(2p10) '—CE? (ZpF)

TT,&\ ., X/T(R
(T7,A)
The map ¢ is a finitary isomorphism'a.e., in other words

if we define the anticipating_function

aq):Z—D <> N {oo}
by letting a¢(§) be the smallest integer such that if
ye2p and y; =-x; for i <a,(x) then (d(x))y = (P(x))g:
we have aq)(z_c_) < o0 for a.a. X. One says that ¢ has
finite expected code length if |aydm <eco. An argument
of Adler and Marcus (Ad2) shows that our map does indeed
have finite expected code length., However, we shall
see that the code length can be bounded in terms of
the matrices B(X ), B(R) (defined in Remark(i) after 3.1).
Hence the expected code length depends on how crinkly

the Markov partition boundaries are.
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The Adler and Marcus (Ad2) argument formally works
by using their Proposition 2.14 together with the
argument on their page 78. It can be interpreted

geometrically as follows. We denote .an element of the
partition A" by T(xo,.. ’xm-l) if there is an

(xo"'!xm_l’Oﬁ)eZD with TLJ_(XO,.. ,Xm_lyon) - intT(xoyto’xm_l)o

1 ) of

They show that there are blocks x ..xX and y such that

for each xo..xmxl..xr there exists a block Yo* eV with
with

S(xo..xmxl..xr) c int R(yo..ymy).
Thus 1if X ¢ ED has TTJ&(;_(‘_) € S(xo..xmxl..xr) we know that
(b(;_g_) = YgeeY,Y» SO in particular acb(g:_) < (m+l+x),
Let Nk = ig_t_e ZD ! X = (xo..xk..) with xl..xrc;f:xo..xk‘i ’

so a(b(g)) K implies that x €N . Hence

SEE ag(x) = m }
< }*{ﬁ : 3(_1,(5) > m-1} = (N _4)e
Finite expectation follows since /“‘(Nm-l) converges

exponentially to zero as m.9 . We shall make a more

exact estimation below,

o ) 9
Prop. 3.4 d = > T < 0@
=P ja‘w& ::%1 Idet At

where n, ., = )3 (elements of Vn-'l-'-'o i"’}g required to cover dK),

2_1;92;_3 Denote Ci(a) = EX‘GZD 3 (Xoo .xi_l)f'-(yo. #yi_l)’g °

We have to estimate N{?_{_Q ZD aq}(&) = i‘§ ®
Now, i = a.cp(g:_) means that
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Te(Ci(x)) < Wp(Co(w)) for some y,
and Tg(C;_1(X)) & T(Cy(2)) for any z.
i.e. WA(Ci(g_c_)) does not intersect two distinct elements

of R in sets of positive measure, but that TG (C._,(x))

does. Since the measure we are considering is the

measure of maximal entropy, Haar measure on T‘?', this
is the same as saying that TYA(Ci(gc_)) does not contain
in its interior any part of the boundaries between

elements of X, but that T, (C;_1(X)) does.
R is €Vn=0 s& s S = ﬁé(cj_(g{_))c‘rr&(co(\_f)), for some zji

=x{seV i A - %{s eV i A s lnt s) R £ 87

n=0

N

Certain elements S of Vn; A-n)& do not cover part of

\/1-1 ”—n

h=0 which

3R because they are subsets S cS!'¢

did not cover part of X.

Now,

X s e\/n_o ATM& 3 Scs'g 1"1 5 A"7% and (int S') R = 8§

D()Kis' € \/’w'(';1 A™B% 1 (int S! )\ IR = ¢})
= D ( Di - ni )

Thus, X {S t (int S)A R =9, Sc8', (int S') W # ¢}

— D - nN. - D i - s =
(D n, ) Dn; - n

i+l

and hence
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Notice that we cannot have aq>(2_<_) = 0, for this
would imply that R = &. Thus if R # }, a,(x) > O for

all x and so nl'-'D.

o0
jaq)(ﬁ) da = :Lé i/"‘zlc- € ZD : acp(x) = 1}
N n. n.
= lim 2 1(—2'- - 1:1)
N»o i=1 D~ Dt
o0 1
= 1 (n /D ) if the series converxgese.

P ]

We shall use the following lemma to obtain bounds

On n-.
1

Lemma 3.5 There is a constant r,> O depending only

e
on A and B(R) such that an element ﬁ of R is contained

7\

in a square of side oo where R and % are lifts of

R and R to IRZ.

Proof: We only have to prove that if ]Kli is the length
of the X component of a set K, there is a bound x! (1) > 0

We show by induction that,



69

- n -I
where b }bij" (bij) = B(R), and
W = maxX iluj\ : uj. is the component of ey .

J=12
in the -P\i-eigenspace} .

Since the length of ©(s 9(52) is less than 4b,

1)U
[K[ewl1|; ¢ 2.4bw = 8bw.
| -1,

Therefore lA'lK[GW] N 8bw|>\i

1

Suppose that (£) holds for n. Then since

k(6™ 1w] = k(o(6™W)] = Uj’ilmf(tl..tj"l)+xtet5])
. .t®,
|a~ke™ W], < |k(e™l|, + [A7'k{ew]|;

< |>\i[ n(BbWZ:rlll )\il"r) + 8bw | ki] -1

when e"w =t

and so

A-n-lx [en-i'le Ii = 8bw ZI{"‘II >\il - I

This proves the induction. Letting n s« shows

K (W), ¢ °P". 1
0 § l>\j_| -1

Prop. 3.6 There are constants c¢ 1Cp Y O depending only

1
on A, B(R), and B(R) such that

S10BR) ¢ ap dn < "2 B(R) \B(R
D - )\B(R) D - Ag(R)

endomorphism generating R. We slightly change the formalism

used before, the object being to obtain ¥R immediately as
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a recurrent set. Let f(si) = A-l(ei) and introduce
1

e e

virtual symbols s.,, s;” corresponding to si,s;

i defining

© for these symbols by G(Ei) = e(si) etc.. Then we
can find a word V in our new S* so that XK (V) is a

lift of 3R (fig 23).

KLV] _ \ FiG. 25
’ga( 3\)

Recalling the definition of 2, and ie, and that

o
log %B(R) is the entropy of ?:9, it is clear that there

are constants d419, SO that

ai =X{j : GiV -— tlc ttr and tjéislgszl ,52’5-2.1}3

€ qu !qzj' X;(R)

- AT . ~ i
Put m, 4 -%{S e 3y -(lnt S) n(A KG(V)) # ¢-j .
- i ~e-n .
Recall n. g -%{86\4____0 AT s (int S), 3R ¥ ¢} .
Then me g3 0L, but also .4n1+1>,
A A : i e
S el to cover At Re(V) than we needed Sé\/é ATTR  to

m. we may require more

cover 3R, but since applying pOA'J‘ to the former picture
A\
gives the latter we can bound the number of extra S

required).

We easily obtain an upper bound on n;. Let

K = max g{% efi covering Ke(si)}
i=1,2
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Then nis m. < kKa, Now

i i-1°
k € W{é e:ﬁ covering a lift of an Reaz}

< W{g c._ﬁ covering a square of side rk} by 3.5
But by 3.5 all such S would be contained in a square of

side Xp * 2rgy s and since each S has area 1/D,

2
k ¢ (rg +2r,)
D
Letting c, = (r&t+ ZE&)Zqz/D gives the claimed upper

bound.

A similar argument to the above tells us that a

”\
collection of t elements of K intersects at least

2
t/ (ro+ 2x;)
D

9 2
elements of £+ Thus at least aiD/(rS + ZIR) elements

N,

of A cover Al( KeV) 9 i1.e,

(x,+ 2r,)
mi+1?’ai/ = a
D -

Setting ¢, = qlD/4(;A + 2r,

2

)2 gives the claimed

lower bound, '

Notice that finite expectation OCCUIS if and only if

)\B(R) < D. Since log D = log \Xﬂ + log sz\ y Remark(i) of

Theorem 3.1 implies A <D > cap(B&)( 2,- The above

B(R)
proposition gives a formal way of saying that Markov
partitions whose boundaries have high capacity are bad

because it takes a long time to encode particular points.



72

€3 Invariant subsets for hyperbolic automdrphisms of

1> and expanding endomorphisms_of T2.

A series of papers (Hil, Bo2, Bo5, Fr, Hal, Ha2,
Mel, Me2, Pr, Ir, Ub) have considered what kinds of
invariant subsets can exist for hyperbolic automorphisms
of T". The original motivations were the search for new
types of Anosov diffeomorphisms and a question of Smale

(in Hil) who asked if there could exist a compact

invariant set with topological dimension one. Figure 714
shows some of the results obtained. Some of the later
results indicate,. as various authors have commented,

that invariant subsets (other than Mane's invariant ct
subtori) will have a complicated structure. A hyperbolic‘

3 in fact has no invariant Co subtori,

automorphism of T
for S1 does not admit expansive homeomorphisms and
there is no invariant 2-manifold by a result of Hirsch

(Hi1).

The results of Mahe, Urbanski and Irwin on the nature
of paths with non-dense orbit also apply to expanding

2 when the eigenvalués of the covering

endomorphisms of T
map are not rational. In that case, as we remarked before,
when the matrix A inducing the map is positive we can
construct Markov partitions whose boundary has the

minimal capacity, 2 - (1og|}\2|)/(1oglf\Ll) , allowed by

Urbanski's result. In the hyperbolic case on‘T3'wef

cannot say if the same is true. Urbanski.constructs



73

FlG . 24

Invariant Submanifolds

An invariant subset of A cannot be homeomorphic
to a sphere of dimension 71, a Klein bottle

or a projective space. If the topological
dimension of E’=1, the only proper compact
invariant submanifolds are periodic points.

If £:T »T'is Anosov and Ve M is compact,
invariant, V=@, and is a C* manifold, then
£|V is Anosov and each connected component is
homeomorphic to a torus.

Invariant Sets

Bowen Minimal sets have zero topological dimension.
(Bo2)

Hirsch No compact invariant set has topological
(Hil) dimension equal to n-1.,.

Hancock 103 I T"| O(cI™)=T"} is residual in the uniform
(Hal,Ha2) | topology on C(I™ ,T").

Przytyc'ki For any ky O< k< n, k#n-l, therxe is a CompaCt
(Pr) invariant set N* of topological dimension K.

Mane The orbit closure of a non constant rectifiable
(Me2) arc contains a coset of a toral subgroup
invariant under some power of A,

Ixrwin There exists a Holder continuous path in T3
(Ixr) with a non~dense orbit.

Urbanski | There is a lower bound on cap of compact
(Ub) invariant sets.

Unless otherwise stated the above results refer
to a hyperbolic automorphism of ‘I‘n, AsT"5> %, Most
of the results are not stated in their full generality

and many results have been left out completely. The

techniques used in (Pr), (Ir), and (Ub) largely stem
from (Ha2) .
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and he asks if the & can be removed. An easy covering
argument (c.f. Be) shows that Irwin's Holder continuous

path with non~dense orbit has the required propertye.

{

Urbanski's result shows the fractal nature of paths
with non-dense orbits. However, capacity is not a good
measure of the "infinitesimal wigglyness" of a curve.

If a curve does not vary very much near one point it

may have dense orbit even if its capacity is larger

than 2 - (loglkzl)/( Llog}hl)e

e

Def. 3.7 A path C:[0,1] = IF{2 satisfies a variation

condition f at toe [(0,1] (where f£: IR+-9> ]R+ is monotonic)

if given a small he R we let t. +s be the smallest parameter

O

value with s >0 for which C +s) = Cl(to)+h and then

1{%o
|C2(t0+s) - C2(t0)| ¢ f£(lhl)

where Cl,C-2 are the coordinate functions of C.

o

The following result (which was proven independently

of Urbanski's) applies edqually well to the maps of‘T2

(if the eigenvalues are irrational) and T3 we have been

studying, although we prove it in the more complicated"l‘3

setting.

We shall work in the covering plane using coordinates
given by taking the coordinate axes along the eigenspaces

and coordinates defined by distance.
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Thrm 3.8 Let A be a 3x3 hyperbolic matrix of integers with
ldet Al = 1 and eigenvalues with|X1]'7 Ile > 1 > |k3| >
Let C:[0,1] > ]R3 be a path such that (Cl ,C2) satisfies a
variation condition f(h) = ch® with a >(log |2, )/(log|>\1| )

at t . Then the orbit of p(C) under A is dense in'T3

3

where p: IR3 > T is the covering mape.

Proof: By taking a power of A, if necessary, we may assume
that X1‘> X23>1,(this does not affect logile/ log|>i|)-
We shall show that p(C) has dense forward orbit. Hence

we may, by considering only the unstable components of C,

assume that C3 = O

Suppose z=C(tO). For the moment we define C=C-z in

order to assume that 0=E(t We first show that for all

O)'
M and {/3 Y0 there exists m' » O such that for all m% m'
. mA m=

Vre(©,M) 1s>0 with \lcl(to+s)=r and |X2C2(to+s)\ L t/3.

Write C=cQ and define a path cl as the image of CO under A,
1 _ O 1 _ O
C,(s) = xlcl(s), C,(s) = A,Co(s)e

Since C~ satisfies a variation condition, so does Cl. For

take t,ys,h as in the definition of a variation condition.

et h'= th, then t0+s is the smallest parameter value

larger than to for which

1 S |
Cl(to) + ht' = cl(t0+s).
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Thus
lCé(t0+s) - Cé(to)‘ = Xz\Cg(to+s) - Cg(to)\
$ Ajych® = >\2>\1'a c(M\h)* = me(nr)?

where M = >\2)\;a. Note that O<)A< 1 If we inductively

O
where fn(h) = clunha. Choose a small h >0 aﬁd a K>0 so

define paths C” satisfies a-variation condition fn at t

that )\‘;‘.h >?M. There exists n ?0 such that
n -l
C,(ty*t) = h  and \cg(to+t)\ <\, (&/3)

from the variation condition- for C'. Then if m'=n+r
and m5m', A"C has the property that for all ré(O,M)

] , m
there exists s >0 with )\I:Cl(to+s)=r and l )\2C2(‘t0+5) ‘< &/3.

Write EM = (O,M)XEO}. Since the eigenspace for )\1
is dense in T3, given (£/3)7 O there exists M>O0 such that
for all x€T3 there exists y'¢ EM with d(x,y')< &/3.
Hence for all p and x¢ T3 there exists y¢€ Pt+Ey with
d(x,y¥)< 2&/3. For there is a y''€E, with d(y'=p,y'"')< £/3
so d(y',y''+p)< ¢&/3 and putting y = y''+p,
d(x,y) < 2g/3.

3

We can now show that given x €T~ and €7 O there

is m' 2 O such that for all m> m' there exists s> 0 with
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d(AmC(to*‘S)’X) < &. For take &,M,m as above, then with the
notation of the previous two paragraphs there exists s7 0
with

m A

AT Cl(to), C(ty+s)) =y

and p=C(t So

o)
d(x, AmC(to+s))
¢ d(x,y) +d(y,AC(ty+s)) = 28/3 +€/3 =¢,

Thus the forward orbit of C is dense.

This proves the theorem.

It is easy to give an example of a path C with

Sp(C) 3 2 - oglhl

log|)\1‘

; : . L . 4 b
but satisfying a variation condition h = h~ where

b ¢ (loglX, |)/(1log|A | )e We work in EY using coordinates
b
as in the above proof. Let g be the graph of h w» h.,

-n
Let G, be the closed region bounded by g, =9 X=2 4y and

x=2'n'1. For each n choose a curve C n with

og 1

- -y -
C,< G, and Cn n{(x,y); x=2 r} = (2 ~,0) for r=n,n+l,

Let C =\r{ C_+ Then clearly

Sap(c) 5 2 - 109

’ log l >\1|



78

loglkzl
but C satisfies a variation condition h =» h” ', b<{ .
log]All

It 1is easy to use the recurrent set formalism to
construct lots of invariant sets for expanding endomorphisms

~ > 2

A of T, Any finite alphabet S with £:S & Z° and 6:S* & S*

such that f6 = Af will generate a set on‘T2 invariant

under AAJi Let Y = p( :)—- Ke(S))o Suppose G(S) - 31- .Sr

then

AKG(S) = Ui:].( Ke(si) + Zj<i f(sj))

Hence Ap( Kg(s)) = U.Z, p( XKg(s;)) and AY = Y.

Clearly the fractal dimensions (i.e. Hausdorff
dimension and capacity) of Y are the same as for Kge

Whilst estimating capacity we shall use the notation of
the previous chapter, in particular L = A, but L is the
map defined on page 23 and not the induced map on.Tz.
We need to know if Kg is well matched, and we claim
that XK, is well matched if and only if no essential
symbol duplicates (c.f. D3 5.3, 6.1). By the remark

o

to one if and only if no essential symbol duplicates.

after 2.14 we only need to show that T, is bounded

If we aséume there is no essential duplication,

since £15 » 22,

1< 'Slﬂ M. = .
% { J (S,m) $ O s Slocsl(s’m)’ SJ

£(SyeeS5.) = (p,q) §

2 .nd all se<E.

$ lEl  for all (p,q) € Z
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Suppose diam ]Ke(s) <xr for all s Then 1if vy ¢ San Ke(s),
: m__
K {1 < J < l(S,m) s O s = Sl..sl(s’m), SJ-EE,
y € l(e(sj) + f(sl..sj_l) }
S 4r2‘Bl C

Hence %[;_c_e Zez NgX = yli < 4rzlEl » and g is bounded to
one. If an essential symbol duplicates, the argument
of 2.14 (iii) = (ii) shows that T, is not bounded to one.

If we have chosen 8 so that the topological dimension
of XK, is one and K

3 o
estimate (*) equals the capacity of Ky » To see this

is well matched, the dimension

notice that if Vn is any n-cylinder of Kg the

projection oan onto the Az—eigenspace has non-empty

interior. By the Markov property of K, we can find an

€20 and squares Q. with the following properties,
i) Qe N Ke(s) projected onto the )\Z-eigenSpace 1S an

interval.

ii) (Qg *+ f(syees; 4)) (Qg + £(syeesjy)) = P

i

J
when é"(s)=s]_....‘...a-'.r

iii) Q_ has sides parallel to the eigenspaces, with side
length Ce
Any cover of -I(e by squares with sides parallel to the

eigenspaces and side length 1, E)\Inﬂl‘i' 1l ¢ E.X;n, must

have at least (klkgl)n squares covering

~en
L (Q + f(s seS., K (S)o
S, ( 1 J.-l)) A © nh(cre)
Since the number of n-cylinders is asymptotic to e ’

we have at least conste (X, )\;1)n exp(nh(gg)) squares
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of side 1 covering Kge This implies that

h(sg) = log | X,

cap JKe > 1 +
log |,

and hence that (*) equals cap Kg in this case.

Application of the recurrent set formalism to

the case of hyperbolic automorphisms of T3 1s more

technical.

Prop. 3.9 With the notation and conditions of 3.3,

suppose that 0:5*a35*% is chosen so that

(int (EAai,OJxK[Wi:])) r\ic::l-i-H : qG.ZZ3'§= @ ($)

for each i,in the induced topology. Then p( Y Xg(s;))

T3 3

has non-dense orbit under R& *T o

Proof: Let : :
- UJ y 0 (er

in the pattern. By ($) we can use the argument of 3,13

+{Q,t5]) be the set of line intervals

(p58) to see that
K\:ani] - Uj ,m(rjm-bio’tj])
U \J
for all n. Hence K (OW;) < (5 n* Kols3) n,

and so

3

Ke(enwi) - ) (g + [ak,O]x KQ(WK)) . qeZ”, k=1,2,3

qk
Thus the forward orbit of P( Kg(s,)) is not dense
n n : . u
because Kg(6'W.) = A" K (W.). Since p( Kg(s;))c W (0),

the backwards orbit is not dense either.



The above construction differs from constructions
given in (Hal,Ha2,Pr,Ir) because we have a single
condition to check that ensures a non-dense orbit.
Previous constructions were based on Hancock's idea

3 3

of taking a curve C in T and a region U<T~, and

inductively perturbing C iffﬁpc.entered U so that

ARc U =g for all n.
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FIGURE 25

A-nKEGnW] for n=1,.,4 where w=slszs'£1$;1s and

= - 3 1 . .
esl 52515151 652-325251 A = (1 2). Th;s choice of ©

satisfies the conditions for 3.1. cap Kg = 1.7484.
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FIGURE 26

A"Tk(6™W] for n=l,.4 where w=515251' 8, and

= - (3 1 . .
951 5151555, 952---315252 A= ( 1 2) s« This choice of ©

satisfies the conditions for 3.1 . cap X 4 = 1.7484
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FIGURE 27

A nK[enw] for n=1,,,4 where w=81$25;15;1 s and
_ -1 (3 1 .
981 5251828182 Sl 952- 525251 A = (1 2) e Thas

choice of © satisfies the conditions for 3.1

cap K, < 1.8832, and this example has essential dup.}ication.
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FIGURE 28

\
WY
\\\\\\

A""k(e"w] for n=1,.,4 where W=s s,s]'s,” , and

- -l =1 B _ (3 1). Thi
651 8281528184 53 sls1 and 932-523251A 1 2 is

. » [ ] L *
choice of 6 gives an invariant subset for A.

In this example .there is essential symboliduplication-
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FIGURE 29

A:nKEBnWU for n=1,.,4 where W=815;152 ey and
- -1 -1 _ 3 1
es1 51523153 S4 slsls2 632—528281 (

have SII and 3'2'1 as virtual symbols. cap Ke € 1.9572.

A =
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CHAPTER FOUR

DIMENSION OF SELF AFFINE SETS

This chapter goes back to the question of calculating
dimension for fractals (e.g. recurrent sets) having a
subshift of finite type structure when the scaling map 1is
not a similitude. In this situation, as we saw in Chapter 2,
even if a recurrent set Kg is well matched the dimension
estimate (*) may not equal cap( K, ). Thus it is impossible
to make fractal dimension calculations without geometric
information in addition to knowledge of the subshift of

finite type structure.

Many physicists (e.g. Br, Fa, Grl, Gr2, Wi) have been
interested in making fractal dimension calculations in
numerical studies of fractal (strange) attractors. Takens
(Ta) raised the question of whether in this context
Hausdorff dimension equals capacity - an important question
because of the relative ease of estimating capacity.
Grassberger (Grl) recently wrote, refering to (Fa),

"It is generally accepted (Fa) that for almost
all attractors D {capacity) is equal to the

Hausdorff-Besicovitch dimension."

Here we shall give some simple examples demonstrating that

this assumption is not correct in general. These examples
are not themselves attractors, but could clearly be used

to construct examples which are.

For most of this chapter we deal only with certain
self affine sets in.lf{ We construct these sets as follows.

: 2
Choose integers r >s >1, and in the unit square [0,1]
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draw a grid of lines [0,1] X El/s} for i=0,..,s and
i}?r} X [Owi] for j=0,..3r. Shade some of the rectangles

(fig 20) = the shaded set gives us our first approximation

Ml to the fractal. Let L = (g 2) . Replacing each

shaded rectangle with a copy of Lfl(Ml) gives the second
approximatioan. Proceeding inductively we define M_ by
replacing the shaded rectangles of M__, by copies of
Lf(n-l)(Ml). Theth—>E. a compact non-empty subset of ]R2
(covergence being in the Hausdorffmetric). One can easily
construct E as a recurrent set (by liberal use of virtual
symbols). There is also a projection to E from a full
shift, where an n-cylinder of E is the intersection of E
with a shaded rectangle of M . Label the rows of the

original grid O,l,..,y,5~1. We write k. for the number of

shaded rectangles in row i of M1 (fig 30).

shacded re.ckancaie.s

FiG. 30

The following proposition shows how insensitive

capacity is to the geometry of E.
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Prop. 4.1 Let t =)ﬁ<{i I k. # 0} e« Then

cap(E) = ( 1 - 1 )109 t + log(Zi;é ki )

log s log r log r

il

Proof: Let Gr(n) be the grid of squares in \-_0,1] e with

side length r ! whose corners have coordinates of the
form (i/rn, j/rn ) 5 O0%1i,3¢ rn. We only have to estimate
capacity using coverings by squares from g Gr(n), for
define N'(r”") to be the minimum number of squares in Gr(n)

required to cover E. We claim that

r]-i_i-:éu log N'(r™ M) = lim log N(s) and
n.log r 20 =logg

lim- log N'( r-n) = lim log N{E)

n>c0 nNe.log r E=»0 -logc

For given ¢ 70 choose n such that 1:""'n AR r"(n"l) o

each £-ball is contained in 9 squares of Gr(n-1) and
therefore 9r° squares of Gr(n)e. Each square of Gr(n) is
contained in a ball of radius E.

Thus N(£) < N'(r™™) <9r°N(e) . This,together with the fact

that _log¢ — 1 as ‘¢ (or r—n) -» O , proves the claim.,
o log ) o

Our set is self affine and so for any n-cylinder of E,
C,9 Ln(Cn) is just a copy of E. Thus a covering of C_ Dby
squares of Gr(n) corresponds exactly to a covering of E by

horizontal strips (fig 3\).

Therefore we can count the number of -squares from

Gr(n) required to cover Cn by counting the number of

horizontal strips of height (/r)" = X' intersecting E.
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0
FIG. 3]
e .
-
" .
— E— R
"y I
" —

We already know that exactly t? horizontal strips of

height s 7 intersect E. Choose n so that A sg™d < \n=1 .

Taking logs gives

n(logr -1) y J > (n=1) (1ogr -1) (1).
log s log s

The horizontal strips intersect the y-axis in intervals
of lengths A" and s™J. Each s J-interval intersects at

Xn_l-interval

most [S-j- an] + 1 Xn—intervals, and each
intersects at most [Xn'l.sjl + 1 s-j-intervals. Hence
X ( Xn-strips required to cover E) < itj( [_s-j N 1) and
X M -}strips required ‘to cover E) > tj( L)\n_lsjj + 1)
Now, 109(S-j A-n) is bounded above and below by constants

(from (1)). Thus there are constants ¢ ,c2‘> O such that

1
X (squares in Gr(n) required to cover C,)

n : :
= X ( A -strips required to cover E)

€ [cl ’Cﬂ -tj

There are ( ?"1 ki)n distinect n-cylinders of E, so
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cap(E) € 1lim 1log (cztj(iki)n)

N -»*o —~
"~ log(r n)
-1 3 n
= lim log (c,t"(gk,)") ¢  <ap(E) .
N -»00 -
log(r )
Therefore

cap(E) = (log r = 1 )log t + log(s ki)
log s

log r

(using (1)) as claimed.

We now go on to calculate the dimension of E, but

first establish some notétion:

R = (Pgre+1Pg_y) has S5 'p,=1, p0 and p;=0 if k=0

We write H(p) = £ g-l pilog P; - ’
Y | oy S=1
B((0) = {0} and B (p) =Tl = Bp;) -
'we shall write y = O.ylyz....; base s, put
. P i -
P(ysn,i) =3’${1 ::'anl y.=i} and E_n(y) =( nn = ) > 1

J 1=

We use the sup metric when working in R".,

The following lemma is a slight generalization of a

calculation due to Eggleston (Eg)
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Proof: Call this set A, Firstly note that if ye A_ ,

then _ _F_’n(y) & B'S(Q) infinitely often (1)
for otherwise there is an N such that for all n > N,

B (y) - p| > §
which implies that [g_ - El > § for any limit point q

of E_n(Y)o

Let X(n,§') be the set of intervals of length s™®
whose left hand end point x is of the form x = k/sn for

some k€¢Z, and also satisfies P (x)e B.(p) .
Then if (' > & 4, for all N we have by (1), |
o0
U
n=N X(R1 &) > Ag (2)

We_shall show that the dimension estimate coming from (2)

almost gives the required answer.

We can bound X X(n, §') combinatorially,

Xx(n,g) = S n.. . (3)

to‘. ® o0 .ts-ﬁlt

where the summation is over s-tuples of integers (t

- S-~1 _
. such that t./n ¢ BS,(pi) and > t: = n.

o?!* lts_l)

Write X, = -H(r)/log s and suppose that sup{°<£l Eegg,(p)}

| ¢ B .
equals "‘(g y 4 g,(l?.)

By Stirlings formula, if ti/né B‘g(pi)

n! !27\’!%(8-1)0““*.%
— Y
o0 ! ' '
tot ° ts_l to“'% ts-1+¥

(to) ncooo(ts_l)
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1) & - t t._4 =1
= (ZTT)!,(S 1).n i(tol 'ts-l) ° ((tO/n).?..(‘ts_l/n) > 1)

- - R x r. . -
— (2]_‘_)&(5 1.) n.(l s);i.(ro. 'rs-;l) ¢(r0-?toors_1s 1) i

where «r. = ti/n

< (ZTY)%(S-l)n ('1-5)%-(7'\' g"l(pi-é‘ ))-;5- SOEI-n' since &€ 55,(9.)
X(s-1) (1-s)% _ ik on
< (27) (= )n( *) -(TTS 1(1”1'5')) . s =

by definition of g

The summation (3) has less than (ZJ'n)S-]' terms, and so

X X(n,y ') < Kn(l-s)& ns-l so(gn some constant K> O
4 ~ ®

(s=1)% o n
n

= K s 9 (4)

' -1
An interval of X(n,d') is of length s .« Thus the
d-measure estimate for A, arising from (2) is

o0

g s (s=1)% [ <\ n
q
n=N %M < K . n= n ,sd__ ~
snd ’ s
< &0 if d>

q

The above estimates hold for all large N, so we have
shown that for all cr' SE s
dim A‘S- S sSup i -H(‘g_)/log S , g.e Bg:(B)}
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Letting {'—§ gives the required upper bound. Eggleston‘é

result (Eg) is that

dim §y : Bo(y)»g{ = -H(q)./log s .

This gives the lower bound.

Lemma 4.3 Given £€>0 and N >0 there is a cover W of AS

using intervals u of the following form,
i) u has length r-" for some n(u) >N
ii) u ¢ [ks™™,(k+1)s™™ ] some kezZ.
iii) 2. ]u]a‘<1 where a = dim A, + ¢
well

Proof: Since dim A.< a, we can find a cover of A, W, soO that

vell'! 2 vl < ~(N+1) (1)
veZu{lVla < 271g72 (2)

For v e\ there is an n €N such that

() g ¢ oD :

- -N
Thus we can enclose v in an interval v' of length r n*( o
by (1) The interval v' may not satisfy (ii)e. Suppose

keZ and ks-ne vte Define

1 < R 2 R LI
Clearly [u,[® + [u® = 2lv!I% < 2rlv (3).

ul(v), uz(v) as above gives a new cover of Ay
W = {ul(v): uz(V): VC'LL'E

which by construction satisfies (i), (ii). Furthermore
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Z[ula < uc%l.' 2r':‘!“|"v|"’]L < 1 by (2) and (3)
el

Notation: Given p and € > O, choose the largest §>0

so that
S=1
= (Bs(pi)' 1og ki) < B_(p)
i=0 log r &
-1 log kg
where p = 55: P ( J ) . Then write
i=0 log r
=1 p(y,n,i) log k
E . = {(x,y)eE ¢ lim (Z Yl ___g___g-_>€ Ba(P)
2 n-eo \ i=0 n log r

and Ijn(y) has a limit point in Bg(g)}

Lemma 4.4 dim E_ _¢ supg(-l-l(g_)/log s) + p +Elg_€- Bg(E)}

P&

= dl

Proof: Choose ¢£'>¢. Suppose y is such that

im (S522 Plywmid) 1o ki) ¢ B,(p)
n log x
Then there exists an N such that

s~1

n >N > = P(yyn,i) log k. < p+ & (1).
1=0 11 log I

E, = {(x,y)esg,a : yeAN} some X .
oo
We have n\:{]. En E:2 ¢ ! and show that for all N
B ’
dim By is less than d,, for then dim Eg,e' $ dye

Since A-NCAJ » the set from lemna“‘-zo dim ANS dim AS °
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Lemma 4.3 guarantees the existence of a cover W of AN

with the properties stated there. Given an interval uell
we define a collection ©0f squares U(u) in the following way.
Consider S = [0,1]x u . S intersects E, and in particular
intersects some n-cylinders Cn‘ S ncn is covered by a
square of side r . Let
W(u) = {v : V 1S a square of side r covering S,\Cn ’

some n-cylinder Cn}

X U (u) =X E n-cylinders intersecting S}

P(y,n,0), P(y,n,1) .. P(y,n,s-1)
ko kl ‘ ...ks-l

if yeu (2).

Since u covers part of Ayswe may assume y<€u Ay in (2).

Take aj)dim A, , b>p + ¢' . The collection
Wy = Y U(u) covers E, and we estimate (atb)=~-

dimensional Hausdorff measure using U, »

> |v|a+b = S S ]v|a+b (3).

v €U, uell ve U(u)
i a+b ~n(a+b )5 s-;l P(ysn,i
Now ve U(u) |v| < f ( )21- | | 1=0 k. (ysn,i) y Yéu Ay
But
1 log —nb Sjﬁ} x P(ysn,i)
n j=o % < 0
S=1
if and only if b> = P(yyn,i) log ki (4).
O n log x
Since yc¢ u ’
=1 P(y,n i) log k
> Y °9 i < p+ & from (1) and n >N,

O n log r
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< b Dby choice of b.

Thus (4) holds, so

s-1 -
r-nb \ kiP(y,n,J.) < 1
i=0 '
which implies that v%(u) lv]a*b < r-na.«fit: M 20’"'5?
and
arh
2 |v|a+b <2t S u)® from (3)
velU, ucu
ots
< 12% by choice of U .

This holds for all ¢'>& , which proves the lemma.

We are now able to calculate dim E. F. Ledrappier
showed me how to obtain the lower bound using Marstrands -

theorem (Mr) °

S-1 S=1
Thrm 4.5 dim E = sup <-Z O pilog Pi + > Pj 1og ki)
B log s O log r
= d

Proof: We first obtain the upper bound dim E § d .

Consider the subspace of rS* = { (psp) € R>x ]RE defined

by letting Ac ]Rs+1

be the set of (p,p) such that
s~-1
O= -p ¢+ ZO (Pi log ki)/log o

- ] -1 —
Let B = Aj ( {(pO’”’ps-l) ‘Zso Py = 1» Py 0} x (0,1] )

For any point (x,y)€ E there is a (é_,p) € B such that
™ ( SZ.I P(yyn,i) log kj._) = p
n-»= 0 n log x
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and lj_n(y) has p as a limit point.

We estimate dim E by partitioning B into a finite
number of subsets. Given ¢>O0 and (p,p)Sthere exists (>0

so that %BJ(pi)(log k;)/log xr < B,(p). Thus given ¢70

we can cover B by B.(p)xB,(p) « Since B is compact

U
(p)p)
we require only a finite number of such balls,

B < }()(Bg(g(k)) X BE(p(k))) k=1l,¢¢eym SOme me
By lemma 4.4,
dim E ¢ szp ( sup{(-H(g_) / log s) + p(k) + & Q.G.BS(Q(R))}>
We now let £-»0 taking finer and finer covers of B. This

proves dim E £ d.

We now have to show dim E>d. Given ye(0,1] define

E
y

We first show that

s-1 |
dimE_ 3y = Pj 199Xy = d, .
Y i=0 log r

Enf (x,y) 3 xelR}. Suppose that En(Y) > P = (po”’ps-l)'

Each n-cylinder Ch of E intersects By in a set contained

in an interval I of length r~". Define M0 & measure with
support on U In’ as lebesgue measure onlJ Irl multiplied by
r-n.ﬁiIn.ﬁ » The space of probability measures on fOsljx iY}
in the weak* topology is compact and so we can find a
subsequence /uni converging to a probability measure 1SS

with support on Ey. Since for each In,IA we have

Given {> 0, for all nSN

P -
= ¥yl logky o 5 pologk; - § .
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Take { =€.1log r« We claim there is a constant ¢ 70 so
d., ~¢
2
that for n >N , /u\( In) £ ¢ lIn‘ o Then Frostman's

lemma shows that dim Ey >, dz.

- £ -n(d
cCr

_5)

d
Mm(I) € ¢ | T_|

. -n(dZ -€) S
if log MI ) / log ( «x ) > 1 . But

log )u(In) Z‘i* P(ysyn,i) log k.

..n(t:l2 - £)log r n (2‘ pi(log ki) _ E) log r

»
log x

S, (1/n) « P(y,n,i) log K.

_ = 7 1
> pi( 1og ki) - §
* log r

Thus dim Ey>, d2. Eggleston 's result (Eg) says that

AB = {y : E,n(Y) < Q-} has dim AE = -H(p) / log s« Each

y €A, has dim E, » d; . By Marstrands theorenm (Mr)

-1
-H S . log k.
T R

yt'iAE y log s i=0 log r

Since for all p , ( Y E )c E, we have proved dim B > d

€ A
y EY
]

We now give some examples,

i) PEroducts of Cantor sets. In the example given in fig.32

it is easy to see that E is the product of a Cantor set of
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dimension (log 2)/(log x) with
another Cantor set of dimension
log 2/1log s« It is well known

that the dimension of the product

log s log r

ki = 2 or O for each i, the sup

in our formula occurs when
Po = Ps,= %+ Thus our formula gives the dimension as

log 2 + log 2 . Proposition 4.1 gives cap E = dim E,
cap E = dim E = 3/2

2) %7 We may have cap = dim when E is
.'TZ | %% not a 'PrOdUCtt of Cantor sets.
- %AA . . Here we have -

Capacity may not equal dimension.

Here cap E = 3/2, but dim E= 1+45

C

"It might be possible to calculate dimension for

some recurrent sets not of the form assumed above by
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finding a lippeomorphism (a2 dimension preserving map)

to a recurrent set with the right structure. In the

case of Kiesswetter*s curve, K,(fig 35; defined in (Ke))

no such obvious map exists because sets of the above form
are not graphs of continuous functions. However we can
still calculate dim K by a variant of 4.,1. The same

technique works for at least countably many Kiesswetter-

type curves although we only give it here for K. Dekking
(D1) showed how to construct K as a recurrent set and
raised the question of calculating dim K as K was the only
curve defined in (D1) for which he could not prove the

dimension estimate to be correct.

The Kiesswetter curve can be defined as follows (Ke)e.
Given a point x¢{0,1] , write x = O+x,X,e++ base 4.
Define )§_= O af X = 0 or Xi = xi -2 otherwise. Let

N, =X71¢3<€i s x; =0). Then write

K is the graph of k(x). Alternatively let S =‘fa{b} ’
define f(a) = (1,1), £f(b) = (1,~1) and 6(a) = baaa,

- (4 O _
©(b) = abbb. If L = (0 2) y K = Kg(a).

Our previous treatment of recurrent sets gives a
subshift of finite type projecting onto K. However,

because of the symmetry between 6(a) and 6(b),
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Ke(b) = A( Ke(a))
where A =(é -(]?) and we can ignore the difference

between a and be There is thus a projection X to Ke(a)

from 24 ’

T"((xl,ngoot)) - 0*x1x2.... .
If we define LiK3K by identifying ](e(b), f(b) + '.Ke(a)
f(ba) + Ke(a) s, and f(baa) + l(e(a) < L(K) 4in the

obvious way, ¥ = LT ,
Prop. 4.6 dim K = cap K = 3/2

Proof: For K the dimension estimate (*) is 3/2 so

dim K € cap K$3/2, We show dim K> 3/2 by Frostman's
lemma using 7',V where v is the Bernoulli measure on
> 4 giving each n-=cylinder measure 4~ (the same measure
is obtained by pushing Lebesgue measure onto K using the

map x = (x,k(x)))..

From the formula for k(x) it is clear that sup k(x) =1
and that the sup is reached for x=1. Similarly i)rzf k(x) ==1

(when x = 0+111 )., Let D 4 = (0,1]x[~-1 ,1] « Pulling D_,

back via -1 (extending the domain of L in the obvious way)

gives rectangles D, (fig 36). Continuing this process

gives a sequence of covers Dn of K¢ Each D n"~ D n has sides

of length 4-(n+1) and 2°2. We divide each.,Dn into 2n+2

squares of side 4-(n+1) « Such a square we call an Foo In

order to apply Frostmarfs lemma we must calculate Ty V (Fn).
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Define G ; = [0,1]x [1/2""%, (i+1)/2™"] i=-27,..,271.

’
v+
Then for any Fn’ L 1Fn = Gn,i y Some 1, sub-cylinders of

F_ map onto sub-~cylinders OfGn,i and D <F_  map onto

Dm,c:Gn ;* In particular if m = 2(n+l1), m' = n+1 (fig 37/).

Aﬂ
'2.( A+))
[j¥(:%! NNH I"IIIII

G,\i; FlG. 37

We must now count the number of sub-cylinders of G_ ..
4

This nunber is greatest for i=-1,0 because each Qm has

twopm+1 in the middle of Qm_and one Dm_._1 at either end

(fig 36). Let a denote the number of complete D __,'s in

'
Gh,O’ bn denote the number of Dn+1 s whose lower half

intersects Gn,o’ and c. denote the number of D 's whose

n+1

upper half intersects G Then

n’o..

1) a = a + c_ (since a complete D

n+1 n n+1 in Gn,O contains

one Dn+2 lying in Gn+1’o,-and each D

n+1 with. upper half

lying in G 4 has one D42 in G

n+l ’0) °

2) b ., = 2a (since a complete D

in G contains two

n+l n,o
D 's lying about the line y=2-(n+2).
n+2
3) c 4 T 2¢, (since each D 4+1 With upper half in Gn’0

contains two D__.'s with upper half in'Gn+1).

We have a = 3:’b0 =2y cy =4 and it is easy to check that

— —_ Nn=-2 n-1
Cn-2 !bn—6+3(2 -1),an=3+4(2 -1)
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From the way we defined V and the symmetric
distribution of Dm in a Dn (m>n) it is easy to see that
the T,V measure of the upper or lower half of a D_ is

half that of the Dn' Hence,

ng(F ) < (a + Pp +'cn) Te(D) m=2(n+1)
a! ${% " A

5 42n+3
= conste.2 2D
3/2
Thus TeV(F_) < const, \F_I77%

Now if U is an open ball of diameter t choose n with

t & {4n+1’ 4n] e Then t > const.4-n. Also since t ¢ 4-1:1 we

need at most four F‘n__l's to cover U. We therefore have

lUI3/2 = t3/2 = const.4.4-n3/2 = const.T)?)( F

n-l)

7 const e V(U)o

Frostman's lemma now gives HM (K) > O which proves

3/2
the proposition.
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