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Summary

This thesis concerns the behaviour of maps with a unique critical point which

is either a maximum or a minimum: so-called unimodal maps. Our first main

result proves that for C2+η unimodal maps with non-flat critical point we have

good control on the behaviour of cross-ratios on small scales. This result, an

improvement on a result of Kozlovski in [K2], proves that in many cases the

negative Schwarzian condition (which is not even defined if a map is not C3) is

unnecessary. This result follows recent work of Shen, van Strien and Vargas. The

main tools are standard cross-ratio estimates, the usual principal nest, the Koebe

Lemma, the real bounds from [SV] and the ‘Yoccoz Lemma’.

Our second main result concerns questions of structural stability. Prompted by

the final section of Kozlovski’s thesis [K1], we prove that in some cases we can

characterise those points at which a small local perturbation changes the type of

the map. We prove for these cases that this set of ‘structurally sensitive points’

is precisely the postcritical set. The main tools are the Koebe Lemma, the real

bounds of [LS1], and the quasiconformal deformation argument of [K3].

The thesis is arranged in the form of two chapters dealing with each of the main

results separately, followed by an appendix to prove an auxiliary result. The

chapters may be read independently of each other.
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Chapter 1

Cross-ratio bounds

In this chapter we will show that the negative Schwarzian condition, which is

only defined for C3 maps, is often unnecessary for C2+η (for any η > 0) unimodal

maps with non-flat critical points. Our main result is that for such maps, we can

choose our intervals in such a way that we have good bounds on how cross ratios

are affected. That is, for such maps, for all 0 < K < 1 there exists some nice

interval I0 around the critical point such that for any intervals J ⊂ T , if fn|T is

a diffeomorphism and fn(T ) ⊂ I0 then

B(fn, T, J) > K,

A(fn, T, J) > K.

This is principally an extension of the results of [K2] and [SV].

1.1 Introduction to cross-ratio estimates

For maps with critical points we can have no bound on non-linearity. However,

for C3 maps with negative Schwarzian derivative we have some nice properties on

how intervals behave under iteration, for example there are some useful extensions

of the Koebe Lemma which do give us some bounds on non-linearity in certain

cases. As demonstrated in [MS], such properties tend to arise from the fact that

maps with negative Schwarzian derivative increase cross-ratios.

In fact, negative Schwarzian seems a somewhat synthetic condition. A smooth

change of coordinate can destroy this property. Or, indeed for C3 maps, an

1



CHAPTER 1. CROSS-RATIO BOUNDS 2

analytic coordinate change can create a map which has first return maps with

negative Schwarzian, as proved by Graczyk, Sands and Świa̧tek in [GSS2]. So we

might look for other conditions to give us properties like increasing cross-ratios.

We note that many theorems do not even need cross-ratios to increase, but for

them to be bounded away from zero. Probably the most important such result in

one-dimensional dynamics is the Koebe Lemma. Kozlovski proved in [K2] that

for C3 unimodal maps with non-flat critical point, lower bounds for the change

in cross ratios under iteration do exist, provided the intervals are small. So he

was able to transfer the properties of maps with negative Schwarzian to ‘small

scales’ for C3 unimodal maps with non-flat critical points.

So we might say that negative Schwarzian condition is only really meaningful on

large scales, for example limiting the number of attracting cycles. (However, it

is also interesting to note that Palamore [P] has some results which apply on

small scales too. There it is shown that the sign of the Schwarzian is significant

in finding the speed of convergence for Newton’s method of finding the zeroes of

a map.)

It is a natural question to ask whether the result of [K2] can be extended to

the C2 case, as most of the results in one-dimensional dynamics are proved for

either C1 maps, C2 maps, or analytic maps. It is often the absence of non-

wandering domains for C2 maps which lies behind the C2 results (in fact this can

be weakened slightly to C1+Z maps too, see [MS]). In order to deal with central

cascades, here we prove the result of [K2] for C2+η maps. It is likely that many

proofs which currently rely on negative Schwarzian for cross-ratio estimates and

so are currently proved only for C3 maps (for example the decay of geometry in

[GSS1]) can be extended to the C2+η case by our results here.

In [K2], real bounds were found for all unimodal maps, even when there were

cascades of central returns: saddle node cascades or Ulam-Neumann cascades.

Some real bounds were proved in the C2 multimodal case without inflection points

by [V] and also in [Sh1]. While these bounds suffice for us, the successor to

that paper [SV] is more general and is closer in spirit to the following approach,

although we restrict ourselves to the unimodal case. (For example, they provide a

generalisation of the following result of [K2] to the multimodal case: there exists

some neighbourhood U of the critical values of the map f such that if fn(x) ∈ U

for n > 0 then the Schwarzian derivative of fn at x is negative.)

However, these bounds were proved away from central cascades so we must find a
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way of extending some of their useful properties into the cascades. We return to

methods applied in [K1] to bound a sum of intervals which was to be used in the

proof of the main result in [K3] (this method not required in the final version).

Finding bounds there relied on ‘decay of geometry’. We don’t, however, require

decay of geometry. Instead, we show that we can decompose the sums of intervals

into blocks determined by the central returns. These blocks are then shown to

decay in size in a uniform way.

1.2 The cross-ratio theorem

We will generally assume that we are dealing with maps that are merely C2 and

then point out when we are restricting our results to the C2+η case.

We explain the terminology in the following definitions.

Definition 1.2.1. For some interval T , suppose that J ⊂ T is a subinterval. If we

denote the left-hand and right-hand components of T \J by L and R respectively,

then a cross-ratio for J and T is the value of

|T ||J |
|L||R| .

We denote this by B(T, J). We also have the cross-ratio

A(T, J) :=
|T ||J |

|L ∪ J ||J ∪R| .

Suppose that g : T → R is a diffeomorphism. We let B(g, T, J) := B(g(T ),g(J))
B(T,J)

and

A(g, T, J) := A(g(T ),g(J))
A(T,J)

be our estimates of how the map acts on cross-ratios.

Observe that for diffeomorphisms g : T → g(T ) and h : g(T ) → hg(T ) we have

B(hg, T, J) = B(h, g(T ), g(J))B(g, T, J).

Similarly for A(g, T, J).

For a C3 map g of an interval, the Schwarzian derivative Sg is defined for non-

critical points x as

Sg(x) =
D3g(x)

Dg(x)
− 3

2

(
D2g(x)

Dg(x)

)2

.

Section IV.1a of [MS] shows that cross-ratios are increased by maps with negative

Schwarzian.
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Definition 1.2.2. We say that T is a δ-scaled neighbourhood of J if |L|
|J | ,

|R|
|J | > δ.

When we have some ‘universal’ lower bound on δ for some such pairs of intervals

J, T we say that J is well inside T . (Our bound, which will be denoted by χ, will

depend only on f .)

We suppose throughout that our functions map from I to I where I is the unit

interval [0, 1]. Furthermore, we will assume that f(∂I) ⊂ ∂I (these are not

meaningful restrictions).

Definition 1.2.3. We say that a map g : [a, b] → R is in the class Ck+η for some

0 < η < 1 if Dkg is continuous and, furthermore, there is some constant C such

that |Dkg(x)−Dkg(y)| ≤ C|x− y|η for all x, y ∈ [a, b].

Definition 1.2.4. We say that a unimodal Ck map has non-flat critical point c

if in some neighbourhood U of c, there exists some Ck diffeomorphism φ : U → I

with φ(c) = 0 and g(x) = ±|φ(x)|α + g(c) for some α > 1. α is known as the

critical order for f . We denote the set of such maps by NF k. We also denote

this neighbourhood by Uφ.

Such maps have many useful properties. For example, such maps have no wan-

dering intervals (that is, there is no non-trivial interval U such that fn(U)∩U = ∅
for n ≥ 1), see for example Chapter IV of [MS]. More importantly for us here is

how such maps act on cross-ratios. In particular, how iterates of such maps act

on cross-ratios. Our main result is as follows.

Theorem 1.2.5. For any η > 0, let f ∈ NF 2+η be a unimodal map with a

critical point whose iterates do not converge to a periodic attractor. Then for any

0 < K < 1, there is a nice interval V around the critical point such that if, for

an interval T and some n > 0,

• fn|T is monotone; and

• each interval from the orbit T, f(T ), . . . , fn(T ) belongs to a domain of the

first entry map FV :
⋃

j V j → V and fn(T ) ⊂ V ,

then

B(fn, T, J) > K,

A(fn, T, J) > K

where J is any subinterval of T .
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This theorem is proved for C3 maps in [K2].

We have the following corollary which we prove in Section 1.3.

Corollary 1.2.6. For any η > 0, let f ∈ NF 2+η be a unimodal map with a

critical point whose iterates do not converge to a periodic attractor. Then for all

0 < K ′ < 1 there exists some nice interval I0 around the critical point such that

for any intervals J ⊂ T and n > 0, if fn|T is a diffeomorphism and fn(T ) ⊂ I0

then

B(fn, T, J) > K ′,

A(fn, T, J) > K ′.

Our setup will involve first return maps, as outlined below.

Definition 1.2.7. For a map f , we say that an open interval V is nice for f if

fn(∂V ) ∩ V = ∅ for n ≥ 1. (When f is clear we just refer to such interval as

nice.)

Suppose that c is recurrent. Let I0 3 c be a nice interval. Given some x ∈ I

which eventually iterates by f into I0, there exists some minimal n(x) > 0 such

that fn(x)(x) ∈ Ii. For every x ∈ Ii there is some domain Ij
i ⊂ Ii around x which

maps diffeomorphically to Ii. We thus obtain the first return map F0 :
⋃

j Ij
0 → I0

to I0. We label the interval which contains c by I0
0 . This branch is referred to

as the central branch. Observe that F0 is diffeomorphic on all branches Ij
0 when

j 6= 0 and is unimodal on I0
0 . For the next step of this inducing process, we now

let I0
0 also be denoted by I1. Then we derive the first return map F1 :

⋃
j Ij

1 → I1,

where we denote the central branch by I0
1 . Thus we obtain maps Fi :

⋃
j Ij

i → Ii.

We refer to this process as inducing on I0. The sequence of intervals I0 ⊃ I1 ⊃ · · ·
is known as a principal nest.

For every x /∈ Ii which eventually iterates by f into I0 there is some domain U j
i

around x which maps diffeomorphically to Ii. So we may extend Fi by letting

Fi|Uj
i

: U j
i → Ii. Then letting

⋃
j U j

i consist of all such intervals added to
⋃

j Ij
i ,

we let Fi : U j
i → Ii be known as the first entry map to Ii. We will often switch

between these two very similar types of map.

Given Fi :
⋃

j Ij
i → Ii, we will generally assume that Fi(c) is a maximum for

Fi|Ii+1
(this assumption is merely for purposes of exposition, it plays no role in
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the proofs). We say that Fi is low if Fi(c) lies to the left of c and Fi is high if

Fi(c) lies to the right of c. Fi is central if Fi(c) is inside Ii+1 (if this is not the

case, then Fi is non-central). A representative of some Fi where Fi is high and

central is given in Figure 1.1.

I
i+1

I
i

Figure 1.1: Fi is high and central.

Note that we will use capitals to refer to first entry maps or first return maps

throughout this paper. For example GJ will denote the first entry map of g to J .

Strategy of proof

It can be shown that we can get a lower bound on B(fn, T, J) if we can find some

bound on
∑n−1

k=0 |fk(T )|. We will split up this sum in a manner determined by

the principal nest explained above.

We will suppose that I0 is some small interval and T is an interval and n is some

integer such that fn|T is a diffeomorphism such that fn(T ) ⊂ I0. Let n0 = n. For

a given i > 0, suppose that some iterate f j(T ) enters Ii. Now we let ni be the last

time that f j(T ) is in Ii, i.e. fni(T ) ⊂ Ii and fni+j(T )∩Ii = ∅, j = 0, 1, . . . , n−ni.

If f j(T ) never enters Ii, let k ≥ 1 be minimal such that f j(T ) does enter Ii−k.

Then we let ni = ni−k. We will be interested in estimating
∑ni−ni+1

k=1 |fk+ni+1(T )|
for different i. We refer to this as the sum for Fi. Note that if we don’t have an

infinite cascade, as i → infty the intervals Ii shrink down to c. Thus we are able

to bound
∑n−1

k=0 |fk(T )| by bounding the sums for all Fi. We will find another

method in the infinite cascade case.
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In order to prove the main theorem, we will consider the following cases.

• Fi−2 is non-central. We consider the sum for Fi as follows.

Proposition 1.2.8. There exists some Cwb > 0 such that

ni−ni+1∑

k=1

|fk+ni+1(T )| < Cwbσi
|fni(T )|
|Ii|

where σi := supV ∈domFi

∑n(V )
j=1 |f j(V )| (and n(V ) is defined as k where

Fi|V = fk).

We call this the well bounded case. It is dealt with in Section 1.4;

• Fi−2 is non-central and Fi, . . . , Fi+m−1 are central. We consider the sums

for Fi, Fi+1, . . . , Fm as follows.

Proposition 1.2.9. For all ξ > 0 there exists some Ccasc > 0 such that

ni−ni+m+1∑

k=1

|fk+ni+m+1(T )|1+ξ < Ccascσi,m

where σi,m is defined as follows. Let σi := supV ∈domFi

∑n(V )
j=1 |f j(V )| (and

n(V ) is defined as k where Fi|V = fk). Let V̂ ⊂ Ii \ Ii+1 be an interval such

that f n̂(V̂ ) is one of the connected components of Ii \ Ii+1 for some n̂ > 0

and f j(V̂ ) is disjoint from both Ii \ Ii+1 and Im for 0 < j < n̂(V̂ ). Then

σi,m is the supremum of all such sums
∑n̂(V̂ )

j=1 |f j(V̂ )| and σi.

We call this the cascade case. It is dealt with in Section 1.5;

• Fi−2 is central and Fi−1 is non-central. We consider the sum for Fi as

follows.

Proposition 1.2.10. There exists some Cex > 0 and ni+1 < ni,3 < ni,2 < ni

such that

ni−ni+1∑

k=1

|fk+ni+1(T )| < Cexσi

( |fni(T )|
|Ii| +

|fni,2(T )|
|Ii| +

|fni,3(T )|
|Ii|

)

where σi := supV ∈domFi

∑n(V )
j=1 |f j(V )| (and n(V ) is defined as k where

Fi|V = fk).
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(In many cases, the latter two summands are not required.)

We call this the exceptional branches case. It is dealt with in Section 1.6;

• we have some interval I0 such that Fi are all central for i = 0, 1, . . .. We

call this the infinite cascade case. We prove a similar proposition to those

above in Section 1.7.1.

For the case where c is non-recurrent see [St]. Finally, the proof of Theorem 1.2.5

is given in Section 1.7.

With these propositions we can decompose the sum
∑n−1

k=0 |fk(T )| into blocks of

sums
∑ni−ni+1

k=1 |fk+ni+1(T )|. These blocks will then be shown to decay in size in

a uniform way.

The first two cases use real bounds of Theorem 1.3.5. These bounds imply that

the cross-ratio for any branch of Fi and Ii is bounded above. This will also be the

case for all, but possibly two, branches of Fi in the third case. Then cross-ratios

are used to bound the sums. The main tool here is Lemma 1.4.3, which gives us

decay of cross-ratios when we have these real bounds.

The final case, which arises in the infinitely renormalisable case, is different from

the other three. It uses the Koebe Lemma and a lemma of [K2] to find some

uniform expanding property which helps bound the sums.

In all cases except the infinite cascade case we must ensure that we have some

initial interval which has a first return map which is well bounded. To do this we

can simply pick some nice interval to begin with and then induce until we find a

map which is well-bounded. This is always possible when there is not an infinite

cascade.

Note that we need extra smoothness to deal with the cascade case. This ensures

that we can deal with the case when we have many consecutive low central returns,

a ‘saddle node cascade’. Furthermore, note that the sum for Fi in the third case

only arises when Fi−1 is high and central. The sum for Fi when Fi−1 is low and

central is the same as the well bounded case.

In Kozlovski’s proof for C3 maps he was able to use the fact that there exists some

C > 0 depending only on f such that for interval J ⊂ T we have B(f, T, J) >

exp{C|T |2} and, denoting the left and right components of T \ J by L and R

respectively, A(f, T, J) > exp{C|L||R|}. See Chapter IV.2 of [MS]. In particular

this means that there exist such real bounds as in our Theorem 1.3.5 for all i, not
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just those for which Fi−1 is a non-central return. So the long central cascades we

encounter in Section 1.5 present much less of a problem in the C3 case. Indeed,

the work done in Section 1.6 is also unnecessary in the C3 case.

We will deal with the well bounded case first. It is the simplest and gives us a

good idea about how we may proceed in general.

We will use J to refer to a general interval from here until Section 1.7. This

allows us to use less new notation.

When we use the constant C > 0, we mean some constant depending only on f .

1.3 Introductory results

Note that some of the more basic definitions which are used more widely in

Chapter 2 are defined there (for example, recurrence, periodic points and so on).

We start by restating some results of Chapter IV of [MS]. We introduce the

following definition.

Definition 1.3.1. For an interval [a, b], let g : [a, b] → R be a continuous func-

tion. Then define for x, y ∈ [a, b],

wg(δ) := sup
|x−y|<δ

|g(x)− g(y)|.

The function wg is known as the modulus of continuity of g.

For a reference on this function, see [D]. There it is proved in Theorem 1.4.3 that

for any continuous g, wg(0) = 0 and wg is continuous on [0, b − a]. We will be

concerned here with the modulus of continuity of D2f : I → R. For the duration

of this chapter we let w := wD2f .

We suppose throughout this chapter that our maps have a maximum at the

critical point. This is not a meaningful restriction. We also suppose that f is

symmetric about c. That is, f(c − ε) = f(c + ε) for all ε. This assumption is

useful for simplifying proofs (particularly in Section 1.6, which is already quite

technical), but is not crucial since on small scales our maps will be essentially

symmetric (in particular, for small ε, |Df(c− ε)| is like |Df(c + ε)|).
The following lemma and theorem are proved for a more general case in Chapter

IV of [MS]. We include a proof here both for completeness and to give some
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insight into how, firstly, the non-flatness of the critical point and, secondly, the

behaviour of the second derivatives of our maps affect our results.

Lemma 1.3.2. For a unimodal map f : I → I, f ∈ NF 2, there exists C1 > 0,

β > 0 and εf > 0 such that if T is an interval such that f |T is a diffeomorphism,

|T | < εf and J ⊂ T , then

B(f, T, J) ≥ exp{−C1|T |[w(|T |) + β|T |]}.

Proof: We suppose that Uφ is symmetric about c and let U ′
φ denote the interval

centred at c with size
|Uφ|
2

. We let εf :=
|Uφ|
5

. If |T | < εf then T is either contained

in Uφ or is outside U ′
φ. Suppose first that T is contained in Uφ. Then for x ∈ T ,

f(x) = ±|φ(x)|α + f(c). Since the map gα(x) := xα has negative Schwarzian for

any α > 1 and thus expands cross-ratios, B(f, T, J) = B(φ, T, J)B(gα, T, J) ≥
B(φ, f, T, J). So we need only deal with φ.

Let T = [a1, a4], J = [a2, a3]. Then,

|B(φ, T, J)− 1| =

∣∣∣∣∣
φ(a3)−φ(a2)

a3−a2
· φ(a4)−φ(a1)

a4−a1
− φ(a2)−φ(a1)

a2−a1
· φ(a4)−φ(a3)

a4−a3

φ(a2)−φ(a1)
a2−a1

· φ(a4)−φ(a3)
a4−a3

∣∣∣∣∣

≤ 1

|Dφ|2−∞

∣∣∣∣
φ(a3)− φ(a2)

a3 − a2

· φ(a4)− φ(a1)

a4 − a1

−φ(a2)− φ(a1)

a2 − a1

· φ(a4)− φ(a3)

a4 − a3

∣∣∣∣

where | · |−∞ gives the minimum value of a function in the domain in which it is

defined.

We estimate this by applying the Mean Value Theorem repeatedly. θi ∈ T will

denote points obtained from this theorem.

∣∣∣∣
φ(a3)− φ(a2)

a3 − a2

· φ(a4)− φ(a1)

a4 − a1

− φ(a2)− φ(a1)

a2 − a1

· φ(a4)− φ(a3)

a4 − a3

∣∣∣∣
= |Dφ(θ1)Dφ(θ2)−Dφ(θ3)Dφ(θ4)|
= |Dφ(θ1)[Dφ(θ4) + D2φ(θ5)(θ2 − θ4)]

−Dφ(θ4)[Dφ(θ1) + D2φ(θ6)(θ3 − θ1)]|
= |Dφ(θ1)D

2φ(θ5)(θ2 − θ4)−Dφ(θ4)D
2φ(θ6)(θ3 − θ1)|

= |[Dφ(θ4) + D2φ(θ7)(θ1 − θ4)]D
2φ(θ5)(θ2 − θ4)
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−Dφ(θ4)D
2φ(θ6)(θ3 − θ1)|

= |Dφ(θ4)[D
2φ(θ5)(θ2 − θ4)−D2φ(θ6)(θ3 − θ1)]

−D2φ(θ7)D
2φ(θ5)(θ1 − θ4)(θ2 − θ4)|

≤ |Dφ|∞|D2φ(θ5)(θ2 − θ4)−D2φ(θ5)(θ3 − θ1)|
+|Dφ|∞|D2φ(θ5)(θ3 − θ1)−D2φ(θ6)(θ3 − θ1)|+ |D2φ|2∞|T |2

≤ |Dφ|∞|D2φ|∞|T |+ |Dφ|∞w(|T |)|T |+ |D2φ|2∞|T |2

where | · |∞ is the usual sup norm.

Therefore there exist C1, β > 0 depending on Dφ and D2φ such that

|B(φ, T, J)− 1| ≤ C1|T |[w(|T |) + β|T |]

i.e. B(φ, T, J) ≥ exp {−C1|T |[w(|T |) + β|T |]}.
The case where T ⊂ U ′

φ follows similarly.

2

We may simply extend the above lemma to the following theorem.

Theorem 1.3.3. For a unimodal map f : I → I, f ∈ NF 2, if T is an interval

such that fn|T is a diffeomorphism and J ⊂ T is a subinterval, then there exists

a continuous function σ : [0, |I|] → [0,∞) depending on f such that

B(fn, T, J) ≥ exp

{
−σ(S(n, T ))

n−1∑
i=0

|f i(T )|
}

where S(n, T ) := max0≤i≤n−1 |f i(T )|.

Proof: In the above lemma we let σ(ε) = C1[w(ε) + βε].

2

The following lemma, a consequence of the absence of wandering intervals, is

Lemma 5.2 in [K2].

Lemma 1.3.4. Suppose that f ∈ NF 2, f : I → I. Then there exists a function

τ : [0, |I|] → [0,∞) such that limε→0 τ(ε) = 0 and for any interval V for which
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fn|V is a diffeomorphism and fn(V ) is disjoint from the immediate basins of

periodic attractors, we have

max
0≤i≤n

|f i(V )| < τ(|fn(V )|).

We may use this lemma to extend the estimate of Theorem 1.3.3 as

B(fn, T, J) ≥ exp

{
−σ′(|fn−1(T )|)

n−1∑
i=0

|f i(T )|
}

where σ′(|fm(T )|) = στ(|fm(T )|).
We can now prove our main corollary.

Proof of Corollary 1.2.6: Let 0 < K ′ < 1 be as in the corollary.

We will fix some small I0 from Theorem 1.2.5 and assume that fn(T ) ⊂ I0. Just

how small I0 must be is specified below.

Let 0 ≤ m < n be maximal such that fm(T ) ⊂ I0. Then fm(T ) is contained in a

domain of the first return map to I0. Then Theorem 1.2.5 says that B(fm, T, J) >

K for some 0 < K < 1 which can be very close to 1 if I0 is sufficiently small.

We also have

B(fn, T, J) = B(fm, T, J)B(fn−m, fm(T ), fm(J))

> KB(fn−m, fm(T ), fm(J)).

By the above theorem and lemma we have

B(fn−m, fm(T ), fm(J)) > exp

{
−σ′(|fn−1(T )|)

n−1∑
i=m

|f i(T )|
}

.

Since fn(T ) ⊂ I0, by Lemma 1.3.4 we have σ′(|fn−1(T )|) ≤ σ′(|I0|). Further-

more,
∑n−1

i=m |f i(T )| is a sum of disjoint intervals and so is less than 1. Therefore

exp{−σ′(|fn−1(T )|) ∑n−1
i=m |f i(T )|} > exp{−σ′(|I0|)} and

B(fn, (T ), (J)) > K exp{−σ′(|I0|)}.

So if I0 is small enough then B(fn, T, J) > K ′. There is an analogous result to

Theorem 1.3.3 for A(f, T, J), see, for example [Sh3], which allows us to prove

the second part of the corollary.
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2

We will use the following result of [SV] throughout. (In fact it is stated there in

greater generality, as Theorem A.)

Theorem 1.3.5. If g ∈ NF 2 is a unimodal map with recurrent critical point,

then the following hold.

1. For all k ≥ 0 there exists ξ(k) > 0 such that if Gi−1 :
⋃

j Ij
i−1 → Ii−1 is

non-central, then Ii+k is a ξ(k)-scaled neighbourhood of Ii+k+1.

2. For each ξ > 0 there is some ξ′ > 0 such that if Ii is a ξ-scaled neighbourhood

of Ii+1 then Ii+1 is a ξ′-scaled neighbourhood of any domain of Gi+1.

This result gives us real bounds for some of our first return maps. We let χ :=

ξ(1) > 0 from the above theorem for our map f .

We now state a version the Koebe Lemma. The following is Theorem IV.3.1 of

[MS].

Theorem 1.3.6. For each S, δ > 0 and each map g ∈ NF 2 there exists a constant

C(S, δ) > 0 with the following property. If T is an interval such that gn|T is a

diffeomorphism and if
∑n−1

i=0 |gi(T )| ≤ S, then for each interval J ⊂ T for which

g(T ) contains a δ-scaled neighbourhood of g(J) we have

1

C(S, δ)
≤ Dgn(x)

Dgn(y)
≤ C(S, δ)

for any x, y ∈ J , where C(S, δ) = (1+δ)2

δ2 eCgS where Cg ≥ 0 depends only on g.

The proof of this theorem uses a more basic Koebe Lemma added to Theo-

rem 1.3.3. We sometimes wish to deal with intervals J ⊂ T such that
∑n−1

i=0 |f i(T )|
has no good bound, but

∑n−1
i=0 |f i(J)| is well bounded. The following improve-

ment of Theorem 1.3.6 deals with these cases. It is presented in more generality

in [SV] as Proposition 2: ‘a Koebe principle requiring less disjointness’.

Theorem 1.3.7. Suppose that g ∈ NF 2. Then there exists a function ν :

[0, |I|] → [0,∞) such that ν(ε) → 0 as ε → 0 with the following properties.

Suppose that for some intervals J ⊂ T and a positive integer n we know that gn|T
is a diffeomorphism. Suppose further that gn(T ) is a δ-scaled neighbourhood of

gn(J) for some δ > 0. Then,
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• for every x, y ∈ J ,

|Dgn(x)|
|Dgn(y)| ≤ exp

{
ν(S(n, T ))

n−1∑
i=0

|gi(J)|
} [

1 + δ

δ

]2

;

• T is a δ′ scaled neighbourhood of J where

δ′ =
1

2
exp {−θ}

[
1 + δ

δ

]2 (−2θ + δ(1− 2θ)

2 + δ

)
,

and we let θ := ν(S(n, T ))
∑n−1

i=0 |gi(J)|.

We will often use this theorem when weaker versions would also suffice.

Again we may use Lemma 1.3.4 to substitute ν(S(n, T )) with ν ′(|fn(T )|) where

we define ν ′(|fm(V )|) := ντ(|fm(V )|).
We will often use the first part of this theorem. We mostly deal with the case

when δ is the χ we obtained following Theorem 1.3.5.

We will sometimes be in a situation where we wish to estimate the derivative of

a function in between two repelling fixed points. The following two well known

results allow us to do this. The following is known as the Minimum Principle;

see, for example, Theorem IV.1.1 of [MS].

Theorem 1.3.8. Let T = [a, b] ⊂ I and g : T → g(T ) ⊂ I be a C1 diffeomor-

phism. Let x ∈ (a, b). If for any J∗ ⊂ T ∗ ⊂ T ,

B(g, T ∗, J∗) ≥ µ̂ > 0

then

|Dg(x)| ≥ µ̂3 min(|Dg(a)|, |Dg(b)|).

The following result is Theorem IV.B of [MS].

Theorem 1.3.9. For g ∈ NF 2 there exist n0 ∈ N and ρg > 1 such that

|Dgn(p)| > ρg

for every periodic point p of period n ≥ n0.

We are now ready to begin the proof of Theorem 1.2.5.



CHAPTER 1. CROSS-RATIO BOUNDS 15

1.4 Well bounded case

We deal with the case where Fi is well bounded. Let n′i > ni+1 be minimal such

that fn′i(T ) ⊂ Ii. We will initially assume that we have some κ > 0 such that for

the ‘return sum’,

ji∑

k=0

|F k(fn′i(T ))| < κ|fni(T )| (1.1)

where ji is such that F ji|
fn′

i (T )
= fni−n′i|

fn′
i (T )

. (We prove this proposition before

bounding this return sum in order to try to give an idea why we need bounds on

return sums.) We recall Proposition 1.2.8.

Proposition 1.2.8 There exists some Cwb > 0 such that

ni−ni+1∑

k=1

|fk+ni+1(T )| < Cwbσi
|fni(T )|
|Ii|

where σi := supV ∈domFi

∑n(V )
j=1 |f j(V )| (and n(V ) is defined as k where Fi|V = fk).

This proposition is taken from Lemma 5.3.4 of [K1] which assumes that f ∈ C3.

There, the bound on the sum
∑ji−1

k=0 |F k(fn′i(T ))| is obtained using methods which

fail in the C2 case.

Proof of Proposition 1.2.8 assuming (1.1): Let ni+1 < m1 < · · · < mji
= ni

be all the integers between ni+1 and ni such that fmj(T ) ⊂ Ii \ Ii+1 for j =

1, . . . , ji − 1 and let m0 = ni+1. Let Fi :
⋃

j U j
i → Ii be the first entry map to Ii.

We will decompose
∑ni

i=ni+1+1 |f i(T )| as
∑ji−1

j=0

∑mj+1−mj

k=1 |fmj+k(T )|.
Suppose, for 1 ≤ j ≤ ji−1, that fmj+1(T ) ⊂ U j

i where U j
i is some domain of first

entry to Ii. Suppose further, that Fi|Uj
i

= f ij . Then there exists an extension to

V j
i ⊃ U j

i so that f ij : V j
i → Ii−1 is a diffeomorphism. Then from Theorem 1.3.7

we have the distortion bound: |fk(fmj+1(T ))|
|fk(Uj

i )| ≤ C(χ) |f
mj+1 (T )|
|Ii| . Whence

mj+1−mj∑

k=1

|fmj+k(T )| ≤ C(χ)
|fmj+1(T )|

|Ii|
mj+1−mj−1∑

k=0

|fk(U j
i )| ≤ C(χ)σi

|fmj+1(T )|
|Ii| .

Therefore
ni∑

j=ni+1+1

|f i(T )| ≤ C(χ)
σi

|Ii|
ji∑

j=1

|fmi(T )|.

I.e. we are interested in the sum
∑ji

j=1 |fmj(T )|, that is,
∑ji−1

k=0 |F k(T̂ )| where

T̂ = fm1(T ). But we have assumed in (1.1) that this sum is bounded by κ|F ni(T )|.
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2

We will next prove that (1.1) does hold, i.e. that the return sum is indeed

bounded.

1.4.1 Bounding return sums

We note that no element of fni+1+1(T ), . . . , fni(T ) is contained inside Ii+1. Such

elements will have been summed in the sum for Fi+j for some j ≥ 1. If some

fni+1+k(T ) for 1 ≤ k ≤ ni−ni+1 intersects ∂Ii+1 then fni+1+k(T ) could never iter-

ate by f inside Ii as elements of ∂Ii+1 never return to Ii. Therefore fni+1+k(T ) =

fni(T ).

We derive some useful estimates regarding cross-ratios.

Suppose that B(fn, U, J) > θ and B(fn(U), fn(J)) < ∆. Then

|L||R|
|U ||J | =

1

B(U, J)
>

θ

B(fn(U), fn(J))
>

θ

∆
.

Whence |L|
|J | ,

|R|
|J | > θ

∆
.

Since |J | = |U | − |L| − |R| we have |J | ≤ |U | − 2|J | θ
∆

so |J | ≤ |U |
1+2 θ

∆

.

Lemma 1.4.1. For all δ > 0 there exists ∆ = ∆(δ) > 0 such that ∆(δ) → 0

as δ → ∞. Suppose that U is an interval, J ⊂ U is a subinterval and that the

left and right components of U \ J are denoted by L and R respectively. Suppose

further that |L|, |R| > δ|J |. Then

B(U, J) < ∆.

Proof: We know that |J |
|L| ,

|J |
|R| < 1

δ
. Suppose, without loss of generality that

|L| ≤ |R|. Then

|U ||J |
|L||R| <

|U |
δ|R| =

|L|+ |J |+ |R|
δ|R| <

2

δ
+

1

δ2
.

So, letting ∆ := 2
δ

+ 1
δ2 the lemma is proved.

2
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From the above we have an upper bound on B(Ii, Ii+1) depending on χ.

We suppress the i notation for now. Let I ′, I ′′ denote Ii and Ii−1 and let Ij denote

the first return domains to I ′.

Let D1 denote the set of non-central domains F−1(I ′), i.e. D1 =
⋃

j 6=0 Ij. Let D2

denote the set of domains F−1(D1) which are disjoint from the central domain.

Inductively, we let Dk denote the set of domains F−1(Dk−1) which are disjoint

from the central domain. Therefore, for any element Jk ∈ Dk, F k : Jk → I ′ is

a diffeomorphism. We will try to bound
∑k−1

j=0 |F j(Jk)| for some Jk ∈ Dk. We

will prove this by showing that there exists some λ < 1 such that B(I ′, J) ≤
λB(I ′, F (J)) where λ is independent of i. We let

µ := exp {−σ′(|I0|)} .

Supposing that n(j) is the return time of Ij to I ′ and J ⊂ Ij then by The-

orem 1.3.3 we have B(fn(j), Ij, J) > µ for all j. We will use this value of µ

repeatedly. It is not an optimal bound, but for any intervals J ′ ⊃ J such that

fm|J ′ is a diffeomorphism; fm(J ′) is disjoint from the basin of immediate attrac-

tors; |fm(J ′)| ≤ |I0|; and the intervals J ′, f(J ′), . . . , fm(J ′) are disjoint, then we

have B(fm, J ′, J) > µ.

The following lemma is Lemma 2.3 of [GK]. For completeness, we provide a

proof here.

Lemma 1.4.2. For every δ > 0 there is some λ′ = λ′(δ) < 1 such that if

J ⊂ V ⊂ U are three intervals and U is a δ-scaled neighbourhood of V then

B(U, J) < λ′B(V, J).

Proof: Denote the left and right components of V \ J by L and R respectively.

Further, denote the left and right components of U \V by L′ and R′ respectively.

We have |L′|, |R′| > δ|V |. Denote the closed interval which is left-adjacent to |V |
and has size δ|L| by L̂. Denote the interval which is right-adjacent to |V | and

has size δ|R| by R̂. Let Û := L̂ ∪ V ∪ R̂. Clearly Û ⊂ U . Then,

B(Û , J) = B(V, J)
|Û |
|V |

(
|L|

|L̂|+ |L|

)(
|R|

|R̂|+ |R|

)
.

But,

|Û |
|V |

(
|L|

|L̂|+ |L|

)(
|R|

|R̂|+ |R|

)
=

(
|L̂|+ |J |+ |R̂|

|J |

)(
1

1 + δ

)2

=
1 + 2δ

(1 + δ)2 .
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Letting λ′ := 1+2δ
(1+δ)2

we have B(Û , J) = λ′B(V, J). Note that λ′ < 1 since

(1 + δ)2 = (1 + 2δ) + δ2. Since Û is a strict subset of U ,

B(U, J) < λ′B(V, J)

as required.

2

We add this lemma to the real bounds of Theorem 1.3.5 and the distortion of

cross-ratios in Theorem 1.3.3.

Lemma 1.4.3. If I0 small enough, there exists some λ < 1, depending only on

f such that for any J ⊂ Dk,

B(I ′, J) < λB(I ′, F (J)).

Observe from the proof that λ depends strongly on χ, but χ depends only on f .

Proof: From Theorem 1.3.5 we know that for each j we have B(Ii, I
j
i ) < χ. So

from the previous lemma there exists some λ′ = λ′(χ) < 1 such that

B(I ′, J) < λ′B(Ij, J).

Now from Theorem 1.3.3 we obtain

B(I ′, J) < λ′
B(I ′, F (J))

µ

where µ is defined above in terms of |I0|. If I0 is chosen small enough then λ′
µ

< 1.

We let λ := λ′
µ
. Thus B(I ′, J) < λB(I ′, F (J)).

2

In fact we shall adjust λ again in both Sections 1.5 and 1.6, but it will remain

strictly less than 1.

So for k ≥ 2, B(I ′, Jk) < λk−1B(I ′, F k−1(Jk)). Suppose that F k−1(Jk) ⊂ Ij. Then

by Lemma 1.4.1, using Theorems 1.3.5 and 1.3.7, B(I ′, Ij) < ∆ where ∆ = ∆(χ′).
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Therefore, it is easy to see that B(I ′, F k−1(Jk)) < ∆ |F k−1(Jk)|
|Ij | . Since we have

|F k−1(Jk)| < C(χ)|F k(Jk)| |I
j |

|I′| , we know that B(I ′, F k−1(Jk)) < C(χ)∆ |F k(Jk)|
|I′| .

We apply these estimates to the sizes of Jk:

|Jk| < |I ′|
1 + 2|I′|

λk−1C(χ)∆|F k(Jk)|
.

Then |Jk| < Cλk−1|F k(Jk)|. So
∑k−1

j=0 |F j(Jk)| < C |F k(Jk)|
1−λ

. Whence

k∑
j=0

|F j(Jk)| < |F k(Jk)|
(

1 +
C

1− λ

)
.

This holds for any sum of returns which never lands in the central domain. It is

independent of i. Thus prove that (1.1) holds by letting
(
1 + C

1−λ

)
be κ. Thus,

we complete the proof of Proposition 1.2.8.

1.5 Cascade case

Note that Theorem 1.3.5 implies that if there is some I0 with a bound on the

number of consecutive central returns then we have uniform real bounds for all

Fi. However, there may be arbitrarily long chains of consecutive central returns;

the case we deal with here.

We suppose that there is some i such that fni(T ) ⊂ Ii where Fi−2 has a non-

central return and Fi has a central return, possibly followed by more central

returns. We assume that Fi+j all have central returns for j = 0, 1, . . . ,m− 1 and

that Fi+m has a non-central return. We aim to bound the sum

ni−ni+m+1∑

k=1

|fk+ni+m+1(T )|.

As in the well bounded case, we focus on the ‘final consecutive sequence’ of j for

which f j(T ) lie in Ii \ Ii+m+1.

Let m0 = ni+m+1 and let ni ≥ m1 > ni+1 be the minimal integer such that

fm1(T ) ⊂ Ii \ Ii+1. Let ni ≥ m2 > m1 be the next integer for which fm2(T ) ⊂
Ii \ Ii+1 if such m2 exists. Proceeding in this manner, we obtain a sequence,

ni+1 < m1 < m2 < · · · < mN = ni.



CHAPTER 1. CROSS-RATIO BOUNDS 20

So
ni−ni+m+1∑

k=1

|fk+ni+m+1(T )| =
N−1∑
j=0

mj+1−mj∑

k=1

|fk+mj(T )|.

We denote the left and right components of Ij \ Ij+1 by Lj and Rj respectively.

We know from Theorem 1.3.5 that |Li|
|Ii+1| ,

|Ri|
|Ii+1| > χ.

Observe that if we only consider the central branches, the elements of F−1(Li+j)

and F−1(Ri+j) are Li+j+1, Ri+j+1 for j = 0, . . . , m− 1. So any pullback of Li, Ri

looks like a procession of intervals J0, J1, J2, . . . where Jj ∈ {Li+j, Ri+j} for j ∈
{0, . . . ,m−1}, followed by a pullback by a non-central branch of Fi into Ii \ Ii+1.

The picture is similar to that in Figure 1.5.

Let D1 be the set of Ij
i for j 6= 0. Let D2 be the set of domains J ⊂ Ii \ Ii+1 such

that F k|Ii+1
F |Ij

i
(J) ∈ D1 for some j 6= 0 and 0 ≤ k ≤ m. Similarly we define Dk.

We then let F̂ be the map such that for J ⊂ Dk, F̂ (J) ∈ Dk−1.

We can’t use Lemma 1.4.3 since for J ∈ D1 ∩ Ii+1 there is not an extension to

Ii−1. So we use Lemma 1.5.1 instead to say that for Jk ∈ Dk, for k ≥ 3, if

F̂ (Jk) ⊂ J2 ⊂ J1 for some J2 ∈ D2, J1 ∈ D1 then we have an extension to J1. So

we can apply the same ideas of cross-ratio decay.

Observe that for J1 ∈ D1 and J2 ∈ D2 where J1 ⊂ J2, we have B(J1, J2) <
B(Ii,F (J2))

µ
. Then by Lemma 1.4.2 there exists λ′C < 1 such that for J ⊂ J2 then

B(J1, J) < λ′CB(J2, J). Then we can prove that for Jk ∈ Dk for j ≥ 2 where

Jk ⊂ J2 for J2 ∈ D2,

B(J1, Jk) <
λ′C
µ

B(F̂ (J2), F̂ (Jk)) <
λ′C
µ

B(J ′1, F̂ (Jk))

for some J ′1 ∈ D1. We can assume that
λ′C
µ

< 1 and can adjust λ < 1 slightly, if

necessary, so that
λ′C
µ

< λ. So we can prove the following lemma.

Lemma 1.5.1. For Jk ∈ Dk and k ≥ 2 where Jk ⊂ J1 and F̂ k−2(Jk) ⊂ J ′1 we

have

B(J1, Jk) < λk−2B(J ′1, F̂
k−2(Jk)).

Clearly we also have, B(J1, Jk) < λk−2

µ
B(Ii, F̂

k−2(Jk)).

We recall Proposition 1.2.9.
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Proposition 1.2.9 There exists some Ccasc > 0 such that

ni−ni+m+1∑

k=1

|fk+ni+m+1(T )|1+ξ < Ccascσi,m

where σi,m is defined as follows. Let σi := supV ∈domFi

∑n(V )
j=1 |f j(V )| (and n(V ) is

defined as k where Fi|V = fk). Let V̂ ⊂ Ii \ Ii+1 be an interval such that f n̂(V̂ ) is

one of the connected components of Ii \ Ii+1 for some n̂ > 0 and f j(V̂ ) is disjoint

from both Ii \ Ii+1 and Im for 0 < j < n̂(V̂ ). Then σi,m is the supremum of all

such sums
∑n̂(V̂ )

j=1 |f j(V̂ )| and σi.

Observe that since we have supposed that our map f is on the unit interval,

σi,m < 1.

Proof: We will consider
∑N−1

j=0

∑mj+1−mj

k=1 |fk+mj(T )|. We begin by considering

the sum
∑mj+1−mj

k=1 |fk+mj(T )| for 0 ≤ j ≤ N − 2. We will initially assume that

fni(T ) ∈ Ii will lie inside some Ii+j \ Ii+j+1 for 0 ≤ j ≤ m− 1.

Denote fmj(T ) by T̂ . Then there is some domain J1 ∈ D1 which contains T̂ . J1

must be some Ij
i where j 6= 0. We have two cases for F̂ |T̂ . Firstly, T̂ could be

mapped by a non-central branch straight back into Ii \ Ii+1, i.e. F̂ |T̂ = F |T̂∩Ij
i
.

Secondly, T̂ could be mapped by a non-central branch inside Ii+1 \ Im and then

it will be mapped out to Ii \ Ii+1 by iterations of the central branch, i.e. F̂ |T̂ =

(F k̂|Ii+1
F |Ij

i
)|T̂ for some 0 < k̂ ≤ m. Therefore, in general supposing that F |J1 =

f j(J1) and that F |Ii+1
= f s our sum is

mj+1−mj∑

k=1

|fk(T̂ )| =
j(J1)−1∑

k=0

|fk(T̂ )|+
k̂∑

k=0

s−1∑
p=0

|fks+p(F (T̂ ))|

for some 0 ≤ k̂ ≤ m.

We consider these two terms separately.

Step 1: consider first
∑j(J1)−1

k=0 |fk(T̂ )|. Since j ≤ N − 2 we know that T̂ is

contained in some J2 ∈ D2. We suppose that F̂ (J2) = J ′1 where J ′1 ∈ D1. Now

B(fk(J2), f
k(T̂ )) < B(F (J2),F (T̂ ))

µ
since all intermediate intervals are disjoint. If

F |T̂ = F̂ |T̂ (i.e. k̂ = 0) then we have B(fk(J2), f
k(T̂ )) <

B(J ′1,F̂ (T̂ ))

µ
. If not, then

B(fk(J2), f
k(T̂ )) <

B(J ′1,F̂ (T̂ ))

µ2 by disjointness again. So in either case, |fk(T̂ )| <
|fk(J2)|

1+ 2µ2

B(J′1,F̂ (T̂ ))

.
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Therefore,

j(J1)−1∑

k=0

|fk(T̂ )| <
∑j(J1)−1

k=0 |fk(J2)|
1 + 2µ2

B(J ′1,F̂ (T̂ ))

<
σi

1 + 2µ2

B(J ′1,F̂ (T̂ ))

≤ σi,m

1 + 2µ2

B(J ′1,F̂ (T̂ ))

.

Step 2: supposing that k̂ > 0, we consider
∑k̂

k=0

∑s−1
p=0 |fks+p(F (T̂ ))|. Clearly,

F (T̂ ) ⊂ Li+k̂. Since |fks+p(F (T̂ ))|
|fks+p(J2)| <

σi,m

1+ 2µ2

B(J′1,F̂ (T̂ ))

for any 0 ≤ k ≤ k̂ , we have

k̂∑

k=0

s−1∑
p=0

|fks+p(F (T̂ ))| <
∑k̂

k=0

∑s−1
p=0 |fks+p(Li+k̂)|

1 + 2µ2

B(J ′1,F̂ (T̂ ))

≤ σi,m

1 + 2µ2

B(J ′1,F̂ (T̂ ))

.

The two steps above give us

mj+1−mj∑

k=1

|fk+mj(T )| < 2σi,m

1 + 2µ2

B(J ′1,F̂ (T̂ ))

.

Note that fmk(T ) ⊂ Jk for some Jk ⊂ Dk. Then
2σi,m

1+ 2µ2

B(J′1,F̂ (T̂ ))

<
2σi,m

1+
2µ2|Jk|

B(J′1,Jk)|F̂ (T̂ )|
.

Since k ≥ 2, supposing F̂ k−2 ⊂ J2 for J2 ∈ D2 then by Lemma 1.5.1 we have

2σi,m

1 + 2µ2

B(J ′1,F̂ (T̂ ))

<
2σi,m

1 + 2µ2|J2|
λk−2B(J ′1,J2)|F̂ k−2(T̂ )|

<
2σi,m

1 + 2µ2|J2|
λk−2∆|F̂ k−2(T̂ )|

for ∆ = ∆(χ) as usual.

Then if F̂N−3(T̂ ) ⊂ J2,

N−4∑
j=0

mj+1−mj∑

k=1

|fk+mj(T )| <

N−3∑
j=0

2σi,m

1 + 2µ2|J2|
λi∆|F̂ N−3(T̂ )|

<
λ∆σi,m

µ2(1− λ)

|F̂N−3(T̂ )|
|J2| .

We have |F̂N−3(T̂ )| < C(χ) |J2|
|F̂ (J2)| |F̂

N−2(T̂ )|. Similarly,

|F̂N−2(T̂ )| < C(χ)|F̂N−1(T̂ )| |F̂ (J2)|
|F̂ 2(J2)|

= C(χ)|F̂N−1(T̂ )| |F̂ (J2)|
|Ii| .

Therefore,
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N−3∑
j=0

mj+1−mj∑

k=1

|fk+mj(T )| < Cσi,m
|F̂N−1(T̂ )|

|Ii| = Cσi,m
|fni(T )|
|Ii| .

Also, using the method for the well bounded case we have

mN−mN−1∑

k=1

|fk+mN−1(T )| < C(χ)σi,m
|fni(T )|
|Ii|

and

mN−1−mN−2∑

k=1

|fk+mN−2(T )| < C(χ)σi,m
|fmN−1(T )|

|Ii| < Cσi,m
|fni(T )|
|Ii| .

So
N−1∑
j=0

mj+1−mj∑

k=1

|fk+mj(T )| < Cσi,m
|fni(T )|
|Ii| .

Now we consider the case where fni(T ) ∩ ∂Ii+1 6= ∅. Suppose that there is some

maximal ni+1 ≤ j < ni such that f j(T ) ⊂ Ii \ Ii+1. Then let T̂ := f j+1(T ).

If no such j exists, let ni+1 ≤ j ≤ ni be minimal such that f j(T ) ⊂ Ii and let

T̂ := f j(T ). There exists some M ≥ 0 such that FM
i (T̂ ) = fni(T ). We will

bound
∑M

k=0 |F k
i (T̂ )|.

If T̂ intersected a uniformly bounded number of boundary points ∂Ii+j for 1 ≤
j < m then we would be able to find some bound easily. But we may have m

very large and also many of these intersections. We relabel F |Ii+1
as F and Ii as

I0. We have two cases to consider. For some background on this dichotomy see

[Ly2].

The high case

We first assume that Fi are high and central for i = 0, . . . , m. This is known as

an Ulam-Neumann cascade. Let Ii = (ai, a
′
i). We are assuming that F0(c) is a

maximum for F0|I1 . Denote F0 on the central branch by F . We know that I0 is

a χ-scaled neighbourhood of I1.

We will use the Minimum Principle (Theorem 1.3.8) and Theorem 1.3.9 to es-

timate derivatives. The idea here is that either we have derivative greater than

one in (a1, am) and we can bound
∑M

k=0 |F k
i (T̂ )| as a geometric sum; or we have

a small derivative in some region, in which case we find have a bound on the

number of ai that are in this region.
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We fix some integer r ≥ 1 and some γ > 1 such that χ
∑r

i=0 γ−i > 1. Observe

that there is a fixed point p ∈ (a1, c). We can choose I0 to be so small that

the return time to it is greater than n0 given in Theorem 1.3.9. Therefore, by

this theorem, |DF (p)| > ρf . If |DF (a1)| ≥ γ then from the Minimum Principle,

|DF |(a1,p) > γ̂ where γ̂ = µ3 min(γ, ρf ) where µ is defined in terms of |I0| in

Subsection 1.4.1. We fix I0 to be small so that γ̂ > 1. Therefore, we can easily

bound
∑M

k=0 |F k
i (T̂ )|.

Suppose now that there is some u ∈ (a1, c) such that |DF |(a1,u) < γ. We will

show that this must mean that the region (a1, u) must be small in terms of the

cascade. We have |ai+1 − ai| > |ai−ai−1|
γ

. Therefore, if (a1, aN) ⊂ U then

|c− a0| >
N−1∑
i=0

|ai+1 − ai| > |a1 − a0|
N∑

i=0

γ−i.

We know that |a1 − a0| > χ|c− a0|. If N ≥ r then |c− a0| > χ|c− a0|
∑r

i=0 γ−i

which is impossible by the definition of r and γ. Thus N is bounded.

So we will have |DF |(aN ,p) > γ̂

a0 a1 aM-1 aM
aM+t aM+1+t

am
c

T
F(T)

F

Figure 1.2: When T̂ intersects the boundary points ∂Ij.

This helps us bound
∑M

k=0 |F k(T̂ )| where F k(T̂ ) ⊂ I0 \ Im. We suppose that

FM(T̂ ) = (a0, at) for t ≤ m. (In fact the worst case would be if FM(T̂ ) =

(a0, F
t(c)) for some large t > 0 but we will obtain essentially the same bound.)

See Figure 1.2. Then

M∑

k=0

|F k(T̂ )| = |a1 − a0|+ min(2,M − 1)|a2 − a1|+ min(3,M − 2)|a3 − a2|+

· · ·+ min(i,M − (i− 1))|ai − at−i|+ · · ·+ |aM+t − aM+t−1|.
This is bounded above by

N |aN − a0|+ |aN − aN+1|
∞∑
i=0

min(i, M − (i− 1))

γ̂i
.
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This second summand is clearly bounded.

The low case

We assume that we are in the same setting as above, but with F0 central and

low. This is known as a saddle node cascade. Again we would like to bound∑M
k=0 |F k(T̂ )| defined as above. However, as we shall see, we are only able to

bound
∑M

k=0 |F k(T̂ )|1+ξ. We will apply the following result, a form of the Yoccoz

Lemma, see for example [FM].

Lemma 1.5.2. Suppose that f ∈ NF 2. Then for all δ, δ′ > 0 there exists C > 0

such that if I0 is a nice interval such that

1. I0 is a δ-scaled neighbourhood of I1;

2. Fi is low and central for i = 0, . . . ,m;

3. there is some 0 < i < m with |Ii|
|Ii+1| < 1 + δ′,

then for 1 ≤ k < m,

1

C

1

min(k, m− k)2
<
|Ii+k−1 \ Ii+k|

|Ii| <
C

min(k,m− k)2
.

This lemma was suggested by W. Shen. For the proof, see the appendix. (For

comparison with other statements of the Yoccoz Lemma, note that we will prove

that one consequence of our conditions for the lemma is that we have a lower

bound on |Im\Im+1|
|I1| .)

Suppose that I0 satisfies all the conditions of the lemma. In particular we assume

that for some fixed δ′ > 0, we have |Ii|
|Ii+1| < 1 + δ′ for some 0 < i < m. Then,

M∑

k=0

|F k(T̂ )| = |a1 − a0|+ min(2,M − 1)|a2 − a1|+ min(3,M − 2)|a3 − a2|+

· · ·+ min(i,M − (i− 1))|ai − ap−i|+ · · ·+ |aM+p − aM+p−1|

< C|I0|
M∑

k=0

1

min(k, M − (k − 1))
.

This is bounded above by C|I0|
∑M

k=0
1
k
. If M is allowed to be large then this

bound becomes large too. So instead of bounding
∑M

k=0 |F k(T̂ )|, we recall that
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the sum we want to bound is
∑M

k=0 |F k(T̂ )|1+ξ. Since
∑∞

k=0
1

k1+ξ is bounded for

any ξ > 0 we are finished in this case.

Now suppose that |Ii|
|Ii+1| > 1 + δ′ for i = 0, . . . , m. Note that |I0| > (1 + δ′)|I1| >

(1 + δ′)2|I2| > · · · > (1 + δ′)M |IM |. Therefore

M∑

k=0

|F k(T̂ )| < 1

2

M∑

k=0

k|Ik| < |I0|
2

M∑

k=0

k

(1 + δ′)k
.

Clearly this sum is bounded.

So in either case
∑M

k=0 |F k(T̂ )| < C|I0|. We apply the usual method to say that

this means that
∑ni−j

k=1 |fk+j(T̂ )| < Cσi,m. So there is some Ccasc such that

ni−ni+m+1∑

k=1

|fk+ni+m+1(T )|1+ξ < Ccascσi,m

as required.

2

1.6 Exceptional case

In the last section we dealt completely with the saddle node cascade. It is easily

shown, for example applying Lemma 1.6.1 to all branches, that following a sad-

dle node cascade we essentially have a well bounded case. An Ulam-Neumann

cascade, however, is not always followed by a well bounded case. We estimate

the sum for Fi in this alternative case here. Most of the sum is dealt with using

the methods for the well bounded case, but we need some new techniques to deal

with two of the branches of Fi.

We suppose that we have Fi where Fi−1 has a non-central return, but Fi−2 has a

central return. We assume that Fi−1(c) is a maximum for Fi−1 : Ii → Ii−1. We

will also assume that Fi−1 has a high return (otherwise, we may proceed as in the

well bounded case). The situation is only slightly different to the case where Fi−2

has a non-central return. We can prove that all branches of Fi are well inside Ii,

except possibly two. These branches IL
i and IR

i are the largest subintervals Ij
i

of Ii which have Fi|Ij
i

= Fi−1|Ij
i
. We let the left-hand such interval be denoted

by IL
i and the right-hand one by IR

i . These are the exceptional branches, see



CHAPTER 1. CROSS-RATIO BOUNDS 27

I
i

L

I
i

I
i-1

I
i

R

I
i+1

Figure 1.3: The exceptional case.

Figure 1.3. If Ii is well inside Ii−1 then by Theorem 1.3.5 we know that IL
i and

IR
i are well inside Ii and we may proceed as in the well bounded case. But this

won’t always be so if Ii−1 is at the end of a long Ulam-Neumann cascade. So we

will assume that Ii is not well inside Ii−1. We recall Proposition 1.2.10.

Proposition 1.2.10 There exists some Cex > 0 and ni+1 < ni,3 < ni,2 < ni such

that

ni−ni+1∑

k=1

|fk+ni+1(T )| < Cexσi

( |fni(T )|
|Ii| +

|fni,2(T )|
|Ii| +

|fni,3(T )|
|Ii|

)
.

The strategy for the proof is as follows.

• Show there is some upper bound on B(Ii, I
j
i ) for j 6= L,R.

• State our main result in the proof, Proposition 1.6.4. We suppose that

we have some interval J ⊂ Ij
i for j 6= L,R, 0; Fi(J), . . . , Fm

i (J) ⊂ IL
i ∪

IR
i ; and Fm+1

i (J) ⊂ Ij′
i for j′ 6= L,R, 0. Then there exists some λ <

1 such that B(Ii, J) < λB(Ii, F
m+1
i (J)). Furthermore,

∑m
k=1 |F k

i (J)| <

B(Ii, F
m+1
i (J)). We can prove Proposition 1.2.10 with this result. In the

rest of this section we prove Proposition 1.6.4.
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• We look for an upper bound on
∑m

k=1 |F k
i (J)|. In Lemma 1.6.5 we show

that for some interval V there is some γ > 1 such that

|DFi|(IL
i ∪IR

i )\V > γ.

• We next focus on V . We take first return maps to V and use decay of

cross-ratios again to estimate sums of intervals in V , see Lemma 1.6.7.

We first show that we have uniform bounds on how deep the branches of Fi are

in Ii for all branches except IL
i , IR

i .

Lemma 1.6.1. In the exceptional case outlined above, if j not equal to L,R or

0, we know that Ii is a χ′′-scaled neighbourhood of Ij
i .

In fact, the above result holds for the central domain too by Theorem 1.3.5, but

this isn’t important for us here.

As we shall see, the proof of this lemma is reminiscent of the cascade case since

we follow iterates of intervals along the central branch of some Fi′ .

Proof: There exists some maximal i′ < i such that Fi′−2 is non-central. Then

by Theorems 1.3.5 and 1.3.7, Ii′−1 is a χ-scaled neighbourhood of Ii′ and Ii′ is a

χ′-scaled neighbourhood of all domains of Fi′ .

For j 6= L,R we will find Fi|Ij
i

as a composition of some branches of Fi′ in order

to find some extensions. Fi′|Ii′+1
maps Ij

i out of Ii along the cascade, through the

sets Ii−1 \ Ii, Ii−2 \ Ii−1 and so on, until it maps to some interval in Ii′+1 \ Ii′+2.

Then this interval is mapped into some Ij′
i′ . This then maps back into Ii′+1. The

process may be repeated many times before Ij
i is finally mapped back to Ii.

So know that Fi|Ij
i

is a composition of maps as follows. Let j1 6= 0 be such

that (F i−i′
i′ |Ii′+1

)(Ij
i ) ⊂ Ij1

i′ . Let k1 = i − i′. If Fi|Ij
i

= (Fi′ |Ij1
i′

)(F
(i−i′)
i′ |Ii′+1

)|Ij
i

then we stop here; we say r = 1. Otherwise, let k2 ≥ 0 be minimal such that

F k1+1+k2

i′ (Ij
i ) ⊂ Ii′ \ Ii′+1. Let j2 6= 0 be such that F k1+1+k2

i′ (Ij
i ) ⊂ Ij2

i′ . If Fi|Ij
i

=

F k1+1+k2+1
i′ |Ij

i
then we stop here; we say r = 2. Otherwise, we continue this

process until we finally return to Ii and obtain kr.

Suppose that r = 1. That is,

Fi|Ij
i

= F
(i−i′)+1
i′ |Ij

i
.

(This is the simplest case; in the other cases, we must deal with compositions of

such maps.) Let U denote F
(i−i′)
i′ (Ij

i ) and U ′ denote Ij1
i′ . Then Fi′(U) = Ii and
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Fi′(U
′) = Ii′ . From Theorem 1.3.5 we know that Ii′ is a χ′-scaled neighbourhood

of Ii. So if we can show that, taking the appropriate branch, (F
−(i−i′)
i′ |Ii′+1

)(U ′) ⊂
Ii, we know by Theorem 1.3.7 that Ii is a χ′′-scaled neighbourhood of Ij

i (since

all the intervals we are concerned with are disjoint). It is easy to see that

(F
−(i−i′)
i′ |Ii′+1

)(U ′) ⊂ Ii by the structure of the saddle node-cascade: we have

(F−1
i′ |Ii′+1

)(U ′) ⊂ Ii′+1 \ Ii′+2, (F−2
i′ |Ii′+1

)(U ′) ⊂ Ii′+2 \ Ii′+3 and so on. So the

lemma is proved when r = 1.

In the more general case, where r > 1 and

Fi|Ij
i

= F
∑r

l=1(kl+1)

i′ |Ij
i

we may apply the same idea, again using the disjointness of the first return map,

to prove that Ii is a χ′′-scaled neighbourhood of Ij
i .

2

Remark 1.6.2. If we have a good upper bound on B(Ii, I
L
i ), B(Ii, I

R
i ) then we

can proceed with the method from the well bounded case to prove Proposi-

tion 1.2.10. But this is not generally the case. So for our work here, we may

assume that B(Ii, I
L
i ), B(Ii, I

R
i ) are large.

To prove Proposition 1.2.10 we must deal with the case where some iterate of J

enters IL
i ∪ IR

i .

Remark 1.6.3. In the previous sections we had uniform upper bounds on the

cross-ratio B(Ii, I
j
i ) for all j and so we obtained estimates on the decay of cross-

ratios directly. This was used to estimate the sums of intervals. The problem

we often encounter in this section is that sometimes we have good estimates on

how cross-ratios decay and sometimes we have good estimates for the decay of

the sizes of intervals. But these estimates are difficult to marry together directly,

so we will have to split up such cases. This type of argument is used three times

in this section. The process is first described in the proof of Proposition 1.2.10

and again in the proof of Lemma 1.6.7. (As we will see later, this scheme deals

with the cases where we enter IL
i ∪ IR

i from Ii; V from IL
i ∪ IR

i ; and Λ from V .)

Denote the smallest interval containing both IL
i and IR

i by I ′. We suppress the

i notation when it is clear that we are in Ii. (In fact we will refer to IL, IR in

place of IL
i , IR

i and F in place of Fi; but we keep the same notation for Ii so

as not to confuse it with the original interval I.) To gain some intuition as to
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the properties of F |I′ , we may consider the model g2 : (−2, 2) → (−2, 2) where

g2(x) = 2 − x2. (In fact, since g2(0) = 2 this is, in a sense, a ‘worst case’ model

for our situation.)

The principal result in this section is the following proposition.

Proposition 1.6.4. If J, F (J), . . . , Fm(J) ⊂ IL ∪ IR then

1. there exists some 0 ≤ m̂ < m such that
∑m

k=0 |F k(J)| < C(|Fm(J)| +

|F m̂(J)|);

2. |J | < C(|Fm(J)|+ |F m̂(J)|);

3. if Fm+1(J) ⊂ Ij, j 6= L,R then

(a)
∑m

k=0 |F k(J)| < CB(Ii, F
m+1(J));

(b) letting J ′ be some element of F−1(J) inside some interval Ij′ for j′ 6=
L,R then we have B(Ii, J

′) < λB(Ii, F
m+2(J ′)) where λ < 1 depends

only on f .

I
L

I
R

I
j

I
j’I

0

F(J) J F (J)
m+1 F (J)

m
J’

Ii

c

Figure 1.4: An illustration of Proposition 1.6.4.

To see a schematic representation of the situation of this proposition, see Fig-

ure 1.4. Once we have proved this then we can prove Proposition 1.2.10 as

follows.

Proof of Proposition 1.2.10: As in the proof in the well bounded case, we first

show that we are principally concerned with the intervals inside Ii. Again, the

proof of this fact is a slightly modified version of the proof in the well bounded

case.

Let ni+1 < m1 < · · · < mji
= ni be all the integers between ni+1 and ni such that

fmj(T ) ⊂ Ii \ Ii+1 for j = 1, . . . , ji − 1 and let m0 = ni+1. Let Fi :
⋃

i U
j
i → Ii
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be the first entry map to Ii. We will decompose the sum
∑ni

i=ni+1+1 |f i(T )| as∑ji−1
j=0

∑mj+1−mj

k=1 |fmj+k(T )|.
Suppose that fmj+1(T ) ⊂ U j

i for some U j
i . Suppose further, that Fi|Uj

i
= f ij .

Then there exists an extension to V j
i ⊃ U j

i so that f ij : V j
i → Ii′−1 is a diffeomor-

phism, where i′ is defined in the proof of Lemma 1.6.1. Then we have distortion

bounds as usual: |fk(fmj+1(T ))|
|fk(Uj

i )| ≤ C(χ) |f
mj+1(T )|
|Ii| .

mj+1−mj∑

k=1

|fmj+k(T )| ≤ C(χ)
|fmj+1(T )|

|Ii|
mj+1−mj−1∑

k=0

|fk(U j
i )| ≤ C(χ)σi

|fmj+1(T )|
|Ii| .

Therefore,
∑ni

j=ni+1+1 |f i(T )| ≤ C(χ) σi

|Ii|
∑ji

j=1 |fmi(T )|. I.e. we are principally

interested in the sum
∑ji

j=1 |fmi(T )|, that is
∑ji−1

k=0 |F k(T̂ )| where T̂ = fm1(T ).

In fact, we focus on bounding
∑ji−2

k=0 |F k(T̂ )|.
We split

∑ji−2
k=0 |F k(T̂ )| into two sums. The first sum is that concerning sum-

mands outside IL ∪ IR. The problem clearly comes when we must deal with

some J such that for some k ≥ 0, we have F k(J) ⊂ Ij for some j 6= L,R; then

F k+1(J), F k+2(J), . . . , F k′(J) ⊂ IL ∪ IR for some k′ > k; and finally F k′+1(J) ⊂
Ij′ for some j′ 6= L,R. From the last part of Proposition 1.6.4 we have

B(Ii, F
k(J)) < λB(Ii, F

k′+1(J)).

Therefore, we can bound the sums of intervals which lie in the intervals Ij
i for

all j 6= L,R in a similar manner to that for the well bounded case as follows,

independently of those intervals inside IL ∪ IR.

Given k ≥ 0 such that F k(T̂ ) ⊂ Ij for some j 6= L,R we wish to estimate |F k(T̂ )|.
Let 0 ≤ k̂ ≤ ji − 2 be maximal such that F k̂(T̂ ) ⊂ Ij′ for some j′ 6= L,R. Then

we apply Proposition 1.6.4 repeatedly to obtain B(Ii, F
k(T̂ )) < λlB(Ii, F

k̂(T̂ ))

for some l ≥ 0. This l counts the number of times that F k+r(T̂ ) lies outside

IL ∪ IR for 0 < r ≤ k̂. Then

|F k(T̂ )| < |Ii|
1 + 2

λlB(Ii,F k̂(T̂ ))

.

We have two cases. In the first case we have k̂ = ji − 2. Then

B(Ii, F
ji−2(T̂ )) < B(Ii, I

j′)
|F ji−2(T̂ )|
|Ij′| < ∆(χ)

|F ji−2(T̂ )|
|Ij′|

< ∆(χ)C(χ)|F ji−1(T̂ )|.
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Therefore, |F k(T̂ )| < Cλl|F ji−1(T̂ )|. This suffices to prove a bound of the form

C|F ji−1(T̂ )| for the iterates of T outside IL ∪ IR in this case. Then we can show

in the usual way that including all the intermediate f -iterates as well we have a

bound of the form Cσi
|F ji−1(T̂ )|

|Ii| in this case.

In the second case k̂ < ji − 2. We have

B(Ii, F
k̂(T̂ )) < B(Ii, I

j′)
|F k̂(T̂ )|
|Ij′| <

∆|F k̂(T̂ )|
|Ij′ | .

Since |F k̂(T̂ )| < C(χ)|F k̂+1(T̂ )| |Ii|
|Ij′ | and by the second part of Proposition 1.6.4

we have |F k̂+1(T̂ ))| < C(|F ji−2(T̂ )| + |F m̂(T̂ )|) for some k̂ < m̂ < ji − 2, we

obtain

B(Ii, F
k̂(T̂ )) < CC(χ)∆|Ii|(|F ji−2(T̂ )|+ |F m̂(T̂ )|).

Therefore, in this case we have a bound of the form C(|F ji−2(T̂ ) + |F m̂(T̂ )|) for

the iterates of T outside IL ∪ IR. Again we can show in the usual way that

including all the intermediate f -iterates as well we have a bound of the form
Cσi(|F ji−2(T̂ )+|F m̂(T̂ )|)

|Ii| in this case.

We need to use the above information about sizes of intervals outside IL ∪ IR to

bound the sums of intervals inside IL ∪ IR too. In the first case above, we have

a bound of the form C|F ji−1(T̂ )| for the iterates of T in IL ∪ IR. In the second

case above, we have bounds of the form C(|F ji−2(T̂ )|+ |F m̂(T̂ )|) for the iterates

of T in IL ∪ IR.

So in the worst case we have the bound

Cexσi

( |fni(T )|
|Ii| +

|fni,2(T )|
|Ii| +

|fni,3(T )|
|Ii|

)

for the sum
∑ni

k=ni+1+1 |fk(T )|, as required.

2

1.6.1 Proof of Proposition 1.6.4

Recall that we are assuming that the critical point is a maximum for F |I′ . Note

that whenever we refer to F |I′ , we mean Fi−1|I′ . This means that there is some
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fixed point p of F in IR. Clearly, there also exists a point p′ ∈ IL such that

F (p′) = p. Let V := (p′, p).

We outline the proof of Proposition 1.6.4 as follows. Let 0 ≤ s1 ≤ s2 ≤ s3 be

defined as follows. F k(J) ⊂ I ′ \ V for 1 ≤ k ≤ s1; F s1+1(J) ⊂ V ∩ (IL ∪ IR); and

F s2+k(J) ⊂ I ′ \ V for 1 ≤ k ≤ s3 − s2. Any sum of the form
∑m

k=0 |F k(J)| can

be broken up into blocks consisting of such sums.

The scheme for proving Proposition 1.6.4 is to firstly to show that |DF |I′\V is

uniformly large. This is proved in Lemma 1.6.5 and helps to deal with the sums∑s1

k=0 |F k(J)| and
∑s3−s2

k=1 |F s2+k(J)|. Then we have to prove that we have bounds

on the sums of intervals which return to V . This, proved in Lemma 1.6.7, helps

to deal with
∑s2−s1

k=1 |F s1+k(J)|.

Lemma 1.6.5. There exists some γ > 1 depending only on f such that

|DF |I′\V > γ.

Proof: We start by using Theorem 1.3.9 along with Theorem 1.3.8, the Minimum

Principle. Clearly, if I0 is small enough then the first return map to I0 must have

large return times. So we may choose I0 so small that the return time to I0 is

greater than n0 given in Theorem 1.3.9. Since I ′ ⊂ I0 we know by Theorem 1.3.9

that |DF (p)| > ρf . By symmetry, |DF (p′)| > ρf too. Observe that IL also

contains a fixed point q of F . We have |DF (q)| > ρf too. Furthermore, there

exists a point q′ ∈ IR such that F (q′) = q. From symmetry, |DF (q′)| > ρf .

We can estimate |DF |(p,q′) using the Minimum Principle as follows. We use

our µ defined in Subsection 1.4.1 in place of µ̂. Then |DF |(p,q′) > µ3ρf . By

Theorem 1.3.3, when I0 is small enough, µ is close to 1. Thus we may ensure that

our intervals are so small that |DF |(p,q′) > ρ for some ρ > 1. (To fix precisely how

small our intervals must be, we can let ρ =
√

ρf .) By symmetry, |DF |(q,p′) > ρ.

We deal with the remaining part of the proof of Lemma 1.6.5 by showing that F

has large derivative when x ∈ I ′ has either x < q or x > q′. We use the following

consequence of Theorem 1.3.5 and the Minimum Principle.

Claim 1.6.6. There exists some γ′ > 1 such that, denoting IL = (l−, l+) and

IR = (r−, r+), if I0 is sufficiently small and B(Ii, I
L), B(Ii, I

R) are sufficiently

large then

|DF |(l−,q), |DF |(q′,r+) > γ′.
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Proof: We will use the Minimum Principle to prove the claim. Let L and R
denote the left and right components of Ii′+1 \ I ′ respectively. Then F (L) and

F (R) are the left and right components respectively of Ii′ \ Ii. Using symmetry,

|F (L)|
|L| =

|Ii′ \ Ii|
|Ii′+1 \ I ′| .

We suppose that |I ′| = δ|Ii| for some 0 < δ < 1 which tends to 1 as B(Ii, I
L)

increases. We can calculate that

|Ii′ \ Ii|
|Ii′+1 \ I ′| =

|Ii′|
|Ii′+1|


 1− |Ii|

|Ii′ |

1− |I′|
|Ii′+1|


 > (1 + 2χ)


1− |Ii|

|Ii′+1|

1− δ|Ii|
|Ii′+1|


 .

From the second part of Theorem 1.3.5 we have an upper bound on |Ii|
|Ii′+1| , so if

B(Ii, I
L) is sufficiently large then

(1 + 2χ)


1− |Ii|

|Ii′+1|

1− δ|Ii|
|Ii′+1|


 > γ′′

for some γ′′ > 1.

We deduce that there must be some x0 ∈ Ii′+1 \ I ′ such that |DF (x0)| ≥ γ′′.
Therefore, by Theorems 1.3.8 and 1.3.3 we have

|DF |(x0,p) > exp{−3σ′(|I0|)|I0|}min(γ′′, ρf ).

Choosing |I0| small we have some γ′ > 1 such that |DF |(x0,q) > γ′. In particular

|DF |(l−,q) > γ′. Similarly we can show |DF |(q′,r+) > γ′.

2

Letting γ := min(ρ, γ′), the lemma is proved.

2

By the above, we will be able to estimate the sizes of iterates of T inside (IL ∪
IR)\V as a geometric sum. The next step is to consider what happens to intervals

inside V . We denote the first return map to V by F̂ :
⋃

j V j → V . We first wish

to find some control on the sizes of the domains of F̂ . Let mV,j be such that

F̂ |V j = FmV,j |V j .
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Lemma 1.6.7. If F l1(J), . . . , F lm(J) ⊂ V ∩ (IL ∪ IR) are all the iterates of

J up to lm which lie in V ∩ (IL ∪ IR), and all intermediate iterates F k(J) for

k = 0, 1, . . . , lm lie in IL ∪ IR then

lm∑

k=0

|F k(J)| < C|F lm(J)|.

Furthermore, there exists λV < 1 such that |J | < Cλlm−m
V |F lm(J)|.

Before we can prove this Lemma, we need some real bounds for V . The following

lemma, which contrasts with Lemma 1.6.5, will later be used to obtain these

bounds.

Lemma 1.6.8. There exists some Ĉ = Ĉ(χ, |I ′|) > 0, where Ĉ(χ, |I ′|) tends to

some constant Ĉ(χ) as |I ′| → 0, such that

|DF |I′ < Ĉ.

Proof: We work with Fi′ : Ii′+1 → Ii′ where i′ is defined in the proof of

Lemma 1.6.1. There exists some m ≥ 1 such that Fi′ |Ii′+1
= fm|Ii′+1

. We

can decompose this map into two maps so that Fi′ = Lg where g = f |Uφ
, i.e

g(x) = f(c)− |φ(x)|α, and L = fm−1 : f(Ii′+1) → Ii′ .

By Theorems 1.3.7 and 1.3.5 we have DL(x)
DL(y)

< C(χ) for x, y ∈ f(Ii+1). So

|DL(x)| ≤ C(χ)
|Ii|

|f(Ii+1)| = C(χ)
|Ii|∣∣∣φ

(
|Ii+1|

2

)α∣∣∣

for x ∈ f(Ii+1). Also

|Dg(x)| = α|Dφ(x)||φ(x)α−1| < α sup
x∈Ii′+1

|Dφ(x)|
∣∣∣∣φ

( |Ii+1|
2

)∣∣∣∣
α−1

.

For Û ⊂ Uφ a small neighbourhood of c, let Dist(φ, Û) denote supx,y∈Û
|Dφ(x)|
|Dφ(y)| .

Observe that as I ′ becomes smaller, Dist(φ, I ′) tends to 1. For x ∈ Ii+1,

|DF (x)| < αC(χ)
supx∈Ii+1

|Dφ(x)||Ii|∣∣∣φ
(
|Ii+1|

2

)∣∣∣
< 2αC(χ)Dist(φ, I ′)

|Ii|
|Ii+1| .
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Since we have assumed that |Ii|
|Ii+1| is bounded, there is some constant C > 0 such

that

|DF (x)| < CDist(φ, I ′).

Letting Ĉ(χ, |I ′|) := CDist(φ, I ′) we have proved the lemma.

2

We use this below.

Proof of Lemma 1.6.7: We split the sum as follows

lm∑

k=0

|F k(J)| =
m−1∑
j=0

lj+1−lj∑

k=1

|F lj+k(J)|

where we let l0 = −1. We know from Lemma 1.6.5 that |DF |I′\V > γ so

lj+1−lj∑

k=1

|F lj+k(J)| < |F lj+1(J)|
lj+1−lj−1∑

k=0

(
1

γ

)k

<
|F lj+1(J)|
1−

(
1
γ

) .

Whence,
lm∑

k=0

|F k(J)| < 1

1−
(

1
γ

)
m∑

j=0

|F lj(J)|.

So we only need bound the sum of returns to V .

Denote the rightmost element of
⋃j V j by V 1 and the leftmost element by V 2

(observe that F̂ |V 1 = F 2|V 1 and F̂ |V 2 = F 2|V 2). We get an estimate on how

deep each V j is inside V for j > 2 because V 1 and V 2 have some definite size

compared to |V |; since by Lemma 1.6.8 we know that |V 1|, |V 2| > |V |
Ĉ2

. Therefore,

there exists some δ′0 depending only on f such that V is a δ′0-scaled neighbourhood

of V j for all j > 2. So by Lemma 1.4.2, there exists some λ′V < 1 depending

on δ′0 such that for any interval J ′ ⊂ V j, B(V, J ′) < λ′V B(V j, J ′) for j > 2 (in

fact this is also shown in Claim 1.6.9 below). As usual we can use Theorem 1.3.3

to conclude that there exists some λV < 1 such that B(V, J ′) < λV B(V, F̂ (J ′)).
If we remain away from V 1 and V 2, this fact and the usual argument would be

sufficient to obtain the required bound on sums.

We must deal with the case where iterates enter V 1, V 2. The idea is to split the

situation into the case where intervals land in a region where |DF̂ | is large and
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the case when the intervals land in a region where we don’t have good estimates

on |DF̂ |.
We firstly focus on V 2. We know from Theorem 1.3.9 that |DF (p′)| > ρf and

so |DF̂ (p′)| > ρ2
f . There must also exist some fixed point r of F̂ in V 2 with

|DF̂ (r)| > ρf . Letting Λ2 := (p′, r) and applying the Minimum Principle as

before, we obtain |DF̂ |Λ2 > ρ. Let r′ be the point in V 1 such that F̂ (r′) = r.

Then there exists some ρ > 1 such that |DF̂ |(r′,p) > ρ. We define Λ1 to be the

interval in V 1 which has F̂ (Λ1) = V \ V 2. Clearly Λ1 ⊂ (r′, p), so |DF̂ |Λ1 > ρ.

For convenience later, we let Λ := Λ1∪Λ2. The reason for fixing these intervals in

this way is explained below when we consider the case when F̂m−1(J) ⊂ V 1∪V 2.

We are now ready to deal with bounding
∑m−1

k=0 |F̂ k(J)|. Observe that F̂m−1(J)

must be contained in some V j. Suppose first that j > 2; we deal with the case

where j = 1 or 2 later. Suppose further that J ⊂ V j′ and j′ > 2; here the

other case is similar. We will again split up the sum. Let N ′
0 = 0. Let N1 be

minimal such that F̂N1(J) ∩ Λ = ∅ and F̂N1+1(J) ⊂ Λ. Let N ′
1 > N1 be minimal

such that F̂N ′
1(J) ⊂ Λ and F̂N ′

1+1(J) ∩ Λ = ∅. In a similar fashion we obtain

N ′
0 < N1 < N ′

1 < · · · < NM−1 < N ′
M−1 so that

m−1∑

k=0

|F̂ k(J)| =
M−1∑
j=0




Nj+1−N ′
j∑

k=1

|F̂N ′
j+k(J)|+

N ′
j+1−Nj+1∑

k=1

|F̂Nj+1+k(J)|



+

NM−N ′
M−1∑

k=1

|F̂N ′
M−1+k(J)|

where NM = m− 1. Observe that the first sum in the brackets concerns intervals

which land inside Λ and the second sum in the brackets concerns intervals in

V \ Λ. Then

N ′
j+1−Nj+1∑

k=1

|F̂Nj+1+k(J)| < |F̂N ′
j+1(J)|

Nj+1−N ′
j+1−1∑

k=0

(
1

ρ

)k

<
C

1−
(

1
ρ

) |F̂N ′
j+1(J)|

for some C.

Now we consider
∑Nj+1−N ′

j

k=1 |F̂N ′
j+k(J)|. In fact we learn most from estimating

the sum
∑NM−N ′

M−1

k=1 |F̂N ′
M−1+k(J)|. We adjust λV < 1 so that for J ⊂ V j \Λj for

j = 1, 2 we have B(V, J) < λV B(V, F (J)). Then for 1 ≤ k < Nm −N ′
M−1,

B(V, F̂N ′
M−1+k(J)) < λ

NM−N ′
M−1−k

V B(V, F̂NM (J)).
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Recalling that M = m − 1 we calculate B(V, F̂m−1(J)) < B(V, V j) |F̂
m−1(J)|
|V j | .

Letting BV := max
{
supj>2 B(V, V j), B(V, V 1 \ Λ1), B(V, V 2 \ Λ2)

}
, we obtain

|F̂N ′
M−1+k(J)| < |V |

1 + 2|V j |
λ

NM−N′
M−1

−k

V BV |F̂ m−1(J)|

.

Letting B̂V := BV

BV +2
we have

|F̂N ′
M−1+k(J)| < B̂V λ

NM−N ′
M−1+k

V

|V |
|V j| |F̂

m−1(J)|.

We wish to bound |F̂m−1(J)| in terms of |F̂m(J)|. We do this by constructing an

extension. Let V = (a, a′). Let the left-hand and right-hand members of F−1(a)

be denoted by b and b′ respectively. Denote (b, b′) by V ′. By Lemma 1.6.8, V ′ is

a δV ′-scaled neighbourhood of V where δV ′ depends only on f .

Claim 1.6.9. For all branches V j, j > 2 there exists an extension to some

interval U j ⊃ V j such that U j ⊂ V and FmV,j : U j → V ′ is a diffeomorphism.

Proof: For j > 2 the return maps are a composition of F |V followed by F |IR

and then some number of iterates of F |IL . So F̂−1 must pull V ′ back into IL.

Observe that this element of F−1(V ′) is below p′ (and clearly away from F (c)).

Any further pullbacks in IL remain below p′ also. Therefore when some element

F−k(V ′) is finally pulled back into IR, it is mapped above p and remains away

from F (c). Therefore we have elements of F−k−2(V ′) mapping inside V which

don’t contain c.

2

By the above claim and Theorem 1.3.7 we have some C > 0 depending only on

f such that if j > 2,
1

C

|V |
|V j| ≤ |DF̂ |V j ≤ C

|V |
|V j| .

(Recall that we are assuming that Fm−1(V ) ∩ Λ = ∅.)
Letting B̃ = CB̂V we have |F̂N ′

M−1+k(J)| < λ
NM−N ′

M−1+k

V B̃|F̂m(J)|. Therefore,

NM−N ′
M−1∑

k=1

|F̂N ′
M−1+k(J)| < B̃|F̂m(J)|

1− λV

.
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So we can find an estimate for the sums of lengths of the iterates of J which land

in Λ in terms of |F̂m(J)|. We now proceed to estimate the other sums concerning

intervals outside Λ as follows. Let µ̂ := exp

{
−ν ′(I0)

|I0|
1−( 1

ρ)

}
. Suppose that

FNM−2(J) ⊂ V j. then taking the appropriate branch, F̂NM−2−N ′
M−1−1(V ) ⊂ V j

and

B(V, F̂NM−2(J)) < λ′V B(F̂NM−2−N ′
M−1−1(V ), F̂NM−2(J))

<
λ′V
µ̂

B(F̂−1(V ), F̂N ′
M−1(J))

<
λ′V
µµ̂

B(V, F̂N ′
M−1+1(J))

Modifying µ, µ̂ if necessary, as usual, so that
λ′V
µµ̂

=: λV < 1, we obtain

B(V, F̂NM−2(J)) < λV B(V, F̂N ′
M−1+1(J)).

Clearly then we can proceed in bounding the sum using the usual method of

decaying cross-ratios. So we have bounded
∑m−1

k=0 |F̂ k(J)| for this case.

There remains a further complication to consider. Above we assumed that

F̂m−1(J) ⊂ V j where j > 2. But if j ∈ {1, 2} we have two cases. We first

note that if F lm(J) ∩ {r, r′} = ∅ then the intervals we are concerned with are

either completely inside Λ2, Λ1 or completely inside V \ (Λ2 ∪Λ1). Then we may

proceed as above. But if F k(J) contains r or r′ then we split F k(J) into two

intervals, with this periodic point at their intersection. We may then apply the

procedure above to estimate the size of each interval. We need only apply this

splitting argument once since if we intersect a periodic point of F̂ once, we must

stay there for all time under iteration by F̂ . Thus we need only alter our con-

stants by a factor of 2 to deal with this case. Note that we only have one sum

where this problem could occur:
∑N ′

M−NM

k=1 |F̂NM+k(J)| where N ′
M = m. This is

because r is a fixed point for F̂ .

Clearly, we can use the cross-ratio argument as usual to obtain the estimate

|F l1(J)| < λm−1
V C|F lm(J)|, so |J | < λm−1

V C|F lm(J)|.

2

We may adjust our usual λ so that λV ≤ λ < 1.

Proof of Proposition 1.6.4: Suppose first that Fm+1(J) ⊂ Ij for j 6= L,R.

Then, in particular, we can be sure that Fm(J) does not contain p or p′. Then
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we also know that none of F k(J) contain p or p′ for 0 ≤ k ≤ m− 1. This means

that we can be sure that all the intervals we consider are either contained in V

or are disjoint from V .

Recall that 0 ≤ s1 < s2 ≤ s3 = m are defined as follows. F k(J) ⊂ I ′ \ V

for 1 ≤ k ≤ s1; F s1+1(J) ⊂ V ∩ (IL ∪ IR); and F s2(J) ⊂ V ∩ (IL ∪ IR),

F s2+k(J) ⊂ I ′ \ V for 1 ≤ k ≤ s3 − s2.

Then if s3 > s2,

s3−s2∑

k=1

|F s2+k(J)| < |F s3(J)|
s3−s2−1∑

k=0

(
1

ρ

)k

<
|F s3(J)|
1−

(
1
ρ

) ,

by Lemma 1.6.5.

From Lemma 1.6.7,
s2−s1∑

k=1

|F s1+k(J)| < C|F s2(J)|

and |F s1+1(J)| < C|F s2(J)|.
Also

s1∑

k=0

|F k(J)| < |F s1(J)|
s1−1∑

k=0

(
1

γ

)k

<
1

γ
(
1−

(
|F s1+1(J)|

γ

))

<
C|F s2(J)|

γ
(
1−

(
1
γ

)) .

Therefore,

s2∑

k=0

|F k(J)| < C|F s2(J)|
γ

(
1−

(
1
γ

)) + C|F s2(J)| < C|F s2(J)|.

If s3 > s2 then
s3∑

k=0

|F k(J)| < |F s3(J)|
1−

(
1
γ

) + C|F s2(J)|.

Therefore, the first two parts of the proposition are proved.

Now if Fm+1(J) ⊂ Ij for j 6= L,R, 0 then recalling that s3 = m we will obtain

an estimate for |F s2(J)| in terms of B(Ii, F
m+1(J)).

B(Ii, F
s2(J)) < B(F−(s3−s2)(Ii), F

s2(J)) <
B(Ii, F

m(J))

µ
<

B(Ii, F
m+1(J))

µ2
.
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We are allowed to use µ here since all intermediate intervals must be disjoint

(otherwise we would have to pass through V again). Therefore |F s2(J)| <
|Ii|

1+ 2µ2

B(Ii,Fm+1(J))

< C|Ii|B(Ii, F
m+1(J)). Similarly we can show that |Fm(J)| <

C|Ii|B(Ii, F
m+1(J)). Therefore

s3∑

k=0

|F k(J)| < C|Ii|B(Ii, F
m+1(J))

We now prove the final part of the proposition.

Let µ̃ := exp{−ν ′(|I0|)2C|I0|}. Clearly for any run of intervals F (J), . . . , F k(J) ⊂
IL ∪ IR, considering the branch of F−k which follows the iterates of J , we know

that B(F k, F−k(Ii), J) > µ̃. We consider the branch of F−m−2 which follows the

backward orbit of Fm+1(J). Clearly, F−m−2(Ii) is strictly inside Ij. Thus,

B(Ii, J
′) < λ′B(Ij, J ′) < λ′B(F−m−2(Ii), J

′)

<
λ′

µ̃
B(F−1(Ii), F

m+1(J ′)) <
λ′

µ̃µ
B(Ii, F

m+2(J ′)).

We can alter the usual λ slightly so that λ′
µ̃µ
≤ λ and still ensure that λ < 1.

Thus, B(Ii, J
′) < λB(Ii, F

m+2(J ′)) as required.

When we do not escape IL ∪ IR then we may have some intersection with p or

p′. In this case, we spilt our interval in two and estimate the size of each piece

as above. We need only apply this idea once, so we can change our constants to

cater for this case too. Then we needn’t find the cross-ratio B(Ii, J
′) in terms of

B(Ii, F
m+2(J ′)).

2

1.7 Proof of the main result

We will first prove Theorem 1.2.5 when we are not in the infinite cascade case.

When f ∈ C2+η there is some C2 > 0 such that wDf2(ε) = C2ε
η. In fact, we

change C2 so that C1(ε
η + βε) < C2ε

η where C1, β come from Lemma 1.3.3.

Recall that B(fn, T, J) > exp{−C2

∑n−1
k=0 |fk(T )|1+η}. We will find a bound on
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the sum
∑n−1

k=0 |fk(T )|1+η by using the main propositions above and also finding

some decay property for the size of the intervals fni(T ) for some values of i.

Let Fi :
⋃

j U j
i → Ii be the first entry map to Ii (we include the branches of the

first return map in this case too). For i < j, we define the function S(i, j, J) to be

the maximum of |f i+1(J)|, |f i+2(J)|, . . . , |f j(J)|. We will consider S(ni+1, ni, T ).

Let n(j) be such that Fi|Uj
i

= fn(j)|Uj
i
. Now let U

s(i)
i be the interval for which

S
(
0, n(j), U j

i

)
is maximal. Clearly,

S(ni+1, ni, T ) ≤ S
(
0, n(s(i)), U

s(i)
i

)
.

We would like to show that for certain i, this quantity decays with i in a controlled

way.

First suppose that Fi−1 is in the well bounded case. We have two cases. Firstly,

suppose that U
s(i)
i ⊂ Ii. Then since Fi−1 is in the well bounded case, we have

|U s(i)
i | < |Ii−1|

1+2χ
. Since Ii is a domain of the first return map to Ii−1 we have

|U s(i)
i | <

S
(
0, n(s(i− 1)), U

s(i−1)
i−1

)

1 + 2χ
.

Now assume that U
s(i)
i ∩ Ii = ∅. Then there exists some extension Vi ⊃ U

s(i)
i such

that fn(s(i)) : Vi → Ii−1 is a diffeomorphism. We will show that U
s(i)
i is uniformly

smaller than Vi. By Theorem 1.3.3 we know that B(Vi, U
s(i)
i ) < B(Ii−1,Ii)

µ
. Thus,

by Lemma 1.4.1, |U s(i)
i | < |Vi|

1+ 2µ
∆(χ)

. Since Vi is a first return domain to Ii−1 we

have

|U s(i)
i | <

S
(
0, n(s(i− 1)), U

s(i−1)
i−1

)

1 + 2µ
∆(χ)

.

Let γ := max

(
1

1+2χ
, 1

1+ 2µ
∆(χ)

)
. Clearly γ < 1. So

S
(
0, n(s(i)), U

s(i)
i

)
< γS

(
0, n(s(i− 1)), U

s(i−1)
i−1

)
.

We let Call = max(Cwb, Ccasc, 3Cex). If f ∈ C2+η and Fi−1 is well bounded, we

have

B(fni−ni+1 , fni+1+1(T ), fni+1+1(J))

≥ exp

{
−C2 (S(ni+1, ni, T ))η

ni−ni+1∑

k=1

|fk+ni+1(T )|
}
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> exp
{
−C2

(
S

(
0, n (s (i)) , U

s(i)
i

))η

Call

}

> exp
{
−C2

(
γS

(
0, n (s (i− 1)) , U

s(i−1)
i−1

))η

Call

}
.

(For the case of a long saddle node cascade we are able to bound the sum∑ni−ni+1

k=1 |fk+ni+1(T )|1+ξ for any ξ > 0. So we can alter the above calculation

by choosing some ξ < η and considering

(
γS

(
0, n (s (i− 1)) , U

s(i−1)
i−1

))η−ξ
ni−ni+1∑

k=1

|fk+ni+1(T )|1+ξ

instead.)

If we are not in the infinite cascade case then the sums for Fi, Fi+1, . . . can be

broken into blocks consisting of a cascade; possibly followed by an exceptional

case; followed by one or more well bounded cases. So suppose that Fi is well

bounded, Fi, Fi+1, . . . , Fi+m−1 have central returns, Fi+m has a non-central return

and Fi+m+1 is an exceptional case. So note that, in particular, Fi+m+2 must be

well bounded. Then,

S
(
0, n(s(i + m + 3)), U

s(i+m+3)
i+m+3

)
< γS

(
0, n(s(i + m + 2)), U

s(i+m+2)
i+m+2

)
, . . .

. . . , γS
(
0, n(s(i + 1)), U

s(i+1)
i+1

)
< γ2S

(
0, n(s(i)), U

s(i)
i

)
.

Therefore,

B(fn, T, J) > exp

{
−C2

n−1∑

k=0

|fk(T )|1+η

}

> exp

{
−C2Call

(
S

(
0, n(s(0)), U

s(0)
0

))η
∞∑

k=0

γkη

}

> exp

{
−C2Call

(σ′(|I0|))η

1− γη

}
.

Therefore, it is easy to see that for any 0 < K < 1, if I0 is the central domain

of a first return map to some I−1, I0 is sufficiently small and F−1 is in the well

bounded case, then we may bound B(fn, T, J) below by K.

It remains to show that we can always begin with a well-bounded case when we

don’t have an infinite cascade. If ω(c) is non-minimal, then arguing as in the

proof of Theorem A’ of [LS1], we can immediately find an interval I−1 which has
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the first return map F−1 in the well bounded case. Otherwise, when we don’t

have an infinite cascade, we simply induce on a nice interval finitely many times

until we obtain a non-central return and thus obtain a suitable I−1. We consider

the infinite cascade case in the next section.

The second part of Theorem 1.2.5, which concerns A(fn, T, J) is proved similarly

with an analogous result to Theorem 1.3.3 for A(f, T, J) (see [Sh3] or [St] for

example).

Remark 1.7.1. Note that the above method of proof relies on the modulus of

continuity w = wD2f having some smoothness property. In fact, what we actually

require is that there is some ε > 0 such that
∑∞

i=1 w(εi) is bounded. In general,

this is not the case. For example, if w is of the form w(x) = −ω
log x

, for some

parameter ω > 0, for x in a neighbourhood of 0.

Remark 1.7.2. In [K1] there is a way of proving the above theorem for the C3

case by showing that σi decays to 0 in a good way as i increases. Indeed, suppose

that we only have C2 smoothness, but that all the other conditions above are met.

If we can then show that
∑∞

i=0 σi is bounded then the result follows. However,

this may not be the case in general.

1.7.1 Infinite cascade case

Here we deal with the case where we have some I0 such that Fi are central for

i = 0, 1, . . .. In this case we will find that |Ii+1|
|Ii| gets very close to 1. See Figure 1.5

to see what a typical such map will look. In particular, Ii will not shrink down

to a point (the critical point c) as i increases so we can’t use the method above

to bound sums of intervals which get very close to c.

When f is only finitely renormalisable, we don’t encounter this phenomenon. The

principal tool is an extension given to us by a result of [K2].

We start by letting I0 be any nice interval about c. We assume that we have

some infinite cascade. This means that Fi is central for all i, where Fi is defined

in the usual way. The main idea here is that we can still find good bounds on

some interval I0,0 and then apply the methods of Section 1.5 to it. Then we need

to find another interval I1,0 around c which is smaller than all I0,i, also has good

bounds and is uniformly smaller than I0,0. In such a way, we obtain a sequence

of intervals Ii,0 which can each be treated as in the cascade case above and which

shrink down uniformly to the critical point. We will assume that Fi,j is always
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I
i

I
i+1

I
i+2

I
i+3

Figure 1.5: An infinite cascade.

central for all i, j ≥ 0. Otherwise we can simply choose I0 such that we never

have an infinite cascade.

For all i the central branch of Fi has two fixed points, q0 and p0 to the left and

right of c respectively (as usual, we assume that Fi(c) is a maximum for Fi|Ii+1
).

We let q′0 be the point in Ii+1 not equal to q0 which maps by Fi to q0. We define

p′0 similarly. We define I0,0 to be (p′0, p0). Let F0,0 :
⋃

j Ij
0,0 → I0,0 be the first

return map to I0,0 (where I0
0,0 = I0,1 is the central domain). We have the following

lemma.

Lemma 1.7.3. There exists some χ̂ > 0 depending only on f such that I0,0 is a

χ̂-scaled neighbourhood of every domain Ij
0,0.

Proof: Clearly, Ii tends to (q0, q
′
0). So we denote (q0, q

′
0) by I∞. We will first

show that I∞ is uniformly larger than I0,0 and then show that all non-central

domains of the first entry map to I0,0 have an extension to I∞ and show what

this means for Ij
0,0.

In a similar manner to the exceptional case, we will find an upper bound for

|DFi|Ii+1
. This will allow us to get good bounds for the first return map to I0,0



CHAPTER 1. CROSS-RATIO BOUNDS 46

For large i, the ratio Ii has |Ii+1|
|Ii| close to 1. The following lemma, an adaptation

of Lemma 7.2 of [K2], allows us to bound |DFi|Ii+1
.

Lemma 1.7.4. If f ∈ NF 2 then there exist constants 0 < τ2 < 1 and τ3 > 0

with the following property. If T is any sufficiently small nice interval around

the critical point, RT is the first entry map to T and its central domain J is

sufficiently big, i.e. |J |
|T | > τ2, then there is an interval W which is a τ3-scaled

neighbourhood of the interval T such that if c ∈ RT (J) then the range of any

branch of RT : V → T can be extended to W provided that V is not J .

This lemma is only given as a C3 result in [K2], but it easily extends to our C2

case.

In the infinite cascade case we always have this c ∈ RT (J) condition.

It is straightforward to see that the above lemma is sufficient to prove a version

of Lemma 1.6.8 in our case. That is, for large i, there exists some Ĉ ′ such that

|DFi|Ii+1
< Ĉ ′. This implies that there exists some 0 < θ < 1 depending only

on f such that |I0,0| < θ|I∞| and, equivalently, some χ̃ > 0 such that I∞ is a

χ̃-scaled neighbourhood of I0,0.

Now, for the moment we let F0,0 also denote the first entry map and
⋃

j Ij
0,0 also

denote the first entry domains. Suppose that there exists a domain Ij
0,0 disjoint

from I0,0 which does not have an extension to I∞. That is, supposing F0,0|Ij
0,0

=

fn(j)|Ij
0,0

there is no interval V such that fn(j) : V → I∞ is a diffeomorphism. Let

0 ≤ k < n(j)− 1 be maximal such that fn(j)−k : fk(Ij
0,0) → I0,0 has no extension

to I∞ (clearly if I0,0 is small f : fn(j)−1(Ij
0,0) → I0,0 always has an extension

so k < n(j) − 1). Then there exists some interval V ⊃ fk+1(Ij
0,0) such that

fn(j)−k−1 : V → I∞ is a diffeomorphism and the element of f−1(V ) containing

fk(Ij
0,0) contains c.

Since I∞ is a nice interval, V ⊂ I∞. We also know that fk(Ij
0,0) ⊂ I∞ \ I0,0.

Therefore V contains either p0 or p′0. But then either fn(j)−k−1(p0) or fn(j)−k−1(p′0)
is contained in I∞ \ I0,0 which is not possible.

Now consider f(Ij
0,0) for some j 6= 0 where Ij

0,0 ⊂ I0,0 is a domain of the first return

map. There exists some V ⊃ f(Ij
0,0), where fn(j) : V → I∞ is a diffeomorphism

and V is a χ̃-scaled neighbourhood of f(Ij
0,0). Let V (f(c)) denote the maximal

interval around c which pulls back by f−1 to I0,0. If V is not contained in V (f(c))

then either p0 or p′0 is contained in V ′ the respective pullback by f−1 of V (the one

which contains Ij
0,0). Thus, fn(j)(p0) or fn(j)(p′0) lies in I∞ \ I0,0, a contradiction.
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So V ′ ⊂ I0,0 and I0,0 is a χ̂-scaled neighbourhood of Ij
0,0 where χ̂ = min

(
χ̃′, 1

2

)
.

The case of the central branch follows in the usual manner.

2

So we are in a type of well bounded case for F0,0. Furthermore, we may assume

that F0,0 has an infinite cascade too. We sum for F0,0, F1,0, . . . as in the cascade

case. We let q1, q
′
1, p1, p

′
1 be defined as above for the fixed points of F0,0|I0,1 . We

let I0,∞ denote (q1, q
′
1). We may apply the same ideas as above to find some new

interval I1,0 := (p1, p
′
1) which has |I1,0| < θ|I0,∞|. We may define Ii,j for i ≥ 2,

and 0 ≤ j ≤ ∞ in a similar way.

Let fNi(T ) be the last iterate of T which lies inside I0,i. Let N ′
i > Ni+1 be the

last time that fN ′
i (T ) contains pi (if no such integer exists, set N ′

i = Ni+1). Then

we can prove the following proposition.

Proposition 1.7.5. For all ξ > 0 there exists some Cinf > 0 such that

Ni−N ′
i∑

k=1

|fk+N ′
i (T )|1+ξ < Cinf σ̂i

where σ̂i is defined as follows. Let σi := supV ∈domFi,0

∑n(V )
j=1 |f j(V )| (and n(V ) is

defined as k where Fi,0|V = fk). Let V̂ ⊂ Ii,0 \ Ii,1 be an interval such that f n̂(V̂ )

is one of the connected components of Ii,0 \ Ii,1 and f j(V̂ ) is disjoint from both

Ii,0 \ Ii,1 and Ii+1,0 for 0 < j < n̂(V̂ ). Then σ̂i is the supremum of all such sums∑n̂(V̂ )
j=1 |f j(V̂ )| and σi.

It is clear that we can prove the proposition when we don’t enter Ii,∞. When

we enter Ii,∞ \ Ii+1,0 we simply use the Minimum Principle as usual to show that

|DFi|Ii,∞\Ii+1,0
is uniformly greater then 1. Then this gives us decay of the size of

these pullbacks.

In order to bound the whole sum, we must bound
∑N ′

i−Ni+1

k=1 |fk+Ni+1(T )| too. To

do this we split fN ′
i (T ) into the intervals fN ′

i (T−
i ) and fN ′

i (T+
i ) to the left and

right of pi respectively. If we denote Mi ≥ 0 to be the last time that an iterate

of T−
i contains pi+1. Then using Proposition 1.7.5, we have

N ′
i−Mi∑

k=1

|fk+Mi(T )| < Cinf σ̂i+1.
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Such logic then leads us to conclude that

Ni∑

k=0

|fk+Ni+1(T )| < Cinf

∞∑

k=i

(k − i)σ̂k.

While this sum is not obviously bounded, this is not the sum we need to bound

when f ∈ NF 2+ξ. As in the cascade case, we bound
∑Ni−N ′

i
k=1 |fk+N ′

i (T )|1+ξ. This

is bounded by a sum of the form Cinf |I0,0| sup0≤i σi

∑∞
i=0 iθξi. Clearly this is

bounded.

1.8 Possible Extensions

To continue these studies we could:

• extend our result to all maps in NF 2. Most of our bounds only require the

maps to be C2. It is only in Section 1.7 when we require extra smoothness.

Furthermore, in many cases it is not hard to improve our bounds on return

sums to bounds like CB(Ii, f
ni(T )) and indeed, in some cases to obtain

even better bounds which relate some cross ratios for fni(T ) and fni+1(T );

• extend our results to the case of C2+η multimodal maps with non-flat critical

points. The key results we use here come from [SV] and they relate to

multimodal maps;

• use our result to find some extension to results already existing relating

to the ‘decay of geometry’ for maps with non-flat critical points. See for

example, [GSS1] (which requires negative Schwarzian to obtain decay of

geometry in C3 maps). This would possibly help us to show some decay of

σi with i which could, by Remark 1.7.2 help to prove Theorem 1.2.5 in the

C2 case.

• use our bounding methods to simplify and possibly extend the estimates

on the Hausdorff dimension of attractors for unimodal maps in [GK]. This

process will be a little more complicated than our situation above as we raise

the summands to some powers. If we consider T is as in Theorem 1.2.5, we

will be trying to bound sums of the form
∑n

k=0 |fk(T )|β where 1
2

< β < 1.
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Structurally sensitive points

Kozlovski proved in [K3] that Axiom A maps are dense in the space of Ck uni-

modal maps for k = 1, 2, . . . ,∞, ω. So we know what form ‘most maps’ in the

unimodal class take. The proof involves some global perturbation of a unimodal

map (to make it analytic) followed by a local perturbation at the critical value to

reach an Axiom a map. The consequence of this is that almost all small global Ck

perturbations of non-Axiom A unimodal maps produce Axiom A maps. Here we

go some way to showing that near some points almost all small local Ck pertur-

bations produce Axiom A maps too. Conversely, at other points no small local

Ck perturbation changes the type of the map. Thus we are able to characterise

the effect of a large class of perturbations on a large class of maps.

In fact, we prove that in some cases we know that a specific perturbation about

any point in the postcritical set will give us an Axiom A map. Any small pertur-

bation outside this set will not change the type of the map.

This type of result has been proved in the C2 case around f(c) in [BM].

In [A] a lamination of the space of Ck unimodal maps with the same topological

type is constructed. So our results show that for some cases we can find families

of maps which are transverse to this lamination.

There are, unfortunately, only some maps which we can apply our ideas to. We

will give some idea as to the difficulties in other cases.

49
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2.1 Finding structurally sensitive points

In this section we introduce our main result. See the following section for defini-

tions.

We will try to find local perturbations which lead to a change of the combinatorial

type of the unimodal map. We may only address this problem in the Ck setting,

k 6= ω (see Section 2.5 for the definition of this class of maps), as there are no

local perturbations of analytic maps.

The class of maps we deal with is defined as follows.

Definition 2.1.1. We say that a unimodal Ck map has non-flat critical point c

if in some neighbourhood U of c, there exists some Ck diffeomorphism φ : U → I

with φ(c) = 0 and g(x) = ±|φ(x)|α + g(c) for some α > 1. α is known as the

critical order for f . We denote the set of such maps by NF k. We also denote

this neighbourhood by Uφ. When the critical order is 2 we say that we have a

quadratic critical point. We denote this class by Qk.

In this chapter we deal with maps in NF k which have no parabolic cycles and are

not Axiom A. We denote this class by NFHk. Denote the set of maps in both

NFHk and Qk by QHk.

We introduce a definition.

Definition 2.1.2. For f ∈ Ck where f : I → I, a point x is called a structurally

sensitive point of the map if for any neighbourhood U of x and any ε > 0 there

is some map g ∈ Ck s.t. ‖f − g‖Ck < ε and g|I\U = f |I\U , but f and g are not

combinatorially equivalent.

That is, in an arbitrarily small neighbourhood of such points, an arbitrarily small

perturbation of the map changes the combinatorial type. In fact, in some cases

this concept will be stronger as we will see in Lemma 2.1.5.

As we explain in detail in Section 2.2, we let B(f) denote the basin of attraction

for f . We are interested in finding the following type of maps.

Definition 2.1.3. We say that C1 map f : I → I is Axiom A if:

• f has finitely many hyperbolic attractors;

• the set Σ(f) = I \B(f) is hyperbolic.
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We let PC(f) denote the postcritical set
⋃

n≥0 fn(c). Our main theorem is as

follows.

Theorem 2.1.4. We find perturbations to prove the following.

1. If f ∈ NFHk for k ≥ 2 and c is preperiodic or non-recurrent then PC(f)

is the set of Ck structurally sensitive points for k = 1, 2, . . ..

2. If f ∈ NFH2 then the set of C1 structurally sensitive points is PC(f).

3. If f ∈ QHω then PC(f) is the set of Ck structurally sensitive points where

k = 1, 2 . . ..

4. If f ∈ QHk and ω(c) is minimal then PC(f) is the set of Ck structurally

sensitive points where k = 1, 2 . . ..

5. If f ∈ QHk and {x ∈ ω(c) : ω(x) 6= ω(c)} ∩ {c} = ∅ then PC(f) is the set

of Ck structurally sensitive points where k = 1, 2 . . ..

Usually this type of perturbation is done at f(c), see for example, [BM] or [K3].

In fact, in [BM] it is proved that any f ∈ NF 2 is C2 structurally sensitive at

f(c). The method of proof there does not easily extend to fn(c) for n > 1.

For any point x0 outside PC(f), there is an open set Ux0 3 x0 which also lies

outside PC(f). Any small C1 perturbation supported on Ux0 will clearly not

change the combinatorial type of a map f (we need merely to ensure that we

don’t create a new critical point). So to prove any of the parts of Theorem 2.1.4

we only need to prove that points in PC(f) are structurally sensitive. Below

we will let Ux0 be some small neighbourhood of the point x0 in which we will

perturb. Observe that if f ∈ Qk, for any point not equal to c, a small enough

local perturbation will yield a map in Qk.

Also, if c is preperiodic then it is easy to see that there are small perturbations

which change the itinerary of c.

In Section 2.2.1 we prove the following.

Lemma 2.1.5. Let f ∈ NFH3. Then for any x0 /∈ PC(f) there exists some

ε > 0 such that any C3 perturbation in an ε-small neighbourhood of x0 which is

ε-small in the C3 topology yields a map which is conjugate to f .
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Therefore, whenever we can prove that the set of C3 structurally sensitive points

for f is precisely PC(f) then we can also be sure that these are the only points

about which small local perturbations change the topological type (clearly if two

maps are not combinatorially equivalent then they are not conjugate). So we can

talk of these points as topologically structurally sensitive points.

The main idea behind this lemma, as we will see in Subsection 2.2.1, is a result

of [K3] that states that small C3 perturbations outside PC(f) cannot create

attracting cycles. We are unable to prove this for all small C2 perturbations.

Strategy of the proof of Theorem 2.1.4

• We prove Theorem 2.1.4 in the case where c is non-recurrent in Section 2.3.

• We make C1 perturbations in Section 2.4.

• The analytic case is proved in Section 2.5.

• The minimal case is dealt with in Section 2.6.

• A simple non-minimal case is considered in Section 2.7.

Our theorem could extend to the following conjecture, a version of which appears

in the final section of [K1].

Conjecture 2.1.6. Let f : I → I have f ∈ QHk. Then the set of Ck structurally

stable points is the closure of the postcritical set. Here k = 1, 2, . . ..

To prove the conjecture, it would be necessary to deal with Ck-structurally sen-

sitive points for k ≥ 2 where f is non-Axiom A, recurrent and non-minimal.

The following theorem provides the main technique for our proofs for Ck struc-

turally sensitive points for k = 2, . . .. It is taken from Theorem C of [K3]. We

don’t use it directly, but we are able to make minor adjustments to the proof in

order to obtain a similar result in our case. For definitions, see below.

Theorem 2.1.7. Let fλ : I → I be an analytic family of analytic unimodal

maps with a non-degenerate critical point and no parabolic cycles, λ ∈ Ω ⊂ RN

where Ω is a closed set. Suppose that the family f is non-degenerate in the sense

that there exist some λ, λ′ ∈ Ω such that fλ and fλ′ are not combinatorially

equivalent. Then for each λ ∈ Ω, either fλ is Axiom A or there is a map which

is not combinatorially equivalent arbitrarily close in the Ck topology to fλ. Here

k = 1, . . . ,∞, ω.
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In [K3] for a given unimodal map f ∈ Ck, firstly f is approximated by a map in

QHω. This is a global perturbation. This is the map then denoted by f0 in the

theorem. In our case, we can often find our map f0 by a local perturbation of f .

In fact, we don’t require f0 to be analytic. We just need f0 to induce some such

polynomial-like map. Then in [K3] f is embedded in a non-degenerate family by

perturbing at f(c) rather than at any point of PC(f). Note that in both their

case and our case, this second perturbation can be large in the C2 sense. However,

rigidity theorems for holomorphic maps show that, in fact, such a perturbation

can be very small in the Ck topology for k = 1, . . ..

So the fundamental difference for us is that we make purely local perturbations:

firstly to get the polynomial-like map and secondly to create a non-degenerate

family by perturbing a point in the postcritical set.

We sketch the proof of Theorem 2.1.7, observing how it can be adapted to our

case. For more details, see [K3]. A family of maps are created as follows. Given

a non-Axiom A map f0 with non-flat critical point, a polynomial-like map F0 :

B0 → A is induced where B0 =
⋃

i B
i
0 and A =

⋃
i A

i (there are a finite number

of such Bi
0 and Ai).

We suppose that fλ for λ in a neighbourhood of 0 is a family which depends

holomorphically on λ. If we know that for all neighbourhoods D of 0 there is

some λ ∈ D such that f0 and fλ are not combinatorially equivalent then we are

finished.

Next we obtain Fλ : Bλ → A. By the construction of Fλ we can see that, in

our case, this must be a polynomial-like mapping. This is because the structure

of the set ∂A ∩ R persists for fλ. (In fact, by a change of coordinates, we may

assume that A is fixed for all fλ.) Now given F : Bi
0 → Aj(i), a quasi-conformal

mapping φλ is defined as mapping φλ : ∂Bi
0∪∂A → ∂Bi

λ∪Aj(i) where for z ∈ ∂Bi
0,

φλ(z) = F−1
λ F0(z) and for z ∈ ∂A, φλ(z) = z.

The map φλ can be extended to A \B0 in a quasiconformal way since for most of

the finite number of domains Bi we have, mod(A \ Bi) bounded away from zero

(there is a further argument when ∂B0∩∂A intersect). The Beltrami coefficient of

this map can be pulled back by F0. The measurable Riemann mapping Theorem

provides a family of maps with this Beltrami coefficient hλ : A → A such that

the map

Gλ : hλF0h
−1
λ : Bλ → A

is holomorphic for each λ close to 0. Furthermore this family depends holomor-
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phically on λ.

The next step is to show that f0 and fλ are combinatorially equivalent if and only

if Fλ = Gλ. The proof of this requires the rigidity theorem and the straightening

theorem.

Finally, if we assume that 0 is an accumulation point of parameters λ such that

fλ is combinatorially equivalent to f0 then Fλ = Gλ in an open neighbourhood

of 0. But by kneading theory we know that such a set of parameters must be

closed. So all parameters must give combinatorially equivalent maps. But it is

assumed that for some λ we have f0 and fλ not combinatorially equivalent so this

is a contradiction. Whence there are maps arbitrarily close to f0 which are not

combinatorially equivalent to f0.

Therefore, if we are able to find a Ck small local perturbation of f which induces a

polynomial-like map for some k, and we are then able to change the combinatorics

by another local perturbation, then the method of Theorem 2.1.7 yields a map

which is a Ck small local perturbation of f and is not topologically conjugate to

f .

2.2 The setting for local perturbations

We fix the notation I to be the unit interval [0, 1]. We will also assume that the

unimodal maps f : I → I which we deal with have f(∂I) ⊂ ∂I. (Throughout,

for a set U ⊂ R, we let U denote the closure of U , let
◦
U denote the interior of U

and ∂U denote the set U\ ◦
U .)

Definition 2.2.1. Two non-recurrent unimodal maps f and f̃ with critical points

c and c̃ respectively are combinatorially equivalent if there exists an order pre-

serving bijection,

h :
⋃

n∈Z
fn(c) →

⋃

n∈Z
f̃n(c̃),

which conjugates f and f̃ , where c, c̃ are the critical points of f and f̃ respectively

and h(c) = c̃.

We can also refer to such maps being of the same combinatorial type.

Supposing that we have a unimodal map f : I → I with critical point c, then we

may divide I into the intervals L = [0, c) and R = (c, 1]. So I = L∪ {c} ∪R. We
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may associate to a point x ∈ I a sequence i(x) = (i0(x), i1(x), . . .) where

ik(x) =





L if fk(x) ∈ L

c if fk(x) = c

R if fk(x) ∈ R

This is called the itinerary of x.

We say that a point x is periodic with period n if there is some minimal n > 0

such that fn(x) = x. We say that a point x is preperiodic if there is some m ≥ 0

such that fm(x) is periodic. Observe that this implies that here we allow periodic

points to be classed as preperiodic too (which is not always the case elsewhere).

If f ∈ C1 and for some point x ∈ I, there is some p ≥ 1 such that f p(x) = x. Then

we say that x is attracting if |Dfp(x)| < 1, repelling if |Df p(x)| > 1 and parabolic

if |Df p(x)| = 1. {x, f(x), . . . , f p−1(x)} is referred to an attracting, repelling or

parabolic cycle respectively for each of the above cases. Df p(x) is referred to as

the multiplier for the periodic cycle {x, f(x), . . . , f p−1(x)}.
We say that a sequence (i0, i1, . . .) is periodic with period n if there exists some

n ≥ 1 with ij+np = ij for any 0 ≤ j < n and p ≥ 0. Such a sequence is eventually

periodic if there is some m > 0 such that (im, im+1, . . .) is periodic.

Remark 2.2.2. For the unimodal map f , any point x which is not preperiodic,

but which does have an eventually periodic itinerary must be attracted to an

attracting periodic orbit. For example suppose that f has periodic itinerary.

Suppose that i(x) = (R, R, . . .). Then since f |R is continuous, the only way that

x can always land in R is if it is attracted to a periodic point (see, for example,

Lemma 2.2.12 below). It is easy to see how this extends to all periodic and

eventually periodic itineraries.

Definition 2.2.3. We call the sequence given by limy↓c i(y) the kneading invari-

ant of the unimodal map f .

Note that if two unimodal maps are combinatorially equivalent then they have the

same kneading invariant. We are interested in changing the kneading invariant

of a non-Axiom A unimodal map f by some perturbation. We will create a

continuous family fλ where f = f0 which has some λ′ such that fλ′ has a different

combinatorial type to f0. We can use the continuity of the kneading invariant to

show that some Axiom A map fλ′′ has λ′′ ∈ (0, λ′]. We see this from Corollary

II.10.1 of [MS] as follows.
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Theorem 2.2.4. Let fλ : I → I be a unimodal family consisting of C1 maps de-

pending continuously on λ. Suppose that maps in our family satisfy the following

condition. If fλ, fλ′ have preperiodic critical points and their kneading invariants

are equal then λ = λ′. Then

λ → ν(fλ)

is monotone.

We can choose our families to be so small that there is no region where this map

is discontinuous, but the critical point is preperiodic for some member of the

family. Then, in our case we will obtain a map fλ with

ν(fλ) = (i0,λ(c), i1,λ(c), . . . , im−1,λ(c), im,λ(c), . . .)

where im(c) ∈ {L,R} and

ν(fλ′) = (i0,λ(c), i1,λ(c), . . . , im−1,λ(c), im,λ′(c), . . .)

where im,λ′(c) 6= im,λ′(c). Then by Theorem 2.2.4 there must be some λ′′ ∈ [λ, λ′]
such that im,λ′′(c) = c. Thus, c must be periodic for fλ′′ and fλ′′ is Axiom A.

We will often need the following definition.

Definition 2.2.5. Define the omega limit set ω(x) of a point x ∈ I as the

following:

ω(x) = {y : there exists a sequence ni →∞ with fni(x) → y}.

We say that x is recurrent if it is not periodic and x ∈ ω(x).

Definition 2.2.6. For a C1 map f : I → I, if x is an attracting periodic point

of period n then we call the set of points y ∈ I such that x ∈ ω(y) the basin of x.

We let the immediate basin of x be set of n connected components of the basin

of x, each containing an element f j(x) for 0 ≤ j < n. We denote the union of all

the basins by B(f) and the union of all the immediate basins by B0(f).

Definition 2.2.7. Given a map f : X → X, a set A ⊂ X is said to be minimal

with respect to f (or simply minimal) if A is a closed, f -invariant set (i.e. f(A) ⊂
A) which has no closed f -invariant subsets

(Note that when we say A is f -invariant, we mean

For f : I → I a unimodal map with critical point c, we say that f is minimal if

ω(c) is a minimal set.
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Definition 2.2.8. Let f : I → I. A closed proper subinterval J of I is called

restrictive with period n ≥ 1 for f if

1. the interiors of J, . . . , fn−1(J) are disjoint;

2. fn(J) ⊂ J , fn(∂J) ⊂ ∂J ;

3. at least one of J, . . . , fn−1(J) contains a turning point;

4. J is maximal with these properties.

A map with restrictive intervals of arbitrarily large periods is called infinitely

renormalisable.

Definition 2.2.9. Given some map of an interval f : I → I an open interval T

is called nice for f if the elements of ∂T never map into the interior of T under

iteration by f . Further, given some interval T , we say that the interval T ′ is nice

with respect to T if the elements of ∂T ′ never map into the interior of T .

For a given x ∈ I we may choose a nice interval containing x as follows. Given

a periodic cycle, choose a− to be the element of the cycle which is nearest to

x and less than x; similarly choose a+ greater than x. Typically, we will be

looking for very small nice intervals. We can usually find such intervals around

x if preperiodic points accumulate on x.

For a nice open interval T , we let F :
⋃

j U j → T be a first return map to T for

the map f . If T is nice then we know that U j are all disjoint. We see this by

letting U j = (aj, a
′
j) and n(j) be some integer such that F |Uj = fn(j)|Uj . Then

suppose that U j ∩U j′ 6= ∅. We may assume that aj ∈ U j ∩U j′ and n(j) < n(j′).
Then since fn(j)(aj) = b for some b ∈ ∂T , we must have fn(j′)−n(j)(b) ∈ T which

contradicts niceness. Similarly we can show that all U j are strictly contained in

T .

If fk(U j) never meets c for 0 ≤ k ≤ n(j)−1 then F : U j → T is a diffeomorphism.

Clearly, there will be a periodic point xj in each branch U j on which F is a

diffeomorphism. If T is a nice interval around c then we let U0 denote the domain

which contains c. Note that F : U0 → T is unimodal. On all other domains F is

clearly a diffeomorphism. U0 is known as the central domain.

Lemma 2.2.10. For f ∈ NFH2 be such that c is not preperiodic, there exist

arbitrarily small nice intervals around c which have preperiodic boundary points.
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We prove this lemma using the following results.

Definition 2.2.11. We say that U is a wandering interval for a map f : I → I

if U, f(U), f 2(U), . . . are pairwise disjoint.

The following is Lemma II.3.1 of [MS].

Lemma 2.2.12. Let f : I → I be a continuous map. Suppose that J ⊂ I is an

interval such that fn|J is monotone for all n ≥ 0. Then there are two possibilities,

1. J is a wandering interval.

2. every point of J is contained in the basin of a periodic orbit.

The following is a well known result, see, for example, Theorem IV.A of [MS].

Theorem 2.2.13. If f ∈ NF 2 then f has no wandering intervals.

Thus for f ∈ NF 2, we only need consider case 2 in Lemma 2.2.12. Therefore

every point x ∈ I is accumulated by either the preimages of c or of B0 or both.

We will need the following result, Proposition IV.18 of [BC]

Proposition 2.2.14. For f : I → I a continuous map, any point x such that

there is some sequence xk → x and a sequence of integers nk → ∞ such that

fnk(xk) → x then x is contained in the closure of the set of preperiodic points.

We also need the following claim.

Claim 2.2.15. For an attracting periodic point x ∈ I with period m, there exists

some interval Bx which is a connected component of B0 containing x. Then the

elements of ∂Bx are periodic.

Proof: For Bx = (a, a′) suppose that an is some sequence of points in Bx

such that an → a. Then fm(an) ∈ Bx for all n. Furthermore, by continuity,

limn→∞ fm(xn) ∈ Bx. Thus fm(a) ∈ Bx. If fm(a) ∈
◦

Bx then a ∈
◦

Bx which is

a contradiction. Hence fm(a) ∈ ∂Bx. Since fm|Bx is a diffeomorphism then ei-

ther fm(a) = a and fm(a′) = a′ or fm(a) = a′ and fm(a′) = a. In either case

f 2m(a) = a and f 2m(a′) = a′.
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2

Proof of Lemma 2.2.10: First we want to find preperiodic points near c. If c

is accumulated by preimages of B0 then since, by the above claim, the elements

of ∂B0 are preperiodic we are finished. If c is accumulated by preimages of c then

by Proposition 2.2.14 we are finished.

Now we construct our interval using these points. Let U be an arbitrarily small

neighbourhood of c. For some preperiodic point b of f in U we let a be the

element of
⋃

n≥0 fn(b) which is closest to c (since c is not preperiodic, we can be

sure that a 6= c). Let a′ be the point not equal to a for which f(a′) = f(a). Then

let U ′ = (a, a′). So ∂U ′ consists of preperiodic points. Furthermore, it is easy

to show that since a is close to c, then a′ must be close to c too. Therefore U ′

satisfies the lemma.

2

2.2.1 Topologically structurally sensitive points

Here we will prove Lemma 2.1.5. We first define what we mean by a conjugacy.

Definition 2.2.16. Given two continuous interval maps f : I → I and g : I ′ → I ′

then we say that a continuous map h : I → I ′ a conjugacy between f and g if the

following diagram commutes.

I
f−−−→ I

h

y
yh

I ′
g−−−→ I ′

We say that f and g are conjugate, or of the same topological type.

We recall the lemma.

Lemma 2.1.5. Let f ∈ NFH3. Then for any x0 /∈ PC(f) there exists some

ε > 0 such that any C3 perturbation in an ε-small neighbourhood of x0 which is

ε-small in the C3 topology yields a map which is conjugate to f .

Proof of Lemma 2.1.5: Suppose that x0 /∈ PC(f). Then we choose some

open interval Ux0 containing x0 which is also disjoint from PC(f). We apply the

following result, Theorem II.3.1 of [MS].
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Theorem 2.2.17. Suppose that f, g are two unimodal maps with turning points

c and c̃ for f and g respectively. Assume that the map

h :
⋃
n≥0

fn(c) →
⋃
n≥0

gn(c̃)

defined by h(fn(c)) = gn(c̃) is an order preserving bijection. We suppose that the

following properties are satisfied.

1. If c is periodic then the ‘conjugacy’ h maps
⋃

n≥0 fn(c) ∩ B0(f) into the

corresponding set for g.

2. Assume that i) f and g have no wandering intervals; ii) there are no inter-

vals consisting of periodic points of constant period; and iii) the restriction

of the map h to B0(f), i.e.

h :
⋃
n≥0

fn(c) ∩B0(f) →
⋃
n≥0

gn(c̃) ∩B0(g),

extends to a congugacy from B0(f) to B0(g). Then h extends to a congugacy

on I.

Note that any perturbation inside Ux0 to a map g will give g the same combinato-

rial type as f . This is because no forward iterate of the critical point ever enters

Ux0 . Clearly, if our perturbation is small enough it does not affect the immediate

basins of the attractive periodic points B0(f). We first assume that we have not

created a periodic attractor, so we may begin to apply the theorem above. We

will assume that x0 /∈ B0(f) since this case is obvious.

Our two maps already have the same combinatorial type, so our h satisfies the

first part of the theorem. Furthermore, 2i) is satisfied trivially and ii) is satisfied

since there are no parabolic cycles. If our perturbation doesn’t create a new

attracting cycle then and iii) holds since we haven’t changed the basins; so we let

h be the identity on B0(f). Therefore the maps are topologically conjugate.

It remains to show that we don’t create an attracting cycle. We apply the fol-

lowing result, Lemma 4.6 of [K3]

Lemma 2.2.18. Let f ∈ NFH3. Then there is a C3 neighbourhood of f which

is contained in NFH3.
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This lemma relies on Theorem A of [K2] which says that for such maps there

must exist some neighbourhood Z of the critical value such that if fn(x) ∈ Z for

some x ∈ I then Sfn(x) < 0 where Sf(x) denotes the Schwarzian derivative of

f at x. This is then coupled with a well known theorem of [Sin] that parabolic

cycles near the critical point attract the critical point when the Schwarzian is

negative.

This means that when we are in the C3 case, our perturbation cannot create a

parabolic cycle and thence an attracting cycle. So Lemma 2.1.5 is proved.

2

2.3 Non-Recurrent Case

We want to prove that the post-critical set is structurally sensitive. Here we

deal with the Misiurewicz case, that is, when c is not preperiodic and there is a

neighbourhood W around c such that fn(c) /∈ W for any n > 0. We must restrict

ourselves to the C2 case since we can’t prove our result in the case that c is in a

wandering interval. Theorem 2.2.13 means than we can be sure that in the C2

case we don’t have any wandering intervals.

Lemma 2.3.1. Let f ∈ NFH2 be a map for which c is non-recurrent and let ε >

0. Then for any n ≥ 0 there exists a Ck perturbation in an ε-small neighbourhood

of fn(c) which is ε-small in the Ck topology which maps fn(c) onto a preperiodic

point. Here k = 0, 1, . . ..

Proof: Given x0 ∈ PC(f) we take some small neighbourhood Ux0 around x0.

Clearly there will be some n ≥ 0 such that fn(c) ∈ Ux0 . We assume that n > 0

as the case when x0 = c follows similarly and more simply. We will make our

perturbation in small interval Û ⊂ Ux0 around fn(c).

By Lemma 2.2.10 we can find preperiodic points arbitrarily close to c, so we can

find preperiodic points arbitrarily close to fn(c). Let U be a small nice interval

around c with preperiodic boundary points as in Lemma 2.2.10. Also, let Û be a

small nice interval around x0, disjoint from U , with preperiodic boundary points

such that both U and the intervals of B0 are nice with respect to Û and such that

f j(c) ∩ Û = ∅ for j < n. Let V 3 fn(c) be a small interval deep inside Û . We

have two cases.
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Case 1: Suppose that there is some m > 0 such that fm(V )∩ (U ∪B0) 6= ∅ and

f j(V ) ∩ Û = ∅ for 0 < j < m. We know that fm(fn(c)) cannot be contained

in U or B0. Thus fm(V ) is not strictly contained in either U or B0 and must

intersect some boundary point of U ∪ B0. So by the construction of U and the

above claim, fm(V ) contains a preperiodic point. We let p be the corresponding

preperiodic point in V . Observe that p never returns to Û under iteration by f .

Then we show below that there is a perturbation which perturbs fn(c) to p.

Case 2: If we are not in case 1 then we must return to Û before entering U ∪B0.

We use the following well known result of Mañé , see for example Theorem III.2.1

of [MS].

Theorem 2.3.2. Let f : I → I be a C2 map and U be a neighbourhood of the

set of critical points of f . Then

1. all periodic points of f contained in I \ U and of sufficiently large period

are hyperbolic and repelling;

2. if all periodic orbits of f which are contained in I \ U are hyperbolic then

there exists C = C(U) and λ = λ(U) > 1 such that

|Dfn(x)| > Cλn

whenever f i(x) ∈ I \ (U ∪B0(f)) for all 0 ≤ i ≤ n− 1.

Therefore, |Dfm|V > Cλm where C = C(U) and λ = λ(U). Whence V expands

under iteration if it doesn’t meet U ∪ B0 and so we must either be in case 1 or

we must return to Û . So again we have the preperiodic point p (a point which

maps to ∂Û) as required.

We let Û = (a−, a+) and let

pλ,k(x) := λ
(x− a−)k+1(a+ − x)k+1

(a+ − a−)2k+2
(2.1)

We choose λ such that pλ,k(f
n(c)) = p. Observe that Djpλ,k(a

±) = 0 for 0 ≤
j ≤ k. When we fix Û this perturbation has ‖pλ,k‖Ck governed by the size of

|fn(c) − p|. But since we can make this distance arbitrarily small, the lemma is

proved.

2

We will use this perturbation below also.
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2.4 C1 structurally sensitive points

In this section we prove part 2 of Theorem 2.1.4: the case where we are only

looking for C1 structurally sensitive points, which should be the simplest case.

Note that such a perturbation at c is done in Exercise III.2.4 of [MS]. However,

that result relies heavily on the derivative of f being small in the support of the

perturbation, so it doesn’t generalise to our case.

2.4.1 Direct C1 perturbation for non-minimal C2 maps

We will apply an explicit perturbation which is C1 small. Not only will this

process prove part 2 of Theorem 2.1.4, but it will also provide us with a family

of maps which is non-trivial in the sense that the combinatorics change through

the family. This is not so important to notice for this part of the proof of Theo-

rem 2.1.4, but we will use this family in later parts of the proof. For an overall

idea what’s happening here, see Figure 2.1.

The idea here is that the ‘decay of geometry’ gives us a large space between some

domain of a first return map and the boundary of a range of the first return map.

The C1 perturbation can then be supported on that range. This first return map

won’t be the usual type of map to one domain, but will be a return map to two

domains. The following definition makes the concept of space in nested intervals

rigorous.

Definition 2.4.1. Suppose that J ⊂ T are two intervals. Denote the left-hand

and right-hand elements of T \ J by L and R respectively. We say that T is a

δ-scaled neighbourhood of J if |L|
|J | ,

|R|
|J | > δ.

We will assume that c is recurrent. Observe that since f is non-Axiom A and

recurrent, the itinerary and the kneading sequence for f coincide. Then by the

Remark 2.2.2 we know that the kneading sequence must not be preperiodic. We

will perturb f to some map which does have a periodic kneading sequence.

Given a nice interval U around c, we will choose some nice interval Û such that U

and Û ⊂ Ux0 are nice with respect to each other. That is to say, fn(∂U) ∩ Û = ∅
for all n ≥ 0 and fn(∂Û) ∩ U = ∅ for all n ≥ 0. In fact, we will also require that

the boundary points of these intervals are preperiodic points, as in Lemma 2.2.10.

Then we will consider the first return map RU∪Û :
(⋃

j U j
)
∪

(⋃
j Û j

)
→ U ∪ Û
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where U j are the domains in U and Û j are in Û . As usual, we denote the

central domain by U0. Then all maps RU∪Û : U j → U ∪ Û for j 6= 0 and

RU∪Û : Û j → U ∪ Û are diffeomorphisms.

We can show that U j ⊂ U and Û j ⊂ Û as follows. Suppose that U = (a, a′) and

Û = (b, b′). We have shown above that any U j for which RU∪Û(U j) = U will be

contained in U . Suppose instead that RU∪Û(U j) = Û and U j ∩ ∂U 6= ∅. Assume

that a is in this intersection. Then, RU∪Û(a) ∈ Û . But this is a contradiction

by the niceness of these intervals with respect to each other. The case when

RU∪Û(Û j) = U for some j follows similarly.

The following can be proved as in Theorem A’ in [LS1].

Theorem 2.4.2. Suppose that f ∈ NFH2 has a recurrent critical point c such

that ω(c) is non-minimal. Then there exists a sequence δi > 0 and a sequence of

nested nice intervals Ii ⊃ Ii+1 ⊃ · · · containing the critical point such that

1. Ii+1 is the central domain I0
i of the first return map Fi :

⋃
j Ij

i → Ii;

2. |Ii| → 0 as i →∞;

3. the elements of ∂Ii eventually map onto repelling periodic points;

4. Ii−1 is a δi-scaled neighbourhood of Ii;

5. there exists a subsequence im →∞ as m increases such that δim →∞.

The proof relies principally on finding a partition of I by repelling periodic points

and using distortion estimates. In fact, it can be shown that for all branches of

Fim except two diffeomorphic branches, which we denote by IL
i and IR

i , and the

central branch, the range of Fim|Ij
im

: Ij
im
→ Iim extends to Iim−1. See Section 1.6

for details of such maps. In the following we generally refer to Fi and only mention

Fim when necessary.

For interest, if f ∈ C3 we could use the following result: Theorem 1 of [GSS1]

which applies to the both minimal and non-minimal cases.

Theorem 2.4.3. Suppose that f ∈ NF 3 has a recurrent critical point and is not

infinitely renormalisable. Then for every δ > 0 there exists some arbitrarily small

nice interval T containing c such that for the central domain U of the first return

map to T we know that T is a δ-scaled neighbourhood of U .
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We will only focus on the non-minimal case for the moment. The proof for the

minimal case follows in Section 2.6. This means that we only need f to be C2.

Consider
⋃

n≥0 fn(∂Ii) for some Ii from Theorem 2.4.2. Let Ûi ⊂ Ux0 containing

some fn(c) for c > 0 have boundary points consisting of two adjacent members of⋃
n≥0 fn(∂Ii). If Ii is sufficiently small then fn(Ii) is very small and so Ûi ⊂ Ux0

must be very small too. Then, as before, Ûi is nice and, furthermore, Ii and

Ûi are nice with respect to each other. Again we consider the first return map

RIi∪Ûi
:
(⋃

j U j
)
∪

(⋃
j Û j

i

)
→ Ii ∪ Ûi. We wish to find a domain Û j

i containing

an iterate of c which is deep inside Ûi which allows us to change the combinatorial

type of the map by supporting a perturbation on Ûi. We will use the following

theorem, presented in more generality in [SV] as Proposition 2: ‘a Koebe principle

requiring less disjointness’.

Theorem 2.4.4. Suppose that g ∈ NF 2. Then there exists a function ν :

[0, |I|] → [0,∞) such that ν(ε) → 0 as ε → 0 with the following properties.

Suppose that for some intervals J ⊂ T and a positive integer n we know that gn|T
is a diffeomorphism. Suppose further that gn(T ) is a δ-scaled neighbourhood of

gn(J) for some δ > 0. Then,

• for every x, y ∈ J ,

|Dgn(x)|
|Dgn(y)| ≤ exp

{
ν(S(n, T ))

n−1∑
i=0

|gi(J)|
} [

1 + δ

δ

]2

;

• T is a δ′ scaled neighbourhood of J where

δ′ =
1

2
exp {−θ}

[
1 + δ

δ

]2 (−2θ + δ(1− 2θ)

2 + δ

)
,

where we let θ := ν(S(n, T ))
∑n−1

i=0 |gi(J)|.

Let n > 0 be minimal such that fn(c) ∈ Ûi. Denote the domain of RIi∪Ûi

containing fn(c) by Û0
i . We have two cases.

Case 1: RIi∪Ûi
(Û0

i ) ∈ Ii. Suppose that g : I → R is C1 and that g|V : V → T

is a diffeomorphism onto the interval T . If there is some larger interval V ′ ) V

such that g|V ′ : V ′ → g(V ′) is a diffeomorphism then we say that the range of the

map g|V : V → g(V ) can be extended to g(V ′). We use the following well known

result, see for example Lemma 1.1 of [K3].
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Lemma 2.4.5. Let f be unimodal map, T a nice interval around the critical point

and U be the central domain of the first return map to T . If V is a domain of the

first entry map RU to U and V is disjoint from U then the range of RU : V → U

can be extended to T .

Suppose that RIi∪Ûi
|U0 = fk|U0 . Then by this lemma, there is an extension

V 0 ⊃ Û0
i such that fk : V 0 → Ii−1 is a diffeomorphism. We can show that

V 0 ⊂ Ûi as follows. If V 0 ∩ ∂Ûi 6= ∅ then there exists a point of
⋃

n≥0 fn(∂Ii)

which maps inside Ii−1 \ Ii. But the first time that Ii maps back into Ii−1, its

boundary points map to ∂Ii−1. So by the niceness of Ii−1 we are finished.

Since Ii−1 is a δi-scaled neighbourhood of Ii we have from Theorem 2.4.4 that Ûi

is a δ′i-scaled neighbourhood of Û0
i .

For simplicity, we will support our perturbation, pλ,1 on V = (a−, a+) where

V ⊂ Ûi is defined as follows. Its boundary meets one boundary point of Ûi

and, defining the left-hand and right-hand components of V \ Û0
i as L and R

respectively, we have |L| = |R|. Note that since Ûi is a δ′i-scaled neighbourhood

of Û0
i then V is a δ′i-scaled neighbourhood of Û0

i too. This process extends so

that we can let V = Ûi if necessary. This extension will be useful in proving

later parts of the proof of Theorem 2.1.4, but for the moment the V that we have

defined above is sufficient.

Figure 2.1: How pλ,1 acts on Ûi in case 1.

Letting Û0
i = (b−, b+), we require that pλ,1(cn) = b+. See Figure 2.1 Thus λ =

(b+−cn)(a+−a−)4

(cn−a−)2(a+−x)2
. To bound ‖pλ,1‖C1 , we must first bound |λ|. We have

|λ| < (b+ − b−)(a+ − a−)4

(b− − a−)2(a+ − b+)2
.
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Note that by Theorems 2.4.2 and 2.4.4 we have (b+−b−)
(b−−a−)

< 1
δ′i

. So

(a+ − a−)

(b− − a−)
=

(a− − b+) + (b+ − b−) + (b− − a−)

(b− − a−)
< 2 +

1

δ′i

and similarly (a+−a−)
(b−−a−)

< 2 + 1
δ′i

. Thus

|λ| < (b+ − b−)

(
2 +

1

δ′i

)4

.

We may suppose that
(
2 + 1

δ′i

)4

is bounded above by a constant C1 > 16. When

i = im for large m, this is close 16. Then for x ∈ (a−, a+),

|pλ,1(x)| = |λ||x− a−|2|a+ − x|2
|a+ − a−|4 <

(b+ − b−)C1

16

and

|Dpλ,1(x)| =
2|λ||(x− a−)(a+ − x)2 − (x− a−)2(a+ − x)|

|a+ − a−|4

<
2C1|b+ − b−|
|a+ − a−| <

2C1

1 + 2δ′i
.

So by choosing a large m, we obtain a large δim and we may make ‖pλ,1‖C1 as

small as we wish.

Since fn(c) is the first time that an iterate of c enters Ûi, once we perturb fn(c)

to b+, which in turn maps to ∂Ii, this image will never be perturbed again and c

becomes preperiodic as required.

Case 2: RIi∪Ûi
(Û0

i ) ∈ Ûi. Then Û0
i and Ii are nice with respect to each other

and so we may instead consider the first return map to Ii∪ Û0
i . If fn(c) is in some

domain which maps by RIi∪Û0
i

to Ii then we proceed as in case 1. Otherwise, we

take a new first return map again. This procedure can be repeated many times,

but since c is recurrent we must eventually find ourselves in case 1 after a finite

number of applications of this process.

So we have proved part 2 of Theorem 2.1.4.

Observe that we can use these ideas to create a Ck family of maps fλ = f + pλ,k.

We can support pλ,k on Ûi in case 1 and on the corresponding domain in case 2.
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2.4.2 General method shown through C1

This section is concerned with exploring a possible route to proving Conjec-

ture 2.1.6. The fundamental problem in proving Theorem 2.1.4 is that ‖pλ,k‖C2

defined above is generally very large. One way around this is to use the methods

of [K3]. There, rigidity results relating to analytic maps are employed. So we

would like to perturb our first return maps so that they have some extension to

C. As proved in Lemma 2.4.7, we can sometimes find an extension of the first

return map into C. In fact we will find the following type of map. See Figure 2.2.

Figure 2.2: A holomorphic box mapping (with three domains)

Definition 2.4.6. Let A ⊂ C be a simply connected Jordan Domain, B ⊂ A

be a domain such that each connected component is a simply connected Jordan

domain, and let G : B → A be a holomorphic map. Then we call G a holomorphic

box mapping if the following conditions are satisfied:

• G maps the boundary of a connected component of B onto the boundary

of A;

• there is one component of B (which we will call a central domain) which is

mapped in a 2-to-1 fashion onto A;

• all other components of B are mapped univalently onto A by the map G;

• the iterates of the critical point of G never leave the domain B.

A holomorphic box mapping G is induced by the map g if, on each of the domains

of B, the mapping is some iterate gn.
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If the domains B and A are symmetric with respect to the real line, the holomor-

phic box mapping is called real.

Note that a Jordan domain is a subset of C which is homeomorphic to the open

unit disk. For an interval J ⊂ R, we let ρJ(·, ·) denote the Poincaré metric on the

domain CJ := C \ (R \ J). It can be shown, for example in Section VI.5 of [MS],

that the set Dk(J) := {z ∈ C : ρJ(z, J) < k} is the intersection of two Euclidean

disks, symmetric to each other with respect to the real axis. (Furthermore, it

can be shown that the exterior of Dk intersects the right-hand boundary of J in

the upper half plane with an angle of θ such that k = log tan
(

π
2
− θ

4

)
. Therefore,

Dlog tan( 3π
8 )(J) is the disk symmetric with respect to the real line intersecting R

at J .) We refer to such sets as lenses.

Our holomorphic box maps will have such lenses for their range. The following

lemma is the main result in this subsection.

Lemma 2.4.7. Let f ∈ QH2 be non-minimal and let ε > 0. Then there exists

an ε-small C1 perturbation of f in an ε-small neighbourhood of either c or f(c)

such that for our perturbed map there is an induced holomorphic box map to some

complex neighbourhood of the critical point.

Proof: We will start with c. The case for f(c) follows similarly. This proof also

helps to illustrate why making local perturbations in the Ck case is problematic.

The idea is that we will make a perturbation on each branch of a first return

map to make the first return map into a piecewise linear map. Then it might be

possible to apply the techniques of [K3].

We take some Ii−1, Ii from Theorem 2.4.2 such that i is some im. There exists

some Ki = Ki(δi) > 1 such that for x, y in some branch of the first return map

Fi :
⋃

j Ij
i → Ii, we have 1

Ki
≤ DF (x)

DF (y)
≤ Ki. By Theorem 2.4.4 as m increases,

Kim → 1. We have

|DFi(x)−DFi(y)| ≤ |DFi(y)|(Ki − 1). (2.2)

This helps us estimate f by some map f̃ which induces a piecewise linear first

return map on most branches as follows.

We deal with the branches Fi|IL
i
, Fi|I0

i
, Fi|IR

i
later. For some j /∈ {L, 0, R}, let

Lj(x) = |Ii|
|Ij

i |
x. We ignore translation and show that this helps us approximate f

in a useful way. This is our first approximation for Fi|Ij
i
. Let n(j) be the integer
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such that Fi|Ij
i

= fn(j)|Ij
i
. We could approximate f on Ij

i by fj = f−(n(j)−1)Lj

which would give us a first return map to Ii which is linear on Ij
i . However, if

we were to approximate in a similar way on all branches, we would obtain a map

which is not globally C1. Therefore, we must add on some perturbation qj as

explained below.

From here until Lemma 2.4.9, when we refer to Fi, we mean the branch Fi : Ij
i →

Ii for fixed j 6= 0. Supposing that Ij
i = (0, |Ij

i |) and Ii = (0, |Ii|) (so we can

‘ignore translation’), we let d0 = DFi(0)− |Ii|
|Ij

i |
and d1 = DFi(|Ij

i |)− |Ii|
|Ij

i |
. Observe

that by (2.2), |d0|, |d1| < (Ki − 1) |Ii|
|Ij

i |
. We let

qj(x) := d0x−
(

2d0 + d1

α

)
x2 +

(
d0 + d1

α2

)
x3.

Then qj(0), qj(|Ij
i |) = 0 and Dqj(0) = d0, Dqj(|Ij

i |) = d1. We let φj := Lj + qj.

Then φj(0) = 0, φj(|Ij
i |) = |Ii| and Dφj(0) = DFi(0), Dφj(|Ij

i |) = DFi(|Ij
i |).

We must show that ‖f̃ − f‖C1 is small and that the first return map has an

extension into the complex plane which is a holomorphic box mapping.

Lemma 2.4.8. For any ε > 0, we can adjust the above situation so that

‖(fF−1
i φj − f)|Ij

i
‖C1 < ε.

Proof: For x ∈ Ij
i ,

|fF−1
i φj(x)− f(x)| < |Df |∞|F−1

i φj(x)− x| < |Df |∞
|DFi|−∞ |φj(x)− Fi(x)|

where | · |∞ and | · |−∞ denote the maximum and minimum respectively of a

function (in its domain of definition).

Now, |φj(x) − Fi(x)| <
∣∣∣ |Ii|
|Ij

i |
x− Fi(x)

∣∣∣ + |qj(x)|. For the first term, since for

every x ∈ Ij
i , there exists some θx ∈ Ij

i such that |Ii|
|Ij

i |
θx = Fi(x), we have∣∣∣ |Ii|

|Ij
i |

x− Fi(x)
∣∣∣ < |Ii|

|Ij
i |
|x− θx| < |Ii|.

For the second term,

|qj(x)| < |d0x|+
∣∣∣∣
(

2d0 + d1

α

)
x2

∣∣∣∣ +

∣∣∣∣
(

d0 + d1

α2

)
x3

∣∣∣∣ < 6(Ki − 1)|Ii|.
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Therefore,

|fF−1
i φj(x)− f(x)| < |Df |∞ 7Ki|Ii|

|DFi|−∞ < |Df |∞7Ki|Ij
i |.

Now

|D(fF−1
i φj)(x)−Df(x)| = |Df(F−1

i φj(x))DF−1
i (φj(x))Dφj(x)−Df(x)|

= |Df(x)[DF−1
i (φj(x))Dφj(x)]−Df(x)|

+|(x− F−1
i φj(x))D2f(θ)[DF−1

i (φj(x))Dφj(x)]|

for some θ ∈ Ij
i . For the term in square brackets we have Dφj(x) = |Ii|

|Ij
i |

+Dqj(x).

But

|Dqj(x)| < |d0|+
∣∣∣∣

2

|Ij
i |

(2d0 + d1)x

∣∣∣∣ +

∣∣∣∣3
(

d0 + d1

|Ij
i |2

)
x2

∣∣∣∣ < 13(Ki − 1)
|Ii|
|Ij

i |
.

Therefore, |DF−1
i (φj(x))Dφj(x)| < Ki + 13Ki(Ki − 1) and

|Df(x)[DF−1
i (φj(x))Dφj(x)]−Df(x)| < 14Ki(Ki − 1).

Furthermore,

|(x− F−1
i φj(x))D2f(θ)[DF−1

i (φj(x))Dφj(x)]|

< 6Ki(Ki − 1)|Ij
i ||D2f |∞(Ki + 13Ki(Ki − 1)).

So we have ‖(fF−1
i φj − f)|Ij

i
‖C1 < ε

2

Lemma 2.4.9. There exists some φ > 0 such that if we choose im correctly then

for each j /∈ {L, 0, R} there exists some domain Aj in C such that Aj ∩ Ij
im

= Ij
im

and Aj ⊂ Dφ(Iim) has φj(A
j) = Dφ(Iim).

Proof: To ease notation, we assume that i = im. We consider Dφj(x + iy) for

x ∈ Ij
i .

|Dφj(x + iy)−Dφj(x)| =
∣∣∣∣
−2

|Ij
i |

(2d0 + d1)(iy) + 3

(
d0 + d1

|Ij
i |

)
(2xiy − y2)

∣∣∣∣ .

If we suppose that |y| < |Ij
i | then

|Dφj(x + iy)−Dφj(x)| < 24(Ki − 1)
|Ii|
|Ij

i |
.
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Therefore,

|Dφj(x + iy)| > |Ii|
|Ij

i |

(
1

Ki

− 24(Ki − 1)

)
,

and so for Ki close to 1, this is strictly positive and φj is univalent in D(j) :=

{x + iy : x ∈ Ij
i , |y| < |Ij

i |}. We can then show that this has a uniformly large

range in C too (in terms of |Ii|).
Recalling that i is some im, note that when we increase m we will have Kim → 1

and so we have everything as small as we wish.

2

We may approximate each branch Ij
i for j /∈ {L, 0, R} in this way. We approxi-

mate on IL
i , I0

i , IR
i by polynomials. For details on how we obtain a holomorphic

box mapping from this see Section 2.5. So we obtain a map f̃ such that there is a

first return map F̃i which extends to the complex plane to give us a holomorphic

box mapping as required. We may shift this entire construction to f(c) too.

2

The problem with extending this construction to fn(c) for n > 1 is that some

domains return to fn(Ii) and so might be perturbed arbitrarily many times by

this method (this will occur in the non-renormalisable case). So we are able

to prove Lemma 2.4.8 by this method for finitely many domains, but not for

infinitely many domains (which we have to deal with when f is non-minimal).

Hence the resulting map f̃ would not be arbitrarily close to f .

Observe also that we cannot use this process as a step in showing that c and f(c)

are C2 structurally sensitive because the perturbation from Fi|Ij
i

to φj is large in

the C2 sense.

To prove Conjecture 2.1.6, we would hope now to apply the methods of [K2]

directly to the holomorphic box map which we have constructed. However, that

method currently requires such a map to have a finite number of domains (for

example the ‘polynomial-like map’ given in the following section). This would

allow us to use quasi-conformal deformation techniques to construct holomorphic

families of such maps. It is possible that extending such ideas to maps with an

infinite number of ranges might be the next step in proving structural sensitivity.
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2.5 Analytic case

Definition 2.5.1. We say that f ∈ Cω(∆) if f is defined on the real interval I

and can be holomorphically extended to a ∆−neighbourhood of I in the complex

plane.

We shall simply refer to this case as the analytic case.

We will deal with the minimal case for more general maps later, so we restrict

ourselves to maps which are non-minimal. We will next obtain the following type

of map, similar to a holomorphic box map. The difference is that the range of

the map is that the range is not necessarily connected (see Figure 2.3 below).

Definition 2.5.2. A holomorphic map G : B → A is called polynomial-like if the

following conditions are satisfied:

• B and A are subsets of the complex plane, they each have finitely many

connected components and each connected component is a simply connected

Jordan domain. B is a subset of A and the intersection of the boundaries

of A and B is either empty or consists of a forward invariant set of finitely

many points;

• G maps the boundary of a connected component of B onto the boundary

of some connected component of A;

• there is one component B(c) of B (which we will call a central domain)

which is mapped in a 2-to-1 fashion onto A and B(c) is relatively compact

in A (i.e. B(c) ⊂ A). Here B(x) and A(x) denote connected components

of B and A which contain x;

• all other components of B are mapped univalently onto A by the map G;

• the iterates of the critical point of G never leave the domain B.

A polynomial-like map G is induced by the map g if, on each of the domains of

B, the mapping is some iterate gn.

If the domains B and A are symmetric with respect to the real line, the map is

called real.

The following result is Theorem 3.1 of [K3].
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Theorem 2.5.3. Let f ∈ QHω be an analytic unimodal not infinitely renormal-

isable map. Then for any ε > 0 there exists a polynomial-like map F : B → A

induced by the map f , and satisfying the following properties:

• the forward orbit of the critical point under iterations of F is contained in

B;

• A is a union of finitely many lenses of the form Dk(J) where J is an interval

on the real line, |J | < ε and 0 < k < log tan
(

3π
8

)
;

• if F (x) ∈ A(c), then B(x) is compactly contained in A(x) (i.e. B(x) ⊂
A(x));

• if a ∈ ∂A ∩ ∂B, then the boundaries of A and B at a are smooth; however

if we consider a smooth piece of the boundary of A containing a and the

corresponding smooth of piece of the boundary of B, then these pieces have

the second order of tangency;

• if B(x) ∩ B(x′) = ∅ and b ∈ ∂(B(x) ∩ B(x′)), then the boundaries of B(x)

and B(x′)are not smooth at the point b and not tangent to each other;

• for any x ∈ B we have
|B(x)|
|A(x)| < ε,

where |B(x)| denotes the length of the real trace of B(x);

• if x ∈ B and F |B(x) = fn, then f i(x) /∈ A(c) for i = 1, . . . , n− 1;

• f(c) /∈ A;

• let a ∈ ∂A be a point closest to the critical value f(c), then

|f(B(c))|
|a− f(c)| < ε.

So we obtain the kind of map shown in Figure 2.3.

Note that we want to create a perturbation which yields a map in Qk. Clearly, if

we apply a small local perturbation in PC(f) \ {c} then we remain in Qk.

To show that maps are structurally sensitive at c we will perturb as follows. Since

we are assuming here that c is recurrent, for any small neighbourhood U of c there
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Figure 2.3: A fragment of our polynomial-like map.

is some n > 0 such that fn(c) ∈ U . We may apply our perturbation at fn(c)

rather than at c, and so we remain in Qk.

The key difference between applying the methods of Theorem 2.1.7 to the above

polynomial-like mapping in [K3] and our case here is that we create our family

in a different way. In the construction of the polynomial-like map, partitions are

defined as follows. Firstly, a partition P0 ⊂ I of periodic points, some of which

are boundary points of a nice interval T0 around c, is defined. Then this partition

is pulled back m times to give a partition Pm which defines the elements of ∂A∩R
in the theorem. Importantly, intervals defined by this partition are small and the

partition points all eventually map to repelling periodic points.

In [K3] the perturbation to create the family fλ is at f(c): the partition P0 is

stable under this perturbation. That is, there is a conjugacy between f and fλ on

P0 and the perturbed partition. This ensures that when the map Gλ is created,

it is a polynomial-like map. In our case we wish find some partition P ′
0 which is

stable under local perturbation at fn(c) for some n ≥ 0.

We adapt the original partition as follows. We include the elements of ∂Û ∪ ∂U ,

which are defined in Section 2.4, in the partition P ′
0. ∂U will behave as T0 does

in the original theorem. Since our added points eventually map to repelling

periodic points, the adapted partition P ′
0 gives us the same type of map as in

Theorem 2.5.3. Next we show that we can extend our perturbation pλ,k to act

upon our polynomial-like mapping.
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Letting Û = (a−, a+), we extend pλ,k to the complex plane:

pλ,k(z) =

{
λ (z−a−)k+1(a+−z)k+1

(a+−a−)2k+2 if <(z) ∈ [a−, a+]

0 if <(z) /∈ [a−, a+]

(Where <(z) is the real part of z.)

Therefore, for a given k ≥ 1, the map fλ = f + pλ,k extends holomorphically to

∆\{z ∈ ∆ : <(z) ∈ {a−, a+}}. Observe that our partition P ′
0 is stable under this

perturbation for small λ. Whence we find a non-degenerate family of polynomial-

like maps Fλ which depend holomorphically on λ; so we can apply the methods

of Theorem 2.1.7.

2.6 The minimal case

We will first show that we can use the fact that minimal maps give us first return

maps with finitely many domains to construct a holomorphic extension to some

domain in C. Then we will use this to construct a holomorphic box mapping.

This construction will initially take place around c, but we will show that we can

push it forward to any fn(c) for n ≥ 0. Finally we will make some perturbation

of this box mapping to give us a suitable family of maps.

We will use the following well known claim which provides an equivalent definition

of minimality. We provide a proof for completeness.

Claim 2.6.1. The minimality of ω(x) is equivalent to all y ∈ ω(x) having ω(y) =

ω(x).

Proof: Let y ∈ ω(x). We can prove that ω(y) is f -invariant: given z ∈ ω(y)

there must be some sequence nk such that fnk(y) → z as nk → ∞. Then

f(z) = f(limk→∞ fnk(y)) = limk→∞ f(fnk(y)) by continuity. This is clearly in

ω(y) so ω(y) is f -invariant. Since ω(x) is minimal, any f -invariant subset must

be equal to ω(x); whence ω(y) = ω(x).

2

We next state and prove another well known result.

Lemma 2.6.2. Suppose that ω(c) is minimal and T is some nice interval around

c. Then the first return map to T has finitely many domains intersecting ω(c).
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Proof: Given a nice interval T , let RT :
⋃

j U j → T be the first return map to T .

Note that
⋃

j U j cover all elements of ω(c)∩T . This is because every x ∈ ω(c) has

ω(x) = ω(c) and so all x ∈ ω(c) ∩ T must return to T . Therefore the first return

domains form an open cover of ω(c) ∩ T . Since ω(c) ∩ T is closed, it is compact,

so there is a finite subcover. Because each domain is disjoint, this subcover is

precisely the set
⋃

j U j of domains of the first return map.

2

We obtain the first return map RT :
⋃N

j=0 U j → T as above. Given j ≥ 0, we

approximate RT |Uj : U j → T by a polynomial pj. We must choose pj to be close

to F on U j and have its derivatives match up with those for RT on ∂U j. We

can do this using, for example, the Bernstein polynomials of Section 6 of [P].

Furthermore, we can assume that we are looking for Ck-structurally sensitive

points (as we have already dealt with the C1 case) and so we can ensure that c

is non-flat for p0.

For each j 6= 0 there exists some constant κj > 0 such that there is some domain

Âj ⊂ C with |Âj| = U j such that pj : Âj → Dκj
(T ) is univalent. Furthermore,

there exists some κ0 > 0 such that p0 : A0 → Dκ0(T ) is a holomorphic double

covering. Then we let

κ := min
0≤j≤N

κj

and A := Dκ(T ). Then for each j there exists some Aj ⊂ C such that for j 6= 0,

pj : Aj → A is univalent and p0 : A0 → A is a holomorphic double covering. So

letting F̃ be equal to pj on Aj, F̃ :
⋃N

j=0 Aj → A is a holomorphic map. Indeed,

if Aj ⊂ A for 0 ≤ j ≤ N then this is a holomorphic box mapping. However, this

may not be the case. So we must do more work.

We will need the domains of the map that we are dealing with to be compactly

contained in their ranges in order to guarantee that we have a holomorphic box

mapping. To this end we induce on F̃ as follows. Denote F̃ by F̃0 and |A0| by

I0. and the first return map by F̃0 to I1 by F̃1 :
⋃

j Ij
1 → I1. Similarly we obtain

F̃i :
⋃

j Ij
i → Ii. Each of these maps extends to a map F̃i :

⋃
j Aj

i → Ai where Ai

is some complex neighbourhood of Ii such that |Ai| = Ii. Similarly for Aj
i .

We use the following result, Lemma V.I.5.2 of [MS]. Recall that we let ρJ(·, ·)
denote the Poincaré metric on the domain CJ := C \ (R \ J).

Lemma 2.6.3. Given a > 0 and r0 > 0 there exist s = s(r0, a) and l0 > 0 with

the following property. If Φ satisfies the following conditions:
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1. Φ is holomorphic and univalent on a Euclidean disk of radius a centred at a

point of an interval J ⊂ R and Dr0(J) is contained in this Euclidean disk;

2. Φ maps the real axis into the real axis;

3. |J | ≤ l0.

Then, provided k ≤ r0,

ρΦ(J)(Φ(x), Φ(y)) ≤ (1 + s|J |)ρJ(x, y)

for all x, y ∈ Dk(J); so in particular Φ(Dk(J)) ⊂ D(1+s|J |)k(Φ(J)).

This extends in our case to the following result.

Lemma 2.6.4. For i large enough there is some k > 0 and some domains Âj
i

such that F̃i extends to some holomorphic box mapping F̃i :
⋃

j Âj
i → Dk(Ii).

This lemma is an adaptation of Lemma 3.2 of [K3]. See [LS2] for the infinitely

renormalisable case. For the proof of this we introduce some notation. For an

interval J and a > 0 let D(a, J) denote the round disk in C centred at the

midpoint of J with radius a. Let D(J) be D( |J |
2

, J).

Proof: Suppose that n(j) > 0 is such that F̃i|Ij
i

= F̃
n(j)
0 |Ij

i
. Pulling back by the

appropriate branch, we see that by Lemma 2.4.5 we have an extension of F̃−1
0 on

F−k(Ii) to some domain I(k)j
i where k < n(j)− 1. In fact, if we select a suitable

i then we have an extension of F̃−1
0 on the appropriate pullbacks of F−(n(j)−1)(Ii)

too (we just ensure that F̃i−1 is ‘non-central’). By Theorem 2.4.4 the size of this

extension is dictated by the size of |Ii|
|Ii−1| . So for a given ε > 0 there exists some i

such that I(k)j
i is an ε-scaled neighbourhood of F̃−k

0 (Ii).

For large i we see that F̃0 is holomorphic on the round disk D(Îj
i ). Then we

can choose some a > 0, r0 > 0 as in Lemma 2.6.3 depending on ε such that

D(a, F̃−k
0 (Ii)) ⊂ D(I(k)j

i ) (and therefore each branch of F̃−1
0 is univalent on

D(a, F̃−k
0 (Ii))) and Dr0(F̃

−k
0 (Ii)) ⊂ D(a, F̃−k

0 (Ii)). So we have satisfied all but

the last condition of Lemma 2.6.3. By inducing some more we can satisfy that

condition too. Observe that by [SV], we can choose an i such that our inducing

does not alter the condition for ε, so the above assertions still hold.

It can be seen from rescaling that we can do this for all iterates of branches. Then

if k is small enough,
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F̃−n
0 [Dk(F̃

n
0 (Ij

i ))] ⊂ F̃
−(n−1)
0

[
D(1+s|F̃ n

0 (Ij
i )|)k(F̃

n−1
0 (Ij

i ))
]
⊂

· · · ⊂ D(1+s
∑n

i=0 |F̃ i
0(Ij

i )|)k(I
j
i ).

So choosing 0 < k0 < r0

1+s
∑n(j)

i=0 |F̃ i
0(Ij

i )| and noting that
∑n(j)

i=0 |F̃ i
0(I

j
i )| < |A0|, we

complete the lemma by fixing some k ≤ k0 and letting Âj
i be the pullback by F̃i

of Dk(I
j
i ). Finally, we denote Dk(I

j
i ) by Âi.

2

Letting f̃ |Uj := f(F−1pj), we obtain F̃ as the first return map by f̃ to T . Fur-

thermore, we have ensured that f̃ ∈ Ck.

We can now apply the methods of [K3] to f̃ .

We can transfer this construction to fn(c) as follows. We denote fn(c) by x0. We

choose some neighbourhood Ux0 of x0 which is disjoint from T . We may choose

T and Ux0 so that fk(T ) are disjoint from T ∪ Ux0 for k = 1, . . . , n − 1. Let

1 ≤ M < ∞ be the maximum number of times any domain of F iterates by f

into Ux0 before returning to T . Then similar calculations to those in the proof of

Lemma 2.4.8 can be used to prove the following lemma.

Lemma 2.6.5. For the setting above, for ε > 0 there exists some ε′ > 0 such that

for j = 0, . . . N , if ‖pj − F‖Ck < ε′ then, choosing appropriate branches, on U j

we have ‖f(f−(n(j)−n)pjf
n)− f‖Ck < ε

M
.

We let f0 be equal to f outside fn(T ) \ fn(U0) and equal to f(f−(n(0)−n)p0f
n)

on U0. For i = 1, . . . , N − 1 we let fi+1 be equal to fi outside fn(T ) \ fn(U i+1)

and equal to fi(f
−(n(i+1)−n)
i pif

n
i ) on U i+1. So if we choose our pj as in the above

lemma we have ‖fN − f‖Ck < ε.

Note that if any interval fn(U j) iterates back into fn(T ) then it must coincide

with some other fn(U j′) for j′ 6= j. Thus for x ∈ ∂
(⋃N

j=0 U j
)

we have DifN(x) =

DifN(x) for i = 0, . . . k. Therefore fN ∈ Ck.

We can therefore obtain a holomorphic box mapping in this case as above.

We next define a perturbation to create a family of holomorphic box maps. Given

our holomorphic box mapping F̃i :
⋃

j Âj
i → Âi, we consider the first time that
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fn(Âi) lands in Ux0 . We then support our perturbation on the fn(Â0
i ), mapping

fn(c) to a boundary point of fn(Â0
i ) by some pλ,k. Our partition is unchanged

by pλ,k, so despite the fact that the perturbation is large even in the C1 sense,

we can apply the methods of [K3] to this family.

2.7 A straightforward non-minimal case

Here we prove part 5 of Theorem 2.1.4.

Let Ef := {x ∈ ω(c) : ω(x) 6= ω(c)}. We consider the cases in which it is simple

to perturb appropriately in this set.

Lemma 2.7.1. If Ef ∩{c} = ∅ then there exists a small nice interval U around c

such that the first return map to U has a finite number of domains which intersect

ω(c).

Proof: Let U be a small interval around c as in Lemma 2.2.10 such that U∩Ef =

∅. Then any point y ∈ ω(c) ∩ U must have ω(y) = ω(c). In particular, y must

return to U under iteration by f . Thus, as in Lemma 2.6.2 the first return map

to U has a finite number of domains intersecting ω(c) as required.

2

So we may proceed as in the proof of the minimal case.



Appendix A

Proof of the Yoccoz Lemma

We recall the lemma.

Lemma 1.5.2 Suppose that f ∈ NF 2. Then for all δ, δ′ > 0 there exists C > 0

such that if I0 is a nice interval such that

1. I0 is a δ-scaled neighbourhood of I1;

2. Fi is low and central for i = 0, . . . ,m;

3. there is some 0 < i < m with |Ii|
|Ii+1| < 1 + δ′,

then for 1 ≤ k < m,

1

C

1

min(k, m− k)2
<
|Ii+k−1 \ Ii+k|

|Ii| <
C

min(k,m− k)2
.

For similar statements see [FM] and [Sh2].

Proof: We firstly use the following claim.

Claim A.0.2. For f as in the lemma, there exists some C(f, δ, δ′) > 0 such that

|Im|
|I0| > C(f, δ, δ′).

This is proved in Section 5 of [Sh2]. Immediate consequences of this are that
|Im\Im+1|

|I1| is bounded below (this is one of the assumptions in the statement of the

Yoccoz Lemma in [FM]) and that F0 has bounded distortion in (a1, am).

81
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Our proof now involves using the bound δ and the small size of I0 to find a nearby

map in the Epstein class. The structure of such maps, particularly at parabolic

fixed points, along with some new coordinates, give us estimates for |Ii+k−1\Ii+k|
|Ii| .

We suppose that s > 0 is such that F |I1 = f s|I1 . We observe that f s−1 has

uniformly bounded distortion depending on δ. We will denote F |I1 by F . Letting

ψ : [am, a1] → [0, 1] be an affine diffeomorphism we will work with the map

ψFψ−1. For the rest of the appendix we will denote this map by F too.

Previously we assumed that F |I1 had a maximum at c. It will be convenient to

suppose now for this section that c is a minimum for F |I1 . Also we let Ii = (a′i, ai).

So in particular, F (ai+1) = ai. We firstly define a point which allows us to

partition [am, a1] in another way.

Let x0 ∈ [am, a1] be defined so that |F (x0)−x0| = minam≤x≤a0 |F (x)−x|. We can

show that DF (x0) = 1 as follows. Note that F (x) > x for all x ∈ [am, a1] and that

F is increasing. Then let h(x) := F (x)− (F (x0)−x0). By the definition of x0, we

have h(x)−x > 0. Then we express h as h(x) = x0+(x−x0)Dh(x0)+O(|x−x0|2)
and so h(x)− x = (x− x0)(Dh(x0)− 1) + O(|x− x0|2). Therefore, if Dh(x0) > 1

then there exists some x < x0 near x0 such that h(x) − x < 0. Similarly, if

Dh(x0) < 1 then there exists some x > x0 near x0 such that h(x) − x < 0. In

either case we have a contradiction.

We are able to estimate the shape of F near x0 using the following definition and

lemma.

Definition A.0.3. Let a > 0. We say that the real analytic map f : [0, 1] → [0, 1]

is in the Epstein class Ea if f(x) = ϕQψ where Q is the quadratic map Q(z) = z2,

ψ is an affine map and ϕ : [0, 1] → [0, 1] is a diffeomorphism whose inverse has

a holomorphic extension which is univalent in the domain C(−a,1+a) := C \ (R \
(−a, 1 + a)).

For more details on maps in this class see [MS].

Lemma A.0.4. Let f ∈ NF 2. Suppose that I is a nice interval around c and J is

a first entry domain which is disjoint from I and with entry time s. Suppose that

δ > 0 is some constant such that there exists some Ĵ ⊃ J such that f s : Ĵ → I ′

is a diffeomorphism where I ′ is a δ-scaled neighbourhood of I and
∑ |f j(Ĵ)| ≤ 1.

Let τ0 : J → [0, 1] and τs : I → [0, 1] be affine diffeomorphisms. Then for all

ε > 0 there exists δ > 0 such that |I| < δ implies that there exists some function

G : I → I in the Epstein class Eδ such that ‖τsf
sτ−1

0 −G‖C2 < δ and G−1 extends



APPENDIX A. PROOF OF THE YOCCOZ LEMMA 83

univalently to C(−δ,1+δ).

We use this to prove the following claim.

Claim A.0.5. There exists some 0 < A < B such that

F (x0) + (x− x0) + A(x− x0)
2 ≤ F (x) ≤ F (x0) + (x− x0) + B(x− x0)

2.

Proof: We know that f s : I2 → I1 has the following property. The map

f s−1 : f(I2) → I1 has an extension to I0. Furthermore, since I0 is a δ-scaled

neighbourhood of I1 we use Lemma A.0.4 to obtain a C2 close map G∞ which is

in the Epstein class.

In fact we can choose different starting intervals In with the same real bounds

which are smaller and smaller and which are then rescaled to maps Fn which

map from the unit interval. For each such map we obtain the nearby map Gn in

the Epstein class where ‖Fn − Gn‖C2 → 0 as n → ∞. We let xn
0 denote a point

which is equivalent to x0 for F . We suppose |Fn(xn
0 ) − xn

0 | becomes very small;

otherwise our proof is simpler. Then our limit map G∞ has a parabolic fixed

point x∞0 . Also D2G∞(x∞0 ) > 0. Thus, there exist 0 < A < B depending only on

f such that for all x ∈ [0, 1] we have

G∞(x∞0 )+ (x−x∞0 )+A(x−x∞0 )2 ≤ G∞(x) ≤ G∞(x∞0 )+ (x−x∞0 )+B(x−x∞0 )2.

Clearly, for large n, we have the same condition for Gn. Therefore, if we take I0

small enough, we may assume that it holds for F too.

2

We denote ε := F (x0)− x0. Then we have

ε + A(x− x0)
2 ≤ F (x)− x ≤ ε + B(x− x0)

2.

We suppose that N is such that x0 ∈ [aN , aN+1). Then for 0 ≤ i ≤ N − 1

we let xi := F i(x0). We will use this equation to find estimates for aj − aj+1.

Throughout we will find estimates of the following type: ‘there exist C ′ > C > 0

such that Cβ < α < C ′β’. We will write this as α ³ β. We will use C,C ′ where

necessary too. These constants will not all be the same, but to ease notation they

will denote some constants depending only on δ.
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Claim A.0.6.

N ³ 1√
ε
.

Proof: Let N ′ = max{1 ≤ j ≤ N − 1 : xj − x0 ≤
√

ε}. We will first show that

N ′ satisfies the claim. For j ≤ N ′, we have

ε ≤ xj+1 − x0 ≤ ε(B + 1).

Therefore,

N ′ε ≤
N ′−1∑
j=0

xj+1 − xj ≤ N ′ε(B + 1).

Since
∑N ′−1

j=0 xj+1−xj = xj−x0 ≤
√

ε we have N ′ ≤ 1√
ε
. Furthermore xj+1−x0 >√

ε so (N ′ + 1)ε(B + 1) >
√

ε and N ′ > 1
(B+1)

√
ε
− 1. I.e. N ′ ³ 1√

ε
.

Next we find estimates for N − N ′. For N ′ < j ≤ N we consider again the

equation

ε + A(xj − x0)
2 ≤ xj+1 − xj ≤ ε + B(xj − x0)

2.

But note that here B(xj − x0)
2 > ε so we can write instead

A(xj − x0)
2 ≤ xj+1 − xj ≤ 2B(xj − x0)

2.

We make a change of coordinates. We let yj := 1
xj−x0

. Then we have

yj − yj+1 =
xj+1 − xj

(xj − x0)(xj+1 − x0)
.

By the above bounds we have

A(xj − x0)

xj+1 − x0

< yj − yj+1 <
2B(xj − x0)

xj+1 − x0

< 2B.

Furthermore,

yj − yj+1 >
A(xj − x0)

(xj+1 − xj) + (xj − x0)
>

A(xj − x0)

2B(xj − x0)2 + (xj − x0)
=

A

2B + 1
.

Observe that xN ∈ (a1, a0) and |a0−a1| > δ. So since |xN−xN−1| is approximately

|a0 − a1| we know that yN ³ 1. Also note that yN ′ ³ 1√
ε

and so yN ′ − yN ³ 1√
ε
.

Summing we obtain

C√
ε

< yN ′ − yN =
N ′∑

j=N−1

yj − yj+1 < 2B(N −N ′)



APPENDIX A. PROOF OF THE YOCCOZ LEMMA 85

and

C ′
√

ε
> yN ′ − yN =

N ′∑
j=N−1

yj − yj+1 >
A(N −N ′)

2B + 1
.

So N −N ′ ³ 1√
ε

too. Adding this to the estimates for N ′ we prove the claim.

2

To prove the Lemma 1.5.2, we use the above claim added to the fact that, since

Claim A.0.2 gives us bounded distortion, aj − aj+1 is like xN−j − xN−j−1.

Firstly we will use that above coordinate change again. For j > N ′ we have

yj > yj − yN =

j∑
j=N−1

yi − yi+1 >
A(N − j)

2B + 1

and so 1
xj−x0

> A(N−j)
2B+1

and xj+1 − xj < 2B
(

2B+1
A(N−j)

)2

.

We have proved that if 0 ≤ j ≤ N ′ then

ε < xj+1 − xj < C ′ε

and if N ′ < j ≤ N then

ε < xj+1 − xj <
C ′

(N − j)2
.

Similarly we can define xj = F j(x0) for negative j where 0 ≤ |j| < m − N . We

define some M ′ analogously to the definition for N ′ and so if |j| ≤ M ′ then

ε < xj+1 − xj < C ′ε.

And if M ′ < |j| ≤ m−N then

C

(m−N + j)2
< xj+1 − xj <

C ′

(m−N + j)2
.

(In the step of the proof where estimates on yN−m are required, we use the fact

that |am−1 − am| > δ and |x−m−1 − xm| is approximately |am−1 − am|.)
Note also that we can show that m−M ′ ³ 1√

ε
.

Since aj − aj+1 is essentially the same as xN−j − xN−j−1. So if N ≥ j ≥ N −N ′,
we have
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Cε < aj − aj+1 < C ′ε.

Note that 1
N−N ′ ≥ 1

j
≥ 1

N
. Since ε ³ 1

N2 and ε ³ 1
(N−N ′)2 this implies that we

have
C

j2
< aj − aj+1 <

C ′

j2
.

Now if N −N ′ ≥ j ≥ 1 then

C

j2
< aj − aj+1 <

C ′

j2

(where the lower inequality comes from δ). If N ≤ j ≤ m − M ′ then we may

again derive

Cε < aj − aj+1 < C ′ε.

Note that we also have m−N ≥ m− j ≥ m−M ′. Since m−N,m−M ′ ³ 1√
ε

we have

C

(m− j)2
< aj − aj+1 <

C ′

(m− j)2
.

If m−M ′ ≤ j ≤ m− 1 we have

C

(m− j)2
< aj − aj+1 <

C ′

(m− j)2

where the lower inequality comes from δ and δ′.

To conclude, if 1 ≤ j ≤ N then we have some constant C such that j ≤ C(m− j)

and aj − aj+1 ³ 1
j2 . If N ≤ j ≤ m− 1 then we have some constant C ′ such that

m− j ≤ C ′j and aj − aj+1 ³ 1
(m−j)2

. So in either case we have

aj − aj+1 ³ 1

(min(j,m− j))2

as required.

2



Appendix B

C2 convergence

It remains to prove Lemma A.0.4, which we recall below.

Lemma A.0.4. Let f ∈ NF 2. Suppose that I is a nice interval around c and J is

a first entry domain which is disjoint from I and with entry time s. Suppose that

δ > 0 is some constant such that there exists some Ĵ ⊃ J such that f s : Ĵ → I ′

is a diffeomorphism where I ′ is a δ-scaled neighbourhood of I and
∑ |f j(Ĵ)| ≤ 1.

Let τ0 : J → [0, 1] and τs : I → [0, 1] be affine diffeomorphisms. Then for all

ε > 0 there exists δ > 0 such that |I| < δ implies that there exists some function

G : I → I in the Epstein class Eδ such that ‖τsf
sτ−1

0 −G‖C2 < δ and G−1 extends

univalently to C(−δ,1+δ).

This lemma was suggested by W. Shen. Such arguments go back to Sullivan, see

[Sul], but usually the convergence is only C1+η for some η > 0. We are able to

show here that we have convergence in the C2 topology.

Proof: We will assume that we can fix some open neighbourhood U of c such

that f(x) = f(c)+ |x− c|α for x ∈ U . We may ignore the usual function φ for the

moment as the lemma extends to that general case too. We also fix some open set

U ′ such that U ′ ⊂ U . Let J0 = J and Ji = f i(J). For every 0 ≤ i < j ≤ s− 1 we

have a diffeomorphism f j−i : f i(Ĵ) → f j(Ĵ). Thus each such map has distortion

bounded by some K = K(δ).

We will rescale our maps as follows. Let τi : Ji → [0, 1] be the affine homoeo-

morphism such that fi = τi+1fτ−1
i is monotone increasing. Then the following

diagram commutes.
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J0
f−−−→ J1

f−−−→ · · · f−−−→ Js−1
f−−−→ Js

τ0

y
yτ1

y
yτs−1

yτs

[0, 1]
f0−−−→ [0, 1]

f1−−−→ · · · fs−2−−−→ [0, 1]
fs−1−−−→ [0, 1]

When I is sufficiently small then by Lemma 1.3.4 each Ji is either inside U or is

disjoint from U ′. We then approximate fi as follows. For x ∈ Ji and 0 ≤ i ≤ s−1

let

gi(x) =

{
fi(x) if Ji ⊂ U,(
1− δi

2

)
x + δi

2
x2 if Ji ∩ U ′ = ∅

where δi =
∫ 1

0
D2fi(t)dt. We observe that Sgi < 0 for all 0 ≤ i ≤ s − 1. If

Ji ⊂ U for some 0 ≥ j ≤ s − 1 we know that gi extends holomorphically to

C(−δ,1+δ). Also, if Ji ∩ U ′ = ∅ then Dgi(x) = 1 − δi

2
+ δix

2
. As we will see later,

even when the modulus of x is very large, this is non-zero. Therefore (gn · · · g0)
−1

extends univalently to a holomorphic map defined on C(−δ,1+δ) for 0 ≤ n ≤ s− 1.

Furthermore, we can prove that for any k ≥ 0 there exists some M(δ, k) such that

‖gn · · · g0‖Ck < M(δ, k) for 0 ≤ n ≤ s− 1. (For details of the proof see the Koebe

Bieberbach result in [Mi].) We will only be concerned with M(δ) := M(δ, 3).

We will prove that ‖gs−1 · · · g0−fs−1 · · · f0‖C2 is small. We first prove the following

lemma.

Lemma B.0.7. There exist some M1,M2 > 0 such that

‖gi − fi‖C2 < M1w(|Ji|)|Ji|
where w = wD2f as defined in Section 1.3. Furthermore, |Dfi(x)−1|, |D2fi(x)| <
M2|Ji| for x ∈ [0, 1].

Proof: Assume Ji is not in U , otherwise there is nothing to prove. We will

first estimate |D2gi(x) − D2fi(x)| for x ∈ [0, 1]. Observe that D2gi(x) = δi =∫ 1

0
D2fi(t)dt and D2fi(x) = |Ji|2

|Ji+1|D
2f(τ−1

i (x)). There exists y ∈ [0, 1] such that∫ 1

0
D2fi(t)dt = D2fi(y) so D2gi(x) = D2fi(y) and

|D2gi(x)−D2fi(x)| = |D2fi(y)−D2fi(x)|
=

|Ji|2
|Ji+1| |D

2f(τ−1
i (y))−D2f(τ−1

i (x))|

<
|Ji|2
|Ji+1|w(|Ji|) < M1|Ji|w(|Ji|)
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for some M1 > 1
infx/∈U |Df(x)| .

We use this to make the remaining derivative estimates. By the Mean Value

Theorem there exists some x1 ∈ [0, 1] such that fi(x1) = gi(x1). Then for x ∈
[0, 1],

|Dgi(x)−Dfi(x)| ≤
∫ x

x1

|D2gi(t)−D2fi(t)|dt < M1|Ji|w(|Ji|).

Similarly,

|gi(x)− fi(x)| ≤
∫ x

0

|Dgi(t)−Dfi(t)|dt < M1|Ji|w(|Ji|).

Also for x ∈ [0, 1] we have

|D2fi(x)| = |Ji|2
|Ji+1| |D

2f(τ−1
i x)| < M2|Ji|

where M2 >
supx/∈U |D2f(x)|
infx/∈U |Df(x)| .

By the Mean Value Theorem there exists some x0 ∈ [0, 1] such that Dfi(x0) = 1.

Then for x ∈ [0, 1] we have

|Dfi(x)− 1| ≤
∫ x

x0

|D2fi(t)|dt < M2|Ji|.

2

For our calculations, we introduce some new notation. We let As−1 and B0 be

the identity map; for 0 ≤ j < s− 1 we let Aj = gs−1 · · · gj; and for 0 < j ≤ s− 1

we let Bj = fj · · · f0. We have

(gs−1 · · · g0)− (fs−1 · · · f0) =
s−1∑
j=0

(gs−1 · · · gj+1gjfj−1 · · · f0)

−(gs−1 · · · gj+1fjfj−1 · · · f0)

=
s−1∑
j=0

Aj+1gjBj−1 − Aj+1fjBj−1.

If we let Sj := Aj+1gjBj−1 and Tj := Sj − Sj+1 then (gs−1 · · · g0)− (fs−1 · · · f0) =∑s−1
j=0 Tj.
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If Jj ⊂ U then gj = fj and so Tj = 0. We assume that Jj is disjoint from U ′.
Then

|DTj(x)| = |[DAj+1(gjBj−1(x))Dgj(Bj−1(x))DBj−1(x)]

−[DAj+1(fjBj−1(x))Dfj(Bj−1(x))DBj−1(x)]|
≤ |DBj−1|∞|DAj+1(gj(y))Dgj(y)−DAj+1(fj(y))Dfj(y)|

where y = Bj−1(x) and | · |∞ denotes the maximal value of a function on its

domain. Note also that |DBj|∞, |DAj|∞ are bounded since f s has bounded dis-

tortion. So

|DTj(x)| ≤ C (|DAj+1gj(y)−DAj+1fj(y)||Dgj(y)|
+|Dgj(y)−Dfj(y)||DAj(fj(y))|)

≤ C(|gj − fj|∞ + |Dgj −Dfj|∞) < CM1w(|Jj|)|Jj|.

Therefore,

|D(gs−1 · · · g0)−D(fs−1 · · · f0)|∞ < CM1

s−1∑
j=0

w(|Jj|)|Jj| < CM1w(τ(|I|))
s−1∑
j=0

|Jj|

where the function τ is defined in Lemma 1.3.4. So our result is proved for the

C1 norm. The result in the C0 norm follows easily. Bounding the C2 norm is

more complicated.

We rewrite the summands as follows.

|D2Sj(x)−D2Sj+1(x)| =

∣∣∣∣
D2Sj(x)

DSj(x)
DSj(x)− D2Sj+1(x)

DSj+1(x)
DSj+1(x)

∣∣∣∣

≤
∣∣∣∣
D2Sj

DSj

− D2Sj+1

DSj+1

∣∣∣∣
∞
|DSj|∞

+

∣∣∣∣
D2Sj+1

DSj+1

∣∣∣∣
∞
|DSj −DSj+1|∞.

We will show that
s−1∑
j=0

∣∣∣∣
D2Sj

DSj

− D2Sj+1

DSj+1

∣∣∣∣
∞

(B.1)

is small. Since |D2S0| is bounded above and |DS0| is bounded below we have

an upper bound on
∣∣∣D2S0

DS0

∣∣∣. Therefore
∣∣∣D2Sj+1

DSj+1

∣∣∣
∞

is bounded by some M2 > 0 for

0 ≤ j ≤ s − 1. So once we have shown that (B.1) is small then we know that

|D2(gs−1 · · · g0)−D2(fs−1 · · · f0)|∞ is small also.
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To find the bounds for (B.1) we use the fact that for increasing C2 functions g

we have D(log(Dg))(x) = D2g(x)
Dg(x)

. Then since

log(DSj(x)) = log(DAj+1(gjBj−1(x))) + log(Dgj(Bj−1(x))) + log(DBj−1(x))

and

log(DSj+1(x)) = log(DAj+1(fjBj−1(x))) + log(Dfj(Bj−1(x))) + log(DBj−1(x)),

we have

log(DSj(x))− log(DSj+1(x))

= log(DAj+1(gjBj−1(x)))− log(DAj+1(fjBj−1(x)))

+ log(Dgj(Bj−1(x)))− log(Dfj(Bj−1(x))).

Differentiating we obtain

D2Sj

DSj

(x)− D2Sj+1

DSj+1

(x) =
D2Aj+1(gjBj−1(x))Dgj(Bj−1(x))DBj−1(x)

DAj+1(gjBj−1(x))

−D2Aj+1(fjBj−1(x))Dfj(Bj−1(x))DBj−1(x)

DAj+1(fjBj−1(x))

+
D2gj(Bj−1(x))DBj−1(x)

Dgj(Bj−1(x))

−D2fj(Bj−1(x))DBj−1(x)

Dfj(Bj−1(x))
.

Denoting
D2Sj

DSj
(x) − D2Sj+1

DSj+1
(x) by Pj, we can define θj as being the function

obtained by postcomposing Pj with B−1
j−1 and dividing by the function x 7→

DBj−1(B
−1
j−1(x)). Thus,

θj(x) =

[
D2Aj+1(gj(x))Dgj(x)

DAj+1(gj(x))
− D2Aj+1(fj(x))Dfj(x)

DAj+1(fj(x))

]

+

[
D2gj(x)

Dgj(x)
− D2fj(x)

Dfj(x)

]
.

We now denote the first summand in square brackets as θ1
j (x) and the second

summand in square brackets as θ2
j (x).

We calculate

|θ2
j (x)| =

∣∣∣∣
D2gj(x)Dfj(x)−D2fj(x)Dfj(x)

Dgj(x)Dfj(x)

∣∣∣∣

=

∣∣∣∣
(D2gj(x)−D2fj(x))Dfj(x) + D2fj(x)(Dfj(x)−Dgj(x))

Dgj(x)Dfj(x)

∣∣∣∣
≤ M2

1 [M1w(Jj)|Jj|(1 + M2|Jj|) + M2(M1w(Jj)|Jj|)] < M3w(|Jj|)|Jj|
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for some M3 > M2
1 [M1(1 + M2|Jj|) + M1M2].

Also θ1
j (x) = θ1,1

j (x)(θ1,2
j (x) + θ1,3

j (x)) where

θ1,1
j (x) =

1

[DAj+1(gj(x))][DAj+1(fj(x))]
,

θ1,2
j (x) = [DAj+1(fj(x))−DAj+1(gj(x))][D2Aj+1(gj(x))Dgj(x)]

and

θ1,3
j (x) = [DAj+1(gj(x))][D2Aj+1(gj(x))Dgj(x)−D2Aj+1(fj(x))Dfj(x)].

Clearly |θ1,1
1 (x)| < K2 and |θ1,2

1 (x)| < |D2Aj+1|2∞(1 + M2|Jj|)M1w(|Jj|)|Jj|. Fi-

nally, θ1,3
1 (x) = [DAj+1(gj(x))](γ1(x) + γ2(x)) where

γ1(x) = (D2Aj+1gj(x))(Dgj(x)−Dfj(x))

and

γ2(x) = (D2Aj+1(gj(x))−D2Aj+1(fj(x)))Dfj(x).

Clearly, DAj+1(gj(x)) is bounded. Also

|γ2(x)| ≤ |D2Aj+1|∞|D3Aj+1|∞|Dfj|∞|gj(x)− fj(x)|

and so there is some M4 > 0 such that |Pj(x)| < M4w(|Jj|)|Jj|.
We conclude the proof of the lemma by observing that this means that the value

of (B.1) is small.

2



Bibliography

[A] A. Avila, Bifurcations of unimodal maps: the topological and metric picture,

thesis, IMPA, Rio de Janeireo, 2001.

[BM] A. Blokh and M. Misiurewicz, Typical limit sets of critical points for

smooth interval maps, Ergod. Th. & Dynam. Sys. 20 (2000), 15-45.

[BC] L.S. Block and W.A Coppel, Dynamics in one dimension, Lect. Notes in

Math. 1513, Springer-Verlag, 1992.

[D] P.J. Davis, Interpolation and approximation, Blaisdale Publishing Company

1963.

[FM] E. de Faria, W. de Melo Rigidity of critical circle mappings I, J. Eur.

Math. Soc. 1 (1999), 339-392.

[GK] J. Graczyk and O.S. Kozlovski, Global universality in smooth unimodal

maps, preprint, 2003.

[GSS1] J. Graczyk, D. Sands and G. Świa̧tek, Decay of Geometry for Unimodal

Maps: Negative Schwarzian Case, preprint, 2000.
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