University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

This paper is made available online in accordance with
publisher policies. Please scroll down to view the document
itself. Please refer to the repository record for this item and our
policy information available from the repository home page for
further information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): David Tall and MdNor Bakar

Article Title: Students' mental prototypes for functions and graphs
Year of publication: 1992

Link to published version: http://dx.doi.org/ doi:
10.1080/0020739920230105

Publisher statement: None


http://go.warwick.ac.uk/wrap

Students’ Mental Prototypes for Functions and Graphs

David Tall & MdNor Bakar
Mathematics Education Research Centre
University of Warwick
COVENTRY CV4 7AL
U.K.

This research study investigates the concept of function developddeynts
studying English A-levainathematics. It shows that, whilst students may be
able to usefunctions in their practical mathematicstheir grasp of the
theoretical nature of the function concept may be tenwmas inconsistent.
The hypothesis hat students develop prototypies the functionconcept in
much thesame way athey develop prototypes fa@oncepts ineverydaylife.
The definition of the function concept, though given in the curriculum, is not
stressed and proves to be inoperative, with their understanding @btioept
reliant on properties of familiar prototype examples: those having regular
shaped graphs, such as 2x or sinx, those often encountered (possibly
erroneously),such as a circle, those in which y is defined aseaplicit
formula in x,and soon. Investigations reveal significant misconceptions. For
example, threequarters of a sample of students startinginaversity
mathematics course considered that a constiamttion was not afunction in
either its graphical or algebraiforms, and threequarters thought that a circle
is a function. This reveals a wide gulf between the concepts as perceived to be
taught and as actually learned by the students.

The concept of a function permeates every branch of mathematics and
occupies a central position in its development, yet it proves subtlelaside
whenever we try toteach it in school. Internationally its difficulty is
acknowledged (see Tall 1990 for a survey of current research). Yet the idea of
a function machine — with an input number giving a corresponding output — is
now part of the U.K. National Curriculum in th@imary school (algebra
attainment target 6, level 3 for children around the age of eight, DES 1989).

The set theory in the “new mathematics” of the sixties and seventies introduced
the concept of function in the secondary school in terms of domain, range and
rule relating each element in the first with a unique element in the second. The
notion proved difficult for most pupils. Somehow the general concept seems to
be too generalto make much sense. Although we may teach pupils about
general concepts such as ttmmainon which the function is defined and the
range of possible values, theserms do noseem to stick irtheir memories.
Instead, they gain their impression of what a function is fronustsin the
curriculum, implantingdeep-seated ideas which may be at variance with the
formal definition.

In essencethe idea ofdefining a concept is at variance with tlehild’s
everyday experience. Here a concept such as “bird” woulddéweloped
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through encounters initially wittexamples and then focussing on salient
features. “That is a bird. ... A birtles, ... it haswings... andfeathers... and
abeak... andays eggs Then there comes the testing of new creatagesnst
these variougritieria. Is achicken a bird 2.. It has wings, feathers, laeak

and lays eggs, but it doesrily. OK, some birds don’t fly. We willsay a
chicken is a bird. Is a bat a bird? It flies and has wings, but it is really a flying
mouse, so it is not a bird.

In this way the individual builds a complex of interconnected prototypes which
help to test whether newly encountered examples can be classifresfaases

of the general concept. (Smith 1988). Is a penguin a birdasltwings(of a
kind), a beak and lays eggs, but doesn't fly. OK haissimilar attributes to a
chicken, so we will accept it. Is a flyingquirrel a bird?Highly unlikely — in

the same way as a bat isn’t a bird.

In everyday life our development otoncepts depends omperpetual
negotiations of this kind, which are a deep-seated part of the human psyche. It
therefore comes as no surprise that students are likely to apply stniiéra

when faced with concepts in the mathematics class.

We hypothesize that the students develop “prototype examples” of the function
concept in their mind, such as: a function is §ke2, or a polynomial, or X/

or a sine function. When asked ifgaaph is a function, in thabsence of an
operative definition of a function, the mind attempts to respond by resonating
with these mentalprototypes. If there is a resonance, the individual
experiences the sensation and responds positively. If there is no resonance, the
individual experiences confusion, searching in the mind fareaning to the
guestion, attempting to formulate the reason for failure to obtammemtal

match.

We shall sedhat positive resonances may be erronebesause they evoke
properties of prototypes which are not part of the formal definition. For
instance, that a function should be described by a formula, or th&tninear

graph of a circle is a function. Negative resonances may be equatiyrect:

for instance that a strange lookiggaph cannot be a functidrecause it does

not match any of the prototypes, or that a function cannot be coristaatise

a function depends on a variable and it is considered essential that this variable
actually appears in the expression.

Students’ conceptions of a function

Following ideas of gathering evidence about student conceptions of functions
in Vinner (1983) and Barnes (1988), vesked agroup of twenty eight
students (aged 16/17) at the end of their first year of study in a British sixth-
form to:

Explain in a sentence or so what you think a function is.
If you can give a definition of a function then do so.
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They had studied the notion of a function as part of their course preparing for
16+ examsover a year previously ansince then hadisedfunctions in the
calculus but without any emphasis on the techrasplects ofdomain, range

and so on. None gave satisfactory definitions, but all gave explanations,
including the following:

 a function is like an equation which has variable inputs,
processes the inputted number and gives an output.

* a “machine” that will put out aumber from anothenumber
that is put in.

* an expression that gives a range of answers with diffeadoes
of x.

» a form of equation describing a curve/path on a graph.

e a way of describing a curve on a cartesian graph in terms of
andy coordinates.

« an order which plots a curve or straight line on a graph.

* a mathematical command which can change a variable into a
different value.

» a set of instructions that you can put numbers through.

» a process that numbers go through, treating them all the same to
get an answer.

* a process which can bperformed on any number and is
represented in algebraic form usix@s a variable.

* a series of calculations to determine a final answer, to which
you have submitted a digit.

* a term which will produce a&equence ofnumbers, when a
random set of numbers is fed into the term.

It is pleasing to note the number of students who have some ideabtess

aspect of function — taking some kind of input acarying out some
procedure to produce an output. But not one reply mentions that the process
can only be applied to a certasmmainof inputs, or that it takes mnge of

values, despite the fact that these definitions had been given toetréar in

their studies. Note also the number of technical mathematical wsudk, as

term, sequenceseries set and so on which arased with colloquialrather

than mathematical, meanings. Here lies an inextricably difficult part of the
human communication procegs both students and teachers. With each of

the responses above a teacher may empathise with what the students say and
realize that it contains within it the grains wlth. Butcan we be sure that

what another human being says is what we think has been said, or even that the
speaker has said what (s)he intended to say? It substantiatesffitidty
enunciated by Malik (1980) thaeachers engaged in teachitige function
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concept face enormous difficulties in communicating afistractconcept in
the classroom.

Graphs as functions

School mathematics is intended to give students experiences of mathematical
activities, rather than plumb the formal depths of logical meaning. The
formalities may be mentioned, but they are not strebseduse they do not
appear to be appropriate until the student has a suitable richness of experience.
But the collection of activities inadvertently colours the meaning of the
function concept with impressions that are differénam the mathematical
meaning which, inturn, can store up problemdor Ilater stages of
development.

To investigate this, we asked the twenty eight sixth-formers mentieadekr
to state in a written questionnaire which of a given numbeskefches could
represent a function. Th&ame questionnaire was given to dnendred and
nine students iheir first year of universityprior to any university study of
the function concept. The latter therefore representstake of development
of more able mathematics students at the end of their two years ofaginth
study. It would be expected that these students would hbhe#ex idea of the
function concept, and this waenfirmed, but they still hadspects intheir
concept of function at variance with the formal definition.

Students were given nine graphs, as shown below and asked:

Which of the following sketches could represent functions? Tick one box in each

case. Wherever you have said no, write a little explanation why by the diagram.
Here we show each graph followed by a table giving the percentage responses
“yes” or “no” for eachgroup. They do notlways add up to 100%artly
through rounding errors but also due to a small number of non-responses. The
response which is more likely to be adjudged correct is given in faotl
type. As we shall see, sometimes it is posdilniethe alternative response to

be correct also...
.
@) (b) K

% ye3 % no % yes % no
school| 100 0 school 95 4
univ. 97 3 univ. 80 20

We seehat virtually all students agreed that (a) is a function, with \thet
majority asserting (b) is also. Was onlyafter weasked this question that we
realized that iwasformulated in an ambiguous manner.aisumeshe usual
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mathematical conventions — that the horizontal axis represents the independent
variable and the vertical axis the dependent variable. But we didayathat

we meant — although we think we meant what we said! Tivae nowritten
evidence that any school student considered (b) to repnessnt function of

y. But two university studentsiterpreted the graph in this light - one
asserting “look at it a different way”, the other sayifyy=x". The increased
percentage of university students suggesting (b) was not a function often did so
with a comment equivalent to the fact that this “sometimes hag'svWior each

X"

A more simple explanation for so many students responding positively to both
(@) and (b) is that the term “function” is usualissociated withfamiliar
graphs in the sixthform. Both graphs resonate witlstudents’ mental
prototypes for functions, so the students respond positively to them.

The single school student who apparently responded correctly to (b) gave no
reason and failed to give consistent answers on the rest of the questions. Only
one school pupil made any comment at all. He initially thought that (b) was not
a function, saying “you have got twevalues for one value”, then changed

his mind and crossed out his comment. It was as if herehtember the
function definition, but then his thoughts were overwhelmed by mecent
experiences of the function concept loosely linked to familiar graphical
prototypes.

When the same question was asked in an analogagesusing semicircles
instead of parabolas, the responses were radically different:

A A
f \ .
(©)
(d)
% yeg % no % ye$ % no
school 61 36 schoo| 43 57
univ. 91 9 univ. 70 28

There is a drop to 61% of school pupils thinking figure (c) is a function and
57% now correctly respond that figure (d) is not. The drop in beliéigure
(c) compared with (a) was accompanied with comments such as:

“If a function the graph would continue, not just stop”,
“stops dead, values are not limitless”,

“the lines would have to continue”,

“functions are usually continuous,needs a condition”,
“this could not apply to any value”.
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Here the word“continuous” does not seem to have its usual mathematical
meaning, but the colloquial meaning of “continuing without a break”. Several
of the explanations allude to ideas such as “continue, not just sEipps
dead”, “could not apply to any value”, which suggest that there is a feeling that
functions should not be unnaturally curtailed. One student dotted in an
extension of the graph to “continue”far more values ofx. This timethere

was no written evidence that any students were regardamsya function ofy,

but this remains a possibility, certainly amongst the large numbeosfive
university students.

The functions the students have handledthair course are polynomials,
trigonometric functions, and their like, which are naturally defined by a
formula almost everywhere (except a few odd points where the expression
may be undefined). Thus we may conjecture that their prototypes are
“naturally defined everywhere the function is defined”, leading to apparent
unease with “artificial” functions such as the top half of a circle.

The idea that a function should not be unnaturally curtailed is gmere
credence by the fact that only 29% of school pupils regarded (e) to be a
function (this graph was not given in the university questionnaire):

@ | >

% ye$ % no
schoo| 29| 61
univ. not asked

Reasons for this included:

“couldn’t apply to any value”
“if a function the graph would continue, not just stop”,

again suggesting @aense of uneas&hen the graphseemedarbitrarily
restricted to a smaller domain. The schpopil’s belief in agraph being a
function through pictures (a), (c), (e) drops from 100% to 61% to 29% as the
graphpassegrom parabola to semicircle to quadrabgcoming lesgamiliar

and restricted to a smaller and smaller domain. As one pupil wrote about the
guadrant:

the graph is “not complete”.

Discussionafterwards revealed that he thought of itpast of a circle, so it

was not a function because it was not all drawn. To this student a function is a
natural totality given by a formula, and it éssential to have wll, not an
unnaturally selected part.



Although a quadrant of a circle (which is the graph of a function) is
considered not to be a function by most pupils, the situation is reversed with a
complete circle. Approximately two thirds of tretudents in school and
university incorrectly considered the circle in figure (f) to be a function:

A

AN
N

% yeg % no
school 64 29
univ. 65 35

()

Those thinking it was not a function included two from school saying:
“You can’t work a function that goes back on itself”.

and
“equation isx2+y?=25",

which implicitly — but not explicitly —suggeststhat y is not determined
uniquely byx. Amongst the minority of universitgtudents whqcorrectly)
thought it was not dunction, most alluded to the idea that each value of
might be related to more than one valug.of

The persistence of two thirds of the students thinking a circle is a function
once more suggeststhat familiarity with the graphevokes the function
concept. This belief bears little relationship to most of the descriptions of a
function given by the pupils in terms of processes.

Another highly probable reason for so manypils thinking that a circle is a
function arises from the use of language in the mathematical clasdvzom.
of us still use thgerm “implicit function” (or “many-valued function”) to
describe such a relationship, and the circle is a prototype examplas of
phenomenon. Indeed one of us has published an “Implicit FunBliotter”
(Tall 1985) which draws just such a grapbkt.tu Brute!

The final three pictures presented to studentg);- (h) and (i) — presented
even more conflict. They look strange, so none of them fit the students’ mental
collection of prototypes.



P Bl
~/ e

9 % ye$ % no (h) % yeg % no (i) % yep % no
schoo| 50 32 school 14 79 school 11 82
univ. 91 8 univ.| 72 26 univ. 39 58

Both (g) and (h) could satisfy the function definition, but notb@rausehere
is a part of the graph where one valuexotorresponds to more than one
value ofy.

In general the university students cope better widsemore general curves.
The fact that more school pupils seem successful @itis an illusion, due to
the fact that they deny that (i) can be a grdqgtause it looksinfamiliar,
rather than because of any formal property of a function. Time andagaia
they respond that a graph cannot represent a funtioause it looks too
irregular or because they cannot think of a formula to represent it:

(g) (h) (i) are not functionbecause: “graphare usually smootleither
a straight line or curve, not a combination of the two, nor staggered,
when dealing with a function”,

no - “because the lines above are totally random”,

“non-uniform”,

“these are absurd”,

(h) is “too complicated to be defined as a function”,

(h) is “totally irregular and couldn’t be represented by a function”,
(h) has “no regular pattern too difficult to be defined by a function”,
(h) is not a function because “curves and straight lines don’t mix”,
(h) is “too irregular”.

Even when (i) is correctlystated to be not a function, the reasons are often
related to therregularity ofthe pattern or the lack of a formula. Again we
ask if the concept ofregularity” of a function is actually taught. We think
not. None of these graphs mattieir mental collection of prototypder the
function concept. Because their experience is usually in terms of graphs given
by a formula which tends to have a recognizable shape, their protdgmks

to be “given by a formula”, have a “smooth” graph, seem “regular” and so on.
They therefore verbalizeome of their perceivedhismatches intheir own
words.

Three school pupils do focus on the part of the graph where there arg/-three
values for eacl-value:

“here the curve goes back on itself”,



“this goes back on itself”,
“there is an irregular peak which could not be created from a function”.

They are beginning to evoke the restriction tathx should have only one
y. But they have not applied this test consistently inethier examples, and
the definition of a function given by each of them does not mentiorfabis

For these three a function is:

“a mathematical command or identity”,

“an equation with a variable factor — tells us what happensvariable

factor, e.g. f)=x+2",

“the product of a series of numbers which the numbers must undergo”.
Thus not one of the school pupils consistently evokes a coherent function
concept. Only eight of the university students (7% of the total) gave a
consistent set of replies to all the graphs, with @uréher student giving

consistent replies in which he allowedo be a function o as well as/ to be
a function ofx.

One graphwas given to theiniversity students, but not to those at school (in
lieu of graph (e) above):

A

(),

% yeg % no
school| not given
univ. 55 44

Here almost half the students at university think that a constant is not a
function. It appears that they are concerned that not a functionof X,
becauseg is independent of the value &f Where do students pick wguch
ideas? Which of us teachers actually teach themiritespretation? Very few

of us would admit such a heinoosme. Yet one of us writing a module for
the new 16-19SMP A-level found himself writing that the differential
equationdy/dx=1/x describesly/dx as a function ok butnot of y In different
contexts we use the samerds with different meanings. Clearly implicit in
school mathematics is that the notion of a function is to do with variables, and
if a variable is missing, then the expression is not a function of that variable.

Algebraic expressions as functions

To look at the meaning of a function in terms of formulae (as in Barnes,
1988), we asked the university students to say whichrmfnaber ofsymbolic
expressions or procedures could represeas a function ok. Some of these
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were algebraic equivalents of the pictorial representations mentearéer.

The responses are given in table 1. Thirty eight of thest®ents explicitly
mentioned at least once in their response thate&mhx there must be ong

or that the function must be “many-one” or equivalent. In addition to the total
percentage of students responding yes or no, we includextra columns

(“% yes*” and “% no*") representing the percentages tbese 38“more
knowledgeable” students. The latter have, at some stage in their earksr,
encountered and now remember more technical aspects of the function concept
and we would expect them perform better. The rest, of courseay have
discussed such technical aspdeotg do not evoke them explicitly itheir
response.

University Subset
students | showing someg
technical
(N=109) knowledge
(N=38)
% yes % nd % | % no*
yes*
() y=x2 96 4 95 3
Q) y=4 30 69 47 53
(3) x2+y2=1 62 37 40 60
3 91 9 84 16
@Dy=%
(5)xy=5 82 17 82 18
(6) y =+ \4x-1 67 33 34 66
0 ifx<0
(7)y=0x if Osx<1 92 7 95 5
B2-x if x>1
8 y = 0 if x is a rationgl 50 48 42 58
number
9 vy =0 (if x is a rationgl 75 22 79 21
number),
y = 1 (if x is an irrationg|
number).

Table 1

Once again the expressigrx? is almost universally regarded as a function,
but the constang=4 is not. As in Barnes (1988), a majority of silidents
consider the circlex2+y2=1 to be a function. In each of the latter teases
those exhibiting a more technical knowledgerform better,but still only
47% think thaty=4 is a function whilst 60% think that+y2=1 is not.

Expressions (4) and (5) show that the majoritystoidents seg=3/x, Xxy=5 as
functions, the major obstacle for the first being that it is not defined=0¢
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and for the second, not only is it not definedxa0, but the expression is not
considered a function until it has been manipulated to ygas“an expression
involving x". The latter is a common prototype for a function.

Expression (6) shows that the majority of students thinkythat \Vax-1 is a
function. This resonates with thg €quals an expression xi prototype. The
fact thaty is not given uniquely ifess significantfor the majority, although

the minority giving more technical responses show a markgaovement
because thewre consciously aware that a function must give (at most) one
value ofy for each value ox.

Expressions (7), (8) and (9) address the problems of defining functions
differently on different sub-domains. These do not fit the prototygesliar

to most students. Even so, therrect response to (7) is remarkably high.
Experiencesuggestdhat students whose function prototypes involvsirayle
formula may consider expression (7) not as one, buthese different
functions (Vinner 1983). In facho student made such a comment, indeed,
those failing to respond positively were more concerned that the printing of
the inequality signs might be ambiguous. Perhaps it helps icdb&that each
formula on thesubdomains igamiliar and that the function isverywhere
defined. Certainly the fact that (8) is not everywhere defoamdedoroblems
because:

“y is not defined for alk”,
“doesn’t state whay is if x is not rational”,
“no definition ofy if x is irrational”.

The difficulties with (8) and (9keem also due to the strangenesghete
expressions and the fact that they do not fit the students’ mental prototypes.

(8) “is not a function of x, there is no connection
mathematically”,

“no real link withx, i.e. not actually applying a function tq
where the answer would lyg,

“y is not in proportion tx”,

“no relation between andy”,

“not continuous on the real number line”,
“y=0 is constant”,

“y doesn’t change aschanges”.

Conflicts with constant functions

Comparing student performance on tagpressiony=4 and thegraph of
y=constant, we find only 28% reply correctly in the affirmative to both. 41%
respond negatively to both questions, 29% saygitagoh corresponds to a
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function but the algebraic expression does not, with only 3%other way
round (table 2). The percentages for the sB&dents givingmore technical
responses are starred in brackets. Although the percentageoroéct
responses rises from 28% to 42% for these students, it is still only a minority.

Is y=consf algebra

a % yes % no
function?

g

r | % yeg| 28 (42%)| 29 (26%)
a

Y

h| %no| 3 (B%| 4126

Table 2

There isevidence of conflict in a significant number of scripts, saglents
changetheir mind when realizing that the algebraic expression cledohs
not involvex, but the graplseemamore likely to be a function. Ongtudent
who thought initially thaty=4 was not afunction, then wrote it ag=4xo,
hence obtaining “a formula involving. This may very well be related to the
description of the relationship betweerandy in terms of variables: that the
dependent variabley varies as the independent variable varies. The
expressiory=4 offends this prototype becaugeoes not vary!

The circle as a function

Comparing the responses to the graphic and algebraic representations of a
circle, we find that 52% erroneously regard both graph and expression as
representing functions, 12%ay “yes” tograph and “no” to expression, 10%

say “no” to graph and “yes” to expression, and only 25% corresgiy“no” to

both (table 3). The more technical responses increase the perceotaget

from 25% to 47% — still less than half.

Is a circle algebra

a % yes % no
function?

g

r | %yesg 52 (18*)| 12 (24%)
a

P

h| % no|| 10 (11*)| 25 (47%)

Table 3
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The position is worse when we consider which students giveoraect
response to both questions in algebraic and graphic modes:

Only 11% of all students assert both that y=constant is a function and a circle is not.
The percentage only increases to 29% among the more technical responses.
Thus, even amongst the most able students in the feixthh the vastmajority
do not have a coherent concept of function at the end of their A-level studies.

Reflections

Becausdhe general function concept is difficult tbscuss infull generality

we take the pragmatic route of de-emphasizing theory emghasizing
practical experience. Attempts to teach the formal theory, as in the New
Mathematics of the sixties, have proved unsuccessful. But the other side of the
coin — teaching the concept through examples, as iguhrent curriculum —
leads to mental prototypes which gigeroneous impressions of the general
idea of a function. Even amongst the students who receive some training in the
notion of a function, only a small minority respond coherently and
consistently.

We have described some of the symptoms, but not the cure. The function
concept is an extremely complex idea whos&ler ramifications took
centuries to be made explicit. In the development of the individual student the
full implications only become apparent over a period of several years. We
therefore believe that there are bound to be conceptual obstacles as the concept
matures in the mind. When the function concept is introduced initially, the
examples and non-examples which become prototypesthe concept are
naturally limited in various ways, producing conflicts with thermal
definition. We can attempt to give more general experiences which will
improve the situation, but we face a formidable, fundamental obstacle:

The learner cannot construct the abstract concept of function without experiencing

examples of the function concept in action, and they cannot study examples of the

function concept in action without developing prototype examples having built-in

limitations that do not apply to the abstract concept.
The literature is littered withexamples offailure to comprehend théull
complexities of the function concept (Dreyfus & Vinner 1982, Vinner 1983,
Even 1988, Markovitet al 1988, Barnes 1988, Tall 1990). Clearly, if we are
to make progress we must attempt to develop an approach wiikés the
prototypes developed by the students aspropriate as possible. One
promising approach is thase of computer programming to encourage the
student to construct functionas processesthrough programming the
procedures which take an input and process it to give the corresponding
output. Successful steps have already been made in this direction (Breidenbach
et al, to appear).
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However, we should continue to be aware of the conflicts whichoatur
from time to time as the learngnas new experiences of sophisticated
mathematical concepts. It is the awareness that mental reorganizatiopeto
with increasing complexity is both difficult and necessary that will help us
design more appropriate curricula in the future.
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