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Abstract 

The thesis investigates the possibility of using simulation for understanding and 
improving the design of decision making in a real context. The approach is based on the 
problem of representing decision making behaviour in Discrete Event Simulation. 

An investigation of existing techniques led to the design of a methodology known as 
Knowledge Based Improvement (KBI). The KBI covers the key stages of the process of 
using simulation for understanding and improving the design of decision making. Using a 
research strategy that involves a case study in Ford, the research tests each stage of KBI. 

The thesis explains how simulation can be used for understanding real decision making 
problems and for collecting the data required for modelling individual decision making 
strategies. The thesis demonstrates the possibility of a simulation based knowledge 
elicitation in a real context and it investigates the practical difficulties involved in this 
process. 

The research tests the process of understanding decision making policies by modelling 
specific decision makers using Artificial Intelligence. It tests the use of simulation for 
assessing the decision making strategies and it shows that simulation can be used for 
identifying efficient strategies and for improving the design of decision making practices. 

The thesis reports the degree of success of the approach in relation to the data that were 
collected and it describes the validation checks that were undertaken. In addition, it 
reports the lessons learned from the application of the KBI methodology, the overall 
success of the approach and the main limitations that were identified during the 
implementation. 

Key Words: Simulation, Artificial Intelligence, Knowledge Elicitation, Decision Making, 
Manufacturing, Expert Systems, Decision Trees, ID3, Data Mining, Scheduling 
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Chapter 1: Introduction 

Chapter 1 

Introduction 

1. 1 The foundations of simulation modelling 

Discrete Event Simulation (Simulation) is one of the most commonly applied techniques 

in Operational Research (OR) (Jeffrey & Seaton 1995, Fildes & Ranyard 1997, Clark 

1999, Robinson 2005). Simulation involves the development and analysis of computer 

based models that simulate systems which exist or are going to exist in the future. 

Amongst other things, those models can be used for cost effective and safe 

experimentation and as a tool for understanding the behaviour of real systems. 

Simulation started to emerge in the early fifties, but it was formally introduced by Tocher 

(1963). Tocher's seminal book set the foundations which underlined the rationality of 

using simulation for solving real world problems. In his book, Tocher assumed that 

systems are collections of subsystems that interact with each other. This interaction 

generates an emerging dynamic behaviour which cannot be captured with mathematical 

representations. In an effort to predict the effect of a change in the configuration of the 

system, Tocher (1963) proposed to model systems by developing computer based 

simulations. 

Almost 40 years after Tocher's original contribution, the use of simulation modelling has 

been expanded and now accounts for a major percentage of the OR applications (Fildes & 

Ranyard 1997). A significant contribution towards making Simulation a mainstream 

approach and for expanding its scope was Hurrion's (1976) development of Visual 

Interactive Simulation (VIS). The development of VIS made the use of simulation 

relevant for a wide variety of applications. Hurrion's contribution to the simulation 

community is summarised by Bell & O'Keefe (1994) who comment: 

"Bob Hurrion at the University of Warwick in England first applied 



Chapter 1: Introduction 

animation and run time interaction with a simulation model of an 

operational system in his 1976 PhD thesis and reported this in 

subsequent papers" 

Hurrion ( 1978) & Hurrion ( 1980) report applications of running simulations of operating 

rules for a job shop scheduling problem. In these papers, which form the first journal-

based published research in VIS, it was found that the human scheduler was using rules 

that were difficult to embed in the simulation model. To resolve this problem an 

interactive simulation model was developed and the control was passed to the human 

scheduler at various points in time. To provide the necessary information about the status 

of the system which the scheduler required in order to make a scheduling decision, an 

iconic visual display was used. 

With this problem-solving approach, Hurrion created a new paradigm. The VIS paradigm 

which, soon after the appearance of the above publications, was generalised to produce a 

package for programming VIS called Vision, led to the development of See Why (Fiddy et 

al 1981) and made VIS commercially available. This was the beginning of a new era in 

simulation. VIS software became a simulation standard and attention in simulation 

research and practice was diverted towards a different methodological approach that 

involved the use of the new tool. In subsequent years, Hurrion' s VIS approach became so 

popular that now, apart from its application in quantitative modelling, it is also used as a 

tool for interpretative modelling. The reason for this, as explained by Bell and O'Keefe 

(1994), is that it can be used for problem-structuring purposes since the visual model can 

act as problem-definer tool, a vehicle for the decision maker and the modeller to learn 

from the problem together. 

1.2 Motivation and aim of the research 

Today, with Hurrion's ideas to underline and shape the simulation modelling practice, 

simulation packages are available and are used for modelling virtually any type of 

operations systems. As described by Robinson (2004 ), an operations system is a 

configuration of resources combined for the provision of goods and services. Operations 

2 
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systems usually involve a significant element of human- machine interaction (Williams 

1996) where human decision makers are involved in decisions that have a significant 

impact on the performance of the systems. The operations of manufacturing plants include 

production and maintenance scheduling that may involve human decision making 

(Proudlove et al 1998). In the service sector, service operations systems may include 

personnel who may be involved in a decision making process as they interact with the rest 

of the system. For example, in transportation systems such as railway networks and 

airports where simulation modelling is extensively applied (Robinson & Stanger 1998), 

decision makers such as signallers and air traffic controllers are usually involved in a 

number of scheduling activities which very often require decision making. 

Although the modelling and representation of the human decision making process is 

essential for understanding and improving decision making using simulation, the latter 

usually overlooks the effect of human decision making or it adopts a very simplistic 

approach towards modelling it. This is probably because modelling human decision 

making in simulation presents a number of challenges. Most simulation tools do not 

provide a full set of functions which would be useful for modelling human decision 

making (Williams 1996). A more fundamental challenge is that of representing human 

decision makers with individual characteristics and behaviour. This would require an 

understanding of what the decision making process involves and how the decision makers 

reach decisions. In addition, if the purpose of the simulation exercise is to identify and 

assess good decision making practices, then this would require a methodology for 

assessing decision making strategies using simulation. 

The extensive use and potential of simulation, combined with developments in related 

disciplines such as computer science and artificial intelligence (Doukidis 1987), have 

motivated a number of authors, including Flitman & Hurrion (1987), to propose 

approaches which attempt to identify and model complex entities with ill-defined 

behaviour representative of human decision makers. However, as will be explained in the 

next chapter, through a review of the literature, most of those approaches have not been 

tested or applied in industrial applications and, as standard practice in most of the 
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applications in which human decision making entities are involved, the decision making 

strategies are either excluded or modelled simplistically. Motivated by the absence of 

substantive empirical evidence to justify and demonstrate the feasibility, the difficulties 

and the benefits of modelling human decision making in simulation, the aim of the 

research (section 3.1) is: 

To develop and test the use of simulation for understanding and 

improving the design of decision making policies in a real context. 

1.3 Overview and outline of the research 

The aim of the research (section 3.1) is derived through a review ofthe literature (Chapter 

2). In order to achieve the research aim a number of objectives are identified. Based on 

these objectives the research forms and evaluates a methodology for capturing efficient 

decision making. 

The research is applied and tested on an engine assembly line at a Ford Motor Company 

(Ford) plant in Wales. In the engine assembly, engines are passed through a series of 

automated and manual processes. From time to time the automated machines break down 

and require repair. It is the decisions surrounding what happens when a machine fails that 

are the focus of the research. 

An existing simulation model of the engine assembly line is adopted to form a prototype 

that is used throughout the research. Originally developed for production planning and 

bottleneck detection, the existing model represents machine breakdowns and maintenance 

that involves immediate machine repairs. However, it does not reflect the decision making 

process that takes place in the real system. 

Taking into account that the decisions surrounding what happens when a machine fails 

have a significant impact on production, the research develops and tests the use of 

simulation for understanding and improving the production decisions. 

4 
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Chapter 2 describes the methodologies and the techniques that have been used in the past 

for modelling decision making in simulation. It explains how the current research is 

related to previous work and it concludes by identifying a number of potential research 

areas. Chapter 3 describes the research questions and the research design. It justifies the 

methodological approach and provides an overview of its limitations. Based on theoretical 

developments by previous authors, Chapter 4 forms a methodology for capturing efficient 

decision making using simulation. Chapters 5, 6, 7 and 8 test and evaluate the stages of 

this methodology. Chapter 9 discusses the findings of this research and concludes with the 

main lessons that were learned. Finally, in Chapter 10 the main conclusions and the 

contribution of the research are summarised and areas where further research is required 

are identified. 

5 
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Chapter 2 

Current approaches for modelling decision making in 
simulation 

Introduced in Chapter 1 the motive of the research is to develop and test the use of 

simulation for understanding and improving decision making. To provide an overview of 

the relevant techniques and to formulate the research problem this chapter will address the 

following questions: 

• What process is involved in the use of simulation for understanding and improving 

decision making and what general stages are involved in this process? 

• What techniques have been used or proposed for each of the above stages and 

what techniques have been considered for related applications? 

• What methodologies have been developed for the process involved in the use of 

simulation for understanding and improving decision making and in what context 

they have been applied? 

The answers to these questions form the basis of the research aim, the research questions 

and the research strategy developed in Chapter 3. They also contribute to the development 

of the conceptual methodology discussed in Chapter 4. 

2.1 The process involved in the use of simulation for improving 
decision making: an overview of the challenge 

The use of simulation for understanding and improving decision making involves the 

modelling of decision making in simulation (Curram 1997, Williams 1996, Liang et al 

1992, Robinson et al 1998, Flitman & Hurrion 1987, Mason & Moffat 2000). Introduced 

in Chapter 1 (section 1.2), the modelling of decision making is one of the main challenges 

in simulation. The challenge consists of understanding what the decision making process 

involves and how the decision makers reach decisions (Williams 1996). As has been 

shown by previous authors (Williams 1996, Liang et al 1992, Robinson et al 1998, 

6 
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Flitman & Hurrion 1987, Mason & Moffat 2000) the problem can be described as a 

process that involves three generic stages. The first stage, known as knowledge elicitation, 

includes all those tasks required for gathering the information and the data that are 

required for modelling decision making (Williams 1996, Robinson et al 1998 & 2003 ). In 

addition to the problem structuring process, this stage might involve data collection aimed 

at facilitating the development and calibration of decision making models (Checkland 

1981, Liang et al 1992). The second stage, termed knowledge modelling, involves the 

development of quantitative or qualitative models for representing the decision making 

process (Curram 1997, Perry & Moffat 1997, Mason & Moffat 2000). By developing 

models of decision making, this stage focuses on the identification of the decision making 

strategies required to represent decision making. The third stage, known as knowledge 

representation, involves the process oflinking the decision making models with the other 

entities of the simulation (Flitman & Hurrion 1987, O'Keefe 1986, Mason & Moffat 

2000, Robinson et al 2003b ). This is the stage where the simulation can be used in order 

to assess the impact of representing decision making (Flitman & Hurrion 1987). 

In the past 25 years, a number of different approaches have been proposed for 

implementing each of the three stages of the process of modelling decision making in 

simulation (Hurrion 1978, Flitman & Hurrion 1987, Curram 1997, Perry & Moffat 1997, 

Mason & Moffat 2000). Among the elements which differentiate the approaches are the 

techniques which have been employed for each of the three stages above (Curram 1997). 

The approaches also differ on how they use the techniques, on what they try to achieve, 

on what they define as decision making and on the environment and the knowledge that 

they use to develop the models (Perry & Moffat 1997). Given this diversity, in order to 

identify the techniques which are available for modelling decision making in simulation, 

sections 2.2, 2.3 and 2.4 of this chapter will describe knowledge elicitation, knowledge 

modelling and knowledge representation techniques. The knowledge elicitation section 

will cover techniques that have been used as part of the process of eliciting knowledge for 

modelling human decision making in simulation. To provide a complete overview of the 

relevant data collection techniques, the knowledge elicitation section will also consider 

techniques which have been used to collect data to represent human elements in 

7 
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simulation as well as techniques that have been used for eliciting knowledge required for 

representing optimal decision making in simulation. The knowledge modelling section 

will cover AI and qualitative techniques which have been used or proposed as part of the 

process of modelling decision making in simulation. Finally, the knowledge 

representation section will cover techniques that have been used for implementing and 

linking decision making models with simulation. 

Having reviewed the literature in terms of the techniques that are employed for each stage 

in section five, five characteristics which vary significantly across the proposed 

approaches are identified and are used in order to organise the research into categories 

with common characteristics. Based on these categorisations, the types of methodologies 

that are available for modelling decision making in simulation are identified. Section 

seven discusses potential research areas and section eight concludes by summarising the 

current research issues associated with the process of modelling decision making in 

simulation. 

2.2 Knowledge elicitation techniques 

Given that VIS (defined in Chapter 1) appears to be one of the most commonly applied 

quantitative knowledge elicitation techniques in the literature in modelling decision 

making (Liang et al 1992, Flitman & Hurrion 1987, Perry & Moffat 1997), the first part of 

this section describes various quantitative, VIS-based knowledge elicitation approaches. 

In the second part of this section, alternative knowledge elicitation techniques are 

described. 

2.2.1 VIS for knowledge elicitation 

VIS is a special case of Visual Interactive Modelling (VIM - Hurrion 1986). VIM is a 

well-established knowledge elicitation technique in the literature on modelling decision 

making in simulation (Hurrion 1986). The capabilities ofVIM to establish a dialogue 

between the human expert and the computer system and the fact that it is usually 

combined with simulation models are two of the main reasons for the attention that it has 

received in the literature (Hurrion 1986). 

8 
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Hurrion ( 1986) defines a VIM methodology as one where an OR analyst builds a model 

of some problem situation. The model has a graphics component, so that the user 

commissioning the study can observe in a suitable animated form the dynamics of the 

model. The user is then able to use his/her own expert knowledge and judgment of the 

original problem domain in order to interact with the model. In addition, Hurrion (1991) 

comments that one of the major modelling techniques used within the generic VIM 

framework is simulation. 

VIS for knowledge elicitation involves the development of a simulation model where, 

initially, the representation of decision making rules requires the involvement of the user 

(Bell & O'Keefe 1994). This means that during the simulation when a decision point is 

reached, the simulation stops and the user, based on information about the status of the 

system reported through the visual display, must decide which of the decision options is 

the most appropriate. In some of the applications that have been reported (Liang et al 

1992, Flitman & Hurrion 1987, Perry & Moffat 1997), the functionality of the computer 

model not only allows the user to input decisions which are taken into account in the next 

events of the simulation but also automatically creates a record of the decision and the 

attributes in a database. 

Based on the above generic approach, a number of specific techniques have been 

developed and tested using full scale applications or simplified case studies that represent 

typical problems (such as the general job shop scheduling problem). According to 

O'Keefe & Pitt (1991), Perry & Moffat (1997), Hurrion (1986), Liang et al (1992) and 

Curram (1997), some of the key elements which differentiate the various VIS (for 

quantitative knowledge elicitation) approaches are the following: 

• The type of visual display that is used. 

• The number of decision situations that are presented to the user. 

• The method that is used for generating the decision situations. 

9 



Chapter 2: Current approaches 

• The type of decision makers who are involved in the knowledge elicitation process 

and the level of their experience. 

As is shown in table 2.1, based on these characteristics it is possible to identify at least 

three different VIS-based knowledge elicitation techniques (Flitman & Hurrion 1987, 

Liang et al 1992, Perry & Moffat 1997). Approaches I and II have been developed with 

the involvement of non-industrial experts (Curram 1997, Liang et al 1992, Flitman & 
' 

Hurrion 1987). The main difference between the two lies in the type of visual display that 

is used. In the first approach, the representation of the system has the form of a diagram 

which represents the layout of the system (Curram 1997, Flitman & Hurrion 1987). In the 

second approach, the system attributes are visualised using logical diagrams such as 

charts and figures (Liang et al 1992). The third approach (Perry & Moffat 1997), shown in 

table 2.1, is quite different from the previous two. Apart from the involvement of real 

experts, a key difference between this approach and the previous two is the type of 

interaction. Unlike approaches I and II, in the third approach each time that a decision is 

required, besides the standard facilities that are provided to the user in order to input a 

decision, there is some extra functionality which allows the decision maker to request 

extra information, which is available only upon request. This creates a dynamic dialogue, 

which provides a more realistic simulation environment since it represents the fact that, in 

the real world, the user might need to find additional information before he makes a 

decision. Having identified three different variants of VIS for knowledge elicitation, the 

following paragraphs provide details about applications in which each VIS approach is 

employed. 

Approach Authors Visual Type of Number of Decision Type of Decision 
display interaction decision situations problem makers' level 

situations generation process of experience 

Flitman & Static/ Simplified Hurrion ( !987), Schematic Passive High Sequential example Non-industrial 
Curram ( 1997) 

II Static/ Manufacturing Non-industrial 
Liang et al ( 1992) Logical Passive High Sequential example (students) 

III Perry & Moffat 
(1997), Williams Experienced 
(1996) and Schematic Dynamic High Randomised Military (Real) Commanders 
Williams et al 
(1989 

Table 2.1: Types of VIS for knowledge elicitation. 
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Approach 1: Visual schematic run time interactive simulation model with incomplete 

sequential dialogue and multi-participation of non-industrial decision makers 

O'Keefe & Pitt (1991) and Flitman & Hurrion (1987) describe a visual interactiYe 

methodology for knowledge elicitation that is based on the use of a VIS. The simulations 

that model the operations of a simplified example of a coal depot (the same typical 

problem is analysed in both studies), are used to collect data on resource allocation 

decisions which depend on queue lengths. The models have been deYeloped in Pascal and 

Prolog using the libraries Pascal_SIM (Davies & O'Keefe 1988) and WES (Warwick 

Expert Simulator, Hurrion 1991 ). During the data collection process (Flitman & Hurrion 

1987) the model simulates the system, including the length of each queue. The 

appropriate facilities are provided to enable the human decision maker to interact at run 

time with the model and to alter the allocation of resource levels, taking into account the 

queue lengths that are simulated and dynamically displayed in schematic form in the 

computer model. Each time that a resource allocation decision is made, the decision and 

the corresponding attributes are recorded. The decision situations that are presented to the 

decision makers are generated sequentially (subsequent decision points: non-random 

sampling) from a short simulation run. As a consequence, the data set is not exhaustive 

and some decision situations are not presented to the decision makers, resulting in 

knowledge gaps. According to Hurrion's (1986) classification of interactive models, this 

dialogue is characterised as passive or incomplete due to the limited interaction with the 

model. In this knowledge elicitation experiment (Flitman & Hurrion 1987), five non-

industrial decision makers participate during the knowledge elicitation process. In order to 

enable direct comparison of their efficiency, each of them is exposed to the same decision 

situations. Clearly, from the type of interaction and the type of visual display that is used, 

this work is an example of VIS for knowledge elicitation which represents Approach I 

(table 2.1 ). 

A similar knowledge elicitation approach is also described by Curram (1997). In his 

research, a simulation that models the operations of a bank branch is used to collect data 

about 'queue joining' decisions, which depend on queue lengths and other characteristics 
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of the system. Based on a pilot data collection that was conducted to investigate the range 

of possible situations and to address practical issues of the data collection process, a 

knowledge elicitation experiment was designed. During the design, the situations that 

were chosen to be presented to the decision maker were carefully specified to allow a 

structure to be imposed on the data collection. The aim was to achieve a good spread of 

situations given the limited number of scenarios. In view of the simplicity of the case 

study, no provision was needed to ensure that the scenarios generated did not fall into the 

same decision category and that extreme situations were presented. By simply applying 

common sense, it was easy to predict the extreme cases of a queue length in a bank 

branch and to develop a distribution of the frequency of each queue length. In order to 

collect the data a visual schematic display was used with passive interaction, where the 

user has to input a decision but is unable to interact dynamically with the system or 

request additional information about the status of the system. 

Approach II: Visual logical run time interactive simulation model with incomplete 

sequential dialogue and multi-participation of non-industrial experts 

Liang et al' s ( 1992) work, which according to Bell and 0 'Keefe ( 1994) is one the most 

extensive investigations of intelligent VIS, describes a knowledge elicitation approach 

that is based on the use of a VIS model of a manufacturing facility. The model simulates a 

manufacturing process where materials have to be submerged in chemicals for specific 

times but go bad if left in a tank for too long. There is only one resource that may be used 

to move jobs from one tank of chemical to the next and the decision maker has to decide 

on the order in which material should be moved from one tank to the others. The aim of 

the scheduling decision making problem is to avoid under- or over-processing of each 

manufacturing item since this would spoil it. The knowledge elicitation process involves 

the use of that VIS which simulates the operations of the system and reports the value of 

various attributes of the system, using a bar chart display which is updated each time that 

the simulation reaches a decision point. When a decision is required, the model stops and 

the intervention of the user is required. Once a decision is taken it is recorded in a 

database for future reference. This knowledge elicitation application reports that a 

12 



Chapter 2: Current approaches 

significant number of decisions (a total of 2125 decisions, 215 per person) can be 

collected using the VIS model but, as the authors comment, it raises issues associated 

with the fact that non-industrial experts were involved. It also raises issues associated 

with the fact that the decision situations that were selected might not be a representative 

sample, since no experimental design was undertaken. According to Hurrion's (1986) 

classification of visualisation, the visualisation approach that is used by Liang et al (1992) 

can be classified as logical, since charts and diagrams are used for displaying the 

information which the decision maker takes into account in order to make a decision. In 

addition, the type interactive dialogue can be classified as passive, since the decision 

makers could not define new decision actions or request information about additional 

attributes that were not reported in the logical display. 

Approach III: Visual schematic run time interactive simulation with incomplete stratified 

scenarios and multi-participation of military decision makers. 

Perry & Moffat (1997), Williams (1996) and Williams et al (1989) are perhaps the only 

full scale applications of VIS-based knowledge elicitation. 

Williams (1996) and Williams et al (1989) describe a knowledge elicitation approach in 

which a VIS is used for collecting examples of scheduling decisions that involve 

prioritisation of replenishment. The author comments that, in their third VIS experiment, 

pre-prepared situations were presented to experienced commanders. Although specific 

details about the preparation of the decision situations are not given, it is clear that a 

stratified approach was employed in order to ensure that a representative data set was 

collected. In the methodology applied, apart from the decisions that were recorded 

automatically in the system, additional information was collected manually during the 

data collection. The situations were presented to the decision makers using electronic 

maps and therefore a schematic VIS approach is employed (Hurrion 1986). In addition, 

the fact that the decision situations are pre-prepared shows that, in this simulation-based 

data collection, the decision situations are not generated sequentially from the simulation 

and so a non-sequential dialogue is applied. 
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Perry & Moffat ( 1997) describe a VIS approach for collecting decision data about military 

decisions which depend on various attributes, formed from information that the real 

decision makers were able to request from the interactive model each time that a decision 

was required during the simulation run. The decision makers who participated in the study 

commissioned by Perry & Moffat ( 1997) were very senior acting or recently retired naval 

officers. The model is an interactive maritime stochastic event driven simulation at task 

force level, which can be interrupted by the player to probe for information or alter the 

simulation by inserting orders to the force. The decision situations and outcomes 

presented to the participants were generated by charting a reasonable course of events 

based on earlier decisions made and simulation adjudications. These events led to a single 

critical decision situation that was then presented to the user. Based on Hurrion's (1986) 

classification of interaction, the type of interaction used by Perry & Moffat ( 1997) is 

classified as active or dynamic, since the interactive dialogues which are used enable the 

user to retrieve information upon request and to input non-standard decisions that were 

not initially in the list of the anticipated decision options (this was achieved by proposing 

new emerging decision options that were later hard coded in the system). Moreover, the 

fact that additional information was available upon request supports the identification of 

emerging attributes, when initially it was not expected that they might support the 

decision making process. To make the experiment even more robust, in each of the ten 

experimental sessions that were conducted, a wide range of situations was presented to 

the decision makers with the aim of avoiding stereotyped responses. The decision option 

'the situation is totally infeasible and there is no reasonable way forward' was also 

available to enable the identification of unrealistic scenarios. As the authors comment, the 

type of interaction that was employed in their research minimises the risk of producing a 

behavioural situation which is so constraining that the data set that is collected is purely a 

product of the experimental method and does not represent the situations that the decision 

makers actually face. 
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2.2.2 Alternative knowledge elicitation techniques 

Apart from VIS for quantitative knowledge elicitation, a number of alternative knowledge 

elicitation techniques exist which, under certain circumstances, can be used for the first 

stage of the process of modelling decision making in simulation (Angelides & Paul1999, 

Hurrion 1980, Carvalho et al 1998, Liang et al 1992, Pierreval & Ralambondrainy 1990). 

Some of those techniques have been proposed by previous authors and are explained in 

the following paragraphs. 

Historical data for quantitative knowledge elicitation 

As is explained by Liang et al (1992), historical data of decisions and attributes can be a 

useful source of knowledge which can be used for modelling human decision making in 

simulations. It is an efficient knowledge elicitation technique, which does not require the 

development of knowledge elicitation systems or considerable involvement of human 

experts. In the methodologies that have been developed for modelling human decision 

making, historical data are not used as much as might be expected. One of the main 

reasons is the lack of historical data records, on which Liang et al (1992) comment that 

"most research is based on the assumption that training data are available and are error 

free. In some problem domains expert decisions are difficult to obtain or need to be 

collected on real time basis. When however historical data are available they can be used 

for developing models of decision making". 

Mason & Moffat (2000) provide the most notable example where historical data on 

decisions are used to develop models. In one of their decision making representations they 

use a set of mentally stored references which have been accumulated by experience and 

training to model rapid planning decisions. Carvalho et al ( 1998) use historical data to 

model decision making on passenger choice between train or bus. Although their model is 

not specifically developed to fit in a simulation, it is developed using historical data on 

decisions. Similarly, Malhorta et al ( 1999) use historical data to develop decision making 

models that represent business decisions. As with Carvalho et al (1998), their model is not 

integrated with a simulation application, but the data set is derived from specifically 

historical decisions. 
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Questionnaires for knowledge about people 

If the decision situations can be described in a questionnaire (Deslandres & Pierreval 

1997), the use of questionnaires is a knowledge elicitation technique that can be used as 

part of the process of modelling decision making in simulation. Baines et al (2000) use 

questionnaires to collect data that are used in combination with data-driven modelling 

techniques to represent in simulation how individual characteristics and environmental 

conditions affect human performance in manufacturing environments. The questionnaires 

are designed to collect information about the personality of the individual and about how 

certain environmental conditions affect the time that they spend doing certain tasks or 

time that they spend on rework. 

Optimal data sets derived from simulation experiments for quantitative knowledge 

elicitation 

When the purpose of the modelling exercise is to represent optimal decision making, a 

technique that has been used in the past (Pierreval & Ralambondrainy 1990) involves the 

use of simulation for deriving a set of optimal decisions through simulation 

experimentation. For example, Pierreval & Ralambondrainy (1990) describe a technique 

in which simulation is used to generate a data set in which the decision instances are 

optimal and have been derived from exhaustive simulation optimisation experiments. In 

addition, Alifantis & Robinson (2002) propose the use of optimal decisions derived from 

exhaustive experimentation with simulation to develop a scheduling advisor. 

Artificially generated data sets for quantitative knowledge elicitation 

If the knowledge elicitation stage of the process of modelling decision making in 

simulation involves investigation about which technique is the most appropriate to be 

adopted, then artificially generated data sets can be used (Curram 1997, Carvalho et al 

1998). Artificially generated data sets are used for testing the capabilities of 

methodologies and generic mathematical models. Although the data are not real, they 

behave as if they were collected from real world situations and sometimes they have 

properties that cannot be easily found in real world knowledge domains and data sets 

(Carvalho et al 1998). For example, artificially generated data sets are complete and 

follow predetermined statistical distributions which help to create controlled experiments 
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by controlling assumptions that are required by certain techniques and models. Generally, 

artificially generated data sets are used as a preliminary stage in the process of 

investigating the performance and efficiency of various techniques under different 

conditions. In those cases, knowledge elicitation consists of finding which is the most 

appropriate technique to be used for modelling a specific situation. Curram ( 1997) 

describes a process that involves the use of artificially generated data to investigate the 

performance of stochastic neural networks models. Carvalho et al ( 1998) describe a 

process that involves the use of simulated data to undertake a comparative analysis of two 

data-driven modelling techniques (logistic regression and neural networks). 

Visual interactive simulation and gaming for qualitative knowledge elicitation 

Earlier in this section, VIS was described as a technique which can support the process of 

collecting quantitative data sets of decisions and attributes. However, when the purpose of 

knowledge elicitation is to collect qualitative information about the decision making 

process, VIS can also support qualitative knowledge elicitations. Hurrion & Seeker 

(1978), Hurrion (1978) and Hurrion (1980) are the first published research studies (after 

Hurrion's PhD Thesis 1976) in which VIS is used as an aid to the decision maker. They 

are also examples of qualitative knowledge elicitation processes in which VIS is not used 

simply for collecting a data set of decision instances. As with recent investigations in 

gaming simulation environments (Angeli des & Paul 1999), the purpose of those papers is 

to illustrate that if the user can see how the model is progressing, conditional on the 

decisions that are made, then he/she is in a knowledgeable position to learn from the 

progress of the model and from the interactive decisions that he/she makes. In these 

applications, the elicited knowledge is formed by understanding the responsiveness of the 

system in the decisions that are made during the interactive run and, therefore, VIS is used 

as a tool for knowledge elicitation. 

Verbal protocol analysis for qualitative knowledge elicitation 

A method that is usually applied for qualitative knowledge elicitation and sometimes 

supports data collection sessions is the observation of the decision maker in his working 

environment (Deslandres & Pierreval 1997). According to Deslandres & Pierreval (1997) 

this elicitation method, which is formally known as verbal protocol analysis, is usually 
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applied in the problem-solving knowledge domain and is described as follows: "Verbal 

protocol analysis is a direct observation method of the expert's problem solving process. 

It consists of observing and noticing the experts' behaviour during their work, taking 

notes of everything that is done or said." The method is composed of two phases: 

syntactic analysis and semantic analysis. Syntactic analysis aims to identify operators, 

operands and the sequences of operations which can be observed during the verbal 

protocol of the experts. Semantic analysis involves exploring the reasoning by giving a 

succession of interpretations from the previous analysis. From the actions proposed by the 

expert the underlying purposes are identified, then an interpretation of the situation is 

given and, finally, the knowledge involved in this interpretation is characterised. 

According to Williams et al ( 1989), it is a time-consuming technique and the protocols 

collected do not always cover every situation. 

Problem structuring as a qualitative knowledge elicitation technique 

When optimisation and decision support tools are used during the decision making 

process then the knowledge elicitation process focuses on understanding how 

optimisation techniques can be used for representing the decision making process. For 

example, Mason & Moffat (2000) model decision making about deliberate planning using 

game theory. In this model it is assumed that when the commanders are not under 

pressure they use analytical techniques and not their experience to make rational 

decisions. In this case, the knowledge elicitation process focuses on understanding how 

game theory is used as a decision making tool. Emphasis is placed on the process of 

understanding what decision options are available, what are the enemies' decision options 

and what is the main objective. Clearly, the knowledge elicitation process is similar to the 

problem structuring process that would be applied for formulating an optimisation 

problem. 

Structured interviews and knowledge acquisition grids for qualitative knowledge 

elicitation 

Structured interviews supported by knowledge acquisition grids (questionnaires) are an 

alternative knowledge elicitation technique that is usually applied in qualitative 

knowledge acquisition. According to Deslandres & Pierreval ( 1997), in manufacturing 
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applications structured interviews are appropriate for eliciting practical knowledge from 

foremen and operators, who are usually good at expressing individual considerations on 

the question of manufacturing constraints. In their research, know ledge acquisition grids 

are used. The purpose of the questionnaire given to the decision makers was to investigate 

the quality controls that certain manufacturing products need to pass. Williams et al 

(1989) comment that interviews as a technique are efficient in terms of time but require a 

generally accepted expert. In their research, interviews supported by VIS are employed in 

order to elicit quantitative decision making knowledge about replenishment decisions. 

Action research 

Action research can also be used for knowledge elicitation. When action research is used 

the modeller is involved in the decision making process. This enables him to understand 

what types of data are required and how the data can be collected (Hindle et al 1995). 

2.2.3 Discussion: knowledge elicitation techniques 

Having described a number of different techniques in the previous paragraphs of this 

section, the above review has shown that a number of different knowledge elicitation 

techniques exist and many of them have been used as part of the process of modelling 

decision making in simulation. In simulation literature VIS appears with great frequency, 

with a number of authors reporting experiments where VIS is used for quantitative and 

qualitative knowledge elicitation (Liang et al 1992, Flitman & Hurrion 1987, Perry & 

Moffat 1997, Curram 1997, Hurrion 1980). From the above review, it is clear that there 

are some areas related to the knowledge elicitation process that have not been fully 

investigated in the current literature. The current knowledge elicitation literature is based 

mainly on non-industrial applications, nor does it address the issues associated with the 

process of minimising the risk of collecting a data set which may be highly biased and 

essentially the product of the data collection process (Liang et al 1992, Curram 1997). 

This conclusion, which follows the general current trend in OR research (Pidd & Lewis 

2001), highlights the lack of a detailed methodology for explaining how a representative 

set of decision situations should be generated from a VIS (Curram 1997). It also indicates 

that some of the early stages in the elicitation techniques, which involve the preparation of 

the data collection and perhaps some action research, have not been fully identified and 
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addressed by the current literature (Curram 1997). Finally, it calls attention to the need for 

applied research and emphasises the importance and the benefits from research based on 

industrial applications (Curram 1997). 

2.3 Knowledge modelling: techniques for modelling decision 
making using data collected from a simulation 

Having reviewed the main approaches that have been proposed for collecting data for 

modelling decision making, the main quantitative and qualitative modelling techniques 

that have been used to develop models of decision making for simulations are now 

described. 

2.3.1 Quantitative knowledge modelling techniques 

The quantitative knowledge modelling techniques which are described first in the 

following paragraphs usually require the calibration of a mathematical model (Liang et al 

1992, Curram 1997, 0 'Keefe 1986). The calibration involves optimising the ability of the 

model to predict the decisions that are included in the data set. Sometimes knowledge 

modelling techniques, instead of calibrating the parameters of an equation, involve the 

development of a database (Flitman & Hurrion 1987, Mason and Moffat 2000, Liao 

2000). This database is used as a look-up table to predict decisions for a given set of 

attributes (Mason and Moffat 2000). If the attributes are not in the look-up table, an 

approximation algorithm is used to find the attributes in the data set which are closest to 

those in the new decision situation. The following paragraphs review specific quantitative 

knowledge modelling techniques which have been used to model decision making in 

simulation. 

Pattern matching case-based reasoning 

In pattern matching case-based reasoning, a database with historical decisions and 

attributes is used in order to determine what decision should be taken for a new situation 

(Flitman & Hurrion 1987, Mason and Moffat 2000, Liao 2000). When a decision is 

required, a query in the database is executed to find the decision whose attributes match 

with those in the current situation. Kolodner (1993) describes two possible case-based 

reasoning approaches. The first, known as pattern matching, involves the use of a 
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database of stored decision and attribute pairs. This database is used to retrieve the most 
~ 

appropriate decision for a current situation. In order to find the most appropriate decision, 

a search takes place to match the current situation with the situations that are available in 

the database. Various algorithms have been applied for matching the current situation 

with those that are in the database (Flitman & Hurrion 1987, Mason and Moffat 2000). 

Flitman & Hurrion ( 1987) and Hurrion ( 1991) describe a pattern matching 

implementation which is used to model human decision making in a simulation model. In 

one of the case studies (Flitman & Hurrion 1987) which they describe, they model 

decision making in a simulation by developing a database of decision and attributes 

instances. In the pattern matching implementation described in those papers, a separate 

database is used for each decision maker. The database is linked with the simulation 

model and, when a decision is required, a search algorithm is used to find the attribute 

pattern in the database which matches the attribute pattern in the current state of the 

simulation model. Once a pattern that is close enough to the one in the simulation is 

found, the database is queried for the decision that corresponds to the relevant pattern. 

The decision is then incorporated in the simulation, which continues the run until the next 

decision. Applying a similar matching approach but with a different pattern identification 

algorithm, Mason and Moffat (2000) model human decision makers in a military 

simulation model. 

Adaptive case-based reasoning 

The second case-based approach not only involves the use of an attributes-decision 

database but also an adaptation algorithm which is used to extend the knowledge base that 

is initially included in the database (Kolodner 1993, Liao 2000). This process represents 

the learning experience which takes place when individuals are involved in a decision 

making process. This approach is usually known as adaptive case-based reasoning or 

simply case-based reasoning. It is based on the use of various databases that come from 

different experts (Liao 2000). When a decision is required, all matched decisions that are 

in the database are collected to form a set of strategic propositions. As explained by Liao 

(2000), rules are used to form a set of detailed solutions which are then evaluated and 
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assessed, based on certain criteria. The best of these forms the decision for the current 

situation. If the decision is very different from the decisions which have been stored in the 

database, then the new decision with the corresponding attributes is added in the database. 

Liao (2000) describes a case-based decision support system which models military 

command and control decision making. It contains five independent modules: case search, 

heuristic solution search, decision making, execution and learning. A current situation is 

passed from the situation board to the case search and heuristic search which 

independently produce possible strategic decisions, though these are not directly 

applicable. The solution search module then adopts those general strategic solutions and 

produces detailed solutions which are assessed by the decision making module on the 

basis of time, risk and reward criteria. The best then forms the solution for the current 

situation. If this decision is very different from that which is already in the case database, 

the decision and the situation attributes are appended in the database. 

Neural Networks 

Non-symbolic artificial intelligence in general and neural networks in particular have 

been used as a data driven technique for solving business problems and for modelling 

decision making in simulation (Wong 2000, Curram 1997). Unlike the pattern matching 

and case-based reasoning approaches, where the model is a database of decisions 

embedded in the simulation (Flitman & Hurrion 1987, Mason and Moffat 2000), neural 

networks are mathematical models which are calibrated using a database of attributes and 

decisions (Liang et al 1992, Curram 1997). Conceptually similar to regression models 

(Verbos 1994, Haykin 1999 ), the purpose of a neural network is to identify a causal 

relationship between input and output variables that can classify discrete or continuous 

output variables into distinct categories. For the classification, the inputs are used as 

predictors in the model. Technically, in a neural network model this is achieved using a 

heuristic such as Backpropagation (Verbos 1994), which iteratively adjusts the parameters 

of the model in order to minimise the total classification error between the model 

prediction and the actual observations. A distinct feature that has contributed to the 

increasing popularity of this technique is the multi-stage processing capability which 
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enables the use of neural networks for universal approximation of any function 

(McClelland & Rumelhart 1988, Haykin 1999). The following paragraphs describe some 

examples in which neural networks have been used to model human decision making in 

simulation. 

Liang et al (1992) describe a case study in which neural networks are employed to model 

scheduling decision making. Data sets with scheduling decisions and attributes (collected 

using a VIS - section 2.2) are used to calibrate the models. The efficiency of each decision 

making model is then assessed using simulation. The efficiency of the recorded decisions 

from each individual decision maker is also assessed using the same simulation model. 

Comparing the efficiency of the models with the actual decisions, the authors report that 

the neural network models are less efficient. However, when the neural networks are 

retrained by removing inconsistencies and inaccuracies from the dataset, the new models 

are reported to perform better than the actual human decision makers, whose performance 

was evaluated using the database with the recorded decisions. 

Curram (1997) describes two examples for which neural networks are used to model 

human decision making. In the first instance, the capability of neural networks to model 

human decision making is tested using artificially generated data sets. In the second 

example, decision making is modelled in a simple simulation model. As has been 

explained in section 2.2, a local branch of a bank is used as a case study to test the 

feasibility of using neural network models to represent decision making in simulation. 

The neural network models that are developed in this case study represent customers' 

decisions about which queue to join when they arrive at the branch of the bank. The 

decisions about which queue the customers would join (if any) was modelled using seven 

attributes as predictors. The predictors represent the characteristics which determine 

customers' decisions about which queue to join. A number of stochastic and deterministic 

neural network models were developed and assessed. The evaluation of the models was 

based on the accuracy of the prediction and the internal consistency of the models. 

Validation using 'hold out' or 'one out' sample (UrbanHjorth 1994) was not undertaken 
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given the limited data set, but qualitative checks were performed to make sure that the 

model was sensible. 

Probability distributions conditional on attribute values 

Probability distributions conditional on attribute values is perhaps the simplest and one of 

the most commonly applied techniques for controlling logic and for modelling decision 

making in simulation (O'Keefe 1986, Curram 1997, Pidd 1998, Robinson 2004). The 

technique involves the development of statistical or empirical distribution models which 

are calibrated using observed data sets. 

The technique is usually applied when it is observed that a specific type of decision is 

almost always taken when a real valued attribute variable which follows a statistical 

distribution is less than a benchmark value (Perry & Moffat 1997). The implementation of 

this type of model in the simulation involves sampling a number from a statistical or 

empirical distribution that represents the current attribute value. The decision is then 

determined by comparing the sample with a benchmark value. The accuracy of this type 

of model depends on how consistently the rule is applied in the real system (Perry & 

Moffat 1997). 

Perry & Moffat (1997) describe various experiments which involve representing decision 

making using statistical distributions. In their model, a statistical distribution is 

constructed about which type of information is more frequently required when a certain 

type of decision is taken. Using this concept, a number of experiments were undertaken in 

order to model decision making based on frequency of request for certain information. In 

their research, the authors report that the empirical data do not support the hypothesis that 

decisions are related to the information that the naval commanders request. As an 

extension of the above approach, Moffat & Witty (2002) present a preliminary 

investigation for modelling decision making using advanced conditional models which 

employ Bayesian statistics and the use of catastrophe theory. 
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Decision trees and rule induction 

Symbolic artificial intelligence in general and decision trees in particular have also been 

used to model decision making knowledge in simulation (O'Keefe 1986, Flitman & 

Hurrion 1987). A decision tree, which can also be seen as a set of nested 'if-then' rules is 
' 

a logical model in which the attribute values are used sequentially to predict a decision. 

The most common decision tree derivation algorithm, known as Iterative Dichotomiser 3 

(ID3 - Quinlan 1979, Quinlan 1983 ), is a data driven technique where the parameters for 

the conditional statements in the nested 'if -then' logical model are calibrated to fit the 

attributes and decisions in the dataset. The decision variable is divided into categories, 

each of which contains decisions of the same class. Each of the attributes is then divided 

into classes, based on their ability to predict the class of the decisions in the data set. The 

process is terminated when all the attributes have been used or all the decisions have been 

correctly classified. Each time that a new attribute is used, a new level in the tree is 

created. The attributes chosen first are those which can predict the class of the greatest 

number of decisions first. The following are some examples where decision trees are 

employed to model decision making knowledge. 

O'Keefe (1986), in his taxonomy of expert systems, describes how the Quinlan ID3 

( 1979) algorithm could be used to generate rules from a data set to model decision making 

in simulations. Welbank (1983) appears less optimistic about the use of rule induction and 

reports that in his experiment it was not possible to generate a sufficiently complete case 

library of decisions for each possible decision situation. 

Pierreval & Ralambondrainy ( 1990) describe a decision making problem of a simplified 

manufacturing environment, in which a decision is needed about which of the items 

queuing in front of two machines should be processed first on each occasion that a 

machine becomes available. An ID3 type decision tree is used to model the decision 

making process. The ID3 decision tree is calibrated using optimal decisions and observed 

attributes which are obtained from simulation experiments with a model of the 

manufacturing system. Robinson et al (1998) describe a model of a fictional lorry loading 

bay, where lorries arrive at the loading park on average every 10 minutes and require 
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loads of between 5 and 20 items. The decision maker is a loading supervisor who has to 

make a decision about which bay should be allocated to a lorry which has just arrived. To 

illustrate the feasibility of representing decision making in simulation using decision 

trees, one of the authors in this research acted as a human expert. A data set of attributes 

and decisions which was collected from a VIS-based data collection session was used to 

develop an ID3 decision tree that was later linked with the simulation model. Mingers 

( 1986) uses decision trees to model the decision making process that is involved during 

development of a regression equation. In this model, regression analysis output 

diagnostics are used as attributes to decide which independent variables must be included 

in the regression model. Williams et al (1989) use decision trees in order to model 

decision making about replenishment. In this case study, a decision making model is 

developed and is used in order to prioritise and schedule replenishment requests. In this 

model, decisions about what type of ship should be sent to implement the replenishment 

and when it should do so are predicted by taking into account who requests replenishment 

and where. 

Fuzzy Logic 

Fuzzy logic has also been proposed by a number of authors (Mundermann 1993 and 

Zadeh 1973) as an approach which can be used to model human decision making 

knowledge in simulation. Fuzzy logic can be used when the representation of uncertainty 

is required and when a number of conflicting rules need to be combined (Curram 1997). 

When fuzzy logic is employed the model, instead of predicting a specific decision for a 

set of attributes, predicts a fuzzy set for a number of fuzzy sets that represent the 

attributes. The fuzzy set that is predicted as an output of the model represents in a non-

probabilistic way the likelihood of a decision to be of a specific type. Predicting fuzzy 

sets rather than specific decisions, the models allow for the representation of partial 

membership and statements with a linguistic nature such as maybe or probably. With this 

approach, fuzzy logic enables the representation of the fact that two individuals are tall 

but also to distinguish between one person who is taller than the other (Math Works 1999). 

In fuzzy logic, fuzzy sets and rules are inputs in the modelling process. This allows the 

representation of uncertainty and the combination of conflicting rules. In fuzzy logic it is 
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assumed that the decision makers are able to express the rules which they apply when 

they make decisions. As an example, Mundermann (1993) describes an experiment where 

fuzzy logic is used to represent agents of autonomous mobile vehicles in a highway 

simulation. 

Problem Enumeration 

Optimisation has been used to model human decision making when there is evidence that 

in the real system the decision makers apply optimisation techniques in order to make 

decisions (Curram 1997). Mason & Moffat (2000) use optimisation to represent human 

decision making. They use game theory to model planned decision making. They assume 

that, given sufficient time, the decision makers use all the available information to make 

rational decisions. Based on this assumption game theory is applied to represent the fact 

that all the possible decision options are considered and assessed in order to identify the 

decision option with the lowest risk. 

2.3.2 Qualitative knowledge modelling 

Analysis of Influence 

Analysis of influence is one of the qualitative techniques which has been used to model 

decision making knowledge (Perry & Moffat 1997). It involves asking the decision 

makers to explain how each of the attributes affects each of their decisions (negatively or 

positively). With this process, the most influential attributes can be identified. Perry & 

Moffat (1997) use analysis of influence to model maritime decision making. The focus of 

the analysis in the second part of their work (in which analysis of influence is used) is on 

how the decisions are taken and how each decision maker is influenced by each attribute 

when he makes a decision. They are concerned about the individual human decision 

makers and how the attributes of the system are associated with their decisions. They also 

report that, in the specific application, the comparative analysis between analysis of 

influence and statistical distributions revealed that analysis of influence is more 

appropriate for modelling decision making. With the data set which they had available, 

they found that it was not possible to use statistical distributions to develop a model that 

can predict what decision must be taken given the attributes of the system. However, 

27 



Chapter 2: Current approaches 

using analysis of influence (and influence diagrams) it was possible to represent how the 

decisions are taken by identifying how each attribute influences the decision maker 

(positively or negatively). 

2.3.3 Discussion: techniques for modelling decision making 

strategies 

Following the description of a series of different applications in the previous paragraphs 

of this section, it is clear that a number of different knowledge modelling techniques have 

been used as part of the process of modelling decision making in simulation (Perry & 

Moffat 1997, Flitman & Hurrion 1987, Liao 2000, Curram 1997). Pattern matching 

appears to be one of the most frequently applied, with a number of authors reporting full-

scale applications where pattern matching is employed in knowledge modelling (Perry & 

Moffat 1997). From the above review, it can be concluded that in the literature the choice 

of the knowledge modelling technique is often arbitrary. This conclusion is based on the 

fact that there is not enough evidence to support the idea that the choice of the modelling 

technique is based on a comparative analysis of the performance of the alternative 

techniques. It indicates that, empirically, the pros and cons of the alternative knowledge 

modelling techniques have not been fully investigated by the current literature and further 

research is required. In addition, in the above review statistical modelling appears to be 

one of the less popular techniques, since there are very few examples where statistical 

modelling is used as part of the process of modelling decision making in simulation. This 

conclusion indicates that modelling decision making in simulation is a research area that 

is rather biased towards AI oriented techniques. This is consistent with what a number of 

authors (O'Keefe 1986, Doukidis 1987) have observed in the past and, although it is 

justified by the similarities that can be observed between AI and simulation, it indicates 

that further research is necessary in order to investigate the potential of statistical 

modelling. 

2.4 Techniques for representing and linking decision making 
models with simulation 

The final stage in the process of modelling decision making in simulation involves linking 
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the decision making models with the simulation (Williams 1996, Flitman & Hurrion 

1987, Robinson et al 2003b ). The implementation of this stage depends on the degree of 

success of the decision making models and on the motivation of the modelling exercise 

(Perry & Moffat 1997 - quite often, when the motivation of modelling is to understand the 

decision making process, the third stage is not implemented since the objective has been 

achieved before the completion of the exercise). 

In the literature, the approach which is frequently chosen to represent the model in the 

simulation is related to the nature of the technique that is chosen to model the decision 

making (Mason & Moffat 2000, Flitman & Hurrion 1987, Robinson et al 2003b ). 

Depending on the development environment that is used to build the simulation, various 

techniques have been used to represent and link the decision making models with the 

simulation. The following paragraphs describe some of the most popular approaches that 

have been proposed. 

2.4.1 Agent technology and object orientation 

In the literature, agents are sometimes described as a knowledge modelling technique 

Schimidt (2000). Based on the agent definition given by Mason & Moffat (2000) and 

Moffat (2000), in this review agents are seen as a technique for representing and linking 

decision making models in simulation. Consistent with the Mason & Moffat (2000) 

approach, our decision to classify agent technology as a technique for knowledge 

representation has been taken on the grounds that an agent is a means of organising a 

decision making model. An agent can be seen as software architecture for representing a 

model of a human decision maker in simulation. It interacts with other entities of the 

simulation and with other agents if multi-level or multi-unit decision making is modelled. 

Schimidt (2000) describes agents as virtual representatives of real human beings who 

have common properties such as individual worldview, autonomous behaviour, planning 

capability, social abilities, communication and co-operation capabilities. 
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Agents are usually implemented in object-oriented environments due to the benefits that 

occur from code reusability and flexibility (Moffat 2000, Pidd 1996). Although a full 

review of the approaches which have been proposed for implementing agents is beyond 

the scope of this thesis, the following paragraphs give an overview of the general object-

orientated approach and describe some of the applications of modelling human decision 

making for which agents are used to link the decision making models with the simulation. 

In an object-oriented environment, an agent is implemented as an object with properties 

and methods (Moffat 2000). Usually, the number of objects depends on the number of the 

decision makers who are involved in the decision making process. If there is only one 

level of decision making but many decision makers, then all the objects that represent 

agents are defined from the same class. If multi-level decision making is modelled, 

different classes are used to define the objects at each decision making level (Moffat 

2000). Normally, object methods are used to represent different decision actions and 

object properties are used to check the availability of the decision makers and to store the 

knowledge which comes from the decision making model. In a pattern matching model, 

for example, a property of type 'list' can be used to store the database of the decisions and 

attributes (Moffat 2000). Properties can also be used to model its position and condition. 

They might be used, for example, to check whether the agent has to decide under pressure 

or is in a situation where a decision is not required urgently, in which case planning skills 

and knowledge can be applied in order to make a rational decision (Moffat 2000). 

Depending on the level of detail, different classes might be used to define the objects. 

This is usually the case when multi-level decision making structures are modelled and so 

various types of agent need to be represented. 

Mason & Moffat (2000) and Moffat (2000) describe an agent architecture that captures 

the key command and control processes. These processes include intelligence activities of 

data fusion, recognised picture compilation, decision making and planning. The purpose 

of representing these processes was to gain a perception of the outside world, to 

understand what is going on and finally to decide what to do next by formulating a plan of 
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how to achieve this. The agents consist of the following objects: a 'com' object, a 

collector, a planner, a promulgator, the recognised picture and the plan. 

The 'com' object in their research allows the agent to interact with other agents. The 

collector is used to request data from the simulation and to apply pattern matching 

techniques to see what should be decided in the short term. The collector is also 

responsible for informing the planner component of what is happening. The planner, 

whose role is to decide what to do in the long term, controls the collector by requesting it 

to collect and analyse information. The promulgator is used in the simulation logic to 

make sure that the decisions of the agent are executed. The recognised picture is a 

database which contains all the decisions that the agent has taken about the current 

situation in each geographical zone. The plan is also a database which contains the current 

plan that the agent has decided to apply. 

2.4.2 Remote expert controller 

The remote expert controller was an early attempt to separate the logic from the rest of the 

simulation model (Flitman & Hurrion 1987 and Hurrion 1991). The technique involves 

the use of a separate machine that contains the logic of the simulation and the 

implementation of the decision making model (Flitman & Hurrion 1987). The machine 

which is used for the other components of the simulation interacts with the machine that 

contains the decision making strategies. It does so by requesting decisions for specific 

situations which are described through a set of attribute values. Very often in the literature 

the motivation for proposing this type of technique is based on the benefits which can 

occur when specialised development environments (such as LISP logic language: Jackson 

1998, Edwards 1991) are used to develop, maintain and operate complex decision making 

rules used by the simulation. 

An implementation of a remote expert controller is described by Flitman & Hurrion 

(1987) and Hurrion (1991). Both papers describe a model where the expert system 

function was clearly separated from the simulation. The two parts of the system were 

placed on separate micro-computers, which interact with each other in real time during 
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the simulation run through an RS232 interface. As the authors explain, by separating the 

components of the system it was possible to make full use of the capabilities that the 

expert systems can offer to control the logic of the simulation model. 

2.4.3 Integration with third party applications 

The development of decision making representations as third party applications, which 

interact with the simulation model in real time during the run using .com objects and OLE 

windows functionality, is perhaps the most recent approach for implementing and linking 

decision making models with simulation applications (Robinson et al 2003b ). In addition, 

it is the most commercialised approach (Larmer Group 2003, Attar software 2000) and the 

one which, according to various authors (Robinson et al2003b and Standridge & Steward 

2000), is most likely to be adopted in industrial applications since it is compatible with 

commercial simulators and AI packages. 

Robinson et al (2003b) describe a simplified example of a simulation model that is linked 

with an expert system software. The Witness (Lanner Group 2003) simulation model runs 

until a decision point is reached. When a decision point is reached, the simulation halts 

and the expert system becomes the active application. The software then retrieves 

information about the attributes of the simulation model and sends a decision to the 

simulation model, which once more becomes the active application and continues the 

simulation process until the next decision point. 

Standridge and Steward (2000) describe a simulation model which is linked with an 

expert system to represent decision making about patient appointment scheduling. The 

simulation model was written in Slam system. The expert system was implemented in C 

language and the link in Fortran. 

2.4.4 Discussion: representing and linking decision making models 
with simulation 

It is concluded, from the above discussion, that there are at least three types of 

technologies which have been proposed for implementing and linking decision making 
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applications with simulation. Agent technology, which has been very popular in military 

applications, involves the development of a decision making representation inside the 

simulation model by using object-oriented structures, which allow the agents to act 

independently and to interact with each other and with the rest of the simulation (Moffat 

2000). Remote expert controllers involve the implementation of the decision making 

representation in separate software in separate machines (Flitman & Hurrion 1987). This 

allows a more efficient development, maintenance and operation of the decision models in 

specialised environments (Hurrion 1991). Finally, a more industrial-oriented approach, 

which does not involve the use of separate hardware but enables the separation of the 

decision making model from the rest of the simulation, is the use of third party 

applications and OLE connections to develop and link the decision making models with 

the simulation (Robinson et al 2003b ). 

2.5 Current methodologies for modelling human decision making 
in simulation 

Having described the techniques that have been used as part of the process of modelling 

decision making in simulation, it is clear that that a number of quite different approaches 

have been developed to model decision making in simulation. From the above review it is 

clear that, although most of the methodologies involve three stages (elicitation, modelling 

and representation), the emphasis which is given in each of these three stages of the 

process and the type of problem that each methodology attempts to solve vary 

significantly across the proposed approaches (Perry & Moffat 1997, Curram 1997). 

Clearly, the techniques which are employed by each methodology are not the only 

element that differentiates them. The methodologies that have been proposed also differ 

on how they use the techniques, on what they try to achieve, on what they define as 

decision making, on the environment and the knowledge that they use to develop the 

models and on the focus of representation of the decision making process (Pierreval & 

Ralambondrainy 1990, Flitman & Hurrion 1987, Curram 1997). Taking into account these 

levels of differentiation, it is possible to identify at least the following five characteristics 

which vary significantly across the methodologies. 

33 



Chapter 2. Current approaches 

• The nature of decision making. This is a measure of the extent to which the 

decision making model must attempt to represent specific human decision makers 

or an efficient decision making practice (Curram 1997). 

• The motivation of the modelling exercise. This is author's motivation and 

objective for modelling decision making in a simulation model (Curram 1997, 

Flitman & Hurrion 1987). 

• The psychological content. This shows to what extent the model should attempt to 

explain how the decisions are taken (Perry & Moffat 1997). 

• The contextual content of the methodology. This measures how generic the 

decision making model must be (Perry & Moffat 1997). 

• The nature of knowledge that needs to be acquired for developing the models. The 

nature of knowledge reveals whether the decision making process is based on 

explicit or tacit knowledge and, as has been seen in the above review, it 

determines the type of elicitation technique which must be used in the 

methodology (Comnell et al 2003). 

In this section, in order to identify the types of approaches that are available to model 

decision making in simulation, the above five characteristics are used to categorise and 

group the approaches which have been proposed in the past. Having identified the types 

of approaches that are available for modelling decision making, this chapter concludes by 

highlighting the areas which have not been addressed in the past and by identifying some 

of the current research issues. 

2.5.1 Nature of decision making 

Taking into account that the nature of decision making is one of the methodological 

characteristics that vary significantly across those methodologies which the various 

authors have proposed, this is the first attribute that can be used to categorise the research 

in modelling decision making in simulation. As is clear from the previous three sections, 

the methodologies proposed vary between those which have been developed for 

representing human decision making (Curram 1997, Perry & Moffat 1997) and those 

which have been developed for modelling optimal decisions (Mason & Moffat 2000). 
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Modelling human decision making in simulation involves modelling specific human 

decision makers who are part of the system that the simulation model represents (Curram 

1997). As has been shown in the previous sections of this chapter, representing human 

decision making might involve modelling inefficient decision making practices if this is 

what is applied by the decision maker in the system (Curram 1997). Models ofhuman 

decision making are usually a conceptual representation of the fact that the efficiency of 

the decisions varies across the decision makers who are involved in the decision making 

process (Flitman & Hurrion 1987). In addition, it is a conceptual representation of the fact 

that different people have different experiences and, therefore, might take different 

decisions for the same decision situation (Flitman & Hurrion 1987, Curram 1997). 

On the contrary, as has been shown by methodologies such as those proposed by Mason 

& Moffat (2000), Moffat (2000) and Pierreval & Ralambondrainy (1990), modelling 

optimal decision making is usually impersonal. The models do not represent a specific 

decision maker but an optimal decision making process or a hypothetical efficient 

decision maker ( Curram 1997). Optimal decision making is normally a conceptual model 

for representing the fact that human decision makers sometimes have the time to use 

analytical techniques, algorithms and decision support systems in order to make a 

decision under conditions of perfect information (Moffat 2000). Taking into account that 

methodologies such as those proposed by Hurrion ( 1980) are also associated with 

optimality, it is clear that modelling optimal decision making in simulation is a theme that 

has received significant research attention. One of the main reasons for this attention is 

the fact that very often clients of simulation projects believe that the most appropriate 

decision option is chosen when a decision is required. 

2.5.2 Motivation of modelling 

Using as an attribute the motivation of modelling, which is the second methodological 

characteristic that has been identified above as one that varies significantly across the 

proposed methodologies, it is possible to categorise the current research into three 
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relatively distinct research streams (Mason & Moffat 2000, Flitman & Hurrion 1987, 

Hurrion & Seeker 1978). 

The first group includes methodologies such as those of Perry & Moffat (1997) and 

Mason & Moffat (2000) that have been proposed for situations for which a model of 

decision making is needed to improve the specification, the accuracy and the planning 

capabilities of the simulation. Mason & Moffat (2000), in their research on representing 

the C2 process in simulation, justify the implementation of the decision making models in 

military simulations by explaining that the decision making process needs to be 

represented in models of conflict in order to simulate realistic force behaviour and 

effectiveness. Perry and Moffat (1997) also conclude that simulation models for which 

decision making is subsumed in a command and control module would benefit more from 

the results of external analysis, such as the statistical representation of decisions. In their 

research, the benefit in the simulation is translated into better specification and, therefore, 

more realistic military behaviour. Williams et al (1989) also comment that a model in 

which the decision making was represented proved effective as a planning aid since, 

having modelled the decision making process, the simulation model could be used to 

predict the effect of various policies associated with stock levels. 

The second group which can be formed when the motivation of modelling is used for 

classifying the methodologies, includes the approaches that have been proposed for 

situations for which a number of decision making models are developed to assess the 

performance of alternative decision makers using simulation (Flitman & Hurrion 1987, 

Liang et al 1992). This is the motivation of a more recent theme in research into 

modelling decision making in simulation. The aim is to identify improved decision 

making practices by modelling and comparing the performance of individual human 

decision makers. Flitman & Hurrion (1987) and Hurrion (1991) are representative ofthis 

research theme and they propose the use of this approach to develop simulation-based 

expert systems for improving decisions. As has been instanced in sections 2.2.1 & 2.3.1, 

the above authors model the behaviour of five decision makers in a simulation and use the 

model to evaluate the efficiency of each decision maker. To identify better decision 
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making practices, the strength of the five separate decision making models are combined 

to develop a model which could perform better than each individual decision maker. The 

simulation assessment of the combined model confirmed that the combination of the 

strength of each decision maker results in superior performance. Liang et al ( 1992) is 

another research study which falls into this group. As has also been seen in sections 

2.2.1 & 2.3.1, they describe the development of an improved practice decision making 

model. In order to improve the decision making practice, the data sets are processed using 

the Markov process to remove inconsistencies and obvious incorrect decisions. The 

processed data sets are used to calibrate a neural network scheduling advisor. In their 

research, they report that the simulation assessment of the model showed that it performs 

better than the human decision making models. 

There is a third research stream which can be formed when the motivation of modelling is 

used to classify methodologies. This stream includes all those approaches that have been 

proposed for situations where representations of decision making are developed within the 

simulation for deriving optimal decision rules through simulation experimentation 

(Pierreval & Ralambondrainy 1990, Hurrion & Seeker 1978). This is perhaps one of the 

most common motivations in the research in modelling decision making in simulation. As 

evidenced during the review of the elicitation techniques (in section 2.2), methodologies 

such as those proposed by Hurrion & Seeker (1978) show that VIS enables the user to 

watch the simulation process and to alter the decision making strategies during the 

simulation run. This helps in the understanding of how the decision making strategies 

affect the performance of the system and enables the user to identify the most efficient 

decision making strategy. 

2.5.3 Psychological content 

The psychological content is the third characteristic that was identified at the beginning of 

this section as one which varies significantly across the methodologies that have been 

proposed and, therefore, it is the third attribute which serves to discriminate among 

different types of research in modelling decision making in simulation. The psychological 

content (Perry & Moffat 1997) is a measure of the extent to which the analysis focuses on 
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the understanding of the mental process involved in the decision making. Using the 

psychological content as a continuum, it is possible to locate at least three types of 

methodologies for modelling human decision making in simulation. 

At one end of the continuum there are external methodologies, such as those proposed by 

Curram (1997), Liang et al (1992), Perry & Moffat (1997) and Perry & Moffat (2000 first 

case study). Their principal focus is on developing models for predicting decisions. From 

the review of the modelling techniques in section 2.3, it is clear that very often the authors 

use non-symbolic AI, statistical modelling and probability distributions. In all these cases 

the modelling process normally focuses on representing what decisions must be taken 

rather than representing how those decisions are taken. This is clearly an external 

approach for modelling decision making since it does not involve understanding the 

mental process which takes place when a decision is taken. 

At the other end of the continuum, there are internal methodologies such as those 

proposed by Perry & Moffat (1997 second case study). These concentrate mainly on 

understanding the decision making process using techniques such as influence diagrams, 

cognitive maps and VIS. The aim of the research which focuses on modelling human 

decision making internally is to resolve the problems that exist when external approaches 

are applied. Modelling decision making internally involves understanding and 

representing the mental process that the decision markers undertake in order to make 

decisions. Clearly, when internal methodologies are applied, the focus of representation is 

on how the decision makers decide rather than on what they decide. 

Between these two are located methodologies such as those proposed by O'Keefe (1986), 

Robinson et al (1998) and Pierreval & Ralambondrainy (1990). These methodologies, 

using rule induction for developing decision trees, combine understanding of the decision 

making process with decision predictability. With this kind of technique, as has been 

explained in section 2.3, external data such as pairs of observed decisions and attributes 

are used to develop models which are useful for understanding the decision making 

process and which can also be used to predict decisions. 
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2.5.4 Contextual Content 

The contextual content is the fourth attribute which can serve to discriminate among 

different types of research in modelling decision making, put forward once again by Perry 

& Moffat (1997). It measures the extent to which the decision maker in the analysis 

operates within a context similar to the one in which real life decisions are made. It also 

measures the extent to which the methodology has been developed as part of the process 

of solving a real world problem. Using the contextual content as a continuum, it is 

possible to locate at least three types of methodologies for modelling human decision 

making in simulation. 

Firstly, at one end of the continuum are the methodologies which are based on industrial 

or military applications, where the decision makers operate within a context similar to the 

one in which real world decisions are made (context full methodologies: Mason & Moffat 

2000). Secondly, at the other end of the continuum, are the methodologies which have 

been developed mainly on theoretical grounds and which address issues related to the 

technical end of the process of modelling decision making in simulation (context free 

methodologies: Doukidis 1987, Doukidis & Paul 1990, Bell & O'Keefe 1994). In those 

approaches the decision makers, when and if they are involved, operate in an environment 

that is different from the one in which real decisions are taken. 

Thirdly, in the middle of the continuum, are located the methodologies which have been 

developed and tested involving decision makers who operate within an environment that 

is slightly different from the one in which real world decisions are made. The decision 

maker might be hypothetical, such as students (Liang et al 1992, Angelides & Paul 1999, 

O'Keefe & Pitt 1991, Bell & O'Keefe 1995) or the authors of the papers (Robinson et al 

1998) or the decision making environment might be a simplified example of a real world 

decision making environment (Flitman & Hurrion 1987). Simplified examples of real 

world decision making environments are normally used as a preliminary stage for 

illustrating concepts, theorems and for testing algorithms. The general job shop 

scheduling problem (Hurrion 1978) and the general travelling salesman problem (Reeves 
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1995) are two examples of research that has been undertaken using simplified examples 

of real world decision making environments. 

Military simulations, such as those developed by Mason & Moffat (2000), Perry & Moffat 

(1997) and Williams et al (1989), are perhaps the most common examples of research in 

.modelling human decision making in simulation which is based on real world problems 

and which involves the use of situation specific simulations with real world decision 

makers. Standridge and Steward's (2000) research in modelling patient appointment 

scheduling in a simulation model can also be classified as context full research since it is 

applied in a specific medical clinic. 

Methodologies such as those proposed by Pierreval & Ralambondrainy (1990), Hurrion 

(1991), Flitman & Hurrion (1987) are only some of many examples of research which is 

located in the middle of the context free - context full continuum. As has been noted, most 

of this research describes approaches for modelling decision making which were 

developed based on simplified generic scheduling decision making environments. Liang 

et al (1992) is a slightly different example of research that is located in the middle of the 

context free - context full continuum. It is located in the middle of the continuum because 

the data sets that are used are collected from students. As the authors comment, the fact 

that non-industrial decision makers are used might reduce the applicability of the findings, 

since it could be argued that real decision makers would have challenged the decision 

making process, the attributes and the options available in the simulation model. 

Research investigations, such as those carried out by Doukidis (1987), Doukidis & Paul 

(1990), Bell & O'Keefe (1994) and Paul et al (1997), provide reviews of progress in the 

integration of AI with simulation and, as such, they are classified as context free research 

which provides useful insights and motivation for combining AI with simulation (Perry & 

Moffat 1997). 
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2.5.5 Type of knowledge 

The fifth attribute that can be used to locate in a continuum the methodologies that have 

been proposed for modelling decision making is the assumption about the nature of 

knowledge which the decision makers use in order to take decisions (Cornnell et al2003). 

The knowledge required for making decisions can be located in a continuum that is 

defined by two points. Around the first point are concentrated all those methodologies 

which have been developed on the assumption that the decision makers base their 

decisions on predetermined hard rules, given to them in the form of a user guide or other 

type of documentation. According to Cornnell et al (2003) this knowledge, termed 

explicit, consists essentially of concepts, information and insights that are specifiable and 

can be formalised in rules and procedures. Around the second point of the continuum are 

concentrated all those methodologies which have been developed on the assumption that 

the decision makers make decisions based on knowledge which has been acquired 

through learning and experience. This type of knowledge, which is known as tacit, 

according to Cornnell et al (2003) involves less specifiable insights and more skills 

embedded in individual or organisational contexts. Usually decision making is based on 

tacit knowledge when the problem is too complex or when it involves too many decision 

options (Cornnell et al 2003). 

Most of the approaches that have been described in the previous sections of this chapter 

(Perry & Moffat 1997, Mason & Moffat 2000, Pierreval & Ralambondrainy 1990, 

Hurrion 1978, Williams et al 1989 and Flitman & Hurrion 1987) describe decision 

making environments with many decision variables and many decision options. For all 

these cases there are no written rules to describe explicitly how decisions must be taken. 

They are, therefore, decision making problems that are based on tacit knowledge. 

2.5.6 Summary of methodologies 

Having categorised the research activity in modelling decision making in simulation using 

the five attributes described at the beginning of this section, it is clear that, as a result of 

the research activity in modelling decision making in simulation, a number of different 

approaches have been developed (Flitman & Hurrion 1987, Perry & Moffat 1997, Mason 
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& Moffat 2000, Hurrion & Seeker 1978 ). The above discussion has shown that the 

diversity of approaches is not limited only to the techniques which are employed. 

Throughout the years, technological advances in computational power and the emergence 

of artificial intelligence have enabled a broader diversification, which is reflected in the 

psychological content, the motivation, the context and the nature of the decision making 

models that have been developed. Based on previous work, it is possible to identify four 

existing approaches for modelling decision making in simulation. 

• Modelling human decision making externally to compare and assess the 

performance of alternative human decision makers in simplified examples of real 

world problems (Liang et a11992, Flitman & Hurrion 1987). 

• Modelling optimal decision making to assess the performance and effectiveness of 

alternative heuristic rules in simplified examples of real world problems (Hurrion 

& Seeker 1978). 

• Modelling human decision making internally or externally to improve the 

specification and accuracy in military simulation models (Perry & Moffat 1997). 

• Modelling optimal decision making to improve the specification and accuracy in 

military simulation models (Mason & Moffat 2000). 

The above approaches and the methodological ideas which have been described in the 

previous pages of this section can be summarised as in table 2.2, which also outlines the 

current trends in the literature. 

Approach 1 Approach 2 Approach 3 Approach 4 

Authors Liang eta! (1992), Flitrnan Hurrion (I 980), Hurrion & Perry & Moffat ( 1997), Mason & Moffat 
& Hurrion (1987) Seeker (I 978), Hurrion Mason & Moffat (2000- (2000- Second case) 

(1978) First case) 
Motivation Assessing performance of Assessing performance of Improving accuracy and Improving accuracy 

human decision makers heuristic rules specification of simulations and specification of 
simulations 

Nature of decision Human Optimal Human Optimal 
making 

Psychological content External External Internal or External External 

Contextual content Simplified examples of real Simplified examples of real Military simulations \lilitary simulations 
world problems world problems 

Knowledge Tacit Tacit Tacit Tacit 

Table 2.2: Current approaches for modelling decision making in simulations. 
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Table 2.2 shows that in non-military simulations the motivation for modelling decision 

making is often to derive optimal decision strategies through experimentation with 

alternative heuristic decision making representations (Approach 2: Hurrion 1980, Hurrion 

& Seeker 1978, Hurrion 1978). On the basis of this conclusion, it is evident that 

optimisation is one of the main themes which has motivated many of the authors who 

have proposed methodologies for modelling decision making in non-military simulations 

(Hurrion 1980, Hurrion & Seeker 1978, Hurrion 1978). A relatively recent research 

stream involves the use of simulation and artificial intelligence to assess and compare the 

performance of alternative decision makers (Approach 1: Liang et al 1992, Flitman & 

Hurrion 1987, Hurrion 1991). Owing to the novelty of this kind of approach, most of the 

proposed methodologies have been developed and tested using simplified examples of 

real world problems (Flitman & Hurrion 1987, Liang et al1992, Hurrion 1991, Bell & 

O'Keefe 1994). Based on these experiments, a number of authors have concluded that 

simulation and AI can be used for the development of expert systems for improving 

decisions, but the implementation would require a methodology for identifying and 

assessing decision making strategies using simulation (Curram 1997). The military 

applications which have been described show that the motivation for modelling the 

decision makers in military simulations is slightly different. This conclusion is drawn 

from the fact that in the majority of the military applications which have been described, 

decision making is modelled mainly in order to improve the accuracy and the 

specification of the simulation model. Comparing the motivation and the type of decision 

making which is modelled in the various papers that have been described, the conclusion 

is reached that there is not a clear relationship between these two. For example, in military 

simulations where the motivation is to improve the specification and the accuracy of the 

simulation models, optimal and realistic decision making models have been developed for 

the same motivation (Perry & Moffat 1997, Mason & Moffat 2000). 

2. 6 Potential research 

From the above categorisation it is clear that, although many types of approaches have 

been proposed for modelling decision making in simulation, only the military models 

have been developed and implemented in tackling full scale problems (Perry & Moffat 
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1997, Mason & Moffat 2000). Having been unable to identify a significant industrial 

application which demonstrates the feasibility and the benefits from modelling decision 

making in simulation, it is clear that there is lack of empirical evidence in the research in 

modelling decision making in simulation (Curram 1997). This review shows that there are 

many issues for potential research, some of which are as follows: 

• As was found in section 2.5.6, the use of simulation for improving the 

performance of alternative decision makers is an area which has only been 

addressed in the past on theoretical grounds (Approach 1: Flitman & Hurrion 

1987, Liang et al 1992). Most of the approaches that have been proposed in this 

area conclude by suggesting that the use of simulation for understanding and 

improving the design of decision making would require a modelling methodology 

(Curram 1997). This indicates that the methodological issues which are associated 

with the above process have not been fully addressed and the development and 

testing of the use of simulation for understanding and improving the design of 

decision making is a potential research area. 

• From the discussion of the knowledge elicitation techniques in section 2.2, it is 

clear that from the current literature it is not known to what extent it is possible to 

use VIS-based knowledge elicitation in a real context. Very few of the approaches 

which have been proposed address issues associated with the process of 

identifying the decision situations that must be presented to the decision maker 

(Perry & Moffat 1997, Curram 1997). In addition, none of the approaches 

proposed in the past address issues associated with the process of understanding 

the elements of the decision making problem. On this basis, it is clear there is lack 

of a methodology and software (Williams 1996) for simulation based knowledge 

elicitation and this must be identified as another area where further research is 

required. 

• In section 2.3 it was found that in most of the non-military applications, 

techniques such as neural networks and pattern matching have been proposed or 
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used for modelling decision making in simulation (Flitman & Hurrion 1987 ). In 

section 2.5.3, using as an attribute the psychological content, a distinction was 

made between internal and external techniques and it was found that both neural 

networks and pattern matching are classified as external, since they do not focus 

on understanding and representing the decision making process but only on the 

prediction of decisions. Given this distinction, it is evident that the effectiveness of 

internal techniques (such as influence analysis or decision trees) for modelling 

decision making in non-military applications has not been fully investigated and, 

therefore, it is an additional research issue which can be identified from the 

previous categorisation. 

• Finally, the impact on the prediction of the model and the benefits which can 

occur as a result of modelling decision making have only been investigated in 

military models (Moffat et al 2004 ). One of the reasons for the lack of research in 

this area could be that various authors in the past (Curram 1997) have questioned 

the benefits and the need to improve the accuracy of simulation models. Leaving 

aside debate as to what extent this is true, it is clear that research is required in 

order to investigate the impact that modelling decision making has on the 

prediction of simulation models. 

2. 7 Conclusion 

In this chapter, the main stages of the process of modelling decision making in simulation 

have been explained and the techniques proposed for implementing each stage of the 

process have been discussed. In addition, five characteristics which vary significantly 

across the proposed approaches have been identified and have been used to provide 

categorisations of the research. From these categorisations, the main types of approaches 

that are available for modelling decision making in simulation have been identified and a 

number of potential research issues have been discussed. 

In section 2.6 it became clear that modelling decision making in simulation is an area with 

significant research activity, which in the past has focused on the investigation and 
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theoretical development of techniques and approaches for modelling decision making in 

simulation. In this chapter, it also became clear that modelling decision making in 

simulation is an area with many unanswered research questions. The lack of empirical 

evidence regarding the feasibility of the approaches for industrial applications has been 

identified as one potential research issue. This has raised a number of specific research 

questions associated with the industrial applicability of the early stages of the approaches. 

In section 2.5, it was concluded that the use of simulation for understanding and 

improving the performance of the alternative human decision makers is one of the most 

recent themes of the research in modelling human decision making in simulation. Taking 

into account that most of the research in this stream is based on non-industrial- usually 

scaled-down problems- it is concluded that there is an empirical research gap, since 

fundamental research questions related to the difficulties and limitations of the use of 

simulation for understanding and improving the design of decision making have not been 

addressed. 

Taking the above conclusion as its basis, the next chapter sets out the objective of this 

study by outlining the research questions and describing the research approach that will be 

followed in order to answer these questions. 
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Chapter 3 

Research programme design 

Chapter 2 outlined the current techniques and methodologies for modelling decision 

making in simulation. The review indicated a number of theoretical and empirical 

research shortcomings that provide the motivation for this research. Based on the research 

shortcomings identified in Chapter 2, in this chapter the research questions and the 

objectives of the research are described and the method of approach employed is 

explained. Taking into account the conclusion from the review of the literature, section 

one outlines the research objectives and the research questions. Section two describes the 

research programme. It explains the research method which is employed in this research 

and it provides an overview of the research design. Section three describes the limitations 

of the research programme and section four concludes by highlighting the main elements 

of that programme. 

3.1 Aim, objectives and research questions 

From the literature it was found that the use of simulation for improving decisions would 

require a modelling methodology (section 2.6). Previous authors have shown that this is a 

process which involves three phases: simulation-based knowledge elicitation, knowledge 

modelling and knowledge representation. Having found that there is little evidence of 

applied work which brings together the above three phases, the aim of this research is: 

To develop and test in a real context the process involved in the use 

of simulation for understanding and improving the design of decision 

making practices. 

In order to work towards this aim, a number of objectives and research questions have 

been set. These arose out of the literature reviewed and investigate three research issues 

that have not been addressed by previous research. 
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In Chapter 2 it was concluded that previous work in the area is focused on the theoretical 

and technical aspects of the process of modelling decision making in simulation. The 

previous research has shown that VIS and AI can support the process of modelling 

decision making but the findings have not been tested in industrial applications (Curram 

1997). Several authors (Curram 1997, Liang et al 1992) have observed that, as an 

implication of the lack of industrial applications, the presence of decision making in 

simulation presents a number of problems to simulation modellers. Firstly, it is not known 

to what extent it is possible to use VIS-based knowledge elicitation in an industrial 

application (Curram 1997). Secondly, it is not known to what extent AI can be used to 

determine decision making strategies employed by real decision makers (Liang et al 

1992). Thirdly, the potential benefits (in identifying efficient decision making strategies) 

and the impact of the presence of decision making in simulation are not known, since 

previous research investigations are based on hypothetical problems (Curram 1997, 

Flitman & Hurrion 1987). 

Clearly, the above problems discourage the presence of human decision making in 

simulation. This is noted by Williams (1996) and Curram (1997) who comment that, due 

to the lack of a working methodology, the practical difficulties of modelling decision 

making in simulation have not been addressed. In attempting to resolve the above 

problems, the research will work towards the following research objectives: 

~ Objective 1: Form a conceptual methodology to capture efficient decision 

making. 

~ Objective 2: Investigate the feasibility of the conceptual methodology by 

addressing the following research questions: 

1. Is it possible to use VIS within an industrial environment to elicit the 

knowledge and collect the data required for modelling individual human 

decision makers using AI? 
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2. What are the practical difficulties of the above process and what are the 

methodological implications for the OR analyst? 

3. Is it possible to identify, within an industrial environment, decision making 

strategies of individuals (that are appropriate for representing the individuals 

in simulation) by modelling a sample of their decisions using AI? 

4. Is it possible to identify efficient decision making strategies by representing 

and assessing individual decision making in a simulation? 

);.>- Objective 3: On the basis of the testing, refine the methodology and discuss the 

lessons that have been learned. 

3.2 Research programme 

The research questions having thus been identified, this section provides an overview of 

the research programme. It describes the research methods which will be used to address 

the research questions and it explains the research design that will be applied. 

3.2.1 Research methods 

From the previous section, it is clear that the research is focused on what can be learned 

from the industrial application of a methodology for modelling decision making. All the 

research questions are derivatives of 'what' type questions about a contemporary set of 

events over which the investigator has little control. Their purpose is to bring together and 

test a set of specific techniques which have been proposed by previous authors. They all 

aim to cover contextual conditions and all attempt to address a situation which benefits 

from the prior development of a theoretical proposition that can guide data collection and 

analysis. 

Keeping in consideration that the research questions are exploratory and that they focus 

on the contextual conditions which are missing from previous theoretical developments in 

the area, a deductive case study approach is used in this research (Bryman & Bell 2003). 
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The case study approach was chosen from a set of alternative approaches because, 

according to Yin (2003), it can cope with exploratory what questions. It can facilitate a 

process for covering contextual conditions and it can be used for situations which benefit 

from the prior development of theoretical propositions. 

3.2.2 Research strategy 

As part of the objectives of the research a methodology will be formed and tested using 

the case study described in section 1.3. The methodology will cover data collection, 

modelling and simulation-based model assessment. Using theoretical developments from 

previous authors, the methodology will provide a set of stages for implementing the 

process which the research questions aim to test. The implementation of each stage will 

provide the empirical evidence required for addressing the research questions. 

As will be explained in detail in the next chapter, the methodology will involve the 

development of a case specific model. Owing to model development time constraints, a 

single case study strategy will be used. This limits the deductive power of the conclusions 

but provides in-depth empirical evidence about the feasibility of the approach. Similar 

case study-based deductive strategies have been used by previous authors who have 

contributed in this research area (Curram 1997, Flitman 1986). 

The case study at the Ford engine assembly plant, introduced in Chapter 1, was seen as 

appropriate. The principal reason was that the simulation model that was available 

(section 3.1) could be adopted in order to: 

• Support the knowledge elicitation process. 

• Determine and compare the impact of representing individual characteristics of 

human decision makers in the model. 

• Compare the performance of the alternative decision making strategies. 

• Validate the findings since it represents realistically part of an existing production 

system. 

50 



Chapter 3: Methodolog;y 

3.2.3 Validation strategy 

In order to investigate the feasibility and the limitations of the use of VIS as a knowledge 

elicitation technique (research questions 1 & 2), industrial experts will be involved in 

knowledge elicitation experiments. These experiments will be implemented using a 

number of alternative VIS prototypes. The prototypes will be developed based on the pre-

existing simulation model of the case study and they will be used to capture the required 

knowledge. In order to validate the collected data and to test the use of AI for representing 

decision making strategies (research question 3), a set of AI models will be developed and 

the conclusions will be discussed with the decision makers. Finally, in order to test the use 

of simulation to identify and assess the decision making policies (research question 4 ), the 

modelled strategies will be assessed using the simulation model. 

From the above it is clear that, in order to validate the findings, an amalgam of 

quantitative and qualitative validation approaches will be used (Checkland 1981). To 

minimise the risk of failing validation checks, an incremental validation approach is used. 

The implementation of each stage of the methodology is validated soon after its 

completion and not once the whole methodology has been implemented. 

3.3 Research boundaries and limitations 

In the light of the method used to address the research questions, it is clear that the 

approach has certain limitations which set the boundaries in the scope of the research. 

As already pointed out, using a case study the conclusions of the research are relevant 

only for a certain type of application. More specifically, applying the research programme 

in a production facility of an automotive engine assembly plant, the validity of the 

conclusions regarding the applicability and the benefits of the research programme in 

industry are perhaps limited to only these types of operations. 

Although the research programme involves the development of AI models which 

represent and replicate decision makers, it is not the intention of the research to 
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investigate how these systems could replace human decision makers in operations. This is 

because the models developed during the course of this research are aimed at representing 

and assessing decision making strategies using a simulation model. As a result, the level 

of detail which the models contain is sufficient for assessing decision making strategies 

though perhaps not enough for the development of operational objects that can replace 

human beings. 

The purpose of the research is not to derive optimal strategies but to compare and possibly 

improve current decision making practices. Only a subset of all the possible techniques is 

employed to identify the strategies adopted by the decision makers. Therefore, the 

conclusions on the feasibility of the approach are mainly relevant for those particular 

selected techniques. 

The research programme described in the previous section, aimed at overcoming 

problems with conventional data collection approaches, proposes to use VIS to collect the 

required data. However, the use of VIS as a data collection method is not free from 

problems and it is the purpose of this research to investigate how significant are those 

problems (section 3.1- research question 2). It is anticipated that four specific difficulties 

might arise. Firstly, the model needs to contain and report all the key attributes in the 

decision making process. This probably requires a very detailed model, which could be 

time-consuming to develop and would have onerous data requirements. A second problem 

is the need to involve the human decision maker in entering decisions in the model. A 

very large number of example decisions may be required to obtain a full set of data, which 

in itself could also be time-consuming. A third problem, known as the gaming effect, as 

highlighted by O'Keefe & Pitt (1991) and Wielinga & Breuker (1988), is whether the 

human decision makers are likely to take realistic decisions in a simulated environment. It 

is quite likely that they will take greater risks, as there are no real consequences resulting 

from their decisions. Fourthly, the statistical analysis may present difficulties due to the 

limited data that can be collected using a simulation model. 
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Finally, given the scale of the production facility, as will be explained later during the 

implementation of the research, in order to keep the amount of work manageable, the 

research focuses only on a specific segment of the production line and only on unplanned 

maintenance activities. 

3.4 Conclusion 

In the previous sections of this chapter, consequent upon the literature review, the aim of 

the research has been refined and the research objectives and research questions have 

been determined. From the research questions, it has been concluded that the purpose of 

the research is to contribute to the provision of empirical evidence for evaluating a 

methodology for capturing efficient decision making using simulation and AI. On this 

basis, it was decided that the research programme, as part of its first research objective, 

should involve the formation of a methodology which will be tested using a case study. 

The following chapter describes the formation of this methodology. 
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Chapter 4 

Formation of the Knowledge Based Improvement 
methodology 

As part of the first objective of the research (section 3.1) this chapter describes the 

methodology and how it was formed. Section one describes the relevant theoretical 

underpinnings for the methodology. This same section explains how the previous 

research, extensively discussed in Chapter 2, has influenced the development of the 

methodology. In section two, the stages required in a methodology for understanding and 

improving decision making are outlined, based on theoretical developments by previous 

authors. Having identified the required stages, the methodology known in this research as 

Knowledge Based Improvement (KBI) is formulated in section three. The chapter 

concludes in section four by summarising the main benefits and the key aspects of the 

methodology. 

4.1 The theoretical foundations of KBI 

Previous research has contributed to specific stages of the process required for 

understanding and improving decision making using simulation, but it has not formed a 

complete modelling methodology ( Curram 1997). Despite the lack of a step-by-step 

approach, the research undertaken by previous authors has provided most of the 

theoretical insights required to support the formation of a practical methodology. Hurrion 

(1980) has demonstrated the power of VIS as a gaming tool and he has recommended the 

use of VIS for problem understanding. Liang et al (1992), Curram (1997) and Flitman & 

Hurrion ( 1987) have shown that VIS can be used as a tool for data collection. As 

explained in section 2.2.1, the authors propose the use of VIS as an approach for resolving 

problems with conventional data collection techniques. Curram (1997) has shown that 

representing individual behaviour in simulation requires modelling individual decision 

making. Reference was made in section 2.3 to the modelling stage in which he proposes 

the use of AI. Flitman & Hurrion (1987) have shown how decision making strategies can 

be assessed using simulation. Having provided a hypothetical example of assessing 

54 



Chapter 4: KB/ Methodology 

decision makers using simulation, the authors explain how the most efficient decision 

maker can be identified. 

4.2 Required stages 

On the basis of the above theoretical recommendations, the main stages of a methodology 

for understanding and improving decision making can be derived by considering the 

potential challenges involved in the implementation of the above ideas in a practical 

problem. As explained in section 2.1, the process of modelling decision making in 

simulation involves three phases. From the previous theoretical developments it is 

anticipated that the implementation of some of these phases would require several stages. 

In the knowledge elicitation phase, previous research has shown that VIS can be used to 

collect examples of decisions. This conclusion is based on experiments for which the 

process started from a model (section 2.2 VIS Approach I &II). In an industrial 

application, the process would start from a problem and, as anticipated by Checkland 

(1981) and Liang et al (1992), this means that prior to the data collection a stage would be 

required for understanding the problem and the data that should be collected. The above 

indicates that the knowledge elicitation phase in a practical methodology would be 

implemented in two stages. The first stage would involve a problem-understanding 

process and the second stage would involve data collection. 

In the knowledge modelling phase, previous research (section 2.3) has shown that the 

process would involve the use of AI as a tool to determine the strategy employed by each 

decision maker. This conclusion is based on non-industrial applications. Due to the 

technical nature of the process (the derivation of a model or a set of rules from a data set 

of example decisions ), the implementation is not expected to diverge significantly from 

the way it has already been applied in the non-industrial applications (Curram 1997). This 

indicates that the knowledge modelling phase can be implemented in one stage and this 

would involve the process of determining the strategies employed by each decision 

maker. 
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In the knowledge representation phase, previous research has shown that this involves a 

process of linking the decision making models with the simulation (section 2.4 ). Flitman 

& Hurrion (1987) have also shown that this phase involves the process of determining the 

effect of each decision making strategy. Clearly, in an industrial application, this phase 

would also require a process of recommending improvements based on the comparison of 

the effect of each decision making strategy (Hurrion 1991). This indicates that in a 

practical methodology the industrial implementation of the knowledge representation 

phase would require at least two stages. One stage would require the determination of the 

effect of each decision making strategy and the other would involve the recommendation 

of improvements. 

4.3 Outline of the KB/ methodology 

Taking into consideration the above discussion, the KBI methodology outlined in this 

section has been formed in this research and it is based on the theoretical foundations 

which were discussed in the previous two sections of this chapter (Flitman & Hurrion 

1987, Williams 1996, Robinson et al 1998). It has already been disseminated in a number 

of articles (Robinson et al 2005, Edwards et al 2004, Alifantis et al 2001) and it consists 

of the following five key stages: 

Stage 1: Understanding the decision making process 

Stage 2: Data collection 

Stage 3: Determining the experts' decision making strategies 

Stage 4: Determining the consequences of the decision making strategies 

Stage 5: Seeking improvements 

As shown in figure 4.1, in the KBI process (Robinson et al 2005) a VIS is a core element 

of the methodology. First of all, it supports the problem understanding stage by 

facilitating interviews and pilot data collections which contribute to the understanding of 

the problem. It supports the data collection stage by generating the scenarios required to 

elicit decisions from the human decision makers. It also contributes to the assessment of 

the human decision making strategies by simulating the system under different policies. 

Finally, it supports the process of recommending improvements by assessing and scoring 
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new decision making policies. AI and statistical models are also essential parts of the 

methodology since they can be used to identify the existing human decision making 

strategies currently applied in the real system. A summary of each of the stages which are 

shown in figure 4.1 is described in the sections which follow. 

Investigation of the 
operations system Stage I 

_ / 

/ 

' 

Understanding the process 
and the decision-
making required ... · .. , .. .. -·· ..... 

.......... / . ....- Generate decision- '· .. \ 
... ...---· making scenarios ~ 

/<.~ .. :/::~~~~~~~;.;~Ji:·--:.::--
__ ...... 

·---. 
·-------... _____ _ 

·····--.. \ 

Decisions taken 
under scenarios 

(data sets held for 

·-.;:-_ 

\ ········--..... , _________ _ 

···---... ___ _ 

Provide input to the \ 
VIS in place of 

\, 
-.... each decision-maker) ·-... _ 

the decision-makers 
j 

··········--·- --·-···-----··--.. --------.. -·· ... __ ,..,. 

··,,,_ '·· -·-················- -··· ...... -· ... . .... -.. ~:.··:.·:.·.-~-~~-~=-·~·· 

//T~n~ I Almod~l--, J s:~~~mpcovemen;s) 
. Represent the decision-making~ _ ......... /······· 

'···········-...... strategy of each decision-maker 
····----------------- / 

··-·····················-·--······-----·········--····-· -

Figure 4.1: KBI stages and process- Robinson et a/2005 

4.3.1 Stage 1: Understanding the decision making process 

The first step in determining the experts' decision making strategies is to identify the 

component parts of the decision making process: objective, decision variables, decision 

options, attribute variables and attribute levels. For instance, in a simple maintenance 

scheduling problem, where the objective is to minimise the delays caused by machine 

breakdowns through taking various forms of action, if there are two actions that are not 

mutually exclusive and two engineers who can be asked to act if they are available then, 

as such, there are four decision variables. The first two variables correspond to the actions 

57 



Chapter 4: KBJ Methodology 

and the other two to the engineers. Each of them has two alternative decision options: the 

action can either be taken (denoted 1) or not taken (denoted 0); the engineer can either be 

asked to act (denoted 1) or not asked to act (denoted 0). Assume, for the simplicity of the 

example, that the decisions are determined taking into account an estimate of the repair 

time and the type of fault. In this case, it is clear that there are two attribute variables in 

the decision making process. The first attribute can take the value of any real number that 

represents the estimated repair time. The second attribute (type of fault) can take values 

that represent the code of any particular fault. The range of estimated repair times and 

number of fault codes define the attribute levels. 

Although conventional interviews and discussion with the decision makers can reveal 

some information about the decision making process, as demonstrated by Lightfoot 

(1999), usually the human expert cannot explicitly identify and list the decision making 

components. In order to do so, the modeller should observe the human experts as they 

take decisions. In addition, to build a complete model of the decision making process, the 

modeller may need to make assumptions by considering other rational decisions which 

may be taken by the decision maker. These assumptions can be tested using VIS to 

facilitate discussions and small pilot data collection, where the decision makers might be 

asked to determine whether specific decision situations are realistic. 

A decision making process can be represented as two row vectors [ o iJ, ai]. The first vector 

O;J corresponds to a decision taken at time i, with each element representing a decision 

variable 8. The second vector 0'; corresponds to the attributes of the decision at time i, 

with each element representing an attribute variable a. In the context of the simple 

maintenance scheduling example described above, the decision making process can be 

represented as follows: 

i=1,2,3, ... v and j=1,2, ... Jl (4.1) 

Where: 

(4.2) 
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The subscript i indicates the time at which the decision was taken and the subscript j 

indicates the human expert who took the decision. The function <I> j represents the decision 

making strategy of the individual expert. It represents the concept of a complete 

correspondence that resides in the mind of the individual decision maker and associates 

every possible decision situation which can occur in the system with a specific set of 

actions- decisions. For the derivation of this correspondence, a complete list of decision 

situations which can occur is required along with the associated decisions that the 

decision maker would take. In practice, such a relationship cannot be obtained, since the 

population of decision situations is usually infinite (Johnston & DiNardo 1997). As a 

consequence, the attribute - decisions relationship which represents each individual's 

decision making strategy can only be estimated using a sample of attributes and decisions. 

To mark the fact that the decision making strategy which can be identified is only an 

approximation of the actual relationship that links the attributes with the decisions, the 

decision model of an individual decision maker, in the simple decision making process 

outlined above, can be represented as in expression 4.3. Matrices A and Dj contain n 

records of vectors Ai, Di,j and represent the sample of attributes and decisions pairs which 

are used to estimate the relationship <I> i The function jj represents the estimated 

relationship which is derived by calibrating quantitative models using the sample A, Dj. 

D-- =J-(A-) 1,] 1 l i=1,2,3, ... n and j=1,2, ... m (4.3) 

Where: 

(4.4) 

4.3.2 Stage 2: Data collection 

Having identified the decision components, as explained earlier in this section, as a next 

step in determining the decision making strategies KBI proposes a data collection of 

examples of decisions from each expert j. Each example i in the data set should include 

the value of each decision and attribute variable. The data set should have the form of the 
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two matrices described above: Dj and A. Dj represents the decisions made by decision 

maker} under specific attribute values (identified in A). Each row of the matrix Dj 

corresponds to the row vector Di,j, that is, the decisions taken at time i. Each column in 

the matrix Dj corresponds to a decision variable. Each row of the matrix A includes the 

attribute values at a particular decision point i. Each column corresponds to an attribute 

variable. For example, in the simple decision making process outlined above, the data set 

to be used in determining the decision making strategy of expert j should have the 

following form: 

One method of collecting these data would be through observation of the experts at work. 

This, however, would be extremely time-consuming, particularly if the elapsed time 

between decision points is long. It would also be difficult to record the full set of many 

attribute values at a specific moment in time and, because the values are likely to change 

continuously, inaccuracies would occur if there were any delay. As a result, the 

methodology preliminary proposes the use of a VIS (Liang et al 1992, Flitman & Hurrion 

1987). Adopting this approach, different decision makers can be presented with the same 

series of decision situations. The expert interacts with a visual simulation of the system in 

question. The simulation model stops at a decision point and reports the values of the 

attribute variables. The expert is then prompted to enter his/her decision into the model. 

The model records the value of each decision and attribute to a data file. As a result, a set 

of values for the matrices Dj and A are collected. 

4.3.3 Stage 3: Determining the experts' decision making strategies 

Having collected a series of examples using the VIS, the next step that KBI proposes is to 

use the data in the matrices Dj and A to determine the decision making strategies jj of the 
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individual experts. Amongst other approaches, a decision making strategy can be 

represented by the use of a decision tree (O'Keefe 1986, O'Keefe & Roach 1987, 

Doukidis 1987, Doukidis & Paul 1985, Abdurahimman & Paul. 1994), a neural network 

model (Curram 1997, Liang et al 1992) or a logistic regression equation (Malhorta et al 

1999, Carvalho et al 1998); a separate model can be constructed for each decision maker. 

Expert systems software is capable of constructing a decision tree from a set of examples, 

such as those collected via the VIS. One such method for constructing a decision tree is 

Quinlan's ID3 algorithm (Quinlan 1979); see, for example, Mingers (1987). The 

algorithm prioritises the attributes according to the degree to which they match the data 

set with the correct decisions. Neural network models (McClelland & Rumelhart 1988) 

can be used to develop a system of equations which can predict decisions once the 

parameters of the equations have been calibrated, using a set of examples such as those 

collected via VIS. Finally, logistic regression can also be used to represent decision 

making strategies and to predict decisions once the parameters of the regression equation 

have been calibrated. 

Taking into account the capabilities of the above techniques, KBI proposes to apply one 

(or more) of these techniques to model decision making. This process will enable the 

derivation of the decision making strategy jj employed by each individual decision 

maker}. 

4.3.4 Stage 4: Determining the consequences of the decision making 

strategies 

Having determined the decision making strategies, that is, a decision model jj for each 

expert j, the next step that is proposed as part of KBI is to assess and compare the 

performance of each strategy. The ultimate performance measure in most manufacturing 

facilities is the level of throughput. This means that, in the case study used in this 

research, each expert can be assessed on the basis of the throughput which is achieved in 

the simulation, when the decision making process is controlled using his/her decision 

making strategy. To predict the throughput, conditional on each human expert, the VIS 
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can be linked with the expert systems software (or, indeed, the neural network model or 

the logistic regression equation). 

The decision model can be used in place of a decision maker to interact with the 

simulation (as proposed by Williams 1996, Flitman & Hurrion 1987 and Curram 1997). 

With this approach, each time that the simulation reaches a decision point, the simulation 

stops and the software containing the decision model is invoked. The value of each 

decision attribute is passed from the simulation to the software with the decision model. 

In turn, the software with the decision model returns the values of the decision variables 

to the simulation before the simulation run continues. 

When the simulation has reached the end of the run, the throughput of the production line 

provides an indicator of the performance of the expert whose decision model was used 

during the run. Employing this approach and running the simulation under each expert's 

decision making strategy for a number of replications, KBI enables the most efficient 

strategy to be found by comparing the output from each run. 

Of course, having identified the most efficient expert does not mean that the most 

efficient strategy has been found, since there is no guarantee that the best current strategy 

is the optimal one. Although the best strategy may not be optimal, it can still be used to 

train less efficient decision makers, providing improvements in overall performance. 

4.3.5 Stage 5: Seeking improvements 

The last stage that the KBI methodology proposes is to use the decision making strategies 

of the most efficient experts as a starting-point to search for an improved strategy. The 

search could be made informally by combining strategies and by making incremental 

changes. Alternatively, heuristic search methods could be implemented in order to seek 

for improvements. In each case, the alternative strategies can be tested by running them 

with the simulation model in order to determine their effectiveness. 
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4.4 Conclusion 

The formation of the KBI methodology, in the previous sections of this chapter, enables 

the development of a framework to test an approach for understanding and improving 

decision making. In these earlier sections, as part of the first objective of the research, the 

methodology that will be tested in this research has been formed based on the theoretical 

findings of previous research. In the subsequent chapters, as part of the second objective 

of the research, the above methodology will be applied to a real problem (section 1.3) 

which forms the case study of the research. As a result of such an application, the 

methodology will be refined and extended. 
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Chapter 5 

Evaluation of stage 1 of the Knowledge Based 

Improvement methodology 

Chapter 4 described the formation of the KBI methodology. As part of the second 

objective of the research the purpose of this chapter is to test and evaluate the first stage 

of the KBI methodology. As discussed in section 4.3 .1, this stage involves the definition 

and formulation of the decision making problem and specification of the data 

requirements necessary for designing the data collection. This chapter describes the 

qualitative techniques that were used to define and formulate the decision making process 

as an OR problem. The chapter ends by summarising the main methodological 

conclusions from the implementation of the first stage of KBI. 

5. 1 Steps of stage 1 of the KBI methodology 

The stage 1 of the KBI methodology is an iterative process which involves five steps and, 

as shown in figure 5.1, it combines problem-structuring with pilot simulation-based data 

collections. During the implementation of the first three steps as explained in sections 5.2, 

5.3 & 5.4, qualitative techniques and VIS are applied in order to identify the main 

elements of the problem. To identify the decision variables Di,j and attributes Ai which are 

required to represent the human decision makers, a conceptual model is developed during 

the fourth step (section 5.5) of the problem-understanding process. This model is 

formulated iteratively, based on the scope of the modelling exercise and taking into 

account the feedback from the interviews with the people involved in the decision making 

process. During this stage, the level of detail in which the problem is represented in the 

model is determined by deciding the attributes and the decisions which should be included 

in the conceptual model. 
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Based on the attributes and decisions included in the conceptual model , the data 

requirements are specified in the final step (section 5.6). This step takes into account the 

understanding of the problem and its constraints, the number of decision makers who 

should be involved in the data collection and the availability of the experts. 

KBll: · 
Understanding the 

· • decision making 
process 

Figure 5.1: Understanding the decision making process (K.BI Stage 1) 

5.2 Preliminary investigation 

In order to gain an understanding of each of the elements of the decision making problem, 

a series of informal discussions along with some action research took place during the 

first step of stage 1 of the KBI methodology. 

Firstly, a discussion facilitated by the author and his supervisor took place. In this 

unstructured and relatively informal discussion, all the employees involved in the decision 

making process were invited and attended. With the aim of building up a rich picture and 

to gain an understanding of all the possible aspects of the maintenance decision making 
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process, the theme adopted for the discussion was rather general (Checkland 1981 and 

Robinson & Stanger 1998). The participants were asked to describe the maintenance 

process in the production line (section 1.3). During this session the participants had the 

opportunity to express their own views and to debate how maintenance decision making 

takes place in different areas of the production line. 

Although, with the conclusions from the discussion described above, it was not possible 

to structure the complete problem, we were able to identify the people who make 

decisions (each}) and the general process that is followed when a decision is required. In 

order to enhance our understanding of the decision making process, a three day visit to the 

factory was arranged. During this visit the author had the opportunity to follow and 

observe two decision makers in action. This gave the opportunity to ask questions and 

have informal conversations with other decision makers when they were available. In this 

visit the author gained an initial understanding of the main decision variables, along with 

the decision options. In addition, some conclusions were derived about the attributes 

which the decision makers take into account in order to make decisions. 

Overall, the preliminary investigation revealed that the Ford engine plant at Bridgend is 

one of the main production facilities for the 'Zetec' petrol engine. Consistent with our 

initial information (section 1.3), the preliminary investigation confirmed that the plant 

consists of a number of transfer lines which feed the main engine assembly line. In the 

engine assembly, the line that is modelled in the simulation model, head engine blocks are 

placed on a palette and pass through a series of automated and manual processes. The 

palette is a base which is used to protect the head engine during its transfer through the 

conveyors. It can be seen as a container with an open top which contains the head engine 

block. There are two parallel decision making processes in the engine assembly line. One 

for planned machine maintenance and one for unplanned and immediate action machine 

maintenance. Planned maintenance takes place during the weekend, though the decisions 

about what must be done are taken during the week. Decisions relating to unplanned 

maintenance are taken when a machine breaks down and the decision maker has to make 

a decision at short notice. 
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The production line is broken up into sectors and a Group Leader is assigned to each 

sector. Given that there are three shifts per day, there are three different human decision 

makers per sector (DM1, DM2, DM3). The person who is informed immediately when a 

machine breaks down is the Group Leader of the maintenance team of the specific sector. 

The Group Leader, who is the decision maker in charge, is responsible for deciding what 

must be done in order to minimise delays in the production process. Deciding what action 

must be taken and who should be involved in this action are two aspects of the decision 

that the Group Leader should address when a machine breaks down. For the action he has 

at least two options available: the first, known as repair immediately (RI), involves the 

repair of the machine. The second, known as stand by (SB), involves manual operation of 

the machine by an operator and delay of the repair at least until the end of the shift. For 

the decision on who should implement the action there are five engineers, member of the 

maintenance team of the specific sector. In terms of deciding what actions must be taken, 

based on the preliminary investigation, it was concluded that a variety of attributes of the 

system are taken into account. Amongst others these include the type ofbreakdown and 

the general status of the production process. 

The reporting system includes a pager that reports the machine number and the type of 

fault in the machine which has broken down. In addition, details about the breakdown are 

recorded in the central Ford database system known as Plant Operating Systems 

Monitoring (POSMON). In the specific production line there are six teams and the 

production line is divided into six sectors. For reasons that will be explained in detail in 

section 5.5, the research deals with only one sector . . 

5.3 Pilot data collections 

The second step of stage 1 of the KBI methodology described in this section involves a 

series of VIS-based pilot data collections which increased our understanding of the 

decision making process and contributed to the definition of the decision making problem 

(section 5.4). During this process, that is essentially iteration between KBI stage 1 and 2, 

four methodologically different pilot data collections took place. 
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The conclusions from each of them confirmed the key decision variables and attributes of 

the maintenance decision making problem and highlighted the main practical difficulties 

involved in the process of collecting decisions using a VIS-based data collection 

approach. 

A slightly different data collection method was applied in each experiment. The data 

collection approach was progressively improved, building on the experience and the 

conclusions from the previous sessions. In this section, the details and the conclusions 

from each pilot data collection are described, revealing how the approach evolved to form 

the one that was used for the main data collection. 

5.3.1 The first pilot data collection 

The first pilot data collection took place in the early stages of the project, while our 

understanding of the decision making process was still incomplete. The aim of the first 

session was to gain an initial understanding of the main attributes that are taken into 

account by the decision makers when deciding what decision must be taken. 

Pilot 1: Strategy 

In the first pilot data collection a VIS prototype was used for collecting the decisions. The 

prototype was constructed using the simulation model that was developed prior to the 

research by internal Ford analysts (section 1.3). During the first pilot data collection, the 

simulation model was running in visual interactive mode and the decision maker was 

watching the progress of the simulation on a visual display until the point when a machine 

broke down. Once the breakdown had occurred, the simulation halted and the decision 

maker was asked to input a decision. When a decision action had been taken, the 

simulation model continued until the next breakdown event, when the above process was 

repeated. 
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Pilot 1: System 

Given that the aim of the session was to gain a very basic understanding of the elements 

of the problem, only one decision maker was involved. To record the decision maker's 

inputs a dialog box was used. The user interface (UI) for the first data collection was 

developed in Witness, using the limited UI development functionality which the package 

provides. The decision situations that were presented to the user were selected by 

sampling from a uniform distribution of historical machine breakdowns. 

As a means of communicating the decision situation to the decision maker, the following 

five attributes of the system were included, along with other information, in the visual 

display at each decision point: 'current time in the factory', 'parts waiting for processing 

behind the broken machine', 'resource availability', 'other machines that are broken down 

at the same time', 'type of fault'. The first four attributes were generated from the 

simulation model, whilst the type of fault was taken from a database table containing 

information about specific breakdowns which had happened in the past. As explained in 

detail in section 6.2.3, this table was used as a trace for generating the details of the 

breakdowns incidents which occurred during the simulation run. A new record from the 

table was used each time that a breakdown event occurred in the simulation. 

The structure of the prototype system that was used for the first pilot data collection is 

represented in figure 5.2. In this version of the prototype, the decision maker (5) interacts 

with the simulation (3) that was running during the data collections through a user 

interface ( 4 & 6). This interface consists of a visual display of the simulation ( 4) and a 

dialog ( 6) that is invoked when the simulation reaches a decision point. The interface is 

used to establish a communication protocol between the simulation and the user. With an 

initial front end (2) that appears only once in the beginning of the session, the OR analyst 

is allowed to specify various settings and initial conditions for the simulation run (warm-

up period, speed and type of breakdowns that should be reported). The breakdown 

incidents database (1) is an input in the system which forms a trace ofbreakdown details 

that is used during the run (1). The attributes- decisions data set (7) is an output of the 
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system and is used to record the attributes and the decisions that were taken by the 

decision maker during the pilot data collection. 

OR Analyst 

Pilot 1: Outcome 

Initial Front End 

Decision 
Maker 

5 

2 

3 

4..._ ___ ___. 

Figure 5.2: Structure of the first pilot data collection 

As a result of the discussion facilitated from the decision situations which were generated 

in the VIS during the first pilot data collection, it was found that in the real system 

additional attributes are taken into account in order to take maintenance decisions. 

One of the attributes taken into account, when deciding what action must be taken in the 

event of a machine breakdown, is the physical condition of the machine and the physical 

condition of the part which was last to be processed from the machine. Combining this 

piece of information with the type of fault reported from the diagnostic system, the 

decision maker estimates the repair time before he takes his final decision. This 

estimation is then combined with other attributes in order to take the final decision about 

what action must be taken. Taking into account that the physical condition of the machine 

is a visual attribute which cannot be simulated in a model of this scale, to be able to use 

VIS for knowledge elicitation purposes (which helps to address one of the research 

70 



Chapter 5: KBI stage I 

questions) it was decided to simplify the representation of the decision making process. 

This was achieved by directly reporting the estimated repair time to the decision makers. 

In order to provide this information, it was decided that sampling from an appropriately 

calibrated statistical distribution should applied. 

The simplification of the representation of the decision making process, as a result of not 

modelling the stage which involves the estimation of the repair time (by the decision 

makers), has an impact on the outcome of the research, since it does not allow the 

identification and assessment of the strategies used by decision makers to forecast the 

repair time. This simplification, as will be referred to in the conclusion, highlights one of 

the limitations in the use of VIS for knowledge elicitation. 

5.3.2 The second pilot data collection 

In the second data collection, 25 decision situations were presented visually and 

interactively to the decision maker using the interface shown in figure 5.3. 

Pilot 2: Strategy 

Taking into account the conclusions from the first pilot data collection, the version of the 

prototype used in the second experiment informed the decision maker as to approximately 

how long it would take to repair each breakdown of each machine which was involved in 

each decision. In addition, having found from the first pilot data collection that the 

decision maker had difficulties in understanding the decision situation, due to the richness 

of the information that the visual display provided, for the second pilot data collection it 

was decided to change the method for communicating each decision situation to the user. 

The key information which the visual display revealed at the time of a machine 

breakdown was represented in a dialog (figure 5.3) that was invoked in the case of a 

breakdown event. In the same dialog, the decision maker was allowed to input his 

decision. Once a decision had been recorded, the dialog closed and the simulation process 

continued until the next breakdown incident, when the above process was repeated. The 

UI for the second pilot data collection was developed in Visual Basic and was invoked 

from Witness each time a breakdown event occurred. 
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Figure 5.3: Second pilot data collection 

As figure 5.3 shows, the user interface in the second pilot data collection reports to the 

decision maker information about a wide range of attributes (figure 5.3 -bottom right 

form) . 

For the second data collection, the scenarios were sampled from a uniform distribution 

and the simulation was running interactively during the data collection. The decision 

maker had to watch the simulation progress, waiting for the next breakdown incident to 

occur. An additional decision variable was included in order to capture the decision about 

which engineer should implement the desired action. In addition, two extra decision 

options were included to incorporate the option of the decision makers being forced to 

stop part of or even all the production line when a breakdown occurs. 
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Pilot 2: System 

The structure of the system was not very different from the configuration of the prototype 

used for the first pilot data collection and, therefore, the main difference in the second 

data collection was the representation of additional decision elements and the inclusion of 

some extra attributes which helped the decision maker to take more informed decisions. 

Pilot 2: Outcome 

Analysing the data set after the second data collection, it was found that the collected 

decisions did not represent equally each decision option. 20 out of the 25 times that a 

decision was required, the decision maker decided to repair the machine immediately. 

Comparing the attribute data of the situations that were presented to the decision maker 

with a larger sample of decision situations that were generated by running the simulation 

for a little longer, it was found that one possible reason to explain the lack of variation in 

the decisions was that all scenarios presented to the decision maker during the second data 

collection involved breakdowns with relatively short repair time. 

On the basis of the above observation it was concluded that, in order to avoid collecting a 

data set with stereotype responses, a structure must be imposed on the decision situations 

that were presented to the decision makers. It was also concluded that when a decision is 

made, apart from what actions must be taken and who should be involved in taking that 

action, complementary actions are also considered (for example 'ask production manager' 

or 'plan off shift repair'). Finally, in this data collection it was found that the decision 

makers, before they make a decision, might be interested to know about the frequency of 

a specific breakdown in a specific machine but not about which other machines have also 

broken down at the same time. 

5.3.3 The third pilot data collection 

Pilot 3: Strategy 

Taking into consideration the above conclusion, for the third pilot data collection a non-

randomised decision situation generation design was applied. This means that a filter was 

used during the run, causing the simulation to stop on a breakdown event only if certain 
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conditions specified in the filter were met. Having identified from the discussion with the 

decision maker that the estimated repair time is one of the most important attributes when 

determining what decision must be taken, it was decided to differentiate the situations that 

were presented to the user on the basis of this attribute. Thus, the mles included in the 

filter allowed the simulation to stop during the next breakdown incident only if the 

estimated repair time was at least 50 % different from that reported in the previous 

incident when the simulation had stopped and user involvement had been required. 

As in the previous experiments, the data collection was 'on line '. The simulation was 

mnning during the session and the decision maker who was involved in the specific 

session had to watch the progress of the simulation process, waiting for a decision point to 

be reached. Using the filter mentioned above, the situations that were presented were 

systematically sampled, forcing the simulation to generate an amalgam of situations 

which represented a wide range of estimated repair times. 

Figure 5.4: Third pilot data collection 
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Taking account of the conclusions from the second pilot data collection, a number of 

additional elements of the decision and some additional attributes were included in the 

system that was used for the third pilot data collection. From the informal discussion that 

took place during the second pilot data collection it was found that, when a decision is 

made, complementary actions are at times taken to support the main decision. The options 

that are available for this complementary aspect of the decision include the request for 

planned maintenance - which must take place either at the end of the shift or during the 

weekend - and the option to seek authorisation from the production manager. 

Pilot 3: System 

In order to allow the decision maker to make more realistic decisions in the prototype 

(figure 5.4) which was prepared for the third pilot data collection, the above options were 

included as part of an additional decision variable. 

In addition, from the debate that the VIS facilitated during the second pilot data 

collection, it was found that the decision maker was interested in knowing how many 

times a specific breakdown had occurred. He was also interested to know how many times 

the machine had broken down on the specific day and in the specific week. Bearing the 

above questions in mind, in the prototype that was prepared for the third pilot data 

collection it was decided to report in the UI information on how many times the machine 

had broken down in the last week and on the last day. It was further decided to report how 

many times the specific breakdown had happened during the last week and on the last day 

in relation to a specific machine. Finally, for completeness, it was decided to report in the 

user interface the current simulated shift being run by the factory. 

The structure of the system that was used in the third pilot data collection is represented in 

figure 5.5. The main differences from the configuration used in the two previous 

experiments are the application of a filter and the involvement of more than one decision 

maker. The filter, as is shown in figure 5.5, checks whether the estimated repair time is 
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appropriate to force the simulation to stop. If it is not, the simulation continues until the 

next breakdown incident without the involvement of the decision maker. 

Data collection from DM3 

Data collection from DM2 

Data collection from DMl 

OR Analyst 

Initial Front End 
2 

3 

7 

Decisions and 
Attributes 
data set 6 

Figure 5.5: Structure of the third pilot data collection 

Pilot 3: Outcome 

Using the breakdown filtering approach for taking a sample of decision situations, during 

the third pilot data collection it was possible to collect a set of decisions which include a 

significant number of SB actions. However, the dominant decision in the data set was still 
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the action RI. With more than 2/3 of the decisions being RI, it was decided that the data 

set does not represent fully the situations and the actions that the decision making process 

involves. The above conclusion was reached after interviewing the two production 

managers in the factory. During the interview they gave reassurances that SB policies are 

very often applied, since the Group Leaders have received instructions to follow SB 

process where appropriate and certainly when they think that the repair time will be more 

than 5 minutes. One of them insisted that SB must account for at least 40 percent of the 

decisions that are made since 40 percent of the breakdowns that occur in the production 

line require a repair that, on average, takes at least 10 minutes. 

From the discussion which the VIS facilitated during the third pilot data collection, it was 

also concluded that one of the main attributes that is taken into account but that was 

missing from the model is the 'number of heads' that are in stock when a machine breaks 

down. 'Heads' is the main output of the line segment for which the decision makers are 

responsible. It is the component that feeds the other segments of the line. Clearly, a 

shortage of this part can cause extensive delays. To minimise the risk of a shortage, a 

buffer with capacity of storing 200 items is located in-between the two segments of the 

line and is used to accumulate stock of this component. Indicating this buffer in the visual 

display of the simulation, the decision makers explained that the stock level in the buffer 

is key information which helps to predict whether there is going to be any shortage and 

therefore is a key attribute for deciding whether actions must be taken to accelerate the 

production process and to increase the stock level. The decision makers said during an 

informal discussion that there are times when the buffer in which the heads are stored is 

empty. In these situations they are very likely to decide on SB if a machine breaks down. 

In the third pilot data collection it was found that the stock of spare parts is an attribute 

that is not used frequently since spare parts are usually available. The decision options 

'stop the line' and 'wait before decide' are relevant but very rarely considered. The reason 

for this is that such actions are time-consuming and they have an enormous impact on the 

supply chain of engines. They do not, therefore, belong to the standard actions that are 

taken on regular basis. 
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From the feedback on the data collection session given by the decision makers at the end 

of the third pilot data collection, it was concluded that watching the progress of the 

simulation run and waiting for a decision point to come does not support the decision 

making process, since it is not taken into account when deciding what action must be 

taken. On the contrary, given the time that the decision makers had available and the time 

that they had to wait until a decision point was reached in the simulation while watching 

the simulation progress, it was found that this restricted the number of situations which 

the decision makers had the chance to see and decide. In the third pilot data collection, 

three sessions took place and in each session the same set of situations was presented to a 

different decision maker. 1.5 hours were spent with each decision maker and only 25 

instances of decisions were collected from each of them. 

5.3.4 The fourth pilot data collection 

Pilot 4: Strategy 

Taking into consideration the above conclusion, for the fourth data collection, it was 

decided to review the data collection approach in order to increase the number of decision 

records that could be collected from the decision makers within the limited time available. 

Pilot 4: System 

Having concluded from the previous pilot data collection that the dynamic display of the 

simulation process is not taken into account when the decision makers take decisions, in 

order to reduce the time that the users had to wait before the next decision point was 

reached we developed a prototype which does not require running the simulation model 

during the data collection. 

Information about stock levels in the head buffer was added as an extra attribute and the 

simulation was still used as part of the general data collection approach, but it ran and 

generated the decision situations prior to the sessions with the decision maker. In order to 

save the situations of interest, a set of status files was used. This is a functionality 

provided by Witness and enables the user to save the simulation status (including the 
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visual display) at any given time. It also allows the user to continue the simulation from 

the point that it was stopped when the status file was saved. Having saved the status of the 

simulation for each decision situation of interest, the user did not have to wait for the 

simulation to reach a breakdown event in order to input a decision. During the data 

collection all that was necessary was to load and present those simulation status files 

which included the breakdown events of interest. 

Although this was a significant reduction of the time that the user had to wait, the process 

was still time-consuming since Witness can be quite slow in loading the status files for a 

simulation model of this scale. Figure 5.6 shows the structure of the prototype system that 

was used for the fourth pilot data collection. As is clear from the diagram, there are 

multiple copies (5) of the simulation model (3) that are used to present the decision 

situations to the user. Each copy represents a decision situation that was generated after 

running the simulation model and saving its status at the point when a machine 

breakdown of interest had occurred. To collect a sample of decisions and decision 

situations, the filter used in the third pilot data collection was also applied to generate the 

status files. This means that the simulation stopped and a file was generated only for a 

number of selected machine breakdown situations which met the rules applied by the 

filter. 

Pilot 4: Outcome 

Despite the use of the simulation status files to present the decision situations, as a result 

of which we managed to collect more decisions than in any of the previous data 

collections, once again the sample size did not represent each decision action adequately. 

RI was by far the most popular decision action for each of the three decision makers who 

were involved. During the fourth pilot data collection, from the 34 decisions that were 

collected from the first decision maker only 4 were SB. The second and third decision 

makers, who also input 34 decisions, did not take any SB action since they thought that 

the most appropriate decision was to repair immediately for each of the situations that 

were presented to them. The situations were the same as those that were presented to the 

first decision maker. 
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When the decision makers were asked to explain why the most of the their decisions were 

of the same type (RI), they insisted that this is due to the fact that the repair time of the 

breakdowns that were presented during the data collection was not particularly long, so 

there was no reason to follow stand by policies. To justify the above statement, they 

explained that SB is a policy which is usually followed when the time that will be saved is 

higher than the total time that will be lost. Stand by process, they explained, involves 
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manual processing of the parts as they arrive. Given that manual processing is slower than 

the automatic processing which the machine performs, deciding on stand by might cause 

delays due to manual processing. In addition, deciding to stand by means that a stand by 

station must be set up. According to the decision makers, this requires about 5 to 10 

minutes. In order to decide to stand by, the decision makers must be sure that the repair 

time of the machine - and therefore the delay that this will cause in the production process 

- is higher than the delay that will be caused by setting up a stand by station and 

processing the parts manually. 

In this data collection, it was concluded that a representative sample of decision situations 

that occur in a typical day in the production line must include a significant percentage of 

breakdown incidents whose estimated repair time should be over 20 minutes. This is 

because a significant number of SB decisions are taken on daily basis and, according to 

discussions with the decision makers, it appears that the SB-RI trade off becomes 

practically relevant only in breakdown incidents with an expected repair time of over 20 

minutes. Given the high frequency of breakdowns with a relatively short repair time on 

each machine, the above indicated that stratified sampling was needed for the main data 

collection. Finally, in this pilot data collection it was concluded that the decision about 

who should be involved in the action which is decided upon is not necessarily a decision 

that is determined by the attributes of the system. From the discussion that the data 

collection facilitated, it was clear that the decision about which engineer should be 

involved is dependent on the desired action. For instance, an RI action would require the 

involvement of a skilled engineer whereas an SB action would require the involvement of 

a semi-skilled engineer. 

5.3.5 Conclusion from the pilot data collections 

Overall, the pilot data collections contributed to the development of a knowledge 

elicitation approach that led to the main data collection of the research, as explained in the 

next chapter. In addition, the conclusion from each pilot contributed to the specification of 
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the requirements and the functionality of the data collection system which was developed 

to support the main data collection. 

5.4 Problem definition 

Having undertaken four pilot data collection sessions, our knowledge about the problem 

situation was significantly improved. From the above discussion of the pilot data 

collections, it is clear that a maintenance decision making process takes place in the 

production line. This process is not represented in the simulation model that has been 

developed in Ford. 

A total of at least 18 Group Leaders (one for each sector for each shift) are involved in the 

decision making process for the whole production line. Each of them is responsible for 

making maintenance decisions, taking into consideration information collected from the 

broken-down machine and the surrounding environment. 

Break Message from pager Inspection Estimation of Environment Decision 

down t-J reporting fault type and t-J ~ repair time ~ attributes h h Machine number h c...., h 

Figure 5. 7: Decision-making process 

As shown in figure 5.7, in the event of a machine breakdown the relevant decision maker 

is informed via a pager which indicates a breakdown in the area supervised by him. The 

decision making process then involves four stages. After the inspection of the breakdown, 

various attributes of the system are taken into account in order to estimate the repair time 

and to assess the available decision options. Having decided which option will cause the 

minimum delay, the decision maker takes the appropriate actions to implement the 

decision. 

Based on our current understanding of the problem, the decision making process for 

unplanned maintenance involves three main decision elements: actions that must be taken 

when a machine breakdown occurs (Action Decisions), engineers who should be involved 
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to deal with the situation (Resource Decisions) and complementary decisions that should 

be taken to support the main action (Complementary Decisions). 

Action Decisions 

Although the obvious action to take when a machine breaks down is to repair it 

immediately (RI), this may not always be the most appropriate action for a variety of 

reasons: 

• Inappropriate: If there is a long queue of parts downstream from the machine 

requiring repair, then immediate repair may not be the most appropriate action and the 

maintenance engineers may be better deployed elsewhere. 

• Insufficient: Repairing a machine takes time. Meanwhile the rest of the production 

facility continues to process parts and to move them around. This means that, during 

the repair of the machine, queues may occur upstream, while downstream the process 

will be starved of parts. Simply repairing the machine may be insufficient to reach 

target throughput. 

• Impossible: It can be assumed that sometimes it may not be possible to repair the 

machine immediately since all the maintenance engineers are busy. There is always 

the option of borrowing an engineer from a different part of the production line or to 

interrupt the repair of another machine and so to release one of the engineers, but this 

may not be the best course of action. Further to this, it can also be assumed that on 

occasions spare parts required for the repair of the machine may not be available. 

Bearing the above in mind along with the conclusions from the pilot data collections, it is 

clear that other policies besides immediate repair are considered when a machine breaks 

down. 

Stop the line (SL) is another option which might be considered. In this case, the 

maintenance supervisor (Group Leader) should decide whether it is useful to stop the 

whole line or part of it. This might be used, for instance, to avoid a build up of work-in-

progress in a section of the line. 
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Do nothing (DN) is an alternative decision that might be the desired course of action 

under certain circumstances, for instance, close to the end of a shift. Obviously, this 

decision must be revised eventually and the machine repaired later. 

Stand by (SB) can be considered as an alternative to repair immediately. In this case, an 

engineer processes the parts manually and pushes them to the next machine through the 

conveyor. In general it is not possible to repair the machine at the same time as stand by is 

being operated, because of space restrictions. This creates one of the main trade-offs of 

the unplanned maintenance decision making problem. 

In view of the fact that the objective of the decision making problem is to minimise the 

delays and the throughput fluctuation caused by machine breakdowns, it is clear that the 

best choice between SB and RI is always situation specific. This is because SB might 

improve the flow of parts, but at the same time it requires an engineer to work on the 

machine bypassing the parts, it requires time to set up an SB bypass station and it operates 

at a slower rate than running the machine at normal mode (section 5.3.4). Hence if the 

repair time is 8 minutes and it is the beginning of the early morning shift then SB might 

not be such a good idea. Assuming that an SB action will operate parts only 1 second 

slower (a reasonable assumption in the light of what the decision makers explained during 

the pilot data collections) than the normal time required if the machine is running without 

problems and if 5 minutes are required to set up an SB station with 800 parts waiting to be 

processed before the end of the shift, SB will cost 18 minutes (800 * 1 sec /60 sees) while 

RI will cost only 8. On the other hand, if the repair time was 19 minutes it would clearly 

be better to follow an SB policy (if the machine can be operated in SB mode and other 

things being equal) since this would cost 18 minutes delay and it would save 1 minute. 

The above example shows clearly that the trade-off between SB and RI depends on the 

status of the system, which can be defined by a number of attributes, and this is what 

decision makers take into account in reaching a decision. The example also shows that 
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significant production improvements can be achieved if the right decision is made for 

each machine breakdown incident which occurs. This reveals that the choice between SB 

and RI is a significant element of the decision, but it is not the only one. The decision 

about how to resource the action that is decided and the decision about what else must be 

done in order to support the main action are still important elements in those decisions 

which contribute to the minimisation of the delays caused by machine breakdowns. 

Resource Decision 

Based on the experience from the pilot data collections, the resource decision is not 

constrained by the availability of resources as much as it is constrained by the suitability 

of the resources. This means that the decisions about who must implement the action that 

is decided (usually SB or RI) depend on what action has been decided and not whether the 

engineers are available. This is because if a specific engineer is not available then an 

equivalent engineer can be borrowed from a different area of the factory. 

In order to resource the actions that have been decided, the decision maker has to choose 

one of the following engineers who must act when a machine breaks down: 

• Group Leader 

• Mechelec 

• IMSl 

• IMS2 

• Operator 

The Group Leader is the decision maker, a skilled engineer educated at HND or BSc level 

who is usually involved in 'non-standard' repairs. The Mechelec, a mechanical 

electrician, is also a skilled engineer who is deployed in machine repairs. He is also the 

person in charge when the Group Leader is not available. IMS 1 and IMS2 (Integrated 

Manufacturing Specialists) are trainee engineers who are involved mostly in routine 

repairs. Finally, the operator is the person deployed in more practical tasks which involve 

supporting the SB process by carrying out and setting up stand by stations. 
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Complementary decisions 

As was concluded during the pilot data collections, a number of other decision variables 

might sometimes be involved in the decision making process. Decisions about planned 

maintenance, seeking advice from the production manager and the switching off of a 

broken machine are some of the additional variables that might be involved in the 

decision making process when a machine breaks down. 

In more detail, whether there is a need for planned maintenance and when this might take 

place is one of the decision variables that sometimes complements unplanned 

maintenance decisions. As the decision makers explained during the pilot data collections, 

when a machine breaks down very frequently, repairing it immediately or setting up stand 

by stations is not the best solution in the long run. Frequent breakdowns on a specific 

machine is a matter of concern that requires investigation which can only take place when 

the production line is not running. 

Whether it is appropriate to switch off a machine that has just broken down is another 

decision variable which sometimes accompanies the decision about what action must be 

taken. This decision variable is relevant only when the broken down machine is one of 

those that is used for testing and monitoring the quality of the parts. Switching off one of 

those machines, if it has broken down, prevents delays that the repair of a machine would 

cause, but is a highly risky decision since it involves bypassing the quality control 

practices which are applied in the factory. A decision to switch off such a machine must 

always be approved by the production manager and, therefore, should always be 

accompanied by a decision to seek advice from the production manager. 

Attribution of decisions 

The above discussion of the unplanned maintenance decision making problem has 

revealed the complexity of the problem and the decision variables and the options that are 

considered when a machine breakdown occurs. It has also revealed that, in determining 

what course of action to take, the Group Leaders rely upon their knowledge and 

experience (tacit knowledge) which is combined with the attributes of the system at the 
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time that the machine breakdown incident occurs. These attributes are an essential part of 

the problem since, as explained earlier in this section, they support the decision makers in 

determining the trade off between SB and RI and eventually in deciding what must be 

done. 

According to the discussion with the Group Leaders and the observation of working 

practices combined with the use of VIS, some or all of the attributes in table 5.1 are taken 

into account when making a decision: 

Attribute 

Machine number 

Type of fault 

Number of 

engines produced 

so far this shift 

Availability of 

spare parts 

Number of other 

machines down 

Description 

A code that is used to uniquely identify the machine that has broken down. The 

machine number is one of the attributes which the decision maker receives in the 

short message that is sent to his pager once a machine has broken down. 

A short description of the problem that is produced from the diagnostic system 

attached to the machine. This attribute is also sent to the pager that the decision maker 

carries during the shift. 

It is one of the environment attributes that indicates the current performance of the 

production line. This attribute is publicly accessible through a display that is located 

in the middle of the production line. 

An attribute that indicates whether a specific part that is required for the repair of the 

machine is in stock. This attribute is not easily accessible and once it has been 

decided that a specific part is required, one of the engineers has to check the stock 

availability in the warehouse. This check might take up to 5 minutes. 

It is the attribute that indicates whether other machines have also broken down. 

Physical condition It is the attribute that informs the decision maker about the condition of the machine. 

of the machine The colour of specific components in the machine and the quality of the last part 

processed by it are two of the characteristics which reveal its physical condition. 

Frequency of 

breakdowns 

Number of heads 

in the buffer 

It indicates how often the machine breaks down. This attribute is not easily accessible 

since it is not reported when a breakdown occurs. It is available upon request, which 

involves queries in the central database. 

It indicates the number of parts that are currently waiting in the buffer for processing. 

This buffer is located in the middle of the production line and feeds with parts(heads) 

the second half of the line. Depending on where the machine is located, this attribute 

can be used to give an indication of the likelihood of a temporary bottleneck due to 
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Description 

the repair of the machine. 

It is the attribute that reports the current time. It can be used in combination with the 

attribute 'engines produced so far this shift' in order to asses the performance to date. 

It is a meta-attribute which reveals the decision maker's view about the time that will 

be required to repair the machine. This attribute is estimated by the decision maker in 

order to reach a decision about what action must be taken. Clearly, the estimation of 

the repair time is based on some of the attributes that have already been mentioned, 

such as the type of fault and the physical condition of the machine. 

Table 5.1: Decision attributes 

The above list reveals the dimensionality of the decision making problem and indicates 

that a number of simplifications will be required. 

Having described the decision options and the attributes which determine the trade-off 

between the various options that are available when a machine breakdown occurs, this 

section has described our current understanding of the unplanned maintenance decision 

making problem in the production line modelled in this research. This description also 

shows that using VIS-based pilot data collections it is possible to identify the objective, 

the options and the attributes that are taken into account in decision making. However, 

with the use of the above approach it is not possible to identify the exact relationship that 

associates the attributes and experience of the decision makers with the decisions that are 

taken. As was anticipated in section 4.3.3, the determination of this relationship requires 

the development and calibration of a decision making model. In order to collect the data 

for developing such models, it is important to identify those elements of the problem 

which should be included in the model. This process is explained in the following section, 

which describes the development of the conceptual model. 

5.5 Conceptual model 

Whilst taking account of the purpose of the research and the implications of simplifying 

the problem, the conceptual model was developed by determining the scope of the 
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modelling exercise and by making a number of simplifications which determined the }eye} 

of detail of the model. 

5.5.1 Scope and level of detail 

In order to define the scope, all the aspects of the decision making problem were 

considered, but only those directly relevant to the investigation of the research were 

included. As was explained in greater detail in sections 1.3, 3.1, 3.2 and in Chapter 4, in 

addressing the questions raised by the research, the purpose of the research is to identify 

and compare the alternative unplanned maintenance decision making strategies which are 

employed during the production process and which have a direct impact on the throughput 

levels. In the previous section, it was shown that unplanned maintenance might 

sometimes include decisions which involve the request of planned maintenance. Planned 

maintenance, however, does not have a direct impact on the throughput levels, at least in 

the short run (daily and weekly). On this basis it was decided that the representation of 

planned maintenance is beyond the scope of this modelling exercise. Planned 

maintenance was, however, included as a decision option in order to create a realistic 

decision making environment. 

As explained in the pilots (section 5.3- Pilot 1), the estimated repair time is an input in 

the decision model. The action 'stop the line' does not form part of the standard practice 

and, as discussed in the problem definition (section 5.4 ), the resource decision depends on 

the suitability and not the availability of the decision makers. As was pointed out in the 

previous section, this means that the decision about who should be involved in the action 

is determined by the desired action. 

Furthermore, given the scale of the application, it was decided to model the decision-

making process only for a self-contained segment of the production line (the head engine 

assembly) which employs one decision maker per shift . 
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5.5.2 Conceptual model expressed 

Notwithstanding the scope and the simplifications which were outlined and justified 

above, the conceptual model that has been developed for the purposes of this research is a 

simplification of the real problem, yet it contains sufficient level of detail to allow the 

specification of the data requirements. 

The conceptual model consists of two elements: the attribute and the decision. The 

attribute element represents the various pieces of information which influence the 

decision making process. The decision element represents some of the decisions that the 

decision makers take when a machine breaks down. 

In the conceptual model a decision consists of three decision variables: Action, Resource 

Decision and Complementary Decisions. The first variable, the 'Action', can only take a 

value that represents one of the two actions: SB and RI. The second variable, the 

Resource Decision, can only take one value that represents one of the following five 

options: Group Leader, Mechelec, IMSl, IMS2 or Operator. The third decision variable, 

the Complementary Decisions, which is included in the conceptual model for symbolic 

purposes, can take values that represent one or more from the following set of actions: ask 

production manager, plan weekend repair, plan off-shift repair, switch off machine. 

The attribute element of the model consists of a set of variables, each of which represents 

specific information about the status of the system. For reasons that were explained earlier 

(section 5.3.2 and 5.3.3), the attributes 'number of other machines down' and 'stock 

availability' have been removed from the list of attributes. The following are the attribute 

variables which are considered in the conceptual model: 
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• Type of fault 

• Machine number 

• Estimated Repair Time 

• Time Hours 

• Time Minutes 

• Engines 

• Parts Waiting 

• Number of breakdowns on this machine today 

• Number of breakdowns on this machine this month 

• Number ofbreakdowns of this type on this machine today 

• Number of breakdowns of this type on this machine this month 

• Number of Heads in buffer 

Having determined the variables that must be included in each element of the model, the 

conceptual model can be described in KBI terms as a relationship between Di,j and Ai: 

D. . Conceptual = f. (A . Conceptual) 
1,) J I 

where 

r
Action l 

Di,J Conceptual= Resource Decision , 

Complementary Decisions 

i=l,2,3, ... n and j=l,2, ... m 

Type of fault 
Machine number 
Estimated Repair Time 
Current Time 
Engines produced 

Ai Conceptual = Parts Waiting 

Machine breakdowns today 
Machine breakdowns month 
Breakdown today 
Breakdown month 
Heads in buffer 

n: number of decision situations, m: number of decision makers 

(5.1) 

Action: {RI,SB}, Resource decision: {Group leader, Mechelec, IMS 1, IMS 2, Operator} 

Complementary decision: {Plan repair (and when), Ask production manager, Switch off 

machine} 
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As shown in expression 5.1, the elements of matrix Aiconceptual represent the attributes that 

have been included in the conceptual model and not the attributes that were identified 

during the problem-definition process. Similarly, the decisions that are included in matrix 
D conceptual f1 t th 1 t f h d . . k" . 

i,j re ec e e emen s o t e ecisiOn rna mg process which have been 

considered necessary for the purpose of the knowledge elicitation stage of the research. 

5.6 Data requirements 

Having designed the conceptual model, it is also possible to identify the data required for 

modelling the relationship which associates the attributes with the decisions taken by each 

decision maker. The process of specifying the data requirements is the final step of stage 

1 of the KBI methodology and it involves deciding the number of records that must be 

collected and the number of decision makers who must be involved. In KBI terms this 

step involves deciding the number of records in matrices A and Dj and the value of the 

numbers nand m. 

In order to decide the number of records that each data set must include, the following 

factors were taken into account: 

• The decision makers' availability 

• The type of decision situations that must be included in the data set 

• The time that the decision makers need in order to make a decision 

The decision makers' availability was the principal factor which constrained the size of 

the data sets. Owing to their commitments as Group Leaders, the availability of the 

decision makers who were involved in the data collections was very limited. From the 

preliminary stage they made it clear that they could not afford to be distracted from their 

duties for more than a total of30 hours (almost 4 working days) each. Given the time that 

was required for the pilot data collections and the interviews (which, as explained earlier, 

contributed to the process of understanding and formulating the problem), each decision 

maker had no more than two hours available for the main data collection and for the 

follow-up meetings. Considering our experience from the pilot experiments, in which 

92 



Chapter 5: KBI stage I 

approximately 25 decisions were collected within a time slot of one hour, it was decided 

that in the final data collection each decision maker must be asked to input decisions up to 

a total of no more than 50 decisions. 

The decision about the number of decision makers who should be involved in the main 

data collection was rather obvious. The segment of the production line that is modelled in 

this research (section 5.5) was operated 24 hours five days a week at the time when the 

problem-understanding and the data collection stages took place (May 2002). Round the 

clock operation requires three shifts and as it was pointed out in section 5.2 a group leader 

is employed for each shift. Based on this shift pattern it was clear that each of the three 

Group Leaders (DM1, DM2, DM3) from the three shifts of the specific section should be 

involved in a separate data collection. This indicated that a model should be produced for 

each of those three individuals. 

5. 7 Evaluation and analysis 

The application of the first stage of the KBI methodology has shown that it is a process 

which involves five steps. The implementation of each of those five steps has contributed 

to the identification of the main elements of the problem and to the specification of the 

data requirements. From the description of each step the main difficulties which stage 1 

involves have been identified and addressed. The decision making problem involves a 

large number of variables and due to limited data, only some of the AI techniques 

described in section 4.3.3 may be appropriate for the purposes of this research. 

It has been found in this chapter that during stage 1 a preliminary investigation is required 

in order to gain a basic understanding of the problem situation. During the preliminary 

investigation, it is not expected that the problem and its elements will be fully understood 

since the decision makers might have difficulties in describing the problem. To gain a 

clear understanding of the problem, a number of pilot data collections that might involve 

VIS proto typing are required. The pilot data collections are perhaps one of the most time-

consuming steps of stage 1. The number of iterations that are required and the time spent 

on this step depends very much on the availability of the decision makers and on whether 
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a simulation model is available. Having gained a clear understanding of the problem 

situation, the problem must be defined by determining its elements: the objective, the 

decisions, the options that are available for each decision and the attributes which 

determine the decisions. The problem-definition is a key part of stage 1 since it forms the 

basis for deciding what must be included in the model of the decision making problem. 

The determination of the elements of the problem that must be included in the model is 

implemented during the fourth step of stage 1. This step is known as conceptual model 

development. As was shown in section 5.5, during this step the main assumptions and the 

boundaries of the problem are determined, taking account of the scope of the modelling 

exercise and the technological capabilities of the simulation model. From the description 

of the implementation of this step it is clear that, although it is not expected that the 

conceptual model will reflect all the details of the problem, it is expected that the model 

will incorporate all those elements required for developing decision models which can be 

used to assess individual decision making policies. The final step of stage 1 of the KBI 

methodology, as shown in section 5.6, involves the specification of the data requirements, 

taking into account the elements of the problem which are included in the conceptual 

model and the availability of the decision makers. 

Having used a type of VIS in almost each iteration of stage 1, it is concluded that VIS is 

an effective technique that can be used for facilitating discussion and as a tool for problem 

understanding. Using VIS we were able to communicate and express our understanding of 

the decision making process through the presentation of the user interface which included 

the decision variables, the decision options and the relevant attributes that it was thought 

are taken into account by the decision makers. Using VIS it was possible to improve our 

understanding of the decision-making process and the attributes that are taken into 

account when a decision is taken. This was achieved through the discussion which the 

VIS facilitated and through the addition of missing attributes during the pilot data 

collection experiments that took place. During the pilot data collections we had the 

opportunity to ask the decision makers how valid our understanding of the decision 

making process is. The decision makers were able to give us feedback, taking account of 

the representation of the decision making process in the visual interactive interface. 
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5.8 Conclusion 

In this chapter the first stage of the KBI methodology has been tested and evaluated. 

This stage involved the process of understanding the decision making problem and the 

process of specifying the data requirements. The application of KBI stage 1 on the case 

study that is used in this thesis has shown that the specific decision making problem 

involves a large number of variables both for the attributes and the decision. As will 

become clear in subsequent chapters, for the purposes of the analysis some elements of 

the problem will be simplified and reduced. 
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Chapter 6 

Evaluation of stage 2 of the Knowledge Based 

Improvement methodology 

This chapter tests and evaluates the second stage of KBI. This involves the design and the 

implementation of the data collection. After a brief description of the steps of the data 

collection, the implementation of each step is described in detail in the following sections 

of this chapter. The chapter ends by summarising the main methodological conclusions 

from the implementation of the data collection approach that is proposed as part of KBI. 

6. 1 Steps of the data collection process 

The data collection stage of KBI involves three steps (figure 6.1) and its purpose is to 

elicit knowledge from the decision makers by collecting a set of decision instances for a 

set of decision situations. It builds upon the problem-understanding stage and combines 

system development with a simulation-based data collection. In KBI terms, this stage 

involves the population of the matrices Dj and A. 

Figure 6.1: Simulation-based data collection process (KBI Stage 2) 

6.2 Simulation based data collection: System development 

Having determined the data requirements in Chapter 5, this section describes the 

development of the system used in the main data collection of the research. The system, 
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which is a modular simulation, has been specifically designed to minimise the time 

required for the involvement of the decision makers during the data collection. The 

development of the system involves the specification of its requirements (what the system 

must do) and the design of its functionality (how the data collection system should meet 

the specified requirements). 

6.2.1 Requirements specification 

The system requirements which are described in the following paragraphs have been 

designed with the aim of improving the knowledge elicitation approach by developing a 

process that resolves the problems identified during the pilot data collections (section 

5.3). In order to develop the system for collecting the decisions, the requirements and the 

functionality of the initial VIS were iteratively re-specified, taking into account the data 

requirements and the feedback from the decision makers who were involved in the pilot 

data collections. As with the pilot data collections, simulated decision situations were 

used to facilitate the knowledge elicitation in the main data collection of the research. The 

process involved the development of a common platform which acts as a communication 

interface between the analyst and the decision makers. This combines our experience 

from the pilot data collection with principles discussed by previous authors (O'Keefe & 

Pitt 1991, Au & Paul1996, Williams 1996, Perry & Moffat 1997). To support the process, 

it was clear that the system must allow the analyst to express and communicate each 

decision situation in a way which enables the decision makers to apprehend it quickly and 

easily, enabling them to make a decision. Based on this general principle, a number of 

specific requirements that the system must have were identified and are described in the 

following paragraphs. 

For each scenario that is presented to the decision maker, it was clear that the system must 

provide sufficient information about the decision situation. Taking into consideration the 

conclusions from the pilot data collections, it has been assumed that the attributes in the 

conceptual model provide sufficient information to specify clearly and objectively a 

decision situation. Given this assumption it was decided that, for each scenario presented 
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to the decision makers, the decision situation must be communicated to them by reporting 

the value for each attribute which is included in the conceptual model. 

Having identified from the pilot data collections the elements of the decisions which must 

be modelled, it was decided that the user interface for the main data collection must not 

allow the decision maker to input non-standard decisions. In view of this requirement, it 

was decided that the input user interface should consist of a combination of mandatory 

and non-mandatory questions, for which the user can choose an answer from a drop down 

list of options. The questions which should be included in the user interface must reflect 

the decision variables that are included in the conceptual model. 

In order to enable the analyst to use the data for the modelling process, it was decided that 

the information on the attributes and the corresponding inputs should be automatically 

recorded and stored in a database. 

The system must be capable of generating a series of decision situations by using the 

simulation model. In addition, in order to enable stratified sampling from those situations 

(section 5.3.4), it was decided that the system must allow the analyst to specify criteria 

and filter the decision situations which can be generated. To minimise the delays, it was 

decided that the simulation must not run during the data collection and no simulation 

status files (more details of this functionality is provided in sections 5.3.3 and 6.2.3) 

should be used. On the contrary, the system should allow the analyst to generate and store 

the decision situations in a database or in a data file using the simulation model. In 

addition, the system should be capable of retrieving and presenting the decision situations 

to the user during the data collection without re-running the simulation. 

Finally, as the pilot data collections revealed that the decision makers do not use the 

schematic display (since they focus on the information provided to them through the 

electronic form - logical display), it was decided that the final version of the system 

should not use the visual schematic display. 
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6.2.2 Functionality and architecture 

Having identified the above requirements to specify how the system should meet those 

requirements, the functionality of the system was designed taking into account the 

previously described requirements. Part of this functionality was developed using objects 

from the prototypes which were implemented for the pilot data collection. The software, 

which was written in Visual Basic, contains the following four main modules: 

• Decision situation generator 

• Decision situation filter 

• Decision situation data collector 

• Database 

After a brief overview of the architecture of the system, each of the above four modules is 

described in detail in the following paragraphs. Figure 6.2 shows the structure of the 

system that was used for the final data collection. As is shown in figure 6.2, using a front 

end (2) the system enables the analyst to specify the options for the mode of the 

simulation run. The simulation model (3) then generates a database of decision situations 

(4) using information from the simulation process and details from the machine 

breakdown database ( 1 ). At the end of the run the decision situations are filtered, so that 

only the situations which represent different scenarios are included in the database table 

with the representative breakdown situations ( 6). This table is used with an interface (7) to 

present the decision situations to each decision maker who, using the interface (8), inputs 

his details and his decisions to the decisions table of the database (10). Difficulties had 

been experienced with the use of the simulation status files (section 5.3.3). This had 

mainly been due to the time required to upload a simulation status in Witness. In an 

attempt to make the data collection less time-consuming, the data collection system used 

for the main data collection does not use the status file. Instead, the situations that have 

been stored in the database of the system are presented to the user only through a dialog 

form (section 6.2.5). This, as was found in the pilot data collection, does not reduce the 
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quality of the decisions since, as explained earlier, the decision makers in the specific case 

study do not take into account the dynamic visual display of the simulation. 

Data collection from DM3 

Data collection from DM2 

Data collection from DMI 

Initial Front End 

.-.::'' ______ ......... . 

_...··<>Decision 
........ · Situati 

Decision Situation 
Generator 

.. --·· .. --·· 

.. ··· 

.. --
.-·<.--.. -· _ .. · 

Decision 
Maker 

Data 
Collector 

... ----

Filter 
····--.::············· 

Visual 
Display 

Figure 6.2: Architecture of the data collection system 

6.2.3 Decision Situation Generator 

········· 

:·:::::·~--········ ...... --·· ·- ... ·-... _ 

·-.. _ (7) 

The Decision Situation Generator, most of the parts of which were developed after the 

pilot data collections, is an automated object which is used to generate and store simulated 

decision situations by taking snapshots of the simulated system at the time when a 

machine breakdown occurs in the simulation. It consists of a user interface and an 
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enhanced version of the initial simulation model, which is connected with the database of 

the system where the snapshots are stored in the form of attribute records. The purpose of 

this module is to allow the analyst to generate automatically a significant number of 

simulated decision situations. These, amongst other means, can be used to sample the 

scenarios which must be presented to the decision makers and also to investigate the 

diversity of situations that the decision makers are likely to encounter in the real system. 

Simulation model 

The main role of the simulation model in the Decision Situation Generator is to generate 

breakdown events in the context of the production system which is simulated. The 

breakdown events that occur during the simulation run contribute to the generation of the 

decision situations by providing information about various attributes of the simulated 

system at the time when the breakdown event occurs. For each decision situation that is 

generated, the simulation model contributes to the composition of the decision situation 

by providing specific information about the following attributes: 

• Type of fault* 

• Machine number 

• Estimated Repair Time 

• Time Hours 

• Time Minutes 

• Engines 

• Parts Waiting 

• Number of Heads in buffer 

• Number of breakdowns on this machine today 

• Number of breakdowns on this machine this month 

• Number of breakdowns of this type on this machine today 

• Number ofbreakdowns of this type on this machine this month 

* non-simulated attribute 

To complete the generation of the decision situation, each time that a machine breakdown 

event occurs in the model, non-simulated attributes of the breakdown (the attribute with 
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the asterisk in the above list) are retrieved from a trace with real breakdown incidents 

which have been recorded in the past in POSMON (section 5.2). The database table that 

contains the POSMON data in the system is known as the breakdown details table and it 

was populated with a complete download of breakdowns records covering the period 20-

JAN-2000 to 01-AUG-2000. 

As well as generating some of the attributes for the decision situations, the simulation run 

is used for composing each decision situation and for populating the 'decision situations' 

table of the database. The composition and population of the 'decision situations' table is 

achieved by the following process: each time that a breakdown event occurs in the 

simulation run, the simulation process pauses and the database table 'breakdown details' 

is queried to retrieve information about the 'next in the list' breakdown record for the 

machine which has broken down in the simulation. The result from the query is a record 

that consists of a breakdown description and the corresponding breakdown fault code. 

These attributes are combined with the attributes of the simulated system at the moment 

when the breakdown occurred. This set of information forms a new decision situation 

record which is then sent to the database table 'simulated decision situations'. Once the 

new decision situation is appended in the table, the simulation continues until the next 

breakdown event. 

User interface 

To control and enhance the functionality of the Decision Situation Generator, a user 

interface was developed to form a front end for the decision situation generator module. 

With the front end, the development of which started in the early stages of the research 

and which was also used for the pilot data collections, the analyst is able to customise the 

simulation run to meet the requirements of each data collection session. For example, as is 

explained in section 5.3.4, the decision situations in the fourth pilot data collection were 

presented to the decision makers using status files. Introduced in section 5.3.3, a status 

file is a Witness functionality that enables the analyst to save the status of the simulation 

at a specific time as a file that can be reloaded, enabling the simulation to continue from 

where it stopped when the file was saved. As shown in figure 6.3, using the front end the 
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analyst is able to select the option 'Generate Sim Files ' (Sim is the filename extension fo r 

a status file in Witness). Selecting 'Yes ' from the combo box 'Generate Sim files' each 

time that a breakdown occurs in the simulation, the system automatically generates a fil e 

that contains the status of the system at the time when the breakdown occurred in the 

simulation. 

Warm up period jsoo 

Minimum repair for 120 
long breakdowns 

Part files !Yes 

Distributions lNo 

Vtsual jNo 
Figure 6.3: Decision situation generator- Front end 

lnterac;tive JNo 

Reprnt Shifts lnteracively j No 

Generate Sim files j N 0 

Proceed » 

6.2.4 Decision Situation Filter 

This module was extended and refined after the pilot data collections and, as will be 

explained in section 6.3 .1, it was used to prepare the main data collection, in which the 

decision situations were generated from the simulation model prior to the data collection 

sessiOn. 

The role of this module is to support the analyst in determining which of the decision 

situations that are generated from the Decision Situation Generator and are stored in the 

table 'decision situations' must be presented to the decision maker. · 

The decision situation filter consists of a set decision support tools which allow the 

analyst to explore the range of decision situations that occurred in the past and were used 

in the simulation run. These tools include a set of charts similar to the one shown in figure 

6.4 and an interactive algorithm, which uses a set of criteria and is applied to the decision 
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situations database (item 4 in figure 6.2) in order to take a stratified sample from the 

decision situations. It does so by extracting a subset of records which represent a wide 

range of situations that the decision maker may face (for more details see section 6.3). 

Repair times (full trace) 
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Figure 6.4: Decision situation filter- cluster chart 

Having filtered the decision situations using the appropriate criteria, the algorithm 

populates the 'representative decision situations' table with the decision situations that are 

used for the data collection. 

6.2.5 Data collector 

The third module of the system is the data collector. This was developed after the 

completion of the pilot data collections and it is used in the main data collection to present 

the decision situations to the decision maker, to collect their decisions and to populate the 

records ofthe table 'decisions' (item 10 in figure 6.2). It consists of a set of user 

interfaces and the 'decision' database table used to store the decisions of each decision 

maker. The decision maker's ID interface (figure 6.5) is used to record the details of the 

decision maker who participates in the data collection. 

The decision situation user interface is used to present each decision situation to the 

decision maker. A final version of this interface is shown in figure 6.6 (bottom left form). 

The decision input interface (top right form in figure 6.6) enables the user to input the 

decision, taking into account the attributes of the decision situation which are shown 
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while the ' decision ' form is acti ve . Once the deci sion maker has input a dec ision and has 

pressed 'proceed' , a new record is created in the decision table of the specific dec ision 

maker and a new decision situation is presented to him. 

Dedslon r .. taker: 

Date: 1 16/ 04/2004 01 .04.04 Figure 6.5: Data collector- Decision maker's ID form 
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Figure 6. 6: Data collector - Decision situation & Decision input forms 

6.2.6 Database 

The database consists of a set of tables (items 1 ,4,6,9 in figure 6.2) that are used to store 

and analyse the data sets. The breakdowns table (item 1 in figure 6.2) includes detailed 

information about breakdowns which were downloaded from the operational system from 
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the production line (section 6.2.3). The decision situations table (item 4 in figure 6.2), as 

explained earlier, includes information about the breakdowns that occurred during the 

simulation run. The representative breakdowns table (item 6 in figure 6.2) is a stratified 

sample of breakdowns from the table decision situations (item 4 in figure 6.2). The 

decision and attributes table (item 10 in figure 6.2) includes the decisions that were 

collected during the main data collection sessions. 

6.3 Data collection 

Having described the development of the system which is used to support the data 

collection, this section explains the second and third steps of the data collection, which 

involve the process of generating the decision situations that were presented to the 

decision makers and the process of capturing their decisions. 

6.3.1 Decision situations generation process 

In order to model the strategies that are employed by each decision maker, it is clear that a 

representative data set should be used. To develop a decision model that is robust, generic 

and able to provide decisions for a wide range of situations, the data set must reflect each 

type of situation that might occur in the real system. To ensure that the data sets in this 

research include most of the situations that often occur in the real system, simulation 

experiments were used to investigate the range of situations that the decision makers 

might encounter during their duties. Using the simulation engine of the data collection 

system, a set of 4773 decision situations (the equivalent of 30 simulation days) was 

generated and stored in the database of the system. Table 6.1 shows the variation of each 

attribute that was observed after running the simulation for 30 days. 

After the first five simulated days most of the decisions situations had occurred at least 

once, with very few significantly different new situations to occur after day ten. In 

addition, the cumulative mean of the estimated repair time did not change more than 1% 

after the 1oth day of the simulation for the additional situations which were generated. In 

view of the above findings, it was decided that 30 days is sufficient time for the 

simulation to reveal the variation of each attribute. The set of situations which were used 
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in the data collection was then determined by stratified sampling from the set of situations 

generated during the 30 days simulation run. 

Attribute Min Max 

Estimated Repair Time 0.3 Minutes >5 hours 

Time (Hours) 00:00 23 

Time Minutes 0 59 

Number of engines produced so far this shift 0 914 

Parts Waiting 0 10 

Machine breakdowns this day 25 

Machine breakdowns this month 320 

Breakdown day 15 

Breakdown month 77 

Heads in buffer 0 74 

Table 6.1: Range of attribute values 

Analysing the decision situations, a significant variation in the attribute estimated repair 

time was observed amongst the incidents that were recorded during the simulation run. 

Figure 6.7 (top left) shows that, for many of the simulated incidents, the estimated repair 

time is either less than 2 minutes or more than 300 minutes. Based on the knowledge and 

experience acquired through our involvement in the maintenance process during the 

preliminary investigation and during the pilot data collection, where a number of incidents 

with an estimated repair time of less than 30 seconds were presented to the decision 

makers, it was decided that these extreme situations are not part of the decision making 

process in which the decision makers are involved and, therefore, must be excluded from 

the sample of decisions that should be presented to them. 

The incidents with a repair time of under 30 seconds reported in the simulation can be 

explained by the fact that very often a machine fails because the parts are not positioned 

properly in the machine from the transfer conveyor. The repair of this type of failure is 
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always obvious and requires resetting the machine, a process that takes normally 10 to 20 

seconds. Although these incidents are recorded as breakdowns, since the machines 

become idle and are unable to process parts until an engineer resets them, those situations 

are not part of the decision making process since the repair action is always the same. In 

addition, from the conclusion drawn from the discussion with the decision makers during 

the pilot data collections, it is known that the incidents that are reported to have an 

estimated repair time of more than 300 minutes usually represent situations in which, for 

reasons related with imperfections of the diagnostic system, the down time is not properly 

recorded. This might happen because the glass door located in front of some of the 

machines as an additional safety measure might not be fully closed and so the diagnostic 

system assumes that the machine is broken down while it is actually fully operational. 

Repair limes (full traca) 

Stratified sample form the simulated decision situations 

Decision situations with repair time> 20 minutes in a data sat of 4n3 simulated 
decisions situations 

-, 
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Decision situations with repair time> 20 minutes in . the sample of the decision 
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Figure 6. 7: Decision situations- simulated population (top) and sample (bottom) 

Observing the remaining incidents in figure 6.7 (top left) it was found that, although the 

repair time for many situations is estimated to be between 2 and 5 minutes, there is a 

significant percentage of incidents with an estimated repair time of between 30 and 60 

minutes. Analysing the incidents that occurred in each machine included in the head 
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engine assembly (the segment of the line that is modelled in this research- section 5.5). it 

was found that for most of the machines there was at least one breakdown incident with 

an estimated repair time of more than 20 minutes- figure 6.7 (top right). It was therefore 

concluded that the wide variation in the estimated repair time is not an isolated incident 

which occurred only on one machine and, therefore, it must be reflected in the sample of 

decision situations that should be presented to the decision maker during the data 

collection. Having decided that the sample of the situations to be presented to the decision 

makers must reflect the above variation in the repair time, to avoid knowledge gaps it was 

also decided that the data set must include at least one incident from each machine. 

Given the above requirements, 63 decision situations were sampled from the simulated 

machine breakdown incidents. These were used for the main data collection. The sample 

shown in figure 6.7 (bottom left & right) contains at least one incident for each machine 

which is included in the segment of the line that is modelled in this research. In addition, 

in order to ensure that incidents with a long repair time are reflected in the models for 

most of the machines, there is at least one incident where the repair time is estimated to be 

more than 20 minutes (figure 6.7 bottom right). Besides the above criteria, a number of 

optional criteria were also applied in order to make sure that the data set is a 

representative sample of a complete set of situations which might occur during the 

decision making process. 

6.3.2 Decision capturing process 

For the main data collection of the research, each of the three Group Leaders from the 

three shifts of the area head engine assembly participated in an interactive data collection 

session, using the data collection system described in section 6.2. Prior to the data 

collection, basic training on how to use the system was given to each of the decision 

makers who participated. After a demonstration of the main features and capabilities of 

the system, the decision maker was asked to input his details in the introductory electronic 

form of the system. Once his details were recorded, an interactive dialog with the system 

was initiated. A decision situation was presented initially in an electronic form. Pressing 

the button 'input decision', an input dialog box was invoked. The decision maker, taking 
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account of the attributes of the situation still visible on the screen, made a decision and on 

pressing the button 'Proceed' the forms closed, the input was recorded in the appropriate 

database table and the next decision situation was presented to him. The above process 

was repeated 63 times and 63 decisions were collected during the timeslot which he had 

available (2 hours). The above process was repeated three times, each time with a 

different decision maker but with the same decision situations. As is shown in the form in 

figure 6.6, the attributes and the decisions which were included in the dialog match with 

those which it was decided to include in the conceptual model. 

As a result of the completion of the data population process, the three data sets that were 

collected and are available for the reader of this thesis in appendix 3 contain 63 records of 

data for each of the fields listed in table 6.2. Each data set contain a wide variety of 

situations and as will become clear in the subsequent chapters each type of decision action 

has been captured with a significant frequency. 

The Ai fields of the table represent the attributes of a decision situation i and describe the 

status of the system at the time when the decision was taken. As the column 'Type' 

shows, the status of the system is described using a set of quantitative and qualitative 

fields. 

Since the values of five decision variables were recorded for each decision situation 

which was presented to the decision makers in the final data collection, five data fields 

have been used to store the recorded decisions in the database. Given that some decision 

variables represent Yes/No type decisions while others represent multiple choice 

decisions, a mix of integer and Boolean data types were used to store this information in 

the database. Table 6.2 shows that a decision made by a decision maker at a decision 

point consists of selecting one of the alternative options for each of the five decision 

variables in Di,j· 
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ld Field name Type Instance 

Type of fault String DISTRIBUTOR IN 
POSITION( FEEDBACK) 

2 Estimated repair time Real 5.4 

3 Machine number String Op1037 

4 Time Time 7:24 

5 Number of engines produced so far this Integer 
shift 

6 Parts waiting in the conveyor in front of Integer 
the machine 

Ai 7 Number of heads in the buffer Integer 56 

8 The machine has broken down this day Integer 

9 The machine has broken down this Integer 10 
month 

10 The breakdown has happened this day Integer 

11 The breakdown has happened this month Integer 

12 Action !:Stand By !:Stand By 
O:Repair 

13 Switch off the machine !:Yes !:Yes 
O:No 

14 Who 1 :Group Leader, 2 :Mechelec 1 :Group Leader 
3 :IMS 1 ,4 :IMS2, 5 :Operator I 

Dw 15 Ask the Production Manager !:Yes !:Yes 
O:No 

16 Plan Repair !:Yes O:No 
O:No 

17 Plan repair- When? 0 no planned repair 1 :End of shift 
1 End of the shift 
2 weekend 

Table 6.2: Fields in the data set 

As already mentioned the decision making problem involves a large number of variables. 

It is clear that for the purposes of the analysis the variables listed above will be simplified 

and reduced. 
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6.4 Evaluation and analysis: Towards a simulation-based 
knowledge elicitation approach 

Having tested stage 2 of the KBI methodology, in this chapter an emerging knowledge 

elicitation approach for modelling human decision making in simulation has been 

evaluated. From the development and the application of the approach, a number oflessons 

have been learned regarding the practical difficulties involved in a data collection for 

modelling decision making in simulation. This section summarises the main conclusions 

about the benefits and the practical difficulties that a simulation-based knowledge 

elicitation approach involves. In addition, some guidelines are given about how data 

collections intended for modelling human decision making in simulation should be 

implemented in practical applications, such as the case study described in this research. 

Implications for the practitioner 

The simulation-based knowledge elicitation approach which was tested in this chapter has 

shown that simulation is a useful technique for generating data for experimental designs 

and data collections. How appropriate simulation is for generating decision situations was 

shown in this research by the fact that, while in the first pilot data collection session 

(section 5.3 .1) almost every decision was of the same type, having used simulation in the 

final data collection, we were able to control the decision situations. This created an 

experimental environment in which a wide variety of situations had a chance to happen 

and each type of decision was captured with a significant frequency. 

Simulation was, therefore, found to be an essential tool for collecting decision making 

data since it enables the researcher and OR practitioner to control the attribute values and 

so the decision situations which are presented to the decision maker. Given that, in a data 

set appropriate for modelling decision making, every possible type of decision option 

should be represented with a balanced percentage of instances, the decision situations to 

be included in the data set must be an amalgam of situations representing each scenario 

that the decision maker faces. Unlike the real world system, where decision situations 

occur randomly and are not controlled by the modeller, simulation showed that it allows 

the modeller to create a significant number of decision situations within a few hours by 
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running the simulation model for a sufficient number of simulated days. By selecting the 

appropriate decision situations from the simulation model at the end of the simulation run, 

as was done in this research, it is possible to generate each possible decision situation 

within a few hours, regardless of how rarely it occurs in the real system. Clearly, in order 

to do so a valid simulation model of the real system is required. 

Practical difficulties 

From the application of the data collection methodology some practical difficulties were 

identified and possible ways to resolve them were found. First of all, it was found that an 

existing simulation model, in which human decision making representation is not 

modelled, might not be appropriate for data collection intended for modelling human 

decision making. This is because the attributes which are taken into account might not be 

simulated in the model. 

Due to the general structure and scale of the model and the nature of the attributes, it 

might not be possible to represent in the model one or more of the attributes that are taken 

into account in order to make a decision. This problem can be resolved either by 

retrieving data about the missing attributes which are not able to be simulated from 

databases that are connected with the simulation model or by replacing those attributes 

with others that are correlated with them or with meta-attributes. The use of the 

breakdown details database table for reporting the type of fault to the decision makers and 

the use of the estimated repair time to replace the physical condition of the machine are 

two examples that were applied in this research and they illustrate how the problem 

referred to previously can be resolved. 

The need to involve the human decision makers in interactive simulation runs is an 

additional problem that might prohibit or constrain the use of VIS for practical data 

collections. If large amounts of data are required, the involvement and commitment of the 

human decision makers might be a potential problem, since human decision makers are 

extremely busy and might not be available. This was one of the main challenges during 

the data collections in this research. While a large data set was required, only a small data 
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set could be collected within the time that decision makers had available (two hours). To 

resolve this problem, the researcher or OR worker can increase the number of situations 

presented to the decision maker by not running the simulation model during the data 

collection. It can instead be run in advance and the decision scenarios saved with the 

appropriate format, so that they can be retrieved and presented to the decision maker 

using a system that does not require running the simulation during the data collection. 

Clearly, this approach assumes that the inputs from the decision maker do not influence 

the attributes that will be used for the subsequent situations that will be presented to him. 

The need to generate a wide range of decision situations in order to avoid collecting a data 

set of stereotyped decisions is another challenge that the use of simulation for data 

collection purposes might involve. Identifying the range of variation of the decision 

situations and filtering out similar situations is perhaps the most efficient way to resolve 

the problem. Having experienced difficulties in the early stages of collecting a data set of 

non-stereotyped decisions, we can say that the above difficulty, combined with the limited 

time that the decision makers might have available, is the most important limitation of the 

approach. The use of stratified sampling and the use of the filter for excluding short repair 

time breakdowns illustrates how filtering out similar situations can resolve the problem 

described above. 

Finally, depending on the benefits expected from collecting the decision making data and 

on whether a pre-existing simulation model can be used, the monetary cost that the 

simulation-based data collection involves might be an issue which prohibits its practical 

application. As will be explained in the next chapter, in order to collect a data set that is 

appropriate for modelling the human decision makers, significant time was spent in each 

of the iterations of the methodology and some time was required from the decision 

makers. 1.5 years project time was required, excluding the development of the base 

simulation model, which in this case pre-existed. Clearly, knowing the steps that must be 

followed for capturing the data set and using the experience which has been gained and 

which is reflected in this conclusion, this period could be reduced the next time that the 

above exercise is repeated. 
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6.5 Conclusion 

In this chapter the second stage of the KBI methodology has been evaluated by attempting 

to collect a set of maintenance decisions using a simulation model. The approach using a 

real world case study revealed the main strengths and weakness of a simulation-based 

data collection. The capability of the simulation to generate a wide range of situations and 

the use of the visual interface for structuring the problem and identifying the data 

requirement are amongst the major strengths of the methodology. Whereas the 

involvement of the human decision makers is necessary, the requirement to represent and 

simulate a wide range of attributes and the time that is required to collect a data set with a 

wide range of decisions situations are amongst the main challenges of the approach. 
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Chapter 7 

Evaluation of stage 3 of the Knowledge Based 

Improvement methodology 

This chapter tests and evaluates the third stage of the KBI methodology. As explained in 

section 4.3.3, this stage involves the process of identifying and modelling the decision 

making strategies. After a detailed description of the application of the modelling 

technique, the results of each model are reported and the validation checks that were 

undertaken are described. The chapter reports the conclusions of the modelling exercise 

and recommends the modelling structure that was found to be the most appropriate for 

representing the human decision makers in the simulation. Section one describes the 

processing of the data sets that were collected during the simulation-based data collection 

(section 6.3). Section two describes the modelling tools used in this chapter. Section three 

describes the process of modelling decision making using decision trees. Finally, section 

four summarises the main methodological conclusions from the modelling process. 

7. 1 Dimensions reduction 

In section 5.8 it was anticipated that the decision making problem includes too many 

variables for the purposes of this analysis. A number of these variables either cannot be 

modelled or their representation in the model is not required since they are correlated with 

alternative variables. This section describes the process of reducing the variables of the 

problem. 

As already explained in sections 5.3 .1 and 5.5 .1, due to the difficulties that the decision 

maker faces in making a decision about how long it will take to repair a breakdown, based 

only on the attributes of the simulated system and without being able to inspect the 

machines, it was decided to simplify the decision making process that is modelled by 

revealing to the decision maker the estimated repair time (sampled from the distribution 

of the repair time for that operation). Using the estimated repair time as a meta-attribute 

in the situations that were presented during the data collection, the decision makers did 
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not have to inspect the machine. They were not obliged to take into account the type of 

fault since they did not have to decide how long it would take to repair the machine. 

Assuming that the type of fault influences only the estimation of the repair time and not 

the other elements of the decision, it was decided to exclude the variables which represent 

the types of faults from the attribute set A Calibration that was used for the calibration 

process. Although reducing the dimensions of the data set, by excluding the type of fault 

from the calibration process, could have an impact on the accuracy and the specification 

of the models, it was necessary given the number of dimensions that are required to 

represent qualitative variables such as the type of fault. 

In addition, as observed in section 5 .4, the resource decision depends on the action that is 

decided. For immediate repair, expert knowledge is very often required and for this reason 

it is always undertaken by skilled engineers (the Group Leader or the second Mechelec ). 

The stand by process requires practical skills and it is time-consuming. To enable the 

skilled engineer to focus on immediate repairs, the stand by process is always resourced 

with IMSs or operators. The decision about which specific IMS or operator will be 

involved is based purely on their availability status. The above was concluded during the 

pilot data collections. In the sessions with the decisions makers, it became evident that the 

decision about who should be involved is based on what action is required. They 

explained that, having decided what action must be taken, the decision about who should 

be involved is determined by the factory rules. This was verified during the main data 

collection and it is reflected in the data sets that have been collected. On the basis of the 

above conclusion, it was decided to exclude from the calibration process the variables 

which represent the resource decisions. 

Further to this, the complementary elements of the decision (variables 'switch off the 

machine', 'ask the production manager', 'plan repair' and 'plan repair when' in table 6.2-

Chapter 6) were also excluded from the model calibration process. The decision to 

exclude the above variables was made taking into account that there were not enough 

records where complementary actions were taken. Their representation in the model does 

not affect the assessment of the decision making strategies and these types of decisions do 
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not constrain the simulation in any obvious way. Although planned repair might have an 

impact on the production process, the representation of planned maintenance was beyond 

the scope of the research, for reasons given in section 5.5 .1. In addition, the authorisation 

from the production manager is a process that is followed principally to ensure that the 

production manager is aware of the actions rather than in order to constrain the decision. 

Having decided to exclude from the calibration the variables that represent resource, 

complementary decisions and the attributes that represent the type of fault, each of the 

three data sets Dj calibration, A calibration which were used to calibrate the models include 63 

records with 1 binary dependent variable and 35 independent variables. The binary 

dependent variable represents the action decision and the 35 independent variables 

represent the attributes of the system. Table 7.1 shows the structure of the data set which 

was used for training the models. 

Attribute N arne Type Instance 

Repair Time Real 5.4 

Machine number Boollean array[25] [0,0,0, 1 ,0 .... 0] 

Time Integer Array[2] [07: 10] 

Number of engines produced Integer 
so far this shift 

Parts waiting in the conveyor Integer 
in front of the machine 

A calibration Number of heads in the buffer Integer 56 

The machine has broken down Integer 
on this day 

The machine has broken down Integer 10 
this month 

The breakdown has happened Integer 
on this day 

The breakdown has happened Integer 
this month 

n.calibration 
J Stand By or Repair Boollean [110] 

Immediately 

h l"b . d D calibration A calibration Table 7.1: Structure oft e ca z ratzon ata set j , 
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7. 2 Method of analysis 

In order to determine the technique to be used for modelling and understanding the 

strategy employed by each decision maker, a number of well-established techniques 

which have been used in the past (section 4.3.3) to represent decision making were 

considered. 

The data sets which became available as a result of the data collection stage of KBI 

contain data for 25 machines but only a total of 63 decisions. This means that on average 

there are less than 3 decisions per machine. Statistically this is a very limited number of 

decisions, so it was concluded that it would not be possible to use the data to model 

accurate representations of the decision makers. This conclusion was taken on the basis 

that it would not be possible to test the statistical validity of the relationship that 

associates the attributes with the decisions. 

As the collected decisions are a representative sample of the decision situations faced by 

the supervisors, it was considered that a more appropriate approach would be to use the 

collected data to identify differentiations amongst the strategies employed by each 

individual decision maker. 

On the basis of this conclusion and in order to test the third stage ofKBI, it was decided 

to use decision trees as a technique for identifying aspects of the strategy employed by 

each decision maker. Decision trees were chosen from a wide range of alternative 

techniques since it is the only one which can be used to understand the differentiations in 

the strategies employed by the alternative decision makers. It has the advantage of being 

transparent and it is the least data-demanding technique, as cross validation can be 

avoided if the trees are tested qualitatively. 

Besides decision trees (O'Keefe & Roach 1987, Doukidis 1987, Doukidis & Paul 1985, 

Abdurahimman & Paul. 1994), other techniques were considered (Neural Networks-

Liang 1992, Logistic Regression- Malhorta et al 1999, Case-based Reasoning- Liao 

2000) which could have been used to represent and assess decision making. However, 
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given the limited data and given the emphasis of the research on understanding why some 

strategies perform better than others, it was decided to limit the investigation to the above 

technique since, ultimately, it was felt that it is the most appropriate for the purpose of the 

research. 

7.3 Rule induction 

Using rule induction, the model calibration process involved the derivation of a set of 

rules that use the attributes from the data set for clustering the dependent variable. The 

calibration algorithm which is used is known as ID3 (Quinlan 1979) and it was originally 

developed for data sets with discrete limited dependent variables. The priority rule which 

is applied, to determine the sequence in which the attributes must be used for clustering 

the data set, is determined either automatically from the calibration algorithm (automatic 

ID3) or by the user (semi-automatic ID3). When automatic ID3 is used, the attribute 

which can classify the most decisions is applied first. When semi-automatic ID3 is used, 

the priority with which the attributes will be applied is determined by the user, by 

specifying a list with attributes that are ordered by priority preference. When automatic 

ID3 is applied, the number of iterations and the attributes which are used are determined 

by the algorithm and there is little scope for experimentation. However, when semi-

automatic ID3 is used, given that the user has the option to decide the priority with which 

the attributes will be used to classify the decisions, a possible experimentation with the 

algorithm is to determine which attributes must be used first, based on the knowledge of 

the decision making situation. 

For the purpose of this research the commercially available rule induction software 

Xpertrule (Attar software 2000) was used. The software allows the calibration with 

automatic and semi-automatic ID3. For the first experiment, the automatic rule induction 

algorithm was applied. Allowing the algorithm to decide which attributes must be used 

first, based on their classification power, the models that were produced classified 

correctly all the decisions in each data set. In order to improve the robustness of the 

models and to ensure that theoretically important variables are included in the models, a 
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second set of models was produced using semi-automatic ID3. The following paragraphs 

describe the two stages of the rule induction process and the analysis of the results. 

7 .3.1 Model calibration with automatic rule induction 

Decision models 

The decision trees IDM/, IDM/, fDMl in appendix Al.l-1.3 represent the initial set of 

models that were derived from the data in matrices DjCalibration, A Calibration and from 

allowing the calibration algorithm to determine which attribute should be used first in the 

tree. As is clear, the rules are organised into trees and each tree represents the model of a 

specific decision maker. Depending on the situation, there are three alternative decisions 

that a model may recommend. A node 'SB' at the end of a terminal branch indicates that a 

stand by decision will be recommended by the model if the input decision situation meets 

the conditions of the rule represented in the branch. A node 'RI' at the end of a terminal 

branch indicates that a repair immediately decision will be recommended by the model if 

the decision situation meets the conditions of the rule. Finally, a node 'Empty' indicates 

that there is a knowledge gap and there is no recorded decision for the set of situations 

which the specific rule represents. The frequency next to each outcome indicates the 

number of decision situations in the data set which meet the conditions of the rule that the 

branch represents. The probability at the end of each terminal node is a measure of the 

goodness of fit and it is calculated by the ratio shown in the following expression: 

calibration [Number of correctly predicted decisions for the node] 
P(D . . =X I A ) = ~----__::_~-------------=-

1'1 
1 [Total number of decisions in the data set for the node] 

7.1 

Where: 

• P(Dij= XI A calibration) is the probability that a decision Di,j of type X will be taken 

when the observed attributes Aicalibration are within the boundaries that the specific 

branch of the tree represents. 

• [Number of correctly predicted decisions for the node] is a count of the decisions 

in the data set that the model has predicted correctly and which have attribute 

values that fall within the range that the specific branch of the tree represents. 
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• [Total number of decisions for the node] is a count of the decisions in the data set 

that have attribute values that fall within the range that the specific branch of the 

tree represents. 

Comparison of the decision making strategies 

Comparing the structure of each of the three decision trees tDM/, tDMl A, tDMJ A it can be 

seen that the structure of the rules and, therefore, the strategy that each decision maker 

follows are significantly different. In the model of the first decision maker (DM 1 ), the 

first attribute that is used to split the decisions is the estimated repair time (ERT). The fact 

that ER T is the first condition in the rules reveals that it is the attribute which can classify 

more decisions in DMI 's data set than any other attribute. Based on the knowledge that 

the estimated repair time is the most consistent predictor of his decisions, it was initially 

assumed that DM1 behaves as if he believes that, depending on the estimated repair time, 

most of the machines can be operated in stand by mode. 

The first attribute that is used in the models representing the second and third decision 

maker is the machine number. This shows that, unlike the first decision maker, DM2 and 

DM3 behave as if they believe that it is the machine number which mostly constrains their 

decisions. The above behaviour is consistent with what we expected since, from the 

discussion during the pilot data collection, it is known that certain machines must not be 

set in stand by mode and, therefore, it is just not possible to consider a stand by policy for 

those machines. Although it seems that both DM2 and DM3 look first at the machine 

number before they make a decision, their strategies about which machines cannot or 

need not be operated in stand by mode are quite different. 

Figure 7.1, which highlights part of the trees represented in appendix A 1.2 - 1.3, shows 

that DM3 seems to behave as if he believes that only nine machines cannot or need not be 

operated in stand by mode. DM2 behaves as if he believes that 19 machines cannot or 

need not be operated in stand by mode. Comparing these two sets, it is concluded that 

most of the machines which DM3 seems to believe are not necessary or possible to be 

operated in SB mode are included in the set of machines which DM2 seems to believe are 

not possible or necessary to be operated in SB mode. 
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The estimated repair time that was reported in most situations where the above machines 

were involved was much higher than the average repair time regarded as the threshold 

after which the decision makers opt for SB. This indicates that, although DM2 and DM3 

naively should have operated the machines in SB mode, they did not do so because they 

acknowledged that their decisions are constrained by various factors. 

A 
IDM2 : MA= 

A 
IDM3 : MA= 

Op1 01 O,Op1 020,0p1 025,0p1 037,0p1 040,0p1 050,0p1 057 
,Op1 095,0p11 05,0p111 O,Op1115,0p1120,0p155, Op255, -- Rl, Freq 36, Prob1 
Op295,0p30,0p32,0p240,0p270 

Op1 025,0p1035,0p1 095,0p11 05,0p15 
5,0p255, Op32,0p240,0p270 -------- Rl, Freq 12, Prob1 

Figure 7.1: Branches from the trees tDM/ & tDM/ 

An additional difference between the decision trees which is worth mentioning is that 

only the decision tree representing DMI has apparent knowledge gaps (branches with 

outcome 'empty'). This seems to be due to the fact that the algorithm has given priority to 

the attribute 'estimated repair time' which is the first to be used in the conditions of the 

rules in the model. The estimated repair time splits the data set into two subsets. The first 

includes all the records that have an estimated repair time of less than 20 minutes while 

the second includes all the records with an estimated repair time of more than 20 minutes. 

The knowledge gap seems to be caused by the fact that there are insufficient records to 

represent each machine at each of the two levels ofERT. 

Validation 

In order to validate the above conclusions, the models were presented to the decision 

makers and to the production manager of the factory (in separate meetings). Discussing 

the constraints of the decision making process with them, it was found that each decision 

maker and the production manager believe that the machine number is the attribute which 

mostly constrains their decisions, as certain machines must not be operated in SB mode. 

When this issue was discussed with DMI, he did not agree with the conclusion that his 

decisions are based mainly on the estimated repair time, but he admitted that the set of the 

machines which he considers must not be operated in SB mode is less inclusive than the 
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set of the machines that the other two decision makers think that must not be operated in 

SB mode. 

Taking into account the follow-up discussion with DMl, it was concluded that, although 

the estimated repair time is the first attribute used in the conditions of the rules in his 

model, it is not the attribute that carries the highest weight in his decisions. It is used first 

and is therefore the most consistent predictor of the decisions, because the number of 

machines that DMl believes cannot be operated in SB mode are not enough to classify as 

many decisions as the clusters which are created when the estimated repair time is used to 

classify the decisions. 

7.3.2 Model calibration with semi-automatic rule induction 

In order to remove the knowledge gaps and to make sure that the machine number is 

always the first attribute to be taken into account, since it represents the decision making 

problem qualitatively better, semi-automatic rule induction was used as a second 

experiment. Taking account of the information collected during the discussion with the 

decision makers, it was decided that, after the machine number and the estimated repair 

time, the number of heads in the buffer should be used in the conditions of the rules if a 

third attribute is required. 

Having specified the priority with which the attributes must be used in the rules with the 
· · 1 · d · 1 · h h 1" d · · D Calibration ACalibration semi-automatic rue m uctwn a gont m t at was app te m matrices j , 

the models fDM/, tDM2
5

, fDM/ were produced (appendix A1.4-1.6). Given that each branch 

of each model has an outcome with a probability of one, it is concluded that each model 

can classify all the decisions in the data set which is used for its training. 

In the model representing DMl, there was an obvious knowledge gap in the branch which 

represents the decision making strategy for the machine OP1140. However, this time the 

knowledge gap is not genuine and it has been caused by the requirement to use the 

estimated repair time as a second attribute. Analysing the situations which involve the 

machine OP1140, it was found that there were two incidents when the machine OP1140 
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was involved in a breakdown. Having found that the two decision situations have the 

same estimated repair time, it was concluded that the knowledge gap has been caused by 

the algorithm, which is unable to use the repair time for splitting the two decisions. 

Therefore the knowledge gap was resolved by removing the attribute 'estimated repair 

time' for the specific branch of the specific decision maker. 

Observing the models fDMJ s, toM2 s, tDM3 sit is clear that, although most of the rules are 

consistent with the general RVSB trade-off described in section 5.4, the strategy 

represented by each tree is quite different. The set of machines that are always repaired 

immediately is significantly different across the three decision makers. The splitting 

values of each numerical attribute vary across the three models and the number of times 

that the attribute 'number of heads in the buffer' is used in each model is different. 

There also rules which indicate that for some machines it is always better to operate them 

in SB mode once they fail during the shift. These rules are not consistent across the three 

decision makers, who apparently have very different views about which machines must 

always be operated in SB mode once they fail during the shift. Analysing the estimated 

repair time in the incidents in which the 'Always SB' machines are involved, it is 

concluded that the 'Always SB' rules might not fully reflect the decision making process 

for these machines. This is because the estimated repair time for the incidents in which 

the 'Always SB' machines are involved is relatively high. This might have influenced the 

decisions for these machines. 

Discussing the validity of the 'Always SB' rules with the production manager and with an 

independent senior maintenance engineer at Ford, they were quite happy to accept that 

some decision makers may decide to operate 'Always SB' policies for specific machines. 

They insisted that an 'Always SB' policy is feasible and it can be very efficient for 

machines which cause bottlenecks in the production process. They also explained that this 

policy is more likely to be efficient for machines located near to other machines which 

require an operator. This is because there are times when the operator is not busy and so 

he might be involved in the SB process. 
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Based on the above discussion and taking into account that 'Always SB' represents 

incidents involving machines with a generally high estimated repair time, it was 

concluded that the 'Always SB' rules might, after all, represent a decision maker's 

strategy for handling and minimising the causes of bottlenecks. 

On the basis of the above conclusion and taking into consideration the purpose of the 

research, it was decided not to modify the above rules, assuming that the 'Always SB' 

strategies are genuinely complete. 

In addition, observing the tree fDMI s, it is clear that there is a rule (figure 7.2) that 

recommends SB for breakdowns with an estimated repair time ofless than 21.5 minutes 

while it recommends RI for machine breakdowns with an estimated repair time of more 

than 21.5. 

L 
ERT<21.5 

Op1050 
ERT>=21.5 ------------

Figure 7.2: Inverted rule in fvMI s 

SB, Freq 1, Prob1 

Rl, Freq 1, Prob1 

This rule is not consistent with the RIISB trade off and there were concerns that this 

inconsistency might have been caused by a specific decision maker who might not have 

been consistent during the data collection. There were also concerns that it might have 

been caused by the algorithm that failed to identify the other attributes which explain this 

behaviour. Analysing the incidents that generated this rule and bearing in mind the 

discussion with the decision maker, it was concluded that this 'inverted rule' is genuine. 

This conclusion is based on the fact that the decision maker was able to justify this 

decision by explaining that, on a specific machine, lengthy repairs off shift must be 

avoided since they interfere with other activities, such as planned maintenance and safety 

checks. As the above rule reflects the views of a decision maker on how unplanned 

maintenance must be performed on a specific machine, it was decided not to amend it. 
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Having validated qualitatively the above models, it was concluded that the models tmn 5, 

lDM2 
5

, tDM3 s contain less serious knowledge gaps and the priority with which the attributes 

are used to classify the decisions is consistent with what the decision makers told us. On 

this basis it was concluded that they are a more robust representation of the decision 

making process. 

The models could have also been validated using the 'take one out' approach 

(UrbanHjorth 1994). This validation strategy would involve calibrating 63 models (as 

many as the data records) by excluding a different record each time. The excluded data 

record could then be used to test the model. Due to the stratified approach that was used 

to generate the decision situations and due to the fact that most of the branches in the trees 

have been derived from unique decision situations (branches with frequency of situation 

=1), it was decided not apply this calibration approach since this would cause knowledge 

gaps. 

In KBI terms, each decision tree t/ represents the relationship jj that is a model of the real 

relationship 4> j which associates the attributes of the system with the decisions taken by 

the decision maker j. 

7.4 Evaluation and analysis 

Having described the process of modelling human decision making using rule induction, 

as part of the evaluation of the third stage of the KBI methodology the following 

paragraphs explain the lessons that have been learned. Using the collected data, the 

interpolation capability of the rule-based models has been assessed by examining their 

tree structure. Some of the rules which have been derived have shown that the 

interpolation capability of the decision trees is highly dependent on the completeness of 

the input data. There are concerns that some of the 'Always SB' rules may not be genuine 

and may have been caused by the limited capability of the algorithm to interpolate. 

Although it has been decided not to amend those rules, since they have been qualitatively 
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accepted with the decision makers, it is believed that further investigation with additional 

data could improve the analysis. 

Given that the collected data is a representative but not a complete set of scenarios, the 

conclusion concerning limited interpolation indicates that the AI models produced in this 

research represent only some aspects of the decision making strategy employed by each 

decision maker. 

The fact that the model uses only as many attributes as it needs to classify the decisions in 

the data set correctly is an important restriction. It does not allow the user to see how the 

attributers which are not included in the model affect the decision maker and it reduces 

the robustness and generality of the model. 

Despite the above limitations, having compared the decision making strategies 

represented by the models with the verbal explanations given by decision makers, it has 

been concluded that the models represent some of the key aspects of the decision making 

process. The machine number is used as a first rule to filter out the machines which 

cannot be operated in stand by mode. This shows that the model is capable of preventing 

unrealistic decisions from being taken. The 'estimated repair time' which, according to 

the decision makers, is the main variable that is taken into account when deciding what 

action must be taken is the second attribute used in the models. 

Taking into account that each of the six models developed using rule induction predicted 

correctly all the decision in the data set which was used for their calibration, it is 

concluded that with rule induction it is possible to capture the individuality of specific 

decision makers in the decision making problem analysed in this research. Although the 

quality of the predictions was not tested using data excluded in the calibration set, the 

qualitative validation in which the decision makers were involved has shown that there is 

evidence to indicate that the models represent generically a significant percentage of the 

strategies followed by the decision makers. 
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Using the tree representation of the rules, it is relatively easy to understand how the value 

of an attribute influences the decisions in the models. With the tree representation of the 

rules it is possible to identify the differences in the strategies followed by the alternative 

decision makers. This is a particularly useful feature when the efficiency of each model is 

assessed with simulation, since it enables the attribution of why some strategies are more 

efficient than others. 

The hierarchical structure with which the rules are organised in the tree reveals the 

classification power of each attribute in the model when this is derived using automatic 

rule induction. Observing the hierarchical structure, it was possible to identify that, in one 

of the models, the classification power of the attribute 'estimated repair time' is higher 

than the classification power of the attribute machine number. 

The validation process involved modification of the initial models using semi-automatic 

rule induction, incorporating knowledge that was gained during the presentation of the 

initial models to the decision makers. From the above it can be concluded that rule 

induction can be used to analyse and understand the mental process which links the 

attributes with the decisions and, therefore, can be used for external as well as internal 

analysis (section 2.5.3) and for understanding how the decision makers take decisions. 

Amongst other benefits, this contributes to the identification of aspects of the quality of 

the strategies which cannot be assessed using quantitative techniques such as simulation. 

For example, as discussed in the previous section, analysing the tree structures in this 

research it was possible to conclude that DMl takes safety and production quality risks 

when he decides SB (SB for some machines means that testing is not undertaken) for 

machines about which other decision makers are reluctant to take similar decisions, due to 

the risks that are associated with this type of decision for the specific machines. It is also 

concluded, despite the difficulties in assessing the statistical importance of each attribute 

in the tree, that the relative importance of each attribute can be assessed by noting its 

position in the tree. The participation of the analyst in the decision about the sequence 

129 



Chapter 7: KBJ stage 3 

with which the attributes will be used when semi-automatic rule induction was used 

supports the inclusion of such theoretically important variables as the machine number. 

The modification of the tree ofDMl, with the aim of removing the knowledge gap, shows 

that with the tree structure of the models it is possible to modify and extend the models by 

adding or removing branches without the need for recalibration. Finally, given that the 

calibration time for each model was less than one minute, it is concluded that 

computational effort and time does not appear to be a significant constraint when rule 

induction is used. 

7.5 Conclusion 

In this chapter the process of modelling the human decision makers using decision trees 

and data sets which come from simulation-based data collections has been described. This 

has tested the third stage ofKBI. 

The models which have been developed have been presented to the decision makers and 

have been qualitatively validated. The structure and the sequence with which the 

attributes are used in the models have been discussed with the decision makers and it has 

been concluded that they are an adequate representation of the decision making process. 

The models that have been developed do not form a complete representation of the 

decision making strategies, but they provide a tool for understanding differentiations in 

the strategies employed by alternative experts. Using the decision trees, the individual 

characteristics of each decision making strategy can be represented and, as will be 

explained in detail in the next chapter, their efficiency can be assessed using simulation. 

130 



Chapter 8: KBI Stages 4 & 5 

Chapter 8 

Evaluation of stages 4 & 5 of the Knowledge Based 

Improvement methodology 

This chapter tests and evaluates the final two stages of KBI. These stages involve the 

process of representing and assessing the decision makers by linking the rule-based 

models with the simulation. Section one describes the process of representing the decision 

actions in the simulation. Section two describes the design of the simulation experiments 

that were undertaken in order to assess the decision making strategies and section three 

reports the results from these experiments. Section four deals with the statistical tests that 

were used to assess the validly of the findings. Section five provides an overview of KBI 

stage 5 and shows how the conclusions from the assessment of the decision making 

strategies can be used to improve the decision making process in the operations system. 

Finally, section six evaluates the application of the final part of the KBI methodology. 

8.1 Representation of the decision making process in the 
simulation model 

In order to represent the decision making process, it was decided to control the logic of 

the actions that are executed when a machine breaks down by linking the simulation 

model with XpertRule, which contains the decision strategies. Although it was possible to 

hard code the rules in Witness, it was decided to separate the logic of the decision making 

process from the rest of the simulation in order to improve the flexibility of the integrated 

knowledge-based simulation model. Representing and controlling the logic of the decision 

makers externally, using a third party application, enables experimentation with 

alternative decision makers and with alternative decision making strategies. In addition, it 

makes validation and verification of the model easier and enables the modification of an 

existing decision rule without the need for editing the simulation model. 
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Implementation of decision actions in Witness 

In order to use the decision making model to control the logic of the actions that are 

executed when a machine breaks down, the first step was to implement in the simulation 

every alternative action that the decision making models can predict. Given that the rule-

based model predicts decisions using a binary decision variable (repair immediately is 

denoted as =0 and stand by as= 1 ), these two actions were implemented in the simulation. 

The 'repair immediately' action was implemented using conventional machine breakdown 

functionality, which is provided with the simulation software. When a machine breaks 

down, if the decision is to repair immediately then the state of the machine changes to 

breakdown. The machine is unable to process the parts, causing the length of queue to 

increase as more parts are arriving and require processing. The time for which the 

machine is in the breakdown state (the 'repair time') is an input in the model and, as will 

be explained in detail in section 8.2 .1, it is determined by sampling from an empirical 

distribution. The resource which, if available, is engaged in order to fix the machine is 

one of the qualified engineers (Mechelec ). If this type of resource is not available the 

machine remains in breakdown mode until the appropriate resource becomes idle. This 

representation is consistent with the rule that when a machine is repaired immediately it is 

the qualified engineers who are mainly involved in the repair. 

If the decision is stand by, a dummy machine is used to represent the process of by-

passing the parts by asking a trainee engineer (IMS) to process the parts that are arriving. 

A set of dummy machines has been used to represent the whole by-passing process. Each 

element of the set corresponds to each of the machines in the model. The representation of 

the by-passing process, using a different dummy machine for each 'actual' machine in the 

model, enables the representation of the fact that the time required for the by-passing 

process depends on the type of the machine. 

Figure 8.1 provides an example ofthe logic that is used to represent the by-passing 

process. This logic has been implemented in each machine of the model (in the segment 

of the production line that is modelled in this research). As is shown in figure 8.1, if a 

132 



Chapter 8: KBI Stages -1 & 5 

machine mi has broken down and if the decision is SB, then the part is sent to the dummy 

machine mdi and not to the actual machine mi. Once the part is processed, it is forwarded 

to the conveyor C which then pushes it to the next machine mi+J for the next stage of 

processing. If the next machine mi+J has not broken down, the parts are processed by that 

machine. If the next machine has broken down and is in stand by mode then the parts are 

sent to the dummy machine mdi+l· 

. . ... ... . . .. ..... (md;) 

(mn) 

Figure 8.1 Model representation of the by-passing process 

In the by-passing process, while the parts are processed manually by the trainee engineer, 

the status of the actual machine is broken down. Due to safety rules it is not possible to 

repair a machine while parts are being processed. The repair cannot occur, therefore, until 

the end of the shift. Once the machine repair starts the 'by- passing' process is terminated 

and the dummy machine becomes idle. In order to represent the fact that manual 

processing is usually more time-consuming, the cycle time of the dummy machine is 

greater than the cycle time of the standard machine (by 10% ). 

Linking XpertRule with Witness 

Having implemented the modelling of the action that each possible decision option 

represents then, in order to control which action will be executed when a machine breaks 

down, the simulation model was linked with Xpertrule. Since the OLE2 automation 

functionality which Witness supports allows third party applications to invoke and control 

the simulation, although it does not allow the simulation itself to invoke and control third 

party applications, a communication interface was developed to link Witness with 

Xpertrule. This interface was developed in Visual Basic and it is an extension of the 
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approach described by Robinson et al (2003b). The interface (figure 8.2) has the form of 

an executable ( exe) application and it is invoked by the simulation software when a 

machine breakdown occurs. This approach makes the simulation more efficient, resolving 

problems described by previous authors (Robinson et al 2003b ). The Visual Basic 

application does not run parallel with simulation and so there is no need to check whether 

a machine has broken down every time that a simulation event is executed. 

When a machine breaks down in the simulation, the execution of the simulation events 

stops. The interface application described above is invoked using the Witness 'Appexec' 

function. This function enables the opening of an external application from Witness but it 

does not allow control of the external application. For this reason, once the 

communication interface is launched it takes control of the simulation events. It retrieves 

the data about the value of each attribute required by the rule-based model in order to 

make a decision and it passes them to XpertRule (Appendix 2 -Figure A2.1 ). Using the 

appropriate function, it requests a decision from XpertRule (Appendix 2 - Figure A2.2). 

Once a decision is taken from Xpertule, the communication interface passes this decision 

to Witness by assigning the appropriate value to the variable that is used to represent the 

decision (Appendix 2- Figure A2.3). 

The last instruction that the interface sends to the simulation before the Visual Basic 

executable shuts down is to continue the simulation process (Appendix 2- Figure A2.4). 

Once this instruction has been sent to the simulation, the action which must be executed is 

decided by checking the value of the local (Witness) decision variable. If this is = 1, the 

parts are sent to the dummy machine for processing and this represents the stand by 

process. If the decision variable is =0, the parts are waiting for the machine to be repaired 

and this represents the immediate repair. 
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Witness XpertRule 

~~ 

,, 
Link application 

Figure 8.2: Witness XpertRule link 

Verification 

Having developed the interface as part of the verification process - the process of testing 

the software implementation (Pidd 1998, Robinson 1999) - the system was verified by 

comparing the simulation output from the base simulation model (section 1.3) with the 

output from a simulation run of the knowledge based simulation with an XpertRule 

decision strategy, reflecting the strategy which is hard coded in the base simulation model 

i.e. always repair immediately. Taking into account that the output from these simulation 

runs was identical, it was concluded that the knowledge based simulation does what is 

expected. 

8.2 Experimental design 

Having verified the new model, with the aim of testing the use of simulation to identify 

efficient decision making, a number of simulation experiments were undertaken. This 

section provides an overview of these experiments. It outlines the policies that were 

simulated, the implicit assumptions that were made and the decision scenarios that were 

used. It explains how the decision scenarios were generated, how the simulation run 

length was determined and which attributes were used for the scenarios. 

8.2.1 Policies compared in the simulation experiments 

To set a benchmark for comparison and to compare the base decision making process 

(section 1.3) against the representation that takes into account the decision making 

135 



Chapter 8: KBI Stages 4 & 5 

strategies of each individual, it was decided that the policies which should be assessed 

during the experiment must include the decision making process that assumes that repair 

immediately is the only option available when a machine breaks down. On this basis, in 

order to compare the efficiency of the strategies identified in section 7.3 .1, it was decided 

to simulate each of the following four decision making policies: 

• Base model: Current representation of decision making 

• Strategy DM1: Decision tree fDMJ s derived from DM1 's data 

• Strategy DM2: Decision tree tDM/ derived from DM2's data 

• Strategy DM3: Decision tree tDM/ derived from DM3's data 

Given that the manufacturing process is represented in the model as a non-terminating 

system, it was decided that for each simulation run a warm up period must be used in 

order to enable the simulation to reach a steady state. Inspecting the time series (visually-

Pidd 1998) from pilot runs, it was found that 500 minutes were required for the simulation 

to reach a steady state. On this basis, it was decided that the throughput from the first 

simulated day must not be used as a performance indicator for assessing the decision 

making strategies. Having excluded the first day, the simulation length for each run was 

determined by taking into account time and hardware considerations. Considering also the 

scale of the simulation model, it was decided that an overnight simulation run should be 

undertaken for each decision making strategy. This was the equivalent of 112 simulation 

days (replications) and, from the repeated pattern in the time series of the observed 

throughput, it was decided that it was sufficient for the purpose of the experiment. 

8.2.2 Decision scenarios and their inter-arrival times during the 
simulation run 

The decision scenarios (machine breakdowns) during the simulation runs were generated 

by combining attributes of the simulated system. The inter-arrival time between two 

decision scenarios was sampled using a set of negative exponential distributions. The 

negative exponential distribution was chosen because, compared with alternative 

distributions, it is theoretically the most appropriate representation of inter-arrival times 
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(Robinson 2004, Pidd 1998). Assuming that the inter-arrival time of machine breakdmvns 

on a specific machine is independent of the state of the other machines, a different 

distribution parameter and a different random number seed was used in each machine in 

the model. The parameter in each distribution was determined by fitting a negative 

exponential curve in data collected from inter-arrival times of breakdowns for each 
specific machine. 

8.2.3 Decision attributes 

In order to simulate the decision strategies tDMJ 
5

, tDMl 
5

, tDMJ s during the simulation run 

for each decision scenario, the simulation provided information about each of the 

following attributes: 

• Estimated Repair time 

• Number of heads in the buffer 

• Number of machine (Machine ID) 

• Current Simulated time 

Estimated Repair time 

The 'estimated repair time' for each breakdown for each machine is an input in the model 

and it was determined by sampling from a machine-specific empirical distribution that 

was developed using historical data. Using recently observed machine-specific repair 

times in each machine's empirical distribution, it was assumed that the repair time for 

each machine is stochastically distributed, and it depends on the age of the machine and 

on the complexity of the operation which the machine performs. The empirical 

distributions are also used in the existing simulation model (section 1.3) and these were 

developed prior to the research by a simulation specialist in Ford. According to Ladbrook 

(1998) these distributions have been calibrated during the validation of the existing model 

and, compared with statistical distributions, they lead to more accurate simulation 

prediction. Although the accuracy of the prediction is not the only criterion for assessing 

the validity of the model, in order to achieve a like for like comparison the same empirical 

distributions were also used in the simulation models that are compared in this research. 
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Number of heads in the buffer 

The attribute 'number of heads in the buffer' is determined by the simulation using a 

Witness object known as 'buffer'. This object keeps a record of the number of heads that 

have been produced and the number of heads that have been used during the simulation 

run. The 'buffer' object is dynamically updated during the simulation and it can provide 

information on the fly about the current availability of heads in the model. 

Machine ID and Current time 

As discussed earlier in this section, the inter-arrival times of machine breakdowns are 

sampled from a set of negative exponential distributions which determine where and 

when the decision scenarios will occur during the simulation run. This means that the 

attributes 'machine id' and 'current simulated time' are determined within the simulation 

from the machine breakdown inter-arrival times. As has already been noted, a different 

distribution and different random seed is used in each machine. This ensures that the 

above attributes occur independently in the decision scenarios. 

8.3 Simulation results 

Running the simulation four times for 112 simulated days with a different decision 

making configuration each time, the results that are shown in figure 8.3 were ·collected. It 

must be noted that, for confidentiality purposes, the time series of the numbers on the Y 

axis have been multiplied by a random multiplier to avoid disclosure of sensitive 

information. 
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Figure 8.3: Simulation prediction -throughput levels under different decision making policies 

Figure 8.3 shows the daily throughput for each decision making policy. Although none of 

the four strategies seems to perform markedly better than the others, it is clear that there 

are days when the strategy employed by the base model performs worse than the 

strategies that model the policies followed by the human decision makers. 

The misalignment of the time series of the throughput of each decision making model 

reveals the degree to which representing the decision making policies in the simulation 

has an impact on the prediction of the model. This is also confirmed from the mean daily 

throughput figures that are reported in table 8.1. 

Mean daily throughput 

Standard deviation 

DMl 

325.53 

36.28 

DM2 

318.87 

34.34 

DM3 

325.15 

28.54 

Table 8.1: Simulation prediction - mean daily throughput and standard deviation 

Base 

312.06 

39.58 

According to the mean throughput, the most efficient policies are those employed by 

DMl and DM3. Based on the simulation results, the strategy employed by DM2 leads to 

lower daily throughput levels and the least efficient strategy is the one that is represented 

in the base model. The reduced performance of the strategy employed by DM2 is 

attributable to the relatively lower number of SB decisions that are recommended from 
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the rules used in his model. Table 8.2 shows that the percentage of machine breakdowns 

that are handled with stand by decisions is relatively lower for the decisions taken by 

DM2. Taking into account that DMl and DM3 perform better than DM2, this shows that 

the decision making approaches which involve strategies for minimising the delays 

caused by machine breakdowns (i.e. strategies with a relatively higher percentage of stand 

by decisions) lead to higher throughput compared to strategies in which the delays caused 

by machine breakdowns are not handled. 

SB decisions as % of all decisions 

RI decisions as % of all decisions 

DM1 

51% 

49% 

Table 8.2: %of Stand by versus Repair Immediately decisions 

8.4 Statistical validation 

DM2 

16% 

84% 

DM3 

46% 

54% 

Base 

0% 

100% 

In the previous section it was concluded that the representation of individual decision 

making strategies may have an impact on the prediction of the model. This indicates that 

DMl and DM3 have the most efficient strategies. To assess the validity and the statistical 

significance of the above conclusions, two types of hypothesis were tested. First of all, in 

order to assess the statistical significance of the variation in efficiency that was observed 

across the three alternative human decision making strategies, the confidence intervals of 

the differences between the results for the three strategies were calculated. 

To ensure that the observations are not auto-correlated, Fishman's procedure (Fishman 

1978) was applied and the mean daily throughput and the corresponding standard 

deviations were calculated using batches of two observations. Calculating the confidence 

intervals for the difference in the mean daily throughput that was predicted from each 

policy, the hypothesis that there is no difference between each pair of the decision making 

strategies was tested by examining whether the confidence intervals include the value 

zero. To calculate the 95% confidence intervals, a significance level of 1.67(5%/3) was 

used in order to account for the Bonferroni inequality and for the fact that three 

confidence intervals were being calculated (Law & Kelton 2000). Normalising the 
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standard error using a standard normal value of 1.67 (and not 1.96 for 95 %Confidence 

Intervals), the Bonferroni inequality ensures that the confidence level is not reduced. Had 

the adjustment of the standard error remained at 1. 96, the significance level would have 

deteriorated. It would give less than or equal to a 5% chance for one of the true 

differences to fall outside the confidence intervals, but less than or equal to a 15% chance 

for the three true differences to fall outside the intervals. 

From table 8.3, which shows the confidence intervals of the difference in mean daily 

throughput between each pair of decision makers, it is concluded that the variation in the 

throughput due to the application of a different human decision making policy is not 

significant since zero is included in the confidence intervals. Although this conclusion 

indicates that the difference between the policies is not significant, it is of limited validity. 

This is because, in this research, the decision making strategies were only modelled in a 

specific segment of the production line, while the throughput which was predicted and 

which was used for the statistical assessment represents the performance of the whole 

production line. Had we modelled the decision makers in the whole production line, the 

differences in mean throughput would have been higher and could have been statistically 

significant. 

DMl 

DM3 

DM3 

-8.43, 9.19 

(0.38, 26.45, 1.67,55) 

(no sig. difference) 

DM2 

-3.80, 17.11 

(6.66, 31.37, 1.67,55) 

(no sig. difference) 

-2.11, 14.66 

(6.28, 25.17, 1.67,55) 

(no sig. difference) 

Table 8.3: 98.33% paired-t confidence intervals for differences in daily throughput between each 
decision making strategy. Values in brackets represent mean throughput difference, standard 
deviation, standard normal value used for calculating the confidence intervals and sample size. 
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In order to assess the statistical significance of the impact of representing the decision 

making in simulation, confidence intervals were also calculated for the difference 

between the mean daily throughput predicted for each human decision making strategy 

and the throughput that was predicted from the base model. 

DMl 

DM2 

DM3 

Base 

0.84, 26.10 

(13.47, 37.91, 1.67,55) 

(DM1>Base) 

-4.04, 17.66 

(6.81' 32.57, 1.67,55) 

(no sig. difference) 

1.21, 24.98 

(13.09, 35.67, 1.67,55) 

(DM3>Base) 

Table 8.4: 98.33% paired-t confidence intervals for differences in daily throughput between 
each decision making strategy and the base model. Values in brackets represent mean 
throughput difference, standard deviation, standard normal value used for calculating the 
confidence intervals and sample size. 

Calculating the above confidence intervals, it was possible to test the hypothesis that 

repair imm.ediately is always the best option when a machine breaks down. From the 

results that are reported in table 8.4, it is clear that we can reject the null hypothesis. It is 

possible to confirm statistically that repair immediately is not always the best option. For 

two out of the three human decision making strategies, the output that was produced is 

significantly different from the output that was produced employing the base decision 

making strategy. Clearly, the above conclusion shows that representing human decision 

making in the simulation model has a statistically significant impact on the prediction. 

This suggests that, in a simulation model of the engine assembly plant which aims to 

assess plant performance in the face of machine failures, an appropriate representation of 

maintenance strategies is important. 
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8.5 KBI Stage 5: Seeking improvements 

Although, due to the limited time scales, full implementation of stage five is beyond the 

scope of this thesis, from the above conclusions it is clear that a number of improvements 

can be achieved in the operations system modelled in this research. The simulation 

assessment indicates that a statistically significant improvement can be achieved by 

employing a strategy that involves stand by policies. Taking into account that the 

throughputs predicted by applying the policies DM1 and DM3 appear to be the most 

desirable of the four that were assessed, it is clear that throughput improvements can be 

achieved by making one of these policies standard practice. In addition, although it is 

beyond the scope of this thesis, having identified that DM1 and DM3 are the most 

efficient strategies, it might be possible to achieve throughput improvements by designing 

and assessing a strategy that combines elements of these two policies. Finally, given that 

DM1 and DM3 are currently the best strategies that have been identified but not 

necessarily the best strategies that exist, it is proposed that throughput improvements can 

be achieved by using one of these strategies as a starting point for an incremental heuristic 

search. This might lead to a policy with higher utilisation rates that would allow the 

system to reach its full potentiaL The heuristic that could be implemented using a local 

search would involve the maximisation of the following production function: 

8.1 

In expression 8.1, Y is the mean throughput from a simulation run ofk days that uses a 
* tree t1. The heuristic in a KBI context would involve the identification of the tree tt that, in 

an iterative search which starts from the tree tnMI or tnM3, locally maximises Y. The search 

would involve a number of iterations. At each iteration an incremental alteration could be 

applied in the tree tnMI or tnM3 and simulation runs would be required in order to assess 

the performance of the new tree. If the new tree leads to a higher simulated throughput, 

then this could form the current best solution and the next move would involve alteration 

and assessment of this tree. In the context of the case study, each heuristic move would 

involve modification of the values in the rules which determine the length of the 
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estimated repair time after which a specific machine must be operated in stand by mode. 

Given that lengthy simulation runs would be required for each move, only a tiny 

percentage of the alternative possible solutions can be assessed. To make sure that the 

local optimum is identified, a rejection method such as simulated annealing (Eglese 1990) 

or taboo search (Wright 1996) could be applied in order to allow diversification in the 

search. Applying rejection techniques in the search and by so doing allowing iterations 

with relatively bad solutions, it is expected that the search will identify a near-optimal 

solution (Reeves 1995). 

8. 6 Evaluation and analysis 

With the discussion on the potential improvements that can be achieved, the previous 

section has completed the description of the implementation of KBI. As part of the 

evaluation process in this section, the approaches that can be used for validating the 

conclusions are described and form the basis for the discussion and the conclusion of this 

thesis. 

As explained in section 3.2 and again later, during the implementation of the stages of the 

research, an iterative and incremental validation strategy was employed in this research. 

The decision making models were validated using qualitative knowledge that was gained 

during the interviews and discussion with the decision makers. In addition, these models 

were presented to the decision makers in order to see to what extent the strategies that are 

represented in the models are consistent with the decisions that the decision makers take. 

The impact of representing the decision making strategies in the simulation, as described 

in section 8.4, was initially validated by assessing the statistical significance of the 

difference between the throughput of the models. A more straightforward validation 

strategy would have been to compare the output from the simulation models with the 

decision making representation against real observed data, as is suggested by Moffat et al 

(2004). This kind of validation was not possible for a number of reasons. Firstly, daily 

throughput data is rather sensitive information which Ford would not share with us. 

Secondly, specific roster information about the personnel who were involved in each shift 
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is even more sensitive information which is safeguarded by the Data Protection Act, due 

to implications which this might have for the performance assessment of the engineers. 

Thirdly, even if we could get hold of this information it would not be particularly useful, 

since the research focussed on only one segment of the production line. 

Taking into account the above limitations, the simulation model was validated by 

considering to what extent it is sufficiently accurate for the purpose of the research 

(Robinson 2001). Using the simulation model, it was possible to compare the efficiency 

of the alternative decision making strategies (section 8.4). The decision trees provided a 

tool for understanding why some strategies perform better than others and the simulation 

assessment enabled the identification of the most efficient decision making policies. This 

has enabled the recommendation of improvements in the decision making process (section 

8.5). Considering that the purpose of the research was to test the use of simulation for 

understanding and improving the design of decision making, the above findings have 

shown that the simulation model is sufficiently accurate for the purpose of the research. 

8. 7 Conclusion 

In this chapter, the process of linking the representation of the human decision making 

strategies with the simulation model has been described. Using the simulation model, the 

various decision making strategies have been compared and it has been found that none of 

the human decision makers is statistically more efficient than the others, yet the strategies 

that involve SB policies are statistically more efficient than the strategy that does not use 

SB. Comparing the output of the base simulation model with the output of the models 

with the representation of the decision making strategies, it has been found that 

representing decision making in simulation has a significant impact on the prediction of 

the model. Finally, adopting the validation approach, which suggests that a model is valid 

if it serves the purpose for which it was developed, it has been possible to evaluate the 

findings of the final two stages of KBI. 
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Chapter 9 

Discussion and refinements of the KBI methodology 

The last four chapters have tested and evaluated the stages of the KBI methodology in an 

industrial application. As part of the third research objective (section 3.1 ), this chapter 

contributes to the refinement of the methodology by discussing the main conclusions and 

by summarising the lessons that have been learned. Section one discusses the conclusions 

from the evaluation of the first two stages of the KBI methodology (problem 

understanding and the data collection process). Section two discusses the findings from 

the evaluation of the third stage (the use of AI) and section three discusses the conclusions 

from the evaluation of the final two stages of the methodology (simulation assessment of 

the decision making strategies). Finally, in section four the benefits and the general 

limitations are discussed. 

9. 1 KBI stages 1 and 2 

As explained in section 3.1, as part of the second objective of the research, the research 

questions 1 and 2 were set out in order to investigate the feasibility and the practical 

difficulties of a VIS-based data collection in an industrial environment. Using a deductive 

case study, part of this objective was also to explore what can be learned from a VIS-

based data collection and what are the limitations of this process in an industrial 

environment (section 3.2.1). As will be explained in section 10.2, the conclusions from 

the implementation of the stages of KBI have addressed the above research questions. 

They have also contributed to the third objective of the research and to the refinement of 

the KBI methodology. The following paragraphs discuss the findings related with the first 

two stages of KBI and the section concludes by explaining the lessons that have been 

learned and the refinements of the first two stages of the KBI methodology. 
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9.1.1 Testing KBI stage 1 

During the problem-understanding process (stage 1 of the KBI methodology), the main 

elements of the decision making problem were determined and the practical difficulties 

that may arise during the problem-understanding process in an industrial environment 

were identified and addressed. The main difficulties that the problem-understanding 

process involves were revealed from the initial discussion with the people who are 

involved in the maintenance process. During this discussion it was not possible to identify 

the decision making problem. It was not possible to identify any obvious process which 

involves human beings deciding from a set of alternative options by taking into account 

the status of the system. The initial response to our question about what do you do when a 

machine breaks down was ' .... we fix the machine as soon as we can'. The same response 

was also given when they were asked what if more than one machine needs to be repaired 

urgently. To identify the decision making problem we had to go through an iterative 

process which progressively improved our understanding of the problem. As has been 

explained in detail in Chapter 5 (section 5.2), the main decision variables (What and 

Who) were identified only when a three day visit to the factory took place. The options 

that are considered for each decision variable and the attributes that are taken into account 

were later identified when a series of iterative simulation-based pilot data collections were 

conducted. Four pilot data collections, supported with the use of a VIS that was iteratively 

re-specified, have been required in order to gain a clear understanding of the problem. 

From the problem-understanding process a number of lessons have been learned and these 

have contributed to the development of a detailed approach towards structuring decision 

making problems. 

From the problem-understanding process that was described in Chapter 5, it is clear that 

the decision makers were unable to explain the decision making problem to us verbally, 

although it is clear that they were actively involved in it. This illustrates that human 

beings sometimes do things that they have not questioned. This might be due to the fact 

that their decision making duty is part of a more generic role and, therefore, their role as 

decision makers was thought to be a rather trivial one which, in their minds, was 
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underestimated and essentially removed from their conscious awareness of the list of 

things which their role involves (tacit knowledge). 

The difficulties that the decision makers had with describing the problem revealed the 

challenge involved in the process of gaining a detailed understanding of the decision-

making problem through directly asking the decision makers. The process of re-

specifying the VIS iteratively, to include or exclude certain attributes in order to identify 

those that the decision makers need in order to make decisions, shows that a simulation 

model can support the problem understanding process. Given the uncertainty about which 

attributes the decision makers take into account when making decisions, the model must 

allow the user to receive additional information upon request. Recording the frequency of 

times that information about a certain attribute is requested might contribute to the 

identification of the attributes which influence the decisions. 

9.1.2 Testing KBI stage 2 

The collection of the decisions data (stage 2 of the KBI methodology) was also an area in 

which practical difficulties were identified. Unlike most of the previous research in 

modelling decision making in simulation, where the decisions data were collected from 

hypothetical decision makers who have the time or incentives to participate in lengthy 

data collections, in this research the decisions were collected by asking real decision 

makers to interact with the data collection system. Clearly, the involvement of the real 

decision makers in the research imposed many constraints on the number of sessions that 

were able to be conducted and, therefore, on the quality and quantity of the data sets 

which were collected. However, it was the involvement of the real decision makers and 

the limitations on the size of the data sets which contributed to the development of the 

data collection approach that is reflected in KBI stage 2. The limitations resulting from 

the involvement of the real decision makers provided the motivation for designing a data 

collection approach in which a representative set of decisions is inferred from a limited 

data collection session. This data collection approach addresses the issues of involving 

real experts raised by Liang et al (1992) and shows that it is possible to use simulated 

decision situations for collecting decisions from real experts. 
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The practical difficulties of collecting decisions data from real decision makers using VIS 

were identified shortly after the second pilot data collection in which 24 decisions were 

collected within the available time, all of which were of the same type (repair 

immediately). At that stage of the research, it was clear that the lack of diversification was 

due to the limited size of the data set and the nature of the decision situations which were 

presented to the decision maker. The manner of resolving this problem was not obvious, 

given that it was not possible to ask the decision maker to be involved in lengthy data 

collections. The solution to the problem was to use a non-visual simulation and to design 

an experiment containing significantly different decision situations in the hope that this 

would lead to a more representative data set. In order to obtain the so-called significantly 

different decision situations, as explained in Chapter 6, a large number of simulated 

decision situations were analysed. Based on this analysis, it was possible to generate 

decision situations that enabled the collection of decisions which contained sufficient 

variability to develop sensible models of decision making. This shows that, in the specific 

application, simulation provided the facilities to design controlled experiments which 

enabled the analyst to collect representative data sets within realistic time scales. 

VIS was used to present the decision situations to the decision makers in some of the pilot 

data collection experiments. According to what the decision makers told us, the schematic 

visual display of the simulation did not add any further information that helped them to 

make decisions. Running the simulation during the data collection session imposed many 

constraints and restrictions about the type of decision situations that were presented to the 

decision makers during those experimental data collections. Clearly, the most appropriate 

data collection approach was the one that involved the use of a logical display that did not 

require running the VIS during the data collection session. The main reason is that when 

we had the opportunity to run the simulation in advance, we had the chance to select a 

subset of situations which represented a wider range of decision scenarios. From the 

above it is concluded that, for the specific case study, the dynamic schematic display was 

not particularly appropriate for presenting the decision situations to the decision makers, 

principally because this type of display provides details about the general status of the 
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system and this was not taken into account by the decision makers when they made 
decisions. 

9.1.3 Evaluation of stage 1 and 2 

Having discussed case specific conclusions about the implementation of the problem-

understanding and data collection stages of KBI, the following paragraphs describe the 

general refinements, the limitations and the lessons which can be learned as a result of the 

implementation of the first two stages of the methodology. 

Data collection process 

From the process that was described in Chapters 5 and 6 it is clear that, although the 

problem-understanding and data collection in KBI are treated as two distinct stages, the 

empirical evidence from the implementation of the methodology has shown that these two 

are actually parts of the same process, which has emerged from the implementation of the 

initial two stages of KBI. This is because the problem-understanding process involves 

iterative pilot data collections. Addressing the need (highlighted by Curram 1997) for a 

model building methodology, this process involves eight steps and has led to a new 

approach to problem structuring and data collection, known as KBI stages 1 &2. 

From the development and the application of KBI stages 1 &2 it has been learned that, 

depending on the nature of the problem, sometimes it is more appropriate to use non-

visual simulation. In order to proceed to the data collection the problem must be defined 

and a conceptual model should be developed, reflecting the scope of the modelling 

exercise and any simplifications that have been made. The conceptual model can be used 

to specify the requirements of the system which needs to be developed to support the data 

collection. After the development of the system, the data collection should take place by 

involving each decision maker. 

Data collection system specification 

It has also been learned that the functionality of the data collection system proposed as 

part of KBI stages 1 &2 must allow the analyst to design the data collection by using 
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simulation for generating and analysing decision situations. This contributes to address 

the need for an integrated intelligent simulation package, as highlighted by Williams 

(1996). It shows that when the availability of the experts is limited, the system must allow 

the analyst to elicit the decisions by simulating the system prior to the data collection, 

generating a trace of decision situations which can be stored and presented to the decision 

makers without the need to run the simulation during the data collection. To avoid 

presenting duplicated decision situations the system must use a filter, which combined 

with the use of stratified sampling should filter out situations similar to those that have 

already been presented to the decision makers. To enable the analyst to identify the 

attributes which the decision makers need to know in order to make decisions, the system 

must provide the facilities that allow the decision makers to retrieve information upon 

request. 

Data collection limitations 

The size of the data sets that can be collected using KBI stages 1 and 2 is perhaps the 

most serious limitation. Due to the nature of the approach, requiring the intensive 

involvement of the decision makers, it is unrealistic to assume that it is possible to collect 

data sets of any size. The size of the data set is constrained not only by the availability of 

the decision makers but also by the intellectual capacity of the human brain. In this 

research, it has been found that the continuous involvement of each decision maker in the 

task of inputting decisions in the system for more than two hours per day can bore the 

human decision maker, leading to a degree of fatigue which can have a direct impact on 

the quality of the inputs. Clearly, it is not realistic to assume that the decision makers will 

be able to be involved consistently for more than a couple of hours per day, even if they 

are willing to do so. 

As has been seen in section 6.4, the nature and the number of attributes required by the 

decision makers in order to take decisions is also an important constraint limiting the 

scope ofKBI stages 1 and 2. In order to use simulation to collect decision making data, 

the decision making situations which the system should be able to generate must include 

all the key attributes that the decision makers need in order to make decisions. Based on 
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the empirical evidence from the implementation of KBI in this research, it is clear that 

there are situations in which this might not be possible. This is more likely to be the case 

when the decisions are influenced by attributes with a low level of detail, such as colour 

or temperature of parts of the equipment of the system which is being simulated. 

The number of options that are considered in the decision making process is also an area 

that imposes limitations on the applicability of KBI stages 1 and 2. Given that the data set 

must include each option that is considered when a decision is required, an increase in the 

number of options that are considered significantly increases the size of the data set which 

must be collected. Taking into account the empirical evidence on the limitations in the 

number of decisions that can be collected using simulation, it is clear that KBI stages 1 

and 2 are more appropriate for small to medium size decision making problems (problems 

represented using decision variables which reflect decisions with a small number of 

options two, three or possibly four). 

9. 2 KBI stage 3 

As part of the second objective of the research (section 3.1 ), research question 3 was set 

out to investigate the feasibility of the third stage of the KBI methodology (the use of AI 

to model individual decision making in simulation). Using a deductive approach, the 

purpose of this research question was to test the theoretical developments related to the 

use of AI in simulation. As will be explained in section 1 0.2, the research has addressed 

this research question and, as part of the third research objective, it has contributed to the 

refinement of the third stage of the KBI methodology. The following paragraphs 

summarise the findings in relation to the third stage ofKBI (the use of AI) and the section 

concludes by explaining the lessons that have been learned and the relevant refinements in 

the KBI methodology. 

9.2.1 Testing KBI stage 3 

Based on the conclusions in section 7.5, the research has shown that in the specific 

application, with certain limitations and assumptions, it is possible to use rule induction in 

an industrial environment to identify aspects of the decision making strategies which 
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industrial experts employ during the production process. As explained in section 7.3, the 

strategies that were identified are not complete representations of the decision makers 
' 

however they do model the differences in the way in which they take decisions. This has 

enabled the simulation assessment of the decision makers and it has shown that, for the 

aim of the research, the aspects of the strategies that have been identified are appropriate 

to represent individuals in simulation. 

Clearly, the above conclusions are accompanied by certain assumptions and limitations. 

In order to reduce the dimensionality of the data sets which have enabled the calibration 

of the models, it has been assumed that the repair time reflects all the required 

information that the decision maker collects from the physical inspection of the machine 

and from the type of fault. An estimation of the repair time has been used to represent the 

physical inspection of the machine and the type of fault that is reported by the diagnostic 

system during a machine breakdown. On this basis, it has been assumed that the decision 

makers are equally capable of predicting the repair time for any given situation. From the 

dimensionality reduction, it is also concluded that the limited data sets might also impose 

restrictions in the number of decision variables which can be modelled. 

It is evident from the validation strategies that have been employed to test the validity of 

the decision trees that the conclusion on the capabilities of rule induction for identifying 

the decision making strategies are based on some assumptions. The qualitative validation 

involving the presentation of the models to the decision makers (and to other stakeholders 

in the problem) has provided some confidence that the models are generic. However, the 

limited interpolation capabilities and the knowledge gaps that might exist show that the 

models have their limitations. They are founded on the assumption that the sample 

collected during the data collection process is a representative set of the population of the 

decision situations which might occur during the production process. 

9.2.2 Evaluation of KBI stage 3 

Based on the above discussion, a number of methodological lessons associated with the 

process of identifying the decision making strategies in KBI can be learned by 
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considering the implications of the above case-specific conclusions for the potential user 

of the approach. 

The conclusions in sections 7.3 and 8.3 have shown that rule induction is appropriate for 

understanding the decision making strategies and for gaining insights into why certain 

individuals perform better than others during the simulation assessment. This is key 

information for the KBI approach proposed in this research. Considering that a 

fundamental objective in the KBI approach is to identify improved practices by 

comparing the alternative strategies and understanding why some of them perform better 

than others in the simulation assessment, it is clear that the tree structure gives a 

comparative advantage to rule-based models. Due to the algorithm that is used to induce 

the strategies, rule induction models can be qualitatively validated by facilitating a 

discussion with the decision maker who is involved in the data collection. 

As in the case of the lessons learned from the implementation ofthe data collection and 

the problem-understanding stages, the lessons which have been learned from the process 

of identifying the decision making strategies have their limitations. Overfitting and 

knowledge gaps caused by missing decision situations in the data sets are an important 

limitation of the technique which might limit its application. If the data set has serious 

knowledge gaps, then the strategies will not be complete and qualitative validation should 

be used to test the extent to which the rules represent the strategies employed by the 

decision makers. There is clearly little scope to use rule induction if it is not possible to 

use the models to represent the rules which are implicitly included in the data sets. 

9.3 KBI stages 4 and 5 

As a final part of the second objective (section 3.1), research question 4 was set out to 

investigate the use of simulation to identify efficient decision making strategies. The 

research has implemented and tested the above process in a real context. The following 

paragraphs discuss the relevant conclusions, the lessons that have been learned and the 

relevant refinements of the KBI methodology. 
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9.3.1 Testing KBI stages 4 and 5 

Chapter 8 described the process of linking the simulation with a rule-based expert system 

that was used to store the decision making strategies. In addition, it described the main 

conclusions from the implementation ofthe fourth stage ofKBI which involved the 

process of comparing the performance of each decision making strategy using simulation. 

The implementation of the simulation assessment has contributed to the validation ofKBI 

and it has provided empirical evidence on the feasibility and the benefits of the approach. 

The conclusion from the simulation runs has revealed that, in this research, it has been 

possible to assess the performance of various decision making practices related to 

unplanned maintenance. From the conclusion of the comparison of the simulation results 

(throughput prediction), it has been found that the strategy apparently employed by most 

of the decision makers is significantly better than the base decision making strategy which 

involves only the policy RI. This demonstrates that, in the specific application using KBI, 

it has been possible to make recommendations regarding the nature of the policy that 

should be applied in order to improve efficiency. From the decision making strategies that 

have been identified and from the assessment of their performance, it has been found that 

the decision makers appear to follow quite different decision making strategies and that 

their performance may vary. This indicates that performance improvement may be 

achieved by spreading the knowledge held by specific decision makers. 

9.3.2 Evaluation of KBI stages 4 and 5 

Based on the above case-specific conclusions, it can be concluded that under certain 

circumstances commercial expert systems packages, such as the one used in this research, 

can be used to store, assess and maintain complex decision rules which are applied in 

simulations. Having applied the above idea in a commercial simulation model, the 

research has provided empirical evidence to support the feasibility of an approach for 

separating the logic of the simulation from the rest of the model. This empirical evidence 

addresses the need for testing the above approach in an actual industrial environment, as 

suggested by Flitman (1986). 
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Generalizing the case-specific conclusions described earlier in this section, it can also be 

concluded that the implementation of KBI in this research, using a simulation-based data 

collection and rule induction has shown that, under certain circumstances, simulation and 

AI can be used to identify, model and assess decision making practices in an industrial 

environment. In addition, from the conclusion arrived at from the comparison of the 

decision making strategies it is clear that, with an implementation of KBI which involves 

rule induction, it is possible to identify good practices that enable the analyst to make 

recommendations to the owner of the problem i.e. practices which are relevant and can 

improve the overall performance of the system. 

The above conclusion highlights the fact that KBI is the only way to isolate and assess the 

impact of individual decision making strategies. This is because the operation of systems 

such as that investigated in this research involves many decision makers who act in 

parallel fashion. As a result, the performance of each decision maker cannot be fully 

assessed on the basis of the strategy that he/she follows since observed performance 

measures are affected by the strategies followed by other decision makers. Simulating the 

system under one individual decision making strategy appears to be the only way to 

assess the performance of specific strategies. 

9.4 Scope and limitations of KBI 

Taking into account the difficulties that have been described elsewhere in this thesis, it is 

clear that there are certain constraints and assumptions in the above discussion which 

might limit the use of simulation-A! methodologies in general and KBI in particular for 

identifying and assessing decision making practices. 

It is clear that KBI is not yet another performance assessment alternative approach to 

well-established performance assessment techniques, such as Data Envelopment Analysis 

or Stochastic frontiers (Dyson et al 2001 ). KBI is an approach that is intended for the 

solution of different kinds of problems. Unlike established performance assessment 

techniques, KBI focuses on problems which involve assessment of non-homogeneous 

decision making units, such as decision makers who have their own individual 
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characteristics and distinctive attitude and act within an environment with loosely pre-

specified rules. 

In contrast to all the other performance assessment approaches, with KBI the assessment 

of a strategy does not involve the use of historical performance data which might not 

reveal the full potential of a specific strategy. When KBI is employed, the assessment of 

the performance of a specific strategy involves the use of simulation where extreme case 

situations are bound to occur at some stage. This eliminates the risk of bias due to non-

representative sampling of historical performance data. 

KBI enables explicit derivation of the strategy that is assessed. This enables a better 

understanding of why a specific strategy performs better than others. KBI does not treat 

individual decision makers as production systems, whose performance is assessed based 

on the rate with which they can transform inputs into outputs. With KBI, the decision 

makers are treated as individual human beings whose interaction with the system is 

investigated based on the emerging behaviour that this can generate. KBI supports the 

assessment of qualitative performance measures such as the safety risk that the decision 

makers take. For instance in section 7.4 it was found that DMI takes safety and 

production quality risks when he decides SB for machines. KBI facilitates a process of 

understanding key constraints (for example, in the case study of the research, the 

machines which cannot be set in SB mode) and it can be used to form strategic 

propositions and to provide initial solutions to a heuristic search. 

KBI uses simulation to predict and assess the performance of human decision making 

strategies. It is clear that the methodology is more appropriate for situations where the 

decision makers have a single common objective directly related to the decisions that they 

make. Further to this, it should be possible to predict the performance of that objective by 

using the simulation model. Based on empirical evidence, there are concerns that this 

might not always be the case. This could be because the decision makers might have 

quality controls and moral-related objectives which cannot be assessed by the simulation. 
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From the conclusions in Chapter 8, it is clear that the nature of improvements which can 

be achieved using KBI come from the identification of good practices that can be 

communicated, facilitating a learning environment through knowledge management 

practices. Despite the fact that the recommendations which can be made and the 

improvements which can be achieved with KBI are less ambitious than those that are 

expected from optimisation approaches involving exhaustive search, the 

recommendations from KBI are more pragmatic and realistic. With the continuous 

involvement of the decision makers during the process of identifying the decision making 

strategies, with KBI it is more likely to identify key constraints (section 7.3) and to 

improve learning. These are two issues which are very often overlooked when 

optimisation techniques are applied. 

From the description and the implementation of KBI, it is clear that the knowledge 

elicitation method which is proposed as part of the methodology is an experimental 

process, in which the decision makers who participate are involved in interactive data 

collection sessions that are facilitated by a system that generates, stores and presents 

simulated decisions situations. Using experimental data to identify the decision-making 

strategies, it is clear that KBI is based on the assumption that the decision makers who are 

involved during the experiments behave as if they were taking decisions that have real 

effects on the production system. It is also assumed that the decision makers during the 

experiments take the same risks and are equally responsible for their actions as when they 

are involved in real decisions. From the experience of implementing KBI, as was 

anticipated in Chapter 3 (section 3.3), it has been found that there is a risk of collecting 

unrealistic decisions, owing to the fact that the decision makers interact with a simulation 

rather than With the real system. This risk, known as the gaming effect, shows that the 

above assumption is an important one and so care should be taken by the potential user of 

KBI to make sure that is not violated. Constraint violation checks of the input decisions 

(such as those described in sections 7.3 .1 & 7.3 .2) are one way to eliminate this problem. 

Increasing the awareness of the decision makers about the consequence of taking risks 

during the experiments and cross validation of a sample of decisions with production 
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managers, as was done in this research (sections 7.3.1 & 7.3.2), can also contribute to a 

minimisation of the gaming effect. 

Knowledge gaps in the data sets is a limitation which can constrain the implementation of 

KBI, especially if decision trees alone are used to identify and represent decision making 

strategies. Having found that knowledge gaps can be identified by comparing the decision 

rules with qualitative knowledge from the experts, it is concluded that qualitative 

validation and perhaps quantitative cross validation (if sufficient data is available) is the 

most efficient current approach for identifying and resolving those problems. 

In the version ofKBI that has been developed in this research, consistent decision making 

has been assumed. The decision models predict expected decisions E(D/ A) and these 

decisions are used in the simulation. With this approach it has been assumed that the 

quality of the decisions of a specific decision maker is not affected by the working 

conditions, such as the temperature and the noise level. There are concerns that this might 

not always be the case since there is preliminary evidence (Baines & Kay 2002) which 

suggests that the quality of inspections from specific groups of decision makers might 

vary from time to time. A parallel research project (Baines & Kay 2002) is under way to 

investigate what effect the working conditions might have on the performance of 

individuals. 

9.5 Conclusion 
The previous sections of this chapter have discussed the lessons that have been learned 

from the implementation of KBI. From this discussion it is clear that KBI is an area of 

great potential. The fact that the conclusions have been based on the application of KBI 

on a specific case study reveals that the approach can be refined and that it would benefit 

from future research, which would provide additional empirical evidence on its 

applicability. The thesis concludes in the next chapter by summarising what has been 

achieved in terms of the research question and by outlining areas for future research. 
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Chapter 10 

Conclusion 

Having discussed the implementation and the refinements of the KBI methodology, this 

chapter concludes by providing a reflection of what has been achieved and what can be 

achieved by future research. Section one summarises the research which has been 

described in this thesis. Section two outlines what has been achieved measured against the 

objectives and the aim of the research. Section three summarises the key findings and 

section four outlines the contribution of the research. Section five explains general 

limitations and section six outlines areas for future research. 

10. 1 Summary of the research 

Chapter 1 introduced the subject of the research by explaining the challenge involved in 

the use of simulation for understanding and improving decision making. Chapter 2 

provided an overview of the relevant literature. The main research gaps were identified 

and the main techniques which can potentially be used to model decision making in 

simulation were described. In Chapter 3 the aim and the objectives of the research were 

set out and the strategy that was used to address the research questions was explained. In 

Chapter 4 a methodology for capturing efficient decision making using simulation was 

formulated. Applying this methodology (known as KBI), the subsequent chapters (5, 6, 7 

and 8) tested and evaluated the use of simulation for understanding and improving the 

design of decision making. Chapter 5 evaluated the first stage of the KBI methodology. 

This involved the use of VIS for understanding and formulating the decision making 

problem. Chapter 6 evaluated the second stage ofKBI. For this stage a data collection was 

required. In Chapter 7 the third stage of KBI was tested and the use of AI for modelling 

decision making was evaluated. Chapter 8 evaluated the remaining two stages of the KBI 

methodology, which involved the use of simulation to identify efficient decision making 

policies. Finally, Chapter 9 discussed the conclusions, the lessons learned and the 

refinements in the conceptual version of the KBI methodology outlined in Chapter 4. 
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Based on these conclusions the research has provided the required evidence to address the 

objectives and the research questions. These are discussed in the following section. 

10.2 Aim, objectives and research questions- what has been 
achieved 

This section restates and discusses the findings in relation to the objectives of the 

research. It refers to relevant sections of the discussion in Chapter 9 and it provides a 

reflection on what has been achieved in terms of the aim, the objectives and the research 
questions. 

The first objective of the research was to form a methodology to capture efficient decision 

making. The research has achieved this objective by formulating the KBI methodology in 

Chapter 4. 

The second research objective was to test the above methodology by addressing the 

research questions which were set out in section 3.1. The research has tested and 

evaluated the stages of the methodology in Chapters 5, 6, 7 and 8. The following 

paragraphs summarise what has been achieved in relation to the research questions. 

In relation to research question 1, the research has shown in Chapters 5 and 6 that, subject 

to limitations in the size of the data set, it is possible to use simulated decision situations 

to elicit the knowledge and to collect the data required for modelling (with AI) decision 

makers in simulation. Using a case study, the research has tested thoroughly the use of 

VIS as a tool for problem understanding. This has been achieved by using various types 

of VIS for collecting decision making data (section 5.3). 

For research question 2, the research has shown that there are practical difficulties and 

limitations involved in the process of collecting decision making data using VIS. As has 

been discussed in section 9.1.3, these include the time that is required, the attributes 

which cannot be represented in the simulation and the limited availability of the decision 

makers. Amongst the lessons that have been learned, it has been found that sometimes, in 
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order to elicit the knowledge, it is necessary to present decision scenarios without running 

the simulation during the data collection. This is a direct implication for the OR analyst 

and it is reflected in the requirements of the system which has been described in section 
6.2. 

As has been discussed in Chapter 7 in relation to research question 3, the research has 

shown that it is possible to identify aspects of decision making strategies using AI and a 

sample of decision situations. The strategies that can be identified are not complete 

representations of the decision makers, but they can be used to identify differentiations in 

the decision making policies employed. These are appropriate for representing individuals 

in simulation. 

In relation to research question 4, the research has shown in Chapter 8 that, under certain 

circumstances (discussed in section 9.3.2) and subject to limitations (discussed in section 

9.4), it is possible to identify efficient decision strategies by representing and assessing 

the decision making in a simulation. In this research this has been achieved by providing a 

real world example where three strategies were assessed using simulation (section 8.3). 

The third objective of the research was to refine the methodology and to discuss the 

lessons that have been learned as a result of its application in an industrial problem. The 

research has met this objective by discussing the general lessons learned as a result of the 

implementation of the KBI methodology. These were discussed in Chapter 9 and are 

reflected in the key findings which will be outlined in section 10.3. 

Based on the above discussion, it is clear that the research has addressed the research 

questions and it has met its objectives and its aim. The research has developed and tested 

the use of simulation for understanding and improving decision making in a real context. 

This has been achieved by identifying difficulties and limitations and by using a real 

world example to test the KBI methodology. Based on this example a number oflessons 

have been learned and have been discussed in Chapter 9. Amongst the lessons there are 
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key findings which highlight the degree of success of the approach. These are summarised 

in the following section. 

10.3 Key findings 

In this research it has been found that it is possible to use simulation to improve human 

decision making. The approach requires the representation of decision making in 

simulation and this involves a process that is reflected in the stages of the KBI 

methodology. This has been tested on an industrial problem and the findings have been 

discussed in detail in Chapter 9. 

In order to use simulation to collect decision making data, it is necessary to represent the 

attributes which the decision makers take into account during the decision making 

process. This may not always be possible and, in order to resolve the problem, the 

inclusion of meta-attributes must be considered (section 5.3.1). 

The involvement of the real experts limits significantly the size of the data set that can be 

collected using simulated decision situations. When real experts are involved, in order to 

collect a representative sample of decisions, a stratified approach with the use of a 

decision situations database (section 6.2) should be considered. 

The use of decision trees enables the identification of differences in the decision making 

policies employed by different decision makers. However, the limited availability of data 

may not enable a complete representation of each decision making strategy. 

The representation of decision making may have an impact on the prediction of the 

simulation (section 9.3.2). In this research this impact was statistically significant and it 

enabled efficient decision making practices to be identified. 

10.4 Contribution to knowledge 

Having addressed the research questions, the research has addressed a number of research 

issues outlined in section 2.6. The research has been applied to an industrial problem. This 
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addresses the need for testing the use of simulation for understanding and improving 

decision making in a real context (Flitman 1986). It shows that the interface between 

simulation and AI, which has been proposed in the literature over the last 20 years, can be 

applied in industrial problems and can be used to improve the design of decision making. 

By forming and testing the KBI approach, the research has also addressed the need for a 

model building methodology to represent decision making in simulation (Curram 1997). 

The involvement of real decision m.akers has tested the use ofVIS as a data collection 

tool. It has enabled the identification of practical limitations and it has addressed the need 

for testing the use ofVIS with the involvement of real experts (Liang et al 1992). 

The functional specification of the data collection system described and discussed in 

sections 6.2.2 and 9 .1.3 has contributed to the identification of the requirements of an 

intelligent simulation package (Williams 1996). This highlights a promising area for 

software development and indicates some of the areas for future research. These are 

described in section 1 0.6. 

10.5 Limitations 

The limitations of specific findings and the limitations of the KBI approach have been 

discussed extensively in Chapter 9. This section summarises the key limitations of the 

research in general. 

As anticipated in section 3.2.3, the main risk in the validly of the findings is the use of a 

single case study. Clearly, the validity of the findings is based on the assumption that the 

case study which has been used in this research encapsulates the key challenges involved 

in the use of simulation for improving decision making. Based on this assumption, the 

research has recommended the feasibility of the use of simulation to improve decision 

making in a real context. 

The limited availability of data is also a general limitation of the research. The strategies 

that have been identified are based on a very limited data set. As has been pointed out in 
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section 7.4, this means that the decision making models may not form a complete 

representation of the decision makers. Furthermore, it must be remembered that the data 

set that was used in this research was collected from a series of simulation experiments. 

The research is based on the assumption that the decision makers who were involved in 

the experiments were not influenced by the fact that the decisions that they made did not 

have a real impact on the real system. 

10.6 Future research 

A VIS-based data collection presents a number of challenges. The use of three 

dimensional displays is an approach which could improve the knowledge elicitation 

process since it may create a more realistic environment in which to present decision 

scenarios. Further research is required to investigate the potential benefits to be gained 

from the use of 3D displays. 

The application of rule induction as part of KBI is also an area that presents challenges 

and would benefit from future research. The limited interpolation in the decision trees 

indicates that there are unanswered research questions. For example, what is the best 

approach in order to avoid knowledge gaps in decision trees? Also, can the use of neural 

networks or logistic regression improve the process of filling the knowledge gaps by 

extending the sample data sets? 

Due to the limited data that could be collected, a number of difficulties were identified in 

the process of validating the models that were produced. These difficulties show that an 

area of potential research interest is the use ofbootstrapping (UrbanHjorth 1994) to 

support the model validation process in the KBI methodology. The capability of the 

bootstrapping approach to generate multiple samples from a data set is promising. It may 

be able to support the process of generating decision situations and the process of 

validating the models by generating samples for cross validation. 

As explained in Chapter 7, the research has focussed on binary decision making problems 

in which only one dependent variable is used in the decision making models which have 
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been calibrated. The investigation of the feasibility of the modelling techniques to identify 

strategies in decision making models with multiple non-binary decision variables is a 

challenging area of significant potential interest in which future research must also be 

undertaken. 

From the discussion of the conclusions from Chapter 8, it is clear that the version of KBI 

which has been implemented in this research has focused on recommending 

improvements that can be achieved by identifying and sharing good decision making 

practices. The fifth stage of KBI has not been fully tested and an area of potential interest 

that can extend the frontiers of KBI is the investigation of the feasibility of a process for 

combining and assessing good decision making practices. 
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Appendix 1: Decision Trees 

Decision trees with automatic rule induction 

Al.l Initial calibration: tnM/: Decision tree generated with automatic ID3 that represents strategy DMJ 

A1.2 Initial calibration: tnM/: Decision tree generated with automatic ID3 that represents strategy DM2 

A1.3 Initial calibration: tnM/: Decision tree generated with automatic ID3 that represents strategy DM3 

Decision trees with semi automatic rule induction 

A1.4: Final calibration: tnM/: Decision tree generated with semi-automatic ID3 that represents strategy DMJ 

Al.S: Final calibration: tnM/: Decision tree generated with semi-automatic ID3 that represents strategy DM2 

A1.6: Final calibration: tnM/: Decision tree generated with semi-automatic ID3 that represents strategy DM3 
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A 
toM1 

Op1010,0p1020,0p1025,0p1035,0p1037,0p1057,0p --RI, Freq 20, Prob 1 
.----1 080,0p1 095,0p111 O,Op155,0p255,0p265, 

Op1 040,0p1 050,0p11 05,0p1120,0p1125,0p1140,0p __ Empty, Freq o 1----- 295,0p30,0p32 

ERT<20 . 
ERT<13 

ERT>20 

--SB, Freq 1, Prob1 
Op11151 

ERT>=13 --RI, Freq 1, Prob1 

Time_Minutes<23.5 --RI, Freq 3, Prob1 
Op1130 I 

Time _Min utes>=23. 5 --SB, Freq 2, Prob1 

Op1 020,0p1 035,0p1 040,0p1 057 ,Op1 080,0p11 05,0p --SB, Freq 21, Prob1 
1110 Op1115,0p1130,0p265,0p295, Op32 

Op1025,0p1095,0p155,0p255, Op240,0p270 --Empty, Freq 0 

1-----0p1010,0p30 -----------Rl, Freq 2, Prob1 

Time_hours<8.5 --RI, Freq 1, Prob1 
Op1037 

Time_ hours>=8.5 --SB, Freq 2, Prob1 

ERT<21.5 --SB, Freq 1, Prob1 
Op1050 

ERT>=21.5 --Rl, Freq 1, Prob1 

Time_minutes<33.0 --Rl, Freq 2, Prob1 
Op1125 ~...! ____ _ 

Time_minutes>=33.0 --SB, Freq 2, Prob1 

Time_minutes<45.5 --SB, Freq 4, Prob1 
Op1120, I 
Op1140 ~-.. ----- Time_minutes>=45.5 --Rl, Freq 2, Prob1 

A 1.1 tm1/: Decision tree generated with automatic ID3 that represents strategy DM I. 
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A 
tDM2 Machine= 

Op1 01 010p1 02010p1 02510p1 037 10p1 04010p1 05010p1 057 10p1 0 
9510p11 0510p111 010p111510p112010p1551 Op2551 Op2951 --- Rll Freq 361 Prob1 
Op3010p3210p24010p270 

C ERT>=36 

Op1080 

ERT<36 

Op1140 ---

Op1035c= 

ERT<20.1 

ERT>=20.1 

Op1125 c= 

ERT<75.4 

ERT>=75.4 

Op1130 r== ERT<46.1 

ERT>=46.1 

Op265 r== ERT<24.9 

ERT>=24.9 

l Time_Minutes <= 28 

L_ Time_Minutes >28 ---

SBI Freq 21 Prob1 

Rll Freq 1 I Prob1 

Rl, Freq 41 Prob1 

SBI Freq 21 Prob1 

Rll Freq 1 I Prob1 

SBI Freq 1 I Prob1 

Rll Freq 31 Prob1 

SBI Freq 1 I Prob1 

Rll Freq 51 Prob1 

------------ SBI Freq 31 Prob1 

Rll Freq 31 Prob1 

SBI Freq 1 I Prob1 

Al.2 fvu/: Decision tree generated with automatic ID3 that represents strategy DM2. 
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Op1 025,0p1 035,0p1 095,0p11 05,0p15 
Rl, Freq 12, Prob1 

5,0p255, Op32,0p240,0p270 

Op1040,0p1050,0p1120,0p1140,0p29 
SB, Freq 11, Prob1 5,0p30 c Time_hours<9.5 SB, Freq 2, Prob1 

0 1125 . 
P Tlme_Hours>=9.5 SB, Freq 2, Prob1 

ERT<18.4 Rl, Freq 1, Prob1 
Op1010 c 

ERT>=18.4 SB, Freq 1, Prob1 

ERT<21.9 Rl, Freq 1, Prob1 
Op1020 c 

ERT>=21.9 SB, Freq 1, Prob1 

ERT<14.1 Rl, Freq 1, Prob1 
Op1037 c 

ERT>=14.1 SB, Freq 3, Prob1 

toMJ 
A Machine= I 

Op1057 c ERT<26.7 Rl, Freq 1, Prob1 

ERT>=26.7 SB, Freq 1, Prob1 

ERT<36 Rl, Freq 4, Prob1 
Op1080 c 

ERT>=36 SB, Freq 3, Prob1 

ERT<22.5 Rl, Freq 2, Prob1 
Op1110 c 

ERT>=22.5 SB, Freq 2, Prob1 

ERT<46.2 Rl, Freq 2, Prob1 
Op11151 

ERT>=46.2 SB, Freq 1, Prob1 

ERT<110.5 Rl, Freq 7, Prob1 
Op1130 I 

ERT>=110.5 SB, Freq 1, Prob1 

ERT<15.2 Rl, Freq 1, Prob1 

Op265 c 
ERT>=15.2 SB, Freq 3, Prob1 

Al.3 toM/: Decision tree generated 1vith automatic ID3 that represents strategr DM3. 
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t0 M1 s Machine= 

Appendix 1: Decision Trees 

Op1010,0p1025,0p1095,0p155,0p255.0p30,0p240,0p270 

Op1040,0p1105,0p295,0p32 

--------RI, Freq 11. Prob1 

--------SB, Freq 4, Prob1 -c Heads in Buffer< =25 ---------- SB, Freq 1. Prob1 

Heads in Buffer >25 ---------- Rl. Freq 2, Prob1 
[ 

ERT<23.5 

OP1130 

ERT>=23.5 -------------------- SB, Freq 5, Prob1 

Op1140 ---------IC Heads in Buffer<= 16 

Heads in Buffer >16 ---------- SB, Freq O, Prob1 

Rl, Freq 1, Prob1 

ERT<25.5 -- Rl. Freq 1, Prob1 

Op1125 [ 

-r Heads in Buffer< =23 l 
ERT<75 L L_ 

Heads in Buffer >23 ---------- Rl, Freq 1. Prob1 

-- SB, Freq 1, Prob1 ERT>=25.5 

ERT>=75 

ERT<56 

Op1120 [ 

ERT>=56 

L ERT<22 
Op1020 

ERT>=22 

Op1037 

--------------------- Rl, Freq 1, Prob1 

Heads in Buffer <= 7 ---------- SB, Freq 1, Prob1 

Heads in Buffer> 7 ---------- Rl, Freq_1, Prob1 

--------------------- SB, Freq 2, Prob1 

Rl, Freq 1, Prob1 

--------------------- SB, Freq 1, Prob1 

Rl, Freq 1, Prob1 

Rl, Freq 1, Prob1 [ 

ERT<14 

____r-- Heads in Buffer >= 34 
ERT>=14 ~ 

Heads in Buffer< 34 ---------- SB, Freq 2, Prob1 

L 
ERT<21.5 

Op1050 
ERT>=21.5 

L ERT<17 
Op1080 

ERT>=17 

Op1110 L ERT<25.5 

ERT>25.5 

Op1115 L ERT<13 

ERT>=13 

L ERT<19.5 
Op265 

ERT>=19.5 

Op1035 L ERT<20.5 

ERT>=20.5 

Op1057 L ERT<26.5 

ERT>=26.5 

--------------------- SB, Freq 1, Prob1 

Rl, Freq 1. Prob1 

--------------------- Rl, Freq 3, Prob1 

--------------------- SB, Freq 4, Prob1 

--------------------- Rl, Freq 2, Prob1 

--------------------- SB, Freq 2, Prob1 

Rl, Freq 1, Prob1 

--------------------- SB, Freq 2, Prob1 

Rl, Freq 2, Prob1 

--------------------- SB, Freq 2, Prob1 

Rl, Freq 1, Prob1 

--------------------- SB, Freq 1, Prob1 

Rl, Freq 1, Prob1 

--------------------- SB, Freq 1, Prob1 

A1.4 tDM/: Decision tree generated with semi-automatic ID3 that represents strategy DMJ. 
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s 
toM2 

Machine= 
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Op1 01 O,Op1 020,0p1 025,0p1 037 ,Op1 040,0p1 050,0p1 057,0p1 095,0p11 05, 
Op111 O,Op1115,0p1120,0p155,0p255,0p295,0p30,0p32,0p240,0p270 

--RI, Freq 36, Prob1 

Op1140 -----------------------------SB, Freq 2, Prob1 

Op1 080 ----1 

Op1035 

Op1125 

Op1130 

Op265 

Heads in Buffer <36 --SB, Freq 2, Prob1 
ERT>=36 

Heads in Buffer >=36 --RI, Freq 1, Prob1 

ERT<36 -----------------RI, Freq 4, Prob1 

ERT<20,1 -----------------RI, Freq 1, Prob1 

ERT>=20.1 -----------------SB, Freq 1, Prob1 

ERT<75.4 -----------------RI, Freq 3, Prob1 

ERT>=75.4 SB, Freq 1, Prob1 

ERT<46.1 

ERT>=46.1 

ERT<24.9 

-----------------RI, Freq 5, Prob1 

-----------------SB, Freq 3, Prob1 

-----------------RI, Freq 3, Prob1 

ERT>=24.9 SB, Freq 1, Prob1 

A 1.5 tw.t/: Decision tree generated ·with semi-automatic ID3 that represents strategy DM2. 
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,..----- Op1025, Op1035, Op1095, Op1105, Op155,0p255,0p32,0p240,0p270 -RI, Freq 12, Prob1 

1----Op1040, Op1050, Op1120, Op1140,0p295,0p30 ----- 8B, Freq 11, Prob1 

ERT<23.6 

1.---- Op1125 [ Heads in Buffer> =23 

-----------------RI, Freq 1, Prob1 

ERT>23.6 [ 

I ERT<25.5-RI, Freq 1, Prob1 

l__ERT>=25.~8B, Freq 2, Prob1 

Heads in Buffer <23 -------RI, Freq 1, Prob1 

-----------------RI, Freq 1, Prob1 
Op1020 [ ERT<21.9 

ERT>=21.9 
-----------------8B, Freq 1, Prob1 

Op1037 [ ERT<14.1 

ERT>=14.1 

------------------RI, Freq 1, Prob1 

------------------ 8B, Freq 3, Prob1 

Op1057 [ ERT<26.7 

ERT>=26.7 

------------------RI, Freq 1, Prob1 
toM3 s Machine= t-----

------------------8B, Freq 1, Prob1 

Op1080 [ ERT<36 

ERT>=36 

------------------Rl, Freq 4, Prob1 

------------------88, Freq 3, Prob1 

Op1110 [ ERT<22.5 

ERT>22.5 

------------------RI, Freq 2, Prob1 

------------------88, Freq 2, Prob1 

Op1115 [ ERT<46.2 

ERT>=46.2 

------------------ Rl, Freq 2, Prob1 

------------------88, Freq 1, Prob1 

Op1130 [ ERT<110.5 

ERT>=110.5 

------------------ Rl, Freq 7 , Prob1 

------------------88, Freq 1, Prob1 

Op265 [ ERT<15.2 

ERT>=15.5 

------------------RI, Freq 1, Prob1 

------------------88, Freq 3, Prob1 

A1.6 tm13': Decision tree generated with scmi-auto111atic ID3 that rcpresems strategr DM3. 

182 

Appendix 1: Decision Trees 



Appendix] Witness- XpertRule link 

Appendix 2: Visual Basic interface for linking Witness 
with XpertRule 

'Collect attribute vallues from the simulation model 
Dim witobj 
Dim rt 
Dim rna 
Dim hb 
Dim flag As Integer 
Dim decision counter As Integer 
Set witobj = GetObject(, "witness.wcl") 
Do Events 
rt witobj.variable("dmaking.ma rt") 
rna = witobj. variable ( "dmaking. madown") 
hb = witobj.variable("dmaking.hb") 
decision_counter = witobj.variable("dmaking.decision_counter") 

Figure A2.1: Communication interface to collect attribute information 

•invoke expertrule pass the attribute vallues and request a decision 
Dim XpertruleObject As Object 
Dim i 
Dim a As String 
Set XpertruleObject = CreateObject("xrclient.xr32run") 
Call XpertruleObject.StartApp("d:\warwick phd\sigma line\dialog\MODELS\rm.xra -server 

-hidden") 
Do Events 
Call XpertruleObject.Poke("RT", rt) 
Call XpertruleObj ect. Poke ( "MA", rna) 
Call XpertruleObject.Poke("HEADINBUFFER", hb) 
Call XpertruleObject. Command ("CONTINUE") 

'Wait untill xpertule make a decisions 
Do 

Call XpertruleObject.Peek("?", a$) 
Loop Until a = "READY" 

Figure A2.2: Communication interface to invoke and control XpertRule 

'Cpllect the decision from xpertrule and close it 
Call XpertruleObject.Peek("PETERHARIS", a$) 
Call XpertruleObject.Command("EXIT") 

'Pass the decision to witness 
witobj.variable("Dmaking.xr_outcome", 1) =a 

Figure A2.3: Communication interface for passing the decision to Witness 

witobj.batch 
witobj.endole 
End 

Figure A2.4: Communication interface for passing control to the simulation 
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Appendix 3: Attributes - Decisions data sets 

A3.1 Decision maker DMl 

A3.2 Decision maker DM2 

A3.3 Decision maker DM3 
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Appendix 3: Attributes-Decisions data sets 

A 7. 1: Attributes decisions data set - Decision maker DM 1 

At Do~n 

(I) 
c 
:.c 
(.) 
ro 
E 
(I) >-
~ ro 

;S - ;S "'0 

~ s:: (/) s:: 
~ 0 ;s 0 s "0 E E 

(I) 

"' "' "'0 "' ¢:: .D ..... ..r: :.2 (I) ;S ..... 
:.2 ..... 

~ ~ ~ c (I) 0 s:: ~ 
(I) 13 Ol [J') >- ::l c. 

"' (I) .D ~ c. s:: ro 
£ > 0 0 ro (l) c 

c (I) "0 "0 
~ 0. (I) ro 

..... 0 ~ s:: s:: g. c :::2: 
~ (.) - (l) (l) (/) :.c ('-· 

c ~ ~ ro ..r: (.) c c 
0 (I) ·- 0 0 ~ [J') ro 0 (I) 

..... "' ~ (/) ..... ..... o:l E n ~ 
(I) "0 - "'0 .D .D c ..r: 3 
.D (l) c ro [J') [J') 3 

~ (I) ::l 

E 
u ·- (I) o:l o:l 0 ~ "0 I 
~ Ol ..r: ..r: "'0 0 ..... 

(I) "0 ~ 0 - '(tj ..... 
"§ E ::l c - (l) (l) ~ "0 tt:: ..... '(tj c 0 :;:::; s:: s:: ro c. c. 

i= 
..... 

·~ 
0 :.2 :.2 ~ 

~ 0 (I) c. 
~ (I) 0.. ..... o:l (I) (I) 

c [J') (I) u u (l) ~ £ 0::: ..... 
""' 

..... o:l "' .D ..... c .8 0 '(tj :.c (l) 
(/) .D E E .D 0 0 c c 

(.) (l) s:: t:: E (I) (l) 
~ '§ ~ ~ ro ro (l) c. 'So ~ (/) "0 0. (I) ro E ro ::l (l) (l) 

f- ~ (/') ~ <( 0: 0: ..... s:: ..s:: ..s:: <( 0 ;>. 0::: :::2: E= [.l.l 0... z f- f-u r: ci ....: N C"'i ~ L!:i <.0 r--.: (l) C'\i C"'i .,f <ri <.0 r--: oci o' ~ - ...- - ...- ...- ...- ...- ...-

CENTERING ADVANCED(SQI150)_ 26.3 Op32 9 44 184 8 57 1 1 1 1 SB No IMS1 No Yes End off shift 
2 GRIPPER 2 CLAMPED(FEEDBACK)_ 22.6 Op1035 10 30 200 1 66 1 1 1 1 SB No Operator No Yes End off shift 

3 VALVE COLLET 1.2 LOST. 171.8 Op1080 10 30 200 0 66 1 1 1 1 SB No IMS2 No Yes -
4 GUARD DOOR OPENED 70.7 Op1105 10 30 200 0 66 1 1 1 1 SB No IMS1 No Yes End off shift -
5 OVERTRAVEL PROTECTION TRIPPED 97.8 Op1130 13 10 595 0 0 23 23 1 1 SB No IMS1 No Yes -
6 INDEX(SQI151_ 15 Op255 10 11 306 3 0 2 6 1 1 Rl Yes Second mechelec Yes No 

INDEX LOWERED;EXIT 1 EMPTY, 
7 SQI141 NSOI124 NSPI170, SB027/A_ 12.2 Op1095 11 32 353 0 17 1 4 1 1 Rl No Group Leader No No 

PART 2 IN POSITION (LOADING 
8 PLATE)_ 23.5 Op1125 11 59 412 0 0 16 27 8 15 SB No IMS2 No No 

9 FEEDING EMPTY 1 12 Op1080 11 13 436 2 0 6 8 1 1 Rl No Group Leader No No 
OP1025>FAULT(DATA TRANSFER,ASM-

10 HOST)_ 18.5 Op1025 11 18 436 5 0 5 8 3 4 Rl No Group Leader No No 
INDEX RAISED, FEEDBACK(SQI136) 

11 SB021/F 
LIMIT SWITCH MONITORING BLOCKER 

77.8 Op1115 12 8 525 1 2 1 2 1 1 SB No Operator No No 

12 2 219.2 Op1080 14 11 583 0 0 8 10 1 1 SB No IMS1 No Yes 
-
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PART 1 IN POSITION (LOADING 
13 PLATE)_ 

PART 2 IN POSITION (LOADING 
14 PLATE)_ 

15 PASSWORD INPUT(NOK)_ 
PART 2 IN POSITION (LOADING 

16 PLATE)_ 
DISTRIBUTOR IN 

17 POSITION(FEEDBACK)_ 
PART 1 IN POSITION (LOADING 

18 PLATE)_ 
READ IDS(FINISHED MESSAGE), 

19 FEEDBACK(F9.1 ), SB022/F _ 
PART 1 IN POSITION (LOADING 

20 PLATE)_ 
LIMIT SWITCH MONITORING BLOCKER 

21 2_ 

22 PART IN POSITION(FEEDBACK)_ 

23 START DISPENSER(NOT ENABLED)_ 
TAGGING 

24 SYSTEM(FAUL T,CONNECTIONS)_ 

25 GRIPPER CLAMPED(FEEDBACK)_ 

26 GUARD DOOR OPENED_ 

27 GRIPPER 1 CLAMPED(FEEDBACK)_ 

28 CHECK TYPE(FEEDBACK)_ 
INDEX RAISED, FEEDBACK(SQI136) 

29 SB021/F _ 
CONTROLLER ENABLE 

30 MISSING(RCM)_ 
INDEX RAISED, FEEDBACK(SQI136) 

31 SB021/F _ 

32 FEEDING EMPTY 1_ 
33 LOWER INDEX(NOT ENABLED)_ 

34 GUARD DOOR 1 OPENED_ 

35 SEPARATING 1 LOADED_ 
PART 2 IN POSITION (LOADING 

36 PLATE)_ 
READ IDS(FINISHED MESSAGE), 

37 SB022/A_ 

38 WRITE IDS 1 +2(FINISHED MESSAGE)_ 

39 PLATEN IN POSITION SB015/F _ 
GRIPPER 2 TRANSFER 

40 POSITION(FEEDBACK)_ 

32.4 

59.7 

134.2 

27.7 

22.7 

18.5 

33.2 

23.8 

50.3 

28.9 

40.6 

44.6 

89.3 

27.4 

17.5 
17.7 

11 

11 

14.5 

21.8 

20.8 

15 
20.8 

19 

29.9 

21.4 

22.1 

23 
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Op1130 

Op1130 

Op1120 

Op1130 

Op1037 

Op1130 

Op111 0 

Op1125 

Op1080 

Op1037 

Op1020 

Op1120 

Op1140 

Op1125 

Op1035 

Op265 

Op1115 

Op1080 

Op1115 

Op1080 

Op265 

Op1110 

Op1050 

Op1130 

Op1110 

Op295 
Op1040 

Op1037 

15 

8 
10 

11 

12 

12 

8 

7 

8 
9 
15 

18 

20 

13 
15 

15 

16 

19 

20 

16 

17 
18 

19 

20 

20 

21 
16 

8 

16 

56 

33 

34 

6 

43 

57 

16 

27 

2 
29 

58 

55 
20 

0 
6 

42 

12 

39 

20 
14 

48 

55 

4 

22 
24 

15 

18 

667 

70 

136 

270 

451 

472 

69 

914 

132 

212 

9 

303 

556 
665 
883 
896 

32 

376 

442 

120 

250 

297 
455 

573 

613 

703 
74 

74 

2 
0 

0 

0 

5 

2 
0 
0 
0 
2 

0 

0 

1 
2 
2 
0 

0 

8 
0 

186 

4 

5 
19 

10 

7 

51 

12 

47 

6 
0 
0 

0 
0 
0 
29 

28 

30 

14 

0 
0 
0 
12 

0 

0 
0 
60 

61 

22 

5 

10 

8 

23 

2 

2 

3 

2 
2 
20 

2 

2 
3 
5 
2 

25 

3 

2 

49 

54 

7 

59 

36 

103 

7 

54 

22 
41 

6 

18 

16 

82 

8 
51 

6 

28 

7 

35 

69 

15 

12 

207 

16 

4 
2 

61 

12 

2 

3 

5 

13 

2 
3 

2 

11 

25 

18 

3 

19 

29 

50 

2 

21 

5 
2 
3 

10 

2 

2 

3 

3 
9 

13 

5 
2 

77 

2 

SB No 

SB No 

SB No 

SB No 

SB No 

Rl No 

SB No 

Rl No 

SB No 
SB No 

SB No 

Rl Yes 

Rl No 

Rl No 

Rl No 

Rl No 

Rl No 

Rl No 

SB No 

SB No 

SB No 

Rl No 

SB No 

SB No 

SB No 

SB No 
SB No 

Rl No 

IMS1 

IMS1 

IMS2 

IMS2 

Operator 

Group Leader 

IMS1 

Group Leader 

Operator 

IMS1 

IMS2 

Second mechelec 

Second mechelec 

Group Leader 

Second mechelec 

Second mechelec 

Group Leader 

Group Leader 

Operator 
IMS1 

IMS1 
Group Leader 

IMS1 

IMS1 

Operator 

Operator 
Operator 

Group Leader 

No Yes 

No Yes End off shift 

No Yes 

No Yes End off shift 

No Yes End off shift 

No No 

No Yes End off shift 

No No 

No Yes End off shift 

No Yes End off shift 

No Yes End off shift 

Yes Yes Endoffshm 

No No 

No No 

No No 

No No 

No No 

No No 

No Yes End off shift 
No Yes End off shift 

No Yes End off shift 

No No 

No Yes End off shift 

No Yes End off shift 

No Yes End off shift 

No Yes End off shift 
No Yes End off shift 

No No 



41 
42 

43 
44 
45 

46 
47 
48 
49 

50 
51 
52 
53 
54 

55 

56 
57 

58 

59 

60 
61 

62 
63 

SEPARATING 2 LOADED 
GRIPPER CLAMPED(FEEDBACK)_ 
TAGGING SYSTEM SIM MISSING_ 
GRIPPER CLAMPED(FEEDBACK)_ 
FAULT(BAR CODE SCANNER)_ 
CLAMP 
GRIPPER(CRANKSHAFT)(YVQ182)_ 
PASSWORD INPUT(NOK)_ 
PASSWORD INPUT(NOK)_ 
PLATEN IN STATION(SQI122_ 
FEEDING EMPTY 1 
PLATEN ENTERING(FEEDBACK)_ 
OVERTRAVEL PROTECTION TRIPPED_ 
OVERTRAVEL PROTECTION TRIPPED_ 
PART 2 LOST (TOOL)_ 
GRIPPER CLAMPED(FEEDBACK)_ 
DISTRIBUTOR IN 
POSITION( FEEDBACK)_ 
GUARD DOOR 1 OPENED_ 
OP1025>FAULT(DATA TRANSFER,ASM­
HOST)_ 
NO SHORTAGE SIGNAL EXIT 1, SQI227, 
SB091/F _ 
RETURN SEPARATING(NOT 
ENABLED)_ 
GRIPPER CLAMPED(YVQ062)_ 
CLAMP CLAMPING UNIT 
1 (FEEDBACK)_ 
RETURN ADJUSTING UNIT_ 

22 
89.3 
24.1 

29 
13.3 

26 

67.1 
40 
35.7 
11.3 
12 
17.1 
123.3 
123.4 
12.6 

5.4 
7.9 

8.6 

5.2 

3.2 
1.1 

1.6 
1.6 
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Op1050 18 
Op1140 20 
Op1120 6 
Op265 0 
Op1057 5 

Op30 
Op1120 1 
Op1057 3 
Op1010 4 
Op1080 0 
Op155 0 
Op1130 
Op1130 5 
Op1125 8 
Op265 4 

Op1037 7 
Op1110 2 

Op1025 2 

Op1095 3 

Op1020 0 
Op1010 

Op240 
Op270 

50 297 1 
36 531 0 
9 737 0 
38 31 2 
3 618 0 

58 219 10 
2 229 0 
28 506 
52 559 5 
19 128 0 
54 64 4 
55 194 0 
1 623 2 
46 45 0 
2 539 2 

26 
30 200 0 

43 234 5 

21 413 

26 1 5 
40 173 5 

48 193 0 
57 200 2 

187 

48 
33 
15 
17 
48 

43 
44 
49 
64 
46 
72 
52 
41 
74 
64 

56 
66 

51 

4 

56 
51 

57 
66 

1 
1 

5 
2 
4 

1 

3 
2 
3 
2 
1 

5 
17 
1 

7 

2 

2 

14 
16 
30 
101 

13 

4 
33 
15 
53 
50 
4 

308 
320 
224 
142 

2 

2 

2 
2 

2 
1 
3 
15 
1 
5 

11 
10 
6 
48 

2 
10 
4 
2 
14 
2 
38 
50 
5 
63 

Rl 
SB 
SB 

SB 
Rl 

Rl 
SB 
SB 
Rl 
Rl 
RJ 
Rl 
SB 
SB 
Rl 

Rl 
Rl 

Rl 

Rl 

Rl 
Rl 

Rl 
Rl 

No 
No 
No 

No 
No 

No 
No 
No 
No 
No 
No 
No 
No 
No 
No 

No 
No 

No 

No 

No 
No 

No 
No 

Second mechelec 
IMS2 
Operator 
Operator 
Group Leader 

Second mechelec 

Operator 
IMS2 
Group Leader 
Second mechelec 
Group Leader 
Second mechelec 
IMS2 
Operator 
Group Leader 

Group Leader 
Second mechelec 

Group Leader 

Group Leader 

Second mechelec 
Second mechelec 

Group Leader 
Group Leader 

No No 
Yes Yes 
No Yes 
No Yes 
No No 

No No 
No Yes 
No Yes 
No No 
No No 
No No 
No No 
No Yes 
No Yes 
No No 

No No 
No No 

No No 

No No 

No No 
No No 

No No 
No No 

Endoffshm 
Endoffshm 
Endoffshm 

Endoffshm 
Endoffshm 

End off shift 
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A7. 2: Attributes decisions data set- Decision maker DM2 

Ai Di,DI\12 

Q.) 

.!: 

..c 
u 
(i) 

E 
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-£: 
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..<:: "0 -5 ...., 
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E 
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;:l Ol ..c ..<:: ..<:: "0 0 .... .... Q.) "0 0 ·ro -; E ::::1 
2 

c - 0 0 ~ "0 ~ 0. ·ro c :;:::; c: c: (i) D.. 
f.= ·ro 0 :.a :.a Q.) 

..><: 0 Q.) D.. 
~ Q.) ~ .... "' Q.) Q.) 

c "' 3: Q.) (.) (.) .... ~ ..c ..c 0::: .... 
4-; .... "' "' .a c B ...... 
0 ·ro ..c 0 

(J) .a E E ..0 0 0 c c c: E Q.) -~ ~ 
0 D.. u 0 "50 t:: ..c 0 :0 ..c (J) 

(i) (i) 
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1 CENTERING ADVANCED(SQI150)_ 26.3 Op32 9 44 184 8 57 1 1 1 1 Rl No Second mechelec No No 

2 GRIPPER 2 CLAMPED(FEEDBACK)_ 22.6 Op1035 10 30 200 1 66 1 1 1 1 SB No IMS1 Yes Yes End off shift 

3 VALVE COLLET 1.2 LOST. 171.8 Op1080 10 30 200 0 66 1 1 1 1 Rl No Group Leader Yes No -
4 GUARD DOOR OPENED 70.7 Op1105 10 30 200 0 66 1 1 1 1 Rl No Group Leader Yes No -
5 OVERTRAVEL PROTECTION TRIPPED 97.8 Op1130 13 10 595 0 0 - 23 23 1 1 SB No Operator Yes Yes End off shift 

6 INDEX(SQI151_ 15 Op255 10 11 306 3 0 2 6 1 1 Rl No Second mechelec No No 
INDEX LOWERED;EXIT 1 EMPTY, SQI141 

7 NSQI124 NSPI170, SB027/A_ 12.2 Op1095 11 32 353 0 17 1 4 1 1 Rl No Second mechelec No No 

8 PART 2 IN POSITION (LOADING PLATE)_ 23.5 Op1125 11 59 412 0 0 16 27 8 15 Rl No Second mechelec No No 

9 FEEDING EMPTY 1 12 Op1080 11 13 436 2 0 6 8 1 1 Rl No Second mechelec No No 
OP1025>FAUL T(DATA TRANSFER,ASM-

10 HOST)_ 18.5 Op1025 11 18 436 5 0 5 8 3 4 Rl No Second mechelec No No 
INDEX RAISED, FEEDBACK(SQI136) 

11 SB021/F 77.8 Op1115 12 8 525 1 2 1 2 1 1 Rl No Group Leader Yes No 
LIMIT SWITCH MONITORING BLOCKER 

12 2 219.2 Op1080 14 11 583 0 0 8 10 1 1 SB No IMS1 Yes No -
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13 PART 1 IN POSITION (LOADING PLATE)_ 
14 PART 21N POSITION (LOADING PLATE)_ 
15 PASSWORD INPUT(NOK)_ 
16 PART 21N POSITION (LOADING PLATE)_ 

DISTRIBUTOR IN 
17 POSITION(FEEDBACK)_ 
18 PART 1 IN POSITION (LOADING PLATE)_ 

READ IDS(FINISHED MESSAGE), 
19 FEEDBACK(F9.1 }, SB022/F _ 
20 PART 1 IN POSITION (LOADING PLATE)_ 

LIMIT SWITCH MONITORING BLOCKER 
21 2_ 
22 PART IN POSITION(FEEDBACK)_ 
23 START DISPENSER(NOT ENABLED)_ 

TAGGING 
24 SYSTEM(FAUL T,CONNECTIONS)_ 
25 GRIPPER CLAMPED(FEEDBACK)_ 
26 GUARD DOOR OPENED_ 
27 GRIPPER 1 CLAMPED(FEEDBACK)_ 
28 CHECK TYPE(FEEDBACK)_ 

INDEX RAISED, FEEDBACK(SQI136) 
29 SB021/F _ 
30 CONTROLLER ENABLE MISSING(RCM)_ 

INDEX RAISED, FEEDBACK(SQI136) 
31 SB021/F _ 
32 FEEDING EMPTY 1_ 
33 LOWER INDEX(NOT ENABLED)_ 
34 GUARD DOOR 1 OPENED_ 
35 SEPARATING 1 LOADED_ 
36 PART 21N POSITION (LOADING PLATE)_ 

READ IDS(FINISHED MESSAGE), 
37 SB022/A_ 
38 WRITE IDS 1+2(FINISHED MESSAGE)_ 
39 PLATEN IN POSITION SB015/F _ 

GRIPPER 2 TRANSFER 
40 POSITION(FEEDBACK)_ 
41 SEPARATING 2 LOADED_ 
42 GRIPPER CLAMPED(FEEDBACK)_ 
43 TAGGING SYSTEM SIM MISSING_ 
44 GRIPPER CLAMPED(FEEDBACK)_ 
45 FAULT(BAR CODE SCANNER)_ 
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32.4 Op1130 
59.7 Op1130 

134.2 Op1120 
27.7 Op1130 

22.7 Op1037 
18.5 Op1130 

33.2 Op1110 
23.8 Op1125 

50.3 Op1080 
28.9 Op1037 
40.6 Op1020 

44.6 Op1120 
89.3 Op1140 
27.4 Op1125 
17.5 Op1035 
17.7 Op265 

11 Op1115 
11 Op1080 

14.5 Op1115 
21.8 Op1080 
20.8 Op265 

15 Op1110 
20.8 Op1050 

19 Op1130 

29.9 Op1110 
21.4 Op295 
22.1 Op1040 

23 Op1037 
22 Op1050 

89.3 Op1140 
24.1 Op1120 

29 Op265 
13.3 Op1057 

15 16 667 
8 56 70 

10 33 136 
11 34 270 

12 6 451 
12 43 472 

8 57 69 
7 16 914 

8 27 132 
9 2 212 
15 29 9 

18 58 303 
20 55 556 
13 20 665 
15 0 883 
15 6 896 

16 42 32 
19 12 376 

20 39 442 
16 20 120 
17 14 250 
18 48 297 
19 55 455 
20 4 573 

20 22 613 
21 24 703 
16 15 74 

8 18 74 
18 50 297 
20 36 531 
6 9 737 
0 38 31 
5 3 618 
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2 
0 
0 

1 
0 

5 

2 
0 
0 
0 

2 

0 
0 

2 
2 
0 

0 

8 
0 

1 
0 
0 
2 
0 

4 

5 
19 
10 

7 

51 

12 
47 

6 
0 
0 

0 
0 
0 

29 
28 

30 
14 

0 
0 
0 

12 
1 

0 

0 
0 

60 

61 
48 
33 
15 
17 
48 

22 49 
5 54 
1 7 

10 59 

8 36 
23 103 

2 7 
2 54 

22 
3 41 
1 6 

2 18 
2 16 

20 82 
8 

51 

6 
2 28 

2 7 
3 35 
5 69 
2 15 
1 12 

25 207 

3 16 
4 

2 

2 61 
14 
16 

5 30 
2 101 
4 13 

12 25 Rl No Second mechelec 
2 18 SB No IMS1 

3 Rl No Group Leader 
3 19 Rl No Second mechelec 

5 29 Rl No Group Leader 
13 50 Rl No Group Leader 

2 Rl No Second mechelec 
21 Rl No Second mechelec 

5 SB No IMS1 
2 Rl No Group Leader 
3 Rl No Group Leader 

Rl No Group Leader 
10 SB No IMS2 

Rl No Second mechelec 
1 Rl No Second mechelec 
2 Rl No Second mechelec 

2 Rl No Second mechelec 
3 Rl No Group Leader 

2 3 Rl No Group Leader 
3 9 Rl No Group Leader 
1 13 Rl No Second mechelec 
2 5 Rl No Group Leader 

2 Rl No Group Leader 
11 77 Rl No Second mechelec 

2 Rl No Group Leader 
Rl No Group Leader 
Rl No Group Leader 

Rl No Second mechelec 
11 Rl No Group Leader 
10 SB No IMS2 

2 6 Rl No Second mechelec 
2 48 SB No Operator 
1 1 Rl No Second mechelec 

No No 
Yes Yes Endoffshm 
Yes No 
No No 

No No 
No No 

No No 
No No 

Yes No 
No No 
No No 

Yes No 
Yes Yes End off shift 
Yes No 
No No 
No No 

No No 
No No 

No No 
No No 
No No 
No No 
No No 
No No 

Yes No 
No No 
No No 

Yes No 
No No 
Yes No 
Yes No 
Yes No 
No No 
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CLAMP 
46 GRIPPER(CRANKSHAFT)(YVQ182)_ 26 Op30 1 58 219 10 43 1 4 1 2 Rl No Group Leader Yes No 

47 PASSWORD INPUT(NOK)_ 67.1 Op1120 1 2 229 0 44 3 33 1 10 Rl No Group Leader Yes No 

48 PASSWORD INPUT(NOK)_ 40 Op1057 3 28 506 1 49 2 15 1 4 Rl No Second mechelec No No 

49 PLATEN IN STATION(SQI122_ 35.7 Op1010 4 52 559 5 64 3 53 1 2 Rl No Group Leader No No 

50 FEEDING EMPTY 1 11.3 Op1080 0 19 128 0 46 2 50 2 14 Rl No Group Leader No No -
51 PLATEN ENTERING(FEEDBACK)_ 12 Op155 0 54 64 4 72 1 4 1 2 Rl No Second mechelec No No 

52 OVERTRAVEL PROTECTION TRIPPED 17.1 Op1130 1 55 194 0 52 5 308 3 38 Rl No Second mechelec No No -
53 OVERTRA VEL PROTECTION TRIPPED 123.3 Op1130 5 1 623 2 41 17 320 15 50 SB No IMS1 Yes No -
54 PART 2 LOST (TOOL)_ 123.4 Op1125 8 46 45 0 74 1 224 1 5 SB No IMS2 Yes Yes 

55 GRIPPER CLAMPED(FEEDBACK)_ 12.6 Op265 4 2 539 2 64 7 142 5 63 Rl No Second mechelec No No 
DISTRIBUTOR IN 

56 POSITION(FEEDBACK)_ 5.4 Op1037 7 26 1 1 56 1 1 1 1 Rl No Group Leader No No 

57 GUARD DOOR 1 OPENED 7.9 Op111 0 2 30 200 0 66 1 1 1 1 Rl No Group Leader No No 
OP1025>FAULT(DATA TRANSFER,ASM-

58 HOST)_ 8.6 Op1025 2 43 234 5 51 2 2 1 ' 1 Rl No Group Leader No No 
NO SHORTAGE SIGNAL EXIT 1, SQI227, 

59 SB091/F 5.2 Op1095 3 21 413 1 4 2 2 1 1 Rl No Group Leader No No -
60 RETURN SEPARATING(NOT ENABLED)_ 3.2 Op1020 0 26 1 5 56 1 1 1 1 Rl No Group Leader No No 

61 GRIPPER CLAMPED(YVQ062)_ 1.1 Op1010 1 40 173 5 51 1 1 1 1 Rl No Second mechelec No No 

62 CLAMP CLAMPING UNIT 1 (FEEDBACK)_ 1.6 Op240 1 48 193 0 57 1 1 1 1 Rl No Second mechelec No No 

63 RETURN ADJUSTING UNIT 1.6 Op270 1 57 200 2 66 1 1 1 1 Rl No Second mechelec No No 
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A 7. 3: Attributes decisions data set- Decision maker DM3 
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CENTERING ADVANCED(SQI150)_ 26.3 Op32 9 44 184 8 57 1 1 1 1 Rl No Second mechelec No No 
2 GRIPPER 2 CLAMPED(FEEDBACK)_ 22.6 Op1035 10 30 200 1 66 1 1 1 1 Rl No Group Leader No No 
3 VALVE COLLET 1.2 LOST._ 171.8 Op1080 10 30 200 0 66 1 1 1 1 SB No Operator No Yes 
4 GUARD DOOR OPENED_ 70.7 Op1105 10 30 200 0 66 1 1 1 1 Rl No Group Leader No No 
5 OVERTRAVEL PROTECTION TRIPPED_ 97.8 Op1130 13 10 595 0 0 23 23 1 1 Rl No Second mechelec No No 
6 INDEX(SQI151_ 15 Op255 10 11 306 3 0 2 6 1 1 Rl No Second mechelec No No 

INDEX LOWERED;EXIT 1 EMPTY, SQI141 
7 NSQI124 NSPI170, SB027/A_ 12.2 Op1095 11 32 353 0 17 1 4 1 1 Rl No Second mechelec No No 
8 PART 21N POSITION (LOADING PLATE)_ 23.5 Op1125 11 59 412 0 0 16 27 8 15 Rl No Second mechelec No No 
9 FEEDING EMPTY 1 

OP1 025>FAUL T(DATATRANSFER,ASM-
12 Op1080 11 13 436 2 0 6 8 1 1 Rl No Group Leader No No 

10 HOST)_ 18.5 Op1025 11 18 436 5 0 5 8 3 4 Rl No Second mechelec No No 
INDEX RAISED, FEEDBACK(SQI136) 

11 SB021/F 77.8 Op1115 12 8 525 1 2 1 2 1 1 SB No Operator No Yes -
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LIMIT SWITCH MONITORING BLOCKER 
12 2_ 
13 PART 1 IN POSITION (LOADING PLATE)_ 
14 PART 2 IN POSITION (LOADING PLATE)_ 
15 PASSWORD INPUT(NOK)_ 
16 PART 21N POSITION (LOADING PLATE)_ 

DISTRIBUTOR IN 
17 POSITION(FEEDBACK)_ 
18 PART 1 IN POSITION (LOADING PLATE)_ 

READ IDS(FINISHED MESSAGE), 
19 FEEDBACK(F9.1 ), SB022/F _ 
20 PART 1 IN POSITION (LOADING PLATE)_ 

LIMIT SWITCH MONITORING BLOCKER 
21 2_ 
22 PART IN POSITION(FEEDBACK)_ 
23 START DISPENSER(NOT ENABLED)_ 

TAGGING 
24 SYSTEM(FAUL T,CONNECTIONS)_ 
25 GRIPPER CLAMPED(FEEDBACK)_ 
26 GUARD DOOR OPENED_ 
27 GRIPPER 1 CLAMPED(FEEDBACK)_ 
28 CHECK TYPE(FEEDBACK)_ 

INDEX RAISED, FEEDBACK(SQI136) 
29 SB021/F _ 
30 CONTROLLER ENABLE MISSING(RCM)_ 

INDEX RAISED, FEEDBACK(SQI136) 
31 SB021/F _ 
32 FEEDING EMPTY 1_ 
33 LOWER INDEX(NOT ENABLED)_ 
34 GUARD DOOR 1 OPENED_ 
35 SEPARATING 1 LOADED_ 
36 PART 2 IN POSITION (LOADING PLATE)_ 

READ IDS(FINISHED MESSAGE), 
37 SB022/A_ 
38 WRITE IDS 1 +2(FINISHED MESSAGE)_ 
39 PLATEN IN POSITION SB015/F _ 

GRIPPER 2 TRANSFER 
40 POSITION(FEEDBACK)_ 
41 SEPARATING 2 LOADED_ 
42 GRIPPER CLAMPED(FEEDBACK)_ 
43 TAGGING SYSTEM SIM MISSING_ 
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219.2 Op1080 
32.4 Op1130 
59.7 Op1130 

134.2 Op1120 
27.7 Op1130 

14 11 583 
15 16 667 
8 56 70 

10 33 136 
11 34 270 

22.7 Op1037 12 6 451 
18.5 Op1130 12 43 472 

33.2 Op1110 8 57 69 
23.8 Op1125 7 16 914 

50.3 Op1080 8 27 132 
28.9 Op1037 9 2 212 
40.6 Op1 020 15 29 9 

44.6 Op1120 18 58 303 
89.3 Op1140 20 55 556 
27.4 Op1125 13 20 665 
17.5 Op1035 15 0 883 
17.7 Op265 15 6 896 

11 Op1115 16 42 32 
11 Op1080 19 12 376 

14.5 Op1115 20 39 442 
21.8 Op1080 16 20 120 
20.8 Op265 17 14 250 

15 Op1110 18 48 297 
20.8 Op1050 19 55 455 

19 Op1130 20 4 573 

29.9 Op1110 20 22 613 
21.4 Op295 21 24 703 
22.1 Op1040 16 15 74 

23 Op1037 8 18 74 
22 Op1 050 18 50 297 

89.3 Op1140 20 36 531 
24.1 Op1120 6 9 737 
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13 

2 
3 

2 

11 

2 

SB 
25 Rl 
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3 SB 
19 Rl 
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3 Rl 

3 Rl 
9 Rl 

13 SB 
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No Operator 

No IMS1 
No Operator 
No Group Leader 
No Second mechelec 
No IMS1 

No Second mechelec 
No Second mechelec 

No Group Leader 
No Group Leader 
No IMS1 
No Second mechelec 
No IMS1 
No Second mechelec 

No IMS1 
No IMS1 
No Operator 

No IMS2 
No IMS2 
No IMS2 
No IMS1 

No 
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No 
No 

No 
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No 
No 
Yes 
No 

Yes End off shift 
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No 
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Yes End off shift 
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44 GRIPPER CLAMPED(FEEDBACK)_ 29 Op265 0 38 31 2 17 2 101 2 48 SB No IMS1 No Yes End off shift 

45 FAUL T(BAR CODE SCANNER)_ 13.3 Op1057 5 3 618 0 48 4 13 1 1 Rl No Second mechelec No No 
CLAMP 

46 GRIPPER(CRANKSHAFT)(YVQ182)_ 26 Op30 1 58 219 10 43 1 4 1 2 SB No IMS1 No Yes End off shift 

47 PASSWORD INPUT(NOK)_ 67.1 Op1120 1 2 229 0 44 3 33 1 10 SB No Operator No Yes 

48 PASSWORD INPUT(NOK)_ 40 Op1057 3 28 506 1 49 2 15 1 4 SB No IMS1 No Yes End off shift 

49 PLATEN IN STATION(SQI122_ 35.7 Op1010 4 52 559 5 64 3 53 1 2 SB No IMS1 No Yes End off shift 

50 FEEDING EMPTY 1 11.3 Op1080 0 19 128 0 46 2 50 2 14 Rl No Second mechelec No No -
51 PLATEN ENTERING(FEEDBACK)_ 12 Op155 0 54 64 4 72 1 4 1 2 Rl No Group Leader No No 

52 OVERTRAVEL PROTECTION TRIPPED - 17.1 Op1130 1 55 194 0 52 5 308 3 38 Rl No Second mechelec No No 

53 OVERTRAVEL PROTECTION TRIPPED 123.3 Op1130 5 1 623 2 41 17 320 15 50 SB No IMS1 Yes No 
-

54 PART 2 LOST (TOOL)_ 123.4 Op1125 8 46 45 0 74 1 224 1 5 SB No Operator No Yes 

55 GRIPPER CLAMPED(FEEDBACK)_ 12.6 Op265 4 2 539 2 64 7 142 5 63 Rl No Group Leader No No 
DISTRIBUTOR IN 

56 POSITION(FEEDBACK)_ 5.4 Op1037 7 26 1 1 56 1 1 1 1 Rl No Second mechelec No No 

57 GUARD DOOR 1 OPENED 7.9 Op1110 2 30 200 0 66 1 1 1 1 Rl No Group Leader No No 
OP1025>FAULT(DATA TRANSFER,ASM-

58 HOST)_ 8.6 Op1025 2 43 234 5 51 2 2 1 1 Rl No Second mechelec No No 
NO SHORTAGE SIGNAL EXIT 1, SQI227, 

59 SB091/F - 5.2 Op1095 3 21 413 1 4 2 2 1 1 Rl No Second mechelec No No 

60 RETURN SEPARATING(NOT ENABLED)_ 3.2 Op1020 0 26 1 5 56 1 1 1 1 Rl No Second mechelec No No 

61 GRIPPER CLAMPED(YVQ062)_ 1.1 Op1010 1 40 173 5 51 1 1 1 1 Rl No Group Leader No No 

62 CLAMP CLAMPING UNIT 1 (FEEDBACK)_ 1.6 Op240 1 48 193 0 57 1 1 1 1 Rl No Group Leader No No 

63 RETURN ADJUSTING UNIT_ - - - ·- _1_.6_ Q227.Q - 1_ 57 200 2 66 1 1 1 1 Rl No Group Leader No No 
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